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ABSTRACT

Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaero-

bic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communi-

ties in the most extreme environments, partly because of their temperature-resistant and robust membrane

lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial

diversity in black smoker chimneys from the newly discovered Loki’s Castle hydrothermal vent field on the

Arctic Mid-Ocean Ridge (AMOR) with vent fluid temperatures of 310–320 °C and pH of 5.5. Archaeal

glycerol dialkyl glycerol tetraether lipids (GDGTs) and H-shaped GDGTs with 0–4 cyclopentane moieties

were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Eury-

archaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from

the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquifi-

cales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our obser-

vations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial

communities thriving within the porous sulfide structures of active and inactive deep-sea hydrothermal

vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria

in the chimney exterior may be the prevailing biogeochemical processes in this system.
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INTRODUCTION

Deep-sea hydrothermal vents are unique environments that

support highly productive ecosystems driven by geochemi-

cal energy and have been proposed as a possible site for

the origin and early evolution of life (Baross & Hoffman,

1985; Martin et al., 2008). The distinctive black smoker

chimneys at submarine hydrothermal environments are

formed when sulfates and sulfides precipitate due to mixing

of hot, acidic, and anoxic vent fluids with cold oxic seawa-

ter, thus creating steep thermal and chemical gradients

along and inside the chimney (Tivey, 1995). Migrating flu-

ids contain reduced inorganic and organic components

providing metabolic energy for diverse thermophilic micro-

bial communities that inhabit either specific microniches in

different parts of the porous chimney structure, appear as

free-living micro-organisms in vent fluids and plumes, or

occur as symbionts of vent macrofauna (Karl, 1995). These

micro-organisms are adapted to a habitat characterized by

extreme environmental conditions such as high tempera-

ture and pressure, low pH as well as elevated concentra-

tions of dissolved gases (H2S, H2, CO2, CH4) and metal

sulfides (Miroshnichenko, 2004).

Since the discovery of deep-sea hydrothermal vent sys-

tems in the late 1970s (Corliss et al., 1979), enrichment

and isolation studies as well as culture-independent

approaches, which mainly involved molecular studies of the

16S rRNA gene, were performed. These studies revealed a

remarkable microbial diversity with numerous so far uncul-

tivated organisms thriving in these extreme and unstable

habitats (Takai et al., 2001; Schrenk et al., 2003; Alain

et al., 2004; Kormas et al., 2006; Sogin et al., 2006).
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Hyperthermophilic archaea tend to be dominant in the

high temperature zones of the chimney interiors, whereas

both archaea and bacteria are present in the cooler exterior

parts where mixing with seawater is more prevalent

(Schrenk et al., 2003). Along with the apparent tempera-

ture zonation, where distinctive micro-organisms can

thrive, different metabolisms are thermodynamically avail-

able. For example, oxidation of methane, ammonia, and

sulfur are favored at low temperatures toward the chimney

exterior, while methanogenesis and reduction of sulfate or

sulfur is favored at higher temperatures toward the chim-

ney interior (McCollom & Shock, 1997; Takai et al.,

2001; Schrenk et al., 2003; Kormas et al., 2006; Takai &

Nakamura, 2011).

In addition to molecular techniques, organic geochemi-

cal approaches can be employed to reveal microbial com-

munity structures by analyzing lipid biomarkers. Archaea

synthesize distinctive membrane lipids predominantly com-

posed of diether lipids (i.e., archaeol, hydroxyarchaeol) and

isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs).

GDGTs with an additional covalent bond, so-called

H-shaped GDGTs, have so far only been reported for cul-

tivated isolates of (hyper-) thermophilic archaea (Morii

et al., 1998; Sugai et al., 2004; Koga & Morii, 2005;

Schouten et al., 2008). GDGTs are excellent biomarkers

to use in hydrothermal vents as they are community-spe-

cific and resistant to extreme environmental conditions

(Derosa & Gambacorta, 1988; van de Vossenberg et al.,

1998; Macalady et al., 2004). There are, however, only

few studies carried out on biomarker lipids in deep-sea

hydrothermal vents indicating possible microbial communi-

ties with their potential metabolisms (Blumenberg et al.,

2007; Blumenberg et al., 2012; Bradley et al., 2009).

Loki’s Castle is a deep-sea hydrothermal vent field

located at the ultra-slow spreading Arctic Mid-Ocean Ridge

(AMOR) in the Norwegian-Greenland Sea at 74°N. Dis-

covered in 2008, it is the northernmost black smoker field

known to date and hosts a unique ecosystem (Pedersen

et al., 2010). It is a sediment-associated system, and there-

fore, hydrothermal fluids contain an unusual enrichment of

carbon dioxide, methane, and ammonia, providing poten-

tial for various energy metabolisms and diverse microbial

populations. Here, we report first insights into the micro-

bial assemblages inhabiting active and inactive sulfide

chimneys of the Loki’s Castle hydrothermal vent field based

on biomarker lipid analysis and 16S rRNA gene-based

taxonomy.

STUDY AREA AND SAMPLING

The Knipovich Ridge is one of the AMOR spreading cen-

ters in the Norwegian-Greenland Sea, and the southern-

most part of this ridge is one of the slowest spreading

ridge segments on Earth. The Loki’s Castle vent field is

located at 2400 m water depth on an axial volcanic ridge

(AVR) where the magma-starved end of the Mohns Ridge

migrates into the Knipovich Ridge through a sharp

northward bend in the direction of the spreading axis at

73°30′N and 8°E (Fig. 1) (Pedersen et al., 2010). At the

seafloor, black smoker fluids are discharging from four, up

to 13 m tall, chimneys. The chimneys are situated on two

hydrothermal mounds that are approximately 150 m apart

and are estimated to be 20–30 m high and about 150–

200 m across. The mounds of Loki’s Castle are compara-

ble in size with the TAG-mound (Trans-Atlantic

Geotraverse) on the Mid-Atlantic Ridge (Pedersen et al.,

2010). The four active chimneys were named João,

Menorah, Camel, and Sleepy. João is the tallest of the four

chimneys, situated on the eastern sulfide mound.

The hydrothermal fluids from Loki’s Castle reach tem-

peratures of 310–320 °C and have a pH of 5.5. The

vent fluid compositions are characterized by high con-

centrations of CH4, H2, and NH4, as well as elevated

concentrations of higher hydrocarbons, and are indicative

of a sediment-impacted hydrothermal vent system (Peder-

sen et al., 2010; Baumberger, 2011). Significant sedi-

ment accumulation is not present at the volcanic ridge

hosting the field. However, the rift valley of the south-

ern Knipovich Ridge in the vicinity of Loki’s Castle is

partly buried by a thick sediment cover. These

sediments, derived from the nearby Bear Island fan,

likely underlie the AVR and influence hydrothermal

fluid compositions (Pedersen et al., 2010; Baumberger,

2011).
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Fig. 1 Location of the Loki’s Castle vent field

at the Arctic Mid-Ocean Ridge (AMOR). AVR,

Axial Volcanic Ridge.
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The chimney samples analyzed in this study were col-

lected during R/V G.O. Sars cruises in 2008, 2009, and

2010 using a Bathysaurus XL remotely operated vehicle

(ROV) equipped with a hydraulically operated box sam-

pler. In total, eleven samples recovered from two active

and inactive sulfide structures (Menorah, João, and one

unnamed chimney) at Loki’s Castle hydrothermal vent field

were subsampled and analyzed for mineral composition

and lipid biomarkers (Table 1). From Menorah, a bulk

sample from the chimney wall was sampled for 16S rRNA

gene analysis (sample GS08-ROV11; Table 2). In addition,

microbial filaments at the surface of the João structure were

sampled by a suction sampler and analyzed for lipid bio-

markers. All samples were stored at -20°C until used for

analysis.

MATERIALS AND METHODS

Rock analyses

Freeze-dried, crushed, and powdered chimney samples

were analyzed by X-ray diffraction (Bruker, AXS D8

Advance) to determine the mineralogy. Total organic car-

bon (TOC), carbon isotope ratios (d13C), and sulfur iso-

tope ratios (d34S) of the bulk rock samples were measured

after decarbonation on a ThermoFisher Flash-EA 1112

elemental analyzer coupled via a Conflo IV interface to a

ThermoFisher Delta V isotope ratio mass spectrometer. The

system was calibrated with the reference materials NBS22

(d13C = �30.03) and IAEA CH-6 (d13C = �10.46) for

carbon and IAEA –S-1 (d34S = �0.3), IAEA –S-2

(d34S = +22.67), IAEA –S-3 (d34S = �32.55) for sulfides

and NBS 127 (d34S = +21.1), IAEA-SO-5 (d34S = +0.49)
and IAEA-SO-6 (d34S = �34.05) for sulfates. All analytical

results are reported in the conventional d notation, in per

mil relative to the Vienna Pee Dee belemnite (VPDB) stan-

dard for carbon and the Vienna Canon Diablo Troilite

(VCDT) standard for sulfur. Reproducibility of the mea-

surements was better than 0.2&.

Molecular techniques and taxonomic analysis

DNA extraction and PCR amplification

Ten-gram of bulk chimney wall material from the active

Menorah structure (GS08-ROV11) was pulverized in a

sterilized steel mortar, and DNA was extracted from

this homogenized material (approximately 0.5 g) using a

FastDNA® spin kit for soil in conjunction with the

FastPrep instrument (MP Biomedicals, Santa Ana, CA) fol-

lowing manufactures protocol and applying the modifica-

tions described by Hugenholtz et al. (1998). The

extracted DNA was PCR amplified in triplicates using the

prokaryotic primer set 787F (5′ATTAGATACCCNGG

TAG3′) (Roesch et al., 2007) and Uni1391R (5′ACGGG

CGGTGWGTRC3′) modified from Lane et al. (1985), as

Table 1 Bulk data of chimney samples and microbial filaments from Loki’s Castle black smokers

Dive Chimney Sample material Sample part TOC (%) d13C (&) d34S (&) Major mineral composition, color, texture

GS08-ROV10(1) João Active Interior 0.09 �19.0 4.3 Amorphous silica rich; gray, relatively hard material

GS08-ROV10(2) João Active Interior 0.10 �24.9 N.a. Anhydrite; gray, soft material

GS09-ROV9 João Filaments Exterior 12.11 �27.1 n.a. Thin, white filaments

GS10-ROV9(1) João Active Middle 0.86 �36.0 1.0 Marcasite, sphalerite; black soft material

GS10-ROV9(2) João Active Middle 0.17 �39.3 1.7 Marcasite, sphalerite, pyrite; black soft material

GS08-ROV11(1) Menorah Active Interior 3.12 �14.2 2.1 Sphalerite, pyrrhotite, pyrite; black soft material

GS08-ROV11(2) Menorah Active Interior 0.11 �24.3 2.3 Pyrite; black soft material

GS08-ROV11(3) Menorah Active Interior 0.09 �22.7 2.5 Sphalerite, pyrrhotite; black soft material

GS08-ROV11(4) Menorah Active Interior 0.03 �15.3 n.a. Sphalerite, pyrrhotite; black soft material

GS09-ROV6(1) No name Inactive Exterior 0.06 �6.8 18.5 Anhydrite, gypsum, talc; gray, relatively soft material

GS09-ROV6(2) No name Inactive Exterior 0.11 �6.0 21.0 Anhydrite, gypsum; gray, relatively soft material

n.a. not analyzed. Numbers in brackets indicate subsamples taken from same chimney wall.

Table 2 Taxonomic affiliation, abundances and 16S rRNA gene numbers of

microbial populations of Menorah bulk chimney material (GS08-ROV11)

Taxonomic level

Phylum Taxonomic level Class

% of prokaryotic SSU

454 sequence reads

Proteobacteria Gammaproteobacteria 0.2

Proteobacteria Betaproteobacteria 0.1

Proteobacteria Epsilonproteobacteria 36.1

Proteobacteria Deltaproteobacteria 0.1

Firmicutes Clostridia 0.1

Deferribacteres Deferribacterales 0.1

Thermotogae Thermotogae 0.6

Aquificae Aquificae 26.1

Thermodesulfobacteria Thermodesulfobacteria 0.8

Candidate division SR1 – 0.8

Chloroflexi Dehalococcoides 0.1

Crenarchaeota Thermoprotei 0.9

Euryarchaeota Thermoplasmata 0.3

Euryarchaeota Methanococci 2.8

Euryarchaeota Archaeoglobi 1.8

Euryarchaeota Thermococci 28.4

Thaumarchaeota Marine Group I 0.1

Bold font indicates taxonomic groups represented by more than 1% of the

total 16S rRNA gene pool.
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described by Lanzén et al. (2011). The resulting amplicons

were purified and sequenced using multiplex GS FLX

pyrosequencing (without Titanium chemistry) at the

Norwegian High-Throughput Sequencing Centre (NSC)

in Oslo, Norway.

Filtering, removal of noise and taxonomic assignment of

16S rRNA gene amplicon sequence data

The dataset (5485 reads) was filtered and cleaned from

noise by using the software AmpliconNoise (Quince et al.,

2011). The protocol has been described previously

(Lanzén et al., 2011). In short, bad-quality reads are

removed (flow intensity 0.5–0.7), so are sequences not

matching the applied primer sequence as well as chimeric

reads. The resulting 3646 high-quality reads distributed on

122 unique reads with an average read length of 231 bp

were used for taxonomic evaluation. To assign each

sequence read to a taxon, we compared our reads with the

SILVA SSUref database release 100 (Pruesse et al., 2007),

using blastn. A manual revision of this database was con-

ducted, and the taxonomy updated with respect to Epsilon-

proteobacteria, Acidobacteria, Chloroflexi, and the Archaea

as well as a more restrictive quality filter (pintail score >75,
alignment quality >75 and length >1200 bp; database

available at http://services.cbu.uib.no/supplementary/

community-profiling/). Taxomomical assignments were

then evaluated using the software MEGAN version 3.7

(Huson et al., 2007) by applying a last common ancestor

algorithm (for details see Lanzén et al., 2011). Taxonomic

affiliation of sequence reads and the relative abundances

within the bulk chimney wall of the Menorah structure are

given in Table 2. Pyrosequencing flowgrams (SSF files)

have been deposited in the NCBI Sequence Read Archive

under the accession number SRA052614.

Lipid extraction, derivatization, and fractionation

About 6–12 g of each chimney sample was freeze-dried,

crushed to a fine powder, and ultrasonically extracted using

methanol (MeOH), dichloromethane (DCM)/MeOH

(1:1 v/v), and DCM (three times). The extracts were com-

bined and the bulk of the solvent subsequently removed by

rotary evaporation under vacuum. Elemental sulfur was

removed from the total lipid extract (TLE) by flushing with

n-hexane over a small pipette filled with HCl-activated cop-

per. The TLE was further transmethylated with MeOH/

HCl (10% w/v) at 70 °C for 2 h to convert free and ester-

bound fatty acids into their corresponding methyl esters

(FAMEs), and silylated with bis (trimethyl) trifluoroaceta-

mide (BSTFA) in pyridine at 60 °C for 20 min to convert

alcohols in trimethylsilyl (TMS) ether derivatives. An ali-

quot of the TLE was chromatographically separated into

apolar and polar fractions using a column with activated sil-

ica as stationary phase. Apolar compounds were obtained

using n-hexane/DCM (9:1 v/v) as eluant. Polar fractions

containing the GDGTs (i.e., structures I-XII, Fig. 3) were

eluted with DCM/MeOH (1:1 v/v, 3 column volumes).

After solvent evaporation, the polar fractions were redis-

solved in 200 lL of HPLC-grade n-hexane/isopropanol

(99:1 v/v) and were filtered through a 0.45-lm PTFE filter

prior to HPLC/APCI/MS analysis. Microbial filaments

were extracted using a modified Bligh-Dyer procedure

(Bligh & Dyer, 1959). A solvent mixture of phos-

phate-buffer (0.05 M, pH 7.4)/methanol (MeOH)/dichlo-

romethane (DCM) 0.8/2/1 (v/v) was added to the frozen

cell material. The mixture was sonicated for 10 min after

which further DCM and phosphate-buffer were added to a

volume ratio of 0.9/1/1. After centrifuging (5 min at

1120 g), the DCM layer was collected. The residue was

re-extracted twice following the same procedure. The

extracts were combined and the bulk of the solvent subse-

quently removed by rotary evaporation under vacuum. An

aliquot of the extract was further hydrolyzed in 2 M HCl/

MeOH (1/1, v/v) for 3 h at 75 °C. The pH of the hydro-

lyzed extract was adjusted to pH 3 using 1 M KOH

(MeOH 96%). The extract was derivatized as described pre-

viously. The position of the double bonds in the fatty acids

was determined by analysis as their dimethyl disulfide

(DMDS) adducts according to the method of Nichols et al.

(1986). Briefly, an aliquot of the sample dissolved in 50 lL
of n-hexane was treated with 100 lL of DMDS and 20 lL
of iodine solution (6% w/v in diethyl ether). The reaction

was carried out in 2-mL screw-cap glass vials at 50 °C for

48 h. The mixture was cooled and diluted with 500 lL of

n-hexane. The excess of iodine was reduced by addition of

500 lL of sodium thiosulfate (5% w/v in MilliQ water).

The organic phase was removed, and the aqueous phase

extracted twice with 500 lL of n-hexane. Combined

organic phases were evaporated under a stream of nitrogen

and diluted with 100 lL of n-hexane prior to GC-MS

analysis.

Analysis and identification of biomarkers

High-performance liquid chromatography-mass

spectrometry (HPLC-MS)

Glycerol dialkyl glycerol tetraethers analysis was performed

at the Geological Institute of the ETH Zurich using high-

performance liquid chromatography/atmospheric pressure

chemical ionization–mass spectrometry (HPLC/APCI–MS)

with a Thermo Surveyor LC system coupled to an LCQ

Fleet ion trap mass spectrometer equipped with a PAL LC

autosampler and Xcalibur software, as described by

Hopmans et al. (2000). Normal phase separation was

achieved with an Alltech Prevail Cyano column

(150 mm 9 2.1 mm; 3 lm) maintained at 30°C. Flow rate

of the n-hexane/isopropanol (IPA) (99:1) mobile phase was

0.3 mL min�1, isocratically for the first 5 min, thereafter

© 2012 Blackwell Publishing Ltd
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with a linear gradient to 2% IPA in 30 min, and a column

cleaning step with 10% IPA in n-hexane. Injection volume

was 20–50 lL. Scanning was performed over the m/z

ranges 740–746, 1016–1054, and 1280–1318. Relative

abundances of GDGTs were calculated using peak areas of

the [M+H]+ ions vs. those of the C20-diol internal standard

(m/z 743). GDGTs were identified and distinguished via

their MS2 spectra. MS2 experiments were performed with

conditions according to Knappy et al. (2009). Briefly, elut-

ing species were monitored using the positive ionization

mode of the APCI source. Conditions for APCI-MS were as

follows: vaporizer temperature 300 °C, sheath gas (N2) flow

rate 40 (arb. units), auxiliary gas (N2) flow rate 5 (arb.

units), capillary temperature 200 °C, capillary voltage 23 V,

and corona discharge current 5 lA. Positive ion MS spectra

were obtained by scanning a narrow mass range from m/z

1220 to 1350. MS2 spectra were recorded using the data

dependent ion scan feature, in which the base peak of an

MS scan is selected for collision induced dissociation (CID)

in MS2 (collision energy was set at 30%).

Gas chromatography-mass spectrometry (GC-MS)

Compound identification was done by combined GC-MS.

GC-MS was conducted using a Hewlett Packard 6890 gas

chromatograph equipped with an on-column injector.

A fused silica capillary column (HP-5, 30 m length,

0.25 mm inner diameter, 0.25 lm film thickness) with

helium as a carrier gas was used. The gas chromatograph

was interfaced to a HP 5973 mass selective detector

(MSD) with a mass range of m/z 50–800. The samples

were injected at 60 °C. The GC oven temperature was

subsequently raised to 120 °C at a rate of 10°C min�1 and

then to 320 °C at 4°C min�1. The temperature was then

held constant for 20 min. The structural characterization

of lipids was evaluated by comparing their mass spectral

fragmentation pattern with published spectra.

RESULTS AND DISCUSSION

Mineralogy and bulk isotope data

The mineralogy of the samples recovered from active (João

and Menorah) and inactive sulfide chimneys (Table 1) indi-

cated that they were mostly derived from the interior zones

of the chimney wall. The sulfide-poor samples GS09-

ROV6(1 + 2) were dominated by abundant anhydrite, and

less gypsum and talc. In general, during chimney growth,

anhydrite precipitates around a black smoker vent at the

leading edge of chimney growth, where hot hydrothermal

fluids first encounter cold seawater (Haymon, 1983), talc

forms in hot chimneys from seawater magnesium and

hydrothermal silica (Haymon & Kastner, 1981). Thus, we

can assume that our samples containing anhydrite were

derived from the exterior zones of the chimney wall. The

porous sulfide samples mainly consisted of pyrite, pyrrho-

tite, sphalerite, and marcasite (Table 1), reflecting interme-

diate temperatures of formation (<240 °C for marcasite)

(Haymon, 1983). A number of studies have shown that

once the anhydrite walls of a chimney are in place, and

hydrothermal fluid is protected from extensive mixing with

seawater, which subsequently leads to the precipitation of

Zn-Cu-Fe sulfides toward the chimney interior. During

this stage, anhydrite is partially dissolved again and

replaced by sulfides (Haymon, 1983).

d34S values generally ranged from 1& to 2& in the sul-

fide samples (Table 1) indicating a mid-ocean ridge basalt

(MORB) source (Shanks & Seyfried, 1987). The sulfate

samples (i.e., anhydrite) showed d34S values of 19& and

21&, reflecting seawater sulfate values. Total organic

carbon (TOC) was generally low in the chimney samples

ranging from 0.03% to 0.9%; however, GS08-ROV11(1)

of active Menorah revealed an extraordinarily high TOC

content of 3% (Table 1). These strong variations in the

organic content of samples from the same chimney indicate

that hydrothermal vents provide small, patchy, and unsta-

ble habitats for microbes. The d13C of organic carbon var-

ied between �6 and �7& for the inactive chimney

samples which is in the range of the isotopic composition

observed for mantle derived CO2. d
13C values of organic

carbon in the active chimney samples varied from �14 to

�39&, yielding a range of 25& (Table 1). The low d13C
values in the marcasite-bearing samples GS10-ROV9

(1 + 2) of João may indicate the presence of chemolitho-

autotrophs preferentially using 12C in a distinct layer

within the middle/outer chimney wall where metastable

pyrrhotite is being rapidly replaced by either pyrite or mar-

casite, depending on the pH of the fluid (for marcasite

pH < 5) (Murowchick & Barnes, 1986). Thus, besides

variations in temperature and availability of reduced chemi-

cal species, the mineralogy and habitat type could be

important factors affecting the composition of microbial

communities (Kato et al., 2010).

Microbial diversity

The sulfide chimney matrix of the active Menorah structure

(GS08-ROV11) harbored a diverse range of thermophilic

and hyperthermophilic archaea and bacteria, as shown both

by our 16S rRNA gene-based taxonomy (Table 2, Fig. 2)

and lipid analysis (Fig. 3). However, lipids such as GDGTs

are common lipids of many archaea, and therefore, it is dif-

ficult to link them with a specific archaeal group without

additional microbial- or compound-specific isotope data.

In the following sections, we use the information obtained

from the 16S rRNA gene amplicon library to discuss the

link between possible source organisms and different com-

pound classes detected in samples originating from the

same chimney wall.

© 2012 Blackwell Publishing Ltd
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Archaea

Distribution and origin of archaeal GDGTs (I–VII)

All samples from the chimney structures contained a range

of isoprenoid GDGTs (Fig. 3), indicating that archaea are

present throughout the chimney walls. GDGT I, a trialkyl-

type GDGT (Fig. 3), was detected as a minor constituent

(<1%) of the total GDGT pool from Menorah and João

active sulfide chimneys (Fig. 4). GDGT I has been

reported in a number of cultivated thermophilic and hyper-

thermophilic Crenarchaeota (Gulik et al., 1988; de la

Torre et al., 2008) and has been proposed as an intermedi-

ate in the biosynthesis of GDGT II from archaeol (Koga

& Morii, 2007). GDGT II (Fig. 3) was detected in all

samples analyzed and was also the most abundant com-

pound with relative abundances between 29 and 61% of all

GDGTs, followed by GDGTs containing 1–4 cyclopentane

rings (Fig. 3 structures III-VI) with relative abundances

between 1 and 19% (Fig. 4). Methanogenic archaea and

members of the family Archaeoglobaceae have been found

to produce predominantly GDGT II (Koga & Morii,

2005). Sequences related to both groups were found in

our taxonomic data, namely members of the family

Methanococcales and of the genus Ferroglobus belonging to

the family of Archaeoglobales. Methanococcales (2.8% of the

total community) is a group that constitutes strictly anaer-

obic autotrophs that gain energy by the reduction of CO2

with H2, generating CH4. Ferroglobus made up 1.8% of

the total community (Fig. 2) and is a hyperthermophilic

(growth between 65 and 95 °C) member of the Archaeo-

globales that oxidizes ferrous iron (Fe2+) but also molecular

hydrogen, and sulfide under strictly anaerobic conditions

(Hafenbradl et al., 1996). Nitrate and thiosulfate (S2O3
2�)

are used as electron acceptors that are known from a vari-

ety of hyperthermophiles (Stetter et al., 1987; Stetter,

2002). Although it seems likely that the origin of the

detected GDGT II stems from the above-mentioned

groups, we cannot exclude that there are other, still uncul-

tivated archaeal groups that also produce this as a major

lipid.

Detection of 16S rRNA genes related to hyperthermo-

philic members of the family Thermoproteaceae (Cre-

narchaeota) and Thermoplasmataceae (Euryarchaeota)

(Table 2, Fig. 2) suggest that, at least partly, they may be

the source organisms for GDGT III–VI containing 1–4

cyclopentane rings (Fig. 3). As reported by Koga & Morii

(2005), these groups have been found to predominantly

synthesize GDGT II-VI in culture. Indeed, members of

the Desulfurococcus, a group composed of hyperthermo-

philic heterotrophs, growing at temperatures up to 95°C
(no growth is reported for temperatures of �65 °C) and

gaining energy by oxidation of hydrogen using elemental

sulfur (Huber & Stetter, 2006; Stetter, 2006), were

detected as minor components representing 0.9% of the

microbial community (Fig. 2). It is interesting to know

that we found GDGTs with a maximum of only four rings

in such high temperature environment. In general, the

number of cyclopentane rings incorporated in tetraether

lipids increases with increasing growth temperature (i.e.,

Uda et al., 2001; Schouten et al., 2002; Boyd et al.,

2011). GDGTs with up to eight rings were reported from

Yellowstone hot springs (Schouten et al., 2007), where

Fig. 2 Phylogenetic Neighbor-joining tree

based on archaeal 16S rRNA gene sequence

information. The taxonomic affiliation of the

sequences obtained from the Menorah active

sulfide chimney is highlighted in bold. Further

the group to which these sequences could be

assigned at a lower taxonomic level is given

below the phylum name in italic. The relative

abundance of each group can be found in

Table 2. THSCG, Terrestrial hotspring crenar

chaeotic group; MCG, Miscellaneous crenar

chaeotic group; MBG, Marine Benthic Group;

SCG, Soil crenarchaeotic group; SAGMCG,

South African gold mine crenarchaeotic group;

MG I, marine group I; SAGMEG, South

African gold mine Euryarchaeotic group.
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temperatures were generally lower than in black smokers.

Thus, there are possibly other parameters controlling the

GDGT lipid composition in archaea, for example, pH,

pressure, heavy metal content as well as biological factors.

For the thermoacidophilic archaea Sulfolobus acidocaldari-

us, it has been shown that the incorporation of cyclopen-

tane rings leads to a more tightly packed membrane than

one without rings, thus regulating membrane behavior,

that is, fluidity or proton permeability (Gabriel & Chong,

2000).

Crenarchaeol (GDGT VII, Fig. 3) was found in the

middle and exterior zones of the chimneys, and only

traces could be detected in the interior parts of the chim-

ney wall at Menorah GS08-ROV11(1) (Fig. 5A). In the

João sample GS10-ROV9(2), crenarchaeol and the regio-

isomer accounted for 5% and <0.1%, respectively, of the

total GDGTs (Fig. 4) (concentration was 1 ng/g chimney

material). The mineralogy of this sample suggests that it

is derived from the chimney middle to exterior where

marcasite precipitated during chimney growth (Haymon,

1983). As for GDGT II–VI, very low concentrations of

about 20 pg/g chimney material were detected in an

anhydrite-dominated chimney sample GS09-ROV6(2),

clearly showing a seawater sulfate signal (Table 1). Here,

crenarchaeol accounted for 25% of all GDGTs (Fig. 4).

Crenarchaeol was originally thought to be a specific
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Crenarchaeol; GTGT, glycerol dialkyl glycerol
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text).

© 2012 Blackwell Publishing Ltd

Microbial communities in Loki’s black smokers 7



biomarker for mesophilic Crenarchaeota (recently, the

phylum has been split up into two phyla; Crenarchaeota

and Thaumarchaeota: Brochier-Armanet et al., 2008;

Spang et al., 2010). This group is composed of putative

aerobic ammonia oxidizers (AOA) (Könneke et al., 2005;

Wuchter et al., 2006) and is ubiquitously found in marine

systems between 2 and 30 °C (Sinninghe Damsté et al.,

2002). However, thermophilic members of the ammonia-

oxidizing archaea have also been found to synthesize cren-

archaeol at temperatures up to 87 °C (Pearson et al.,

2004; Zhang et al., 2006; de la Torre et al., 2008).

Loki’s Castle is a sediment-impacted hydrothermal system

with high ammonium concentrations (6.1 mmol kg�1; Pe-

dersen et al., 2010), suggesting that AOA may be active

at this site as well. Moreover, Zhang et al. (2006) sug-

gested that crenarchaeol could be an original and ancient

biochemical property of the thermophilic Crenarchaeota,

which occupy a deeply branching point in the phyloge-

netic tree of life (Forterre et al., 2002). Our lipid and

16S rRNA gene-based data, however, suggest that hyper-

thermophilic Crenarchaeota only account for a small frac-

tion of the total microbial community in the chimney (see

discussion previously; Table 2, Fig. 2). Low relative abun-

dances of 16S rRNA genes related to marine group I

Thaumarchaeota (Table 2, Fig. 2) indicate the presence of

AOA. However, chimney walls are sufficiently permeable

to allow the influx of small amounts seawater; therefore,

our data could also be interpreted as an introduction of

Thaumarchaeal cells from the ingression of ambient

seawater where they have been found to be ubiquitous

(Takai et al., 2004).

Distribution and origin of archaeal H-GDGTs (VIII–XII)

In addition to GDGTs I-VII, another group of later-elut-

ing compounds was present in the HPLC/MS chromato-

gram (VIII–XII, Fig. 3). These compounds showed mass

spectra characteristic of GDGTs with base peak ions of

1300, 1298, 1296, 1294, and 1292, respectively, which

are the [M+H]+ ions (Fig. 5A). The distribution of these

compounds is similar to that of GDGTs II-VII, and they

were further identified and distinguished via their MS2

spectra. MS2 experiments revealed that GDGTs VIII-XII

have a different fractionation pattern than GDGT II-VII,

exhibiting a far less pronounced degree of dissociation

(Fig. 5B,C). This is due to the covalent bond between the

two hydrocarbon chains in these compounds, which stays

intact during the dissociation, generating a product ion

that maintains the C80 hydrocarbon core, and two small

fragments resulting from the loss of an OH and a glycerol

group. The MS2 spectra are identical to those previously

published by Knappy et al. (2009) who analyzed cells from

a pure culture of Methanobacter thermoautotrophicus grown

at 70 °C. The specific MS2 spectrum indicates that com-

pounds VIII-XII are GDGTs with an additional covalent

bond between the isoprenoid chains, so-called H-shaped

GDGTs (H-GDGTs) (Morii et al., 1998). Abundances of

H-GDGTs VIII-XII are generally lower than those of reg-

ular GDGTs (Fig. 3), and contribute with 3–21% to the

total lipid pool (Fig. 4). H-shaped isoprenoid GDGTs have

so far been identified in several cultivated archaea, for

example, in the above-mentioned hyperthermophilic Meth-

anobacter thermoautotrophicus, in the hyperthermophilic

methanogen Methanothermus fervidus (Morii et al., 1998),
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as well as in different species of the order Thermococcales

growing at neutral pH with optimal growth temperatures

>80 °C (Godfroy et al., 1997; Sugai et al., 2004). In con-

gruence with this, we found a high abundance of Thermo-

coccales-related 16S rRNA gene sequences (28.4% of total

community) (Table 2, Fig. 2), suggesting that this group

is the main source of H-GDGTs. Thermococcus is an obli-

gate anaerobic, sulfur-reducing heterotroph belonging to

the Euryarchaeota, which is often detected as a member of

vent communities (Takai et al., 2001; Schrenk et al.,

2003; Kormas et al., 2006; Takai & Nakamura, 2011).

Sulfur reduction has been suggested to be the thermody-

namically favored reaction at higher temperatures

(>38 °C), while sulfur oxidation is more viable at lower

temperatures (McCollom & Shock, 1997). Elemental sul-

fur is either stimulatory or is required for growth of Ther-

mococcus. Elevated hydrogen concentrations measured in

the vent fluids (Pedersen et al., 2010) can serve as an elec-

tron donor for the reduction of elemental sulfur to H2S.

Another candidate group for the high abundance of

H-GDGTs was identified by Schouten et al. (2008) who

detected H-shaped GDGTs with up to four cyclopentane

rings in Aciduliprofundum boonei, a cultivated thermoacid-

ophilic sulfur- and iron-reducing Euryarchaeota from a

deep-sea hydrothermal vent. This organism belongs to the

DHVE2 cluster and is capable of growing from pH 3.3 to

5.8 and between 55 and 75 °C (Reysenbach et al., 2006).

However, at Loki’s Castle, 16S rRNA genes related to the

DHVE2 cluster contributed only 0.3% to the total micro-

bial community (Table 2, Fig. 2), indicating that only a

minor part of the H-GDGTs originates from those archaea.

Our finding of high abundances H-shaped GDGTs is

not surprising as the introduction of an additional covalent

cross-link between the isoprenoid chains is thought to help

maintain membrane structure at high temperatures (Morii

et al., 1998; Schouten et al., 2008). Our results indicating

the prevalence of archaeal communities near the warm

interior of black smoker chimneys is also in agreement with
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earlier findings by Schrenk et al. (2003). Higher rigidity

and stability of archaeal tetraether lipids that form

monolayer membranes are better suited to extreme envi-

ronments than the ester type of bilayer lipids of bacteria or

eukarya (van de Vossenberg et al., 1998). Moreover,

relatively high abundances of both GDGTs and H-GDGTs

with 1–4 cyclopentane rings detected in our samples is

compatible with culture studies showing that (hyper)ther-

mophilic Crenarchaeota and Euryarchaeota produce

GDGTs containing more cyclopentane moieties with

increasing growth temperature (Uda et al., 2001, 2004).

As discussed previously, the distribution of archaeal

GDGTs and H-GDGTs could also be controlled by other

parameters such as pH, pressure, heavy metal content or it

could be related to a specific metabolism (Uda et al.,

2004; Boyd et al., 2011). GDGT abundances in samples

derived from the exterior wall of the inactive chimney

GS09-ROV6 (1 + 2) were about three orders of magni-

tude lower than those derived from active chimneys, sug-

gesting that once a chimney stops venting, conditions are

no longer favorable for archaeal communities. In our sam-

ple of the exterior wall of the inactive chimney, high abun-

dances of unsaturated (and branched) fatty acids were

detected and may indicate the presence of sulfur-oxidizing

(and sulfate-reducing) members of the e subclass of the

Proteobacteria (the e-Proteobacteria) (Table 3; see section

on bacteria below; H. Dahle, unpublished data).

Isoprenoid diether lipids and hydrocarbons

Isoprenoid compounds of archaeal origin, such as archaeol,

were also found in the Menorah sample GS08-ROV11(1).

Archaeol is produced by a variety of different archaeal

groups, such as halophiles, thermophiles, and acidophiles

(Koga & Morii, 2005), and was present with a concentra-

tion of 102 ng/g (Table 3). Another isoprenoid

compound, sn-2-hydroxyarchaeol, was detected as both

mono- and di-trimethylsilyl (TMS) derivatives with a con-

centration of 68 ng/g. sn-2-hydroxyarchaeol is a diagnostic

biomarker for the thermoacidophilic archaeal order Ther-

moplasmatales and the methanogenic order Methanococcales

(Koga et al., 1998), which is consistent with the findings of

abundant GDGTs with cyclopentyl moieties as well as 16S

rRNA gene-based taxonomy data (see section above;

Table 2). Concentrations of crocetane, irregular isoprenoids

pentamethyleicosane (PME) and PME 4 were 3, 7, and

26 ng/g chimney material, respectively. These compounds

have been attributed to anaerobic, methanotrophic archaea

(ANME) (Elvert et al., 1999; Bian et al., 2001), although

PME was originally believed to be synthesized by methano-

genic archaea (Holzer et al., 1979; Risatti et al., 1984).

Whereas the presence of methanogenic archaea is supported

by our 16S rRNA gene data (methanococci), no sequences

related to any of the ANME groups were detected.

Bacteria

The lipid composition of large filamentous bacteria collected

from the João active sulfide chimney (GS09-ROV9) revealed

the dominance of C16:1x7c (47%), C18:1x7c (17%), and C16:0

(14%) fatty acids. Concentrations of these compounds are

about three orders of magnitude higher in this sample as in

the chimney material (Table 3). The lipid pattern is consis-

tent with lipid profiles of known sulfur-oxidizing bacteria

from sediments and hydrothermal vents (Jacq et al., 1989;

Guezennec et al., 1998; Zhang et al., 2005). The filaments

attached to the outer chimney wall have been found to be

related to sulfur-oxidizing bacteria Sulfurovum, a group

belonging to the e-Proteobacteria that thrive at lower ambi-

ent temperatures (H. Dahle, unpublished data). Minor abun-

dances of C16:1x5c and C18:1x9c detected in the filaments as

well as in the inactive chimney samples GS09-ROV6(1 + 2)

may be derived from sulfate-reducing bacteria (Dowling

et al., 1986; Elvert et al., 2003; Londry et al., 2004).

16S rRNA gene analysis with subsequent taxonomic anal-

ysis of Menorah active chimney GS08-ROV11 revealed that

members of the Aquificales and e-Proteobacteria were the

dominant bacteria accounting for 26 and 36% of the total

Table 3 Concentration of distinctive compounds extracted from active and

inactive chimney material and chimney-associated filaments

Compound

Active Filaments Inactive Inactive

GS08-

ROV11(1)

Menorah

GS09-

ROV9(2)

João

GS09-

ROV6(1)

unknown

GS09-

ROV6(2)

unknown

(ng g�1) (lg g�1) (ng g�1) (ng g�1)

Fatty acids

i-C15:0 nd 778 nd nd

ai-C15:0 nd 549 nd nd

ai-C16:0 nd 236 nd 12.5

C16:1x7c nd 17577 192.9 1074.2

C16:1x7t nd 1985 26.3 114.2

C16:1x5c nd 2485 26.2 77.7

C16:0 nd 5350 37.1 314.0

10-Me-C16:0 nd nd nd 10.8

C18:1x9c nd nd 15.6 24.9

C18:1x7c nd 6361 31.6 100.2

C18:0 nd 266 nd nd

C22:1x9c nd nd 732.2 282.1

Alcohols

Archaeol 102.2 3.1* nd nd

sn-2-hydroxyarchaeol 68.0 nd nd nd

Hydrocarbons

Crocetane 3.1 nd nd nd

PME 6.8 nd nd nd

PME:4 25.9 nd nd nd

Hopanoids

diploptene 29.2 nd nd nd

diplopterol 15.2 nd nd nd

nd, not detected.*sample contained small amounts of rock debris. Also

glycerol dialkyl glycerol tetraethers (GDGTs) and H-GDGTs were detected

in low abundances (<1 lg g�1).
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prokaryotic community (Table 2). The Aquificales is

thought to be the earliest branching lineage within Bacteria

and have often been detected in hot springs (Spear et al.,

2005; Purcell et al., 2007) and deep-sea vent ecosystems

(Kormas et al., 2006; Blumenberg et al., 2012). Among

the bacteria, Aquificales exhibit one of the highest growth

temperatures (95 °C). They are anaerobic lithoautotrophs,

gaining metabolic energy from the oxidation of molecular

hydrogen (H2) or sulfur compounds. Lithotrophic sulfur

reduction by oxidation of H2 is believed to be one of the

most ancient types of catabolism (Fischer et al., 1983), and

the preferred source of energy at temperatures >38 °C
(McCollom & Shock, 1997). The apparent lack of dialkyl

glycerol diethers (DAGE) specific for the Aquificales

(Jahnke et al., 2001) at Menorah may be because the

distinct zones where the Aquificales thrive within the chim-

ney structure were not present in our subsamples for lipid

analysis. Another possibility of the observed discrepancy

could be a primer bias in the 16S rRNA gene approach,

leading to a skewed relative abundance estimate. The same

may be the case for the deep-branching e-Proteobacterial
group Nautiliales that were detected as one of the main

organisms within the chimney wall of Menorah (Table 2).

Nautiliales is believed to be constituted of thermophilic

sulfur-reducing bacteria that are found to be key players in

sulfidic habitats (Alain et al., 2004; Campbell et al., 2006).

Other members of the e-Proteobacteria, for example, the

Campylobacteriales, made up only a very small fraction of

the total population (data not shown). The dominant lipids

of Nautilia profundicola have been shown to be C18:1x7c

and C16:1x7c fatty acids (Smith et al., 2008). High abun-

dances of branched and monounsaturated fatty acids

detected in samples derived from the outer chimney wall

GS09-ROV6 (1 + 2) (Table 3) may be produced by sul-

fur-oxidizing and sulfate-reducing bacteria. In general,

lower growth temperatures of 45–53 °C indicate that bac-

teria mainly thrive within the exterior chimney walls, which

has also been reported for a white smoker by Kormas et al.

(2006). The hopanoids diploptene and diplopterol with

low concentrations (Table 3) have predominantly been

found in aerobic bacteria, that is, methanotrophs, hetero-

trophs, and cyanobacteria. Hopanoids also occur in anaero-

bic bacteria, for example, members of the Planctomycetes

capable of anaerobic ammonium oxidation (Sinninghe

Damsté et al., 2004), in Geobacter species (Fischer et al.,

2005; Härtner et al., 2005), and in sulfate-reducing bacte-

ria of the genus Desulfovibrio (Blumenberg et al., 2006).

Concentrations of these lipids, however, are about 1–2

orders of magnitude lower than measured for GDGTs.

CONCLUSIONS

In the present study, we gave first insights into the diver-

sity of microbial communities present in sulfide structures

of active and inactive vents from the newly discovered

Loki’s Castle black smoker field at the Arctic Mid-Ocean

Ridge. Evidence for both archaea and bacteria was pro-

vided by a combination of lipid biomarker and 16S rRNA

gene-based techniques. The specific lipid distribution

observed in samples derived from different parts of the

active and inactive chimneys indicate the presence of

diverse consortia of (hyper)thermophilic Euryarchaeota and

Crenarchaeota within the warmer interior zones, while bac-

terial lipids were only a minor constituent. Our study par-

ticularly showed that H-GDGTs, which have to date not

been reported from archaea under environmental condi-

tions, were abundant in all samples. With additional 16S

rRNA gene data available, these compounds could also be

linked with their potential source organisms which may be

(hyper)thermophilic members of the Thermococcaceae.

Based on biomarker lipid and 16S rRNA gene analyses, we

conclude that sulfur reduction by (hyper)thermophilic

archaea and bacteria as well as archaeal methanogenesis are

the most likely metabolic activities within the interior

zones of the black smoker chimney walls at Loki’s Castle.

Bacterial sulfur oxidation and sulfate reduction as well as

ammonia oxidation are favorable metabolisms in the exte-

rior zones of the chimney walls.
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