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Abstract: Detection of multiple lane markings on road surfaces is an important aspect of autonomous
vehicles. Although a number of approaches have been proposed to detect lanes, detecting multiple
lane markings, particularly across a large number of frames and under varying lighting conditions,
in a consistent manner is still a challenging problem. In this paper, we propose a novel approach
for detecting multiple lanes across a large number of frames and under various lighting conditions.
Instead of resorting to the conventional approach of processing each frame to detect lanes, we treat
the overall problem as a multitarget tracking problem across space and time using the integrated
probabilistic data association filter (IPDAF) as our basis filter. We use the intensity of the pixels as
an augmented feature to correctly group multiple lane markings using the Hough transform. By
representing these extracted lane markings as splines, we then identify a set of control points, which
becomes a set of targets to be tracked over a period of time, and thus across a large number of frames.
We evaluate our approach on two different fronts, covering both model- and machine-learning-based
approaches, using two different datasets, namely the Caltech and TuSimple lane detection datasets,
respectively. When tested against model-based approach, the proposed approach can offer as much
as 5%, 12%, and 3% improvements on the true positive, false positive, and false positives per frame
rates compared to the best alternative approach, respectively. When compared against a state-of-the-
art machine learning technique, particularly against a supervised learning method, the proposed
approach offers 57%, 31%, 4%, and 9× improvements on the false positive, false negative, accuracy,
and frame rates. Furthemore, the proposed approach retains the explainability, or in other words, the
cause of actions of the proposed approach can easily be understood or explained.

Keywords: multilane tracking; probability density function (PDF); maximum a posteriori (MAP);
integrated probability data association (IPDA); curve fitting; Hough transform

1. Introduction

Advanced driving assistance systems (ADAS) are no longer an optional or a luxurious
component in modern vehicles [1,2]. Instead, they are becoming a core component, espe-
cially with the migration towards autonomous vehicles. ADAS covers a number of varying
functionalities, such as lane departure warning (LDW), lane keep assist (LKA), lane change
merge (LCM), adaptive cruise control (ACC), collision detection and avoidance (CD), night
vision, and blind spot detection, to mention a few [1,3–13]. The overall functionality of the
ADAS is underpinned by a machine vision component whose ability to understand the
surroundings, particularly the ability to extract lane boundaries and markings in roads.
With ADAS becoming a core component, it is essential that potential errors arising out
of the machine vision component be as low as possible. However, correctly, consistently,
and constantly extracting lane markings across a range of weather conditions is not triv-
ial. In addition to this, varying lane marking standards, obscure lane markings, splitting
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and merging of lanes, and shadows of vehicles and objects exacerbate this problem even
more [14–17]. We show a number of such examples in Figure 1.

Figure 1. Example cases where extracting lane markings is challenging (A) patched road; (B) Shadow; (C) cross walk; (D)
road markings (adopted from [18]).

The road markings can be extracted using image-based sensors like monocular or
stereo vision cameras, or using LIDAR sensors. Among these, using monocular cameras
is the cost-effective approach, although they lack the depth information. Stereo vision
cameras can, however, provide the capability to infer the depth information and hence
the ability to reconstruct three-dimensional scenarios for improved functionality, such
as collision detection [4]. LIDAR sensors exploit the fact that road markings are painted
using retroreflective paints. These extracted markings can then be used to extract the
lane markings. However, LIDAR sensors are, similar to stereo vision cameras, far more
expensive than monocular cameras. As such, seeking a trade-off between performance,
reliability, and cost is an important activity in the design process. Treating cost effectiveness
as the primary objective, we assume that the lane detection is performed on images obtained
from a monocular camera system.

The literature on lane detection and tracking is considerably rich with a variety of
techniques, covering various applications domains, including LDW, LKA, LCM, and CD.
Some of these perform lane marking detection (for example, [19,20]) and track them while
the rest perform only the detection (for example, [5,13,21]). In particular, we focus on
techniques that solely rely on images or videos obtained from monocular vision cameras
for lane marking detection followed by tracking. For instance, vision-based lane detection
has been used for LDW in [5,11,12,14,22]. These approaches predominantly rely on infor-
mation such as color, color cues, and edge-specific details. Color cues exploit the color
contrast information between the lane markings and roads. However, the conditions have
to be favorable for the differences in contrast to be realized by the lane marking algorithms.
Conditions such as illumination, back lights, shadows, night lights, and weather condi-
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tions, such as rain and snow, can significantly affect the performance of color-cue-based
algorithms. One approach to overcome these limitations is to use the Hough transform
along with color cues [23]. However, Hough transform works well when the potential
candidate lines are straight and visible enough. Although some preprocessing can improve
the detection [21], consistently differentiating lane boundaries from other artifacts, such as
shadows and vehicles, is a challenge.

Inverse perspective Mapping (IPM) is another approach to determine the lane bound-
aries in LDW systems. The central idea behind IPM is to remove the perspective distortion
of lines that are parallel in real world [11,18,22]. In order to do this, images are transformed
from camera view to bird’s eye view using camera parameters. During the transformation,
the aspect ratios are retained so that gap or widths between lane boundaries are trans-
formed appropriately. As such, the lane boundaries are still detectable in the transformed
space. However, there are several downsides to this approach. Primarily, IPM is often
used with fixed camera calibration parameters, and this may not always be optimal, owing
to the surface conditions [24]. Furthermore, these transformations are computationally
intensive [25], and as such, the real-time utility of these approaches needs careful imple-
mentation. Although these issues can reasonably be overcome by resorting to various
techniques, such as calibration and adequate compute power systems [24–26], the main
limitation is that the transformation is sensitive to obstacles on the road, such as vehicles,
and to terrain conditions [27].

As lane markings are a pair of parallel lines, each pair should pass through a vanishing
point [28]. This property can be exploited to eliminate and filter out the line segments
that do not constitute lanes [29–31]. A number of approaches have been proposed in the
literature for tracking a single lane, such as [14,17,31–35]. In [17], color, gradient, and
line clustering information are used to improve the extraction of lane markings. In [36],
an approach for lane boundary detection based on random finite sets and PHD filter
is proposed as a multitarget tracking problem. In [32], a multilevel image processing
and tracking framework is proposed for a monocular camera-based system. As such, it
heavily relies on preprocessing of frames. Our approach also uses splines, but our tracking
approach is significantly different to the one in [32]. In [33,34], techniques for personalized
lane-change maneuvering are discussed. They use driver-specific behaviors, collected as
part of the system, to improve the results. Although this can improve the results, such
approaches are practically difficult to implement. In [35], the lane tracking is simplified by
forming a midline of a single lane using B-splines. Although this approach may be useful
over a short distance, conditions such as diverging lanes or missing lane markings will
render the approach susceptible to bad approximations of midlines. This can easily lead to
suboptimal results.

With recent advances in machine learning, particularly with supervised learning
techniques such as deep learning, it is possible to engineer machine learning models to
recognize lane markings. This possibility has been demonstrated in the literature [37–41].
In [38], a special convolutional neural network (CNN), termed spatial CNN (SCNN), was
constructed for extracting the spatial correlation between objects in an image with the view
of using that to establish the relative positioning of lane markings. In [39], the LaneNet
consisting of two deep neural networks was constructed for lane detection. One of the
networks detects lane marking edges, whereas the other network groups and clusters
lane markings. The lane extraction work described in [38] relies on several integrated
techniques, such as the YOLO framework [42] for object detection and convolutional patch
networks (CPN) [43,44] for detecting road surfaces and regions of interest. Although these
supervised techniques can offer a good result, the approach suffers from a number of issues.
First, supervised learning techniques rely on labeled datasets or ground truth information.
Although this appear to be trivial, these labels have to be made for each and every pixel
that are to be classified as lane marking. Second, the real success of deep learning is based
on the volume of data upon which the model is trained. Although the process of securing
several thousands of images with labeled pixels can be automated, it is a time-consuming
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process. Third, training requires substantial amount of compute time. Fourth, although
various supervised learning techniques can offer good accuracy rates, the explainability
of the machine learning models is still an upcoming area of research, and unlike general
algorithms, deep neural networks lack the rigor of explainability. This is a serious concern
where lives could be at risk. Finally, the accuracy rates are never sustained across different
datasets. As such, the training process is a continuous one.

This paper aims to develop a tracking technique for a multilane tracking problem
based on images/videos captured from a single camera mounted in front of a vehicle.
The algorithm is designed to be real-time, robust, and cost-efficient in terms of sensors.
To this end, we first model each lane marking as a spline, defined by a finite set of control
points. By treating these splines (and thus the control points) as targets whose motions
are defined during frame transitions, we develop a multitarget tracking problem with an
appropriate motion model. The multilane tracking technique proposed in this paper is a
precise amalgamation of several existing real-time and robust ideas in the pipeline with
the addition of certain new ideas mentioned in the contribution.

We utilize the probabilistic Hough transformation [45] to perform an initial extraction
of lane markings. This is then followed by a series of algorithms prior to treating the
extracted lanes as targets. The first algorithm in the pipeline performs an initial grouping of
extracted line segments into different splines. This is then followed by an algorithm, which
encapsulates a number of subalgorithms, to differentiate the clutter from lane boundaries
in a robust manner and to manage the evolution of trajectories of splines being tracked. We
then devise a multitarget tracking algorithm based on a motion model that assumes that
the transitions of splines across frames are at a constant rate. The overall solution can be
considered as a carefully engineered pipeline of algorithms. In doing this, we make the
following key contributions:

1. We develop an algorithm, based on a maximum a posteriori (MAP) estimator [46], to
group and cluster different lane segments into unknown spline groups;

2. find intensity likelihood ratio of line segments and augment this ratio as a feature in
a clustering and probabilistic data association (PDA) filter [47] to distinguish lane
markings from clutter; and

3. propose a new, real-time, multiple extended target tracking (targets that shape and
position changed simultaneously) algorithm that works with clutter existence based
on the PDA filter to distinguish and track multiple spline shape lane-lines.

The remainder of this paper is organized as follows: In Section 2, we formulate the
overall problem, and discuss our approach for solving each of the subproblems. This is
then followed by Section 3, in which we discuss a set of preprocessing steps on the input
images prior to using our framework of methods. The aspect of clustering and estimating
control points to describe the splines, and two of our key algorithms for this purpose are
discussed in Section 4. We then describe the techniques to track multiple splines using the
IPDA filter in Section 5. The results of our evaluations are then presented in Section 6, and
we discuss conclusions in Section 7.

2. Problem Formulation and Our Approach
2.1. Problem Formulation

To facilitate the process of deriving an overall approach and suitable algorithms, we
use i as the index for the control points i ∈ 0, 1, . . . , N, j as the lane index, and k as the
frame index. For instance, the parameter xi,j,k denotes the ith control point for the jth lane
on the kth frame. The notations used in this manuscript are given in Table 1.

With these notations in place, the overall problem of lane identification across a
sequence of frames can be reformulated as follows:

1. Identification of Control Points: For a set of extracted lane markings on frame k,
identify a set of control points that would uniquely describe each of the lane markings
(assuming that lane markings do not cross each other);
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2. Trajectory Management: Each candidate control point belongs to one of the lane mark-
ings, and over a period of time (across frames), these control points form distinctive
trajectories if they are managed well. In order to manage these trajectories, which is a
prerequisite for multitarget tracking, it is crucial to associate the control points to the
trajectories they belong to; and

3. Multitarget Tracking: By using control points in each of the trajectories as pseudo
measurements, formulating a multitarget tracking algorithm is essential for further
extraction and identification of lane markings on the frames yet to be seen.

Table 1. Symbols adopted in this manuscript.

Symbol Description

xi,k,j Single control point in lane-line(spline) j on frame k
Zk,j Pseudomeasurements (control points) for a spline j on frame k
R Covariance of the measurement noise
Q Covariance of the process noise
τ Track index
F State transition matrix
H Measurement matrix
PG Gating probability
ek,j Event on the jth spline at the kth frame
Ψk,j Line segment measurements for lane-line j

2.2. Our Approach

In addressing the overall problem outlined in Section 2.1, we decompose that into
a number of subproblems, each of which handles a specific aspect of the overall lane
detection problem across frames. The overall agenda is to form an automated processing
pipeline, where each stage of the pipeline is underpinned by one or more algorithms. This
processing pipeline is shown in Figure 2.

Figure 2. The flowchart of the proposed approach.

Each of these stages is discussed in the following sections.

3. Preprocessing

The key aspects of the preprocessing stage include edge detection, probabilistic Hough
transform, and extraction of region of interest. We also use noise filtering before each of
these stages to minimize the impact of noise amplification in the process.

3.1. Edge Detection

The basic edge detection in images is based on the convolution of a predetermined
kernel with an image [48]. In our case, each frame forms an image. However, this basic
approach for edge detection, which is a gradient finding exercise, picks up the gradients of
the noise along with the lane markings. Although basic noise filtering, such as averaging
or median filtering, can minimize these effects, they do not guard the edge detection from
these artifacts. For this reason, we used the Canny edge detection [48], which incorporates
Gaussian filtering as a precursor step to gradient calculation. More specifically, we used
two 3× 3 kernels, namely a Gaussian kernel H and an edge detection kernel K. For each



Sensors 2021, 21, 461 6 of 25

input frame Fin, we calculated the output frame Fout as Fout = K ∗ (H ∗ F ′in), where F ′in
denotes the noise-filtered version of Fin, and ∗ operator denotes the convolution operation.
We have also prefixed the values of the H (by fixing the variance).

3.2. Probabilistic Hough Transform

Although edge detection process brings out the edges in each frame, they do not have
to correspond to straight lines in the real image, particularly the lanes in the partitioned
tiles. In other words, among many pixels forming different edges, the key interest is on
pixels that make up straight lines—lanes. An easier implementation of this is due to [49],
where an accumulator matrix captures the intersections of various straight lines in an image.
This matrix is then exhaustively searched for a maximum (and other decreasing maxima) to
find straight lines. As such, the original Hough transformation process is computationally
intensive. In our case, we adopted the probabilistic version of Hough transform [50], where
only a subset of the edge points are selected through random sampling process, particularly
when updating the accumulator matrix. With this approach, we reduce the amount of
computation without considering all possible measurements.

3.3. Extraction of Regions of Interest

Although the probabilistic Hough transform can filter out unnecessary edges and lead
to straight lines, the extracted straight lines do not have to represent only the lanes. In
fact, the extracted straight lines can be anything, including lanes, edges of the vehicles,
lampposts, and buildings. An easier approach to filter out irrelevant components is to use
the vanishing points. Each pair of lane, unlike other straight lines in a frame, should have
a vanishing point.

Vanishing points can be extracted by embedding an additional process after the
probabilistic Hough transform process outlined above. Sinusoids that pass through all of
the maxima points in Hough space should correspond to the vanishing point in the image
plane. In particular, we extract vanishing points for each partition of the image. We then
use these vanishing points to eliminate irrelevant straight line segments in the image and
to form regions of interest. In addition to this, the area outside the vanishing line has no
information that can aid lane boundary tracking, and can be removed.

In Figure 3, we show the outputs of different stages of the preprocessing.

(a) (b) (c) (d)

(e)
Figure 3. An example of preprocessing of image frames. (a) Raw image of the frame; (b) after
selective segmentation; (c) after noise filtering and thinning; (d) after probabilistic Hough transform;
(e) after extracting regions of interest.
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4. Clustering and Identification of Control Points

Identification of lane-line (spline) control points starts with:

1. Partitioning frame, finding line segments and likelihood ration.
2. Predict control points and validated measurements.
3. Update final control points using MAP estimator.

4.1. Frame Partitioning

Once the preprocessing is over, the next stage of the pipeline extracts the control
points. Although we intend to identify a set of control points to model the lanes as splines,
the process is much simpler if the splines are small in size and straight in shape. However,
the extracted lane markings are seldom straight. One approach to address this issue is to
partition each frame into n horizontal tiles, each with an experimentally determined height,
so that lanes on each partition are near straight. Figure 4 shows the same image partitioned
in two different ways: for two different values of n (namely n = 3 and n = 4), and with
different partition heights.

However, considering the perspective characteristics of the camera and the distance
of lanes from the camera, it is beneficial to have the heights of the partitions in increasing
order toward the bottom of the frame. We experimentally determined that the extracted
information is maximized for n = 3, such that h1 = 1

7 H, h2 = 2
7 H, and h3 = 4

7 H, where
H is the overall height of the region of interest (ROI). We use this configuration with the
values of n and hi (i = 1, 2, 3) throughout the study conducted in this paper.

(a) Partitioning for n = 3.

(b) Partitioning for n = 4.

Figure 4. Two different examples of partitioning outputs (right) for the same input image (left).
(a) n = 3 and h1 = 1

7 H, h2 = 2
7 H and h3 = 4

7 H; (b) n = 4 and h1 = 1
11 H, h2 = 2

11 H, h3 = 3
11 H, and

h4 = 5
11 H.

4.2. Intensity Likelihood Ratio of a Line Segment

For each of the partitions, we apply the probabilistic Hough transform to extract the
lane markings. However, the extraction process, akin to edge in most of the detection tech-
niques, produces a number of broken, small, noncontinuous, and irrelevant line segments.
As such, one of the key challenges following the extraction process is to distinguish the
lane markings from background noise and clutter. To render a more robust high-fidelity
approach toward clutter and noise management, we augment the extractions with under-
lying intensity values. More specifically, we define the number of edge points that lie in
an extended line segment s (s = 1, . . . , n) as the intensity. The intensity can be extended
to cover a set of line segments or a number of pseudomeasurements belonging to a curve.
The intensity of an extended line segment is represented as a likelihood ratio, which we
define below.
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Let p0( f j) be the probability density function (PDF) of the noise only, and p1( f j) be
the target originated line-segment detections before thresholding. Furthermore, let D0 and
D1 be the scale parameters for false alarms and clutter, and target, respectively. These scale
parameters are dependent on the minimum number of points used in the Hough transform.
The noise only and target originated measurement density functions are

p0( f j) =
f j

D2
0

e

(− f 2
j

2D2
0

)
(1)

p1( f j) =
f j

D2
1

e

(− f 2
j

2D2
1

)
(2)

where f j ≥ 0 is the intensity of the candidate measurements j. Furthermore, let γ = γdet
be the threshold to declare a detection. The probabilities of detection (PD) and false alarm
(PFA) can be computed as follows:

PD =
∫ ∞

γ
p1( f j)d f j

= e
−γ2

2D2
1 (3)

PFA =
∫ ∞

γ
p0( f j)d f j

= e
−γ2

2D2
0 (4)

Although the probability of detection, PD, can be increased by lowering γ, it will
increases PFA. Hence, the choice of γ cannot be arbitrary. With these, the corresponding
probability density functions after thresholding become

pγ
0 ( f j) =

1
PFA

p0( f j)

=
f j

PFAD2
0

e
(
− f 2

j
2D2

0
)

(5)

pγ
1 ( f j) =

1
PD

p1( f j)

=
f j

PDD2
1

e
(
− f 2

j
2D2

1
)

(6)

where pγ
0 ( f j) and pγ

1 ( f j) are the probability density functions of the validated measurement
ψj (for j = 1, . . . , m) that are due to noise only and originating from the target, respectively.

Considering Equations (5) and (6), the line segment intensity likelihood ratio ej, which
is the likelihood ratio of measurement ψj with intensity of f j edge pixels originating from
target rather than clutter, can be defined as

ej(k) =
pγ

1 ( f j)

pγ
0 ( f j)

=
PFAD2

0
PDD2

1
e

f 2
j

( D2
1−D2

0
2D2

0 D2
1

)
(7)



Sensors 2021, 21, 461 9 of 25

4.3. Pseudomeasurements

Pseudomeasurements Zτ
k,j is a set of the control points for track τ and lane j in frame

k. More specifically,

Zτ
k,j = [xτ

1,j,k, xτ
2,j,k, xτ

3,j,k, xτ
4,j,k] (8)

Furthermore, let ψk
s (j) denote the extended line segment in section s, at time step k, for

lane j—that is, ψk
s (j) abstracts away a number of pseudomeasurements for each (extended)

line segment. Each such measurement is a two-element vector, with one capturing the
pseudomeasurement Zτ

k,j and the other one representing the intensity of the extended line
segment as a likelihood ratio, ej(k).

4.4. MAP Estimator for Measurements with Intensity Feature

Although we expect the pseudomeasurements to almost model the lane-lines, in
reality, a number of factors make this process as challenging. Examples include, but are
not limited to, missed detection, nondeterministic nature of the preprocessing, and noisy
measurements due to clutter. Therefore, it is essential to model these imperfections as part
of the process.

To simplify the analysis and derivation, we assume that measurements that originate
from targets at a particular sampling instant are received by the sensor only once with
probability of detection PD. The measurement equation can be written as follows:

ψ(j) = x + w(j) (9)

where j = 1, . . . , m, w(j) is the measurement noise, and x = [x1, x2]
′ is the unknown value

that we are aiming to estimate in the presence of the measurement noise.
We also assume that the measurement noise is independent and zero mean Gaussian

distributed with covariance R. In our case, various preprocessing stages, such as thinning
and Hough transform, contribute towards R. Thus, w(j) ∼ N (0, R), where

R =

[
σ2

11 0
0 σ2

12

]
(10)

Because of the condition of the road and perspective effect of the camera lens for
values of σ2

11 and σ2
12, we would expect more deviation in the bottom part that is closer

to the camera compared to the top. We also assume the measurements ψ to be normally
distributed around x with covariance R and the prior probabilities p(x) to be normally
distributed around the predicted measurement x̄ with a covariance Q. Thus, ψ ∼ N (x, R)
and p(x) ∼ N (x̄, Q), where

Q =

[
σ2

01 0
0 σ2

02

]
(11)

Again, similar to R, the perspective effects of the camera influences the values of σ2
01

and σ2
02 to be skewed toward the bottom part of the frame. Furthermore, the covariance Q

is often linked to the curvature κ of the road. Assuming the maximum standard curvature
of highways as a constant parameter, the posterior measurement density would be

p(xΨ)
∆
=

1
c
(p(Ψx)p(x)) (12)

Since the measurement and prior noises are assumed to be Gaussian, for a single
measurement, (i.e., m = 1), ψ(1) = ψ1 can be expressed as:



Sensors 2021, 21, 461 10 of 25

p(xψ1)
∆
=

1
c
(p(ψ1x)p(x))

=
1
c
N (ψ1; x, R)N (x; x̄, Q)

=
1
c
N (x; ξ(ψ1),R) (13)

where

ξ(ψ1) =
Q

R + Q
x̄ +

R
R + Q

ψ1

and

R =
RQ

R + Q

For a Gaussian distribution, the mean is the optimal maximization value x̂. Hence,

x̂ = x̄ +
R

R + Q
(ψ1 − x̄) (14)

For m > 1, the optimal maximized value can be derived using the total probability
and combined residuals as follows:

x̂ = x̄ +
R

R + Q

m

∑
j=1

β j(ψ(j)− x̄) (15)

where β j is association probability, which we define as (see Appendix A for derivations).
where PD and PG are probabilities of detection and gating, respectively, mk is the number
of validated detections at time k, ej is the intensity of the extended line segments as a
likelihood ratio, and Lj is the probability density function for the correct measurement
without the intensity feature, defined as

Lj =
1

PG
N (ψj, x̄, S)

where S = R + Q, and x̄ is the prior information.

4.5. Clustering Algorithm for Finding Control Points

Ideally, each partition will have a sufficient number of full measurements ψk(j) so that
a spline can be fitted over those measurements. However, in reality, this is seldom the case.
The associated challenges are dealt with here using an algorithm that estimates the control
points based on the available set of measurements. In particular, we use the MAP estimator
(MAPE) to find the optimal control points. These aspects are handled by two algorithms,
Algorithms 1 and 2, which are outlined and discussed in detailed below.

Algorithm 1 handles each partition separately, but by extending the line segments
into the next partition wherever needed. For a given partition s, it estimates the control
points for each line, xi,s, using the curvature κ. Then, the overall set of lines L is used to
estimate the control points for that partition using the MAP estimator (see Algorithm 2).
These control points are accumulated into A as a list. Notice that the Predict() function finds
predicted control points for each individual line segment l using curvature vector κ.
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Algorithm 1 Control Points Estimator

1: . Input: κ, N, Ψ
2: . Output: A //Set of control points
3: . Section variables : Pi, Ri, Si, ψi
4: . κ : Vector of curvature
5: . ψi : Sets of all extracted lines in partition i
6: . N : Number of partitions
7: . Pi : Prior noise covariance
8: . Ri : Measurement noise covariance
9: . Si : Set of partitions indexes eliminating i

10: for i=1; i<N; i++ do
11: for each l ∈ ψi do
12: for each Si ∈ {1..N} − {i} do
13: Initialize(PSi , RSi)
14: x̄Si ,l ←Predict(κ, l)
15: x̂Si ,l ←MAPE(x̄l , ψSi , RSi , PSi) //Update
16: end for
17: A←

[
A x̂l

]
18: end for
19: A=RemoveSimilarCurves(A)
20: end for

Algorithm 2 MAPE.

1: . Inputs: x̄, ψ, R, P
2: . Output: x̂
3: . Section variables : P, R
4: . x̄ : Priors
5: . ψ : Measurements
6: . P : Prior noise covariance
7: . R : Measurement noise covariance
8: ψvalidated ← Validated-Measurements(x̄, ψ, R, P)
9: m← ψvalidated

10: for j=0; j<m; j++ do
11: rj ← ψ(j)− x̄

12: β0 ← (1−PD PG)
C

13: β j ←
Ljej

C
14: end for
15: x̂ = x̄ + R

R+Q ∑m
j=1 β jrj

Algorithm 2 combines both the data association and the posteriori PDF to adjust the
estimated control points. In particular, it uses the IPDA-specific target-to-track association
probabilities (covering both the track existence and non-existence), β0 and β j for finding the
control points based on candidate control points x̄ and measurements Ψ. More specifically,

x̂ = argmax
x

p(xΨ)

= argmax
x

[p(Ψx)p(x)] (16)

Validated-Measurements() function uses normalized distance to validate the line seg-
ments belonging to each spline. We show a sample outcome of these algorithms in Figure 5.
We first show two endpoint measurements (ψ1

1 , ψ1
2) and (ψ2

1 , ψ2
2) (Figure 5a). These points

are then corrected using the above algorithms to output corrected control points x̂1
1 and x̂1

2
(Figure 5b).
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(a)

(b)

Figure 5. An example of control point estimation/correction and extended line segments. (a) Con-
trol point estimation/correction based on measurements; (b) grouped line segments based on
the measurements.

5. Multilane Tracking Using IPDA

PDA filter is similar to Kaman filter in the dynamic model and prediction, but in
the update step, it uses the sum of weighted measurements to deal with clutter. We used
integrated PDA (IPDA) [51] filter in the multi-target platform in a new way to combine
initialization and track management for tracking multiple unknown numbers of extended
targets (splines) with augmented intensity as a new feature inside association likelihood to
deal with clutters, Figure 6.
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Figure 6. IPDAF steps.

5.1. Preliminaries

As stated above, we assume that control points are moving at constant velocity, and
thus our dynamic model is a constant velocity model. With this, our state vector for track τ
in frame k becomes

xτ
k =

[
xτ

k
ẋτ

k

]
(17)

where

xτ
k =


xτ

1,k
xτ

2,k
xτ

3,k
xτ

4,k

 and ẋτ
k =


ẋτ

1,k
ẋτ

2,k
ẋτ

3,k
ẋτ

4,k


and the intensity feature f augmented (pseudo)measurement vector Zτ, f

k,j is

Zτ, f
k =


xτ

1,k
xτ

2,k
xτ

3,k
xτ

4,k
f τ
k


=

[
xτ

k
fτ

k

]
(18)

With these, the state evolution and measurement updates for frame (time) index
k become

xτ
k = Fxτ

k−1 + Gντ
k−1 + Guτ

k−1 (19)

and

Zτ, f
k = Hxτ

k + ωτ
k (20)

where F, G, and H are state transition, control input, and and observation matrices, re-
spectively, and ν and ω are measurement and process noises, respectively. In our case, we
preset F and G to
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F =



1 0 0 0 ∆t 0 0 0
0 1 0 0 0 ∆t 0 0
0 0 1 0 0 0 ∆t 0
0 0 0 1 0 0 0 ∆t
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(21)

G =



∆t2

2 0 0 0
0 ∆t2

2 0 0
0 0 ∆t2

2 0
0 0 0 ∆t2

2
∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0
0 0 0 ∆t


(22)

To minimize the variability of the outcomes of the lane extraction process, or its
dependencies on the highly variable surrounding contexts, the selection process of the
control points has to be adaptive enough to account the context information. For instance,
when comparing the lane extraction process on roads with varying terrain conditions
opposed to highways, it is desirable if the process noise is more amenable to high variance
on the spatial distribution of control points. One approach to bring the adaptiveness into
this process is to introduce adaptive process and measurement noises. Furthermore, due to
partitioning of frames and due to the perspective effects of the camera, control points on
the bottom most partition are closer to the camera than the control points on the top-most
partition of a frame. As such, despite the constant velocity model, the rates of the spatial
variations of control points are different. Considering different noise variance associated
with the acceleration of control points will address this issue. As such, the diagonal form
of the process noise νk can be expressed as

q =


ẍτ

1,k 0 0 0
0 ẍτ

2,k 0 0
0 0 ẍτ

3,k 0
0 0 0 ẍτ

4,k

 (23)

where ẍτ
i,k for (i = 1, 2, 3, 4) are the maximum acceleration of each control point. The process

noise covariance Q can be expressed as

Q = GqGT (24)

where

diag0(Q) =



ẍ1
∆t4

4
ẍ2

∆t4

4
ẍ3

∆t4

4
ẍ4

∆t4

4
ẍ1∆t2

ẍ2∆t2

ẍ3∆t2

ẍ4∆t2



T

(25)
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diag−4(Q) =


ẍ1

∆t3

2
ẍ2

∆t3

2
ẍ3

∆t3

2
ẍ4

∆t3

2


T

(26)

and

diag+4(Q) =


ẍ1

∆t3

2
ẍ2

∆t3

2
ẍ3

∆t3

2
ẍ4

∆t3

2


T

(27)

where diagi(Q) is the ith subdiagonal of Q, with i = 0 denoting the main diagonal, −i and
+i denoting ith subdiagonals below and above the main diagonal, respectively. Similarly,
the measurement noise covariance R is

R =


σ2

1x 0 0 0
0 σ2

2x 0 0
0 0 σ2

3x 0
0 0 0 σ2

4x

 (28)

5.2. Multilane Tracking Using IPDAF

The IPDA filter [51,52] offers an augmented information towards track maintenance
apart from state estimation of tracks. Instead of assuming the existence of targets as a hard-
wired probability, the IPDA filter offers a choice incorporating the track quality measure
into the tracking process.

In the context of PDA algorithm, for a each validated measurement, the association
probability (with each track) is calculated. To this end, the association probability βτ

i (k)
accounts for the probability of associating a measurement i to track τk, feature intensity
of f τ

i (k), and the likelihood ratio of associating a line with a feature measurement eτ
i (k).

These probabilistic information are used to associate new measurements to the targets.
Given a linear dynamic model, and an IPDAF based on [47], the state and measurement
equations becomes

x̂(kk) = E[x(k)Zk] =
mk

∑
i=0

x̂i(kk)βi(k) (29)

where x̂i(kk) is the updated state conditioned on the event that the ith validated measure-
ment being correct, and βi(k) is the probability of associating a measurement i with feature
value of fi(k) to track k. The association probability for a set of mk gated or validated
measurements with features fi(k) can be expressed as

βτ
i (k) = P{εi(k)Zτ

k , f τ(k), mk} (30)

where εi(k) is the event described in Appendix A. In our case, we assume that each detected
lane boundary measurement i has a feature of intensity fi(k). With reference to (A13), the
feature likelihood ei(k) can incorporated into the PDA algorithm as follows [53]:

βi(k) = P{εi(k)Zk, mk}

=


Li(k)ei(k)

1−PD PG+∑
m(k)
i=1 Lj(k)ei(k)

, ∀i 6= 0

1−PD PG

1−PD PG+∑
m(k)
i=1 Lj(k)ei(k)

, i = 0
(31)
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where i = {0, 1, . . . , m(k)}.
The overall IPDAF algorithm here embodies a traditional PDAF algorithm with

special initialization and the termination steps. This is outlined in Algorithm A1 in the
Appendix B. The underlying aspects of the multilane tracking follow the principles of
multitarget tracking as in [47], and are discussed in the following subsections.

5.2.1. Track Initialization

The track initialization process (for each track) can rely on one or two seed points. In
the one-point initialization method, position can be initialized from a single observation
with zero velocity vector. Due to [54],

diag(P(00))T =



σ2
1x

σ2
2x

σ2
3x

σ2
4x

(Vmax
2 )2

(Vmax
2 )2

(Vmax
2 )2

(Vmax
2 )2


(32)

and

x̂(00)T =



x1z

x2z

x3z

x4z

0
0
0
0


(33)

This initialization allows the standard gating to be used during the following time step.

5.2.2. Measurement Prediction

For each track, the state vector, the measurements, and the state covariance matrices
are predicted ahead as in the standard Kalman filtering. i.e.,

x̂kk−1 = Fk−1 x̂k−1k−1 (34)

Pkk−1 = Fk−1Pk−1k−1F′k−1 + Qk−1 (35)

ẑkk−1 = Hk x̂kk−1 (36)

Sk = HkPkk−1H′k + Rk (37)

with the assumption of Gaussian posterior for p(x) as

p[xk−1Zk−1] = N (xk−1; x̂k−1k−1, Pk−1k−1) (38)

5.2.3. Measurement Gating

For each track, a validation gate is setup around the predicted measurement to select
the candidate measurements for the data association. The size of the validation gate is
correlated to the innovation covariance and the measurement noise. As per (38), at most,
one of the validated measurements can be assigned to the target. The measurements
outside the gate are assumed to be false alarms or measurements belonging to other targets.
The validation region is the elliptical shape as follows:

V(k, γ) = {z : [z− ẑkk−1]
′S−1

k [z− ẑkk−1] ≤ γ}, (39)

where nz is the dimension of measurement vector representing the degrees of freedom,
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and γ is the gating threshold. Here, the gating threshold γ is a chi-squared distribution,
parameterized by the probability of gating PG, and by the degrees of freedom nz [46].

5.2.4. Data Association

An incoming measurement at time index k, zi(k) with feature fi(k) is associated to
track a τ, based on the association probability given by (31)

βi(k) =


Li(k)ei(k)

1−PD PG+∑
m(k)
i=1 Lj(k)ei(k)

, ∀i 6= 0

1−PD PG

1−PD PG+∑
m(k)
i=1 Lj(k)ei(k)

, i = 0

Here, there are two likelihood ratios of interest: Li(k) and ei(k). The former is the
likelihood ratio of the incoming measurement zi(k). This is defined as

Li(k) =
N [zi(k); ẑ(kk− 1), S(k)]PD

λ
(40)

where λ is the uniform density of the location of false measurements. The second parameter
of interest, ei(k), is the likelihood ratio of measurement zτ

i with feature f τ
i of the track τ.

This is defined as

ei(k) =
pτ

1( fi)

pτ
0( fi)

(41)

Both of these measurements, zi(k) and zτ
i , are expected to originate from the target

and not from the clutter.

5.2.5. State Update

The state, gain, and covariance update equations of the PDAF are

x̂(kk) = x̂(kk− 1) + W(k)V(k) (42)

W(k) = P(kk− 1)H(k)′S(k)−1 (43)

P(kk) = β0(k)P(kk− 1) +

(1− β0(k))Pc(kk) + P̃(k) (44)

where W(k) is the Kalman gain, and V(k) is the combined innovation defined by

V(k) =
m(k)

∑
i=1

βi(k)Vi(k) (45)

where mk is the number of measurements inside the gating region, and β0(k) is the proba-
bility of all measurements being incorrect at time index k. With no information on which
of the mk measurements being correct or incorrect, the correct updated covariance can be
expressed as

Pc(kk) = P(kk− 1)−W(k)S(k)W(k)′ (46)

P̃(k) = W(k)
{m(k)

∑
i=1

βi(k)νi(k)νi(k)′ (47)

−ν(k)ν(k)′
}

W(k)′ (48)

5.2.6. Track Management

During the course of tracking, several tracks are maintained in parallel, and their
states are continuously updated upon receiving measurements. A track can be in three
different states: tentative, confirmed and terminated. During the initialization phase,
every unassociated measurements will form a tentative track. However, upon following
detections or measurements, and gating operations, the tracks will begin to form and
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their status will be updated as confirmed. However, if no further measurement to track
associations are possible, a possibility when no detections are observed from the target
responsible for the track, corresponding track is terminated. For the case where PD < 1,
it is essential to check the quality of measurement to track association before engaging in
track status update. One of the approaches for assessing the quality of measurement to
track association is the goodness of fitting. The goodness of fitting, often represented by the
log-likelihood function of the track, can be expressed as a recursive function as follows [46]:

λ(k) = λ(k− 1) + V(k)′S(k)−1V(k) (49)

where V(k) is the innovation matrix, and S(k) is the covariance of the innovation matrix
V(k). The last term in (49) has a chi-squared density with nz degrees of freedom, where nz
is the dimensionality of the measurement vector. As the innovations are independent, the
log-likelihood function at time k is a chi-squared distributed with knz degrees of freedom.
This is actually a measure of the goodness of fit to the assumed target model. Thus, the test
function for keeping (or terminating) a track can be expressed as

λk ≤ λk
max (50)

λk
max = X2

knz
(1− α) (51)

where the tail probability α is the probability that a true track will be rejected. In our case,
this threshold is around 0.01. However, the actual state transitions are performed through
more rigorous checks. In our case, we maintain a number of (hidden) measurement and
association counters for each track. These counters are used to assess the activeness of the
measurement-track association.

6. Experiments and Evaluations

The proposed algorithm has been evaluated against two different baselines: model-
and machine-learning-based implementations. The proposed algorithm was implemented
using the OpenCV library in C++. The algorithms were tested on a system with Intel i7
CPU, clocked at 2.9 GHz with 16 GB RAM.

6.1. Evaluation against Model-Based Approaches

The proposed approach was benchmarked against two model-based methods,
namely [18,55] using the Caltech Lane dataset [18]. The dataset has four video clips
taken at different times of a day around the urban area of Pasadena in California. Each of
these video clips has a resolution of 640× 480, and covers various lighting and illumination
conditions, writings along with lane markings (Clip#1), sun glint and different pavement
types (Clip#2), shadows and crosswalks (Clip#3), and congested settings (Clip#4). As
such, they are reasonably representative enough of various challenging conditions for
tracking lane markings. In total, 1224 frames and 4399 lane boundaries were processed.
The details of these video clips are given in Table 2. Notice that ROI parameters needs to
be set in our method similar to [18,55]. Our algorithm does not need camera parameters,
but since [18,55] use IPM mapping, they need those parameters to be set.

During evaluation, we computed the true and false positive rates (TPR and FPR,
respectively), where the TPR is the ratio of the number of detected lane boundaries to the
number of target lane boundaries and the FPR is the ratio of the number of false positives
to the number of target lane boundaries. The frames were processed at the rate of seven
frames per second similar to that of other methods in the literature [18,55]. In addition to
TPR and FPR metrics, we also included another metric, false positives per frame (FP/frame
or FPF), which is an average of false positives across all frames. One could equally consider
the true positives per frame rate as well. We used the TPR, FPR and FP/Frame as the
metrics of evaluation on for model-based approaches. The results of the evaluation are
shown in Table 3.
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Noting that higher TPR, lower FPR, and lower FP/frame values are desirable, we
highlight the best (boldface) and second best results (underlined) in the results outlined in
Table 3. A number of observations can be made here:

• The TPR performance of the proposed algorithm is consistently higher than those of
the other two algorithms throughout all video clips. The performance of the proposed
algorithm over Clip#3 is significantly higher than that of the method in [55];

• The FPR performance of the proposed algorithm is always better than that of the
method in [18];

• The FPR performance of the proposed algorithm performs better than that of the
method in [55] except for Clip#4. One potential reason for this sub-optimal perfor-
mance for this clip can be attributed to the difficulties in association in congested
settings; and

• The FP/Frame performance is mixed across the cases.

In overall, the proposed approach outperforms the other two methods across all cases.
The overall performance differences are 5%, 2%, and 2% for TPR, FPR, and FPF cases
when compared against the second best version, namely the method in [55]. To ensure
the operation, we manually analyzed the datasets to label all visible and invisible lane
markings as target lane markings.

Table 2. Caltech dataset used in the evaluation.

Clip ID Clip Name No. of Frames No. of Lane Boundaries

1 cordoval1 250 975
2 cordoval2 406 1131
3 washington1 336 1329
4 washington2 232 964

Table 3. Comparison of our approach with other lane detection algorithms.

Method in [18] Method in [55] Proposed

TPR FPR FP/Frame TPR FPR FPF/Frame TPR FPR FP/Frame

Clip#1 0.823 0.099 0.384 0.892 0.125 0.488 0.899 0.093 0.405
Clip#2 0.839 0.224 0.672 0.865 0.209 0.628 0.870 0.166 0.535
Clip#3 0.934 0.148 0.542 0.850 0.111 0.408 0.937 0.107 0.455
Clip#4 0.890 0.102 0.418 0.898 0.063 0.259 0.974 0.099 0.424
Overall 0.871 0.148 0.529 0.874 0.131 0.469 0.920 0.116 0.454

6.2. Evaluation against Deep Learning-Based Approaches

In this setting, we evaluated the proposed method against the spatially convolutional
neural network (SCNN) method [38] using the TuSimple data-set [56]. The TuSimple
dataset has about 7000 one-second-long video clips, each with 20 frames. The ground-truth
information is available only for the last frame (frame 20) of each clip, including height and
width values corresponding to lanes. Although the TuSimple dataset includes a number
of road conditions, such as, straight lanes, curvy lanes, splitting and merging lanes, and
shadows, we used only the straight and curvy lane conditions. Notice that like all fully
supervised models the algorithm in [38] uses the trained parameters coming from training
process, but we only use parameters for ROI in preprocessing step.

In addition to using TP and FN, we also use the accuracy and inference time as
additional metrics of our evaluation. The overall results are shown in Table 4.

From these results, it can be seen that the proposed method outperforms the baseline
method across all metrics. More specifically, the proposed method offers additional 4%
improvement in accuracy along with ninefold speedup.
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Table 4. Proposed approach compared with one of the deep-learning-based models (SCNN).

SCNN [38] Proposed

FPR FNR Accuracy Frame/s FPR FNR Accuracy Frame/s

Straight Highway#1 0.166 0.250 0.855 0.71 0.160 0.250 0.880 6.5

Curvy Highway#2 0.479 0.416 0.825 0.72 0.166 0.250 0.861 6.5

Overall 0.375 0.361 0.836 0.71 0.160 0.250 0.869 6.5

7. Conclusions

In this paper, we proposed a novel approach for multilane detection. By using the
intensity feature in conjunction with the probabilistic Hough transform, we first formulated
an algorithm for detecting and correctly grouping multiple lane markings. By using these
lane marking as splines, we then identify a set of control points, which then get tracked over
time across frames. Our evaluations, covering both model-based and machine-learning-
based approaches show that it can easily outperform the model-based approaches while
being suboptimal compared to the deep-learning-based approaches. However, there are a
number of issues remain to be addressed. For instance, machine learning models do not
provide any explanation or reasons for their decisions compared to filter-based approaches
like one presented here. As such, the proposed approach embodies sufficient explainability
for its actions. Further investigations are needed to establish how the performance of the
proposed approach can be improved.
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Appendix A. Association Probability for Lane Measurements

Assuming there are m detections at time k, when finding the association probability
β j between a measurement and a target (lane j), the overall event ε(j) is comprised of two
mutually exclusive events: either ε(j) is such that the measurement ψ(j) is from the target,
for j = 1, . . . , m, or all measurements are false.

Here, the association set {β j} is defined as the probability of the events {εj} given all
the measurements Ψ, β j = p{εjΨ}. In this appendix, it is shown how β j is related to the
feature likelihood ratio of the measurement, ej.

Let the set of validated measurements at time k be denoted as Ψk = {ψk(j)}, for
i = 1, . . . , mk. In general, the following criteria must be satisfied:

(ψ− x̄)′(R + Q)−1(ψ− x̄) ≤ γ (A1)

where the γ is chi-squared distributed with nz degrees of freedom. The association proba-
bility of β j for a set of gated measurements can then be stated as β j = p{εjΨ, mk}. Using
Bayes’s rule, this can be expressed as

β j =
1
c1

p{Ψεj, mk}p{εjmk} (A2)

Assuming that the false measurements are uniformly distributed within the validation
region, and the correct measurement location is assumed to be Gaussian with mean x̄ and
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covariance of S = R + Q, the probability density function for the correct measurement
without the intensity feature is

Lj = p{Ψεj, mk} = P−1
G N (ψj x̄, S) (A3)

where PG is the gating probability. Since the intensities are independent of location within
the validation region, the probability density function of a single correct measurement,
including the intensity feature, can be expressed as the product of the intensity likelihood
ratio with Lj as follows:

p{ψεj, mk} = Pτ
1 ( f j)Lj (A4)

and for incorrect measurements

p{ψεj, mk} = Pτ
0 ( f j)V−1 (A5)

where V is the volume of the validation region so for the all measurements, the probability
density function is

p[Ψεj, mk] = Pτ
1 ( f j)[

m

∏
j=1

pτ
0( f j)]V−m+1ej (A6)

for j = 1, . . . , mk and

p[Ψεj, mk] = V−m[
m

∏
j=1

pτ
0( f j)] (A7)

for j = 0.
Using a nonparametric model considering

p[εjmk, x] = PDPGm−1 (A8)

for j = 1, . . . , mk and
p[εjmk, x] = 1− PDPG (A9)

for j = 0, the association probability β j can be expressed as

β j = Pτ
1 ( f j)[

m

∏
j=1

pτ
0( f j)]V−m+1ejPDPGm−1

k (A10)

for j = 1, . . . , mk and

β0 = V−m[
m

∏
j=1

pτ
0( f j)](1− PDPG) (A11)

for j = 0.
Since the set of events {εj} are mutually exclusive and exhaustive,

β0 +
mk

∑
j=1

β j = 1 (A12)

With some simplification, the overall results can be stated as

β j = p{εjψj, mk}

=


Liei

1−PD PG+∑
mk
j=1 Ljej

,∧j 6= 0

1−PD PG
1−PD PG+∑

mk
j=1 Ljej

∧ j = 0
(A13)
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Appendix B. IPDAF-Based Lane Tracking Algorithm (Detailed)

The overall IPDAF algorithm using the PDAF algorithm with special initialization
and the termination steps is outlined in Algorithm A1 below.

Algorithm A1 IPDATracker.

1: . Inputs: Γ, Ψ
2: . Output: Γ(Updated)
3: . Section Variables : Λ, α, αT , Ω
4: . x̄ : Priors
5: . Ψ : Measurements
6: . Γ : Composite data structure for tracks
7: . Λ : A copy of Γ
8: . Ω : A set containing associated tracks
9: . α : A temporary variable

10: . αT : A temporary set of tracks
11: Λ = Γ.Tracks
12: Ω← ∅
13: if Λ.size() > 0 then
14: for i=0; i<size(Γ); i++ do
15: x̂i

kk−1 ← Equation (34)
16: Pi

kk−1 ← Equation (35)
17: Wi

k ← Equation (43)
18: ẑkk−1 ← Equation (36)
19: Sk ← Equation (37)
20: V(k, γ)← Equation (39)
21: if V.size() > 0 then
22: for j = 0 to V.size() do
23: Li

k ← Equation (40)
24: ei

k ← Equation (41)
25: end for
26: βi

k ← Equation (31)
27: x̂i

kk ← Equation (42)
28: Pi

kk ← Equation (44)
29: else
30: Λi.xk ← x̂i

k
31: Λi.Pk ← Pi

k
32: Ω← Ω ∪ 0
33: α← getTrackType(Ω, Λi)
34: Λi.ID ← getTrackID(α, Λi)
35: Λi.type← α
36: end if
37: Λi.xk ← x̂i

kk
38: Λi.Pk ← Pi

kk
39: Ω← Ω ∪ 1
40: α← getTrackType(Ω, Λi)
41: Λi.ID ← getTrackID(α, Λi)
42: Λi.type← α
43: end for
44: Γ.NonAsscociated← Ψ−Ω
45: αT ← mergeTracks(Λ)
46: Γ.Tracks← cleanTracks(αT)
47: else
48: Γ.NonAsscociated← Ψ
49: end if
50: return Γ
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The algorithm assumes a composite data-type that is capable of capturing the evolu-
tion of the states over a period of time. As such, we use the dot notation to extract these
properties. For instance, in our algorithm we use Γ as a variable that has all the information
of all the tracks being considered in the problem. Various properties, such as track type
and track ID (a unique identifier for each track), are extracted using the stated dot notation.
Furthermore, the algorithm assumes the presence of the following auxiliary functions:

• getTrackType(): which returns the type of the track i, as temporary, retired or active;
• getTrackID(): which returns the unique identifier for the track;
• mergeTracks(): which fuses the supplied set of tracks; and
• cleanTracks(): removes dead tracks from the list.
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