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Abstract. In this work, we show how a smart-phone worn unobtrusively in a nurses coat pocket can 
be used to document the patient care activities performed during a regular morning routine. The main 
contribution is to show how, taking into account certain domain specific boundary conditions, a 
single sensor node worn in such an (from the sensing point of view) unfavorable location can still 
recognize complex, sometimes subtle activities. We evaluate our approach in a large real life dataset 
from day to day hospital operation. In total, 4 runs of patient care per day were collected for 14 days 
at a geriatric ward and annotated in high detail by following the performing nurses for the entire 
duration. This amounts to over 800 hours of sensor data including acceleration, gyroscope, compass, 
wifi and sound annotated with groundtruth at less than 1min resolution. 
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1 Introduction 
 
The main goal of this work was to see how well activities relevant for nursing 
documentation in a hospital can be recog- nized within boundary conditions found in 



an average hospital. While a large body of work on activity recognition already 
exists, it is often limited by either an artificial, lab setting, or otherwise only deals 
with somewhat simple activities like modes of locomotion. Furthermore, much work 
also requires extensive instrumentation of either the environment or the sub- jects or 
even both. Given these considerations, it is understand- able that especially in a 
hospital setting, activity recognition and the applications it can support or enable is 
still very much an active and difficult research topic. One of the tasks that health 
care professionals usually face when treating patients is an exact and meticulous 
need for documentation, for various reasons like treatment monitoring, quality of 
care and legal safeguarding. Unfortunately, this is also a very time-intensive process. 
Given the high workload nurses face, reducing time spent here would be beneficial. 
This article presents a study aimed at laying the groundwork for exactly that. 
Especially, this means trying to recognize complex activities in a real-life setting 
under real-life working conditions. 

A. Related Work 
The usage of wearable and pervasive technology in health- care is not a new field 
any longer. It has already been explored in numerous publications. Overviews 
include [1] or [2]. The usefulness of context in wearable computing in general is e.g. 
discussed in [3]. Kunze et al. [4] describe a quanti- tative Wizard-of-Oz study of 
using context recognition for a wearable maintenance assistance system. Current 
research about activity recognition reveals a wide range of approaches. Much work 
was done on the use of inertial sensors such as accelerometers, gyroscopes or 
magnetometers. [5], [6]. 

Activity Recognition in real-life often focuses on recogniz- ing simple activities like 
”walking”, ”sitting”, ”standing” or ”running” [7] or gym-kind exercises (see [8] or 
[9]). For more complex activities like workshop or maintenance work, often a large 
number of sensors is deployed to reach sufficiently accurate results (see [10], [11]). 
If the setting becomes more complex, additional information sources beyond sensor 
infor- mation are required. Here, approaches like hidden Markov models (HMMs) 
[12] and conditional random fields (CRFs) [13] are utilized to represent model-
based information (e.g. about the sequence of events). In [14], relational Markov 
networks are used to represent a hierarchical activity model to determine location 
based activities from GPS traces. Zinnen et. al [15] evaluate sensor-based vs. model-
based activity recogni- tion. Other approaches try to transfer learned knowledge 
from one application to others thereby reducing the required training data for new 
applications [16]. 

In health care pervasive computing and context recogni- tion mainly includes 
context aware systems, which provide information for care documentation. A future 
application is introduced by Agarwal et al. [17] who describe a prototype context 
aware perioperative information system to capture and interpret data in an operating 



room of the future. The captured data is used to construct the context of the surgical 
procedure and detect medically significant events. Such events, and other state 
information, are used to automatically construct an electronic medical encounter 
record. In [18] a study is introduced, which implemented a nursing support system 
in a series of laboratory experiments under simulated conditions, where clinical 
nurses were asked to perform assigned nursing tasks and simulated patients were 
used to make the environ- ment realistic. Another system introduced by [19] 
describes a wireless sensor network system for supporting context- awareness of 
nursing activities in hospitals. 

 

B. Contributions 
 
This work describes a study set in a real hospital, done during regular working hours 
with live patient care. Our main contributions are: 

- Recording of a large dataset under real life conditions during the usual 
operation of a regular hospital ward containing over 800 hours of sensor 
data; this amounts to over 130 care routines for multiple patients, performed 
by multiple nurses, exactly labelled by trailing researchers  

- Recognition of a complex set of activities relevant for nursing documentation 
using only a standard (and thus cheap, readily available) smartphone worn 
unobtrusively in a coat pocket (and thus suited for daily work). It is 
important to point out that no obtrusive, extensive instru- mentation or 
special hardware was used or necessary.  

- Further augmentation of recognition accuracy by includ- ing best practice 
information supplied by a ”nursing workflow” derived from documentation 
and observation. We believe this approach may also be of value to other 
researchers for different scenarios.  

 

2 The Scenario 
 
As we described in the Introduction our work was motivated by the request for an 
application assisting nursing documenta- tion and the need to develop a solution that 
can be deployed in an average hospital. From this three main constraints resulted:  

1) The only sensor placement on which the nurses could agree was to just put it 
into the coat pocket (see figure 1). Not all had pockets in the trousers and 
strapping anything to the body was considered to be too much of a disruption 



and potential source of injury when patients would hold on to a nurse. 
Furthermore, all other locations could easily expose the sensor to damage.  

 

 

Fig 1. Sensor setup: simply a smart-phone (with its internal sensors) placed in the nurse’s 
coat pocket 

 

2) No videos were allowed and sound could only be recorded if it was cut into 
pieces and randomly mixed so that no speech could be retrieved.  

3) We could follow the nurses and make all the notes we wanted, but questions 
and repetitions of activities for any sort of training were not allowed during 
the nursing process.  

 

A. Real-life Data Capture of Morning Activities  

In the hospital ward chosen, four nurses performed a morning hygiene routine for a 
few (2 to 3) patients each, including activities like washing, showering, drying, 



dressing, making the bed, measuring pulse and blood pressure and so on. The 
experiment at the ward lasted for a total duration of 14 days, each with 4 recorded 
runs of the morning shift procedure with a total of 18 different nurses. Overall, more 
than 800 hours of sensor data were recorded. Each of these runs was slightly 
different, both because the nurses were free to chose the order of execution of some 
activities as well as the need to fit them to a patient’s requirements. The platform 
used for sensing was a standard smart-phone, placed in the coat pocket of each 
nurse. Major constraints were invisibility towards patients and unobtrusiveness, as it 
was not permissible to obstruct or hinder the nurses in any way. The recorded sensor 
data was annotated by a researcher trailing each nurse, using Ipads running a 
labeling application developed for this study. This allowed annotations at less then 
1min scale. To maintain the quiet atmosphere on the ward, only two of the four 
nurses work could be annotated every day. As a result, 30 sets of activity 
annotations (including app. 130 patient- and app. 120 nurse flow executions) were 
collected. 

 

B. Building a Model 

To provide a meaningful description of the sequence and nature of activities 
encountered, a hierarchical workflow model for the morning hygiene routine was 
created by analysis of best practice guidelines and the labels collected (see figure 2). 
Interestingly, although medical procedures are subject to strong restrictions in their 
execution, the ward does not provide detailed workflow models for the patient care 
procedures on their own. While well trained medical staff does not need this 
information, for our research these models and definitions were required. For our 
purpose, the model assembled con- tained activities performed and their possible 
sequences (e.g. dressing will only be performed after showering, which may, 
however, be optional). It was further enhanced with relevant context annotations and 
restrictions such as spatial limitations (i.e. a task can only be performed in one of 
several given locations) and context requirements like limitations on mode of 
locomotion of the task (e.g. not possible to measure pulse while walking). 

 



 

Fig 2. Nursing flow of the morning examination tasks 

 

3 Approach 
 

A. Constraints 

Although the chosen smart-phone platform features 8 poten- tial sources for context 
relevant data in general scenarios, only 5 of these could be used in the hospital trial 
conducted: while Accelerometer, Gyroscope, Compass, Microphone and WiFi were 
used to record data, Bluetooth, Camera and GPS were not available as usage was 
generally not possible or would have required changes in the ward environment (i.e. 
installation of devices or markers in patient inhabited areas) which were not 
permitted. 

The first difficulty in dealing with the sensor data was given by the nature of the 
experiment. Since data was collected during regular work at the ward, it was not 
possible to repeat actions or pause execution. Also, it was not possible to record 
video or unscrambled audio for labelling purposes. As a result, while the labelling 
information gained by following the nurses and noting their actions in our Ipad app 
is reasonably accurate, it is not accurate enough for standard supervised training 
methods. As an example, suppose showering was to be recognized. Further suppose 
this activity lasts for 5 minutes and the signal is divided into 5 second windows. 
Both acceleration and sound data will contain characteristic frames that would well 
represent showering. However, not only will there be others that only amount to 
background noise, even more important, the windows actually containing the 
relevant information may be (and in all likelihood are) different depending on 
sensing modality. As a consequence, direct fusion of all modalities at the feature 
level is not feasible, as this would mask relevant information by the noise of other 
sensors. 



 

B. Recognition Approach 

Keeping the above constraints in mind, we decided upon the following approach 
(also see figure 3) 

 

 

Fig 3. Recognition architecture: leverageing flow information in order to enhance the 
recognition results 

 

1. Step 1: Recognition on single sensors:: For both inertial sensors and sound, 
the signal was divided into 4 second windows. For inertial sensors, standard 
features were calculated on the (orientation invariant) norm, e.g. min, max, 
rms, frequency centroid, etc.. For sound, [20] served as tem- plate, with 



features heavily frequency based (e.g. frequency centroid and bandwidth, 
band energy ratios, etc.). Frames containing no or little information were 
marked as ’null’ and not considered further. Criteria included no movement 
for inertial sensors and silence for sound. On the remaining windows, a 
Bayes classifier was trained using data from 8 of the 20 annotated datasets. 
For every window, this resulted in a predicted activity or the label ’null’ 
(nothing happening) if the most likely probability was still below a threshold. 
WiFi data was used in a fingerprinting approach. For all access points visible 
throughout the ward, signal strength was gathered and represented as an n-
dimensional vector. Points close to one another then tended to exhibit 
closeness in this n-dimensional space, even if single components may 
fluctuate. Since wifi signal geometry is influenced by furniture, humans and 
environmental conditions, all of which can change, this approach only gives 
a rough idea of location (somewhere between individual rooms and and a 
group of rooms close to one another) and cannot be used to pinpoint a 
nurse’s exact position. 

2. Step 2: Combining sensor modalities:: As a next step, these single sensor, 
frame by frame results were combined and elevated to the event level. To 
that end, for each activity its average duration was calculated; afterwards, 
again for each activity, a sliding window of that duration was moved along 
the individual frame by frame results. All frames within were counted 
according to their classifier’s confusion matrix. An example: assume that 
there are classes A and B, with our classifier recognizing A 90% as A and 
10% as B. If an individual frame was then classified as A by said classifier, it 
would count 0.9 towards the ’A score’ and 0.1 towards the ’B score’. The 
coarse positioning obtained by WiFi was used as a constraint; if an activity 
was not possible in the rough area provided by the location classifier, it was 
counted towards ’null’. Once all frames within the window were counted, a 
majority decision was performed, the winner (and its associated winning 
ratio) being noted down for that time interval. If subsequent windows 
contained the same activity, they were merged. If two activities collided 
(remember, there was a sliding window for each one), the one with the 
higher winning ratio was selected. 

3. Step 3: Workflow Integration Level:: After the fusion step, domain specific 
knowledge codified into a best practice workflow was applied to further 
enhance recognition results. We would like to point out that this workflow 
only served as a template. The actual information was derived from the 
labels recorded during the study. This information was transformed into a 
finite state machine, with the transition probabilities calculated like this: 
suppose activity A was followed by B 10 times and by C 20 times. The edge 
(A, B) would then carry probability 33%. The resulting finite state machine 



was then combined with the sequence of activities (each associated with a 
ratio) from the previous step. Starting from the first event, for each following 
event a new likelihood was calculated as a weighted product between its 
ratio from the fusion step and the transition probability of the finite state 
machine. The weighting itself was done by a sigmoid function; i.e. the higher 
a probability, the more influence on the result it had. 

 
4. Results 
 

A. Solely Sensor-based Results 
 
The results of steps 1 and 2 described above (recognition through sensor fusion 
without the information about the work- flow) are shown in 4. The average precision 
and recall are 48.6% and 49.9%. Given the difficulty of the task, resulting from the 
combination of unsuitable sensor placement and complex activities, this is not 
unexpected. The results for in- dividual activities are also in line with expectations. 
Activities associated with a loud, characteristic sound are recognized well. This 
includes showering, hair drying and shaving. More subtle yet characteristic sounds 
are associated with blood pressure measurement (putting on the calf, pumping) or 
putting on gloves (when opening the plastic bag with the one way gloves). Activities 
such as dressing the patient and washing the patient in bed have a strong motion 
component with some sound and are also recognized fairly well. On the other hand 
activities where the motion is mostly restricted to hands with little sound such as 
changing a bandage or drying the patient are recognized very poorly. It is interesting 
to note that measuring pulse (manually with a finger on the wrist), which has neither 
sound nor motion is recognized better then may be expected. This is precisely due to 
the fact that there are little situations beyond pulse measurement where there is so 
little sound or motion. 

 

B. Results with workflow information 
The improvement that can be achieved when using the workflow information can be 
seen in Figure 5. The average precision and recall rise to 72.0% (plus 23.6 
percentage points) and 72.4% (plus 22.5 percentage points). The improvement can 
be seen across all activities improving the ”good ones” towards around 90% but 
even more dramatically raising the rates for the ”bad ones” such as changing a 
bandage and drying the patient. How much the activities improve clearly depends on 
the amount of constraints imposed by the workflow. It is also interesting to notice, 
that the errors are mostly due to substitutions rather than insertions or deletions. 
Basically, this means that the system may be wrong about what activity is 
happening, but in almost all cases it will both notice correctly that some event is 



occurring and at the same miss almost none of them.  

 

Fig 4. Precision and Recall without semantic knowledge 

 

 

Fig 5. Precision, Recall and Errors, using semantic knowledge 

 

Given this, there is another interesting evaluation especially pertinent to context 
sensitive nursing documentation. The output of the classifier is a list of all possible 



activities, ranked by their inferred probability (i.e. the system may think the event is 
70% showering, 20%washing, etc.). If the output of the system is used for listing the 
most likely candidates for a nurse to pick as done in [21], it is already enough for the 
correct activity to be among the best two or three candidates. Given that metric, as 
shown in Figure 6, the correct activity is within the 2 best picks in 78.7% of cases 
and within the 3 best picks in 85.3%. The exact type of confusions are shown in 
Table I. 

 

Fig 6. Percentage of the correct activity being among the best 2 or 3 

 

 

Tab 1. CONFUSION MATRIX FOR WORKFLOW ENHANCED RECOGNITION 

 
5. Conclusions and Discussion 

 
Overall, this work shows that even under unfavorable sensor constraints, given by 
the deployment in a real world environ- ment such as a hospital, reasonable 



precision and recall can be achieved when exploiting workflow concerns. While 
clearly, this approach is not applicable to all situations, nevertheless, especially in 
professional settings where the aim of activity recognition is documentation or 
context sensitive support, there are often strong workflow constraints. These are at 
the same time often the situations where practicability issues make the deployment 
of rich, well placed sensor configurations and the collection of adequate training 
data difficult. 

Note that as described in [21] a documentation support system does not need perfect 
recognition. If we can reduce the documentation to a selection from a few 
alternatives and keep the number of deletions small then the process can already be 
greatly optimized. Thus the results presented here are of significant practical 
interest. 

As a next step, we will investigate integrating low level data analysis in a closer and 
more generalizable way with a semantic high level representation. By high level 
representa- tion we mean a semantic model, that can be broadly defined as a 
representation of the scenario and the relations among its objects. 
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