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Verification of global numerical weather forecasting systems in polar
regions using TIGGE data
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High-latitude climate change is expected to increase the demand for reliable weather and
environmental forecasts in polar regions. In this study, a quantitative assessment of the
skill of state-of-the-art global weather prediction systems in polar regions is given using
data from the THORPEX Interactive Grand Global Ensemble (TIGGE) for the period
2006/2007–2012/2013. Forecast skill in the Arctic is comparable to that found in the North-
ern Hemisphere midlatitudes. However, relative differences in the quality between different
forecasting systems appear to be amplified in the Arctic. Furthermore, analysis uncertainty
in the Arctic is more of an issue than it is in the midlatitudes, especially when it comes
to near-surface parameters over snow- and ice-covered surfaces. Using NOAA’s reforecast
dataset, it is shown that the changes in forecast skill during the 7-year period considered
here can largely be explained by flow-dependent error growth, especially for the more skilful
forecasting systems. Finally, a direct comparison between the Arctic and Antarctic suggests
that predictions of mid-topospheric flow in the former region are more skilful.
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1. Introduction

Concerns about the amplification of anthropogenic climate
change has led to a growing interest in the polar regions in
recent years (Emmerson and Lahn, 2012). Furthermore, increased
economic and transportation activities in the polar regions are
leading to more demands for reliable weather predictions (Jung
et al., 2013). Given that global forecasting systems are used by
most numerical weather prediction centres, forecasts for the
polar regions are readily available. However, partly as a result
of a strong emphasis of previous work on lower and middle
latitudes, relatively little is known about the performance of
weather forecasts in polar regions.

To our knowledge, the only study in which the performance
of a global weather forecasting system in the Arctic has been
investigated more thoroughly has been published by Jung and
Leutbecher (2007). Their comparison between different analysis
products suggests that synoptic-scale features in the Arctic are
relatively well represented by state-of-the-art analysis systems.
Furthermore, they show that the improvement in deterministic
forecast error for the European Centre for Medium-range
Weather Forecasts (ECMWF) forecasting system in the Arctic

from the early 1980s to the mid-2000s follows closely that reported
in previous studies for the Northern Hemisphere (NH) as a whole.
The analysis of the ECMWF Ensemble Prediction System (EPS)
reveals substantial medium-range probabilistic forecast skill
down to synoptic scales for 500 hPa geopotential height (Z500)
fields in the polar regions. While providing some insight into the
quality of weather forecasts in polar regions, their study was some-
what limited due to a strong focus on the the free atmosphere, the
Arctic, the boreal winter season and one particular forecasting
system.

More progress has been made in the development and
verification of regional prediction systems such as the Antarctic
Mesoscale Prediction System (AMPS; Bromwich et al., 2005;
Adams, 2004; Powers et al., 2012; Bromwich et al., 2013).

The purpose of this study is to expand on the results by Jung
and Leutbecher (2007) in order to provide a more comprehensive
assessment of the quality of state-of-the-art global weather
prediction systems in the polar regions. More specifically, this
study aims to address the following questions:

• How much predictive skill do state-of-the-art forecasting
systems have in the polar regions?
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• How has predictive skill changed over time?
• How does the predictive skill in polar regions compare to

that in the midlatitudes?

Here the focus will be on the Arctic and boreal winter. However,
results for the other seasons and Antarctica will be mentioned
where deemed important. In order to assess the forecast quality of
different global forecasting centres in the polar regions, data from
the THORPEX∗ Interactive Grand Global Ensemble (TIGGE;
Park et al., 2008; Bougeault et al., 2010; Matsueda and Tanaka,
2008) will be used. Flow-dependence of interannual changes
in skill is explored using NOAA’s second generation Global
Ensemble Forecast System (GEFS) reforecast dataset (Hamill
et al., 2013).

The structure of this article is as follows. The data and methods
used will be described in the next two sections. This is followed by
the results section, which comprises a comprehensive discussion
of deterministic and probabilistic forecast skill along with some
consideration of analysis uncertainty. Finally, conclusions will be
given and discussed.

2. Methods

2.1. Data

The main dataset used in this study comes from TIGGE
(Bougeault et al., 2010), which has been developed as part
of THORPEX. TIGGE provides operational medium-range
ensemble forecast data for non-commercial research purposes
through its data portals (http://tigge.ecmwf.int; accessed 29
August 2014).

The operational ensemble prediction systems used here
include the Australian Bureau of Meteorology (BoM), the
China Meteorological Administration (CMA), the Canadian
Meteorological Center (CMC), the Brazil Centro de Previsão de
Tempo e Estudos Climáticos (CPTEC), the Japan Meteorological
Agency (JMA), the Korea Meteorological Administration (KMA),
the US National Centers for Environmental Prediction (NCEP),
the United Kingdom Meteorological Office (UKMO) and the
ECMWF, as of July 2013.

The operational configurations of the EPSs including the data
assimilation system differ among the different systems (Bougeault
et al., 2010, give details). ECMWF, JMA and UKMO, for example,
use 4D-Var as a data assimilation method for their analysis,
whereas the other centres use different data assimilation methods.
The horizontal resolutions of forecast models vary from TL119L19
(160 km horizontal resolution) for BoM to TL639L62 (30 km
horizontal resolution) for ECMWF. CMC, KMA, NCEP, and
UKMO adopt an ensemble Kalman filter (EnKF) technique to
represent initial uncertainty, whereas the other centres use either
the singular vector method (ECMWF and JMA), the breed vector
method (CMA), or a method based on Empirical Orthogonal
Functions (CPTEC). Model uncertainties are also considered by
introducing stochastic perturbations of model physics tendencies
(CMC, ECMWF, JMA, NCEP, and UKMO) or by means of multi-
parametrizations (CMC). The maximum (minimum) forecast
length available is 384 h (216 h) for NCEP (JMA). The smallest
(largest) ensemble includes 21 (51) members for NCEP (ECMWF
and JMA). JMA currently conducts their medium-range ensemble
forecast at 1200 UTC every day, whereas the other NWP centres
run their forecasts two to four times daily. In order to ensure
comparability, therefore, only the ensemble forecasts initialised
at 1200 UTC are used here.

The operational NWP systems included in TIGGE have
undergone frequent changes during the period considered in
this study. Therefore, year-to-year changes in prediction skill
might have their origin in forecast system changes. In order
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to distinguish flow-dependent predictability from the influence
of forecast system changes, NOAA’s second generation GEFS
reforecast dataset is used as well (Hamill et al., 2013). For the
period from December 1985 to 2013, the GEFS reforecast uses
the same NWP model, the same initial perturbation method (the
ensemble size of 11), and the same data assimilation system (but
up to 22 May 2012) as the operational EPS used at NCEP in
2012. NCEP’s climate forecast system reanalysis at 0000 UTC is
used as initial conditions for the GEFS reforecast. Only the GEFS
reforecasts during the TIGGE period are used here.

This study focuses on Z500 and 2 m temperature (T2m)
forecasts during the period from October 2006 to May 2013. The
TIGGE forecasts have been verified against either the ERA-Interim
reanalysis (Dee et al., 2011) or their own analyses for four
different regions: the Arctic (65–90◦N), the NH midlatitudes
(20–60◦N), Southern Hemisphere (SH) midlatitudes (20–60◦S),
and Antarctica (65–90◦S). The operational analysis for each NWP
centre was taken from the respective control forecast at initial
time. Prior to the verification, the forecast data and ERA-Interim
were interpolated onto a common horizontal grid with a spacing
of 2.5◦. For the GEFS reforecast, its own analysis (that is defined
as the control forecast at the initial time of the forecast) was used
as verifying analysis, and verification has been carried out on
a 1◦ grid. The climatologies for the TIGGE data and the GEFS
reforecast are estimated using the ERA-Interim and own analysis,
respectively. ERA-Interim was chosen to compute climatologies
since the relative shortness of the TIGGE period (7 years) poses
problems when computing statistics.

2.2. Verification scores

Forecast skill is quantified using Anomaly Correlation Coefficients
(ACC) and Ranked Probability Skill Scores (RPSS), which
are widely used in deterministic and probabilistic forecast
verification, respectively (Wilks, 2011).

The ACC is defined by:

ACC =
∑

i(fi − ci)(ai − ci)√∑
i(fi − ci)2

√∑
i(ai − ci)2

, (1)

where fi, ai, and ci indicate forecast, analysis, and climatology,
respectively, and the summation is taken over each verification
area. The ACC indicates a pattern correlation between forecast
anomaly and analysis anomaly. The ACC has a maximum value
of one for a perfect forecast. For upper-air fields such as Z500, a
score below 0.6 indicates that a forecast has little useful skill.

The RPSS is a skill score of the Ranked Probability Score (RPS)
and defined by:

RPSS = RPSref − RPSfcst
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where RPSref is for a reference forecast (in this study the
climatological forecast), and pi

j and oi
j are forecast and

observed probabilities, respectively, in the jth (j = 1, . . . , J)
climatologically equal category (J = 10 in this study) on a grid
point i. N denotes the the total number of grid points over the
verification area. oi

j is 1 if an event occurs and 0 if it does not. The
RPS is a squared measure that compares the cumulative density
function (CDF) of a probabilistic forecast with the CDF of the
corresponding observations over given probabilistic categories.
The RPS is zero for a perfect forecast and is positive otherwise
(Weigel et al., 2007). The RPSS has a maximum value of unity
for a perfect forecast, and a value of 0 for a probabilistic forecast
comparable in skill to a climatological forecast.
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Figure 1. Anomaly correlation coefficient of 500 hPa geopotential height control forecasts for the Arctic (north of 65◦N) and winters (December–February) of the
years 2006/2007–2012/2013 (different colours) for nine different global forecasting systems: (a) BoM, (b) CMA, (c) CMC, (d) CPTEC, (e) ECMWF, (f) JMA, (g) KMA,
(h) NCEP, and (i) UKMO. Forecasts were verified against ERA-Interim reanalysis data.

3. Results

3.1. Verification of 500 hPa geopotential height

3.1.1. Deterministic scores

The anomaly correlation coefficient of Z500 control forecasts
in the Arctic verified against ERA-Interim data is shown in
Figure 1 for the different TIGGE models and the winters from
2006/2007 to 2012/2013. The average deterministic predictive
skill–as measured by the forecast lead time at which ACC drops
below a value of 0.6 –ranges between 6 and 9.5 days. The ECMWF
model appears to be performing best with UKMO, NCEP, JMA
and CMC following closely. It cannot be excluded that ECMWF
performs best simply because ERA-Interim data is used for
verification. However, the fact that all models perform similarly
well in the early short range (with ACC close to one) suggests
that Z500 fields in the Arctic are relatively well constrained by
the observations and therefore the verifying analysis actually used
plays a secondary role.

Each of the forecasting systems shows sizeable year-to-year
variability in deterministic forecast skill for Z500 during winter
in the Arctic (Figure 1). This raises the question as to whether
the differences in forecast skill are due to forecasting system
improvements (e.g. Simmons and Hollingsworth, 2002; Jung,
2005) or flow-dependent forecast error growth (e.g. Ferranti
et al., 2002; Jung and Leutbecher, 2007). In order to address
this question, NOAA GEFS reforecasts with a frozen forecasting
system were evaluated in the same way as the TIGGE data
(Figure 2). The winter of 2009/2010 turns out to be the most
predictable one for all lead times during the period considered.
This is consistent with the very persistent negative phase of the

Arctic Oscillation during this winter (Jung et al., 2011). The
winters of 2007/2008 and 2008/2009 turn out to be the least
predictable (two days less than in 2009/2010). A very similar
result is found for all TIGGE models, which suggests that the
year-to-year differences in deterministic forecast skill of Z500 in
the Arctic shown in Figure 1 is primarily due to flow-dependent
perturbation growth rather than forecasting system development.
This notion is also consistent with the fact that all different TIGGE
models show the same winters to be more (or less) predictable.

It is worth putting the results for the Arctic into perspective
by comparing with the deterministic forecast skill for Z500 in the
much better studied NH midlatitudes (Figure 3). The first thing
to notice is that the year-to-year variability of deterministic skill is
much lower in the midlatitudes than in the Arctic. The standard
deviation of interannual ACC variability of 9-day ECMWF
forecasts for the period 2006/2007–2012/2013, for example, is
twice as large in the Arctic as it is in the NH midlatitudes. One
possible explanation for this finding is that the midlatitude belt
(20–60◦N) represents a larger area where different flow regimes
may occur simultaneously. Furthermore it turns out that the skill
in the most predictable winters is comparable in the midlatitudes
and the Arctic; the major difference lies in fewer midlatitude
winters with relatively poor forecast skill. Overall, this translates
into a slightly higher average level of predictive skill for Z500 in
the midlatitudes than in the Arctic (see also Jung and Leutbecher,
2007). Interestingly, winters in the Arctic which tend to be more
(less) predictable show also a higher (lower) level of predictive skill
in the midlatitudes. This suggest that the skill is influenced by the
same atmospheric circulation regimes. This notion is consistent
with the fact that the relatively predictable winter of 2009/2010
was charaterised by the predomindance of the negative phase of
the AO (Jung et al., 2011), which influences both the Arctic and
the midlatitudes.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 2. Anomaly correlation coefficients of 500 hPa geopotential height control forecasts from NOAA’s GEFS reforecast system (frozen forecasting system) over
the Arctic (north of 65◦N) for winters (December–February) of the years 2006/2007–2012/2013. Reforecast data were verified against their own reanalysis.

Figure 3. As Figure 1, but for the Northern Hemisphere midlatitudes (20–60◦N).

3.1.2. Probabilistic scores

After having discussed the deterministic skill of Z500 forecasts,
in the following the performance of ensemble forecasts will be
assessed in a probabilistic framework.

Ranked Probability Skill Scores for Z500 ensemble forecasts
over the Arctic are shown in Figure 4 for winters of the period

2006/2007–20012/2013 and different TIGGE systems. The first
thing to notice is the large difference in performance between the
different ensemble prediction systems; whereas the best systems
show RPSS of about 0.6 at day 5, the worst systems lie consistently
below 0.4 for the same lead time. In fact, differences in the
performance of the various systems appear to be larger for
probabilistic than for deterministic forecasts. These differences

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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Figure 4. As Figure 1, but showing Ranked Probability Skill Score of 500 hPa geopotential height ensemble forecasts.

Figure 5. As Figure 2, but showing Ranked Probability Skill Score of ensemble reforecasts (frozen forecasting system) from NOAA’s GEFS.

are presumably due to difference in the quality of the methods
used for representing initial and model uncertainties. It is also
possible that the climatological standard deviation from ERA-
Interim is more representative for some systems than it may be
for others.

Like for the deterministic scores, large year-to-year variability
in predictive skill is found. The fact that temporal (year-to-year)
evolution of the skill of probabilistic Z500 forecasts in the Arctic

is similar for different forecasting systems suggest that flow-
dependent perturbation growth is the main cause of interannual
changes in probabilistic skill. This notion is confirmed by Figure 5,
which shows a very similar time dependency for the frozen NOAA
GEFS system.

Interestingly, the flow-dependence of probabilistic skill is
different from that of deterministic skill (cf. Figures 5 and 2). From
a deterministic perspective, the winter 2009/2010, for example,
looks relatively predictable; however, from a probabilistic
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Figure 6. As Figure 1, but for 2 m temperature control forecasts.

perspective it is not. One possible explanation is that for strongly
negative AO anomalies, ACC provides quite different answers
from scores that take the magnitude of the error into account
(Langland and Maue, 2012) such as RMS and RPPS. Therefore,
difference between ACC and RPSS suggest that models had
problems in predicting the correct amplitude of the flow anomaly,
especially during the winter of 2009/2010.

The largest changes in RPSS (and also ACC; Figure 1) are
found for KMA during the period considered here. Given
the relatively large size of this change compared to what can
be expected from flow-dependence, it seems plausible that
probabilistic forecasts with the KMA system have undergone
genuine improvements in recent years. This is consistent
with the fact that KMA introduced the UKMO system into
operations in 2010. (Differences in skill between KMA and
UKMO after 2010 can be explored in more detail at the TIGGE
Museum: http://gpvjma.ccs.hpcc.jp/TIGGE/index.html; accessed
29 August 2014.)

In general, the RPPS for probabilistic Z500 forecasts does not
seem to be overly sensitive to the analysis used. This interpretation
is supported be the fact that the EPS from CMC, ECMWF, NCEP
and UKMO show very similar RPSS despite the fact that all were
verified against non-native ERA-Interim data. In this context,
note that even the ECMWF system, which is closer to ERA-
Interim than any of the other systems, shows RPSS values very
similar to CMC, NCEP and UKMO during the first 24 h of the
forecast.

3.2. Verification of 2 m temperatures

In the following, results from the verification of T2m forecasts
will be described. This parameter is much more relevant from a
user perspective and it describes boundary-layer aspects which
tend to be decoupled from the free atmosphere during winter
under very stable conditions over sea ice and snow.

The ACC of T2m forecasts of the different TIGGE systems over
the Arctic are shown Figure 6. The relatively poor skill of some
model systems in the short range when verified against ERA-
Interim (Figure 6) compared to their own analysis (Figure 7)
shows that T2m analysis fields are relatively poorly constrained
by the observations in the Arctic leaving them especially prone to
systematic model error. In the medium range, after about 5 days
into the forecast when errors have had time to grow, the analysis
used for verification plays a smaller role, at least for the EPS from
CMC, ECMWF, NCEP and UKMO.

Generally, the deterministic skill of T2m forecasts is lower than
those for Z500 in the short range and medium range (cf. Figures 6
and 1). This might be explained by the fact that Z500 is more
strongly influenced by rather predictable planetary waves and
synoptic systems, whereas more unpredictable boundary-layer
processes impact on T2m as well. On the other hand, the skill
of T2m, albeit small, becomes comparable to that for Z500 from
about day 10. One possible explanation for this feature is that the
lower boundary conditions (including sea ice and snow) start to
provide a source of skill for T2m (much more so than for Z500).
However, it is also possible that systematic T2m differences
between the forecast model and the ERA-Interim climatology
play an increasingly important role for longer lead times.

Deterministic errors of T2m forecasts in the NH midlatitudes,
expressed in terms of ACC, are comparable to those in the Arctic
(not shown).

3.3. Analysis uncertainty

In the previous section it was suggested that analysis uncertainty
plays an important role when it comes to verifying T2m forecasts.
In the following, therefore, T2m analysis uncertainty will be
explored in some more detail.

The spatial structure of the T2m analysis uncertainty for
different times of the year, expressed in terms of the mean of the
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Figure 7. As Figure 6, but for verification against their own analysis data. BoM is not included because analysis fields for 2 m temperature are not available from the
TIGGE archive.

Figure 8. Analysis uncertainty for T2m over the Northern Hemisphere for (a) December–February, (b) March–May, (c) June–August, and (d) September–November
during the period from October 2006 to November 2013, measured in terms of the mean of the daily standard deviation for operational analyses from five leading NWP
centres: CMC, ECMWF, JMA, NCEP, and UKMO. The hatching in each panel shows the latitude belt 60–65◦N, indicating the boundary between the midlatitudes
and the Arctic as used in this study.

c© 2014 The Authors. Quarterly Journal of the Royal Meteorological Society
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daily standard deviation of different TIGGE analysis products,
can be inferred from Figure 8. The largest T2m uncertainty, which
can amount up to 2–4 K, can be found over NH land regions and
over the Arctic Ocean. More specifically, the annual cycle suggests
that analysis uncertainty is largest over sea ice and snow. There
is also enhanced T2m analysis uncertainty along the Arctic coast
in Russia and Alaska during the boreal winter and spring. Overall
this picture is consistent with the fact that areas covered by snow

and ice are generally rather poorly observed and that there are
large uncertainties associated with the parametrization of stable
planetary boundary layers (Holtslag et al., 2013).

Interestingly, the uncertainty of T2m analysis fields is relatively
small over the Arctic Ocean during boreal summer (Figure 8(c)).
Here it is hypothezised that this has mostly to do with that fact that
near-surface temperature in summer is forced to stay relatively
closely to the melting temperature of ice.

(k
)

(k
)

Figure 9. Time series of daily analysis uncertainty for T2m over (a) the polar regions and (b) midlatitudes during the period from October 2006 to November 2013,
measured by spread among operational analyses from CMC, ECMWF, JMA, NCEP, and UKMO.

Figure 10. Smoothed time series of daily anomaly correlation coefficients of 500 hPa geopotential height control forecasts over the Arctic (north of 65◦N, bold lines)
and the Antarctic (south of 65◦S, thin lines) at lead times of 3, 5, 7, 9, and 15 days during the period from October 2006 to November 2013 for the nine global
forecasting systems. The forecasts were verified against their own analyses. Smoothing is applied using 365-day running means.
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Time series of the T2m analysis uncertainty for the period
October 2006 to November 2013 is shown in Figure 9 for
different regions over the NH and SH. The strong annual cycle
in T2m analysis uncertainty described above is also evident for
Antarctica, with slighty larger values than the Arctic during all
seasons. For both polar regions, uncertainty plateaus are found
during winter and summer with rapid changes during autumn
and spring.

For the period considered here, there is no strong evidence for
a reduction in analysis uncertainty of T2m, neither for the Arctic
nor the Antarctic.

For the NH, T2m analysis uncertainty is larger in the polar
regions than in midlatitudes during all seasons except summer.
For the SH analysis, uncertainty is always smaller in midlatitudes,
albeit less pronounced during austral summer. Finally, the SH
midlatitudes show a much weaker annual cycle in T2m analysis
uncertainty than the NH. One possible explanation for this
differences lies in the fact that T2m is strongly constrained by sea
surface temperature and that a larger fraction of oceanic areas in
the SH is covered by oceans.

4. Conclusions and discussion

In this study, data from different global forecasting systems,
which contribute to the TIGGE database, have been used to assess
the deterministic and probabilistic skill of state-of-the-art global
weather forecasting systems in the polar regions.

It turns out that the forecast skill for parameters such as Z500
and T2m in the Arctic is comparable to that found in the NH
midlatitudes. However, relative differences between the quality of
different forecasting systems appear to be amplified in the Arctic.
Furthermore, analysis uncertainty in the Arctic is much more of
an issue than it is in the midlatitudes, especially when it comes to
near-surface parameters over snow- and ice-covered surfaces.

For the 7-year period considered here (2006/2007–2012/2013),
most of the changes in forecast skill can be explained by flow-
dependent growth of forecast error. However, there are some
notable exceptions such as associated with the implementation
of the UKMO system at KMA in 2010. Our results highlight
the importance of analysing data from reforecast datasets as
well, in order to draw meaningful conclusions when it comes to
interpreting year-to-year changes in forecast skill.

In order to keep this article conclusive but at the same time
concise, the emphasis has been put on the Arctic. However, it
seems worthwhile also to provide at least some insight into the
differences between the Arctic and Antarctic. Time series of daily
anomaly correlation coefficients of Z500 control forecasts over
the Arctic and the Antarctic are shown in Figure 10 for various
lead times. Smoothing has been accomplished by employing a
365-day running mean filter. The most obvious thing to notice is
that deterministic Z500 forecasts for the Arctic are slightly more
skilful than for the Antarctic. Furthermore, there is no obvious
evidence for a change in this difference of the 7-year period
considered here.

This study can be seen as an important contribution to a much
larger effort that will be necessary to develop a comprehensive
understanding of the performance of numerical prediction
systems in the polar regions. Further work will be required

to verify more user-relevant parameters such near-surface winds,
temperature and sea ice drift using a wider range of appropriate
verification techniques.
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