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Abstract: The optimal timing of aortic valve replacement (AVR) remains controversial. Several
biomarkers reflect the underlying pathophysiological processes in aortic stenosis (AS) and may be
of use as mortality predictors. The aim of this systematic review and meta-analysis is to evaluate
the blood biomarkers utilised in AS and assess whether they associate with mortality. PubMed and
Embase were searched for studies reporting baseline biomarker level and mortality outcomes in
patients with AS. A total of 83 studies met the inclusion criteria and were systematically reviewed.
Of these, 21 reporting brain natriuretic peptide (BNP), N-terminal pro B-type natriuretic peptide
(NT-proBNP), Troponin and Galectin-3 were meta-analysed. Pooled analysis demonstrated that
all-cause mortality was significantly associated with elevated baseline levels of BNP (HR 2.59; 95%
CI 1.95–3.44; p < 0.00001), NT-proBNP (HR 1.73; 95% CI 1.45–2.06; p = 0.00001), Troponin (HR 1.65;
95% CI 1.31–2.07; p < 0.0001) and Galectin-3 (HR 1.82; 95% CI 1.27–2.61; p < 0.001) compared to lower
baseline biomarker levels. Elevated levels of baseline BNP, NT-proBNP, Troponin and Galectin-3
were associated with increased all-cause mortality in a population of patients with AS. Therefore, a
change in biomarker level could be considered to refine optimal timing of intervention. The results
of this meta-analysis highlight the importance of biomarkers in risk stratification of AS, regardless of
symptom status.

Keywords: aortic valve stenosis; biomarkers; mortality; meta-analysis

1. Introduction

Aortic stenosis (AS) is the most common valvular heart disease in the elderly in
Western countries [1,2], with an estimated prevalence of 5–7% in the general population
over 65 years [3]. According to the current guidelines, intervention is recommended for pa-
tients with symptomatic or rapidly progressing severe aortic stenosis and for asymptomatic
patients with significant decline of the left ventricular (LV) ejection fraction (EF) < 50% [4].
However, there are increasing concerns that, by the time of symptom development or
decline of LV function, irreversible myocardial damage has already occurred [5].

The use of blood biomarkers is one of the simple and most important emerging meth-
ods of risk stratification of patients with aortic stenosis that has drawn a great deal of
research interest. A significant increase in blood biomarkers can reflect early decompensa-
tion of the disease process, a finding that can be hugely advantageous for decision-making
surrounding the optimal timing for intervention. Additionally, increased levels of certain
biomarkers have been associated with adverse prognosis and increased mortality [6–8].
This can be an extremely useful clue in the management of patients with AS, especially
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useful for those who do not meet conventional criteria for intervention, namely the cohort
of patients with asymptomatic severe AS.

Despite the availability of numerous publications, including two previous system-
atic reviews [9,10], to our knowledge there are none to date which have meta-analysed
multiple biomarkers in AS. Therefore, the purpose of this work was to summarise the
evidence on which biomarkers effectively predict mortality in patients with AS. We believe
this is important as it may contribute to the implementation of biomarker use in future
practice to improve risk stratification and identification of patients who would benefit from
early intervention.

2. Methods
2.1. Search Strategy

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [11] and was reg-
istered with PROSPERO (ID CRD42020170179). PubMed and Embase were searched
using key terms including ‘aortic stenosis’, ‘blood biomarkers’, ‘BNP’, ‘troponin’, ‘ST2’
and ‘galectin’. The full search strategy is available in Supplementary Material, Figure S1.
The search was conducted from January 1965 through to November 2019 to reflect both
historical and contemporary practice. Reference lists from yielded studies were scrutinised
for additional relevant citations.

2.2. Eligibility Criteria

Studies were included if they had mortality data on adults (>18 years) diagnosed
with at least mild AS with known baseline blood biomarker levels prior to any medical or
surgical intervention. Any study design was eligible excluding narrative reviews, editorials,
case reports and case series. Non-English studies were excluded. If duplication occurred,
the study with the largest sample size overall was included.

2.3. Data Extraction

Titles and abstracts were screened by two independent reviewers (MW and RB). Any
articles identified as potentially relevant underwent full-text appraisal for inclusion using
the piloted eligibility criteria. Any studies that were not eligible were removed and the
reasons behind this judgment were recorded in the PRISMA diagram (Supplementary
Material, Figure S2). Relevant information such as identification of study, participant
information, baseline biomarker measure, interventions and mortality data were extracted.
Verification checks were completed against those reported in the study to ensure data
accuracy.

2.4. Statistical Analysis

Studies were grouped according to baseline biomarker and effect estimates were
directly extracted. Where this was not reported, the raw data was extracted to calculate
risk ratio (RR). Due to the substantial clinical heterogeneity between studies, an inverse-
variance random-effects model for meta-analysis was used, which has been shown to be
advantageous even if statistical heterogeneity is low [12]. This was done using Review
Manager (RevMan) 5.3 software [13]. Statistical significance was set at p < 0.05.

Statistical heterogeneity between pooled studies was assessed using the I2 statistic.
Heterogeneity was considered substantial when I2 was greater than 50% [14]. To identify
the extent that each study contributed to the pooled effect estimate, sensitivity analyses
were conducted by excluding one study at a time and recalculating the pooled estimate.
Publication bias was determined graphically by assessing asymmetry of funnel plots.
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2.5. Quality Analysis

The Newcastle-Ottawa Scale (NOS), a nine-point scale was used to assess the method-
ological quality and internal validity of included cohort and case-control studies. Eligible
papers underwent meta-analysis irrespective of quality to utilise all available data.

3. Results
3.1. Identification and Selection of Studies

The literature search yielded 2886 studies from PubMed and Embase as shown in
the PRISMA diagram (Supplementary Material, Figure S2). Initially 2785 studies were
excluded after duplicates were removed and studies were assessed for eligibility at the title
and abstract level. A total of 243 studies underwent full-text evaluation and 83 of those
studies met the inclusion criteria and were included in the systematic review. The main
exclusion criteria were not reporting baseline biomarker levels and/or mortality outcomes.

3.2. Natriuretic Peptides

Brain natriuretic peptide (BNP) and its prohormone N-terminal pro B-type natriuretic
peptide (NT-proBNP) reflect ventricular or atrial cardiomyocyte stretch [15]. A total of
26 eligible studies with 7057 participants reported BNP and 33 studies with 8597 partic-
ipants reported NT-proBNP (Supplementary Material, Tables S1 and S2). Most of these
studies were large and observational, with a follow-up period of over one year. The BNP
population had a mean age of 61 years and 42% were male, whereas the mean age of
participants in the NT-proBNP population was higher at 78 years and 57% were male.
All-cause mortality was reported in 21 of the BNP studies [6–8,16–33] and the remaining
studies reported major adverse cardiovascular events (MACE) [34–38]. The vast majority
found that BNP had a significant association with all-cause mortality, with an average
threefold increase in death on increasing levels of BNP. This significance tended to remain
in multivariate analysis after adjustment for various clinical factors. Importantly, only
one study found that BNP was not significantly associated with all-cause mortality [26].
Similarly, 23 of the NT-proBNP studies reported all-cause mortality [6,17,22,39–58] and the
other 10 studies reported composite mortality outcomes such as MACE [59–68]. Again,
only one study found that NT-proBNP was not significantly associated with all-cause
mortality [52]. On multivariate analysis, the majority found that the significance remained
after adjustment of other variables. When reviewing the studies for MACE, a similar
pattern was observed for both BNP and NT-proBNP.

Among the studies systematically reviewed, eleven studies analysing BNP and seven-
teen studies analysing NT-proBNP reported an effect size for all-cause mortality in patients
with high vs. low levels of baseline biomarker. From these studies, the HRs and RRs
were obtained for meta-analysis. Pooled analyses demonstrated a statistically significant
increase in all-cause mortality for high vs. low levels of both baseline BNP (pooled HR 2.59;
95% CI 1.95 to 3.44; p < 0.00001; Figure 1A) and baseline NT-proBNP (pooled HR 1.73; 95%
CI 1.45 to 2.06; p < 0.00001; Figure 1B).

The majority of studies included in the meta-analyses for both natriuretic peptides
were found to be of at least fair quality using the Newcastle Ottawa Scale (NOS) (Sup-
plementary Material, Table S3). Both meta-analyses produced an I2 statistic over 50%
suggesting high risk of heterogeneity. Sensitivity analysis by excluding any single study
from the analysis and recalculating the pooled effect did not substantially change the
result of either meta-analysis. To assess the presence of publication bias, funnel plots were
assessed with some asymmetry noted (Supplementary Material, Figure S3).
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Figure 1. (A). Forest plot of hazard and risk ratios of all-cause mortality for high vs. low levels of 
baseline BNP using a random-effect model. This indicates that when comparing groups of high vs. 
low BNP as defined by the authors, there was over double the risk of mortality in the higher 
group. CI: confidence interval; IV: inverse variance. (B). Forest plot of hazard and risk ratios of all-
cause mortality for high vs. low levels of baseline NT-proBNP using a random-effect model. This 
indicates that there was 1.73 times the risk of mortality associated with the high-level group. CI: 
confidence interval; IV: inverse variance. 
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Cardiac troponins such as Troponin I and Troponin T are cardiac regulatory proteins 

believed to be elevated in the presence of cardiomyocyte necrosis [10]. A total of 18 studies 
analysing Troponin were systematically reviewed, which yielded 5993 participants. Most 
studies were large and observational with only two of the studies having a follow-up of 
under one year. Participants had an average age of 80 years and 57% were male (Supple-

Figure 1. (A). Forest plot of hazard and risk ratios of all-cause mortality for high vs. low levels of
baseline BNP using a random-effect model. This indicates that when comparing groups of high vs.
low BNP as defined by the authors, there was over double the risk of mortality in the higher group.
CI: confidence interval; IV: inverse variance. (B). Forest plot of hazard and risk ratios of all-cause
mortality for high vs. low levels of baseline NT-proBNP using a random-effect model. This indicates
that there was 1.73 times the risk of mortality associated with the high-level group. CI: confidence
interval; IV: inverse variance.

3.3. Troponin

Cardiac troponins such as Troponin I and Troponin T are cardiac regulatory proteins
believed to be elevated in the presence of cardiomyocyte necrosis [10]. A total of 18 studies
analysing Troponin were systematically reviewed, which yielded 5993 participants. Most
studies were large and observational with only two of the studies having a follow-up
of under one year. Participants had an average age of 80 years and 57% were male
(Supplementary Material, Table S4). Of the included studies, 15 studies reported all-
cause mortality [8,16,40,42,43,48,50,54,55,58,69–73]. Almost all studies found a significant
association between Troponin level and mortality, with studies showing an average twofold
increase in risk of death for higher Troponin, which persisted after multivariate adjustment.
Importantly, three studies found that Troponin was not significantly associated with all-
cause mortality [16,50,54]. Among the studies that reported MACE, all found a significant
association between Troponin level and MACE [60,64,74], with one study describing a
10-fold risk of MACE in those with Troponin >10 ng/L [64].

Of the studies analysing Troponin in the systematic review, ten reporting an effect
size for high vs. low levels baseline Troponin were included in a meta-analysis. Pooled
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analyses demonstrated a statistically significant increase in all-cause mortality for high vs.
low levels of baseline Troponin (pooled HR 1.65; 95% CI 1.31 to 2.07; p < 0.0001; Figure 2).
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random-effect model. This indicates that when comparing groups of high vs. low Troponin there was 1.65 times the risk of
mortality in the higher group. CI: confidence interval; IV: inverse variance.

Most of the studies included in the meta-analysis were of at least fair quality
(Supplementary Material, Table S3). I2 greater than 50% suggests substantial heterogeneity.
Sensitivity analysis by excluding studies in turn did not significantly alter the results. The
funnel plot generated showed some asymmetry (Supplementary Material, Figure S4).

3.4. Galectin-3

Galectin-3 belongs to the ß-galactoside binding protein family. It is expressed in
leukocytes and fibroblasts and is released in response to myocardial inflammation and
fibrosis [10]. Overall, five studies were systematically reviewed which analysed Galectin-3,
including 1007 participants. Of these studies, three were large and all were observational
with a follow-up over one year. The average age of participants was 79 years and 57% were
male (Supplementary Material, Table S5). All studies reported all-cause mortality excluding
one which exclusively reported MACE [59]. Galectin-3 was found to be significantly asso-
ciated with all-cause mortality in all that reported it, with an average two-fold increased
risk of death in those with higher baseline levels of Galectin-3 [43,66,75,76]. This signifi-
cance only remained after multivariate adjustment in one study [75], with the significance
abolished after adjustment for age [66], eGFR [76] and STS score [43] in the other studies.
In the one study that reported MACE, Galectin-3 was found to be significantly associated
with MACE; however, this did not remain on adjustment for confounding factors [59].

All five studies analysing Galectin-3 and all-cause mortality reported an effect size
for high vs. low levels baseline Galectin-3, therefore were included in a meta-analysis.
Pooled analysis demonstrated a statistically significant increase in all-cause mortality for
high vs. low levels of baseline Galectin-3 (pooled HR 1.82; 95% CI 1.27 to 2.61; p = 0.001;
Figure 3). All the studies included in the meta-analysis were of at least fair quality (Sup-
plementary Material, Table S3); however, I2 was greater than 50% suggesting substantial
heterogeneity. Sensitivity analysis by excluding studies in turn did not significantly alter
the results. The funnel plot generated appeared slightly asymmetrical (Supplementary
Material, Figure S5).
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3.5. Other Biomarkers

The remaining 37 studies included in the systematic review looked at a range of less
prominent biomarkers and are included in Supplementary Material, Table S6.

4. Discussion

Whilst individual studies have reported on multiple biomarkers [77,78], this is the
first systematic review and meta-analysis to date that assesses the association of multiple
biomarkers with mortality in a wider population of patients with AS.

The present analysis identified that high levels of baseline BNP, NT-proBNP, Troponin
and Galectin-3 are associated with an increased risk of all-cause mortality in patients with
AS. The strongest predictor of all-cause mortality was BNP with a more than double in-
creased risk of death in participants with elevated baseline levels. This was not unexpected
as BNP is released in response to ventricular stretch, which ultimately leads to myocardial
injury and fibrosis.

NT-proBNP, Troponin and Galectin-3 were also found to be important determinants
of mortality, where participants with elevated baseline levels had just under double the
risk of death compared to those with lower levels at baseline. Troponin has also frequently
been shown to predict mortality and, although the data is less robust compared to natri-
uretic peptides, many studies found baseline Troponin to be predictive of worse outcomes
than BNP or NT-proBNP [15]. This may be because it is closely related to the degree of
myocardial fibrosis [60], but this was not reflected in our analysis. Similarly, Galectin-3
participates in myocardial inflammation and fibrosis and was found to predict mortality
as well as increase the predictive ability of NT-proBNP in one study [75]. Previous data
have demonstrated a close link between Galectin-3 and accelerated cardiac hypertrophy in
the pressure-overloaded myocardium, resulting in adverse myocardial remodelling and
dysfunction [79]. Additionally, Galectin-3 has been associated with increased fibroblast
activity and extracellular matrix [80], a pathophysiological process that has a crucial role
in the disease progress and potentially precedes symptom occurrence in patients with
AS. Given the fact that myocardial hypertrophy and fibrosis herald the presentation of
symptoms and are correlated with adverse events [3], these biomarkers potentially have a
critical role in risk stratification and are of significant prognostic value.

Other biomarkers included in the systematic review seemed to have a prognostic
effect, but these are generally only available in the research setting, therefore unlikely to be
implemented for routine use in clinical practice. In this regard, further research is required
to show whether they have an additive benefit over and above other biomarkers.

Identification of biomarkers that associate with poor prognosis in patients with AS
is of paramount importance in clinical practice to enable careful identification of patients
for intervention, where treatment benefits outweigh the risks. Biomarkers such as natri-
uretic peptides may be raised in the elderly without AS and in some cohorts BNP is not
elevated in the presence of decompensation [81], which creates difficulties when using
one biomarker as an indication for intervention. For this reason, it is very possible that
use of multiple biomarkers in combination will have a greater predictive ability than
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a single biomarker alone. Baldenhofer et al. found that a combination of NT-proBNP,
mid-regional pro-adrenomedullin and mid-regional pro-atrial natriuretic peptide was a
stronger predictor of 1-year mortality (HR, 7.03; p = 0.001) than using NT-proBNP (HR, 4.94;
p = 0.013), mid-regional pro-adrenomedullin (HR, 3.34; p = 0.037), and mid-regional pro-
atrial natriuretic peptide alone (HR, 4.94; p = 0.013) [55], which should be taken into account
when implementing into clinical practice.

Mounting evidence has demonstrated that chances of survival, symptom improve-
ment and improved quality of life are worse if valve replacement is performed late [82,83],
suggesting that many individuals with severe symptomatic AS should be referred for earlier
intervention. The high morbidity and mortality risk is likely driven by irreversible maladap-
tive LV remodelling and myocardial fibrosis and timely identification of those who would
benefit from earlier intervention than specified in the guidelines is therefore paramount.

Biomarkers provide a relatively cheap and easily accessible way of identifying those
with markers of poor prognosis such those with a maladaptive response to pressure over-
load or early signs of fibrosis. By identifying a single or group of biomarkers that closely
associates with decompensation and/or poor prognosis, patients could undergo serial
monitoring in the community. This would undoubtedly reduce the number of patients that
miss the “therapeutic window” for intervention and therefore introduce a cost-effective
way to improve post-operative morbidity and mortality rates. Moreover, serial monitoring
of biomarkers may be advantageous in the post-operative period where consistently el-
evated biomarker levels after intervention determines which patients may benefit from
additional medical therapy such as anti-arrhythmics or heart failure therapy [84].

These results have shown that many biomarkers are significantly associated with
all-cause mortality and poor prognosis in those with AS. With this knowledge it is clear
there is a potential role for the implementation of biomarkers in clinical practice; however,
current literature falls short in defining the best way to do this. There is currently no
randomized controlled trial (RCT) where patients with AS are randomised to receive
surgical intervention based on a biomarker level. To clarify the exact role of biomarker
testing in guidelines for AS, large adequately powered prospective studies are needed to
determine the optimal cut-offs of biomarkers to use, as well as which biomarkers provide
incremental value over existing methods of risk stratification.

5. Limitations

The findings of this meta-analysis have certain limitations. Firstly, the funnel plots
show some asymmetry, perhaps due to no negative studies identified. However, physio-
logically an inverse association between the biomarkers and mortality would be unlikely.
Secondly, substantial clinical and methodological heterogeneity was identified that may
have affected biomarker level as well as outcomes. Moreover, the length of follow-up
for mortality outcomes and estimates of effect greatly differed. Another important limita-
tion is that the optimal cut-off values for baseline biomarker cannot be defined as there
was a wide variation between studies in terms of assays and cut-off values used. This
was accounted for by using a random-effects model for all meta-analyses to provide a
more conservative estimate of the effect and considered high vs. low biomarker values as
identified by the authors [85], which is an acceptable way of overcoming the differences.
Meta-analysis of individualised patient data would have enabled us to identify mortality
predictors more accurately, but this was not feasible within this timeframe. Although
adjusted effect estimates such as RR and HR were reported in some studies, much of the
mortality data was unadjusted, therefore our results must be interpreted with caution as
they are subject to potential measured and unmeasured confounding. It is possible that
the magnitude of this effect is small as, in the studies which reported both unadjusted and
adjusted mortality data, the difference in values was minimal. Finally, bias was introduced
from using study-specific cut-offs for biomarker level, which favours a positive result. Due
to this, it is uncertain whether a particular cut-off level for each biomarker actually carries
the estimated risk that we have reported from analysis.
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6. Conclusions

Our results show that high levels of baseline biomarkers BNP, NT-proBNP, Troponin
and Galectin-3 all predicted increased all-cause mortality in a wide population of patients
with aortic stenosis. These results clarify that these biomarkers may have an important
role in risk stratification of AS patients regardless of symptom status and could be used
to refine optimal timing of intervention with a potential added benefit of using multiple
biomarkers in combination. Although currently used by certain clinicians to guide their
practice, further research is required to implement biomarkers into routine clinical practice
to prevent the irreversible and severe consequences that result from undergoing late
surgical intervention.
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