
Università di Pisa

Dipartimento di Informatica

Technical Report

Krylov subspace methods for
solving linear systems

G. M. Del Corso O. Menchi F. Romani

LICENSE: Creative Commons: Attribution-Noncommercial - No Derivative Works

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UnipiEprints

https://core.ac.uk/display/42902781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Krylov subspace methods for solving linear systems

G. M. Del Corso O. Menchi F. Romani

1 Introduction

With respect to the influence on the development and practice of science and engineering in the
20th century, Krylov subspace methods are considered as one of the most important classes of
numerical methods [9].

Given a nonsingular matrix A ∈ RN×N and a vector b ∈ RN , consider the system

Ax = b (1)

and denote by x∗ the solution. When N is large and A does not enjoy particular structure
properties, iterative methods are required to solve (1). Most iterative methods start from an
initial guess x0 and compute a sequence xn which approximates x∗ moving in an affine subspace
x0 +K ⊂ RN .

To identify suitable subspaces K, standard approaches can be followed. Denoting by rn =
b − Axn the residual vector at the nth iteration step, we can impose orthogonality conditions
on rn or minimize some norm of rn. In any case, we are interested in procedures that allow the
construction of K exploiting only simple operations such as matrix-by-vector products. Using
this kind of operations we can construct Krylov subspaces, an ideal setting where to develop
iterative methods. Actually, the iterative methods that are today applied for solving large-scale
linear systems are mostly Krylov subspace solvers. Classical iterative methods that do not belong
to this class, like the successive overrelaxation (SOR) method, are no longer competitive.

The idea of Krylov subspaces iteration was established around the early 1950 by C. Lanczos
and W. Arnoldi. Lanczos method, originally applied to the computation of eigenvalues, was
based on two mutually orthogonal sequences of vectors and a three-term recurrence. In 1952 M.
Hestenes and E. Stiefel gave their classical description of the conjugate gradient method (CG),
presented as a direct method, rather than an iterative method. The method was related to
the Lanczos method, but reduced the two mutually orthogonal sequences to just one and the
three-term recurrence to a couple of two-term recurrences. At first the CG did not receive much
attention because of its intrinsic instability, but in 1971 J. Reid pointed out its effectiveness as an
iterative method for symmetric positive definite systems. Since then, a considerable part of the
research in numerical linear algebra has been devoted to generalizations of CG to nonsymmetric
or indefinite systems.

The assumption we have made on the nonsingularity of A greatly simplifies the problem since
if A is singular, Krylov subspaces methods can fail. Even if a solution x∗ of (1) exists, it may
not belong to a Krylov subspace.

2 Krylov subspaces

Alexei Krylov was a Russian mathematician who published a paper on the subject in 1931 [20].
The basis for its subspaces can be found in the Cayley-Hamilton theorem, which says that the
inverse of a matrix A is expressed in terms of a linear combination of powers of A. The Krylov
subspace methods share the feature that the matrix A needs only be known as an operator (for
example through a subroutine) which gives the matrix-by-vector product Av for any N -vector
v.

1

Given a vector v ∈ RN and an integer n ≤ N , a Krylov subspace is

Kn = Kn
(
A,v

)
= span

(
v, Av, A2 v, . . . , An−1 v

)
,

i.e. Kn is the subspace of all the vectors z of RN which can be written in the form

z = π(A)v, with π ∈ Pn−1,

where Pj is the set of all the polynomials of degree ≤ j.

Clearly, K1 ⊆ K2 ⊆ K3 . . ., and the dimension increases at most by one in each step. It is
evident that the dimension cannot exceed N , but it can be much smaller. In fact, it is bounded
by the degree of v with respect to A, i. e. the minimal degree ν of the polynomial π such that
π(A)v = 0. Kν is invariant and cannot be further enlarged, hence

dimKn
(
A,v

)
= min(n, ν).

The main question is: why a Krylov subspace is a suitable space where to look for an approx-
imate solution of system (1)? The answer is that the solution of a linear system has a natural
representation as a member of a Krylov subspace, and if the dimension of this space is small, the
solution can be found exactly (or well approximated) in a few iterations.

It is not easy to give a formal definition of Krylov space solvers that covers all relevant cases
[16]: a (standard) Krylov subspace solver is an iterative method which starts from an initial
approximation x0 and the corresponding residual r0 = b − Ax0 and generates iterates xn such
that

xn − x0 = πn−1(A) r0, i.e. xn ∈ x0 +Kn(A, r0), (2)

with πn−1 ∈ Pn−1, for all, or at least most n, until it possibly finds the exact solution of the
system. For some n, xn may not exist or πn−1 may have lower degree. The residuals rn = b−Axn
of a Krylov space solver satisfy

rn − r0 = ξn(A) r0 ∈ AKn(A, r0) ∈ Kn+1(A, r0),

where ξn ∈ Pn is related to polynomial πn−1 by

ξn(z) = 1− z πn−1(z), with ξn(0) = 1.

The vague expression “for all, or at least most n” used in the definition, is needed because in
some widely used Krylov space solvers (e.g. BiCG) there may exist exceptional situations, where
for some n the iterate xn and the residual rn are not defined. There are also nonstandard Krylov
subspace methods where the space for xn − x0 is still a Krylov space but one that differs from
Kn(A, r0).

3 The symmetric positive definite (SPD) case

Hence the idea behind Krylov subspace solvers is to generate sequences of approximate solutions
xn in a Krylov subspace converging to x∗. Here, convergence may also mean that after n steps
xn = x∗ and the process stops (finite termination). This is in particular true (in exact arithmetic)
if the method ensures that the corresponding residuals are linearly independent.

All this holds in theory, but a first difficulty arises in practice: the vectors Aj v, j = 1, 2, . . .,
usually become almost linear dependent in a few steps, hence methods relying on Krylov sub-
spaces must involve some orthogonalization scheme to construct bases for the space. One such
method, frequently applied, is the Arnoldi orthogonalization algorithm, which implements a
Gram-Schmidt technique. This algorithm is suitable for general matrices, but here we describe
it in the Lanczos version for symmetric matrices.

2

3.1 The Lanczos algorithm

Starting from a vector v such that ‖v‖2 = 1, the algorithm constructs an orthonormal basis for
Kn
(
A,v

)
with n ≤ N .

Lanczos algorithm

w0 = 0
w1 = v
δ1 = 0
for j = 1, . . . , n

h = Awj − δj wj−1

γj = hTwj

k = h− γj wj

δj+1 = ‖k‖2
wj+1 = k/δj+1

end

In floating point arithmetic Lanczos algorithm can be unstable because cancellation errors may
occur. In this case the orthogonality is lost. Stabilizing techniques like restarting, are suggested
or more stable algorithms, for example Householder algorithm, can be taken into consideration.

The stopping control δj+1 6= 0 must be added. If the condition δj+1 = 0 occurs for j < n,
it means that v has degree j, hence Kj is invariant (this occurrence is called lucky breakdown).
Otherwise in exact arithmetic an orthonormal basis Wn of Kn is obtained, with

Wn =
[
w1, . . . ,wn

]
∈ RN×n, (hence WT

nWn = I).

Basically, Lanczos algorithm implements the three term recurrent relation

δj+1wj+1 = Awj − γjwj − δjwj−1,

which can be written in the form

AWn = Wn Tn + δn+1wn+1e
T
n , (3)

where Tn is the symmetric tridiagonal matrix

Tn =

γ1 δ2

δ2 γ2
. . .

. . .
. . . δn
δn γn

 . (4)

Because of the orthogonality of the vectors wj we have

WT
n AWn = Tn. (5)

The eigenvalues θ
(n)
1 , . . . , θ

(n)
n of Tn (called Ritz values of A) play an important role in the

study of the convergence of Krylov subspace methods. Using (5) it can be shown that when n

increases the eigenvalues θ
(n)
j approximate eigenvalues of A, starting from the largest ones, and

the corresponding eigenvectors t1, . . . , tn of Tn approximate eigenvectors Wnt1, . . . ,Wntn of A.

The characteristic polynomial of Tn

πn(λ) = det(λIn − Tn) =

n∏
j=1

(λ− θ(n)
j) (6)

3

can be computed recursively using the following three term recursion

πj(λ) = (λ− γj)πj−1(λ)− δ2
jπj−2(λ), π0(λ) = 1, π1(λ) = λ− γ1. (7)

The following property holds: if δj 6= 0 for j ≤ n+1, all the nonzero vectors of Kn+1(A,v) which
are orthogonal to Kn(A,v) can be written as απn(A)v for some α 6= 0.

3.2 Projections

Denote by < · , · >A the A-inner product in RN and by ‖ · ‖A the corresponding induced A-
norm. Let Kn = Kn(A,v) be the Krylov subspace generated by a given vector v ∈ RN and
denote by Wn an orthonormal basis of Kn. The matrix

PA = Wn(WT
n AWn)−1WT

n A

is the A-orthogonal projector onto Kn (in fact, P 2
A = PA). For any y ∈ RN , the vector PAy is

the point of Kn which realizes the minimum A-distance from y, i.e.

‖y − PAy‖A = min
z ∈ Kn

‖y − z‖A.

Let y = x∗ − x0, then the vector

PAy = Wn(WT
n AWn)−1WT

n A(x∗ − x0) = Wn(WT
n AWn)−1WT

n r0 (8)

minimizes the problem

min
x ∈ x0 +Kn

φ(x), where φ(x) = 1
2 ‖x

∗ − x‖2A. (9)

This minimizer is assumed as the nth iterate of an orthogonal projection method, by setting
xn − x0 = PA

(
x∗ − x0

)
. Using (8) we express xn − x0 in terms of the basis Wn as

xn − x0 = Wncn, where cn = (WT
n AWn)−1WT

n r0. (10)

We consider now the special Krylov subspace Kn = Kn(A, r0), whose orthonormal basis Wn can
be constructed by applying Lanczos algorithm with v = r0/‖r0‖2. The orthogonal projection
method whose nth iterate xn minimizes φ(x) onto the affine space x0 +Kn

(
A, r0

)
, i.e.

‖x∗ − xn‖A = min
x ∈ Kn

‖x∗ − x0 − x‖A,

is our Krylov subspace method [27]. Denoting by εn = x∗ − xn the nth error, we have

‖εn‖A = min
π ∈ Pn−1

‖ε0 − π(A) r0‖A = min
π ∈ Pn−1

‖ε0 −Aπ(A) ε0‖A

= min
ξ ∈ Pn, ξ(0) = 1

‖ξ(A) ε0‖A.
(11)

The matrix PA does not have to be formed explicitly, since it is available as a by-product of the
algorithm.

Comparing (10) and (5) we get

xn − x0 = cn, where cn = T−1
n WT

n r0. (12)

The columns of Wn are orthonormal, then

WT
n r0 = WT

n ‖r0‖2v = ‖r0‖2 e1,

and
WnTncn = WnW

T
n r0 = ‖r0‖2Wn e1 = ‖r0‖2 v = r0. (13)

4

From (10) and (3) we get

rn − r0 = A (x0 − xn) = −AWncn = −Wn Tncn − δn+1e
T
ncnwn+1.

Using (13) we get
rn = −δn+1 e

T
n cnwn+1, (14)

showing that the residuals rn are multiple of the wn+1, hence they are orthogonal.

The matrix Tn in (4) is SPD. By the Choleski factorization we can write Tn = LnL
T
n , where

Ln is a lower bidiagonal matrix. Denote by s1, . . . , sn the columns of the matrix Sn = WnL
−T
n .

Since
STnASn = L−1

n WT
n AWnL

−T
n = L−1

n TnL
−T
n = I,

the vectors sj are A-conjugate and Sn results an A-conjugate basis for Kn.

Due to the structure of L−Tn , the vector sn is given by a linear combination of wn and sn−1.
From (12) we get

xn − x0 = Sn zn, where zn = L−1
n ‖r0‖2 e1,

and analogously
xn−1 − x0 = Sn−1 zn−1.

It is easy to verify that

zn =

[
zn−1

ζn

]
for a suitable ζn. Hence the following recursion holds

xn = xn−1 + ζn sn. (15)

3.3 Conjugate gradient algorithm (CG)

The conjugate gradient (CG) is due to Hestenes and Stiefel [19]. It is applied to symmetric
positive definite (SPD) matrices, and is still the method of choice for this case.

Relation (15), appropriately rewritten, gives the basis for CG. For n ≥ 1 let pn be a multiple
of sn+1. Then pn+1 is given by a combination of pn and wn+1, which by (14) is a multiple of
rn. Then we set

pn+1 = rn+1 + βnpn, (16)

for suitable scalars βn. The vector pn is called the search direction. From (15) we can express

xn+1 = xn + αn pn, (17)

for suitable scalars αn. The corresponding residuals must satisfy

rn+1 = rn − αnApn. (18)

Requiring that rn+1 be orthogonal to rn and pn+1 be A-conjugate to pn we get

αn =
< rn, rn >

< Apn, rn >
, (19)

and

βn = − < rn+1, Apn >

< pn, Apn >
. (20)

It is easy to prove by induction that

< ri, rn >= 0, < pi,pn >A= 0, for i 6= n,

5

(i.e. all the residuals are orthogonal and all the vectors pn are A-conjugate) and

< pi, rn >=

{
0 for i ≤ n− 1,

‖ri‖22 for i ≥ n.
(21)

Moreover
< Apn, rn >=< Apn,pn − βn−1pn−1 >=< Apn,pn >,

giving the following alternative forms for αn

αn =
< pn, rn >

< Apn,pn >
.

Hence αn satisfies the minimum problem

φ(xn+1) = φ(xn + αn pn) = min
α

φ(xn + αpn)

on the space x0 +Kn(A, r0), where φ is the function defined in (9). It follows that the sequence

φ(xn) = 1
2 ‖x

∗ − xn‖2A = 1
2

(
x∗ − xn

)T
rn, n = 0, 1, . . .

is nonincreasing. An alternative form for βn can be obtained by noticing that

< rn+1, rn+1 >=< rn+1, rn − αnApn >= −αn < rn+1, Apn >

= − < rn, rn >

< Apn,pn >
< rn+1, Apn >= βn < rn, rn >,

hence

βn =
< rn+1, rn+1 >

< rn, rn >
.

CG algorithm

x0 a starting vector. Often x0 = 0
r0 = b−Ax0

p0 = r0

for n = 0, 1, . . . until convergence
αn = ‖rn‖22/

(
rTnApn

)
xn+1 = xn + αn pn
rn+1 = rn − αnApn
βn = ‖rn+1‖22/‖rn‖22
pn+1 = rn+1 + βnpn

end (a control on rTnApn 6= 0 must be provided).

In this code, the residual rn is computed according to recursion (18), but this formula is more
prone to instability than the definition rn = b−Axn. If (18) is used to keep low the computational
cost per iteration, a control on the orthogonality of the residuals should be performed now and
then.

A three term recurrence for rn is easily obtained:

rn+1 = rn − αnApn = (I − αnA)rn − αn βn−1Apn−1

=
(
τnI − αnA

)
rn + (1− τn)rn−1,

(22)

where

τ0 = 1, τn = 1 +
αnβn−1

αn−1
for n ≥ 1.

6

An analogous recurrence holds for xn.

The coefficients γj and δj of the Lanczos algorithm can be easily derived from the coefficients
αj and βj of CG. In fact, exploiting the facts that the columns wj of Wn are normalized and the
vectors pj are A-conjugate, it is possible to show that

γ1 =
1

α0
, γj+1 =

1

αj
+

βj−1

αj−1
, δj+1 =

√
βj−1

αj−1
, for j ≥ 1.

Using formulas (16) – (21) we get

xj − x0 =

j−1∑
i=0

αipi = 2

j−1∑
k=0

φ(xk)− φ(xj)

‖rk‖22
rk.

In particular, if x0 = 0

‖xj‖22 = 2

j−1∑
k=0

(
φ(xk)− φ(xj)

)2
‖rk‖22

.

Since φ(xk) ≥ φ(xj) for k < j and φ(xj) decreases with j, the terms in the sum increase with j.
It follows that ‖xj‖2 increases monotonically with j.

In exact arithmetic, from the orthogonality of the residuals it follows that rn = 0 for an index
n ≤ N , i.e. CG is finite. In floating point arithmetic this is hardly true, so CG is applied as an
iterative method, whose convergence is worth studying.

Since CG is an orthogonal projection method on the Krylov subspace Kn(A, r0), by (11) the
nth iterate verifies

‖εn‖2A = ‖x∗ − xn‖2A = min ‖ξ(A)ε0‖2A, (23)

on the polynomials ξ of degree ≤ n such that ξ(0) = 1. Let λi, i = 1, . . . , N , be the eigenvalues
of A and ui the corresponding normalized eigenvectors. We can express ε0 in terms of this basis
in the form

ε0 =
∑
i∈I

τi ui, (24)

where I is a suitable subset of {1, . . . , N}, then

‖ε0‖2A =
∑
i∈I

λiτ
2
i

and
‖ξ(A)ε0‖2A = ‖

∑
i∈I

ξ(λi)τi ui‖2A =
∑
i∈I

λiξ
2(λi) τ

2
i ≤ max

i∈I
ξ2(λi) ‖ε0‖2A.

This bound involves only the eigenvectors that effectively appear in expression (24) of ε0. Actu-
ally, in floating point arithmetic the eigenvalues which do not appear in (24) may be reintroduced
by the accumulation of the round-off errors. Hence we will consider the set Λ of the eigenvalues
of the whole matrix A, hence

max
i∈I

ξ2(λi) ≤ max
λ∈Λ

ξ2(λ). (25)

From (25) it follows that

‖εn‖A = ‖x∗ − xn‖A = min
ξ∈Pn

max
λ∈Λ
|ξ(λ)| ‖ε0‖A. (26)

Using the fact that the minimax polynomial of degree n which solves (26) is a shifted and scaled
Chebyshev polynomial of the first kind, we obtain the bound

‖εn‖A ≤ 2

(√
κ− 1√
κ+ 1

)n
‖ε0‖A, (27)

7

where κ = λmax/λmin is the condition number of A.

In some situations it has been observed that during the iteration the rate of convergence tends
to increase, giving an almost superlinear convergence. This property follows from the convergence
of the Ritz values of A.

If N is large and A is ill-conditioned, the number of iterations necessary to achieve an accept-
able approximation may be very large. If this is the case, one has to resort to preconditioning,
that is to apply some modification to the original system to get an easier problem. Here “easier”
means that the looked for solution can be approximated with a lower computational effort. In
this paper we will not insist on this issue.

4 The nonsymmetric case

Thanks to the success of CG in the SPD case, much effort has been devoted to its generalizations
to the nonSPD case. A straightforward extension is to apply CG to one of the SPD systems

ATAx = AT b. (28)

and
AATy = b, x = ATy. (29)

The system in (28) is referred as normal equations and the corresponding method is called CGNR.
The second approach leads to a method called CGNE. The convergence rate of both algorithms
is generally unsatisfactory when A is ill-conditioned.

4.1 The CGNR algorithm

When applying CG to the normal equations (28) it is possible to avoid the explicit construction
of the matrix ATA using auxiliary vectors zj = Apj and qj = ATrj and noticing that

< ATApj ,pj >=< Apj , Apj >=< zj , zj > .

The following algorithm computes the residual qj = AT (b−Axj) relative to system (28) instead
of the residual rj = b − Axj relative to system (1). It does not compute explicitly rj , which if
required, must be computed directly.

The projection is performed onto the Krylov subspace Kn = Kn(ATA, q0) = Kn(ATA,ATr0).

CGNR algorithm

x0 a starting vector
q0 = AT

(
b−Ax0

)
p0 = q0

for j = 0, 1, . . . until convergence
zj = Apj

αj = ‖qj‖22/‖zj‖22
xj+1 = xj + αj pj

qj+1 = qj − αj AT zj
βj = ‖qj+1‖22/‖qj‖22
pj+1 = qj+1 + βjpj

end

8

Rewriting the properties of CG seen in Section 3.3 with the matrix A replaced by ATA, we
see that the vectors qj are orthogonal, the vectors pj are ATA-conjugate, hence also the vectors
zj are orthogonal. At each step the difference xj − x0 minimizes the function

φ(x) = 1
2 |x
∗ − x‖2ATA = 1

2 ‖A(x∗ − x)‖22 = 1
2 ‖b−Ax‖

2
2.

Hence xj − x0 is the point which realizes the minimal norm of the residual rj in Kj , giving
a nonincreasing sequence of ‖rj‖2, j = 0, 1, . . . Moreover, as in the case of an SPD matrix, if
x0 = 0, the norms ‖xj‖2 increase monotonically with j.

For the convergence of CGNR, (27) now becomes

‖εn‖ATA = ‖rn‖2 ≤ 2

(√
κ− 1√
κ+ 1

)n
‖r0‖2, where κ =

σ2
1

σ2
n

,

the σj being the singular values of A. If A is ill-conditioned, the system of the normal equations
is much worse conditioned, since κ for ATA is the square of κ for A.

A reorganization of CG similar to the one used to get CGNR leads to CGNE. The method
works in the affine space x0 +ATKn(AAT , r0), but

ATKn(AAT , r0) = Kn(ATA,ATr0),

hence the two methods essentially work in the same space. The difference is that CGNR achieves
optimality for the residuals, while CGNE achieves optimality for the errors.

4.2 Other CG-type algorithms

Due to the unsatisfactory convergence behavior of CGNR (and of CGNE for the same reason)
when A is ill-conditioned, other CG-type algorithms have been proposed, with better convergence
properties.

An extension of CG to the non SPD case should maintain at least one of its feature, either
minimize the error function Φ(x) on the Krylov subspace, or satisfy some orthogonal condition
on the residuals. These two features, which in the SPD case are satisfied in the same time, in the
general case are not and must be addressed separately [14]. Hence there are two different ways
to generalize CG :
• Maintain the orthogonality of the projection by constructing either orthogonal residuals rn
or ATA-orthogonal search directions. Then, the recursions involve all previously constructed
residuals or search directions and all previously constructed iterates.
• Maintain short recurrence formulas for residuals, direction vectors and iterates. The resulting
methods are at best oblique projection methods. There is no minimality property of error or
residuals vectors.

Since Krylov subspace methods for solving nonsymmetric linear systems represent an active
field of research, new methods are continuously proposed. We give here a brief description of
the most popular ones, taken from [1]. The common denominator of all these methods is to
provide acceptable solutions in a number of iterations much less than the order of A. Naturally
this number may vary much if preconditioning is applied. The different algorithms we consider
require different preconditioners to become effective, so we will not go deeper into this subject.

4.2.1 Minimal Residual (MINRES) and Symmetric LQ (SYMMLQ)

The MINRES and SYMMLQ methods are variants of the Lanczos method suitable to symmetric
indefinite systems. Since they avoid the factorization of the tridiagonal matrix, they do not
suffer from breakdowns. MINRES minimizes the residual in the 2-norm. SYMMLQ solves the
projected system, but does not minimize anything (it keeps the residual orthogonal to all previous
ones).

9

When A is symmetric but not positive definite, we can still construct an orthogonal basis for
the Krylov subspace by a three term recurrence relation of the form

Arj = rj+1tj+1,j + rjtj,j + rj−1tj−1,j ,

or, in the matrix form, ARn = Rn+1Tn, where Tn is an (n + 1) × n tridiagonal matrix. In this
case < · , · >A no longer defines an inner product. However we can still try to minimize the
residual in the 2-norm by obtaining

xn ∈ Kn(A, r0), with xn = Rn y,

that minimizes
‖Axn − b‖2 = ‖ARn y − b‖2 = ‖Rn+1Tn y − b‖2.

Now we exploit the fact that if Dn+1 =diag(‖r0‖2, . . . , ‖rn‖2), then Rn+1D
−1
n+1 is an orthonormal

transformation with respect to the current Krylov subspace, and

‖Axn − b‖2 = ‖Dn+1Tn y − ‖r0‖2e1‖2.

This final expression can simply be seen as a minimum norm least squares problem. By applying
Givens rotations we obtain an upper bidiagonal system that can simply be solved.

Another possibility is to solve the system Tny = ‖r0‖2e1, as in the CG method (Tn is the
upper n× n part of Tn), but here we cannot rely on the existence of a Cholesky decomposition
(since A is not SPD). Then we apply an LQ-decomposition. This again leads to simple recurrences
and the resulting method is known as SYMMLQ.

4.2.2 The Generalized Minimal Residual (GMRES) method

The Generalized Minimal Residual method is an extension of MINRES (which is only applica-
ble to symmetric systems) to unsymmetric systems. Like MINRES, it generates a sequence of
orthogonal vectors, but in the absence of symmetry this can no longer be done with short recur-
rences; instead, all previously computed vectors in the orthogonal sequence have to be retained.
For this reason, typically restarted versions of the method are used.

While in CG an orthogonal basis for span, (r0, Ar0, A
2r0, . . .) is formed by the residuals, in

GMRES the basis is formed explicitly by applying Gram-Schmidt orthogonalization

wn = Avn
for j = 1, . . . , n
wn = wn − (wn,vj)vj
end

vn+1 = wn/‖wn‖2

Applied to the Krylov sequence, this orthogonalization is called Arnoldi method. The inner
product coefficients (wn,vj) and ‖wn‖2 are stored in an upper Hessenberg matrix. The GMRES
iterates are constructed as

xn = x0 + y1v1 + . . .+ ynvn,

where the coefficients have been chosen to minimize the residual norm ‖b−Axn‖2. The GMRES
algorithm has the property that this residual norm can be computed without the iterate having
been formed. Thus, the expensive action of forming the iterate is not required until the residual
norm becomes small enough.

The storage requirements are controlled by restarts. If no restart is performed, GMRES (like
any orthogonalizing Krylov subspace method) converges in no more than N steps (assuming
exact arithmetic). Of course this is of no practical value when N is large; moreover, the storage
and computational requirements in the absence of restarts are prohibitive. Indeed, the crucial
element for successful application of GMRES revolves around the decision of when to restart.

10

Unfortunately, there exist examples for which the method stagnates and convergence takes place
only at the Nth step.

Several suggestions have been made to reduce the increase in memory and computational
costs in GMRES. Besides the obvious one of restarting, other approaches include restricting the
GMRES search to suitable subspaces of some higher-dimensional Krylov subspace. Methods
based on this idea can be viewed as preconditioned GMRES methods. All these approaches have
advantages for some problems, but it is not clear a priori which strategy is preferable in any
given case.

4.2.3 The Biconjugate Gradient (BiCG) method

BiCG goes back to Lanczos [21], but was brought to its current, CG-like form later. CG is not
suitable for nonsymmetric systems because the residual vectors cannot be made orthogonal with
short recurrences. While GMRES retains orthogonality of the residuals by using long recurrences
with a large storage demand, BiCG replaces the orthogonal sequence of residuals by two mutually
orthogonal sequences with no minimization.

Together with the orthogonal residuals rn ∈ Kn+1(A, r0) of CG, BiCG constructs a second
set of residuals r̂n ∈ Kn+1(AT , r̂0), where the initial residual r̂0 can be chosen freely. So, BiCG
requires two matrix-by-vector products by A and by AT , but there are still short recurrences
for xn, rn, and r̂n. The residuals rn and r̂n form biorthogonal bases for Kn+1(A, r0) and
Kn+1(AT , r̂0), i.e. rTi r̂j = 0 if i 6= j. The corresponding directions vn and v̂n form biconjugate
bases for Kn+1(A, r0) and Kn+1(AT , r̂0), i.e. vTi Av̂j = 0 if i 6= j.

Few theoretical results are known about the convergence of BiCG. For symmetric positive
definite systems the method would give the same results as CG at twice the cost per iteration.
For nonsymmetric matrices it has been shown that in the phases of the process where there is
a significant reduction of the norm of the residual, BiCG is comparable to GMRES (in terms of
numbers of iterations). In practice this is often confirmed. The convergence behavior may be
quite irregular, and the method may even break down. Look-ahead strategies can be applied to
cope with such situations. Breakdowns can be satisfactorily avoided by restarts. Recent work has
focused on avoiding breakdown, on avoiding the use of the transpose and on getting a smoother
convergence.

It is difficult to make a fair comparison between GMRES and BiCG. While GMRES minimizes
a residual at the cost of increasing work for keeping all the residuals orthogonal and increasing
demands for memory space, BiCG does not minimize a residual, but often its accuracy is compa-
rable to GMRES, at the cost of twice the amount of matrix-by-vector products per iteration step.
However, the generation of the basis vectors is relatively cheap and the memory requirements are
modest. The following variants CGS and Bi-CGSTAB of BiCG have been proposed to increase
the effectiveness in certain circumstances.

4.2.4 The Conjugate Gradient Squared (CGS) method

CGS, proposed by Sonneveld [28], replaces the multiplication with AT in BiCG by a second
one with A. At each iteration step the dimension of the Krylov subspace is increased by two.
Convergence is nearly twice as fast as for BiCG, but even more erratic. In circumstances where
the computation with AT is impractical, CGS may be attractive.

4.2.5 BiConjugate Gradient Stabilized method (Bi-CGSTAB) method

Bi-CGSTAB was developed by Van der Vorst [29] to avoid the often irregular convergence of
CGS, by combining the CGS sequence with a steepest descent update, performing some local
optimization and smoothing. Bi-CGSTAB often converges about as fast as CGS, sometimes
faster and sometimes not. On the other hand, sometimes the Krylov subspace is not expanded
and the method breaks down.

11

CGS and Bi-CGSTAB are often the most efficient solvers. They have short recurrences, they
are typically about twice as fast as BiCG , and they do not require AT . Unlike in GMRES, the
memory needed does not increase with the iterations.

4.2.6 The Quasi-Minimal Residual (QMR) method

BiCG often displays rather irregular convergence behavior and breakdown due to the implicit de-
composition of the reduced tridiagonal system. To overcome these problems, the Quasi-Minimal
Residual method have been proposed by Freund and Nachtigal [13]. The main idea behind this
algorithm is to solve the reduced tridiagonal system in a least squares sense, similar to the ap-
proach followed by GMRES. Since the constructed basis for the Krylov subspace is bi-orthogonal,
rather than orthogonal as in GMRES, the obtained solution is viewed as a quasi-minimal residual
solution, which explains the name. Look-ahead techniques to avoid breakdowns in the underlying
Lanczos process, which makes QMR more robust than BiCG. The convergence behavior of QMR
is much smoother than for BiCG. QMR is expected to converge about as fast as GMRES. When
BiCG would make significant progress, QMR arrives at about the same approximation and when
BiCG would make no progress at all, QMR still shows slow convergence.

In addition to Bi-CGSTAB, other recent methods have been designed to smooth the conver-
gence of CGS. One idea is to use the quasi-minimal residual (QMR) principle to obtain smoothed
iterates from the Krylov subspace generated by other product methods. Such a QMR version
of CGS, called TFQMR has been proposed. Numerical experiments show that TFQMR in most
cases retains the desirable convergence features of CGS while correcting its erratic behavior.
The transpose free nature of TFQMR, its low computational cost and its smooth convergence
behavior make it an attractive alternative to CGS.

4.2.7 General remarks

In [1] the storage requirements for the previously described methods are listed, together with their
characteristics. In general, the convergence properties of these methods are not well understood.
This is particularly true for the transpose-free methods, that have more numerical problems than
the corresponding methods which use AT .

Going into details, with GMRES restarts are necessary, resulting in a slower convergence.
Then GMRES and related algorithms requires a very effective preconditioner, which in turn
might be expensive. On the contrary, the Lanczos-based methods require little work and storage
per step, so that the importance of the preconditioners has decreased. But Lanczos scheme in
the nonsymmetric case may suffer breakdowns. Hence an algorithm relying on it requires some
special look-ahead techniques, to prevent breakdowns.

At the present time we must conclude that there is no clear best overall Krylov subspace
method. Each method is a winner in a specific problem class, and the main problem is to
identify these classes and to construct new methods for uncovered classes. Among the methods
outlined above, there is a class of problems for which a given method is the winner and another
one is the loser. Moreover, iterative methods will never reach the robustness of direct methods,
nor will they beat direct methods for all the problems.

5 Applications: the regularization

When system (1) represents a discrete model describing an underlying continuous phenomenon,
the right-hand side b may be contaminated by some kind of noise η, frequently to due to mea-
surement errors and to the discretization process, i.e.

b = b∗ + η.

The vectors b∗ and x∗ such that Ax∗ = b∗ are considered the exact right-hand side and the
exact solution of the system. If the matrix A is ill-conditioned, the solution x̃ = A−1b may be a

12

poor approximation of the solution x∗, even if the magnitude of η is small, and the problem of
finding a good approximation of x∗ turns out to be a discrete ill-posed problem [18].

To explain of the difficulty of the problem, we express x̃ through the singular value decom-
position (SVD) of A. Let A = UΣV T be the SVD of A, where U = [u1, . . . ,uN] ∈ RN×N

and V = [v1, . . . ,vN] ∈ RN×N have orthonormal columns, i.e. UTU = V TV = I, and
Σ = diag(σ1, . . . , σN), where σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0 are the singular values of A. We
have assumed that σN > 0. As i increases, in the problems we are handling the σi gradually
decay to zero and settle to values of the same magnitude of the machine precision. Hence the
condition number of A, given by κ = σ1/σN is very large. At the same time the ui, vi become
more and more oscillatory, i.e. tend to have more sign changes in their elements. From

A =

N∑
i=1

σiui v
T
i and A−1 =

N∑
i=1

1

σi
vi u

T
i ,

we get the expansion of x̃ in the basis V

x̃ = A−1b = V Σ−1UT b =

N∑
i=1

x̃i vi, where x̃i =
uTi b

σi
. (30)

Because of the increasing sign changes, the vectors vi are associated to frequencies which increase
with i. The coefficient x̃i measures the contribution of vi to x̃, i.e. the amount of information
of the ith frequency. Generally the low-frequency components describe the overall features of x̃
and the high-frequency ones represent its details. Let

η =

n∑
i=1

ηi ui

be the expansion of η in the basis U . Then

x∗ = A−1b∗ =

N∑
i=1

x∗i vi, where x∗i =
uTi b

∗

σi
,

and

x̃ = x∗ +A−1η = x∗ +

N∑
i=1

1

σi
viu

T
i

N∑
j=1

ηjuj = x∗ +

N∑
i=1

ηi
σi
vi

=
N∑
i=1

x̃i vi, where x̃i = x∗i +
ηi
σi
.

(31)

The coefficients ηi are typically of the same order for all i. We assume that they are unbiased and
uncorrelated with zero mean and variance σ2. If A has singular values σi much smaller than the
magnitude of η, the quantities ηi/σi greatly increase with i. It follows that the low-frequency
components of x̃ and x∗ do not differ much, while the high-frequency components of x̃ are
disastrously dominated by the high-frequency components of the noise and x̃ can be affected by
a large error with respect to x∗. Hence the contribution of the high-frequency components of the
noise should be damped. This can be accomplished by using filtering methods which reconstruct
solutions of the form

xreg =

N∑
i=1

ϕi x̃i vi, (32)

where the coefficients ϕi, called filter factors, are close to 1 for small i (say i ≤ τ) and much
smaller than 1 for large i (� τ). This threshold τ depends on the (in general not known)
singular values of A and on the magnitude of the noise (which is assumed to be known in its
general features). The determination of a suitable τ is not an easy task, because a too small τ
results in an oversmoothed reconstruction, where the noise is filtered out together with precious

13

high-frequency components of x∗. On the contrary, a too large τ results in an undersmoothed
reconstruction, where the high-frequency components of the noise contaminate the computed
solution. An acceptable approximation can be obtained only if the quantities |uTi b

∗| decay to
zero with i faster than the corresponding σi (this condition is known as Picard discrete condition),
at least until the numerical levelling of the singular values.

Any iterative method which enjoys the semi-convergence property, i.e. in presence of the noise
it reconstructs first the low-frequency components, can be employed as a regularizing method.
The regularizing properties of CG applied to A in the SPD case or to normal equations in the
non SPD case, are well known [25].

5.1 Regularization with CG

Let r0 be the initial residual and Wn the orthonormal matrix obtained by applying Lanczos
algorithm to vector v = r0/‖r0‖2. The columns of Wn form an orthonormal basis of the Krylov
subspace Kn = Kn(A, r0). The matrix

Tn = WT
n AWn

can be viewed as a representation of A projected onto Kn. We already know that the residual
rn = A(x∗ − xn) is orthogonal to Kn. We have seen in Section 3.1 that rn = απn(A)r0, where
pn(λ) = det(λI −Tn) and α is a scalar 6= 0. From (23) it follows that the polynomial ξ(λ) which
realizes the minimum is equal to πn(λ)/πn(0) where πn(λ) is defined in (7). Then

x∗ − xn = ρn(A)(x∗ − x0), where ρn(λ) =
πn(λ)

πn(0)
=

n∏
j=1

(
1− λ

θ
(n)
j

)
. (33)

From now on, we assume x0 = 0. Then rn = Aρn(A)x∗. From (22) we get the following three
term recurrence for the polynomials ρj(λ)

ρj+1(λ) = (τj − αjλ)ρj(λ) + (1− τj)ρj−1(λ), with ρ−1(λ) = 0, ρ0(λ) = 1, (34)

where

τ0 = 1, τj = 1 +
αjβj−1

αj−1
for j ≥ 1,

(the same recurrence can be obtained from (7). Using (34) we can compute any value of ρn(λ),
without computing explicitly the Ritz values of A.

From (30)

xn = (I − ρn(A))x∗ =

N∑
i=1

uTi b

σi
(I − ρn(A))vi,

and

ρn(A)vi =

n∏
j=1

(
I − A

θ
(n)
j

)
vi =

n∏
j=1

(
I − σi

θ
(n)
j

)
vi.

Hence

xn =

N∑
i=1

ϕ
(n)
i

uTi b

σi
vi, where ϕ

(n)
i = 1−

n∏
j=1

(
1− σi

θ
(n)
j

)
= 1− ρn(σi). (35)

Comparing with (30) we see that these ϕ
(n)
i are the filter factors of CG at the nth iteration.

Thus the computation of the filters factors require the knowledge of the singular values of A.

As the iteration progresses, more Ritz values converge to the singular values of A, hence more
filter factors approach 1. It follows that the rate of convergence of CG greatly depends on the
way the Ritz values evolve with respect to the singular values of A. What can be said is that

the filter factors ϕ
(n)
i corresponding to the largest σi approach 1 first, giving at the beginning

14

the low-frequency components of the solution. Higher-frequency components are reconstructed
afterwards.

CG has in general a good convergence rate and finds quickly an optimal vector xopt which
minimizes the error with respect to x∗. This behavior can be a disadvantage in the regularization
context, because also the high-frequency components enter quickly the computed solution and
the error increases sharply after the optimal number kopt of steps. As a matter of fact, the deter-
mination of kopt is very sensitive to the perturbation of the right-hand side. As a consequence,
the regularizing efficiency of CG depends heavily on the effectiveness of the stopping rule em-
ployed. A popular stopping procedure implements the Generalized Cross Validation rule (GCV),
which has the advantage over other rules, of not requiring information on the noise magnitude.
Its application with CG is analyzed in [11].

5.2 Statistical test of the regularizing behavior

Less attention has been paid, for what concerns regularization, to other Krylov subspace methods,
which on the contrary should be taken into consideration because of the slowness of the CGNR
convergence in presence of severe ill-conditioning. The regularizing properties of GMRES have
been analyzed in [5] from a theoretical point of view. The regularizing properties of BiCG and
QMR methods have been tested in [6] on an experimental basis. In [4] tools have been proposed
for measuring the regularizing efficiency and the consistency with the discrepancy principle, which
is another widely used stopping technique, of different iterative methods of Krylov type.

From a theoretical point of view, the regularizing efficiency of a method should be measured
through some norm of the error between the expected solution and the computed solution. But
in practice this error cannot be exactly monitored and depends on the rule implemented to stop
the iteration. The discrepancy principle is often suggested as a stopping rule, as long as a realistic
estimate of the magnitude of the data noise is available.

In [4] this aspect is analyzed statistically for some commonly used Krylov subspaces methods
applied to test problems of two sets: the first ones arise from the discretization of Fredholm inte-
gral equations of first kind and are taken from the collection [17], the second ones are stochastic
and depend on parameters which control the conditioning of the matrix, the decay of its singular
values and the compliance with the Picard condition, following the suggestions given in [18],
Section 4.7.

CGNR and GMRES, in agreement with known theoretical results, show a good consistency
behavior. The other methods taken into consideration show a lower degree of consistency, per-
forming differently on the two sets of problems. In particular, QMR performs better on the
problems of the first set in agreement with the results of [6], while CGS, BiCG and Bi-CGSTAB
perform better on the problems of the second set. The worst performances of the last three meth-
ods can be attributed both to the behavior of the residual norm, whose monotonical decrease
is not guaranteed, and to the large convergence speed, which does not allow enough iterations
before the noise contaminates the computed solution. If the use of the discrepancy principle im-
plies an overestimation on the number of iterations to be performed, too many iterations would
completely alter the result.

Restricting our attention to CG, the stopping index can be estimated through the minimum of
the GCV function, whose denominator requires the computation of the trace of the CG influence
matrix. GCV has been shown to be very effective when applied to iterative methods whose
influence matrix does not depend on the noise, i.e. when the regularized solution depends linearly
on the right-hand side of the system. However, this is not the case of CG, and some techniques
have been proposed to overcome this drawback. In order to approximate the denominator of the
GCV function, in [11] a method which linearizes the dependence of the regularized solution on
the noise as suggested, approximating the required derivatives by finite differences. Our aim is
to compare the effectiveness of this method with other ones proposed in the literature through
an extensive numerical experimentation both on 1D and on 2D test problems.

15

The effectiveness of GCV as a stopping rule for regularizing CG has been examined also in
[12].

6 Applications: infinite linear systems

We consider here the case that the matrix A and the vector b of (1) have not a finite size but are
finitely expressed and bounded in a normed linear space S. Many different problems are modelled
by infinite systems of linear equations, for examples partial differential problems discretized on
unbounded domains. Typically the matrix A is sparse and we assume that A has at most ω > 0
nonzero elements in each row and in each column. We assume also that the system has a solution
x∗, whose components satisfy lim

i→∞
x∗i = 0 and that ‖x∗‖ is finite.

The standard approach for dealing with the infinite size is the one-shot scheme: a system
Ây = b̂ is solved, where Â is a large-sized leading principal submatrix of A and b̂ is the corre-
sponding right-hand side. The solution ŷ of this system, followed by infinite zeros, is taken as
an approximation of x∗. The large size and the sparseness of the matrix Â suggest the use of
an iterative method to compute ŷ. Let y(i) be the vector computed at the ith iteration. The
stopping criterion usually implemented correlates the residual ‖b̂ − Ây(i)‖ with a tolerance τ ,
which should be estimated a priori. The choice of τ is critical.

To lower the computational cost and to individuate a right value for τ , in [10] an adaptive
strategy has been suggested, exploiting an inner-outer iterative scheme. For the outer iterations,
an increasing sequence nk of integers determines a sequence of truncated systems of sizes nk

Aky = bk, k = 1, 2, . . . , (36)

where Ak is the leading nk × nk principal submatrix of A. We assume that Ak is nonsingular
for any k and approximate the solutions y∗k by an iterative inner method. We assume that the
sequence of the infinite vectors, obtained by completing with zeros y∗k, converges in norm to x∗.

For example, the following hypotheses on A and b guarantee such a convergence and are
always satisfied by the stochastic problems:
(a) A is columnwise diagonally dominant, with positive elements on the diagonal and nonpositive
elements outside,
(b) the right hand-side b and the solution x∗ are nonnegative.

The idea on which this inner-outer scheme relies, is that the first components of x∗, which
are typically the largest ones, should be approximated first, when the cost of the iteration is
lower. At each outer step, the initial vector used for the inner iteration is set to the last value
obtained at the previous iteration. This requires that the used iterative method takes advantage
of a starting point which is closer to the solution. The efficiency of the whole scheme depends
on how much the iterative inner method benefits from a starting point closer to the solution.

In the paper [?] the authors use a Krylov subspace method as the inner method. The use of
Krylov subspace methods is not trivial, since for nonsymmetric systems they frequently show an
irregular convergence behavior. In order to analyze how a Krylov subspace method is influenced
by the closeness of the starting point to the solution, a proximity property is introduced to
answer the question: does a smaller initial ‖r(0)‖ always result in a smaller number of iterations
to achieve a fixed tolerance?

To answer this question, crucial for the effectiveness of the inner-outer scheme, we consider
a linear system Hz = c to be solved by an iterative method which starts with an initial point
z(0) and converges to the solution z∗. Let r(0) = c − Hz(0) be the starting residual. Let m
be the size of H. Let s be a random variable uniformly distributed on Rm with ‖s‖ = 1. The
starting vector has the form z(0) = z∗ + ρ s/‖Hs‖, where ρ is a parameter. Then ‖r(0)‖ = ρ.
Let fλ(z0) be the smallest number i of iterations required to obtain ‖r(i)‖/‖r0‖ ≤ λ, where r(i)

is the residual at the ith iteration. We say that the method enjoys the proximity property for the
system Hz = c if for any λ < 1 the mean value µ

(
fλ(z0)

)
is independent from the parameter ρ.

16

In other words a method enjoys the proximity property if the mean number of iterations
required to achieve a fixed tolerance decreases when ρ decreases. We are interested in inves-
tigating whether a Krylov subspace method enjoys the proximity property. For GMRES and
QMR methods we expect a positive answer, since for a diagonalizable matrix H the relation
‖r(i)‖2 / ‖r(0)‖2 ≤ qi(H) holds, where qi(H) is independent of the norm of r(0), but we cannot
anticipate anything of other methods.

Using a statistical approach, some selected Krylov subspace methods have been applied to
a set of large-sized test problems with different starting points, monitoring the reduction of the
residuals. When the method did not appear to converge or a breakdown occurred (this happened
in 5% of the cases for GMRES and QMR and in 25% of the cases for the other methods) the
observation was discarded. A nonparametric Kruskal-Wallis test confirmed that the considered
methods enjoyed the proximity property, although for BiCG, Bi-CGSTAB and CGS there was
only a limited set of observations accepted for certain problems.

The convergence of the inner iterative method is monitored through the local residual norm

`
(i)
k by the stopping condition

`
(i)
k = ‖bk −Ak y(i)

k ‖ ≤ τk, (37)

where τk is a suitable tolerance. A strictly decreasing sequence τk, chosen without taking into

account the characteristics of the problem, might not guarantee the convergence of y
(i)
k to y∗k.

In fact, a vector y
(i)
k satisfying (37) can differ from y∗k by an error which increases with k, since

‖y∗k−y
(i)
k ‖ ≤ ‖A

−1
k ‖ `

(i)
k . Indeed, when dealing with infinite size problems, a decreasing sequence

of residual norms can be associated with an increasing sequence of errors. To guarantee that
a correct numerical approximation of x∗ can be achieved by controlling the residual norm, the
sequence τk should verify limk→∞ ‖A−1

k ‖τk = 0.

An efficient practical stopping condition can be devised by exploiting the proximity property,
requiring the vector y∗k to minimize in the least squares sense the initial residual norm for the
(k + 1)th step, i. e.

y
(0)
k+1 =

[
y∗k
0

]
= argmin
v∈Rm

∥∥∥∥ bk+1 −Ak+1

[
v
0

] ∥∥∥∥
2

= argmin
v∈Rm

∥∥∥∥[bk −Ak vck −Bk v

]∥∥∥∥
2

,

where ck = b(nk + 1 : nk+1), Bk = A(nk + 1 : nk+1, 1 : nk) and m = nk. In this way y
(0)
k+1 would

be the closest starting point for the (k + 1)th system (36).

Vector y∗k solves the linear system

ATkAkv = ATk bk + η(v), where η(v) = BTk (ck −Bkv).

We can interpret η(v) as a noise vector and solve this system by applying the techniques used
when dealing with ill-posed problems. Thus we approximate y∗k by computing a regularized
solution of the system ATkAkv = ATk bk by means of an iterative method which enjoys the semi-
convergence property and using the so-called discrepancy principle as a stopping criterion, which
suggests that the iteration should be terminated as soon as the residual computed at the ith
iteration satisfies ‖ATk (bk − Akv(i))‖ ∼ ηi, where ηi = ‖η(v(i))‖. Unlike what happens in classi-
cal reconstruction problems, where the norm of the noise remains constant during the iteration,
here the quantity ηi depends on v(i). A practical stopping criterion can be derived by replacing

the vectors v(i) with the y
(i)
k computed at the kth outer step. If ηi is bounded from below, the

iteration should be stopped as soon as ηi levels off and

‖ATk (bk −Aky(i)
k)‖ ≤ ‖η(y

(i)
k)‖.

No look-ahead strategy is implemented in order to avoid the breakdowns due to the fact that
the Krylov subspace cannot be expanded any further. For GMRES, this type of breakdown

17

signals that the exact solution has been found. For the other methods the literature suggests
restarting when this happens. From this point of view the size increase in our outer scheme
allows more flexibility since, whenever a breakdown occurs, an automatic restart is performed by
enlarging the size. For comparative purposes only, CGNR is used to solve systems (36).

Numerical experiments have been performed on a set of 41 nonsymmetric test problems
including differential, artificial and stochastic problems. The experiments aim at validating the
inner-outer scheme. We set nk = 2nk−1, with n1 = 625 and k = 1, . . . , 10. To compare the
performances of the algorithms, we consider the following measures:
dmax, the number of achievable digits of each problem at the largest considered size n10 = 32 ·104

emax, the number of correct digits of the solution computed by each algorithm at the final size.
lp = dmax − emax, the precision loss. A large value for lp indicates that many digits have been
lost. It typically occurs when the convergence is very slow or when too many breakdowns occur.
We assume that lp ≤ 3 is acceptable.
cc, the computational cost, obtained by considering the number of matrix-vector products multi-
plied by the current size (in the table the quantity c = round(10−6cc) is shown).

The results are presented in Table 1, which describes the average behavior of the methods
(varying the problems). Column # gives the number of successes (lp ≤ 3). The corresponding
averaged quantities lpav and cav are computed by considering only the successes.

method # lpav cav

CGNR 24 0.75 1275

GMRES 41 0.20 741

BiCG 20 0.67 77

CGS 23 0.64 61

Bi-CGSTAB 19 0.64 35

QMR 35 0.28 365

Table 1: Average behavior of the methods.

From Table 1, GMRES appears to be the most reliable of the considered methods. It produces
good results (i.e. lpav = 0.20) in most cases. QMR has a comparable lpav, but for a lower number
of items. The other methods give fewer good results and have a greater precision loss. This
poor behavior seems to be due to the irregular convergence of the residuals and to the frequent
occurrences of breakdowns. But, when they produce good results, they have a lower cost. CGNR
does not appear to be competitive.

Anyway, the heuristics adopted as a stopping criterion, which is based on the proximity
property, is effective for all the methods we used. This result is a further demonstration of the
validity of the proximity property for the methods considered.

The behavior of the individual methods highlights that, for the implementations taken into
consideration, only GMRES, and of the biconjugate methods only QMR, seem to be robust
enough to be applied blindly. Of course the other biconjugate methods, for other kinds of
problems and/or implemented with minimal residual smoothing to force a monotonical decrease
of the residual norms and special look-ahead strategies to prevent breakdowns, might give good
results.

7 Applications: the ranking problems

In this section we analyze the performance of some Krylov methods on specific ranking problems
such as the PageRank method and the ranking of heterogeneous networks.

18

7.1 The PageRank computation

Link based ranking techniques view the Web as a directed graph (the Web Graph) G = (V,E),
where each of the N pages is a node and each hyperlink is an arc. The problem of ranking web
pages consists in assigning a rank of importance to every page based only on the link structure of
the Web and not on the actual contents of the page. The intuition behind the PageRank algorithm
is that a page is “important” if it is pointed by other pages which are in turn “important”. This
definition suggests an iterative fixed-point computation for assigning a ranking score to each
page in the Web. Formally, in the original model [23], the computation of the PageRank vector
is equivalent to the computation of zT = zTP , where P is a row stochastic matrix obtained
from the adjacency matrix of the Web graph G. See [22] for a more deep treatment on the
characteristics of the model.

In [7] it is shown how the eigenproblem can be rewritten as a sparse linear system proving
that the PageRank vector z, can be obtained by solving a sparse linear system.

Once the problem is transformed into a sparse linear system we can apply numerous iterative
solvers comparing them with the Power method commonly used for computing PageRank. The
matrix involved is moreover an M -matrix hence the convergence of stationary methods is always
guaranteed. In [7] the most common methods for linear system solution such as Jacobi, Gauss-
Seidel and Reverse Gauss-Seidel and the corresponding block methods are tested. These methods
have been combined with reordering techniques for increasing data-locality, sometime reducing
also the spectral radius of the iteration matrices, and hence increasing the rate of convergence of
these stationary methods. In particular, schemes for reordering the matrix in block triangular
form have been investigated and the performance of classical stationary methods has proven to
be highly improved by reordering techniques also when applying the classical Power method. In
particular, the combination of reordering techniques and iterative (block or scalar) methods for
the solution of linear systems has proved to be very effective leading to a gain up to 90% in time
and to 60% in terms of Mflops.

In [15] the effectiveness of many iterative methods for linear systems on a parallel architecture
have been tested on the PageRank problem, showing also that the convergence is faster than the
simple Power method.

Among the various permutation schemas proposed in [7] a reordering based on sorting the
nodes for increasing outdegree followed by a BFS visit of the web graph has shown to be very
effective for many algorithms. Figure 1 shows the shape obtained rearranging a real web matrix
with 24 million nodes according to this permutations. The web matrix in Figure 1 has a lower

Figure 1: Shape obtained rearranging a Web matrix with 24 million nodes and 100 million links for increasing
outdegree and then with the permutation given by a BFS order of visit.

block triangular structure, hence the computation of the PageRank vector can be computed with
a forward block substitution. The great advantage in having a block triangular structure is that
we can exploit the reducibility of the matrix and use ad hoc methods for different connected

19

components of the matrix. We investigated this idea, using different iterative procedures for
solving the diagonal blocks of the block triangular system. The largest connected component
discovered with the BFS order visit of the web graph, is usually huge and for storage constraints
we believe that stationary methods are more adequate because they need just one or two vectors
for approximating the solution.

The effectiveness of stationary methods is largely discussed in [7] showing that a Reverse
Gauss-Seidel technique can be very effective. However, for the tail of the matrix, which is the
part circled in Figure 1, we test the effectiveness of different Krylov subspaces iteration methods
versus the classical stationary methods such as Jacobi or Gauss-Seidel algorithms. The idea is
that we use faster methods on smaller problems where memory space is no more a crucial resource.
Note that from previous studies [2] it seems that reordering techniques similar to that considered
in this paper can be very effective for improving the convergence of Krylov subspace methods
especially when used in combination with incomplete factorization preconditioning techniques.

The experiments described below aim at comparing the most popular Krylov subspaces meth-
ods against stationary methods on real matrices resulting from a large web crawl. In order to do
that, we consider the tail of the matrix in Figure 1 whose size, once remover the all-zero rows,
is something more than 2 Million pages with more than 5 Millions nonzeros (links). From this
matrix we extract 1120 matrices whose size ranges from 100 to the full size of the tail.

Stationary Krylov Subspace Preconditioned
Methods Methods Methods
POWER GMRES(n) GMRESP(n)
JACOBI BiCG BiCGP
DIRECTGS BiCGStab BiCGStabP
REVERSEGS CGS CGSP

CGNR CGNRP
QMR QMRP

Table 2: List of the stationary and Krylov subspace methods. We considered three restarted
version of GMRES with a restart after 10, 20, 40 iteration respectively.

On these matrices we run the methods listed in Figure 2. We consider also preconditioned
non stationary methods, which will be denoted by adding a “P” at the end of the name of
the method. So, for example, BiCGP stays for preconditioned BiCG method. The use of a
preconditioner usually improves the spectral properties of the problem. However, when using
a preconditioner one has to evaluate the gain in the speed of convergence versus the cost for
constructing it and the increase of the cost of every iteration. We adopt an ILU(0) preconditioner
for the non-stationary methods in Figure 2 instead of more complicate and probably more effective
preconditioning techniques, because this kind of incomplete factorization is guaranteed to exist for
M -matrices and the preconditioner can be efficiently stored. In fact, this incomplete factorization
produces no others nonzero elements beyond the sparsity structure of the original matrix, hence
the preconditioner at works takes exactly as much space to store as the original matrix if the
sparse matrix has been stored using a compressed row storage format [1].

Among Generalized Minimal Residual methods we consider only the restarted GMRES. In
fact, because of the large size of the problem, we consider only those methods whose storage
requirements do not depend on the number of iterations needed to reach convergence. Note that
the convergence is guaranteed for the GMRES(n) methods because of the positive definitiveness of
the matrices involved, but failures may occur in all the other methods considered. As termination
criterion for stationary methods we used a tolerance of 10−7 on the infinity norm of the difference
between two successive iterations. For Krylov methods the same tolerance is tested on the
residuals. In general, this stopping criterion may be excessive in the sense that the real error can
be much lower than the estimated one, or on the contrary may not guarantee to have a computed
solution with 7 digits of precision. In fact, this depends on the particular matrix involved in the
system as well as on the starting vector. In order to better evaluate the effectiveness of these

20

Methods α = 0.5 α = 0.75 α = 0.85 α = 0.95 α = 0.98

POWER 100 100 100 100 100
JACOBI 100 100 100 100 99.7
DIRECTGS 100 100 100 100 99.9
REVERSEGS 100 100 100 100 100
BiCG/BiCGP 42.3/100 10.4/99.5 5.9/98 5.7/87.6 5.6/78
BiCGstab/BiCGstabP 99.1/100 80/100 61.2/100 37.8/100 24.0/100
CGS/CGSP 59.8/100 25.9/100 7.0/99.3 3.1/92.3 2.9/82.1
CGNR/CGNRP 100/100 83.3/99 45.0/96 23.5/65.3 22.5/65.2
QMR/QMRP 97.4/100 93.2/99.9 88.9 /99.5 72.4/94.4 63.6/85.4
GMRES(10)/GMRESP(10) 100/100 100/100 100/100 94.6/100 66.7/100
GMRES(20)/GMRESP(20) 100/100 100/100 100/100 100/100 100/100
GMRES(40)/GMRESP(40) 100/100 100/100 100/100 100 /100 100/100

Table 3: Percentage of success of stationary and nonstationary methods over the 1120 matrices
whose size ranges from 100 up to 2 Million. The use of the ILU(0) preconditioning technique
highly improves the percentage of successes of every method.

methods, the stopping criterion is combined with the control that the infinity norm of the actual
error is lower than 10−6. Hence, a particular trial is considered successful if the actual error is less
than 10−6 even if the termination criteria has not been satisfied. Of course it may happen that
the method terminates since the expected tolerance has been reached while the actual error is
still greater than 10−6; in this case a failure is registered. Hence, we may identify three different
reasons for failure of a method: failure for breakdown, failure because too many iterations have
been performed without meeting the stopping condition or failure because the actual error of the
approximated solution is greater than 10−6 even if the termination conditions were satisfied.

We performed a number of experiments addressing the question of robustness of the iterative
method as well as the cost in terms of Mflops counts. The values reported in the tables in the
following are obtained averaging over all the 1120 matrices extracted from the tail of the matrix
in Figure 1.

A first bunch of experiments has been devoted to study the suitability of the various methods
for this particular kind of problems. In particular we measured the percentage of success of every
method on the 1120 matrices obtained from the tail of the web matrix depicted in Figure 1.
This percentage has been measured for many different values of the parameter α accounting
for the probability of the random jump in the random surfer model [22]. From Table 3, we
observe that there are methods which are not sufficiently robust even for the customary value
of α = 0.85. We see that stationary methods and GMRES(n) are very robust, in fact their
convergence is also guaranteed theoretically. However, for values of α close to 1 we see that
GMRES(10), JACOBI and DIRECTGS methods might fail. This always happens because the
methods stopped on the control on the tolerance, while the actual error is still slightly greater
than 10−6. However, GMRES(10) becomes more robust when the ILU(0) preconditioner is used.
The reason is that, for α close to 1 the problem is badly conditioned, and the introduction of
a preconditioner has the expected behavior of transforming the problem in an equivalent one
with more favorable spectral properties. In particular, we see that the use of a preconditioner
increases the percentage of successes in all the methods considered; the behavior of BiCGStabP
compared with the not preconditioned one is particularly significant. We note that BiCG or
CGS methods are not suitable for this kind of problems since they are not sufficiently reliable.
Of course, one can try to make more robust these methods implementing them with breakdown
free techniques [3] or considering other preconditioning techniques not discussed in this paper.

Since one of the main purposes of this paper is to test which are the methods able to return a
good approximation of the solution of the system, we chose to compare only the methods which
get a success in all the trials. Table 4 reports the number of iterations and the number of Mflops

21

Methods α = 0.5 α = 0.75 α = 0.85 α = 0.95 α = 0.98

POWER 32.05 9.82 73.28 23.01 125.47 41.03 370.97 127.59 807.40 247.64
REVERSEGS 15.80 2.94 34.65 6.27 58.53 10.67 170.92 31.52 407.44 75.50
BCGSTABP 4.00 5.27 7.08 9.25 9.67 13.24 16.64 23.79 24.68 37.13
GMRES10P 8.80 7.08 14.50 12.43 19.47 17.76 34.57 36.51 54.82 66.88
GMRES20 21.04 15.67 35.88 33.57 48.76 53.28 90.06 143.13 155.74 336.16
GMRES20P 8.79 7.37 14.02 15.67 18.46 21.85 30.73 43.07 45.83 73.94
GMRES40 20.77 21.59 33.97 50.15 44.54 81.70 72.15 205.90 105.58 465.92
GMRES40P 8.79 7.37 14.01 16.85 18.20 28.68 28.89 57.82 41.01 94.77

Table 4: For every method and for different values of α we report the mean number of iterations
and the mean number of Mflops needed to meet the stopping criterion of 10−7. These values
have been obtained averaging over the 1120 matrices of different size. For every value of α in
boldface we highlight the best value in terms of average number of iterations and Mflops

50 100 150 200 250 300 350
IT

10

20

30

40

50

Mflop

BiCGStabP

REVERSEGS

Figure 2: Performance comparison between preconditioner BiCGStab and Reverse Gauss-Seidel methods with
the ideal stopping criterion on the actual error of 10−6. BiCGStabP becomes competitive only for α ≥ 0.9.

of every “successful” method averaged over all the test matrices. Although the cost of a single
iteration changes for every method, we see that there is a big difference in the average number of
iterations of stationary and non stationary methods and that among Krylov subspace methods
the use of a preconditioner can make the difference. Moreover the number of iteration necessary
to reach convergence increases as α goes to 1, meaning that for high values of the damping factor
the problem becomes more difficult.

The Mflops count reported as second value in Table 4 is more interesting because it represents
the actual cost of the method. Note that for preconditioned methods the operation count includes
the time spent in building the preconditioner as well as the extra time required by every iteration.
We note that although the iteration count of non stationary methods is lower than that of
stationary methods, when one considers the actual cost expressed in Mflops, methods such as
REVERSEGS are more convenient than most of the Krylov subspaces methods. In particular,
for the usual value of α = 0.85 REVERSEGS is on the average better than the other methods.
However, for large values of α, there is a certain gain in using preconditioned BiCGStab, which
requires almost the 50% less than the Reverse Gauss-Seidel method when α = 0.98. Moreover,
also GMRESP(n) methods become more competitive than REVERSEGS for large values of the
jumping probability α. Note, that these results should be compared against those obtained
using the Power method: in this respect all the successful preconditioned methods behave better
for α > 0.75. In the ideal situation where one can directly estimate the actual error instead of
imposing a stopping criterion on the norm of the residual, we have (see Figure 2) that BiCGStabP
is on the average better than REVERSEGS only for large value of α.

In Figure 3 the performance in terms of the actual error decay of the two best methods,
namely REVERSEGS and the Preconditioned BiCGStab are compared for the largest trail (a 2

22

10 20 30 40 50 60
It

-5

-4

-3

-2

-1

0
Log Err

BiCGstab
Reverse GS

500 1000 1500 2000 2500
Mflop

-5

-4

-3

-2

-1

0
Log Err

BiCGstab

Reverse GS

Figure 3: Comparison between the best two methods on the largest trail with α = 0.85. In the first graphic it
is plotted the behavior of the error as a function of the number of iterations. In the second graphic the error is
plotted as a function of the Mflops.

Million size matrix) for α = 0.85. In the first figure we show the decay of the error as a function
of the number of iterations. We note that BiCGStab does not show a monotony decay while as
theoretically predicted we have a linear decay for REVERSEGS. In the second part of Figure 3
the error is plotted as a function of the number of operations necessary expressed in Mflops. We
see that computationally REVERSEGS is more convenient than Krylov stationary methods for
large matrices and values of α not too close to 1.

7.2 Ranking of heterogeneous networks

An heterogeneous network is described by a directed graph G = (V,E) and two mapping func-
tions, one for the nodes τ : V → A and one for the edges φ : E → R. Each node v ∈ V belongs to
a particular type τ(v) ∈ A and each edge e ∈ E belongs to a particular type of relation φ(e) ∈ R.
Functions φ and τ are such that if e1 and e2 are two edges, e1 = (v1, v2) and e2 = (w1, w2), with
φ(e1) = φ(e2), then τ(v1) = τ(w1) and τ(v2) = τ(w2). When |A| > 1 and |R| > 1 we say that
the graph is a multigraph.

A typical heterogeneous graph is a patent network, where each Patent has associated different
features in the set A = {Patent, Technology, Firm, Examiner, Inventor and Lawyer}. The
different relation types are the edges between patents and firms, patents and examiners, patents
and the set of inventors, and between patents and lawyers, beside to the edges to other cited
patents: each kind of edge has a different semantic meaning, for example the connection between
inventors and patents expresses intellectual property over the patent while the edge between
patent and examiner represent the fact that a patent was granted by a particular examiner. In
Figure 4 it is shown the relations between the different features, and the different kinds of nodes.

Figure 4: Schema of a patent graph. Each patent has a relation with other types of nodes.

23

To better understand this kind of networks the information contained and expressed by the
different types of relations (edges) between nodes, we associate to the graph a model describing
the interaction between items, features and the possible interactions between features. In [8]
we define several models and compare them on the basis of a ranking function inspired by the
PageRank algorithm. In particular, given the nC × nC citation matrix C, let f = |A| − 1, we
define the feature matrices Fk, for k = 1, 2, . . . , f of size nC × nk, such that the (i, j) entry of
Fk is different from zero if item i has attribute j for feature k. For patent items, for example,
we have the “inventorship feature matrix” storing information about the inventors of a patent,
that is, entry (i, j) is nonzero if j is an inventor of patent i. We can arrange these matrices and
combine then to form a larger matrix Â such as the one describing the co called Static model,

Â =

α1,1 F
T
1 C F1 α1,2 F

T
1 F2 · · · α1,f F

T
1 Ff α1,f+1 F

T
1

α2,1 F
T
2 F1 α2,2 F

T
1 C F1 · · · α2,f F

T
2 Ff α2,f+11 F

T
2

...
. . .

. . . · · ·
...

αf,1 F
T
f F1 · · ·

. . . αf,f F
T
f CFf αf,f+1 F

T
f

αf+1,1 F1 αf+1,2 F2 · · · αf+1,f Ff αf+1,f+1 C̃

e

eT 0

.

We then normalize by row to get the stochastic irreducible matrix P = diag(Âe)−1 Â. In [8],
combining different strategies for the choice of the weights parameters with the different possi-
bilities of arranging the matrices Fk in Â, we obtain 15 different models which are proposed and
discussed.

In all our models to compute the rank we have to solve an eigenvector problem involving a
stochastic irreducible matrix. More precisely, we have to find the left Perron vector x such that
xT = xT P , with P stochastic. In [8] is is shown in detail how we can reduce the problem to the
solution of a sparse linear system where we can directly work on the matrices Fk and C without
forming, normalizing and storing the whole matrix Â.

To solve the system we investigated the effectiveness of iterative Krylov methods. In par-
ticular, we implemented different Krylov methods, and among them we chose the three more
performing: BiCGSTAB, CGS, TFQMR. To refine the final result we add a few step of iterative
refinement algorithm.

To test the different algorithms we constructed two datasets with real data extracted from
the US patent office and we used five features: Firms, Inventors, Technologies, Lawyers and
Examiners. In particular, we denote by F1 the patent-technology matrix where entry (i, j) is one
if patent i uses technology j; by F2 the patent-firm matrix, recording the firm owning the patent,
by F3 the patent-inventors matrix which maps patents to inventors, by F4 the patent-lawyers
where each patent is matched to the lawyers applying for the patent, and by F5 the matrix where
at each patent is associated the examiners from the US Patent Office who approved the patent.
The matrix C contains the citations between patents and is almost triangular since each patent
can be based only on patents from the past.

DS1: Consists of nC = 2 474 786 US patents from 1976-1990. Of these patents we have additional
information that can be grouped into 5 major features, namely n1 = 472 Technologies,
n2 = 165 662 Firms, n3 = 965 878 Inventors, n4 = 25 341 Lawyers and n5 = 12 817
Examiners, giving rise to a matrix Â of size nC +

∑5
i=1 ni which is approximately of 3.7

millions.

DS2: Consists of 7 984 635 US patents from 1976-2012. The size of the five features are as
follows 475 Technologies, 633 551 Firms, 4 088 585 Inventors, 120 668 Lawyers and 64 088
Examiners, giving rise to a matrix Â of size approximately of 13 millions.

When using iterative solvers we have always to address the question of numerical stability.
The three proposed methods, BCGStab, CGS and TFQMR have been tested on the two datasets with

24

models BCGstab CGS TFQMR

it log10(res) it log10(res) it log10(res)

Stiff-U 18 -10.49 100 -7.71 21 -3.90
Stiff-D 23 -11.77 100 -11.20 19 -4.75
Static-U 35 -9.03 100 -6.25 40 -7.83
Static-D 39 -11.13 100 -7.22 37 -9.60
Static-DD 35 -12.33 100 -12.20 30 -11.99
Heap-U 32 -9.86 100 -7.44 36 -8.59
Heap-D 36 -11.26 100 -7.73 38 -9.74
Heap-DD 41 -11.48 100 -9.46 33 -11.51
Heap-H 36 -10.83 100 -6.46 30 -7.72
Heap-HH 24 -9.85 100 -7.14 27 -8.38
SHeap-U 32 -11.56 100 -8.00 29 -9.91
SHeap-D 32 -11.72 100 -8.51 28 -9.85
SHeap-DD 37 -11.43 100 -11.83 28 -11.97
SHeap-H 28 -10.56 100 -8.33 25 -9.98
SHeap-HH 29 -11.34 100 -6.75 24 -10.05

Table 5: Performance comparison between three Krylov methods on the 15 models on a problem
of size 3.7 million.

models BCGstab TFQMR

it log10(res) it log10(res)

Stiff-U 14 -10.57 19 -3.83
Stiff-D 21 -11.30 25 -3.71
Static-U 37 -6.77 52 -3.09
Static-D 52 -10.53 53 -7.89
Static-DD 39 -11.38 43 -8.70
Heap-U 36 -8.87 47 -7.58
Heap-D 45 -6.47 51 -6.11
Heap-DD 41 -9.40 41 -6.56
Heap-H 40 -9.63 43 -7.31
Heap-HH 35 -9.49 43 -7.52
SHeap-U 40 -9.78 38 -7.48
SHeap-D 38 -10.36 36 -8.10
SHeap-DD 36 -11.75 34 -9.79
SHeap-H 31 -7.90 35 -4.54
SHeap-HH 35 -10.63 35 -5.91

Table 6: Performance comparison between two Krylov methods applied to the 15 models on the
problem of size 13 million.

an error goal of 10−11 and with maximum number of iterations equal to 100. For the refinement
steps of the power method we set tol = 10−13. Applying to dataset DS1 the three methods to
all the models we obtain the results summarized in Table 5, where instead of the actual residuals
we report only their base 10 logarithm.

It is evident that CGS is inadequate to cope with this kind of problems since after 100 iterations
we have still a high residual norm. Moreover BCGstab is better then TFQMR since it achieves almost
always a lower residual norm. For these reasons we restrict our analysis to BCGStab and TFQMR

comparing them on the dataset of size 13M. We obtain the results reported in Table 6.

We note that BCGstab is clearly better than TFQMR, but sometimes fails to reach an acceptable

25

models DS1 size=3.7M DS2 size =13M
time(sec.) log10(res) time(sec.) log10(res)

Stiff-U 237 -12.095 1078 -11.952
Stiff-D 179 -12.762 1422 -12.1884

Static-U (*)239 -10.536 (*)2314 -9.0309
Static-D 188 -11.740 2096 -10.536
Static-DD 161 -13.002 1688 -11.7138

Heap-U 509 -11.138 (*)5992 -9.7579
Heap-D 467 -11.740 (*)7509 -10.536
Heap-DD 450 -12.535 (*)5849 -11.6019
Heap-H 440 -11.138 (*)5978 -9.93399
Heap-HH (*)403 -11.439 (*)4999 -10.235

SHeap-U 80 -11.740 (*)717 -11.1381
SHeap-D 70 -11.439 661 -11.4391
SHeap-DD 67 -13.107 604 -12.3703
SHeap-H 86 -12.041 (*)662 -10.8371
SHeap-HH 60 -11.689 595 -10.536

Table 7: Performance of procedure SystemSolver on the 15 models on DS1 and DS2. The results
labeled with (∗) are those where TFQMR has been applied since the required precision of 10−11 on
the residual norm was not satisfied after 100 steps of BCGStab.

accuracy. Hence a three step algorithm, described in Procedure SystemSolver has been devised.

Procedure SystemSolver

Input: Initial guess x(0), ErrorGoal, maxiter, tol
Apply BCGStab with error goal=ErrorGoal and maximum iterations=maxiter

if res > ErrorGoal

Apply TFQMR with error goal=ErrorGoal and maximum iterations=maxiter

endif
Apply Iterative Refinement with tolerance tol

Applying this procedure, with ErrorGoal=10−10, maxiter=100 and tol=10−13, on both the
datasets we get the results displayed in Table 7.

From Table 7 we observe that the models which are more stable for the two datasets considered
are the Stiff-D, Static-DD, and among the Heap-like models, we have good performance of
Heap-DD, SHeap-DD.

References

[1] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Ei-
jkhout, R. Pozo, C. Romine, H. Van der Vorst, TEMPLATES for the Solution of Lin-
ear Systems: Building Blocks for Iterative Methods, SIAM Press, Philadelphia PA., 1993.
http://www.netlib.org/linalg/html templates/report.html

[2] M. Benzi, D. B. Szyld, and A. Van Duin (1999) Orderings for incomplete factorization
preconditioning of nonsymmetric problems. SISC, 20(5):1652–1670.

[3] C. Brezinski, M. Redivo-Zaglia, and H. Sadok (1999) New look-ahead Lanczos-type algo-
rithms for linear systems. Numer. Math., 83:53–85.

26

[4] P. Brianzi, P. Favati, O. Menchi, F. Romani (2006) A framework for studying the regularizing
properties of Krylov subspace methods, Inverse Problems, 22, 1007–1021.

[5] D. Calvetti, B. Lewis and L. Reichel (2002) On the regularizing properties of the GMRES
method Numer. Math. 91, 605–625.

[6] D. Calvetti, B. Lewis and L. Reichel (2002) Krylov subspaces iterative methods for non-
symmetric discrete ill-posed problems in image restoration Proc. Society of Photo-Optical
Instrumentation Engineers (SPIE) vol. 4474 (Bellingham, WA: The International Society
for Optical Engineering) 224–33.

[7] G. M. Del Corso, A. Gulĺı, and F. Romani (2005) Fast PageRank computation via a sparse
linear system. Internet Mathematics, 2(3), 251–273.

[8] G. M. Del Corso and F. Romani (2015) A multi-class approach for ranking graph nodes:
models and experiments with incomplete data. arXiv:1504.07766.

[9] J. Dongarra and F. Sullivan. (2000) Guest editor: introduction to the top 10 algorithms
Computing in Science and Engineering, 2(1), 22–23.

[10] P. Favati, G. Lotti, O. Menchi, F. Romani (2007) Adaptive solution of infinite linear systems
by Krylov subspace methods, Journal of Computational and Applied Mathematics, 210, 191-
199.

[11] P. Favati, G. Lotti, O. Menchi, F. Romani (2014) Generalized Cross-Validation applied to
Conjugate Gradient for discrete ill-posed problems, Applied Mathematics and Computation,
243, 258–268.

[12] P. Favati, G. Lotti, O. Menchi, F. Romani (2014) An inner-outer regularizing method for
ill-posed problems, Inverse Problems and Imaging, 8, 409–420.

[13] R.W. Freund and N.M. Nachtigal (1991) QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numer. Math., 60, 315–339.

[14] R.W. Freund, G.H.Golub and N.M. Nachtigal (1992) Iterative solution of linear systems
Acta Numerica, 57–100.

[15] D. Gleich, L. Zhukov, and P. Berkhin (2004) Fast parallel PageRank: A linear system
approach. Technical Report Yahoo!.

[16] M.H. Gutknecht (2005) A brief introduction to Krylov space methods for solving linear
systems, Frontiers of Computational Science – Proceedings of the International Symposium
on Frontiers of Computational Science (Y. Kaneda, H. Kawamura, and M. Sasai, eds.),
53–62, Springer-Verlag, Berlin Heidelberg.

[17] P.C. Hansen (1994) Regularization tools: a Matlab package for analysis and solution of
discrete ill-posed problems Numerical Algorithms 6 1–35.

[18] P.C.Hansen (1998) Rank-Deficient and Discrete Ill-Posed Problems (Philadelphia: SIAM
Monographs on Mathematical Modeling and Computation)

[19] R. Hestenes and E. Stiefel (1952) Methods of conjugate gradients for solving linear systems
J. Res. Nat. Bureau Standards, 49, 409–435.

[20] A.N. Krylov. On the numerical solution of the equation by which in technical ques-
tions frequencies of small oscillations of material systems are determined (in Russian).
Izvestija AN SSSR (News of Academy of Sciences of the USSR), Otdel. mat. i estest. nauk,
1931, VII, Nr.4, 491–539, cited by M. Botchev (2002) “A.N. Krylov, a short biography”
http://www.staff.science.uu.nl/ vorst102/kryl.html

27

[21] C. Lanczos (1952) Solution of systems of linear equations by minimized iterations. J. Res.
Nat. Bureau Standards, 49, 33–53.

[22] A. N. Langville and C. D. Meyer (2005) A survey of eigenvector methods of Web information
retrieval. SIAM Review, 47, 135–161.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd (1998) The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford.

[24] C. C. Paige and M. A. Saunders (1975) Solution of sparse indefinite systems of linear equa-
tionsSIAM J. Numer. Anal., 12, 617–629.

[25] R. Plato (1990) Optimal algorithms for linear ill-posed problems yield regularization methods
Num. Funct. Anal. and Optimiz. 11, 111–118

[26] Y. Saad and M. H. Schultz (1985) Conjugate gradient-like algorithms for solving nonsym-
metric linear systems. Math. Comp., 44, 417–424.

[27] Y. Saad (1996) Iterative methods for sparse linear systems. PWS Publishing Company,
Boston.

[28] P. Sonneveld (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM
J. Sci. Statist. Comput., 10, 36–52.

[29] H. A. van der Vorst (1992) Bi-CGSTAB: a fast and smoothly converging variant of BiCG for
the solution of nonsymmetric linear systems SIAM J. Sci. Statist. Comput., 13, 631–644.

28

