ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Scuola di Ingegneria e Architettura
Campus di Cesena
Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

DESIGN AND DEVELOPMENT
OF A UNITY BASED FRAMEWORK
FOR AUGMENTED WORLDS

Elaborata nel corso di: Programmazione Avanzata e Paradigmi

Tesi dv Laurea di: Relatore:
PIERLUIGI MONTAGNA Prof. ALESSANDRO RICCI

Co-relatori:
Dott. ANGELO CROATTI

ANNO ACCADEMICO 2015 - 2016
SESSIONE I

Keywords:

Mixed-Reality
Augmented World
Unity

Hologram

To my beloved aunt,
family and friends,

whose words encourage me
every day . . .

Abstract

EN The way we've always envisioned computer programs is slowly changing.
Thanks to the recent development of wearable technologies we're experiencing the
birth of new applications that are no more limited to a fixed screen, but are instead
sparse in our surroundings by means of fully fledged computational objects. In this
paper we discuss proper techniques and technologies to be used for the creation of
“Augmented Worlds”, through the design and development of a novel framework
that can help us understand how to build these new programs.

IT 1l modo in cui abbiamo sempre concepito i programmi sta lentamente cam-
biando. Grazie allo sviluppo delle recenti tecnologie wearable stiamo assitendo alla
nascita di nuove applicazioni che non sono piu limitate ad uno schermo fisso, ma
sono invece disperse all’interno dell’ambiente, aumentandone le caratteristiche per
via di una serie di oggetti virtuali. In questo documento vogliamo analizzare quali
tecniche e tecnologie utilizzare per la creazione di “mondi aumentati”, attraverso
lo sviluppo di un framework che possa aiutarci a comprendere meglio i diversi
punti di vista legati alla creazione di questi nuovi e innovativi programmi.

Contents

1 Introduction

2 Augmented World
2.1 Main concepts L
2.2 Towards a programming model

3 Envisioning the framework

3.1 Goals.
3.2 Topsight of the system
3.3 Hologram
3.4 HoloDoer
3.5 User modeling and interaction

4 The Unity Game Engine

4.1 Basics
4.2 Component based development
4.3 Runtime Engine Overview
4.4 Vuforia support
4.5 The High Level API (HLAPI)
4.6 Editor extension Lo

5 Development

5.1 Hologram
5.1.1 View o
5.1.2 Model
5.1.3 Network Synchronization

5.2 User shape and interaction

5.3 Mono Event System

5.4 HoloDoer

5.5 Tracking Area

5.6 Editor functionalityo

111

10
12
14
15

19
19
21
21
24
26
30

CONTENTS CONTENTS
5.7 The problem of serialization 50

6 Using the framework 51
6.1 Creating thescene o1
6.2 Simple Cube Example L. 53
6.3 Tracking Area Example. L. 64
6.4 Building and testingo o 71
6.5 Reposiory 72

7 Wrapping things up 73
7.1 State of the art of technology 73
7.2 Why a framework?o 75
7.3 The future 76

8 Conclusion 83

v

Chapter 1

Introduction

If computing companies have their way, 2016 will be the year in which aug-
mented and virtual reality become widely popular. Different firms such as Face-
book, Sony and Microsoft are getting ready to launch their set of high tech wear-
ables. Google and Qualcomm are hard working on area learning, using computer
vision technologies. Meta is ready to launch his new headset and is finding new
ways to have a more natural interaction with holographic entities. Looks like we’ve
finally reached a point that not so long ago we envisioned only in sci-fi movies.

What these new technologies seems to have in common is the usage of some
sort of headset that, being equipped with different types of sensors, is able to alter
the user perception of the world. This headset can either display new information
on top of what the user is already seeing, in which case we talk about Augmented
Reality, or render a new world entirely in front of his eyes; we call this Virtual
Reality.

Virtual Reality is fully immersive: the headset must, by necessity, block out the
external world. Using stereoscopy, a technique that fools the brain into creating
the illusion of depth, it transforms a pair of images into a single experience of a
fully three-dimensional world. At the moment, main examples of VR technology
are Facebook’s Oculus Rift[1] and HTC’s Vive[2], and their primary business is
the gaming industry.

Augmented Reality on the other hand, must maintain its user connected with
the real world, allowing heads-up displays to be used instead of a closed headset. It
makes use of interest points, fiducial markers or optical flows in the camera images
to find the right way to overlay digital content on top of a video stream. Even
though AR is nowadays mainstream and widely used inside mobile applications,
we are intrigued by the possibilities brought by this technology, as recently seen
with the debut of Microsoft’s Hololens|[3], that aims to liberate computing from a
fixed screen, overlaying its user with useful additions inside his environment.

Augmented Reality is just the starting point of a new model for the creation

1. Introduction

A

r

(b) HTC Vive

(a) Microsoft Hololens

Figure 1.1: Figure 7.3c shows an headset with see-trough lens. Figure 7.3d is a
closed headset for virtual reality, provided with special gears to track movements
in a closed fixed space.

of real-time applications that place the user in-between the virtual and physical
world. As technology is moving forward, new programming scenarios open of which
we need to find ways to meaningfully encapsulate their complexity, for developers
to build new systems.

In this document we are going design, implement and use a novel programming
framework for Augmented Worlds. Each chapter is part of a process that wants
to extend the knowledge of what is on top of the model.

The first chapter is about what defines an Augmented World, describing the
model through a list of its related concepts. Here we analyze critical points required
for a software stack usable for the creation of these applications, while arguing
about different programming abstractions.

In the following chapter we are going to design the framework starting from the
main concepts of the model. We will talk about the framework’s goals and have a
bird-eye view of the system architecture, focusing on macro aspects of all required
parts. Carrying on, we will talk about Holograms and HoloDoers, as basic units
of work proposed for the envisioned framework abstraction.

Since our framework is based on the Unity videogame engine, it’s necessary to
introduce its functionalities. The third chapter will explain the basics for develop-
ing real-time applications with Unity, arguing about how the engine works under
the hood. Here we talk about how to use the editor, the High Level APT (HLAPI)
for networking and Vuforia extension for Augmented Reality.

The fifth chapter will be about the implementation of the previously exposed
framework’s essentials, giving details about its basic units of work. Here we will
explain how to properly use all parts of the framework as well as what they are
meant for.

We will then conclude with more general thoughts, but only after giving a taste
of our work through some practical example.

Chapter 2

Augmented World

The impressive leap in technology has reduced the gulf between digital and
physical matter. In 1994 P. Milgram and F. Kishino defined the concept of Mixed
Reality as “...anywhere between the extrema of the virtuality continuum.”[4], ex-
tending from completely real to completely virtual environments, with augmented
reality and virtuality ranging between.

Augmented Worlds are programs that span into Mixed Reality, increasing the
functionalities of the physical environment “by means of full-fledge computational
objects located in the space, that users can perceive and interact with by means
of proper mobile/wearable devices” [5].

AW programs are meant to represent an extension of the real world, in which
humans and artificial entities can interact and collaborate with each other, mak-
ing use of augmented entities located in the environment. These entities exists
independently from the actual presence of users, they can possibly have a virtual
or physical body, be complex or rather simple, dynamic or static.

Augmented Worlds are multi-user systems, meaning that the state of the world
is shared between multiple devices in a way that can enable collaborative actions,
through the use of augmented entities, performed in the most natural way possible.

Another important aspect of this concept is that the user is part of the envi-
ronment, making him visible to computable entities that could perform some kind
of behaviour autonomously or upon interaction. Moreover actions executed in the
physical environment can have an impact on the virtual environment as well and
vice versa.

Augmented Worlds are immersive environments that evolve trough time, inde-
pendently from his users. Behaviour based programming, artificial intelligence or
even the BDI model[6] can be used to build strong autonomous entities that can
alter the state of the world in a way that can benefit his inhabitants.

An AW program could be anything related to hands-free operations, like the
cooperative building of a machine, where the user, equipped with an headset, is as-

3

2. Augmented World

Augmented Entity

Augmented State

Figure 2.1: A simple representation of an Augmented World, focusing on spatial
coupling aspect of augmented entities.

sisted by real time information about the process, making the assembly procedure
easier to follow.

A more complex and intriguing example is a smart city or office fully equipped
with sensors and actuators where coworkers can constantly perceive and influence
the information layer around them using their mobiles and wearables.

What we’ve just described is now possible thanks to the enabling technology
developed through the past years. With Augmented Reality we can render virtual
beings on top of the user field of view, moreover using sensors and ad-hoc APIs,
it’s possible to tack the position and orientation of physical objects in real time.
Dynamism and graphics can be obtained using a well structured 3D real-time
engine, meanwhile networking systems and state synchronization[7] techniques can
also be used to achieve casual consistency. These technologies are the base for
building such systems, however we're still quite far from the real conception of
how to use them to build an Augmented World Framework.

After this brief introduction, we have a feeling that the presented concept
brings some interesting challenges. Head of the list the need of a clear model that
pinpoints all the basic logical units of the system, so that a meaningful architecture
for AW programs could be made. Follows a general understanding of the current
state of the art for technologies and software that can support this idea, including
wearables and relative APIs.

Following this chapter, we give major concern to problems and solutions relative
to the development of real-time distributed systems, 3D real time engines and
virtual /physical space coupling.

2. Augmented World

2.1 Main concepts

Here we see different aspects that feature an Augmented World program.

Space coupling What is meant to be represented is meant to have a position
in the physical environment, space coupling means that representation of virtual
entities is tight to one position in the real world.

When an augmented entity is instantiated at runtime, its local world coordi-
nates must be specified, it would be then job of the system to dynamically bind
this position to a specific point in the physical space. For this mechanism to work,
the system needs to have some sort of reference of the environment, in order to
acquire and apply the transformation matrix used to align the virtual world on
top of what the user his seeing trough the device.

One way to make it possible is by using computer vision, where markers or
points of interest could then be recognized directly from the camera video stream.
Recently sensor fusion and smart terrain technology is used to obtain even greater
results, making it possible to work in complex environments. One interesting result
is shown by Google Project Tango[8], enabling applications to perform simultane-
ous localization and mapping within a detailed 3D environment.

The same must be possible for the other way around. Whenever a physical ma-
chine is an extension of an augmented entity, his physical position and orientation
should constantly be streamed down to his virtual counterpart. This is necessary
if we want to build a seamless mechanism where augmented entities can actively
reason with the position and orientation of objects. For this mechanics to work, of
course, we need some kind of sensor or system that can track one or more object
positions in the environment. For large environments a gps and magnetometer
might be used to obtain this data, while a bluetooth positioning system might be
used for small indoor areas.

User modeling and interaction An augmented world is typically a multi-user
application, where different users continuously influence the world and interact
with each others.

When an user joins a particular augmented world, a new special entity is instan-
tiated inside that world to which he’s associated. This particular entity becomes
the avatar of that user, meaning it becomes his medium of interaction. All user
commands and actions must be performed through this entity, of which he has the
authority.

The user’s avatar should probably have a position relative to his physical loca-
tion, in order reason based on this criteria. For example, special entities might be
programmed to start a behaviour only when the user is near them or in a specific

2.2 Towards a programming model 2. Augmented World

area. Imagine the case where the user enters a dark room and suddenly an entity
turns on the lights for him.

This being said, interaction between the user and the augmented world should
be made through this particular entity, meaning that it encapsulate all meaningful
actions that the user can perform inside the virtual world. An access control system
could also be placed between user entities and regular AW objects, in order to have
a more complex permission-based interaction system.

Physical embedding The virtual extends into the physical not only trough the
user’s device screen. Some augmented entities could also have a well defined body
that resides inside our own world.

We are talking about physical embedding, intended as the practice that binds
computational aspects of the Augmented World with devices and machines situ-
ated in the real environment.

The entity’s physical body is intended to be the extension of some virtual
object inside the Augmented World; communication between this entity and his
body could be made through use of device specific commands and messages. Of
course this devices should be configured in a way that enables data transfer from
and to the Augmented World.

Real Time As we are creating a virtual world to be exposed upon our own, it’s
useful to clarify that the system expects to have some real time components.

Computational entities living in the virtual realm should be able to react ac-
tively to real world events and proactively start procedure based on their own
belief. This entities are in fact ”alive” meaning they should evolve and reason over
time, this is the basic need for creating strong behaviour based entities.

Time consistency becomes a main point inside the model, since some of the
entities own a representation that is constantly updated, their time long actions
should be regulated by means of some internal notion of time, shared between all
virtual entities to ensure a consistent evolution over time.

Actions like moving from point A to point B at constant velocity, animations
and time-based events all need the notion of time to be uniformly updated and
shared across the network.

2.2 Towards a programming model
Before starting with the design of some specific programming toolkit, lets focus

on the main objectives of the Augmented World model, how can they be reached,
what problems should be faced and what technologies we have at our disposition.

6

2. Augmented World

Starting with a fully OOP perspective we notice that most of the complexity of
this model is left unhandled. We are able to shape all static aspect of augmented
entities, but everything that is actively handled like events, user interaction and
commands, time long actions, etc, would require the implementation of an ad-hoc
application layer.

An agent oriented abstraction is indeed nearer to the problem we are facing,
allowing augmented entities to be fully autonomous, encapsulating not only a
state but also a behaviour. Interaction is handled in a fully asynchronous fashion
similar to the real world case. An augmented world program can then be shaped
in terms of autonomous agents situated in the virtual environment, making the
bridge between the physical and virtual counterpart.

However we’re still left with quite a lot of complexity to fill the gap between the
agent oriented abstraction and the problem we are facing. The following concerns
needs to be faced with the right approach to be efficient in concern of having a
scalable system architecture and the creation of a ready to use framework.

State synchronization State synchronization between local and remote in-
stance of the augmented entity should be made in a way that is transparent to
the user, but still effective for both the network efficiency and a programming
perspective.

Let us consider a star network topology where the central server holds the
concrete instance of the augmented world. AW applications should constantly
receive information from the central node so that their representation and belief of
the world is at some extend consistent. From the other way around, user commands
and actions should be sent by clients and handled directly on the server. For the
developer it’s then needed:

e a way to continuously stream data from server to clients.

e some sort RPC mechanism or messaging system with an efficient way to
serialize data.

Visual representation Visualization of augmented entities is another main con-
cern. As the state of the world is constantly updated, changes in one object graph-
ics should be visible in real time, with time based movement and animations. This
means that AW applications should be equipped or based on a real time graphic
engine, on top of which augmented reality functionality could also be implemented.

For an excellent graphical effect we should also consider the possibility of im-
plementing a mixed sorting layer that takes into account both virtual and physical
objects of the scene, so that we are able to see only what we effectively have in

7

2.2 Towards a programming model 2. Augmented World

front of us. Different ways to achieve a mixed sorting layer are based upon ad-
vanced computer vision techniques and sensor fusion, that can constantly update
the virtual world with occlusion masks.

From a programming perspective all that has been just discussed should happen
in a way that is transparent to the developer. When an object is instantiated into
the scene it will be rendered automatically by using its local position, its graphical
properties and the camera field of view.

The handling of animations and other time long actions should be regulated
by a fixed notion of time. This usually done by writing a function that is called
before every frame is rendered on screen, in an update loop pattern[9] fashion.

Chapter 3

Envisioning the framework

The following section will be about the design of a simple framework for Aug-
mented Worlds. This is not intended to be an optimal design for the model, but
mostly an experiment to bring us closer to what might be like to work with such
complex a system.

The design process will take into account the core features of the model. We
will focus mostly on augmented entities, space coupling, state synchronization and
entities visual representation.

3.1 Goals

We want to develop a software abstraction that is close to the Augmented
World model; that can enable the creation of real-time 3D applications based on
a multi-user shared augmentation of the real world.

The main goal is to provide the developer the right tools to build AW programs
easily, by composing the environment with augmented entities and some basic units
of work.

Asynchronous actions and object dynamics, should be a concrete functionality
provided to the developer. Their mechanism and code should be hidden inside the
core of the application, without him worrying about how such actions are actually
performed.

The same applies also for Networking and state synchronization. The goal is
to hide all complex networking and serialization aspects of communication from
the developer and make him only worry on how to perform interactions between
the user and augmented entities.

Space coupling is provided with the minimal configuration from the developer,
that should only be able to specify references of the physical environment used by
the system to bind virtual entities.

3.2 Topsight of the system 3. Envisioning the framework

Another important aspect of this framework regards modularity. The software
stack comes with a variety of subsystems that work together, each adding a major
contribute to the provided functionality of the application. For example, different
modules could handle physics, networking, collision, input; and of course some of
them wight not be independent from each other.

The goal is to build a framework in which at least the functionality regarding
graphics and network communication can be switched out without making the
developer rewriting most of the application code. This should allow more flexibility
to the developers, that can choose from a variety of supported system, as well as
writing their own.

3.2 Topsight of the system

For his nature an augmented world program is based on a distributed system.
Different clients all connects to the AW mainframe where the instance of the
Augmented World is running.

The mainframe, being this a central server or a more complex cluster of ma-
chines, constantly informs clients of changes of their surroundings so that users
can see a consistent augmentation of his environment. Therefore, the server holds
the current state of the world, while clients are the window to the Augmented
World for the user to see through.

The client’s application should be able to create the effect of space coupling, by
simply using some reference of the physical environment and the entities position,
rotation and scale. This application should also be able to send commands to the
server to inform when user wants to perform a particular action meant to change
the state of the world in some way.

At the core of each instance must reside a well tight set of subsystems; this
set is part of the engine of the application, needed to cover all aspects of the
simulation. What subsystem is actually required may vary from server to clients,
for instance, sound and graphics might not be concern of the server at all.

These are the required blocks needed by the AW system:

e A 3D dynamic model of the world: required to model space and to have a
consistent measurement system for object positioning, orientation and scale.
This is meant to be part of the same engine that regulates how the state of
the world changes during time.

e A state synchronization system: to be used for both streaming data from
server to client and message sending in general.

10

11

3. Envisioning the framework

“UOT)RITUNUINIO) JO JPIS JUSIOYIP © SUISRURUL (DR ‘JUSI[D PUR IOAISS UoM)a(JI[dS ST WO)SAS SUINIOM)aU ST,
"ssooo1d gors o parmbar a1e YO0 JRYM SMOYS ATUO JT ‘OPIS JUSI[D I0 ISAIIS [[J0(UO PaIedO] 9q 1, ued jred yoes jey)
SURSUI ATRSSODIU) USOOP 9INSY O], "QUISUS SWIUILI 9} JO A}[RUOIIOUN] 9100 Juspuadopur Ue s 91 pur Yor)S 91eMIJOS
onbrun e Aq pepraoid oq wed ¥OO[q PR WDISAS o) JO UOIPRIUssoIdol JORIJSqR Ue SMOUS 98RWI 9, :1'¢ 9INSI]

m aubua awy [eal J¢ m
: : | sushyg washguang | :
' auibus awq |eal Og ' . :
' ' sabessaly ' '
! ! washs ' [8polA pUOM, palUBW BNy '
! nduy punosg saydels ! Bupoman ' '
! ! welshs Spuewiwod . .
. (4y) wajsAs Bundnog asedg . BuppomsN e N
' ' ! safgu3 !
! ! ' pajuawbny ; swelbojoy '
' = ! ejep sweibojoy ' J
' 13ROI PO [B907 ' bujesns ' '
N J S H

sl lanlasg

11

3.3 Hologram 3. Envisioning the framework

e A space coupling system: that can correctly overlay onto the user perspec-
tive augmented objects on clients (for example, using Augmented Reality
technology).

3.3 Hologram

Until now we’ve stated that the system is shaped in terms of augmented en-
tities, being them static or dynamic. Let’s focus on the static ones, that we call
Holograms.

An Hologram is a three-dimensional image perceived by the user trough his
device. It can be simply a non-interactive object, like compass always pointing
in a direction, or either be a tool that the user can use to perform some kind of
action.

An Hologram is instantiated at runtime, and it’s position is bound the a specific
point in the physical environment.

His visualization must be, at some degree, consistent between all devices con-
nected to the same Augmented World. It encapsulates a flexible mechanism for
state synchronization, and as well exposes methods in order to allow remote inter-
action.

Like in a standard OOP object, this particular augmented entity is completely
static, it doesn’t encapsulate a behaviour, but only a state. This state can be
however continuously altered by some other real-time component in order to expose
some kind of dynamism.

Applying separation of concerns, we divide an Hologram in three function spe-
cific parts.

View The view object should expose methods and functionality regarding only
the visual representation of the entities, like changes in shape, material and ani-
mations. It could eventually encapsulate response to device specific reactions to
user input: like key pressing, gestures, etc. This component is strongly tight to
the graphic module used inside the application, since it is the software stack that
actually renders the object onto the screen.

Model The model object encapsulates the state of the Hologram and exposes
methods that alter his properties. It is meant to be instantiated only inside the
server, but a local copy could also be present inside the client for fault management.

State Synchronization The last object, the state synchronization one, is based
upon the networking system. It is the bridge between the local view and the remote
model, regulating how data received from the server is interpreted and the view

12

3. Envisioning the framework

13

<< |nterface>> << |nterface>>
EvantSander] IHologram
|
|
|
]
Hologram
View NetworkSynch Madeal
i i i
| I |
i i i
<<Interface=> =<<Interface=> <<|nterface>>
Wiaw INatworkSynch IModel

Figure 3.2: The image shows the conceptual diagram of the Hologram. An Holo-
gram is composed by three different parts: the View, the NetSynch and the Model.
This separation ensure that changes regarding these subsystems, like the state syn-
chronization one, only affects part of the general application.

updated. It also encapsulates the behaviour in regard of received messages and
user commands for that specific hologram.

We want to apply division of labour between concern specific parts of an Holo-
gram. From a programming perspective, however, we want a seamless interaction
with a specific Hologram, there should be no need to directly call methods of each
Hologram components distinctly. The Hologram must then be able to direct calls
of generic methods to his parts.

When an Hologram performs an action, some other entities might take notice.
We recall that an Augmented World is inhabited not only by the user, but by au-
tonomous entities as well. When something of matter happens in the environment,
these special entities needs to take notice. In this perspective, an Hologram is an
FEventSender, thought as something that is able to release some sort of information
in the environment, of which special entities might take notice at the time.

13

3.4 HoloDoer 3. Envisioning the framework

Counter Hologram
+inc() [
Counter View Counter StateSynch Counter Model
+inc() | |+ inci) | |+ inci)
1:invoke("inc”)
—_—

2:inc()

2:inc() o

2:inc()

Figure 3.3: In this example, some external entity requires the Hologram to perform
the action “inc()”, that increments the value of some counter. Each part of the
Hologram takes in action a different aspect of this call, the view might update his
representation, the model increases the holding value, the NetSynch propagates
the call to the server.

3.4 HoloDoer

By only relying on Holograms, it’s not possible to shape entities that require
some kind of dynamism, for this reason we introduce the HoloDoer. An HoloDoer
is not a static entity like the Hologram, instead it is based on top of the real-
time capabilities of the application, unlocking dynamism within a consistent self-
evolution over time. His name remarks how it is intended purpose is handling one
or more Holograms, in this sense, an Hologram might expose a dynamic behaviour
when his visualization is continuously updated by an HoloDoer.

This entities are what makes the Augmented World truly “alive”, ranging from
simple units of work to full-fledged autonomous entities. It’s important to notice
that this entities don’t require to be shared across all clients, they only resides
inside a specific instance of the program, being this mostly the one hosted by the
server.

In this perspective, an HoloDoer should be used to build autonomous entities
residing in the Augmented World. These entities might be able to proactively
react to changes in the environment, or even trigger some behaviour when an user
or Hologram enters a specific area.

An event context is a purpose-specific set of listeners implemented by the de-
veloper or created dynamically at runtime. An HoloDoer registers itself to one
or more event contexts to which it is interested; it can then react accordingly to
events generated inside that context.

14

3. Envisioning the framework

15

<<|nterface=> EventContext

IEvent -subscribers
+sand(event | [Event)
+subscribe(listener | EventlListener)
+unsubscribe(listener | EventlListenar)

y

=<|nterface>>

EventListenar
+gxecievent | |IEvent)}
+addinCueue(event | |[Event)

iy

|
HoloDoer

Figure 3.4: An HoloDoer conceptual diagram. This entity implements the
EventListener interface, meaning it might be subscribed to some event context
and react to specific events.

In other words, the HoloDoer is an “agent” that is meant to manage dynamic
aspects around Holograms, it can act on its own and react to application based
events from the event contexts it’s registered to, being them generated by Holo-
grams or other HoloDoers.

An Holodoer doesn’t have a visualization, however it can make use of an Holo-
gram to compose a fully autonomous augmented entity shared between different
clients.

The HoloDoer object is also used as a base for more framework specific con-
cepts, like Tracking Areas.

3.5 User modeling and interaction

When a user joins the Augmented World, a special kind of entity must be
instantiated inside the server. This entity is bound to one definite user and it’s
destroyed at the end of the client specific connection with the server.

We call this entity an “user agent” as it is the virtual counterpart of the user,
executing actions and commands on his behalf. This entity is strongly tight to the
networking system, since it is the point where user sent commands and messages
are interpreted and then eventually executed. This calls for a standardization
of messages structure, ensuring that parameters sent over the network can be
unserialized in some way.

The User Agent is dynamic and handles Holograms on the user behalf, moreover

15

3.5 User modeling and interaction 3. Envisioning the framework

<<|nterface>> HoloDoer
EvantSander
'
| ?
'
UserProxy ' UsarAgent
+sendCmd{hologramld, emdName, params) +execCmd(hologram|d, cmdName, params}

Figure 3.5: Structural diagram of object regarding user modeling. UserAgent is
the object that place the user inside the Augmented World. UserProxy is a simple
entity that is used for remote interaction.

it could also have an Hologram associated representing the user itself.

The User Agent is then meant to be part of the server application; on the client
side an User Proxy object is required in order to control the remote instance. This
object is of course tight to the adopting networking system, and is from the client
point of view the one gateway for user specific messages to the Augmented World.

16

17

3. Envisioning the framework

"TID)SAS $$900R pase(
uotssturod Xo[duwod 910U € 9189Id 0) SWRISO[OY OPIS IOAISS PUR JUOFR IosN oY) Uoam)o(poor[d o urd SWSTURYDIUI
YY) WRISO[OY oY) UO POJNIOXe A[[IJSS000NS SeM UOIOR o) JI A[UO JUSID) WO U09S 9 JSIW SJOO[0 ‘IOAIOS
oY) wWoIJ osuodsal posjueIenS JOU S 2191 JRY) 9OIJON YIOMIUWIRI] S} 9PISUIl UOI}dRIdIUL JO o[durexy| :9'¢ 9INSLq

e — —

{Bunp swosop, Jexyonu) ;g

|
|
|
|
|
|
|
|
|
|
|
|
|
|
[Bunpawesop, ‘pipwosaes i1 L)L [Bunpawcgop, ‘Preujipwipuas oL _‘
l
|
|

|

|

|

|

_ 7 _ Bunpawogop, Jajonul 1) ._..“

| | | | uopIesul i L

L L | i 1850
(epis Januas)
weifojoy juabiyuasn Axouiasn (apis yaya) weibojoy iz}

17

3.5 User modeling and interaction 3. Envisioning the framework

18

Chapter 4

The Unity Game Engine

Unity is a videogame engine well set in the industry, with an emphasis on
portability, it allows development of 3d real time applications on top of different
graphical libraries, including: Direct3D, OpenGL, OpenGL ES and other propri-
etary APIs for video game consoles. Unity gives support to most commonly used
3D assets and formats, moreover it has an increasing sets of functionality like:
texture compression, parallax mapping, SSAO, dynamic shadows, bump mapping,
fullscreen post-processing effects, etc. The engine is targeting more and more plat-
forms, and is also becoming one of the central technology onto which most known
Augmented and Virtual reality tools are based upon.

4.1 Basics

For building strong Unity-based applications, one must be first familiar with
the provided Editor. The editor is a standalone program used not only to arrange
objects into the scene, it is in fact an essential part of the developing process,
providing useful functionality in the configuration of overall aspects of the program.
Scripts order of execution, configuration of in-scene properties at start time, key-
command binding, rendering properties, audio and image compression, are all
features handled by this tool.

The main editor window is made up of several tabbed panels known in Unity as
Views. There are several types of Views in Unity each one with a specific purpose.

The Project Window displays the library of assets that are available to use
in the project. When you import assets into your project, they appear inside this
view. This include prefabs (precomposed objects created directly from the scene),
textures, materials, audios, meshes, etc.

19

4.1 Basics 4. The Unity Game Engine

o o it
calnspector:
- :
[
Targe Tastane [dose 0
» B o vy Lpar
LY T
* | o tetenr Camrn Reripl)
w|® & ol Ly L
b | o el Carrmsen Ewrees Rarip)

* ol Wlowwn Al Farmn (eripe
o e b v

Hierarchy) E
|!-li’|]':4|:“:i]' o Dm0 v i

prpRERPRER -

b o g s i i

Figure 4.1: The Unity Editor interface.

The Scene View allows you to visually navigate and edit your scene. This view
has a 3D and 2D perspective, depending on the type of project you are working on.
The Scene View can be used to select and position scenery, characters, cameras,
lights, and all other types of Game Object.

The Hierarchy contains every GameObject in the current Scene. These objects
can either be legacy Unity entities like basic shapes, lights, the camera, while other
might be assets imported into the project. Objects can be arranged inside this
view making use of Parenting; simply by dragging one object on top of another.
As objects are added and removed from the scene, they will appear and disappear
from the Hierarchy as well. By default the GameObjects will be listed in the
Hierarchy window in the order they are made.

The Inspector Window shows all the properties of the currently selected ob-
ject. These properties are public variables defined in the component script, and
can be edited at both setup and run time. Because different types of objects have
different sets of properties, the layout and contents of the inspector window will
often vary.

The Toolbar provides access to the most essential working features. On the left
it contains the basic tools for manipulating the scene view and the objects within
it. In the center are the play, pause and step controls for running the application
inside the editor.

20

4. The Unity Game Engine

21

4.2 Component based development

Unity is a component based engine, adopting a design pattern that was origi-
nally pioneered in order to avoid annoying class hierarchies. The idea is to package
all functionality of Game Objects into separate behaviour-based scripts. A sin-
gle GameObject is just the sum of his parts, being them legacy or user written
components.

Unity comes with a vast set of legacy components used to extend one Game
Object’s functionality in terms of graphics, physics, user interface, audio, etc. User
written scripts are mostly meant to be newborn components for GameObjects,
following a well defined structure in concern of the engine execution lifecycle[10].

This reused-based approach to defining, implementing and composing loosely
coupled independent components into systems is widely used in game engines and is
one of the fundamental design pattern adopted to give the user the right flexibility
to deal with most of the complexity brought by 3D real time applications[11].

GameObject components can be assigned inside the Inspector View, or by
script, using the AddComponent call of GameObject. Each public property is
directly rendered inside the Inspector with a special controller, to aid the developer
in both configuration and debugging.

4.3 Runtime Engine Overview

Most of the complexity of Unity built games is hidden behind the inner runtime
engine. This engine is the core of all Unity applications and even if his main
structure is hidden from the public eye, we can still have a simplistic view at its
possible implementation.

The Unity runtime is written in C/C++. Wrapped around the Unity core is a
layer which allows for .NET access to core functionality. This layer is used by the
user for scripting and for most of the editor UI.

This core is what really handles, in what is expected to be the most efficient way
possible, the application main loop, including aspects regarding resource handling,
front-end initialization and shoutdown, input decoupling and more.

At their heart, graphical real-time applications, such as videogames, are driven
by a game loop[12] that performs a series of tasks every frame. By doing those
tasks every frame, we put together the illusion of an animated, living world. The
tasks that happen during the game loop perform all the actions necessary to have
a fully interactive game, such as gathering player input, rendering, updating the
world, and so forth. It is important to realize that all of these tasks need to run
in one frame.

The most straightforward implementation of a game loop is to simply have a

21

4.3 Runtime Engine Overview 4. The Unity Game Engine

Startup
If the component is created -r—-———————————— — — — — — — -~
because of an Instantiate()
call, Awake is always called, OnEnable
and OnEnable is called if the
new component starts enabled,

I
I
— — - IFStart() has not been called before... |
'
I
|

FixedUpdate
yield WaitForFixedUpdate

before Instantiate returns.

yield null
and
yield WaitForSeconds

LateUpdate
OnWillRenderObject

yield WaitForEndOfFrame

OnDisable

OnDestroy

Figure 4.2: monobehaviour’s lifecyle

22

4. The Unity Game Engine

23

main while block that sequentially calls all subsystem functionality to be executed
in a single frame. This would also include the execution of all component-specific
update functions for that exact frame rate. It’s clear that without a proper struc-
ture and optimization the result would be quite unpleasant, even after adopting
the fixed time step & variable rendering practice[13].

A more optimized solution can be earn by exploiting caching. The approach is
to store all game objects inside a sequential array, so that calls to the components
update function can be made following the memory linear traversal[14]. The idea
here is that when you retrieve something from the RAM the likelyhood of requiring
to fetch something nearby is high, so the data in that area is grabbed all at once.
Of course this approach would have some impact on the complexity of game object
deletetion, but it’s often unnoticeable.

Another solution would be exploiting parallelism, in one multiprocessor game
loop architecture. A way to take advantage of parallel hardware architecture is to
divide up the work that is done by the game engine into multiple small, relatively
independent jobs. A job is best thought of as a pairing between a chunk of data
and a bit of code that operates on that data. When a job is ready to be run, it is
placed on a queue, to be picked up and worked on by the next available processing
unit. This can help maximize processor utilization, while providing the main game
loop with improved flexibility[15].

Structure 4.1 A naive approach for building a game object. Note that the code isn't
optimized to fully exploit caching.

class GameObject

{

public:
Component *GetComponent(id);
void AddComponent(Component kcomp);
bool HasComponent(id);

private:
std :: vector<Component %> m_components;
b

Structure 4.2 The naive approach for a system update would be to pass a list of
game objects like so.

23

4.4 Vuforia support 4. The Unity Game Engine

void Engine:: Update(float dt)
{
= 0; i < m_systems.size(); ++i)

for (unsigned i
[i].Update(dt, ObjectFactory—>GetObjectList());

m_systems

4.4 Vuforia support

Vuforia is a software stack for building AR applications with a large set of
carefully encapsulated advanced computer vision features. Vuforia’s recognition
and tracking capabilities can be used on a variety of images and objects, like:
single marker, multi-markers, cylinder targets, text and objects.

Vuforia provides tools for creating targets, managing target databases and
securing application licenses. The Vuforia Object Scanner (available for Android)
helps developers to easily scan 3D objects into a target format that is compatible
with the Vuforia Engine. The Target Manager is a web app available on the
developer portal that allows you to create databases of targets to use locally on
the device, or in cloud. Developers building apps for optical see-through digital
eyewear can make use of the Calibration Assistant which enables end-users to
create personalized profiles that suit their unique facial geometry. The Vuforia
Engine can then use this profile to ensure that content is rendered in the right
position.

The Vuforia Extension for Unity comes as a simple unitypackage and allows
developers to create AR applications and games easily using the Unity game engine.
Installing the extension is just a matter of extracting the package inside the project
and setup the provided prefabs into the scene. We'll briefly explain the basic steps
on how to setup a simple Unity project.

License Key The first thing to do before starting using Vuforia, is to obtain a
license key for the application to be used inside the project. The license key can
be easily created using the developers portal, after subscribing as a developer.

Adding Targets In Vuforia, objects that can be identified by the computer
vision system are called targets. For target binding, the extension provides a
vast number of prefabs ready to be used inside the scene. Before starting using
this components, however, we need to tell the scripts how these targets can be
detected. We need to add a Device Database to our project, this can be done by

24

4. The Unity Game Engine

either creating a new database or using an existing one. To create a new database
we need to use Vuforia Target Manager. After that, we just double-click on the
downloaded package to import it into the project.

Prefabs

etBuilder

Figure 4.3: Assets imported into the project by Vuforia. ImageTarget, Object-
Target, MultiTarget are all prefabs implementing a behaviour that automatically
handles the recognition and binding of one target.

Add AR assets and prefabs to scene Now that we have imported the Vuforia
AR Extension for Unity, we can easily adapt our project to use augmented reality.
First of all we need to delete, or disable, the scene Main Camera, replacing it
with ARCamera from the Prefabs folder instead. This object is responsible for
rendering the camera image in the background and manipulating scene objects to
react to tracking data. Remember that this object needs to be configured with
a legit license key. The Database Load Behaviour script also needs the list of
DataSets to be loaded when the application starts.

We now drag an instance of ImageTarget into the scene, the object that rep-
resents the marker inside the scene. By looking at the Inspector we see that the
object has an ImageTargetBehaviour attached, with a property named DataSet.
This property contains a drop-down list of all available Data Sets for this project.
When a Data Set is selected, the Image Target property drop-down is filled with
a list of the targets available in that Data Set. We can now select the DataSet
and Image Target from StreamigAssets/QCAR, these are the same target we've
generated in the TargetManager.

Add 3D objects to scene and attach to trackables We can now bind 3D
content to our Image Target, we just need to place it as a child object of our

25

4.5 The High Level API (HLAPI) 4. The Unity Game Engine

ImageTarget by dragging it on top of the parent inside the Hierarchy window. We
can now test the application, the results should show the 3D content under the
ImageTarget bound to the physical marker.

Target Manager

Add Target et

(a) An Image Target (b) Vuforia Target Manager

Figure 4.4: After an image with a good entropy is added to the dataset using the
manager, it can be easily used as an image target.

More informations on how to setup the Vuforia extension for Unity can be found
on the website in the developer’s library[16].

4.5 The High Level API (HLAPI)

There are tons of different ways for dealing with networking in Unity. For
example one is free to choose between different legacy and currently holding net-
working systems, like Unet, the Low Levl API and others, while still being able to
handle .Net sockets directly. However the problem of portability persist, and while
working with Unity it is advised to use always engine specific functions, since they
are already part of the application lifecycle.

The High Level API (HLAPI)[17] is a the current standard for developing
multiplayer games. It was introduced with Unity 4 promising to make the code
regarding networking more maintainable, compared to the previous Unet system.

It uses the lower transport layer for real-time communication, and handles
many of the common tasks that are required for multiplayer games. While the
transport layer supports any kind of network topology, the HLAPI is a server
authoritative system; although it allows one of the participants to be a client and
the server at the same time, so no dedicated server process is required.

The HLAPI allows developers to:

e Control the networked state of the game using a “Network Manager”.

26

4. The Unity Game Engine

Connection / Reader / Writer
NetworkClient / NetworkServer

Networkldentity / NetworkBehaviour

NetworkScene / ClientScene

NetworkManager

NetworkLobbyManager

Low Level API

Messaging & Serialization
Connection Management
Object state & Actions
Object Life-Cycle
Game Control

Player Control

NetworkTransform
NetworkAnimator
NetworkProximityChecker

Engine Integration

Figure 4.5: The Image shows the various layers of functionality of HLAPI, using as
a base the Low Level API. Each layer is either a class, component or GameObject
provided by Unity.

Operate “client hosted” games, where the host is also a player client.

Serialize data using a general-purpose serializer.

Send and receive network messages.

Send networked commands from clients to servers.

Make remote procedure calls (RPCs) from servers to clients.
e Send networked events from servers to clients.

HLAPI uses functions that are embedded in the engine, it also provides ad-hoc
editor extensions in order to ease the correct configuration of the scene. Part of
the basic set of components and functionalities provided by the system are:

e A Networkldentity needed to give an unique reference to the object through
the network.

e A NetworkBehaviour for writing networked scripts exposing:

— An automatic synchronization mechanism for script variables.

— Ways of performing remote procedures calls.

27

4.5 The High Level API (HLAPI) 4. The Unity Game Engine

— Message sending capabilities.

e A Configurable automatic synchronization of object transforms, provided by
the NetworkTransform component.

e Support for placing networked objects into the Unity scenes.

Spawning entities In Unity, GameObject.Instantiate creates new Unity
game objects. But with the networking system, objects must also be “spawned” to
be active on the network. This can only be done on the server, and causes the ob-
jects to be created on connected clients. Once objects are spawned, the Spawning
System uses distributed object life-cycle management and state-synchronization
principles.

Players, Local Players and Authority In this networking system, player
objects are special. There is a player object associated with each person playing
the game, and commands are routed to that object. A person cannot invoke a
command on another person’s player object, but only on their own. So there is
a concept of “my” player object. So, in contrast of common single player games,
the “local player” object must first be instantiated by the server, and then added
into our scene locally.

State Synchronization State Synchronization is done from the Server to
Remote Clients. Data is not synchronized from remote clients to the server, this
is a job for Commands.

There are two different ways to stream data from server to clients, first is an
automatic process through the concept of SyncVars, the other is by writing custom
serialization and deserialization callbacks.

SyncVars are member variables of NetworkBehaviour scripts that are synchro-
nized from the server to clients. When an object is spawned, or a new player joins
a game in progress, they are sent the latest state of all SyncVars on networked
objects that are visible to them. Member variables are made into SyncVars by
using the [SyncVar| custom attribute.

SyncVars can be basic types such as integers, strings and floats. They can also
be Unity types such as Vector3 and user-defined structs. SycnVar updates are sent
automatically by the server when the value of the variable changes, so there is no
need to perform any manual dirtying of fields for SyncVars.

Remote Actions SynchVars are a way to stream data from the server to his
clients. HLAPI also offers a way to send specific message from client to server and
vice versa . These type of actions are sometimes called Remote Procedure Calls.

28

4. The Unity Game Engine

There are two types of RPCs in the networking system: Commands, which are
called from the client and run on the server and ClientRpc calls, which are called
on the server and run on clients.

Server

Objects

Player

A

Connect—=

Object Spawn
State Updates
ClientRPC Calls
Ready
Commands

Object Destroy
——Disconnect—m

o
-

I Client

Objects Input

Figure 4.6: The diagram shows different types of interactions supported by HLAPI.
Inside a NetworkBehaviour script the developer can use all provided attributes, as
long the right conditions are met.

The arguments passed to commands and ClientRpc calls are serialized and sent
over the network. These arguments can be:

e basic types (byte, int, float, string, Ulnt64, etc)

e arrays of basic types

e structs containing allowable types

e built-in unity math types (Vector3, Quaternion, etc)
e Networkldentity

e NetworkInstanceld

e NetworkHash128

29

4.6 Editor extension 4. The Unity Game Engine

e GameObject with a Networkldentity component attached

Arguments to remote actions cannot be subcomponents of GameObjects, such as
script instances or Transforms. They can’t be any other unserializable types.

4.6 Editor extension

Unity lets developers extend the editor with their own custom views and inspec-
tors. It is possible, in fact, to create complex editor windows usable to automatize
the creation and management of in-scene objects; or to use property drawers in
order to define how properties are visualized for all instances of a particular script.

Property Drawers have two uses:

e Customize the GUI of every instance of a Serializable class. This can be
done by attaching a new class that extends PropertyDrawer to a Serializable
class by using the CustomPropertyDrawer attribute and pass in the type of
the Serializable class that this drawer is for.

e Customize the GUI of script members with custom Property Attributes.
This can be used to limit the range of values of a specific attribute of a
component, or simply for changing how it is displayed inside the inspector.
This can be done by writing a class placed inside the Editor that has the
CustomPropertyDrawer attribute to which it’s specified the name of the
attribute to render.

By extending the editor it is not only possible to shape how custom components
are rendered and used by the developer in the Inspector, but we're also able to
write code that is directly executed inside the editor while defining the scene.

It is not hard to extend the editor main menu, adding new items and create
custom windows. Making a custom Editor Window involves the following simple
steps:

e Create a script that derives from EditorWindow.
e Use code to trigger the window to display itself.
e Implement the GUI code for drawing the content.

Scripts extending the editor needs to be placed under a subfolder of Assets
named FEditor. These scripts are then automatically executed during the editor
lifecycle at the right moment, there’s no need to compile them by hand, everything
is handled automatically by the editor’s runtime.

30

4. The Unity Game Engine 31

Example 4.3 Example of a custom window in C#

using UnityEngine;
using UnityEditor;
using System. Collections;

class MyWindow : EditorWindow {
//The attribute tells the editor to place
//the window in the top menu under the
//location “Window” with the name "My Window”
[Menultem (”Window /My_.Window”) |

public static void ShowWindow () {
EditorWindow . GetWindow (typeof (MyWindow)) ;
}

void OnGUI () {
// The actual window code goes here
}

More information about how Unity editor can be extended can be found in the
documentation[18].

31

4.6 Editor extension 4. The Unity Game Engine

32

Chapter 5

Development

In this chapter we're discussing the development of the AW framework, speci-
fying the implementation of concepts previously exposed in the design section.

The objective is not to write a software stack that implements all Augmented
World functionality from the ground up, but instead to use different technologies
to address most complex requirements by binding them together, in order to have
a taste of simple AW framework for writing 3D Augmented World programs.

Choosing Unity as a 3D real-time engine we have the advantage of a tool that
encapsulates most of the core functions required by Augmented World programs,
providing ready to use means for developing graphics, geometry of the environment
and handling real-time behaviours.

Following we’ll see how to exploit Unity advanced features to develop a frame-
work on top of the engine that also extends the editor. We’ll discuss the imple-
mentation of all basic AW framework concepts exposed in the previous chapters.

5.1 Hologram

Let’s take a look at the framework’s implementation of the Hologram concept.
Since Unity is a component-based engine, it’s only natural for the Hologram to be
in fact an extension of the MonoBehaviour class.

We present HologramComponent, the concrete implementation of an Hologram,
shaped by the sum of his parts. Its usage is based on top of the basic aspect of
the component pattern. The functionality of an Hologram is sparse between the
three main concern exposed in the previous chapter; these objects, referred by the
component, might as well not be present or not implementing a specific function
for that Hologram, simply because there might be no need.

In this perspective, the View, Model and NetworkSynch parts of the Hologram
all become Unity components as well, having the advantage to be all accessible

33

5.1 Hologram 5. Development

GameObject MonoBe haviour
+addCampanant) -~

" ¢ T

==|ntarface==
EventSender
==Intarface>>=
IHolagram
iy
| ‘
1
1
N HologramComponent
View +Imvaka(nama, params)
e+ SatViaw(viaw) NetworkSynch Model
+Sathodsal{modal) - T
| +SalMatSynch{MatSynch)
1
! i
<<Inladaca>>
IView <<Intafaca>> <<Inladaca>>
INetworkSynch IMadel

Figure 5.1: Class diagram of HologramComponent. Every module of Hologram is
a Unity component as well.

from the same GameObject. The Hologram functionalities are shaped in a Unity-
like fashion, the class isn’t meant to be extended, its behavior changes by the effect
of his parts.

In practice we think that by separating the functionality of an Hologram into
different components assigned to the same GameObject we have two main advan-
tages.

The first one is that it’s possible to assign this entities trough the inspector and
eventually handle its inspector-specific visualization trough an editor extension.
This makes easier to the developer to track mistakes in the setup of the Hologram,
in a more dynamic experience compared to the standard error message visualized
in the debug console. Moreover it’s possible to have a major flexibility in writing
specific behaviour-based scripts that can be parameterized from the editor.

The second advantage is that there’s no need for the developer to write struc-
tural specific code. Everything is handled in a more dynamic way, since there’s no
direct link between calls from an HologramCompoent to his parts.

34

5. Development

35

In this Unity-based framework, the Hologram becomes a well defined GameOb-
ject to witch are assigned the View, Model and NetworkSynchronization compo-
nents. Other legacy scrips might then be used to extend its functionality. For ex-
ample, a mesh, collider and material component must be assigned to the GameOb-
ject and then be properly handled by the View if we want it to be rendered on
screen.

The HologramComponent is meant to be the main point of interaction with
this specific Augmented Entity, its parts shouldn’t be accessed directly. When an
HoloDoer, or some other entity, interacts with the Hologram, it is meant to be
done directly through the Invoke method. This method propagates the call to the
respective View, Model and NetSynch portions of the Hologram by checking out if
the specified method is implemented on each subcomponent using reflection. This
allows the developer to separate the payload of a method between the three main
concerns, making the coding of an Hologram much cleaner and still quite flexible.
Moreover this conceptual separation is critical if we want to build a framework
that can work with different technologies, as said in the previous chapters.

An important aspect of an Hologram is that it is constantly rendered on top of
the user perceived vision of the real world. This is intrinsically handled behind the
scene by the chosen AR system. All HologramComponents are rendered applying
the transformation matrix that is fetched directly by recognizing points of interest
from the device video feed. The coordinates onto which the binding happens are
specified by the _world GameObject’s Transform, that is always used as a link from
the virtual to the physical world. All HologramComponents should then be child
of this GameObject, making their position relative to the physical point where
space coupling happens.

v @ Hologram Component (Script) #*,
There iz a problem with the networking state
& synchrenization mechanism. Probably missing
MetwarkIdentity ar MetworkBehaviour companents,
Can't find preper MetworkSyne Cemponent assigned
to this gameobject
Script i+ HologramComponent [0}
> @ Cube Model (Script) #*,
¥ [M Cube View (Script) o,
Script i+ CubeView [0}
> Colors
Jumping Limit 1.5

Figure 5.2: The image shows an error in the configuration of this Hologram re-
garding the HLAPI networking system.

Since this component might not be so much straight forward to use, and re-
quires the copresence of his parts to work properly, an ad-hoc editor extension

35

5.1 Hologram 5. Development

comes to aid. The Inspector view of HologramComponent informs the developer
about the correct configuration of that single augmented entity, in agreement to
the currently holding framework specifics. For example, if Vuforia is the used AR
technology, a message informing that the GameObject should have a parent with
a TargetBehaviour is shown if that’s not the case.

5.1.1 View

The View Component is meant to handle all aspects of an Hologram regarding
his graphics. There’s no strong requirement for this component, besides imple-
menting the IView interface, that makes him recognizable by the HologramCom-
ponent.

What this script should be used for is to write essential graphic handling logic.
Here we can rightfully find access to specific legacy components like: materials,
mesh, animations, and so on. It should expose methods that change the Hologram
visualization in some way and can make use of the standard Update method to
perform some time-based animation.

Here is a list of legacy components that makes sense to handle inside the a
View component:

Any Mesh Renderer

RigidBody

Any Colldier

Particle Effects

Animation
o Materials

If the user needs to interact with this Hologram in any way, this component
can also be used to catch input from the device (like the screen gestures, key
pressing, etc), directly from the Update method. However for a correct separation
it is advised to use a different component entirely, we’ll argue about this in later
chapters.

This component is of course tight to Unity graphics and it is not mean to be
reusable outside the Engine.

36

5. Development

37

5.1.2 Model

In its most pure form, an Hologram has memory, meaning it holds a state.
This state needs to be consistent, accessed and updated, like any standard plain
old object.

We encapsulate this simple concern inside a specific component, called Model.
The Model holds data regarding the state of an Hologram, exposing methods that
alter its state.

This object holds all structural information about an Hologram. Its instance
has sense to be located only on the server process, since Hologram specific infor-
mations are private and centralized. This doesn’t mean that redundancy can’t
be used to exploit this component for handling synchronization errors on clients,
improving fault tolerance in regard to faulty networks.

This script needs to extend MonoBehaviour and implement IModel, however
this is only necessary because we want the object to be treated like an Unity
component, so that it can appear inside the Inspector. A Model component is
meant to be used like a standard OOP object, MonoBehaviour functions, especially
Update, need to be ignored. This way, by removing MonoBehaviour from the class
declaration, the object can also be used in other environments not bound to the
Unity engine.

In brief, this object is used by this framework as a server-side data space for a
specific Hologram. The Model isn’t accessed directly form other scripts, his state
is regulated by calls performed by its HologramComponent.

5.1.3 Network Synchronization

One major concern about Holograms regard their synchronization mechanism.
In our envisioned network architecture, one central node holds the main instance
of the world, from which others update their view state.

This main instance is what really has the authority on all Hologram related data
and functions. Clients can request for a specific action be executed on a Hologram
by sending particular interaction messages, that we call commands. Client-side
Holograms are continuously notified about updates to their remote counterpart,
so that they can quickly react and update their visualization accordingly.

The behaviour surrounding message passing and data transfer between clients
and server is encapsulated in a framework specific component. This component is
the Network Synchronization one.

The Network Synchronization component is tight to the specific type of Net-
working System chosen for the application, whose functions are provided by some
sort of Network Manager. This means that in the future, if the provided Network-
ing System doesn’t sweets the developer needs, it can be swapped out by only

37

5.1 Hologram 5. Development

affecting the code regarding NetSynch components.

38

39

5. Development

"A10859001 S,91 J1 IOAISS o1} A SIoYj0 0} pajyededoid A[[enjusss SI pue 9oURISUI JUSID

oyads e woIy s)IR)S Jer) ‘purtwiod ® Jo dLI} PUNOI) SI 9UO PUOIAS S, "ITRATDUAG ® JO SURSW A(SJUSID [[€ O)
JOAIOS O} WO} vIep dPads Juauoduiod Jo SUrtear)s 9} S 9UO JSI o, “Juouoduwiod UOI}eZIUOIYIUAS JIOMION)
JO SUOIIOUNJ UTRWL OM) ST} SMOUS 9INTY 9 [, "YIOMIUWIRIJ 9} Ul UOIIDRIOIUI IOAISS-JUI[D JO MOTA 940-S PII :€°G 0INSL

(1Bunpawosoq eleq buleang (JBulgawogog

welbojoy

[leAuduig] [leauauig]
yaufgyloman yaufgyloman

="
(.Bunpawosoq.)ddy A vv

welbojoy

(. Bunpawosoq..)
PUBLLILWIO T

wsbylasn wsbylasn

©

(.Bunpewosoq,,)ayoaul

(1Bunawosoq

2RO

lsbeuep
yioman

lanaes sl

39

5.1 Hologram 5. Development

Currently the AW Framework only supports the Unity based High Level API
for Networking. We choose to start from this Networking System because it’s
embedded in latest versions of Unity and already addresses most of the networking
problems related to real-time distributed applications.

Being HLAPI on top of the real-time communication layer, it provides some
standards that needs to be followed in writing the remote communication code.
The following actions needs to be taken care of before writing the Network Syn-
chronization component using HLAPI:

e Assign a Network Identity to the Hologram.

e Ensure that this GameObject is saved into a prefab so it can be instantiated
at runtime.

e Create a component extending HLAPINetworkSynch abstract class.

HLAPINetworkSynch is the base class implementing functions that make use of
the AWNetworkManager. It requires the import of the UnityEngine.Networking
library, since it derives from the engine’s NetworkBehaviour class. NetworkBe-
haviours are special scripts that work with objects having a NetworkIdentity com-
ponent, these scripts are able to perform HLAPI functions such as Commands,
ClientRPCs, SyncEvents and SyncVars.

Using HLAPI can make the process of writing the code for view-model syn-
chronization quite easy, since the coordination mechanism for that Hologram is all
limited to the same component. This means that both server and client side of
the code are placed inside the same script. This is the standard when dealing with
NetworkBehaviours.

Inside a script that derives from HLAPINetworkSynch we can make use of
different synchronization mechanisms. Being this an extension of a NetworkBe-
haviour we can use SynchVar to dynamically update the state of a variable from
server to clients. We can also make use of standard message passing, on top of
which it is build the SendCmd function, used to remotely invoke methods on the
specific server-side Hologram. Moreover, the attribute [ClientRPC] can be used in
order to remotely invoke a method from server to all clients.

HLAPINetworkSych registers itself for remote messages from AWNetworkMan-
ager automatically as soon as a remote connection is established.

The method SendCmd() is used to remotely invoke a method on the same
Hologram. The arguments of the call are automatically serialized in a stream of
bytes, but they require to be basic types, implement Serializable or be built-it
Unity math types (like Vector3, Quaternion, etc).

It is possible to use the method AskCurrentStateMessage() to receive specific
information on the remote state of that Hologram. For this mechanism to work,

40

5. Development

41

Hologram HLAP|NetworkSynch PlayerAgent AW NetworkManager
I . inal T i w - I I
| 1:doSomething(arg) | 1.1: sendCmdithisid, "doSomething”, arg) | 1.1.1: SendCmdMessage(message) |
1.1.1.1: serialize
11.1.2 I
|
| | | l .
| | | | '
| | | | I
! ! ! !
AW NetworkManager Playenhgent Holegram

T
|
|
I

' |

1112 I

T
|
|
|
|
|
|
|
|
I

| 1.1.1.2.1: unseralize |

|
|
|
|
[

I
|
|
|
|
|
|
|
|
|
|
|
|
|
1.1.1.2.2: message
1.1.1.2.2.1: invoke("doSomething®, arg)
|
|

Figure 5.4: The figure shows the process behind the SendCmd call. The message
is sent through the network as a bytestream by the AWNetworkManager. The
message can’t reach the Hologram directly, it has to pass trough PlayerAgent, of
witch the client has the authority.

the developer must implement the abstract methods GetCurrentState and OnCur-
rentStateReceived.

GetCurrentState() is meant to generate a message holding a snapshot about
the Hologram state of affairs. It returns a StateMessage that holds data with a
key-value specification. OnCurrentStateReceived is the handler of the message, so
it is meant to fetch data from the StateMessage and update the Hologram’s view
accordingly.

This mechanism is useful when a client connects to the server and needs to
fetch all meaningful Hologram information at once. By doing this, its view can
be updated with the remote Hologram’s data, and the synchronization process
can continue from that point forward. AskCurrentStateMessage() isn’t meant to
be used repeatedly, for a continuous update of the Hologram’s representation it’s
advised for SynchVars to be used instead.

41

5. Development

5.1 Hologram

HLAP INetSynch

.

1: AskCumentStatelMessage ()

2. CmdAskCurrentStateMessage(msgld, this.id)

<

2.1.2.1: OnCurrentStateReceived(StateMessage)

g

AW Networkhana ger Playerigent

HLAP IMetSynch

I
|
|
|
|
|
“
2.1 AskCumentStateMessage |
|

2.1.1: GetStateMessage()

2.1.2: StateMessage

-——

42

I S

Figure 5.5: Interaction diagram for the AskCurrentStateMessage() call. Messages are serialized and unserialized
into objects on both parts.

5. Development

43

5.2 User shape and interaction

The User needs to be part of the model of the world. There are various reasons
for this, already addressed in the previous chapters. First of all, autonomous
entities might reason about the position and state of users. Secondly we need a
client specific means of interaction, especially if we want to use HLAPI.

When a clients joins the scene, a special GameObject is instantiated at runtime
by the AW Framework Manager. This GameObject is bound to a specific client
instance, that owns the authority for that object. This means that the application
can send Commands to that particular entity alone. By using Commands we can
trigger server side execution of code for scripts deriving from Network Behaviour
of which the client owns the authority.

For security reasons the User Agent is the only one GameObject a client can
own the authority. The structure of this entity needs to be known by the AW
Network Manager, so that it can be automatically instantiated and destroyed at
runtime.

The framework already provides a standard GameObject inside the assets folder
to be used for development and testing. This prefab is really basic, it only holds the
required PlayerCommands script without any other specific component, besides
the Network Identity one.

PlayerCommands expose the method Interact that can be used to remotely
invoke a method of the specified Hologram, enabling remote interaction. This
method doesn’t directly use the attribute [Command], but instead it simulates its
behaviour trough the use of an Interaction Message. This was necessary in order
to enable the developer to extend the set of supported data types that can be used
as an argument.

Example 5.1 PlayerCommands script - exposing the Interaction method.

/// <summary>

/// Interact with the passed object calling

//// the specified method name.

/// </summary>

/// <param name="go”>GameObject reference

/// with Networkldentity.</param>

/// <param name="method”>Method name.</param>

/// <param name="args”>Serializable parameters</param>

public void Interact (GameObject go, string method,
params object [] args){

43

5.2 User shape and interaction 5. Development

if (isClient) {
netManager
.SendInteractionMessage (go,
method, args);
} else if (isServer) {
OnGameObjectInteraction (go, method, args);
¥

}

[Command |
void CmdInteract (GameObject go, string method)
{
HologramComponent hc =
go . GetComponent<HologramComponent> ();
if (he != null) {
he. Invoke (method);
} else {
Debug. LogWarning
("Can’ t _find _HologramComponent._for.”
+ go.name
+ 7 _using._SendMessage._insetead”);
go.SendMessage (method);

}

public static void OnGameObjectInteraction (GameObject go,
string method, object[] args) {
HologramComponent hc =
go . GetComponent<HologramComponent> ();
if (he != null) {
hc.Invoke (method, args);
} else {
if (args != null && args.Length > 0) {
go.SendMessage (method, args [0]);
} else {
go.SendMessage (method);
}

44

5. Development 45

Example 5.2 Message handling inside the AW Network Manager

//Message Handling
public const short INTERACTION_MSGID = 888;

public void SendInteractionMessage (GameObject go,
string method, object|[| args){
Networkldentity ni =
go . GetComponent<NetworkIdentity> ();
if (ni = null) {
Log (”"No_network_Identity_found_on_the_object”);
return;
}
uint netld = ni.netld. Value;
InteractionMessage msg =
new InteractionMessage (netld,
method, args);
if (!client.Send (INTERACTIONMSGID, msg)) {
Log (”Problem_while_sending._msg:\n.”
+ msg. ToString ());

}

//Callback (Ezecuted locally on the server)
public void OnGameObjectInteraction (NetworkMessage netMsg)
{
InteractionMessage msg =
netMsg. ReadMessage<InteractionMessage> ();
Debug. Log (”Message._received.” 4+ msg. ToString ());
NetworkInstanceld netld =
new NetworkInstanceld (msg.netld);
GameObject go = NetworkServer.FindLocalObject (netld);
PlayerCommands
.OnGameObjectInteraction (go,
msg . method , msg.args);

PlayerCommands is a required component to be assigned to the User Agent for
the HLAPI networking system to work properly. Besides Interaction, it provides
methods for requesting object spawning and destruction.

45

5.3 Mono Event System 5. Development

Network |dentity Usar Agant
-
PlayerCommands MeshRenderer Custom Behaviour
Metwork
Behaviour

Figure 5.6: Roughly, an example of a custom prefab for an User Agent.

In its most basic form, the user doesn’t have a geometry, it’s merely an object
with a position, to which we send commands. However this GameObeject can
be extended freely by the developer through the use of composition. Specific
applications might require the user to be rendered on screen, or to perform dynamic
actions. This can easily be done by writing custom components.

5.3 Mono Event System

Inspired by event-driven programming, we want to have separation between
a specific action happening inside our world, and the objects that are directly
affected.

For example, an Hologram might perform an action that changes the state of
the world in some way. The effects of this action might have an impact on the
execution of other augmented entities, such as autonomous ones like HoloDoers.
This effects might as well regard the whole scene, or just be limited to a small set
entities in a particular geometric area.

For this reason Holograms are able to generate events, messages transmitted
into the environment, that might be or be not perceived by other entities.

The AW Framework provides his own tools for event creation and handling,
that is directly based on MonoBehaviour, making use of the implicit main loop.

A MonoEventContext is an entity where objects implementing the [EventLis-
tener interface can register to perceive context related events. In this sense, a
context simply is a set of entities related by some logical criteria.

When we extend MonoEventContext providing some kind of dynamism, we
can create event context that are related to particular geometrical properties. For
example we can create a context where Hologram entering in a specific area can

46

5. Development

47

automatically register.

A general context for the whole scene is ensured to be always present at runtime
and can be accessed through the instance of AWConfig.

Being the event context based on MonoBehaviour, it uses the FixedUpdate
method to send messages enqueued to his listeners at a fixed rate. These messages
are then received by the entities that can trigger a behaviour or as well do nothing.

BaseEvent is the primary class for events dispatched by the MonoEventCon-
text. In its basic form, it only provides reference to the sender. This class can be
extended alike, for example including the position of the sender in a Vector3, so
that the receiver can also reason on the distance from the object before handling
the event.

5.4 HoloDoer

The digital world of augmented objects is, like our own, dynamic. The main
difference is that in an Augmented World autonomous, possibly smart, entities
work for us providing some sort of aid to users. This autonomous entities are
called HoloDoer, marking the fact that are meant to handle Holograms.

Like Hologram, the HoloDoer concept is bound to be an extension of MonoBe-
haviour, enabling the developer the various advantages already discussed. Only
this time we don’t hide the exposed functions of MonoBehaviour like we did with
the Hologram. The developer has all rights to use all functionality tight to the
Unity engine life cycle.

The HoloDoerComponent class can be extended and used to handle one or
more Holograms. Being it an EventListener, it can register to an EventContext
for reacting to Hologram generated events through the use of a specific handler
function.

The behaviour of an HoloDoer is specified in a Unity-like fashion, meaning
that it is the result of the composition of more scripts. This entity can also act
over time, making use of the Update or FizedUpdate functions. This means that
its dynamic behaviour is the result of incremental changes gone trough the these
methods.

In the end, using an extension of HoloDoerComponent alone, or the composi-
tion of more scripts, we can create fully autonomous entities.

Let’s reason about how to have access to Holograms inside an HoloDoerCom-
ponent script. The most common way to access an Hologram in Unity would be
trough a public variable set inside the inspector directly from the Editor. Holo-
Doers might find even more flexible the implementation of a perceive, then act
pattern, where they can automatically get the reference of Holograms they are
interested to, and then use them by performing an Invoke() call. Of course the

47

5.5 Tracking Area 5. Development

<<|nterface=> MonoEventContext
IEvent -subscribers
& +zend|event : IEvent)

| +subscribe (listener : EventlListener)
: +unsubscribe(listener : Eventlistener)

BaseEvent Q
+SetSender |EventSendar)
+GetSe nder() ==<|nterface=>
EventListener MonoBehaviour

+axac(event : IEvent)
+addinQueue{event : |IEvent)

i
:
[}
HoloDoerComponeant
Game Object FInit()
+addComponent() [———#Subscribe ToMainEventContext()
#ExecEventsinQueus()

Figure 5.7: The class diagram shows the structure of an HoloDoerComponent,
including the aggregation of EventListeners starting from a MonoEventContext.

HologramComponent class has no means to differentiate different types of Holo-
grams, so GameObject tags should be used instead.

5.5 Tracking Area

A Tracking Area is a GameObject composed by the following parts:
e One or more trigger colliders.
e A TrackingAreaBehaviour component.

The job of this object is to track of all meaningful entities inside a specific ge-
ometric area, specified by the mesh assigned to the object collider. TrackingAre-
aBehaviour is in fact an extension of MonoEventContext, meaning objects and
Holograms can subscribe to that context, and send events to all listeners in the
area.

Moreover this component automatically generates events when an Hologram
enter or leaves the area, specifically OnTrackingAreaEnterEvent and OnTrackingAreaFax-
itFvent. This events can then be handled by HoloDoers in order to update the
state of the world by any means.

The Tracking Area is provided to the developer by the framework and can be
found inside the Prafabs folder. This ready to use GameObject can then be placed

48

5. Development

49

inside the scene, all that is left to do is to define the boundary of the collider from
scene view or within the Inspector.

The script EventContextCollector can be attached to Hologram and entities
alike to provide an automatic mechanism that collects all tracking areas the object
is into. Events can then be dispatched to all collected contexts using the Send|()
method of this component.

5.6 Editor functionality

Editor scripts are implemented to help the developer through the setup and
configuration of the framework’s parts. Essentially, these scripts are executed
inside the editor life cycle and are able to reason upon the currently state of the
scene, accessing directly to the Hierarchy.

Two are the main functionality provided by the Augmented World framework
editor extension.

The Framework Configuration Window Accessible under Window >AW
Framework Config, this view is what triggers the automatic configuration of the
scene in accord to the selected properties.

At the moment, two are the main properties that influences the auto-configuration

process. The first is the selection of the Augmented Reality system, if Vuforia is
select, then the user is notified if some of the basic Vuforia prefabs, like ARCam-
era, are missing from the scene. The second regards the Networking System, for
HLAPI the procedure automatically checks and place into the scene the AWNet-
workManager configured to work with the Unity provided Networking System.

The HologramComponent Inspector View The standard component inter-
face in the Inspector for the HologramComponent is overwritten by an ad-hoc
editor script. This script makes use of Unity editor GUI to display messages that
can help the developer trough the setup process of an Hologram, in regard to a
specific AW framework configuration.

This is possible because this script already holds the reference of the component
instantiated inside the editor. It is then possible to gain reference of the respective
GameObject and reason on his properties.

Following are some alerts provided in the Inspector view of HologramCompo-
nent.

e A message is displayed if one of the View, Model or NetSynch component is
missing.

49

5.7 The problem of serialization 5. Development

e If Vuforia is used, a message informs when the Hologram is not a child of a
Target Behaviour.

e If HLAPI is used, a message is displayed if the NetworkTransform or Net-
workIdentity components are missing.

e If HLAPI is used, a warning is shown if the object isn’t associated to any
prefab.

5.7 The problem of serialization

To bypass some of the limitation regarding the usage of the HLAPI Command
functionality, the framework uses his own bytestream serializer.

One big main annoyance of using HLAPI Commands was that it was impossi-
ble to serialize arguments that didn’t fall in the specifics list of objects provided by
Unity, being them: basic types, arrays of basic types, Unity math types, GameOb-
jects with NetworkIdentity and some others.

To solve this issue, the framework uses it’s own implementation of a command,
making use of HLAPI Network Messages. Each time a command is sent from
a client, it’s specification and arguments are packed inside a InteractionMessage.
Internally this object extends the provided abstract class MessageBase, it then
needs to implement the methods Serialize and Deserialize, that specify how the
message data should be converted to and from the bytestream.

We are now relying on the standard C# serialization process, that can auto-
matically convert simple objects flagged with the Serializable attribute. However
by doing this we are left with a big problem, the fact that all Unity basic types
like Vector3, Quaternion, Color, etc are not flagged as Serializable. For this reason
an extendible class called BinaryDataFormatter is provided to handle such cases.

BinaryDataFormatter uses a .NET BinaryFormatter in pair with a set of Sur-
rogates, that specify how special not Serializable types should be converted into
bytes and vice versa. For more information on how to use .NET formatters, sur-
rogates and selector, check the documentation[19].

20

Chapter 6

Using the framework

In the previous chapters we found out about all tools provided by the AW
Framework. Here we want to guide the reader through two different examples, in
order to give a stronger sense of how this framework should be used.

Before starting with some concrete implementation, we are going to discuss
how to properly setup the scene in order to make all parts of the framework work
together. After we’ll talk about how to properly code all entities, given that the
scene is always correctly configured.

The First example will be about a simple Cube Hologram, that upon interaction
performs some kind of action. The example will be about explaining how to write
all required scripts regarding an Hologram as well as how to use an HoloDoer in
order to perform some dynamic behaviour.

The second example is instead focused on the usage of Tracking Areas and
events. It’'ll show how to setup a simple scene with a trackable area, to which
Holograms can dispatch events into.

6.1 Creating the scene

Before starting working with the AW framework it’s necessary to import all
required scripts and assets inside the desired project, this can easily be done by
extracting all contents of the framework’s unitypackage.

The same must be done with Vuforia’s assets if it is the desired technology
for handling space coupling. The unitypackage can be downloaded on Vuforia
developer’s portal.

Now that we have all required prefabs and components in our project, we
need to properly configure the scene for the framework to work correctly. For an
automatic configuration, the developer can use the window located under Window
>AW Framework Config, that will quickly setup all prefabs inside the Hierarchy

51

6.1 Creating the scene 6. Using the framework

for the selected Networking and AR systems.

- AWConfigWind | .=
Base Settings

AR System | vuforia 4|
Networking System | HLAPT 4 |

[Change Settings

|
J

[Setup Scene

Figure 6.1: The configuration window of the framework. Implemented with a
custom editor extension.

HLAPI - Networking Since at the right moment HLAPT is the only networking
system available we’ll start by discussing its proper configuration.

First of all, it is necessary to include into the scene the object AWControlCenter
located inside the prefab folder of the project window.

The component AWNetworkManager should be assigned to this GameOb-
ject, becoming the one central point for network connectivity and related events.
AWNetworkManager needs to know:

e the relative player prefab to instantiate at runtime.
e all prefabs of Holograms present into the scene.

A ready to use player object for HLAPI can be found inside the Prefabs folder,
named PlayerAgentHLAPI.

The framework includes an user interface, optimized for mobile, usable to start
a client or server instance of the application. Before starting it is advised to include
into the scene the Canvas object located under the Prefabs folder, this UI can then
be replaced in later times with an application specific one.

Vuforia - Space coupling Using Vuforia for target-based space coupling re-
quires the scene to be set up as follows:

e ARCamera needs to be the scene default camera, configured properly with
the developer’s license key.

o A Target Behaviour must be used to mark a specific point in the physical
space. This object needs to be parent of the _world GameObject inside the
Hierarchy.

52

6. Using the framework

53

These are the simple actions that needs to be performed before starting using the
framework. If some of the previous steps are missed, both the Inspector view of an
Hologram, or the Debug view, will tell the developer what needs to be configured.

Summing up, these conditions about the state of the scene must be true, if
HLAPI and Vuforia are chosen technologies:

e AW Control Center needs to be present with attached the following compo-
nents:
— AW Network Manager
— AW Config
— Mono Event Context
— Screen Logger

e Spawn Info of AW Network Manager needs to have the reference of the Player
Agent prefab.

o A Target Base like MultiTarget, ImageTarget, etc needs to be present, be
parent of _world GameObject.

e AR Camera needs to be part of the scene and configured with:

— The App License Key
— the World Center
— the Target Database to be imported in the application

At this point the user is ready to start defining all Holograms and HoloDoers
of the project. Examples of correctly arranged scenes can be found in the provided
demo folder.

6.2 Simple Cube Example

Let’s consider this to be the “hello world” for Augmented Worlds. We want to
build an application where the Hologram of a cube is instantiated into the world
and shared by his users. Upon interaction the cube switches its colors and after a
specific number of times, it performs some kind of animation.

Let’s start by defining the Cube Model. The script implementing IModel would
include a property that describes its rendering color with the RGBA standard.

53

6.2 Simple Cube Example 6. Using the framework

using System. Collections;
using AWFramework ;
using UnityEngine;

/%%

x It ’s the model of the cube

sk /
public class CubeModel : MonoBehaviour, IModel

{

o

float xRotDegree =
float yRotDegree = 0;
float zRotDegree = 0;
public Color color;

)

o

float YRotDegree {

get {
return this.yRotDegree;
}

}

float XRotDegree {

get {
return this.xRotDegree;
¥

}

float ZRotDegree {

get {
return this.zRotDegree;
}

}

public Vector3 GetEuclidRot (){
return new Vector3 (this.XRotDegree,
this. YRotDegree, this.ZRotDegree);

}

void SetEuclidRot (Vector3 rot){
this.xRotDegree = rot .x;

54

6. Using the framework

55

this.yRotDegree = rot.y;
this.zRotDegree = rot.z;

}

public Color GetColor(){

return this. color;
}

//Shared hologram methods

public void SetColor(Color color){
this.color = color;
}

public void SetColor(int colorInt){
Color color =
colorInt = 1 7?7 Color.red
Color.blue;
SetColor (color);

}

public void Rotate(Vector3 axis, float degree){
Vectord newRot =
GetEuclidRot () + (axis * degree);
SetEuclidRot (newRot) ;

Now that the cube model is clear, let’s build the Game Object, or to be more
specific, the Hologram, directly from the editor.

Select GameObject >3D Object >Cube from the menu to create a new cube.
Move the cube under the _world GameObject in the Hierarchy.
Position the cube in order to be visible by the camera, for example at (0,0,0).

Create a new prefab in the project window and store the newly created
GameObject.

Add the prefab to the AWNetworkManager spawning list.

95

6.2 Simple Cube Example 6. Using the framework

Inspecting the cube shows us that it has a Cube Mesh and a Box Collider,
these are already part of the Cube object created by the editor; we then need to:

e Add the HologramComponent script.
e Add a NetworkTransofrm (will automatically add a Network Identity).
e Add the newly created CubeModel script.

From this point on, we can start reasoning about the Cube View and all his
relative graphical properties.

Switching colors Let’s start writing the CubeView script, that for now will
simply change the cube color upon user interaction.

using UnityEngine;
using System. Collections;
using AWFramework ;

public class CubeView : MonoBehaviour, IView

{

Renderer rend;
HologramComponent hc;

int colorInt = 0;
//
public Color[] colors;

void Start ()

{

rend = GetComponent<Renderer> ();

he = GetComponent<HologramComponent> ();

if (colors = null || colors.Length = 0){
colors = new[] {Color.blue, Color.red};

}

SetColor(colors [0]);
}

void Update ()
{

//Temporary View Control

26

6. Using the framework

57

//SetColor test
if (Input.GetMouseButtonDown (0)) {
RaycastHit hit ;
Ray ray =
Camera . main
.ScreenPointToRay (Input.mousePosition);
if (Physics.Raycast (ray, out hit, 100.0f)) {
if (hit.collider.gameObject gameObject) {
SwitchColor ();
h

}

//Rotate Test
if (Input.GetKeyDown (KeyCode.A)) {
he.Invoke (”Rotate” , Vector3.up, 10);

if (Input.GetKeyDown (KeyCode.S)) {
he. Invoke (”Rotate” , Vector3.down, 10);
}

void SwitchColor (){
colorInt = (colorInt + 1) % colors.Length;
he. Invoke (7 SetColor”, colors|colorInt|);

}

//shared hologram methods

public void Rotate (Vector3 axis, float degree)

{
}

public void SetColor (Color color)

{

transform . Rotate (axis, degree);

if (rend != null) {
rend . material . SetColor (”_Color”, color);

o7

6.2 Simple Cube Example 6. Using the framework

Log (”color._changed.to.”
+ color.ToString ());
} else {

Log (”"renderer_not_found”);
¥

}

public void SetColor (int colorlnt)

{

Color color = colors|[colorInt |;
SetColor (color);

In the code, raycast[20] is used to detect interactions with the cube collider.
Upon interaction the Hologram Invoke method is called, stating that the procedure
SetColor should be called on both CubeModel and CubeView instances of that
Hologram.

Right now we’ve obtained local synchronization between the Hologram’s view
and model, however what we really want is to update the state of the cube on the
server and receive the data back as soon it is updated.

For gaining remote view-model synchronization we’ll need to implement the
cube NetworkSynch script.

using UnityEngine;

using System. Collections;
using AWFramework

using UnityEngine. Networking;

public class CubeNetSync : HLAPINetworkSync, INetworkSync {

CubeView view ;
CubeModel model;

void Start(){

view = GetComponent<CubeView > ();
model = GetComponent<CubeModel > ();

o8

6. Using the framework 59

[ClientRpc]

public void RpcSetColor(Color color){
view . SetColor (color);

}

[ClientRpc]

public void RpcRotate(Vector3 axis, float degree){
view . Rotate (axis , degree);

}

//Shared hologram methods

public void SetColor(Color color){
if (isServer){
//send view update information to all clients
ScreenLogger . getLogger ()
.ShowMsg(” called _from._server.”
+ color.ToString ());
RpcSetColor (color);

}
if (isClient){
ScreenLogger . getLogger ()
.ShowMsg(” called _from.client”
+ color.ToString ());
//send the command to the server
SendCmd (” SetColor” , color);

}

public void Rotate(Vector3 axis, float degree){
if (isServer){
ScreenLogger . getLogger ()
.ShowMsg(” called _from._server : .ROTATE.” + degree);

RpcRotate (axis , degree);

}
if (isClient){
ScreenLogger . getLogger ()
.ShowMsg(” called from._client :ROTATE.” + degree);

SendCmd (” Rotate” , axis, degree);

29

6.2 Simple Cube Example 6. Using the framework

public override
void OnCurrentStateReceived (NetworkMessage msg){

//empty for now

}

public override StateMessage GetCurrentState (){
//empty for now
}

This script derives from HLAPINetworkSynch, meaning it shares both server
and client side code for networking.

The call of the method SetColor is split between the client and server im-
plementation. When the user calls SetColor, a new Command is sent to the
server, specifying its RGBA values. Upon command reception, Invoke is called on
that Hologram on the server, triggering the server-side code of the script. When
the server calls SetColor() the command’s parameter is dispatched to all clients
through a ClientRpc call.

The synchronization of the cube’s state seems complete, however, what hap-
pens when the client joins the server at later time? From the client perspective,
the script only updates the color property when an RPC call is performed from
the server. We need a way to synchronize the cube representation as soon as a
connection is ensured.

This can be done by implementing the methods OnCurrentStateReceived and
GetCurrentState.

//Called as soon a connection is enstabilished
public override void OnStartLocalPlayer ()
{
base. OnStartLocalPlayer ();
AskCurrentState (); //Ask the server

// for the current state message

}

/// <summary>
/// Handler that processes the current
/// state message received from the server

/// after AskCurrentState is called.

60

6. Using the framework 61

/// </summary>
/// <param name="msg”>Message.</param>

public override
void OnCurrentStateReceived (NetworkMessage msg)
{

StateMessage sm = msg.ReadMessage<StateMessage >();
Debug.Log (”state._message._received.”

+ sm. ToString () + ”.” + gameObject .name);
Color ¢ = (Color) sm.GetValue(” color”);
view . SetColor (¢);

}

/// <summary>
/// Gets the current state of the object from the model.
/// </summary>
/// <returns>The current state message.</returns>
public override StateMessage GetCurrentState ()
{

StateMessage sm = new StateMessage ();

sm. SetValue (” color”, model. color);

return sm;

Jumping We now want to make the cube perform a jumping animation after
it changes color a certain number of times. For the sake of the example we’ll not
discuss details about the animation, instead we’ll focus about how to trigger this
behaviour in the expected manner.

The ability of counting doesn’t really fit the cube model, that in accord to the
framework specifics, only stores data about the Hologram structure. We want to
decouple the behaviour from the model, for doing this we make use of an HoloDoer.

Let’s create the script CubeDoer, deriving from HoloDoerComponent. This
script will listen for incoming messages of the main event context, and when a
certain number of events are received, it will call the Jump function by calling the
Invoke method of the Cube Hologram.

using UnityEngine;
using System. Collections;
using AWFramework ;

61

6.2 Simple Cube Example 6. Using the framework

public class CubeDoer : HoloDoerComponent {

public HologramComponent cubeHologram ;
public int counterLimit = 5;
int counter = 0;

// Use this for initialization
void Start () {
Init ();
SubscribeToMainEventContext ();

}

// Update is called once per frame

void Update () {
ExecEventsInQueue ();

}

public override void Exec (IEvent e)

{

Debug. Log (” Executing._event.” + e.ToString ());
CountForJump () ;

}

void CountForJump (){

counter—++;
if (counter >= counterLimit){
counter = 0;

cubeHologram . Invoke (” Jump”);

}

Debug. Log (” Coutner :

7 + counter);

For the sake of separation we create a new empty Game Object and consecu-
tively add the CubeDoer script to it. We then assign the Cube Hologram reference
of that script from the inspector. We also flag Disable On Client, since in this case
the HoloDoer functionality are server-sided.

We now need to make the Cube Hologram generate an event when it changes
color. For doing this we simply modify the Cube Model for sending a BaseEvent

62

6. Using the framework 63

to the main event context.

public void SetColor(Color color){
this.color = color;
SendCountEvent () ;

}

void SendCountEvent (){
BaseEvent e = new BaseEvent ();
e.SetSender (GetComponent<HologramComponent > ())
AWConfig. GetInstance (). MainEventContext . Send (e
Debug.Log (”Event._sent.” + e.ToString());

)

All that is left to do now, is to implement the Jumping method on both View
and NetworkSynch components.

//CubeNetSynch

[ClientRpc]

public void RpcJump (){
view . Jump () ;

}

public void Jump(){
if (isServer){
//send view wupdate information to all clients
ScreenLogger . getLogger ()
.ShowMsg(” called _from._server : .JUMP”);

RpcJump () ;

//CubeView
public void Jump ()

63

6.3 Tracking Area Example 6. Using the framework

//trigger the animation

We can now test the application by running both a server and a client instance,
after building the program using the engine Build Window. The effect should be
the one described at the beginning, when the cube is clicked a certain number of
times, it performs the jumping animation.

Figure 6.2: The example shows that the two instances of the application are
consistent. The CubeDoer, after counting to 5, finally invokes Jump() on the
Cube Hologram.

6.3 Tracking Area Example

This example is focused on explaining the correct configuration and usage of
Tracking Areas.

Let’s consider a simple scenario where an entity can move “almost” freely on
a flat surface. We want this entity to be able to turn on and off a light upon user
input, but only when it stands inside a specific area.

Let us start by arranging the scene in a way similar to the previous example.

e Place the Cube Hologram prefab at the center of the scene, this will become
our “light”.

e Add this Hologram to the AW Network Manager spawning list.

e (Create a new cylinder object from the window GameObject >3D Object.

64

6. Using the framework

65

e Add to it the scripts Network Transform, Hologram Component and Event-
ContextCollector.

e Store this object into a prefab and add it to the Network Manager spawning
list as well.

The cylinder will be our moving entity, simulating a rolling barrel. This Holo-
gram doesn’t really need a Model component, all that we need to synchronize are
its spatial properties, that are already stored inside the Transform component.
We can then use NetworkTransform of HLAPI to automatically synchronize its
position.

We then need only to write the NetSynch and View parts of the Cylinder
Hologram, but before starting let’s attach the FventContextCollector component
to the Game Object as well.

The FventContextCollector is a (framework specific) component that automat-
ically gathers all event contexts of Tracking Areas the Game Object is inside. It
can then be used by other scripts for sending events directly into contexts he
collected.

For creating the Tracking Area we can simply drag and drop the prefab from
the AW Framework folder in the project window, or as well:

e Create a new Empty GameObject.

e Attach to it a Box Collider (or any other).

e Flag the collider as a Trigger

e Attach the TrackingAreaBehaviour script to the object.

This Tracking Area should somehow be “in the way” of the range of movement
of our barrel. We can adjust position and geometry of the object/collider directly
from the scene window.

Let’s then start by writing the Hologram View script of the cylinder.

using System. Collections
using AWFramework ;

public class CylinderView : MonoBehaviour,
[View, IEventSender {

HologramComponent hc;
EventContextCollector ecc;

65

6.3 Tracking Area Example 6. Using the framework

Vector3d force = Vector3d.zero;

void Start () {
he = GetComponent<HologramComponent > ();
ecc = GetComponent<EventContextCollector >();

}

void Update () {
Moving ();
//pressing button
if (Input.GetKeyDown (KeyCode. Space))
he. Invoke (7 SpacePressed” , 1);
if (Input.GetKeyUp (KeyCode. Space))
he. Invoke (7 SpacePressed”, 0);

}

void Moving(){
//handle input
float x = Input.GetAxisRaw(” Horizontal”);
if(x !I= 0){
Vector3d dir = new Vector3(x,0,0);
he. Invoke ("Move” , dir);
}
//actually move
transform . position 4= force *x Time.deltaTime *x 2.5f;
force = Vector3.zero;

}

public void SendBtnEvent(int state){
if(ecc != null){
ButtonPressedEvent bpe =
new ButtonPressedEvent (this, state);
ecc.Send (bpe);

}

/// <summary>
/// Gives the input to move for one frame.

/// </summary>
/// <param name="dir”>Dir.</param>

66

6. Using the framework 67

public void MoveLocal(Vector3 dir){

force = dir;
}
¥
public class ButtonPressedEvent : BaseEvent
{
int state = 0;

public ButtonPressedEvent (IEventSender sender, int state)

{

SetSender (sender);
this.state = state;

}

public int State {

get {
return this.state;
¥

We use MonoBehaviour’s Update method to perform the dynamic movement
of the barrel through time, in response to the user input.

Only the server has rights to perform actions on Holograms, all the user can do
to it is sending Commands. When the user presses the Right or Left input of the
Horizontal axis, a command specifying the intended direction is sent to the server.
The actual update of the position is then deferred to when the remote Hologram
has actually moved. Using the NetworkTransform component, the position of the
cylinder is updated automatically to all clients, without it, we need to write our
synchronization code.

In the Update function still, we Invoke SpacePressed on the Hologram when
the space input key is pressed or released.

We also implement the method SendBtnEvent that propagates the event But-
tonPressedEvent to all context the collector has gathered.

The Cylinder Hologram’s implementation ends with the Network Synchroniza-

67

6.3 Tracking Area Example 6. Using the framework

tion script.

public class CylinderNetSync : HLAPINetworkSync,
INetworkSync {

CylinderView view;

public void Start ()

{
}

public void Move(Vector3 dir)

{

view = GetComponent<CylinderView> ();

if (isServer) {
view . MoveLocal (dir);

if (isClient) {
SendCmd (”Move” | dir);
}

}

public void SpacePressed(int state){
if (isServer) {
view . SendBtnEvent (state);

if (isClient) {
SendCmd (” SpacePressed”, state);
}

}
//

public override
void OnCurrentStateReceived (NetworkMessage msg){

//nothing
}

public override StateMessage GetCurrentState ()

{

68

6. Using the framework

69

return null;

When a client Invokes Move() on the Hologram a command is sent to the server
that eventually executes the server-side portion of the code. The server will then
move the GameObject and NetworkTransform will synchronize its position to all
clients.

When SpacePressed is called, the client will send the command to the server,
and like before, the server will call the specific view method, this time making the
Hologram generate a ButtonPressedEvent.

For the CylidnerHologram everything seems in order, but we still miss an im-
portant piece of the puzzle, what happens when an event is sent to the Tracking
Area Context?

We need an entity handling the Cube Hologram, listening for events from the
Event Context. This entity is an HoloDoer, we can easily update the CubeDoer
script of the previous example to perform the right actions on our “lightbulb”.

public class CubeDoer : HoloDoerComponent {

public HologramComponent cubeHologram ;
public int counterLimit = 5;

int counter = 0;

public MonoEventContext [] subscribeTo;

// Use this for initialization
void Start () {
Init ();
SubscribeToMainEventContext ();
foreach (MonoEventContext mec in subscribeTo){
mec. Subscribe (this);
}

}

// Update is called once per frame

void Update () {
ExecEventsInQueue ();

}

69

6.3 Tracking Area Example 6. Using the framework

public override void Exec (IEvent e)

{

Debug. Log(” Executing._event.” + e.ToString ());
CountForJump () ;

System . Type type = e.GetType();

if (type.Equals(typeof(OnTrackingAreaEnterEvent))){
Color ¢ = Color.red;
cubeHologram . Invoke (" SetColor”, c¢);

if (type.Equals(typeof(OnTrackingAreaExitEvent))){
Color ¢ = Color.blue;
cubeHologram . Invoke (" SetColor”, c¢);

if (type.Equals(typeof(ButtonPressedEvent))){
ButtonPressedEvent bpe = (ButtonPressedEvent) e;
if (bpe.State =— 1)
cubeHologram . Invoke (” SetColor” , Color.yellow);
else
cubeHologram . Invoke (7 SetColor” , Color.grey);

}

void CountForJump (){

counter-++;
if (counter >= counterLimit){
counter = 0;

cubeHologram . Invoke (” Jump”);

}

Debug. Log (” Coutner :

7 + counter);

From the Inspector, we now need to assign the reference to the Cube Hologram
and the Tracking Area Event Context to the CubeDoer script.

Finally we can test the application, the results should show the cube changing
color from yellow to gray upon pressure of the space key, but only when the cylinder
is inside the tracking area. Moreover, the cube will switch from blue to red when
the GameObject enters and leaves the area respectively.

70

6. Using the framework

71

Figure 6.3: The image shows consistency between two instances of the application.
The space input key shows effects only when the cylinder is inside the tracking
area.

6.4 Building and testing

As mentioned before, our framework for now makes only use of tools provided
by the Unity engine. The application can then be built directly from the edi-
tor, through the Building section; there’s no need to further configure and setup
different systems.

In our case, the client and server application shares the same code, meaning
there’s no separation at all between code from a server and client executable. This
might not be the case in the future of course, where more scalable Networking
System might be used instead. In that case, the client’s application will still be
build from the editor.

For the standalone pc build there’s no need for further configuration, the de-
veloper just selects the main scene the program starts with. For mobile there’s
the need to configure the application package name. The developer can switch
form one platform to another by simply using the button inside the Build Settings
window.

For testing, the developer needs to run both instances of the application, we
suggest the server to be always a standalone application. When the program
starts the user can select if the running instance is either a server or client from
the provided GUI that opens right after launch.

When the user choose either the server or the client instance, the AW Network
Manager performs all its configuration steps, and then effectively instantiates all

71

6.5 Reposiory 6. Using the framework

Holograms into the scene.
The editor might also be used to run the application, so that the developer can
debug its code and make use of the editor gizmos.

Build Settings n

Scenes In Build

¥ AwFramework/Demo/trakingArea.unity 0
[scenes/main.unity

[scenes/cubei.unity

[J AwFramework/Demo/cubel.unity

Add Current

Platform

é, PC, Mac & Linux Standalone
”

~f¢ PC, Mac & Linux Standalone € Target Platform
Architecture
Development Build
Autoconnect Profiler
Script Debugging

EDDi|§

[Switch Platform | [Player Settings... | [Build |[Build And Run_|

Figure 6.4: The Unity build setting window. Each required scene needs to be
added to the build using the Add Current button.

6.5 Reposiory

All the framework’s code, unitypackage, project, assets and demos can be found
in the following repository.

https://github.com/pievis/AWFramework

Demo scenes can be directly opened and inspected:
e demo/scenes/cubel

e demo/scenes/trackingArea

72

https://github.com/pievis/AWFramework

Chapter 7
Wrapping things up

In the previous chapters we exposed a novel approach for building complex
mixed-reality applications based on the Augmented World model. We addressed
many concerns about the major aspects of these programs and we proposed ways on
how to efficiently encapsulate these functions in order to obtain a well established
structure that wraps together different technologies.

In this chapter we want to give a sense of closure to our work. Here we stop and
briefly analyze the current state of the art of technologies currently showcased for
the development of mixed-reality cooperative systems, comparing them to what
we learned from the Augmented World model.

We'll discuss why we think it’s important to have a concrete framework for de-
veloping such systems, carrying on with an afterthought about what to implement
in the future in order to meaningfully extend its functionalities.

7.1 State of the art of technology

The way we've always experienced computation is changing. With the intro-
duction of Mixed Reality, we are slowly undergoing the creation of a new paradigm,
for now only carried by researchers and big companies.

This year, Hololens has finally been released to the public, available only to a
small set of developers. Thanks to the recent publication of its documentation, we
can start to reason about how a big firm such as Microsoft is addressing problems
much likely similar to the ones presented in the Augmented World model, from a
programming perspective.

From the beginning, Microsoft presented Hololens as a system embedded with
some cooperative capabilities, where two or more users wearing the same head-
set could display and interact on the same augmented environment. During the
Hololens Build 2016 conference, different applications showed this peculiar feature,

73

7.1 State of the art of technology 7. Wrapping things up

Figure 7.1: Showcase of a medical application for cooperative learning supported
by Hololens. This application was shown during Build 2016 conference and displays
a flying head as the avatar of some remote user.

most notably Autodesk Fusion 360, that provides a collaborative way of shaping
3D objects.

Besides some promotional material, there’s no other way of knowing about
what it is like to build Holographic applications. We have to resort at the still
poor documentation.

Even Microsoft has chosen Unity as one of the enabling engine for building holo-
graphic applications, providing its own sets of scirpts and prefabs, that somehow
needs the support of Visual Studio to be compiled.

The Hologram API is of course focused on shaping mixed reality experiences
around the device, and it is not focused on the creation of multi-user programs.
The main concern of cooperation is pushed past the gestures and voice recognition
functionalities.

Shared experiences seems to be addressed inside the documentation|21], stat-
ing that Hololens APIs for Unity provides means for sharing the same envi-
ronemnt. However no further explanation is given about specific Hologram state-
synchronization code and user interaction at the time.

At the current state of the art, Microsoft may be not properly showing its plans
about the future of shared experiences programming-wise. But it is of course a
major concern. Object Theory[22] has in fact recently launched a Mixed Reality
Collaboration Service for Hololens, providing a layer of functionalities for multi-
user holographic experiences.

74

7. Wrapping things up

75

7.2 Why a framework?

Looking past what Microsoft has displayed so far, we notice that form a pro-
gramming perspective, the creation of cooperative Mixed-reality systems can be
performed by tightening up different entities to compose a coherent augmentation
of the world.

However starting with the simple tools provided by Unity and third parties
for the creation of such systems is just too naive. When the complexity of the
application increases and move closer to the Augmented World model the need of
a well structured framework is strong.

Figure 7.2: Example of a mixed reality application made by using Unity and
Vuforia alone. The application enabled users to interact and manipulate objects
inside a limited augmented surface. Code regarding cooperation, user shape and
interaction, synchronization of entities was all ad-hoc, no framework was used at
the time.

We remember that an Augmented World program is not simply a multi-user
mixed reality experience. The world is made to exist independently form the
presence of its user, and it’s inhabited by autonomous entities that continuously
change their surroundings.

When we want to build these in-between reality and virtuality experiences, we
need a strong understanding of all aspects of a single Hologram. For this reason
in the provided implementation we forced developers to split up the three main
concerns regarding an Hologram.

75

7.3 The future 7. Wrapping things up

In Unity, composition is a winner, everything is handled by loosely coupled
references between GameObjects and components. This is good because it al-
lows flexibility for behaviour building. However, in regard of networking, and
Augmented Worlds in particular, we need to be strict on some of the model re-
quirements. Not having total control over the state of an Hologram might cause
inconsistencies and make life harder to the developer during the debugging process.

We put major regard upon the Network Synchronization behaviour of a Holo-
gram. As we stated before, the developer should be able to choose what Networking
System to use for building his program, because it has an enormous impact on the
overall multi-user experience, including the number of user supported at a time.

If we want to go large scale, we sure need more concise ways for developing
scalable multi-user and dynamic systems, maybe inspired by Massively Multiplayer
Online Games architectures.

For these main reasons, we believe that the developers will sure appreciate a
software stack that can remove some of the complexity of writing these applica-
tions, based on some interpretation of the Hologram concept.

Of course the main advantage remains the fact that these ready to use tools
will make the development of the system faster, moreover in our case study we can
use them to gain experience about building Augmented Worlds.

7.3 The future

At its current state, the framework might miss some of the main services that
a software stack for Augmented Worlds should provide. Here we list some of the
funtionalities that were left unhandled and need to find the right space inside the
AW framework.

Wearables Of course to make the user fully experience an Augmented World,
the framework needs a way to give support to some kind of wearables, mostly
headsets. Fortunately the combination of Unity and Vuforia seems already capable
of handling different kid of devices.

By providing the right configuration to the AR Camera component, Vuforia
gives support to most common headsets, including gears that make use of the
smartphone, like the Google Cardboard. This is possible because the component
is already capable of splitting the image of the camera in two, creating the effect
of stereoscopy on a single screen.

Vuforia also gives support to optical see-through devices, although Espeon
Moverio[23] and ODGI24] are the only one supported at the time. Recently Vuforia
has also announced a partnership with Hololens, but we don’t know how it will
effect the developing process through Unity at the moment.

76

7. Wrapping things up

Sensor bracelets like Myo[25] should also be considered in the future. This kind
of devices could be used in order to provide a way of interaction in alternative to
the device screen. This might call for the integration of specific APIs for such
wearables, following a study of the device implementable features.

- -

) ODG R-7

(b) Moverio BT-200

c¢) Myo (d) Google Cardboard
Figure 7.3: Small set of devices that the framework can already, or could, support
in the future.

Decoupling user input At the current state of development, there’s no frame-
work provided entity to manage interaction between the user input and a specific
Hologram. This means that the developer has to write his own user-interaction
code, however we might be able to give support to this request by providing a
context-aware mean for interaction.

In Unity, we are mostly used on handling inputs directly inside the Update
method, by checking for specific external signal using the provided APIL.

Even in our example code, we wrote user-hologram interaction directly inside
the View Component, using standard Unity input lookup mechanism. We used
raycast, a technique based on detecting collisions between an imaginary line and
an object, to check if the user was at the time tying to interact with the Hologram
attached to our script.

There’s no problem in handling interaction for a specific Hologram from the
user device screen then, but what about other types of input? This is a major
concern when we introduce headsets; at this point interaction with Holograms
should be handled in new innovative ways. For example by using gestures, or
vocal commands.

77

7.3 The future 7. Wrapping things up

First of all then, we need a way to redirect a generic user input, even the
simplest keypress, to a specific Hologram. For this we need to implement a user
"selection” context, that dispatches events regarding inputs to the currently hold-
ing Hologram.

The behaviour about how to populate this context might be up to the devel-
oper, but the framework should at least provide some small set of scripts that
automatically select the object the user is interested in controlling.

For example, a way of selecting the Hologram the user is interested to, is by
implementing the ”gaze” concept. Using raycast we can easily discover what the
user is looking at by mean of the direction its camera is facing.

device screen

Selection Context

Figure 7.4: The figure shows a representation of the ”gaze” concept. The user,
looking trough his device directly to an Hologram, has selected its target for inputs.

The idea is to give the developer different layers for developing his own means
of interaction. We should then provide some ready to use scripts, already imple-
menting ”"gaze” and other types of selections, being them the extension of a basic
type providing all standard functions in order to catch inputs and dispatch these
messages to the currently holding Hologram.

When an input message reaches the Hologram, it can then be handled inside
the View component thanks to specific handlers or inside the Update function
directly.

Interaction is a major concern in the Augmented World model. The way of
handling and controlling an Hologram should be natural to the user. We're excited
to see what the future will bring in terms of APIs and technology that could
effectively provide ways of handling virtual objects without any gimmick. In this
field we might take note of progress made by Meta2’s unique neuroscience-driven
interface design principles to access, manipulate and share digital information, by
using hands in the most natural way possible.

78

7. Wrapping things up

79

Figure 7.5: Proof of concept of Meta2 interaction handling. No other tools are
required other than the user hands. Movements are tracked in a way that makes
possible to move holograms like they where physical objects.

Localization and mapping The physical world, is for its nature, dynamic.
Objects are often moved, introduced and removed from our environment. It is not
feasible to remodel the representation of the world every time a big change is made
in the room, like the case of moving furniture.

When our application needs to reason about physical boundaries, it is strong
the need of having at our disposition some technique that can automatically map
and model the ambient surroundings.

We can find two main ways of doing this, by either using the server, or by
delegating it to clients.

From the server, we can track the position of objects from different sensors and
cameras disposed inside the ambient. When a change is perceived, as long it is
inside the “field of view” of this sensors, we can track and update the state of the
world accordingly.

By delegating to clients, as long as they have the technology, we can make them
continuously fetch information about the environment. While this information is
being fetched, we could send the data to the server, so that it can increase its
knowledge of the world and consequently generate the right collision meshes.

Some experiments about this functionality could be made using Vuforia’s Smart
Terrain technology, that given the right environmental conditions, is able to gen-
erate a small map of the ambient directly into the scene.

In the future, we might as well explore Google Project Tango[8] APIs for Unity.
Project Tango enables apps to track a device’s position and orientation within a
detailed 3D environment while it is simultaneously mapped. This technology uses
specialized depth sensors in combination with a gyroscope and the device camera

79

7.3 The future 7. Wrapping things up

I‘

Tracking & Realtime Geometry Reconstruction
of a Small Apartment'(1000 ‘sqft)

Figure 7.6: In this figure, Project Tango is tracking in real time the geometry of
the space. It can detect spots he has already seen and update the user position
accordingly.

to obtain its results.
Simultaneous localization and mapping it’s another of the many features that
should be taken in account when dealing with Augmented Worlds in the future.

Physical embedding Physical embedding was discussed as one of the main fea-
ture of the Augmented World model. However, this functionality was momentarily
left unhandled to focus more on the virtual aspect of the model.

Physical embedding should be provided in a way similar to the Network Syn-
chronization component, only this time the component should be able to interact
using different communication protocols and different APIs, in regard to the phys-
ical device we want to take control.

Physical embedding should then be recognized as a part of an Hologram, so
that its functions can be called through the Invoke method. The framework should
provide an unique interface, called for example EmbeddedSynchronization, that is
used to mark all scripts that require to send messages to the remote physical
devices. These scripts of course needs an ad-hoc implementation of the device
APIs made by the developer, before even starting to write this behaviour.

By doing this we’ve effectively decoupled this concern in an isolated behavioural
script. However this could be the case where some hierarchical structure may pro-
vide some standard functions in a way similar to SendCmd for the NetworkSyn-

80

7. Wrapping things up

81

chronization component.

81

7.3 The future 7. Wrapping things up

82

Chapter 8

Conclusion

As technology is moving forward, new programming scenarios opens. We've
reached the point of developing software much similar to ones portrayed in old style
sci-fi movies. With Augmented Worlds we want to bring reality and virtuality
closer, envisioning a new generation of systems in which computation can take
various form of augmentation.

In this paper we carried out an experiment about the creation of a software
solution for building Augmented World programs, based on already existing tech-
nologies. With Unity as a strong 3D real-time engine, the complexity of the frame-
work is reduced, imposing a reused-based approach on top of the use of Compo-
nents. The Vuforia extension enables Augmented Reality functionality in the most
transparent way possible, making it likely the best candidate for handling space
coupling at the moment. HLAPI is another Unity-based technology that reduces
complexity of writing real-time communication code for state synchronization.

The process of envisioning the framework was useful in order to clarify some
of the essential pieces behind these programs. We've intrinsically imposed an
abstraction, that makes use of Holograms and HoloDoers in order to shape the
contents of AW applications. While developing the framework we learned how
all subsystems are linked together, while still focusing on providing separation of
concerns between the three Hologram functions.

We are still far away from the ideal Augmented World Framework suitable for
large scale or complex systems, however we find peace knowing the software is not
that far behind from the concept we had in mind.

The developing process went on smoothly without any unforeseen limit imposed
by the used technologies, making the creation of this solution easier than expected.
Moreover, we might not be that far away from the right interpretation on how
to build these systems. In terms of design and programming Unity brings well
known advantages to the implementation of real-time dynamic systems, giving the
developer the flexibility to separate behaviour into scripts; and yet leaving the

83

8. Conclusion

definition of the right constraints to AW Framework specifics.

In the end we can learn a lot about Augmented World system by using this
experimental framework alone, but the great given is the information acquired
through the creation process.

84

Bibliography

1]
2]
3]

[4]

[10]

[11]

[12]

[13]

“Oculus rift specs.” https://www.oculus.com/en-us/rift/.
“Htc vive specs.” https://www.htcvive.com/eu/product/.

“Hololens hardware.” https://www.microsoft.com/microsoft-hololens/
en-us/hardware.

P. Milgram and A. F. Kishino, “Taxonomy of mixed reality visual displays,”
IEICE Transactions on Information and Systems, p. 1321-1329, 1994.

A. Croatti and A. Ricci, “Programming abstractions for augmented worlds,”
AGRFEFE! @ SPLASH 2015, 2015.

[. D. Bratman ME and P. ME, Computational Intelligenge, ch. Plans and
resource-bounded pratical reasoning, pp. 349 — 355. ME, first edition ed.,
1988.

G. Fiedler, Networked Physics, ch. State Synchronization. online ed., 2015.
“Project tango.” https://get.google.com/tango/.

B. Nystrom, Game Programming Patterns, ch. Update Pattern. gb, first
edition ed., 2015.

“Unity manual - execution order.” http://docs.unity3d.com/Manual/
ExecutionOrder.html.

B. Nystrom, Game Programming Patterns, ch. Component. gb, first edi-
tion ed., 2015.

B. Nystrom, Game Programming Patterns, ch. Game Loop. gb, first edi-
tion ed., 2015.

G. Fiedler, Game Physics, ch. Fix Your Timestep! online ed., 2015.

85

https://www.oculus.com/en-us/rift/
https://www.htcvive.com/eu/product/
https://www.microsoft.com/microsoft-hololens/en-us/hardware
https://www.microsoft.com/microsoft-hololens/en-us/hardware
https://get.google.com/tango/
http://docs.unity3d.com/Manual/ExecutionOrder.html
http://docs.unity3d.com/Manual/ExecutionOrder.html

BIBLIOGRAPHY BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Gaul, “Component based engine design.” http://www.randygaul.net/
2013/05/20/component-based-engine-design/, 2013.

J. Gregory, Game Engine Architecture, ch. Low-Level Engine Systems. CRC,
second edition ed., 2015.

“Vuforia dev portal - how to setup a simple wunity project.”
https://developer.vuforia.com/library/articles/Solution/
Compiling-a-Simple-Unity-Project.

“Unity manual - the high level api.” http://docs.unity3d.com/Manual/
UNetUsingHLAPI.html.

“Extending unity editor.” http://docs.unity3d.com/Manual/
ExtendingTheEditor.html.

“Binaryformatter class.” https://msdn.microsoft.com/en-us/
library/system.runtime.serialization.formatters.binary.
binaryformatter (v=vs.110) .aspx.

“Unity tutorials - raycast.” https://unity3d.com/learn/tutorials/
topics/physics/raycasting, 2015.

“Shared holographic experiences in unity.” https://developer.microsoft.
com/en-us/windows/holographic/shared_holographic_experiences_
in_unity.

“Object theory website.” http://objecttheory.com/.

“Moverio smart glasses.” http://www.epson.com/cgi-bin/Store/jsp/
Landing/moverio-augmented-reality-smart-glasses.do.

“Odg overview.” http://www.osterhoutgroup.com/system.

“Myo website.” https://www.myo.com/.

86

http://www.randygaul.net/2013/05/20/component-based-engine-design/
http://www.randygaul.net/2013/05/20/component-based-engine-design/
https://developer.vuforia.com/library/articles/Solution/Compiling-a-Simple-Unity-Project
https://developer.vuforia.com/library/articles/Solution/Compiling-a-Simple-Unity-Project
http://docs.unity3d.com/Manual/UNetUsingHLAPI.html
http://docs.unity3d.com/Manual/UNetUsingHLAPI.html
http://docs.unity3d.com/Manual/ExtendingTheEditor.html
http://docs.unity3d.com/Manual/ExtendingTheEditor.html
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatters.binary.binaryformatter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatters.binary.binaryformatter(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatters.binary.binaryformatter(v=vs.110).aspx
https://unity3d.com/learn/tutorials/topics/physics/raycasting
https://unity3d.com/learn/tutorials/topics/physics/raycasting
 https://developer.microsoft.com/en-us/windows/holographic/shared_holographic_experiences_in_unity
 https://developer.microsoft.com/en-us/windows/holographic/shared_holographic_experiences_in_unity
 https://developer.microsoft.com/en-us/windows/holographic/shared_holographic_experiences_in_unity
http://objecttheory.com/
http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-augmented-reality-smart-glasses.do
http://www.epson.com/cgi-bin/Store/jsp/Landing/moverio-augmented-reality-smart-glasses.do
http://www.osterhoutgroup.com/system
https://www.myo.com/

	Introduction
	Augmented World
	Main concepts
	Towards a programming model

	Envisioning the framework
	Goals
	Topsight of the system
	Hologram
	HoloDoer
	User modeling and interaction

	The Unity Game Engine
	Basics
	Component based development
	Runtime Engine Overview
	Vuforia support
	The High Level API (HLAPI)
	Editor extension

	Development
	Hologram
	View
	Model
	Network Synchronization

	User shape and interaction
	Mono Event System
	HoloDoer
	Tracking Area
	Editor functionality
	The problem of serialization

	Using the framework
	Creating the scene
	Simple Cube Example
	Tracking Area Example
	Building and testing
	Reposiory

	Wrapping things up
	State of the art of technology
	Why a framework?
	The future

	Conclusion

