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Abstract. The biological composition of the material ex-

ported to a moored sediment trap located under the win-

ter mixed layer of the naturally fertilized Kerguelen Plateau

in the Southern Ocean was studied over an annual cy-

cle. Despite iron availability in spring, the annual particu-

late organic carbon (POC) export (98.2 mmol m−2) at 289 m

was low, but annual biogenic silica export was significant

(114 mmol m−2). This feature was related to the abundance

of empty diatom cells and the ratio of full to empty cells ex-

erted a first-order control in BSi : POC export stoichiometry

of the biological pump. Chaetoceros Hyalochaete spp. and

Thalassiosira antarctica resting spores were responsible for

more than 60 % of the annual POC flux that occurred during

two very short export events of < 14 days in spring–summer.

Relatively low diatom fluxes were observed over the remain-

der of the year. Faecal pellet contribution to annual carbon

flux was lower (34 %) and reached its seasonal maximum in

autumn and winter (> 80 %). The seasonal progression of fae-

cal pellet types revealed a clear transition from small spher-

ical shapes (small copepods) in spring, to larger cylindrical

and ellipsoid shapes in summer (euphausiids and large cope-

pods) and finally to large tabular shapes (salps) in autumn

and winter. We propose in this high-biomass, low-export

(HBLE) environment that small but highly silicified and fast-

sinking resting spores are able to bypass the intense grazing

pressure and efficient carbon transfer to higher trophic lev-

els that are responsible for the low fluxes observed the dur-

ing the remainder of the year. More generally our study also

provides a statistical framework linking the ecological suc-

cession of diatom and zooplankton communities to the sea-

sonality of carbon and silicon export within an iron-fertilized

bloom region in the Southern Ocean.

1 Introduction

The Southern Ocean is the place of exposure of old upwelled

waters to the atmosphere and the formation of mode wa-

ters, thereby ventilating an important part of the global ocean

and playing a central role in distributing heat, carbon and

nutrients in the global ocean (Sarmiento et al., 2004; Taka-

hashi et al., 2012; Sallée et al., 2012). Silicon trapping oc-

curs in the Southern Ocean because silicon is stripped out

of the euphotic zone more efficiently than phosphorus and

nitrogen (Holzer et al., 2014). It is generally acknowledged

that regional variations in plankton community structure are

responsible for variations in nutrient stoichiometry in the

Southern Ocean (Jin et al., 2006; Weber and Deutsch, 2010)

and that the biological pump is a central process regulat-

ing this stoichiometry (Ragueneau et al., 2006; Salter et al.,

2012; Primeau et al., 2013). These characteristics empha-

size the importance of biological processes in the Southern

Ocean waters for the availability of silicic acid and nitrate

(Sarmiento et al., 2004; Dutkiewicz et al., 2005) as well as
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phosphate (Primeau et al., 2013) at lower latitudes, thereby

regulating part of the productivity of the global ocean. It has

been proposed that change in the uptake ratio of silicate and

nitrate by Southern Ocean phytoplankton in response to in-

creased iron availability during the Last Glacial Maximum

could have played a substantial role in varying atmospheric

CO2 (Brzezinski et al., 2002; Matsumoto et al., 2002).

Primary production in the Southern Ocean is regulated by

macro- and micronutrient availability (Martin et al., 1990;

J. K. Moore et al., 2001; Nelson et al., 2001; C. M. Moore

et al., 2013) and light levels as modulated by insolation and

surface layer mixing (Venables and Moore, 2010; Blain et

al., 2013). The complex interaction of these factors intro-

duces strong spatial heterogeneity in the distribution of pri-

mary producer biomass (Arrigo et al., 1998; Thomalla et al.,

2011). In particular, high-nutrient, low-chlorophyll (HNLC)

areas in the open ocean contrast strongly with highly pro-

ductive, naturally fertilized blooms located downstream of

island systems such as the Kerguelen Plateau (Blain et al.,

2001, 2007), Crozet Islands (Pollard et al., 2002) and South

Georgia (Park et al., 2010; Tarling et al., 2012). The diatom-

dominated phytoplankton blooms characteristic of these is-

land systems are the product of multiple environmental con-

ditions favourable for their rapid growth (Quéguiner, 2013),

which appear to promote POC export from the mixed layer

(Nelson et al., 1995; Buesseler, 1998). However the ecolog-

ical traits of certain species can impact the BSi : POC export

stoichiometry (Crawford, 1995; Salter et al., 2012), and may

therefore control the biogeochemical function of a particular

region of the Southern Ocean (Smetacek et al., 2004; Assmy

et al., 2013).

Among the numerous ecological characteristics of plank-

ton communities, algal aggregation (Jackson et al., 2005;

Burd and Jackson, 2009), mesozooplankton faecal pellets

(Lampitt et al., 1990; Wilson et al., 2008, 2013), vertical mi-

grations of zooplankton (Jackson and Burd, 2001; Steinberg

et al., 2002; Davison et al., 2013), radiolarian faecal pellets

(Lampitt et al., 2009) and diatom resting spore formation

(Salter et al., 2012; Rynearson et al., 2013) have all been

highlighted as efficient vectors of carbon export out of the

surface mixed layer. The challenge in describing the princi-

pal ecological processes regulating POC export fluxes is the

requirement to have direct access to sinking particles. Many

of the processes described occur in the upper layers of the

ocean, where circulation can strongly influence the reliabil-

ity of sediment trap collections (Baker et al., 1988; Bues-

seler et al., 2007). Short-term deployments of free-drifting

sediment traps can be an efficient solution to minimize the

hydrodynamic bias (Buesseler et al., 2000; Lampitt et al.,

2008), but spatial and temporal decoupling of production

and export needs to be considered (Salter et al., 2007; Ryn-

earson et al., 2013). In regions characterized by relatively

weak circulation, moored sediment trap observations in ar-

eas of naturally fertilized production can track temporal suc-

cession of exported material from long-term (several-month)

blooms (Westberry et al., 2013). Such an approach can par-

tially resolve how ecological processes in plankton commu-

nities regulate POC and biomineral export out of the mixed

layer (Salter et al., 2012, 2014), although selective processes

during export may modify original surface features.

The central Kerguelen Plateau is a good environment to

study the ecological vectors of export with sediment traps

due to the naturally fertilized recurrent bloom (Blain et al.,

2007) and shallow bathymetry that breaks the strong Antarc-

tic Circumpolar Current flow (Park et al., 2008, 2014). As re-

ported in the companion paper (Rembauville et al., 2015), an-

nual POC export measured by the sediment trap deployment

at 289 m beneath the southeastern iron-fertilized Kerguelen

bloom was 98± 4 mmol m−2 yr−1. This downward flux of

carbon may account for as little as ∼ 1.5 % of seasonal net

community carbon production (6.6± 2.2 mol m−2; Jouandet

et al., 2008) and < 2 % of seasonally integrated POC export

estimated at 200 m from a dissolved inorganic carbon budget

(5.1 mol C m−2; Blain et al., 2007). Although hydrodynami-

cal and biological biases related to the shallow moored sedi-

ment trap deployment may partly explain the low POC fluxes

we report, independent measurements of low POC fluxes

(> 300 m) at the same station (Ebersbach and Trull, 2008;

Jouandet et al., 2014) are consistent with the hypothesis of

flux attenuation below the winter mixed layer. These obser-

vations suggest a “high-biomass, low-export” (HBLE; Lam

and Bishop, 2007) status characterizing the productive Ker-

guelen Plateau. HBLE status appears to be a common fea-

ture of other productive sites of the Southern Ocean (Lam

and Bishop, 2007; Ebersbach et al., 2011; Lam et al., 2011;

Maiti et al., 2013; Cavan et al., 2015). Describing the tempo-

ral succession of POC and BSi flux vectors from the Kergue-

len Plateau is of interest to increase our understanding of the

ecological processes characterizing HBLE environments.

Numerous studies have described diatom fluxes from sedi-

ment trap records in the Southern Ocean (Leventer and Dun-

bar, 1987; Fischer et al., 1988, 2002; Abelmann and Ger-

sonde, 1991; Leventer, 1991; Gersonde and Zielinski, 2000;

Pilskaln et al., 2004; Ichinomiya et al., 2008; Salter et al.,

2012). Highest diatom fluxes recorded by sediment traps

(> 109 valves m−2 d−1 ) were observed in the seasonal ice

zone (SIZ) near Prydz Bay and Adélie Land and were dom-

inated by Fragilariopsis kerguelensis and smaller Fragilar-

iopsis species such as Fragilariopsis curta and Fragilari-

opsis cylindrus (Suzuki et al., 2001; Pilskaln et al., 2004).

These high fluxes occurred in summer and were associated

with the melting of sea ice. Changes in light availability and

melt water input appear to establish favourable conditions for

the production and export of phytoplankton cells (Romero

and Armand, 2010). In the Permanently Open Ocean Zone

(POOZ), highest diatom fluxes recorded were 2 orders of

magnitude lower,∼ 107 valves m−2 d−1 (Abelmann and Ger-

sonde, 1991; Salter et al., 2012; Grigorov et al., 2014), and

typically represented by F. kerguelensis and Thalassionema

nitzschioides. One notable exception is the naturally iron-

Biogeosciences, 12, 3171–3195, 2015 www.biogeosciences.net/12/3171/2015/



M. Rembauville et al.: Export fluxes in a naturally iron-fertilized area of the Southern Ocean 3173

fertilized waters downstream of the Crozet Plateau, where

resting spores of Eucampia antarctica var. antarctica domi-

nated the diatom export assemblage (Salter et al., 2012).

Other studies have reported faecal pellet contribution to

POC fluxes in the Southern Ocean (Dunbar, 1984; G. We-

fer et al., 1988; G. G. Wefer et al., 1990; Wefer and Fisher,

1991; Dubischar and Bathmann, 2002; Suzuki et al., 2001,

2003; Accornero and Gowing, 2003; Schnack-Schiel and

Isla, 2005; Gleiber et al., 2012), with a particular emphasis on

shelf environments where faecal pellet contribution to POC

flux was typically higher than in the oceanic regions (Wefer

et al., 1990; Wefer and Fischer, 1991; Schnack-Schiel and

Isla, 2005). In the Ross Sea, a northward decreasing contri-

bution to carbon flux of 59, 38 and 15 % for southern, cen-

tral and northern areas was reported from 235 m sediment

traps deployments (Schnack-Schiel and Isla, 2005). Faecal

pellets in the Ross Sea were generally represented by larger

shapes, with only 2 to 3 % of them present as small spherical

or ellipsoid shapes, and total faecal pellet flux was slightly

higher than 103 pellets m−2 d−1. High faecal pellet contribu-

tions to carbon fluxes (> 90 %) have been observed in the

Bransfield Strait and the marginal ice zone of the Scotia Sea,

and have been linked to the abundance of the Antarctic krill

Euphausia superba, resulting in maximum recorded fluxes of

> 5× 105 pellets m−2 d−1 (von Bodungen, 1986; von Bodun-

gen et al., 1987; Wefer et al., 1988). The strong contribution

of krill faecal pellets to carbon flux in the western Antarctic

Peninsula was confirmed over several years of observations,

with the highest contributions to carbon flux succeeding the

phytoplankton bloom in January and February (Gleiber et al.,

2012).

In the present study, particulate material exported from

the mixed layer in the naturally fertilized Permanently Open

Ocean Zone (POOZ) of the Kerguelen Plateau is described

from an annual sediment trap mooring. To develop our un-

derstanding of seasonal variability in the ecological flux vec-

tors and particle biogeochemistry, we investigate the link be-

tween the chemical (POC, PON, BSi) and biological (diatom

species and faecal pellet types) components of exported par-

ticles. Furthermore, we advance the limitations of previous

studies by explicitly distinguishing between full and empty

diatom cells in the exported material and thereby determine

species-specific roles for carbon and silica export.

2 Materials and methods

As part of the multidisciplinary research programme

KEOPS2, a moored sediment trap (Technicap PPS3) was de-

ployed at 289 m (seafloor depth: 527 m) at the representative

bloom station A3 (50◦38.3′ S, 72◦02.6′ E) for a period of 321

days (21 October 2011 to 7 September 2012). The sediment

trap mooring was located within an iron-fertilized bloom site

on the southern part of the Kerguelen Plateau (Blain et al.,

2007). The cup rotation dates of the sediment trap are listed

in Table 1. Details of sediment trap design, hydrological con-

ditions, sample processing, POC and PON analyses, and sur-

face chlorophyll a data extraction are described in a com-

panion paper (Rembauville et al., 2015). Comparison with

thorium-based estimates of carbon export suggests a trapping

efficiency of 15–30 % relative to the proxy, although strong

particle flux attenuation between 200 m and the trap depth

(289 m) might also contribute to the low fluxes. We therefore

interpret our results to accurately reflect the relationships be-

tween the biological and geochemical signals of the material

caught by the sediment trap, which we acknowledge may not

necessarily represent the entire particle export at 289 m.

2.1 Biogenic and lithogenic silicon analyses

For the analysis of biogenic silica (BSi) and lithogenic sil-

ica (LSi), 2 to 8 mg of freeze-dried material was weighed

(Sartorius precision balance, precision 10−4 g) and placed

into Falcon tubes. The extraction of silicon from biogenic

and lithogenic particle phases was performed following the

Ragueneau et al. (2005) triple NaOH/HF extraction proce-

dure. Silicic acid (Si(OH)4) resulting from NaOH extractions

was measured automatically on a Skalar 5100 autoanalyser,

whereas Si(OH)4 resulting from HF extraction was measured

manually on a Milton Roy Spectronic 401 spectrophotome-

ter. Si(OH)4 analyses were performed colorimetrically fol-

lowing Aminot and Kerouel (2007). Standards for the anal-

ysis of samples from the HF extraction were prepared in an

HF/H3BO4 matrix, ensuring the use of an appropriate cal-

ibration factor that differs from Milli-Q water. The contri-

bution of LSi to the first leaching was determined by us-

ing Si : Al ratios from a second leaching step (Ragueneau

et al., 2005). Aluminium concentrations were measured by

spectrophotometry (Howard et al., 1986). The triple extrac-

tion procedure is optimized for samples with a BSi content

< 10 µmol. For some samples (cups #3, #4, #6, #7, #8, #9

and #10) the Si : Al molar ratio in the second leachate was

high (> 10), indicating the incomplete dissolution of BSi.

For these samples it was not possible to use Si : Al ratios

to correct for LSi leaching. A crustal Si : Al mass ratio of

3.74 (Taylor and McClennan, 1986) was therefore used and

applied to all the samples for consistency. Precision (esti-

mated from measurement of 25 independent samples) was

13 nmol mg−1, which represents < 1 % of the BSi content

in all samples and 14 % of the mean LSi content. Blank

triplicates from each extraction were below the detection

limit. BSi results from this method were compared to the ki-

netic method from DeMaster (1981). There was an excellent

agreement between the two methods (Spearman rank corre-

lation, n= 12, p < 0.001, BSikinetic = 1.03 BSitriple extraction−

0.08; data not shown). To estimate the contribution of opal to

total mass flux, we assumed an opal composition of SiO2 0.4

H2O (Mortlock and Froelich, 1989).

In order to correct for the dissolution of BSi during deploy-

ment and storage, Si(OH)4 excess was analysed in the over-
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Table 1. Sediment bulk flux and composition results.

Cup Cup Cup Collection Season Mass flux POC flux PON flux BSi Flux LSi flux % opal POC : PON BSi : POC

opening date closing date time (days) (mg m−2 d−1)∗ (mmol m−2 d−1)∗ (mmol m−2 d−1)∗ (mmol m−2 d−1) (µmol m−2 d−1)

1 21/10/2011 04/11/2011 14 Spring 52.2 0.15 0.02 0.51 26.6 65.6 6.80 3.46

2 04/11/2011 18/11/2011 14 Spring 28.1 0.14 0.02 0.30 18.0 70.8 6.09 2.18

3 18/11/2011 02/12/2011 14 Spring 54.1 0.15 0.02 0.51 13.0 63.9 7.33 3.43

4 02/12/2011 12/12/2011 10 Summer 261.3 1.60 0.23 2.60 20.9 66.9 6.95 1.63

5 12/12/2011 22/12/2011 10 Summer 23.1 0.34 0.05 0.21 4.4 62.4 6.87 0.64

6 22/12/2011 01/01/2012 10 Summer 74.8 0.51 0.08 0.37 8.2 32.9 6.70 0.72

7 01/01/2012 11/01/2012 10 Summer 80.5 0.42 0.06 0.55 8.9 46.0 6.73 1.32

8 11/01/2012 25/01/2012 14 Summer 59.8 0.34 0.05 0.50 5.4 56.5 6.94 1.48

9 25/01/2012 08/02/2012 14 Summer 238.7 1.47 0.20 2.19 7.2 61.7 7.38 1.49

10 08/02/2012 22/02/2012 14 Summer 75.8 0.55 0.08 0.72 6.1 64.2 6.97 1.32

11 22/02/2012 31/05/2012 99 Autumn 24.4 0.27 0.03 0.08 1.5 21.5 8.09 0.29

12 31/05/2012 07/09/2012 99 Winter 5.1 0.04 0.01 0.03 2.2 35.0 6.06 0.66

Annual export∗∗ 322 14 438 98.2 13.6 114 1.85 53.1 7.2 1.2

∗ Data from Rembauville et al. (2015). ∗∗ Values assume no flux during the unsampled portion of the year.

lying preservative solution. Particulate BSi fluxes were cor-

rected for dissolution assuming that excess silicic acid orig-

inated only from the dissolution of BSi phases. Si(OH)4 ex-

cess was always < 10 % of total (dissolved + particulate) Si

concentrations. Error propagation for POC, PON, BSi fluxes

and molar ratios was calculated as the quadratic sum of the

relative error from triplicate measurements of each variable.

2.2 Diatom identification, fluxes and biomass

Many sediment trap studies reporting diatom fluxes in the

Southern Ocean use a micropalaeontological protocol that

oxidizes organic material (KMnO4, HCl, H2O2), thereby fa-

cilitating the observation of diatom valves (see Romero et

al., 1999, 2000, for a description). In the present manuscript,

our specific aim was to separately enumerate full and empty

diatom cells captured by the sediment trap to identify key

carbon or silicon exporters amongst the diatom species. We

therefore used a biological method following a similar pro-

tocol to that of Salter et al. (2007, 2012). To prepare samples

for counting, 2 mL of a gently homogenized one-eighth wet

aliquot was diluted in a total volume of 20 mL of artificial

seawater (S = 34). In order to minimize the exclusion and/or

breaking of large or elongated diatom frustules (e.g. Tha-

lassiothrix antarctica), the pipette tip used for sub-sampling

was modified to increase the tip aperture to > 2 mm. The di-

luted and homogenized sample was placed in a Sedgewick

Rafter counting chamber (Pyser SGE S52, 1 mL chamber

volume). Each sample was observed under an inverted mi-

croscope (Olympus IX71) with phase contrast at 200× and

400× magnification. Diatom enumeration and identification

was made from one-quarter to one-half of the counting cham-

ber (depending on cell abundance). The total number of di-

atoms counted was > 400 in all the cups, with the excep-

tion of the winter cup #12 (May–September 2012), where

the diatom abundance was low (< 100 diatoms counted). Di-

atoms species were identified following the recommenda-

tions of Hasle and Syvertsen (1997). All whole, intact and

recognizable frustules were enumerated. Full and empty cells

were counted separately, following suggestions in Assmy et

al. (2013).

Due to the lower magnification used and preserved cell

contents sometimes obscuring taxonomic features on the

valve face, taxonomic identification to the species level was

occasionally difficult and necessitated the categorizing of di-

atom species to genus or taxa groupings in the following

manner: Chaetoceros species of the subgenus Hyalochaete

resting spores (CRS) were not differentiated into species or

morphotypes but were counted separately from the vegetative

cells; Fragilariopsis separanda and Fragilariopsis rhombica

were grouped as Fragilariopsis separanda/rhombica; Mem-

braneis imposter and Membraneis challengeri and species

of the genera Banquisia and Manguinea were denominated

as Membraneis spp. (Armand et al., 2008a); diatoms of

the genus Haslea and Pleurosigma were grouped as Pleu-

rosigma spp.; all Pseudo-nitzschia species encountered were

grouped as Pseudo-nitzschia spp.; Rhizosolenia antennata

and Rhizosolenia styliformis were grouped as Rhizosolenia

antennata/styliformis; large and rare Thalassiosira oliver-

ana and Thalassiosira tumida were grouped as Thalassiosira

spp.; Thalassiosira antarctica resting spores (TRS) were

identified separately from the vegetative cells; small cen-

tric diatoms (< 20 µm) represented by Thalassiosira gracilis

and other Thalassiosira species were designated as small

centrics (< 20 µm); and finally large and rare centrics, includ-

ing Azpeitia tabularis, Coscinodiscus spp. and Actinocyclus

curvatulus, were grouped as large centrics (> 20 µm). Full

and empty frustules of each species or taxa grouping were

distinguished and enumerated separately. The cell flux for

each diatom species or taxa grouping was calculated accord-

ing to Eq. (1):

Cell flux=Ndiat · d · 8 ·Vcup ·
1

0.125
·

1

days
· chamber fraction, (1)

where Cell flux is in valves m−2 d−1, Ndiat is the number of

cells enumerated for each diatom classification, d is the dilu-

tion factor from the original wet aliquot, 8 is the total number

of wet aliquots comprising one sample cup, Vcup is the vol-

ume of each wet aliquot, 0.125 is the Technicap PPS/3 sedi-
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ment trap collecting area (m2), days is the collecting period,

and chamber fraction is the surface fraction of the counting

chamber that was observed (one-quarter or one-half). The an-

nually integrated full and empty diatom flux for each species

was calculated as follows:

Annual flux(x) =

12∑
i=1

(
Flux(x)i · daysi

)
, (2)

where Annual flux(x) is the annually integrated flux of a

full or empty diatom species x (cell m−2 yr−1), Flux(x)i is

the full or empty flux of this species in the cup number i

(cell m−2 d−1) and daysi is the collecting time for the cup

number i (d). The calculations assume that negligible ex-

port occurred during the month of September, which was not

sampled by the sediment trap. We consider this assumption

reasonable based on the preceding flux profile and low con-

centration of satellite-derived chlorophyll a (Rembauville et

al., 2015).

We directly compared the micropalaeontological (as used

in Rigual-Hernández et al. (2015) and biological count-

ing techniques in our sediment trap samples and noted the

loss of several species (Chaetoceros decipiens, Chaetoceros

dichaeta, Corethron pennatum, Corethron inerme, Guinardia

cylindrus and Rhizosolenia chunii) under the micropalaeon-

tological technique. We attribute this to the aggressive chem-

ical oxidation techniques used to “clean” the samples as

well as the centrifugation steps, which may also selectively

destroy or dissolve certain frustules. For the species that

were commonly observed by both techniques, total valve flux

was in good agreement (Spearman rank correlation, n= 12,

ρ = 0.91, p < 0.001; data not shown) although consistently

lower with the micropalaeontolgical technique, probably due

to the loss of certain frustules described above. Full details

of this method comparison are in preparation for a separate

submission.

Diatoms species that contributed to more than 1 % of total

full cell flux were converted to carbon flux. For E. antarc-

tica var. antarctica, Fragilariopsis kerguelensis, Fragilariop-

sis separanda/rhombica, Pseudo-nitzschia spp. and Thalas-

sionema nitzschioides spp., we used published cell-specific

carbon content (CellC, pg C cell−1) for diatoms communities

of the Kerguelen Plateau from Cornet-Barthaux et al. (2007).

As Chaetoceros Hyalochaete resting spores (CRS) and Tha-

lassiosira antarctica resting spores (TRS) largely dominated

the full diatom fluxes (> 80%), an appropriate estimation of

their carbon content based on the specific sizes observed

in our data set was required for accurate quantification of

their contribution to carbon fluxes. Biomass calculations for

both CRS and TRS were determined from > 50 randomly se-

lected complete resting spores observed in splits from cups

#4 to #11 (December 2011 to May 2012). Morphometric

measurements (pervalvar and apical axis) were made us-

ing the Fiji image processing package (available at http:

//fiji.sc/Fiji) on images taken with an Olympus DP71 cam-

era. Cell volumes followed appropriate shape-designated cal-

culations from Hillebrand et al. (1999; Table 2). The cell

volume coefficient of variation was 46 and 54 % for CRS

and TRS, respectively. CRS carbon content was estimated

from the derived cell volume using the volume-to-carbon re-

lationship of 0.039 pmol C µm−3 established from the rest-

ing spore of Chaetoceros pseudocurvisetus (Kuwata et al.,

1993), leading to a mean CellC value of 227 pg C cell−1 (Ta-

ble 2). There is currently no volume-to-carbon relationship

for Thalassiosira antarctica resting spores described in the

literature; therefore, the allometric relationship for vegeta-

tive diatoms (Menden-Deuer and Lessard, 2000) was used to

calculate our TRS carbon content, giving a mean CellC value

of 1428 pg C cell−1 (Table 2). Full diatom fluxes were con-

verted to carbon fluxes as follows:

C flux(x) =
Flux(x) · CellC(x)

M12C · 109
, (3)

where C flux(x) is the carbon flux carried by each diatom

species x (mmol C m−2 d−1), Flux(x) is the full cell numer-

ical flux of species x (cell m−2 d−1), CellC(x)is the carbon

content of species x (pg C cell−1), M12C is the molecular

weight of 12C (12 g mol−1) and 109 is a conversion factor

from pmol to mmol.

2.3 Faecal pellet composition and fluxes

To enumerate faecal pellets, an entire one-eighth aliquot

of each sample cup was placed in a gridded Petri dish

and observed under a stereomicroscope (Zeiss Discovery

V20) coupled to a camera (Zeiss Axiocam ERc5s) at 10×

magnification. Photographic images (2560× 1920 pixels,

3.49 µm pixel−1) covering the entire surface of the Petri dish

were acquired. Following Wilson et al. (2013), faecal pellets

were classified into five types according to their shape: spher-

ical, ovoid, cylindrical, ellipsoid and tabular. The flux of each

faecal pellet class (nb m−2 d−1) was calculated as follows:

Faecal pellet flux=NFP · 8 ·
1

0.125
·

1

days
, (4)

where NFP is the number of pellets within each class ob-

served in the one-eight aliquot. The other constants are as

described in Eq. (1). Individual measurements of the major

and minor axis for each faecal pellet were performed with the

Fiji software. The total number of spherical, ovoid, cylindri-

cal, ellipsoid and tabular faecal pellets measured was 4041,

2047, 1338, 54 and 29, respectively. Using these dimensions,

faecal pellet volume was determined using the appropriate

shape equation (e.g. sphere, ellipse, cylinder, ovoid/ellipse)

and converted to carbon using a factor of 0.036 mg C mm−3

(Gonzalez and Smetacek, 1994). Due to the irregularity of

the tabular shapes preventing the use of a single equation to

calculate their volume, a constant value of 119 µg C pellet−1,

representing a mid-range value for tabular shapes (Madin,

1982), was applied to tabular faecal pellets (Wilson et al.,
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Table 2. Chaetoceros resting spores (CRS) and Thalassiosira antarctica resting spores (TRS) measurement and biomass data from station

A3 sediment trap. The range and the mean value (bold) are reported for each variable.

Spore Number Pervalvar Apical axis Shapea Cell volume Volume–carbon Cell carbon content Cell carbon content

type measured axis (µm) (µm) (µm3) relationship (pmol C cell−1) (pg C cell−1)

CRS 63 3.1–8.5 7.2–17.4 Cylinder + 116.9–1415 0.039 pmol C µm−3b
5–55 55–662

6 12.1 two cones 483 19 227

TRS 57 10.2–26 25.6–35.3 Cylinder + 14035–48477 C= 0.582×V 0.811c
56–153 672–1839

20.8 32.6 two half-spheres 35502 119 1428

a As defined in Hillebrand et al. (1999). b Data representative of Chaetoceros pseudocurvisetus resting spore (Kuwata et al. 1993). c Equation from Menden-Deuer and

Lessard (2000), where C is the carbon content (pg C) and V is the cell volume (µm3).

2013). This value was appropriate because the observed tabu-

lar faecal pellets were within the size range reported in Madin

(1982). Ranges and mean values of faecal pellet volumes and

carbon content are reported in Table 3. Faecal fluff and dis-

aggregated faecal pellets were not considered in these calcu-

lations because quantitative determination of their volume is

difficult. We acknowledge that fragmentation of larger pel-

lets may represent an artifact of the sample-splitting proce-

dure. Alternatively, their presence may also result from nat-

ural processes within the water column, although dedicated

sampling techniques (e.g. polyacrylamide gel traps) are re-

quired to make this distinction (Ebersbach et al., 2014, 2011;

Ebersbach and Trull, 2008; Laurenceau-Cornec et al., 2015).

Consequently our present quantification of faecal pellet car-

bon flux should be considered as lower-end estimates.

The precision of our calculations depends on the reliability

of carbon–volume conversion factors of faecal pellets, which

vary widely in the literature, as well as variability in diatom

resting spore volumes (Table 2). To constrain the importance

of this variability on our quantitative estimation of C flux,

we calculated upper and lower error bounds using a constant

scaling of the conversion factors (±50 %).

2.4 Statistical analyses

Correspondence analysis was performed to summarize the

seasonality of diatom export assemblages. This approach

projects the original variables (here full and empty cells)

onto a few principal axes that concentrate the information

of the chi-squared (χ2) distance between both observations

and variables (Legendre and Legendre, 1998). χ2 distance is

very sensitive to rare events. Consequently, only species with

an annual mean flux higher than 10 % of the mean annually

integrated flux of all the species were retained in the corre-

spondence analysis. This selection was performed separately

on full and empty cell fluxes.

Partial least-squares regression (PLSR) analysis was used

to examine the relationships between ecological flux vec-

tors (full and empty diatom cells and faecal pellet fluxes

as columns of the X matrix, cups being the rows) and

bulk geochemical properties (POC flux, PON flux, BSi flux,

POC : PON and BSi : POC molar ratio and columns in the

Y matrix) of the exported material. The principle of PLSR

is to decompose both the X and Y matrix into their principal

components using principal component analysis and then use

these principal components to regress Y in X (Abdi, 2010).

PLSR is capable of modelling response variables from a large

set of predictors. The same filter as for the correspondence

analysis (full and empty cell fluxes > 10 % of the total mean

flux) was applied.

3 Results

3.1 Chemical composition of the settling material

Time series of the chemical signature of the settling material

are presented in Fig. 1, and export fluxes are reported in Ta-

ble 1. POC and PON fluxes are also reported and discussed in

the companion paper (Rembauville et al., 2015). BSi fluxes

exhibited the same seasonal pattern as POC fluxes (Fig. 1c)

with low fluxes (< 1 mmol m−2 d−1) except during the two

intense events (2.60± 0.03 and 2.19± 0.10 mmol m−2 d−1,

mean ± standard deviation). LSi fluxes were highest in

spring (> 10 µmol m−2 d−1 in cups #1 to #4, October to De-

cember 2011, Table 1). The contribution of LSi to total par-

ticulate Si was 5 and 10 %, respectively, in cups #1 (Octo-

ber/November 2011) and #12 (May to September 2012) and

lower than 3 % the remainder of the year. The BSi : POC

molar ratio was highest at the beginning of the season (be-

tween 2.18± 0.19 and 3.46± 0.16 in the first three cups

from October to December 2011, blue line in Fig. 1c) and

dropped to 0.64± 0.06 in cup #5 (end of December 2011),

following the first export event. BSi : POC ratios were close

in the two export events (1.62± 0.05 and 1.49± 0.08). The

lowest BSi : POC ratio was observed in autumn in cup #11

(0.29± 0.01, February to May 2012). Similarly, the opal con-

tribution to total mass flux was highest in spring (70.8 % in

cup #2, November 2011) and lowest in autumn (21.5 % in

cup #11, February to May 2012).
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Table 3. Faecal pellet measurement and biomass estimations from the station A3 sediment trap. For each variable, the range and the mean

value (bold) are reported.

Faecal Number Major axis Minor axis Volume Volume Volume–carbon Faecal pellet carbon Faecal pellet carbon

pellet shape measured (µm) (a) (µm) (b) equation (µm3) relationship content (µmol C pellet−1) content (µg C pellet−1)

Spherical 4041 11–1069 4/3 π (a/2)3 697–6.39× 108 0.036 mg C mm−3∗ 2.09× 10−6–1.91 2.51× 10−5–23

150 1.77 × 106 5.3 10-3 0.06

Ovoid 2047 85–1132 10–802 4/3 π (a/2) (b/2)2 4.45× 103 –3.81× 108 1.34× 10−5–1.14 1.60× 10−4–13.72

314 154 3.90 × 106 11.7 × 10−3 0.14

Cylindrical 1338 106–6152 14–547 π (b/2)2 a 1.63× 104–1.45× 109 4.89× 10−4–4.35 5.87× 10−4–52

981 136 1.43 × 107 0.04 0.51

Ellipsoid 54 301–3893 51–1051 4/3 π (a/2) (b/2)2 4.10× 105–2.25× 109 1.2× 10−3–6.75 0.01–81

1329 413 1.19× 108 0.36 4.28

Tabular 29 Highly variable shapes; see text Constant, 9.92 119

119 µg C pellet−1∗∗

∗ Conversion factor from Gonzalez and Smetacek (1994). ∗∗ Conversion factor from Wilson et al. (2013).
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Figure 1. (a) Time series of the surface chlorophyll a concentration averaged in a 100 km radius around the trap location. The black line

represents the climatology calculated for the period 1997/2013, whilst the green line corresponds to the sediment trap deployment period

(2011/2012). (b) POC fluxes (grey bars) and C / N molar ratio (red line) of the exported material, (c) BSi flux (light-blue bars) and BSi : POC

ratio (blue line). Error bars are standard deviations on triplicates.

3.2 Diatom fluxes

Diatoms from 33 taxa were identified and their fluxes deter-

mined across the 11-month time series. Fluxes are reported

in Tables 4 and 5 for full and empty cells, respectively. Full

and empty cell fluxes for the total community and for the

taxa that are the major contributors to total diatom flux (eight

taxa that account for > 1 % of total cells annual export) are

presented in Fig. 2. The full and empty cell fluxes for each

diatom species or taxa are reported in Tables 4 and 5, respec-

tively.

During spring (cups #1 to #3, October to Decem-

ber 2011) and autumn/winter (cups #11 and #12, Febru-

ary to September 2012) the total flux of full cells was

< 5× 106 cells m−2 d−1 (Fig. 2a). The total flux of full

cells increased to 5.5 and 9.5× 107 cells m−2 d−1 (cups #4

and #9, December and end of January, respectively) dur-

ing two episodic (< 14 days) sedimentation events. The

two largest flux events (cups #4 and #9) were also asso-

ciated with significant export of empty cells with respec-

tively 6.1× 107 and 2.9× 107 cells m−2 d−1 (Fig. 2a). For

Chaetoceros Hyalochaete spp. resting spores (CRS), full

cell fluxes of 4× 107 and 7.8× 107 cells m−2 d−1 accounted

for 76 and 83 % of the total full cell flux during these

two events, respectively (Fig. 2b), whereas a smaller con-

tribution of Thalassiosira antarctica resting spores (TRS;

2.7× 106 cells m−2 d−1, 5 % of total full cells) was observed

during the first event (Fig. 2h). CRS also dominated (79–

94 %) the composition of full cells in the intervening pe-

riod (cups #5 to #8, December 2011 to January 2012), al-

though the magnitude of cell flux was moderate (9× 106–

2.5× 107 cells m−2 d−1) by comparison (Fig. 2b). In cup
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Figure 2. (a) Total diatom cell fluxes (bars, left axis) and total empty : full cell ratio (blue line, right axis). (b–h) Fluxes of diatom cells from

selected species identified as major contributors to diatom fluxes (> 1 % of total diatom fluxes). In (b), full cells are Chaetoceros Hyalochaete

resting spores and empty cells are the vegetative stage. Full cell fluxes are represented by grey bars, whereas empty cell fluxes are represented

by white bars.

#4 (December 2011), the empty cell flux contained 61 %

Chaetoceros Hyalochaete spp. vegetative empty cells and

27 % unidentified small centrics (< 20 µm) empty cells. In

cup #9 (end of January 2012), the total empty cell flux con-

tained 60 % Chaetoceros Hyalochaete spp. vegetative stage

and only 2 % small centrics (< 20 µm) empty cells.

Fragilariopsis kerguelensis and Fragilariopsis sepa-

randa/rhombica (Fig. 2d and e) were mostly exported from

spring through the end of summer (cups #1 to #10, Oc-

tober 2011 to February 2012) with total (full + empty)

fluxes < 3× 106 cells m−2 d−1, a value ∼ 20 times lower

than the highest CRS fluxes recorded. During this time,

these species were represented by > 50 % of empty cells.

In autumn and winter (cups #10 and #11, February to

May 2012), these species were only represented by low

fluxes (< 0.5× 10−6 cells m−2 d−1) of empty cells. Thalas-

sionema nitzschioides spp. fluxes were highest in spring

and early summer (cups #1 to #4, October to December

2011), with total fluxes comprising between 3.5× 106 and

6.7× 106 cells m−2 d−1 (Fig. 2g). The remainder of the year,

total flux was < 2× 106 cells m−2 d−1 and was essentially

represented by full cells. Pseudo-nitzschia spp. were mostly

represented by full cells (Fig. 2f) with the highest flux of

1.2× 107 cells m−2 d−1 observed in the second intense ex-

port event (cup #9, end of January 2012). Eucampia antarc-

tica var.antarctica total fluxes were always represented by

> 50 % of full cells (Fig. 2c). Total cell fluxes of Eucampia

antarctica var. antarctica gradually increased from < 1× 105

to 1.3× 106 cells m−2 d−1 from spring to summer (cups #1

to #9, October 2011 to January 2012) and then decreased

to a negligible flux in winter (cup #12, May to Septem-

ber 2012). This species was observed as both the lightly

silicified, chain-forming, vegetative form and the highly

silicified winter growth stage form. Both forms were ob-

served throughout the year without a specific seasonal pat-

tern. Small centric species (< 20 µm) were essentially rep-

resented by empty cells (Fig. 2i). Their total fluxes were

< 4× 106 cells m−2 d−1, except in the first export event (cup

#4, December 2011), where their flux represented a consid-

erable export of 1.7× 107 cells m−2 d−1.

Diatoms and sampling cup projection on the first two axes

from the correspondence analysis is presented in Fig. 3.

χ2 distance in the correspondence analysis is based on fre-

quency distribution; therefore the results of the analysis must

be considered as representative of the community composi-

tion as opposed to cell flux. The first two factors accounted

for the majority (75.6 %) of total explained variance. Early in

the season (cups #1 to #3, October to mid-December 2011),

during the period of biomass accumulation in the surface

(Fig. 1a), diatom fluxes were characterized by empty cells
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Table 4. Full diatoms cells flux (106 m−2 d−1) from the station A3 sediment trap.

Cup number Contribution to

annual full

cells flux (%)

Species – taxa group 1 2 3 4 5 6 7 8 9 10 11 12

Asteromphalus spp. 0 0.01 0 0.03 0 0 0 0 0.12 0 0 0 0.1

Chaetoceros atlanticus Cleve 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0

Chaetoceros atlanticus f. bulbosus Ehrenberg 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Chaetoceros decipiens Cleve 0 0 0.02 0 0 0 0 0 0.07 0 0 0 0.0

Chaetoceros dichaeta Ehrenberg 0 0 0 0.07 0 0 0 0 0.26 0 0 0 0.1

Chaetoceros Hyalochaete spp.∗ 0.70 0 1.95 39.92 7.42 23.04 14.37 15.88 78.29 20.24 0.68 0 80.2

Corethron inerme Karsten 0 0 0 0 0 0 0 0 0.23 0 0 0 0.1

Corethron pennatum Grunow 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Dactyliosolen antarcticus Castracane 0 0 0 0.05 0 0 0 0 0.02 0 0 0 0.0

Eucampia antarctica var. 0.08 0.03 0.06 0.19 0.08 0.36 0.19 0.65 1.03 0.45 0.08 0.01 1.6

antarctica (Castracane) Mangin

Fragilariopsis kerguelensis (O’Meara) Hustedt 0.88 1.06 0 1.93 0.40 0.13 0.21 0.12 1.40 0 0 0 2.4

Fragilariopsis separanda/rhombica group 0.02 0.16 0 0.68 0.05 0.20 0.13 0.07 1.47 0 0 0 1.1

Guinardia cylindrus (Cleve) Hasle 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0

Leptocylindrus sp. 0 0 0 0.03 0 0 0 0 0 0 0 0 0.0

Membraneis spp. 0.04 0.01 0 0.19 0 0 0.02 0.02 0.02 0 0 0 0.1

Navicula spp. 0 0 0.04 0.64 0 0 0 0.29 0.58 0 0 0 0.6

Odontella weissflogii (Grunow) Grunow 0 0 0 0.08 0 0 0 0 0.05 0 0 0 0.0

Pleurosigma spp. 0.01 0 0 0.22 0.02 0.02 0 0.03 0.96 0.04 0 0 0.5

Proboscia alata (Brightwell) Sundröm 0 0 0 0 0 0 0 0 0.09 0 0 0 0.0

Proboscia inermis (Castracane) 0 0 0 0.03 0 0 0 0 0.33 0 0 0 0.2

Jordan & Ligowski

Proboscia truncata (Karsten) 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Nöthig & Logowski

Pseudo-nitzschia spp. 0.26 0.02 0.21 1.81 0.08 0.45 1.85 1.56 7.08 0.36 0.02 0 5.6

Rhizosolenia antennata/styliformis group 0 0 0 0 0 0 0 0 0.05 0 0 0 0.0

Rhizosolenia chunii Karsten 0 0 0 0 0.05 0 0 0.03 0.07 0 0 0 0.1

Rhizosolenia crassa Schimper in Karsten 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Rhizosolenia simplex Karsten 0 0 0 0 0 0 0 0 0.07 0 0 0 0.0

Thalassionema nitzschioides spp. 1.45 1.48 0.20 4.65 0.28 0.14 0.34 0.72 0.89 0.14 0.05 0.01 4.0

Pergallo & Pergallo

Thalassiosira lentiginosa (Janisch) Fryxell 0.01 0 0 0 0 0 0 0 0 0 0 0 0.0

Thalassiosira spp. 0 0.05 0 0.05 0 0 0 0 0.12 0.05 0 0 0.1

Thalassiosira antarctica resting 0.04 0 2.19 2.65 0.17 0.14 0.13 0.14 0.12 0 0.01 0 2.1

spore (TRS) Comber

Thalassiothrix antarctica Schimper ex Karsten 0 0 0 0.02 0.05 0.04 0.34 0.14 0.70 0 0 0 0.5

Small centrics (< 20 µm) 0.05 0 0 0.41 0 0 0 0 0.19 0.18 0 0 0.3

Large centrics (> 20 µm) 0 0 0.05 0.08 0 0 0 0 0.05 0 0 0 0.1

Total full cells 35.39 28.20 47.18 537.38 85.85 245.20 175.89 196.56 943.88 214.65 8.46 0.22

∗ Full cells of Chaetoceros Hyalochaete spp. were only found as resting spores.

of T. nitzschioides spp. and F. kerguelensis. Full TRS cells

were observed in cup #3 (end of November 2011) follow-

ing the initial bloom decline. The first major flux event (cup

#4, December 2011) contained mostly TRS, empty small

centrics (< 20 µm) cells and empty Chaetoceros Hyalochaete

spp. cells. The summer flux period (cups #5 to #8, Decem-

ber 2011 to January 2012) primarily consisted of CRS, al-

though E. antarctica var. antarctica, Pseudo-nitzschia spp.

and Thalassiothrix antarctica were present as full cells and

Plagiotropis spp., Membraneis spp., Pseudo-nitzschia spp. as

empty cells. The second major flux event (cup #9, end of Jan-

uary 2012) was tightly associated with CRS and full Pseudo-

nitzschia spp. cells. Subsequent cups (#10 and #11, February

to May 2012) were characterized by full cells of E. antarctica

var. antarctica and Thalassiothrix antarctica and empty cells

of Corethron inerme, P. alata, F. separanda/rhombica and

F. kerguelensis. Winter fluxes (cup #12, May to September

2012) were similar to the initial three cups characterized pri-

marily by empty cells of small diatom taxa. The centralized

projection in Fig. 3 of full F. kerguelensis and T. nitzschioides

spp. highlights their constant presence throughout the annual

record.

The total empty : full cell ratio is presented in Fig. 2a

(blue line). This ratio was highest in spring and early sum-

mer (cups #1 to #4, October to December 2011), ranging

between 1.1 and 2.4, suggesting more empty cells to full

cells. The ratio was lowest, representing considerably more

full cells to empty cells in cups #5 to #10 (December 2011

to February 2012) with values between 0.1 and 0.4. In au-

tumn (cup #11, February to May 2012), the empty : full ratio

increased to 0.7. In the winter cup #12 (May to September

2012), the total amount of full diatom cells was very low

and therefore we could not calculate a robust empty : full

ratio. Across the time series, certain diatom taxa were ob-

served exclusively as empty cells, notably Chaetoceros at-

lanticus f. bulbosus and Corethron pennatum. For diatom
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Table 5. Empty diatoms cells flux (106 m−2 d−1) from the station A3 sediment trap.

Cup number Contribution to

annual empty

cells flux (%)

Species – taxa group 1 2 3 4 5 6 7 8 9 10 11 12

Asteromphalus spp. 0.02 0.02 0.09 0.08 0 0.05 0 0.03 0.05 0 0 0 0.3

Chaetoceros atlanticus Cleve 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Chaetoceros atlanticus f. bulbosus Ehrenberg 0.01 0 0 0 0 0 0 0.02 0 0.02 0 0 0.0

Chaetoceros decipiens Cleve 0 0 0.02 0.24 0 0 0 0 0 0 0 0 0.2

Chaetoceros dichaeta Ehrenberg 0 0 0.06 0.07 0 0 0 0 0.05 0 0.01 0 0.2

Chaetoceros Hyalochaete spp. 0 0 0.45 38.19 0 0 0 0.60 18.23 0.18 0 0 41.2

Corethron inerme Karsten 0.01 0.01 0.04 0 0 0.02 0 0 0.23 0.31 0.06 0 0.9

Corethron pennatum Grunow 0 0 0.02 0 0 0 0 0.02 0 0 0.01 0 0.1

Dactyliosolen antarcticus Castracane 0 0 0 0.05 0 0 0 0.07 0.02 0.05 0 0 0.2

Eucampia antarctica var. 0 0 0.04 0.25 0.06 0.05 0.06 0.09 0.28 0.11 0.04 0 1.0

antarctica (Castracane) Mangin

Fragilariopsis kerguelensis (O’Meara) Hustedt 2.25 0.46 0.84 1.02 0.26 0.63 0.88 1.17 1.17 1.45 0.16 0.03 9.4

Fragilariopsis separanda/rhombica group 0.19 0.17 0.18 0.53 0.14 0.52 0.32 0.87 0.82 1.23 0.15 0 5.0

Guinardia cylindrus (Cleve) Hasle 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Leptocylindrus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0.0

Membraneis spp. 0 0 0.02 0.05 0.02 0.04 0.02 0.07 0.14 0.07 0.01 0 0.4

Navicula spp. 0 0 0.13 0.36 0 0 0 0.12 0.12 0 0 0 0.5

Odontella weissflogii (Grunow) Grunow 0 0 0.02 0.10 0 0 0 0.02 0 0.02 0 0 0.1

Pleurosigma spp. 0.18 0.06 0.08 0.41 0.08 0 0.09 0.12 0.93 0.38 0.03 0 2.1

Proboscia alata (Brightwell) Sundröm 0 0 0 0 0 0 0 0.03 0.05 0.34 0.01 0 0.5

Proboscia inermis (Castracane) 0 0 0.01 0.08 0 0 0 0.03 0.05 0.13 0.01 0 0.3

Jordan & Ligowski

Proboscia truncata (Karsten) 0 0 0.02 0 0 0 0 0 0 0.02 0 0 0.0

Nöthig & Logowski

Pseudo-nitzschia spp. 0.59 0 0.12 0.59 0.09 0.04 0.99 0.75 5.26 0.34 0.02 0 7.4

Rhizosolenia antennata/styliformis group 0 0 0 0 0 0 0 0.02 0.02 0.13 0 0 0.2

Rhizosolenia chunii Karsten 0 0 0 0.03 0 0 0 0.02 0.02 0.20 0.02 0 0.4

Rhizosolenia crassa Schimper in Karsten 0 0 0 0 0 0 0 0 0 0.04 0 0 0.0

Rhizosolenia simplex Karsten 0 0 0 0 0 0 0 0.02 0 0 0 0 0.0

Thalassionema nitzschioides spp. 4.33 1.97 5.39 2.07 0.19 0.09 0.47 0.12 0.72 0.18 0.03 0.01 13.2

Pergallo & Pergallo

Thalassiosira lentiginosa (Janisch) Fryxell 0.25 0.06 0.10 0 0 0 0 0 0 0 0 0 0.4

Thalassiosira spp. 0.02 0.06 0.01 0 0 0 0 0 0 0 0 0 0.1

Thalassiosira antarctica resting 0 0 0 0 0 0 0 0 0 0 0 0 0.0

spore (TRS) Comber

Thalassiothrix antarctica Schimper ex Karsten 0 0 0 0 0 0.02 0 0 0 0.04 0 0 0.0

Small centrics (< 20 µm) 0.48 0.44 2.96 16.87 0.28 0.13 0.17 0.24 0.65 0.20 0.03 0.02 15.7

Large centrics (> 20 µm) 0 0.03 0.01 0.20 0 0 0 0 0.16 0.04 0 0 0.3

Total empty cells 8.34 3.28 10.57 61.20 1.12 1.59 3.01 4.43 28.98 5.46 0.59 0.07

taxa present as full and empty cells we calculated an annu-

ally integrated empty : full ratio (Fig. 4) and arbitrarily de-

fined threshold values of 2 (representing species mainly ob-

served as empty cells) and 0.5 (representing species mainly

observed as full cells). In decreasing order, the diatom taxa

exhibiting empty : full ratios > 2 were Thalassiosira lentigi-

nosa, small centrics (< 20 µm), Proboscia alata, Rhizosole-

nia antennata/styliformis, Chaetoceros decipiens, Corethron

inerme, Dactyliosolen antarcticus, large centrics (> 20 µm),

and Asteromphalus spp. The diatom taxa displaying an

empty : full ratio < 0.5 were Thalassiothrix antarctica, Rhi-

zosolenia simplex CRS, Eucampia antarctica var. antarctica,

Thalassiosira spp. and Navicula spp. Species or grouped taxa

with ratio values falling between the thresholds < 2 and > 0.5

(R. chunii, through to C. dichaeta in Fig. 4) were perceived

as being almost equally represented by full and empty cells

when integrated annually across the time series.

3.3 Faecal pellet fluxes

The seasonal flux of faecal pellet type, and volume and their

estimated carbon flux are summarized in Fig. 5 and Table 6.

Total faecal pellet flux was < 2× 103 pellets m−2 d−1 in

spring (cups #1 to #3, October to December 2011). Cups #4

and #5 (December 2011) were characterized by the highest

fluxes of 21.8× 103 and 5.1× 103 pellets m−2 d−1 (Fig. 5a,

Table 6). Faecal pellet numerical flux decreased gradually

from mid-summer (cup #5, December 2011) to reach a mini-

mal value in winter (140 pellets m−2 d−1 in cup #12, May

to September 2012). In spring (cups #1 to #3, October to

December 2011), spherical and cylindrical shapes domi-

nated the numerical faecal pellet fluxes. Ellipsoid and tab-
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Figure 4. Annual ratio of empty to full cells for species observed

as both forms. The dashed lines are the 0.5 and 2 ratio values.

Chaetoceros Hyalochaete spp. full cells were only observed as rest-

ing spores.

ular shapes were absent from these spring cups. The first ex-

port event (cup #4, December 2011) was numerically domi-

nated by the spherically shaped pellets; however the remain-

der of the summer (cups #5 to #10, December 2011 to Febru-

ary 2012) contained spherical, ovoid and cylindrical shapes

in comparable proportions. Ellipsoid shapes were observed

from mid-summer to autumn (cups #7 to #11, January to

May 2012), but their overall contribution to pellet flux was

low (< 6 %, Table 6). Rare tabular shapes were observed in

summer (cups #6 and #8, December and January 2012) and

their contribution to numerical fluxes was highest in autumn

and winter (cups #11 and #12, February to September 2012).

The median faecal pellet volume showed a seasonal sig-

nal, with a maximum peak > 5.5× 106 µm3 in mid-summer

(cups # 6 to #8, mid-December to January 2012) and values

< 4× 106 µm3 the remainder of the year (Fig. 5b). Concomi-

tantly with the highest median volume, the largest variance in

faecal pellet size was also observed in the summer (highest

interquartile values in Fig. 5b).

Total faecal pellet carbon flux was lowest in spring

(< 0.05 mmol C m−2 d−1 in cups #1 to #3, October to De-

cember 2011, Fig. 5c, Table 6). The highest total faecal pel-

let carbon flux of nearly 0.5 mmol C m−2 d−1 was observed

during the first export event in cup #4 (December 2011)

and was essentially composed of spherical shapes (83 %, Ta-

ble 6). For the remainder of the summer (cups #5 to #10,

December 2011 to February 2012), total faecal pellet car-

bon flux was between 0.03 and 0.15 mmol C m−2 d−1, with

a dominant contribution of cylindrical, ellipsoid and tabu-

lar shapes. In autumn and winter (cups #11 and #12, Febru-

ary to September 2012), faecal pellet carbon fluxes of 0.13

and 0.06 mmol C m−2 d−1 were strictly dominated by tabular

shapes (> 90 % to total faecal pellet carbon fluxes, Table 6).

3.4 Statistical analysis of biological and biogeochemical

signatures

The β correlation coefficients of standardized variables ob-

tained from the PLSR analysis are presented as a heat map

in Fig. 6. The full cell fluxes of all diatom taxa, in addition
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Table 6. Faecal pellet numerical fluxes (normal text) and contribution to faecal pellet carbon fluxes (bold) from the station A3 sediment trap.

Contribution (%)

Cup Total FP flux Total FP carbon flux Median volume Spherical Ovoid Cylindrical Ellipsoid Tabular

(nb m−2 d−1)× 103 (mmol m−2 d−1) (106µm3)

1 1.39 0.02 2.07 53.3 19.7 27.0 0.0 0.0

36.8 18.6 44.6 0.0 0.0

2 1.75 0.04 3.55 36.5 29.7 33.9 0.0 0.0

22.4 21.3 56.3 0.0 0.0

3 0.72 < 0.01 0.95 62.7 37.3 0.0 0.0 0.0

54.5 45.5 0.0 0.0 0.0

4 21.81 0.48 1.91 76.4 22.8 0.8 0.0 0.0

83.1 15.3 1.6 0.0 0.0

5 5.10 0.12 3.71 26.6 35.0 38.3 0.1 0.0

13.8 18.3 67.4 0.5 0.0

6 2.69 0.15 5.67 28.8 33.1 37.9 0.0 0.2

4.6 10.9 43.1 0.0 41.3

7 2.46 0.12 6.71 15.6 45.5 37.1 1.8 0.0

2.5 16.1 56.0 25.3 0.0

8 2.06 0.20 6.18 37.6 15.5 44.2 2.2 0.4

1.9 2.1 34.6 15.8 45.5

9 1.36 0.09 3.59 40.4 20.5 35.4 3.7 0.0

2.8 4.9 27.9 64.4 0.0

10 1.22 0.03 2.34 56.0 22.4 21.3 0.4 0.0

17.7 9.1 69.9 3.3 0.0

11 0.27 0.13 2.10 38.9 30.8 20.3 5.7 4.3

0.4 0.7 2.5 3.9 92.6

12 0.14 0.06 2.41 18.4 57.6 20.3 0.0 3.7

0.4 2.6 5.3 0.0 91.8

Annually integrated contribution 53.8 27.3 17.8 0.7 0.4

to faecal pellet flux 17.9 6.6 17.3 7.7 50.4

to spherical and ovoid and ellipsoid faecal pellet fluxes were

positively correlated with POC and PON fluxes. By contrast,

empty cell fluxes of F. kerguelensis, P. alata, T. nitzschioides

spp. and T. lentiginosa as well as cyclindrical, ellipsoid and

tabular pellet fluxes were either uncorrelated or negatively

correlated with POC and PON fluxes. Full and empty cell

fluxes of all diatom taxa were positively correlated with BSi

fluxes, although this correlation was notably weak for empty

cells of C. inerme, P. alata and T. lentiginosa. Only spherical

and ovoid faecal pellets were positively correlated with BSi

fluxes. Full cell fluxes of CRS and E. antarctica var. antarc-

tica were the most negatively correlated with BSi : POC mo-

lar ratio, whereas TRS, F. kerguelensis, T. nitzschioides spp.

and T. lentiginosa full cell fluxes were positively correlated.

Spherical and ovoid faecal pellets were weakly and nega-

tively correlated with the BSi : POC molar ratio, whereas the

cylindrical, ellipsoid and tabular shapes were more strongly

negatively correlated with the BSi : POC molar ratio. All the

biological components exhibited weak or no correlations to

the POC : PON molar ratio.

The first two latent vectors of the PLSR accounted for 61.3

and 74.1 % of cumulative variance in X (full and empty di-

atom and pellet fluxes) and Y (biogeochemical properties).

In order to show how the seasonal succession of flux vectors

was related to the bulk geochemical properties of particles,

the sampling cups, biological and chemical factors were pro-

jected on the first two latent factors of the PLSR analysis

(Fig. 7). Positively projected on the first axis are the POC,

PON and BSi fluxes, close to the export events sampled in

cups #4 (December 2011) and #9 (end of January 2012). The

closest biological components comprise a complex assem-

blage of full and empty cells and spherical and ovoid faecal

pellet shapes. All the other cups are projected far from these

two export events. Spring cups (#1 to #3, October to mid-

December 2011) are opposite to the autumn (#11, February

to May 2012) and winter (#12, May to September 2012) cups

on the second axis. Empty frustules of F. kerguelensis, T.

lentiginosa and T. nitzschioides spp. are projected close to

the spring cups (#1 to #3, October to mid-December 2011)

together with the BSi : POC molar ratio, whereas autumn

(#11, February to May 2012) and winter cups (#12, May to

September 2012) are projected far from the BSi : POC mo-

lar ratio and close to the tabular and cylindrical faecal pellet

shapes.
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Figure 5. (a) Faecal pellet numerical fluxes partitioned among fae-

cal pellet types and (b) box plot of faecal pellet volume. On each

box, the central mark is the median, the edges of the box are the

first and third quartiles, and the whiskers extend to the most ex-

treme data points comprised in 1.5 times the interquartile distance.

(c) Faecal pellet carbon fluxes partitioned between the five faecal

pellet types. The two arrows represent the two strong POC export

events (cup #4 and #9, December 2011 and end of January 2012,

respectively).

3.5 Partitioning carbon fluxes among ecological vectors

We estimated the contribution of resting spores and fae-

cal pellets to carbon flux, calculated their cumulative val-

ues and compared them to measured values (Fig. 8a and b).

A highly significant correlation (Spearman rank correlation,

n= 36, ρ = 0.84, p < 0.001) was evident between calculated

and measured carbon flux, suggesting that the main ecolog-

ical flux vectors observed in the sample were capable of ex-

plaining the seasonal variation in total POC flux. Table 7

lists the contribution of each vector to the calculated flux.

In cup #1 (October to mid-November 2011), CRS and other

diatoms dominated the calculated POC fluxes, with respec-

tively 25.3 and 38.6 %. Diatoms other than spores domi-

nated the calculated carbon flux (35.4 %) together with cylin-

drical faecal pellets (36.4 %) in cup #2 (November 2011).

TRS dominated the POC fluxes (85.1 %) in cup #3 (Novem-

ber/December 2011). CRS strictly dominated the calculated

POC fluxes in summer (cups #4 to #10, December 2011 to

February 2012), with a contribution ranging from 46.8 to

88.1 %. During the autumn and winter (cups #11 and #12,

February to September 2012), POC fluxes were almost exclu-

sively associated with tabular faecal pellets, 81 and 93.3 %,

respectively. At annual scale, diatom’s resting spores (CRS

and TRS), other diatoms and faecal pellets respectively ac-
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Figure 6. Heat map representation of β correlation coefficients be-

tween the biological variables (empty and full cell diatom and fae-

cal pellet type fluxes) and the chemical variables (POC, PON, BSi,

POC : PON and BSi : POC) resulting from the partial least-squares

regression. Blue circles represent full diatom cells, and white cir-

cles are empty diatom cells. Brown circles represent the faecal pel-

let type fluxes. The alphabetical labels within the circles are used to

identify the variable projections shown in Fig. 7. CRS: Chaetoceros

Hyalochaete resting spores; TRS: Thalassiosira antarctica resting

spores.

counted for 60.7, 5 and 34.3 % of the calculated POC fluxes.

Annual POC fluxes estimated from ecological vectors con-

sidered here were slightly less than measured values (93.1

versus 98.2 mmol m−2).

4 Discussion

4.1 The significance of resting spores for POC flux

Generally POC fluxes were < 0.5 mmol m−2 d−1, with the

notable exception of two pulsed (< 14 days) export events

of ∼ 1.5 mmol m−2 d−1 that accounted for ∼ 40 % of annual

POC export. These two flux events were characterized by a

noticeable increase and general dominance of diatom resting

spores. During both of these pulsed export events, cumulative

Chaetoceros Hyalochaete spp. resting spore (CRS and Tha-

lassiosira antarctica resting spore (TRS) fluxes accounted

for 66 and 88 % of the measured POC flux, whereas total fae-

cal pellet flux accounted for 29 and 5.2 %, respectively (Ta-

ble 7). The combination of CRS and TRS was responsible for
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Table 7. Measured and calculated POC fluxes as well as POC flux partitioning among the major identified ecological vectors of carbon

exported out of the mixed layer at station A3.

Contribution to calculated POC flux (%)

Cup Measured POC Calculated POC CRSb TRSc Other Spherical Ovoid faecal Cylindrical Ellipsoid Tabular Total

flux (mmol m−2 d−1)a flux (mmol m−2 d−1) diatoms faecal pellet pellet faecal pellet faecal pellet faecal pellet faecal pellet

1 0.15 0.05 25.3 8.1 38.6 10.3 5.2 12.5 0.0 0.0 28.0

2 0.14 0.06 0.0 0.0 35.4 14.5 13.7 36.4 0.0 0.0 64.6

3 0.15 0.31 12.1 85.1 1.4 0.8 0.6 0.0 0.0 0.0 1.4

4 1.60 1.62 46.8 19.4 3.9 24.8 4.6 0.5 0.0 0.0 29.8

5 0.34 0.29 48.0 6.9 3.3 5.8 7.7 28.2 0.2 0.0 41.8

6 0.51 0.63 69.7 2.7 3.2 1.1 2.7 10.5 0.0 10.1 24.4

7 0.42 0.43 63.1 3.5 5.8 0.7 4.4 15.4 7.0 0.0 27.5

8 0.34 0.56 54.4 2.9 6.8 0.7 0.8 12.4 5.7 16.3 35.9

9 1.47 1.71 86.8 0.8 7.2 0.1 0.3 1.4 3.3 0.0 5.2

10 0.55 0.44 88.1 0.0 4.3 1.4 0.7 5.4 0.3 0.0 7.7

11 0.27 0.14 9.1 1.2 2.2 0.3 0.6 2.2 3.4 81.0 87.5

12 0.04 0.06 0.0 0.0 0.5 0.4 2.6 5.2 0.0 91.3 99.5

Contribution to annual calculated POC flux (% 52.1 8.6 5.0 5.1 2.0 5.2 2.2 19.8 34.3

a Data from Rembauville et al. (2015). b CRS: Chaetoceros Hyalochaete resting spores. c TRS: Thalassiosira antarctica resting spores.
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60.7 % of the annual calculated POC flux, a value 10 times

higher than the contribution of other diatoms (5 %). We did

not observe any full cells of the vegetative stage of Chaeto-

ceros Hyalochaete, a feature possibly related to its high sus-

ceptibility to grazing pressure in the mixed layer (Smetacek

et al., 2004; Quéguiner, 2013; Assmy et al., 2013). Empty

Chaetoceros Hyalochaete spp. cells were vegetative stages

different in shape from the resting spores. These empty frus-

tules may be the remnants of vegetative stages following

spore formation. Alternatively, dissolution of the lightly sili-

cified valves or girdle bands of the vegetative cell could result

in the rapid consumption of the cellular organic material in

the upper water column, and this may also explain the ab-

sence of full vegetative cells in the sediment trap record. Our

flux data reveal that small (10 to 30 µm) and highly silicified

resting spores bypass the intense grazing pressure character-

izing the base of the mixed layer, and are the primary mech-

anism through which carbon, and to a lesser extent silicon, is

exported from the surface.

Numerous sediment trap studies have reported a strong

contribution, if not dominance, of CRS to diatom fluxes at

depth in various oceanographic regions: firstly, in coastally

influenced regions, e.g. the Antarctic Peninsula (Leventer,

1991), Bransfield Strait (Abelmann and Gersonde, 1991),

Gulf of California (Sancetta, 1995), the Omura Bay (Kato

et al., 2003), Santa Barbara basin (Lange, 1997), North Pa-

cific Ocean (Chang et al., 2013) and the Artic (Onodera et

al., 2015); secondly in upwelling-influenced regions (east-

ern equatorial Atlantic (Treppke et al., 1996); and finally

in the open ocean in the subarctic Atlantic (Rynearson et

al., 2013). Similar to sediment trap observations, CRS are

reported as dominant in surface sediments of coastal re-

gions (peri-Antarctic shelf and Antarctic sea ice (Crosta

et al., 1997; Zielinski and Gersonde, 1997; Armand et al.,

2005), the North Scotia Sea (Allen et al., 2005) and east

of the Kerguelen Islands (Armand et al., 2008b), as well as

in upwelling-influenced regions (e.g. the northeast Pacific;

Grimm et al., 1996; Lopes et al., 2006) and finally in the

open ocean (the North Atlantic; Bao et al., 2000). More-

over, the annual POC export from the A3 station sediment

trap at 289 m (98.2± 4.4 mmol m−2 yr−1) falls near annual

estimates from deep sediment traps (> 2000 m) located in

the naturally fertilized area downstream of the Crozet Is-

lands (37–60 and 40–42 mmol m−2 yr−1; Salter et al., 2012),

where fluxes were considered as mainly driven by resting

spores of Eucampia antarctica var. antarctica. Diatom rest-

ing spores are frequently observed in blooms heavily influ-

enced by the proximity of the coast. Major resting spores’

contribution to carbon fluxes was observed in only one study

in the open North Atlantic Ocean (Rynearson et al., 2013),

but they are generally absent or very rare in open ocean sedi-

ment trap studies (Fischer et al., 2002; Grigorov et al., 2014;

Rigual-Hernández et al., 2015). The frequent occurrence and
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Figure 8. (a) Grey bars in the background are measured POC fluxes, and coloured bars in the foreground are calculated POC fluxes partitioned

among the main ecological vectors identified. (b) Regression (r2
= 0.72) between the measured and calculated POC fluxes. The correlation

is highly significant (Spearman rank correlation, n= 36, ρ = 0.84, p < 0.001). Error bars were generated by increasing/decreasing the car-

bon/volume conversion factors by 50 %. Black dashed line is the 1 : 1 relation, red line is the regression line, and red dashed lines denotes

the 99 % confidence interval. CRS Chaetoceros Hyalochaete resting spores; TRS: Thalassiosira antarctica resting spores.

widespread distribution of a diatom’s resting spores in the

neritic or coastally influenced ocean suggest their pivotal role

in the efficient transfer of carbon to depth in these areas.

Chaetoceros resting spores have been reported to con-

tain up to 10 times more carbon than the vegetative forms

(Kuwata et al., 1993) with no vacuole and high contents

of lipids and carbohydrates (Doucette and Fryxell, 1983;

Kuwata et al., 1993). Moreover, CRS resist grazing and have

been found to lower copepods grazing pressure (Kuwata and

Tsuda, 2005). We suggest that diatom resting spores gather

three essential characteristics for effective POC export to the

deep ocean: (1) they efficiently bypass the grazing pressure

near the mixed layer due to their morphological characteris-

tics such as very robust frustules (CRS) or numerous spines

(TRS; high export efficiency), (2) they are efficiently trans-

ferred to depth due to the thick and dense frustule increasing

sinking velocity and (3) their high carbon content is protected

from microbial degradation by the thick frustules (these last

two points result in a high transfer efficiency). The spatial

distribution and formation of resting spores may therefore be

an integral ecological component defining the strength and

efficiency of the biological pump in specific regions. Nutri-

ent depletion has been shown to trigger resting spore forma-

tion in Chaetoceros Hyalochaete laboratory cultures (Gar-

rison, 1981; Sanders and Cibik, 1985; Kuwata et al., 1993;

Oku and Kamatani, 1997) over relatively rapid timescales (6

to 48 h; McQuoid and Hobson, 1996). Although Si(OH)4 de-

pletion appears to be the most likely biogeochemical trigger

at the Kerguelen Plateau (from 24 µmol L−1 in early spring

to 2 µmol L−1 in summer (Mosseri et al., 2008; Closset et al.,

2014), other environmental factors (iron or light availability)

could influence resting spore formation. Notably, dissolved

iron concentration in the mixed layer rapidly decreases to

∼ 0.1 to 0.2 nmol L−1 after the beginning of the spring bloom

at A3; however the vertical entrainment is much weaker in

summer compared to spring (Bowie et al., 2014). Rynear-

son et al. (2013) reported the absence of spores in the mixed

layer despite a strict dominance of the trap samples. Rest-

ing spore formation at some depth below the summer mixed

layer (possibly implying a light control) could explain the

temporal decoupling between the surface production tracked

by the satellite in the surface layer (first ∼ 20 m) and the ex-

port events. Further work to establish seasonal dynamics of

factors linked to diatom life cycles and specifically the for-

mation of resting spores is necessary.

4.2 Contribution of faecal pellets to POC flux

Although diatom resting spores are the primary vector for

POC flux below the mixed layer, faecal pellets were also im-

portant and accounted for 34.3 % of annual export. It has

been hypothesized that faecal pellets are the dominant flux

component in high-biomass, low-export (HBLE) environ-

ments, where biomass is routed to higher trophic levels (Lam

and Bishop, 2007; Ebersbach et al., 2011). However, this hy-

pothesis does not appear to be true for the bloom of the cen-

tral Kerguelen Plateau, suggesting that faecal material is ef-

ficiently reprocessed in the mixed layer, or that a significant

part of the pellet flux is excreted below the trap depth by ver-

tically migrating zooplankton. Small spherical faecal pellets

dominated the annual numerical faecal pellet flux (53.8 %,

Table 6). The short and intense export of small spherical fae-

cal pellets was concomitant with the first strong POC ex-

port in cup #4 (December 2011, Table 6). The significance

of small spherical faecal pellets to POC flux is somewhat un-

characteristic in comparison to other sediment trap records

in shallow areas of the Southern Ocean (Schnack-Schiel and

Isla, 2005). They are possibly produced by small cyclopoid

copepods, like Oithona similis, that are abundant in the

POOZ (Fransz and Gonzalez, 1995; Pinkerton et al., 2010).

More specifically, O. similis represents > 50 % of mesozoo-
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plankton abundance at A3 in spring (Carlotti et al., 2015) and

has been observed at station A3 in summer (Carlotti et al.,

2008). Oithona species are known to be coprophagous and

play an important role in flux reprocessing (Gonzalez and

Smetacek, 1994), which may partially contribute to the rapid

flux attenuation observed by efficiently retaining carbon in

the mixed layer. This reprocessing feeding strategy might

also explain the low faecal pellet flux we observed (highest

value of 21.8× 103 pellet m−2 d−1), which was 2 orders of

magnitude lower than the > 5× 105 pellet m−2 d−1 observed

in neritic areas where euphausiids dominate the mesozoo-

plankton community (von Bodungen, 1986; von Bodungen

et al., 1987; Wefer et al., 1988).

There were notable differences in faecal pellet types over

the course of the season. The transition from spherical and

ovoid pellets in spring to larger cylindrical and tabular pel-

lets in summer presumably reflects shifts in dominant zoo-

plankton species from small cyclopoid copepods towards

larger calanoid copepods, euphausiids and salps (e.g. Wil-

son et al., 2013). Carlotti et al. (2015) report that meso-

zooplankton biomass doubled between October and Novem-

ber 2011 and was 3-fold higher in January 2005 (Carlotti

et al., 2008). In spring, Carlotti et al. (2015) observed that

the small size fraction (300–500 µm) was numerically dom-

inated by Oithona similis (50 % of the total mesozooplank-

ton assemblage), although the larger size fractions dominated

the mesozooplankton biomass (dominated by Clausocalanus

citer and Rhicalanus gigas). This is consistent with the dom-

inance of small spherical faecal pellets and the lower contri-

bution of cylindrical shapes we observed in spring and early

summer (cups #1 to #4, October to December 2011, Table 6).

In summer (January 2005), the mesozooplankton community

was more diversified and comprised 21 % small individuals

(Oithona sp. and Oncea sp.), 20 % medium-sized individuals

(Clausocalanus sp. and Microcalanus sp.) and 21 % large in-

dividuals (Calanus sp., Metrida sp., Paraeuchaeta sp., Pleu-

romamma sp. and Rhincalanus sp.; Carlotti et al., 2008). As

the median size of faecal pellets increases, so does their rel-

ative contribution to carbon flux (Fig. 5b and d, Table 6).

Our observation of an increasing contribution of cylindrical

faecal pellet shapes in summer (cups #5 to #10, December

2011 to February 2012, Table 6) is consistent with the in-

creasing contribution of large calanoid copepods to the meso-

zooplankton assemblages. We note that pteropods showed

the highest contribution to mesozooplankton assemblages at

station A3 in summer (16 % of total abundance; Carlotti et

al., 2008). We associate this observation with the large ellip-

soid faecal pellet shape that was first observed in the sed-

iment trap in cup #5 (end of December 2011) and repre-

sented the highest contribution to faecal pellet carbon fluxes

in cup #9 (January/February 2012, Table 7). Tabular faecal

pellets dominated the low POC fluxes observed in the autumn

and winter, when chlorophyll a concentration was reduced

to background levels, although this interpretation should be

treated with caution since a constant and high carbon con-

tent was used for this shape. The increase in organic carbon

content and negative correlation between the abundance of

cylindrical, ellipsoid and tabular faecal pellets fluxes and the

BSi : POC molar ratio suggests that large zooplankton pro-

ducing these tabular pellets (large copepods, euphausiids and

salps) was not feeding directly on diatoms. During the au-

tumn and winter, microbial components other than diatoms

must sustain the production of these large zooplankton. Di-

rect observation of faecal pellet content is beyond the scope

of the present study but would help in elucidating how sea-

sonal trends of zooplankton feeding ecology influence car-

bon and biomineral export. Moreover, dedicated studies are

still needed to document the seasonal dynamic of euphausiid

and salp abundances over the Kerguelen Plateau to compare

them with our reported faecal pellet fluxes.

4.3 Diatom fluxes

The diatom fluxes (sum of empty and full cells) observed

at the central Kerguelen Plateau reached their maximum

value of 1.2× 108 cells m−2 d−1 during the two short ex-

port events, which is equivalent to 2.4× 108 valves m−2 d−1.

This latter value falls between the highest values observed

in POOZ (∼ 107 valves m−2 d−1; Abelmann and Gersonde,

1991; Salter et al., 2012; Grigorov et al., 2014) and the

SIZ (> 109 valves m−2 d−1; Suzuki et al., 2001; Pilskaln et

al., 2004). The diatom fluxes over the Kerguelen Plateau

are similar to the 2.5–3.5× 108 valves m−2 d−1 measured at

200 m depth in a coastal station of the Antarctic Peninsula,

where CRS represented ∼ 80 % of the phytoplankton as-

semblage (Leventer, 1991). Previous studies report the pres-

ence of a resting spore formation strategy in diatom species

as typically associated with neritic areas (Smetacek, 1985;

Crosta et al., 1997; Salter et al., 2012). During the summer

KEOPS1 cruise, a shift in plankton community composition

was observed at station A3 between January and February.

The surface community initially dominated by Chaetoceros

Hyalochaete vegetative chains gave way to one dominated

by Eucampia antarctica var. antarctica, concomitant with

increasing CRS abundance in the mixed layer (Armand et

al., 2008a). The abundance of dead cells (within chains or

as empty single cells and half-cells) in the surface water

column also increased from January to February, suggest-

ing intense heterotrophic activity. Surface sediments at sta-

tion A3 contain, in decreasing abundance, F. kerguelensis,

CRS and T. nitzschioides spp. cells (Armand et al., 2008b).

These sedimentary distributions are consistent with the dom-

inant species observed in the sediment trap, F. kerguelensis

and T. nitzschioides spp. being present throughout the year

and mostly represented by empty cells, whereas CRS are ex-

ported during short and intense events.

Eucampia antarctica var. antarctica resting spores domi-

nated the deep (2000 m) sediment trap diatom assemblages

in the naturally fertilized area close to the Crozet Islands

with fluxes > 107 cells m−2 d−1(Salter et al., 2012). We ob-
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served highest Eucampia antarctica var. antarctica full cell

fluxes of ∼ 106 cells m−2 d−1 in summer, which represents

< 10 % of the total cell flux. Both vegetative and resting

stages were observed. Our results suggest that Eucampia

antarctica var. antarctica are unlikely to be a major driving

vector for carbon fluxes to depth over the central Kerguelen

Plateau, in part because the community was not forming mas-

sive highly silicified, fast-sinking resting spores, contrary to

observations near the Crozet Islands. Moreover their biogeo-

graphic abundance distribution from sea floor observations

suggests they are not dominant in this region of the plateau

(Armand et al., 2008b). The iron-fertilized Crozet bloom is

north of the polar front and dissolved Si(OH)4 concentra-

tions were depleted to 0.2 µmol L−1 (Salter et al., 2007) com-

pared to ∼ 2 µmol L−1 on the Kerguelen Plateau (Mosseri et

al., 2008). It is possible, along with differences in iron dy-

namics between the two plateaus, that differences in nutrient

stoichiometry favour bloom dynamics and resting spore for-

mation of Chaetoceros Hyalochaete populations surrounding

the Kerguelen Islands. Nevertheless, the increasing full cell

flux of Eucampia antarctica var. antarctica from spring to

summer in the sediment trap time series is consistent with the

observations of an increasing abundance in the mixed layer

at the station A3 in summer (Armand et al., 2008a).

Highest Pseudo-nitzschia spp. full cell fluxes were ob-

served in summer, concomitantly with the second export

peak (cup #9, end of January 2012). Pseudo-nitzschia species

are rarely found in deep sediment trap studies and are absent

from sediment diatom assemblages, presumably due to their

susceptibility to water column dissolution (Grigorov et al.,

2014; Rigual-Hernández et al., 2015). The species Pseudo-

nitzschia hemii has been reported to accumulate in sum-

mer in deep chlorophyll maximum in the Polar Frontal Zone

(Kopczynska et al., 2001). Such deep biomass accumulation

is hypothesized to benefit from nutrient diffusion through the

pycnocline (Parslow et al., 2001). These general observations

are consistent with the peaks in Pseudo-nitzschia spp. fluxes

we report in summer over the Kerguelen Plateau.

Although their fluxes were very low, species of the Rhi-

zosolenia and Proboscia genera were mostly exported as

empty cells at the end of summer and during autumn (cups

#8 to #11, end of January to May 2012), occurring in par-

allel with the full cell fluxes of the giant diatom Thalassio-

thrix antarctica (Table 4). It has been suggested that these

species belong to a group of “deep shade flora” that accumu-

late at the subsurface chlorophyll maxima in summer, with

their large frustules protecting them from grazing pressure

in stratified waters (Kemp and Villareal, 2013). Interestingly

these species were also found in deep sediment traps lo-

cated in an HNLC area south of the Crozet Plateau (Salter

et al., 2012), as well as in subsurface chlorophyll maximum

in HNLC waters of the Southern Ocean (Parslow et al., 2001;

Holm-Hansen et al., 2004; Gomi et al., 2010). A subsurface

chlorophyll maximum has previously been observed at 120 m

on the Kerguelen Plateau (also station A3) during summer

(Uitz et al., 2009) and appears to correspond to an accu-

mulation of particles consisting of aggregates of large di-

atom species (Jouandet et al., 2011). The fact that Rhizosole-

nia spp. and Proboscia spp. were observed as empty cells

whereas Thalassiothrix antarctica was mostly represented by

full cells suggests species-specific grazing on these commu-

nities. There appears to be ecological differentiation within

the “deep shade flora” that precludes describing a single ef-

fect on export stoichiometry. Moreover, on the Kerguelen

Plateau, these species are not exported in “massive” propor-

tions as the “fall-dump” hypothesis suggests (Kemp et al.,

2000). The physical and biogeochemical factors responsible

for their production and export are still to be determined,

and should be investigated thoroughly given the potential im-

portance that these species might have for export fluxes on

a global scale (Kemp et al., 2000; Richardson et al., 2000;

Kemp and Villareal, 2013).

4.4 Preferential carbon and silica sinkers

Unlike most previous sediment trap studies in the Southern

Ocean, we used a counting technique that facilitated the iden-

tification of carbon and siliceous components of exported

material. Although we lost a small degree of taxonomic res-

olution with this approach (see Methods), it allowed us to

avoid unnecessary assumptions concerning carbon content of

exported diatoms and directly constrain the role of different

species for carbon and silica export.

The annual BSi : POC ratio of the exported material (1.16)

is much higher than the usual ratio proposed for marine di-

atoms of 0.13 (Brzezinski, 1985). Moreover, the BSi : POC

ratio of the exported material in spring (2.1 to 3.4, cups #1 to

#3, October to mid-December 2011) is significantly higher

than the BSi : POC ratio of 0.3 to 0.7 in the mixed layer of

the same station during spring (Lasbleiz et al., 2014; Trull

et al., 2015). Numerous chemical, physical, biological and

ecological factors can impact BSi : POC ratios of marine di-

atoms (e.g. Ragueneau et al., 2006). However, the 10-fold

differences in BSi : POC ratios of exported particles between

spring and summer is unlikely to result only from phys-

iological constraints set during diatoms growth (Hutchins

and Bruland, 1998; Takeda, 1998). Previous comparisons

in natural and artificially iron-fertilized settings have high-

lighted the importance of diatom community structure for

carbon and silica export (Smetacek et al., 2004; Salter et

al., 2012; Quéguiner, 2013; Assmy et al., 2013). The pres-

ence of different diatom species and their characteristic traits

(e.g. susceptibility to grazing, apoptosis, viral lysis) are all

likely to influence the flux of full and empty cells. There-

fore, the net BSi : POC export ratio results from the net effect

of species-specific Si : C composition (Sackett et al., 2014)

and the subsequent species-specific mortality pathway and

dissolution. A significant correlation between BSi : POC and

empty : full cell ratio (Spearman rank correlation, n= 12,

ρ = 0.78, p < 0.05) suggests the latter acts as a first-order
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control on the silicon and organic carbon export stoichiome-

try. Differences in BSi : POC ratios between the mixed layer

suspended particle stock and particles exported out of the

mixed layer may be explained by the dominant sedimentation

of empty diatom frustules that results from the grazing pres-

sure by the zooplankton community and the intense carbon

utilization by heterotrophic microbial communities (Chris-

taki et al., 2014).

We classified species that were observed exclusively as

empty cells, or sinking with an integrated empty : full ra-

tio > 2, as predominantly silica exporters, and these in-

cluded C. bulbosus, C. pennatum, P. truncata, R. anten-

nata/styliformis, A. hookeri, A. hyalinus, C. decipiens, C.

inerme, D. antarcticus, P. alata, T. nitzschioides spp., T.

lentiginosa and small centric species (< 20 µm). Although F.

kerguelensis, T. nitzschioides spp. and T. lentiginosa were

present through the entire season, their fluxes were highly

correlated with BSi : POC ratios (Fig. 6), identifying these

species as significant contributors to silica export. However,

resting spores and species that sink with a major contribu-

tion of full cells (integrated empty : full ratio < 0.5) were

identified as belonging to the preferential carbon sinkers:

Chaetoceros Hyalochaete spp., E. antarctica var. antarc-

tica, R. simplex and Thalassiothrix antarctica. Among them,

CRS and E. antarctica var. antarctica were the most neg-

atively correlated with the BSi : POC ratio and were iden-

tified as key species for carbon export (Fig. 6). These ob-

servations are consistent with a previous study of natural

iron fertilization that identified C. pennatum, D. antarcti-

cus and F. kerguelensis as major silica sinkers and CRS and

E. antarctica var. antarctica resting spores as major carbon

sinkers downstream of the Crozet Islands (Salter et al., 2012).

During the EIFEX artificial fertilization experiment, Chaeto-

ceros Hyalochaete vegetative stages were identified as a ma-

jor carbon sinker, whereas F. kerguelensis was considered as

a strong silica sinker (Assmy et al., 2013). Notably, resting

spore formation was not observed in the artificial experiment

performed in the open ocean remote from coastal influence,

and carbon export was attributed to mass mortality and ag-

gregation of algal cells (Assmy et al., 2013). Nevertheless, a

more detailed analysis of species-specific carbon and silica

content in the exported material is necessary to fully eluci-

date their respective roles on carbon and silica export.

4.5 Seasonal succession of ecological flux vectors over

the Kerguelen Plateau

Although sediment trap records integrate cumulative pro-

cesses of production in the mixed layer and selective losses

during export, they provide a unique insight into the tem-

poral succession of plankton functional types and resultant

geochemical properties of exported particles characterizing

the biological pump. The seasonal cycle of ecological vec-

tors and associated export stoichiometry is summarized in

Fig. 7. The robustness of the relationship between measured

and calculated POC fluxes (Fig. 8b) suggests that the main

ecological flux vectors described from the samples are capa-

ble of predicting seasonal patterns of total POC fluxes. At

an annual scale the calculated POC fluxes slightly underes-

timate the measured fluxes (93.1 vs. 98.2 mmol m−2). This

might result from the minor contribution of full cells other

than the diatoms species considered, aggregated material, or-

ganic matter sorbed to the exterior of empty cells and faecal

fluff that was difficult to enumerate.

A scheme of phytoplankton and zooplankton communi-

ties succession in naturally fertilized areas of the South-

ern Ocean was proposed by Quéguiner (2013). Spring phy-

toplankton communities are characterized by small, lightly

silicified, fast-growing diatoms associated with small mi-

crophagous copepods. In summer, the phytoplankton com-

munity progressively switches toward large, highly silicified,

slow-growing diatoms resistant to grazing by large copepods.

In this scheme carbon export occurs mostly in the end of

summer through the fall dump. The species succession di-

rectly observed in our sediment trap samples differs some-

what to the conceptual model proposed by Quéguiner (2013),

although the general patterns are similar. The diatom species

exported in spring were F. kerguelensis and T. nitzschioides

spp. and small centric species (< 20 µm), whilst in summer

the comparatively very large (> 200 µm) species of Proboscia

sp., Rhizosolenia sp. and Thalassiothrix antarctica were ob-

served. However we observe that these species constituting

the spring fluxes are exported almost exclusively as empty

cells. The abundance of small spherical and ovoid faecal

pellet suggests an important role of small copepods in the

zooplankton (Yoon et al., 2001; Wilson et al., 2013), which

was corroborated by the finding of dominant Oithona sim-

ilis abundances in the spring mesozooplankton assemblages

at station A3 (Carlotti et al., 2015). Therefore, our data sug-

gest that spring export captured by the sediment trap was the

remnants of a diatom community subject to efficient grazing

and carbon utilization in, or at the base of, the mixed layer,

resulting in a BSi : POC export ratio > 2 (Table 1).

The main difference in our observations and the con-

ceptual scheme of Quéguiner (2013) is the dominance of

Chaetoceros Hyalochaete resting spores to diatom export as-

semblages and their contribution to carbon fluxes out of the

mixed layer in summer. Resting spores appear to efficiently

bypass the “carbon trap” represented by grazers and might

also physically entrain small faecal pellets in their downward

flux. In mid-summer, faecal pellet carbon export is domi-

nated by the contribution of cylindrical shapes. This appears

to be consistent with an observed shift toward a higher con-

tribution of large copepods and euphausiids to the meso-

zooplankton community in the mixed layer (Carlotti et al.,

2008). However, CRS still dominate the diatom exported as-

semblage. The corresponding BSi : POC ratio decreases with

values between 1 and 2 (Table 1). The fact that there are two

discrete resting spore export events might be explained by a
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mixing event that injected Si(OH)4 into the surface, allowing

the development of a secondary Si(OH)4 limitation.

In the autumn and winter, diatom fluxes are very low

and faecal pellet carbon export is dominated by cylindrical

and tabular contributions consistent with a supposed shift to

zooplankton communities dominated by large copepods, eu-

phausiids and salps (Wilson et al., 2013). The low BSi : POC

ratios characterizing export at this time suggest that these

communities feed primarily on suspended particles (in the

case of salps) and on micro- and mesozooplankton or small

diatoms, although direct measurements of faecal pellet con-

tent would be necessary to confirm this.

5 Conclusions

We report the chemical (particulate organic carbon and ni-

trogen, biogenic silica) and biological (diatom cells and fae-

cal pellets) composition of material exported beneath the

winter mixed layer (289 m) in a naturally iron-fertilized

area of the Southern Ocean. Annually integrated organic

carbon export from the iron-fertilized bloom was low

(98 mmol m−2), although biogenic silicon export was signif-

icant (114 mmol m−2). Chaetoceros Hyalochaete and Tha-

lassiosira antarctica resting spores accounted for more than

60 % of the annual POC flux. The high abundance of empty

cells and the lower contribution of faecal pellets to POC flux

(34 %) suggest efficient carbon retention occurs in or at the

base of the mixed layer. We propose that, in this HBLE en-

vironment, carbon-rich and fast-sinking resting spores by-

pass the intense grazing pressure otherwise responsible for

the rapid attenuation of flux. The seasonal succession of

diatom taxa groups was tightly linked to the stoichiome-

try of the exported material. Several species were identi-

fied as primarily “silica sinkers” (e.g. Fragilariopsis kergue-

lensis and Thalassionema nitzschioides spp.) and others as

preferential “carbon sinkers” (e.g. resting spores of Chaeto-

ceros Hyalochaete and Thalassiosira antarctica, Eucampia

antarctica var. antarctica and the giant diatom Thalassio-

thrix antarctica). Faecal pellet types described a clear transi-

tion from small spherical shapes (small copepods) in spring,

larger cylindrical an ellipsoid shapes in summer (euphausi-

ids and large copepods) and large tabular shape (salps) in au-

tumn. Their contribution to carbon fluxes increased with the

presence of larger shapes.

The change in biological productivity and ocean circula-

tion cannot explain the ∼ 80 ppmv atmospheric pCO2 dif-

ference between the pre-industrial era and the Last Glacial

Maximum (Archer et al., 2000; Bopp et al., 2003; Kohfeld et

al., 2005; Wolff et al., 2006). Nevertheless, a simple switch

in “silica sinker” versus “carbon sinker” relative abundance

would have a drastic effect on carbon sequestration in the

Southern Ocean and silicic acid availability at lower latitudes

(Sarmiento et al., 2004; Boyd, 2013). The results presented

here emphasize the compelling need for similar studies in

other locations of the global Ocean that will allow for identi-

fication of key ecological vectors that set the magnitude and

the stoichiometry of the biological pump.

The Supplement related to this article is available online

at doi:10.5194/bg-12-3171-2015-supplement.
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