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A B S T R A C T   

Active travel (walking or cycling for transport) is considered the most sustainable form of per
sonal transport. Yet its net effects on mobility-related CO2 emissions are complex and under- 
researched. Here we collected travel activity data in seven European cities and derived life 
cycle CO2 emissions across modes and purposes. Daily mobility-related life cycle CO2 emissions 
were 3.2 kgCO2 per person, with car travel contributing 70% and cycling 1%. Cyclists had 84% 
lower life cycle CO2 emissions than non-cyclists. Life cycle CO2 emissions decreased by − 14% per 
additional cycling trip and decreased by − 62% for each avoided car trip. An average person who 
‘shifted travel modes’ from car to bike decreased life cycle CO2 emissions by 3.2 kgCO2/day. 
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Promoting active travel should be a cornerstone of strategies to meet net zero carbon targets, 
particularly in urban areas, while also improving public health and quality of urban life.   

1. Introduction 

Transport has been one of the most challenging sectors for reducing its significant impacts of fossil energy use and associated 
greenhouse gas (GHG) emissions since the 1990s (Sims et al., 2014). In Europe, GHG emissions decreased in the majority of sectors 
between 1990 and 2017, with the exception of transport (EEA, 2019). Modal shifts away from carbon-intensive to low-carbon modes of 
travel hold considerable potential to mitigate carbon emissions (Cuenot et al., 2012). Given the urgency of moving to a ‘net zero’ 
carbon emissions economy, there is growing consensus that technological substitution via electrification will not be sufficient or fast 
enough to transform the transport system (Creutzig et al., 2018; IPCC, 2018). Beyond a net reduction in travel demand, one of the more 
promising ways to reduce transport carbon dioxide (CO2) emissions1 is to promote and invest in ‘active travel’ (that is, walking, 
cycling, or e-biking for transport) while ‘demoting’ motorized modes that rely on fossil energy sources (Bearman and Singleton, 2014; 
Castro et al., 2019; de Nazelle et al., 2010; ECF, 2011; Frank et al., 2010; Goodman et al., 2012; Keall et al., 2018; Neves and Brand, 
2019; Quarmby et al., 2019; Sælensminde, 2004; Scheepers et al., 2014; Tainio et al., 2017; Woodcock et al., 2018). This could reduce 
CO2 emissions from road transport more quickly than technological measures alone, particularly in urban areas (Beckx et al., 2013; 
Creutzig et al., 2018; Graham-Rowe et al., 2011; Neves and Brand, 2019). This may become even more relevant considering the vast 
economic effects of the COVID-19 pandemic, which may result in reduced capacities of individuals and organizations to renew the 
rolling stock of vehicles in the short and medium period, and of governments to provide incentives to fleet renewal. 

So how much carbon can be saved – overall – by active travel? The complex relationships between carbon emissions and transport 
in general have been investigated for many years. From previous research we know that mobility-related carbon emissions are 
determined by transport mode choice and usage, which in turn are influenced by journey purpose (e.g. commuting, visiting friends and 
family, shopping), individual and household characteristics (e.g. location, socio-economic status, car ownership, type of car, bike 
access, perceptions related to the safety, convenience and social status associated with active travel), land use and built environment 
factors (which impact journey lengths and trip rates), accessibility to public transport, jobs and services, and meteorological conditions 
(Adams, 2010; Alvanides, 2014; Anable and Brand, 2019; Bearman and Singleton, 2014; Brand and Preston, 2010; Buehler, 2011; 
Cameron et al., 2003; Carlsson-Kanyama and Linden, 1999; Javaid et al., 2020; Ko et al., 2011; Nicolas and David, 2009; Stead, 1999; 
Timmermans et al., 2003). 

However, to answer the above question on the role of active travel in this, it is important to understand why, where, when and how 
far people travel by active and motorized modes of travel. Many studies do not dig that deep and across different contexts, thus 
presenting us with a number of shortcomings. First, many studies are based on analyses of the potential for emissions mitigation by 
developing hypothetical mitigation scenarios (see e.g. Goodman et al., 2019; Lovelace et al., 2011; Tainio et al., 2017; Woodcock et al., 
2018; Yang et al., 2018). While this is useful in its own right, it sometimes lacks the empirical evidence needed to underpin the hy
potheses. Second, the majority of studies are focusing on a single city, region or country (Brand et al., 2014; Neves and Brand, 2019), 
thus limiting the potential for generalizability and transferability to other populations and contexts. Third, the majority of active travel 
studies tackle carbon emissions from end-use only (Goodman et al., 2019), thus omitting the full life cycle impacts of (active and 
motorized) travel. It is worth noting that, on a life cycle emissions basis, cycling cannot be considered a ‘zero-carbon emissions’ mode 
of transport. The manufacture, maintenance and disposal of bikes (plus batteries and motors in the case of e-bikes), as well as potential 
dietary changes due to more physical activity, produce carbon emissions further up- or downstream. Overall, however, life cycle 
emissions from cycling can be more than ten times lower per passenger-km travelled than those from passenger cars (ECF, 2011). 

To address these shortcomings and better understand the carbon-reduction impacts of active travel, it is thus important to assess the 
key determinants of travel carbon emissions across a wide range of contexts and include a detailed, comparative analysis of the 
distribution and composition of emissions by transport mode (e.g. bike, car, van, public transport, e-bike) and emissions source (e.g. 
vehicle use, energy supply, vehicle manufacturing). For most journey purposes active travel covers short to medium trips – typically 2 
km for walking, 5 km for cycling and 10 km for e-biking (Castro et al., 2019). Typically, the majority of trips in this range is made by car 
(Beckx et al., 2013; JRC, 2013; Keall et al., 2018; Neves and Brand, 2019; U.S. Department of Transportation, 2017), with short trips 
contributing disproportionately to emissions because of ‘cold starts’, especially in colder climates (Beckx et al., 2010; de Nazelle et al., 
2010). On the other hand, these short trips, which represent the majority of trips undertaken by car within cities, would be amenable to 
at least a partial modal shift towards active travel (Beckx et al., 2013; Carse et al., 2013; de Nazelle et al., 2010; Goodman et al., 2014; 
Keall et al., 2018; Neves and Brand, 2019; Vagane, 2007). To investigate these issues, we included seven European cities with different 
travel activity patterns, transport mode shares, infrastructure provisions, climates, mobility cultures and socio-economic makeups. To 
the best of our knowledge no international multicenter study on the associations of daily active and motorized travel and carbon 
emissions has been reported. 

1 For transport, CO2 is by far the most important greenhouse gas, comprising approximately 99% of direct greenhouse gas emissions. Surface 
transport is still dominated by vehicles with internal combustion engines running on petrol (gasoline) and diesel fuels. These propulsion systems 
emit relatively small amounts of the non-CO2 greenhouse gases methane (CH4) and nitrous oxide (N2O), adding approximately 1% to total 
greenhouse gas emissions over and above CO2. 
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Table 1 
Mean CO2 emissions per passenger-km by city, emissions category and transport mode (showing 2014–2016 averages to match study period).   

Operational Energy/fuel supply Vehicle supply  

Car, van or motorcycle * Public transport † Car, van, motorcycle * Public transport † Bicycle, e-bike # Car, van, motorcycle * Public transport † Bicycle, e-bike #  

gCO2/pkm gCO2/pkm gCO2/pkm gCO2/pkm gCO2/pkm gCO2/pkm gCO2/pkm gCO2/pkm  

mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD 

Antwerp 141.5 38.6 14.5 0.1 27.2 5.6 20.9 0.5 0.111 0.003 12.9 1.9 2.9 0.0 5.1 0.0 
Barcelona 142.2 45.8 17.2 0.1 27.5 7.2 30.5 0.6 0.171 0.004 10.6 1.6 3.0 0.0 5.1 0.0 
London 165.6 46.7 52.0 0.3 30.4 6.8 43.5 0.6 0.236 0.004 12.9 1.9 3.6 0.0 5.1 0.0 
Oerebro 153.3 46.8 68.8 0.3 27.5 6.1 16.7 0.1 0.011 0.000 13.2 2.1 4.2 0.0 5.1 0.0 
Rome 144.5 37.5 36.4 0.2 27.7 6.0 33.9 0.6 0.200 0.004 11.5 1.8 3.1 0.0 5.1 0.0 
Vienna 156.1 45.2 24.7 0.1 29.4 6.6 16.6 0.2 0.087 0.002 13.3 2.0 2.8 0.0 5.1 0.0 
Zurich 143.6 45.7 43.4 0.2 26.8 6.2 9.8 0.1 0.002 0.000 12.5 1.8 3.4 0.0 5.1 0.0 

Sources: hot and cold emissions factor coefficients (EEA, 2012; EMEP/EEA, 2016); vehicle fleets (ACEA/ANFAC, 2014; DEFRA/DECC, 2016; DfT, 2015; SMMT, 2016). 
* This incorporates different journey speeds, vehicle occupancy rates by trip purpose, national fuel shares of the vehicle fleet, and cold start emissions. A 22% uplift was applied to account for ‘real world’ 

driving conditions. For example in Antwerp in 2016, the car fleet was assumed to comprise the national fleet mix of 38% gasoline, 61% diesel and 1% electric; buses were 100% diesel; motorcycles 100% 
gasoline. Car occupancy rate was between 1.16 (commuting) and 2.02 (education), average 1.54 for all trip purposes. Cold/hot ratio of 1.3 and cold trip distance of 3.45 km. 

† Operational emissions are for bus using average occupancy rates. Energy/fuel supply assume a bus/rail share based on EPOMM Modal Split Tool. (http://www.epomm.eu/tems/). For example, 
Antwerp bus/rail share was 37.5% in 2016. 

# The observed e-bike share was 4.5%; therefore, average emissions include 4.5% e-bike, 95.5% normal bike. 
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This study also addresses a number of practical needs. First, there is a lack of standardized definitions and measurements (self- 
reported or measured) to identify groups within a population who use a ‘main’ mode of transport (e.g. based on distance, duration or 
frequency over a given time period), or who may be classified as ‘frequent cyclists’, ‘occasional walkers’ – or simply ‘cycling’ (yes/no). 
These should be split as much as possible as there may be different effects on overall CO2 emissions. Second, given the dominance of 
travel by car and public transport, active modes must be included to the extent possible by oversampling people using these modes. 
And finally, instead of focusing on the commute journey only, as with many studies that rely on Census data, trips for a wider range of 
journey purposes should be considered. 

This paper aims to investigate to what extent active travel is associated with lower carbon emissions from daily travel activity. 
Using primary data collected in a large European multicenter study of transport, environment and health, the paper first describes how 
total life cycle CO2 emissions from daily travel activity were derived at the individual and population levels, considering urban 
transport modes, trip stages, trip purposes and emissions categories. The core analysis then identifies the main determinants and 
models the effects of mode choice and usage on life cycle carbon emissions. Further analysis identifies and compares differences in life 
cycle carbon emissions between ‘groups of transport users’, including by ‘main’ mode of transport and different categories of cycling 
frequency. By doing so, the paper provides a detailed and nuanced assessment of the benefits of active travel in reducing total life cycle 
carbon emissions in cities. 

2. Materials & methods 

2.1. Study design and population 

This study used longitudinal data from the ‘Physical Activity through Sustainable Transport Approaches’ (PASTA) project (Dons 
et al., 2015; Gerike et al., 2016). The analytical framework of PASTA distinguished hierarchical levels for various factors (i.e. city, 
individual, and trips), and four main domains that influence mobility behavior, namely factors relating to transport mode choice and 
use, socio-demographic factors, socio-geographical factors, and socio-psychological factors (Dons et al., 2015; Götschi et al., 2017). 
Seven European cities (Antwerp, Barcelona, London, Orebro, Rome, Vienna, and Zurich) were selected to provide a good represen
tativeness of urban environments in terms of size, built environment, transport provision, modal split and ambition to increase levels of 
active travel (Raser et al., 2018). To ensure sufficiently large sample sizes for different transport modes, users of less common transport 
modes such as cycling were oversampled (Raser et al., 2018). Participants were recruited opportunistically on a rolling basis following 
a standardized guidance for all cities and also some city-specific approaches. A comprehensive user engagement strategy was applied 
to minimize attrition over the two-year timeframe. Further details on the recruitment strategy are given elsewhere (Gaupp-Berghausen 
et al., 2019). 

A total of 10,722 participants entered the study on a rolling basis between November 2014 and November 2016 by completing a 
baseline questionnaire (BLQ). Participants provided detailed information on general travel behavior, daily travel activity, geolocations 
(home, work, education), vehicle ownership (private motorized, bicycle, etc.), public transport accessibility and socio-demographic 
characteristics. Follow-up questionnaires were distributed every two weeks: every third of these follow-up questionnaires also 
included a one-day travel diary, henceforth labelled a ‘long follow-up’ (long FUQ) (Dons et al., 2015). All valid travel diaries were 
included in the analyses, with participants providing multiple diary data at different time points. Using longitudinal data of repeated 
measurements of daily travel activity has been shown to improve measurement of ‘typical’ travel behavior (Branion-Calles et al., 
2019). Participants had to be 18 years of age (16 years in Zurich) or older, and had to give informed consent at registration. Data 
handling and ethical considerations regarding confidentiality and privacy of the information collected were reported in the study 
protocol (Dons et al., 2015). Table S2 in the Supplementary Information provides an excerpt of the PASTA BLQ, including travel diary 
data. 

2.2. Exposure: transport mode choice and use 

The primary exposure variables were daily trip frequencies obtained from the travel diaries, for each of the main modes: walking; 
cycling; e-biking; motorcycle or moped; public transport; and car or van. The most common metric used by local and national ad
ministrations across the world is mode share (or split) by trip frequency, not by distance (EPOMM, 2020; U.S. Department of 
Transportation, 2017); hence the results of the primary exposure analysis may be used to estimate life cycle CO2 emissions directly 
from trip mode share data. Due to low counts of e-biking and motorcycle trips, e-biking was merged with cycling, with indirect 
emissions derived from observed bike/e-bike shares (see also footnote of Table 1). Also, motorcycle was merged with car as reported 
CO2 emission rates for motorcycles are comparable to cars on a per passenger-km basis (BEIS, 2019). Participants provided information 
on each trip made on the previous day, including start time, location of origin, transport mode, trip purpose, location of destination, 
end time and duration (Supplementary Table S2). The diary was based on the established KONTIV-Design (Brög et al., 2009; 
Socialdata, 2009), with some adaptations for online use. 5623 participants provided a valid travel diary in either the BLQ or the long 
FUQ; out of those 3836 participants completed valid baseline surveys and travel diaries. In the travel diary, trip purpose, duration and 
location were self-reported. Total trip duration was also derived as the difference between start and end time, while trip distance was 
obtained retrospectively feeding origin and destination coordinates to the Google Maps Application Programming Interfaces (API), 
which returned the fastest route per mode between origin and destination. 

Three secondary exposure variables were developed to explore differences between groups of individuals. First, participants were 
categorized as using a ‘main mode’ of travel based on furthest daily distance (levels: walking, cycling, car, public transport). Further 
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Table 2 
Summary statistics of outcomes, exposures and other covariates.  

Total study sample (n = 9858) and mean (SD) values 

CO2 emissions All modes, life cycle 3.18 (7.68) 

(kg per day) Car, life cycle 2.23 (7.25)  
Public transport, life cycle 0.93 (2.90)  
Bike, life cycle 0.03 (0.05)  
Walk, life cycle 0 (–)  
Al modes, direct only ^ 2.22 (5.62)  
All modes, indirect only ^ 0.96 (2.20) 

Transport mode usage Car 0.69 (1.29) 
(trips per day) Public transport 0.90 (1.24)  

Bike 1.05 (1.58)  
Walk 0.82 (1.36)  
All modes 3.47 (1.83) 

Average distance travelled Car 14.61 (50.32) 
(km per day) Public transport 15.51 (43.62)  

Bike 5.06 (9.71)  
Walk 0.88 (2.08)  
All modes 36.06 (63.51) 

Average travel time (min/day) All modes 87.84 (70.45) 
Age (years) All 39.19 (11.16) 
BMI (kg/m2) All 23.66 (3.83)  

Sub samples/groups and mean(SD) values of main outcome measure 

Exposures  Life cycle CO2 (mean (SD)), in kg/day n (%) 

Main mode Car 9.139 (12.532) 2307 (23%) 
(based on distance) Public transport 2.746 (5.292) 3546 (36%)  

Bike 0.169 (0.468) 3012 (31%)  
Walk 0.031 (0.159) 993 (10%) 

Cycling category Non-cyclist (none) 4.438 (8.892) 6031 (61%) 
(based on trips per day) Occasional cyclist (once or twice) 1.517 (5.552) 2329 (24%)  

Frequent cyclist (thrice or more) 0.708 (2.343) 1498 (15%) 
Cycling (yes/no) Not cycling on the day 4.438 (8.892) 6031 (61%)  

Cycling on the day 1.201 (4.589) 3827 (39%) 
City Antwerp 3.487 (7.763) 1713 (17%)  

Barcelona 2.468 (5.792) 1806 (18%)  
London 3.209 (7.788) 1027 (10%)  
Oerebro 4.559 (9.451) 607 (6%)  
Rome 3.929 (10.012) 1061 (11%)  
Vienna 2.651 (6.153) 1752 (18%)  
Zurich 3.199 (8.16) 1892 (19%) 

Sex Male 3.305 (8.043) 5061 (51%)  
Female 3.051 (7.282) 4797 (49%) 

Age (for sensitivity analysis) Age <35 years 2.903 (6.398) 4199 (43%)  
Age >=35 years 3.387 (8.507) 5659 (57%)  
Age >55 years 3.807 (9.551) 981 (10%) 

Self-rated health Excellent 3.197 (7.857) 1036 (10%)  
Very good 3.074 (7.854) 4221 (43%)  
Good 3.331 (7.575) 3839 (39%)  
Fair or poor 3.001 (6.998) 762 (8%) 

BMI (for sensitivity analysis) Healthy BMI (18.5<=BMI<25) 3.019 (7.307) 6927 (70.3%)  
Overweight (BMI>=25) 3.599 (8.649) 2599 (26.4%) 

Household income Low income (Less than €25k) 2.884 (7.436) 2713 (28%)  
Middle income (€25–€75k) 3.176 (7.449) 5535 (56%)  
High income (€75k or more) 3.699 (8.503) 1610 (16%) 

Employment status Working (full-time or part-time) 3.241 (7.761) 8404 (85%)  
Not working (retired/student/etc.) 2.838 (7.208) 1454 (15%) 

Education level Higher education or degree 3.124 (7.261) 7814 (79%)  
No higher education or degree 3.401 (9.118) 2044 (21%) 

Household composition HH two or more adults, no kids 3.156 (7.462) 4788 (49%)  
Single HH, no kids 2.778 (6.133) 1750 (18%)  
HH with kids 3.431 (8.662) 3320 (34%) 

Car accessibility Always or sometimes 3.561 (8.093) 7755 (79%)  
Never 1.781 (5.719) 2103 (21%) 

^ Direct: tailpipe emissions. ^ Indirect: well-to-tank (fuel/energy production) plus vehicle manufacture. BMI: body mass 
index. 
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categorizations based on cycling frequency included a dichotomous variable of ‘cycling’ on the diary day (yes/no) as well as a 
trichotomous variable characterizing participants as ‘frequent cyclist’ (three or more times a day), ‘occasional cyclist’ (once or twice a 
day), or ‘non-cyclist’ (none). Table 2 shows sample sizes and mean (SD) values of the primary outcome variable for each group. 

2.3. Outcome variables: carbon dioxide emissions 

The primary outcome (or dependent variable) of interest was daily life cycle CO2 emissions (mass of carbon dioxide in gram or 
kilogram per day) attributable to passenger travel. Life cycle CO2 emissions categories considered were operational emissions, energy 
supply emissions and vehicle production emissions. 

First, operational emissions were derived for each trip based on trip distance (computed from travel diary data), ‘hot’ carbon 
emissions factors, emissions from ‘cold starts’ (for cars only) and vehicle occupancy rates (passengers/vehicle) that varied by trip 
purpose. The method for cars and vans considered mean trip speeds (derived from the travel diaries), location-specific vehicle fleet 
compositions (taking into account the types of vehicle operating in the vehicle fleets during the study period) and the effect of ‘real 
world driving’ (adding 22% to carbon emissions derived from ‘real world’ test data based on ICCT (2017)) to calculate the so called 
‘hot’ emission of CO2 emitted per car-km. For motorcycle, bus and rail, operational emissions per vehicle-km were taken from BEIS 
(2019). The use of data from a UK study is a reasonable assumption as vehicle technology does not vary significantly across Europe, 
given the international nature of the vehicle market which is dominated by a relatively small number of manufacturers. An average 
urban bus in 2016 used about 34.2 L of diesel per 100 km and emitted about 1.24 kgCO2/vehicle-km. The growing share of hybrid ICE 
(up to 20%, depending on the city) and battery electric (only small at present) buses in the fleets is gradually improving these figures, 
which is taken into account in the study. Vehicle fuel type shares (gasoline, diesel, electric, other) and average occupancy rates for each 
city were based on international databases, including IIASA’s Greenhouse gas Air pollution INteractions and Synergies (GAINS) and 
Eurostat’s transport and energy data (Eurostat, 2016, 2020; IEA, 2015; IIASA, 2014). During the study period, buses were mainly 
powered by diesel powertrains; motorcycles were 100% gasoline; and urban rail was 100% electric. Public transport occupancy rates 
varied somewhat across cities. For instance for city buses, we assumed 28 passengers/vehicle in Barcelona, 21 in London, 17 in Rome, 
and 9 in Örebro (Adra et al., 2004; BEIS, 2019; EEA, 2016). Together with bus/rail split in trip rates obtained from EPOMM (2020), this 
translated into city-specific per passenger-km emission rates, as shown in Table 1. 

For cars, ‘cold start’ excess emissions were added to ‘hot’ emissions based on the vehcile fleet composition, ambient temperatures 
(see Supplementary Table S13) and trip distances observed in each city: across the seven cities, cold start emissions averaged 126 (SD 
42) gCO2 per car trip, with the trip share of a car operating with a ‘cold’ engine averaging 13 (SD 8) percent. Cold start emissions were 
higher-than-average in colder climates such as Orebro and Zurich, and lower in warmer ones such as Barcelona. 

Second, carbon emissions from energy supply considered upstream emissions from the extraction, production, generation and 
distribution of energy supply, with values taken from international databases for fossil fuel emissions (2016; JEC, 2014; Odeh et al., 
2013) and emissions from electricity generation and supply (Ecometrica, 2011). Third, vehicle life cycle emissions considered 
emissions from the manufacture of vehicles, with aggregate carbon values per vehicle type (cars, motorcycles, bikes and public 
transport vehicles) derived assuming typical lifetime mileages, mass body weights, material composition and material-specific 
emissions and energy use factors. The main functional relationships and data are provided in the Supplementary Information. The 
derived emissions rates are shown in Table 1 for each city, disaggregated by emissions category and transport mode. 

Total daily emissions were calculated as the sum of emissions for each trip, mode and purpose (e.g. the sum of 4 trips on a given day 
= trip 1: home to work by car, trip 2: work to shop by bike, trip 3: shop to work by bike; and trip 4: work to home by car). Secondary 
outcomes of interest were total life cycle CO2 emissions for four aggregated journey purposes: (1) work or education/school trips; (2) 
business trips; (3) social or recreational trips; and (4) shopping, personal business, escort or ‘other’ trips. 

2.4. Covariates 

A number of covariates (independent variables) were hypothesized to confound the association between carbon emissions and 
transport mode choice and use (e.g. Brand et al., 2013; Büchs and Schnepf, 2013; Goodman et al., 2019). Demographic and socio- 
economic covariates considered in the analyses were age, sex, employment status, household income, educational level, and house
hold composition (e.g. single occupancy, or having children or not). Vehicle ownership covariates considered were car accessibility, 
having a valid driving license, and bicycle accessibility. Health covariates considered were self-rated health status and Body Mass 
Index (BMI), which have been shown to influence motorized travel and transport CO2 emissions (Goodman et al., 2012). The perceived 
walking times to the nearest bus stop, tram stop or railway station were included as public transport accessibility measures. All of the 
covariates were self-reported. BMI was derived from self-reported weight and height as weight(kg)/height(m)2 (Dons et al., 2018). 

2.5. Statistical analysis and modelling 

In a first step, bivariate analyses were performed to assess the association between transport-related CO2 emissions, the exposure 
variables, and the potential covariates. Only covariates with p-value < 0.1 were included in further analysis. In a second step, dif
ferences in CO2 emissions between the different transport mode users were identified by using linear mixed-effects models (Baltagi, 
2008) with city as a random effect (to take account of correlation among responses from the same city). The analysis used multiple data 
points for each individual, obtained on different weekdays. This justified using a multi-level modelling approach (Bryk and Rau
denbush, 2002); we therefore included ‘individual ID’ and ‘weekday’ (level 1) as random effects, nested within city (level 2). 
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Because CO2 emissions were heavily skewed towards the right (see also Fig. 1), we applied the transformation ‘ln([x/mean(x)] +
0.01)’ (adding 0.01 to avoid turning zeros into missing values) in the comparative analysis. This improved our regression diagnostics, 
with residuals closer to a normal distribution and their variance less heteroscedastic. Note a log transformation changes the focus from 
absolute to relative or percentage change; therefore, any regression coefficient β is a mean difference of the log outcome comparing 
adjacent units of a predictor. This is practically useless, so we exponentiate the parameter eβ and interpret this value as a geometric 
mean difference (Vittinghoff et al., 2012). 

Three regression models were fitted. First, ‘model 0′ fitted an unadjusted (exposure only) fixed effects model; second, ‘model 1′

fitted a hierarchical (two levels) mixed effects model (Bryk and Raudenbush, 2002) partially adjusted by socio-demographic covariates 
of sex, age, education level, employment status, household income, and household composition; and third, model 2 fitted a hierar
chical (two levels) mixed effects model fully adjusted by all covariates from model 1 and additionally other covariates of interest (those 
found to be statistically significant in previous literature described earlier): holding a valid driving license, access to a car or van, 
bicycle ownership, self-rated health, BMI, walking-time accessibility to the nearest bus stop, and walking-time accessibility to the 
nearest train station. Age was included as a continuous variable as a proxy for time. As described earlier, city, participant and weekday 
were included as random effects in the mixed effects models (models 1 and 2). The same set of models were fitted for each of the four 
journey purposes. Equation (1) provides the general formula for the fully-adjusted model of the main exposure variable (daily 
transport mode usage), log-transformed CO2 emissions as the dependent variable, and a set of covariates with fixed effects (βi) and 
random effects (ρj). For model definitions of the three secondary exposures, replace ‘transport mode usage’ with categorical variables 
‘main mode of travel’, ‘cycling frequency’, and ‘cyclist/non-cyclist’. 

CO2* = β1 × fcycle + β2 × fcar + β3 × fPT + β4 × fwalk + β5 × sex+ β6 × age+ β7 × educ+ β8 × employ+ β9 × HHinc+ β10

× HHcomp+ β11 × license+ β12 × caraccess+ β13 × bikeaccess+ β14 × health+ β15 × BMI + β16 × PTbus+ β17 × PTrail+ ρ1

× weekday+ ρ2 × participant+ ρ3 × city+∊
(1)  

where 

Dependent variable: CO2* = ln([CO2/mean(CO2)] + 0.01); 
Exposure variables: fmode.x = trips per day by mode x; 
Covariates: sex, age, educ (highest level of education), employ (employment status), HHinc (household income), HHcomp 
(household composition), licence (driving licence), caraccess (car access), bikeaccess (bike access), health (self-rated health status), 
BMI (body mass index), PTbus (walking time to nearest bus stop), PTrail (walking time to nearest train station), weekday, 
participant, city; 
βI = vector of fixed effects; ρj = vector of random effects. ∊ = vector of random errors. 

Potential interaction by sex, employment status, income, car access, BMI and city were investigated with Type II Wald chisquare 
tests in the fully-adjusted models. We observed significant interactions for some transport modes (e.g. use of all modes and car access; 
public transport use and gender; car use and income); therefore, all models’ sensitivity to different levels of the above factors were 
tested. We also tested the models’ sensitivity to a number of other factors: age (‘<35 years’), working status (‘working’), car access 
(‘not having access to a car’), body weight (‘being overweight’), household income (‘high income’) and city (Table 2). Participants 
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Fig. 1. Distributions of mean life cycle CO2 emissions by travel emissions decile, subdivided by journey type (log-normal plot, error bars are 
95% CIs). 
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were also ranked according to their CO2 emissions (all travel and by trip purpose) then split into ten emissions deciles. Chi-square tests 
were performed on selected covariates to profile the ‘bottom’ and ‘top’ deciles. Possible mediation of the effect of transport mode use 
on CO2 emissions was assessed for three potential mediators: total daily distance travelled, BMI and self-rated health (VanderWeele, 
2016; Wanner et al., 2012). Only observations without missing data were included. R statistical software v3.6.1 was used for all 
analyses. 

3. Results 

3.1. Sample description and summary statistics 

The final sample included 3836 participants who had completed 9858 one-day travel diaries reporting 34,203 trips (Table 2). The 
sample was well balanced between male and female, and between the seven cities. Participants were highly educated with 79% of the 
participants having at least a secondary or higher education degree. Aged between 16 and 91, the majority of participants were 
employed full-time (66%), with 72% on middle to high household incomes (i.e. >€25 k) and 34% reported to have children living at 
home. The share of participants without access to a car was 21%. While cycling and public transport were the most frequent transport 
modes among our participants, people travelled furthest by public transport and car. Transport mode usage was similar between sexes, 
with a slightly higher prevalence of male cyclists and drivers vs. female walkers and public transport users. Participants reported an 
average of 3.47 (SD 1.83) trips per day ranging from 3.10 (SD 1.63) trips per day in Rome to 3.75 (SD 2.0) trips per day in Antwerp 
(Table 2). The observed cycling trip share for our sample was between 17% in Barcelona and 54% in Antwerp (Supplementary 
Table S1), i.e. somewhat higher than cycling shares reported for the cities (EPOMM, 2020) and a direct result of purposively over
sampling cyclists. Reported trip durations and distances varied between subjects and cities, with respondents travelling on average 
36.1 (SD 63.5) km a day and for 87.8 (SD 70.4) min a day. Average trip lengths across the cities were 1.1 (SD 1.6) km for walking, 5.0 
(SD 5.3) km for cycling, 20.5 (SD 45.9) km for driving and 16.7 (SD 33.6) km for public transport. These are comparable to travel 
statistics for European cities (JRC, 2013). Further results for each city are given in Supplementary Table S3. 

3.2. Levels and sources of life cycle CO2 emissions 

Life cycle CO2 emissions from all travel activity were 3.18 (SD 7.68) kilograms of CO2 (kgCO2) per person per day, with the majority 
from car travel at 2.23 (SD 7.25) kgCO2/day – i.e. 70% of the daily total (see Table 2). In contrast, life cycle emissions from cycling 
(which included a 4.5% share of e-biking across the sample) amounted for only 0.03 (SD 0.05) kgCO2/day. Direct (operational) 
emissions from all travel activity made up the majority (70%) of total life cycle emissions. While travel to work or place of education 
produced the largest share of CO2 emissions (37%), there were also considerable contributions from social and recreational trips 
(34%), business trips (11%) and travel for shopping or personal business (17%). Fig. 1 shows a highly unequal distribution of emis
sions. It also shows that the top decile of emitters were responsible for 59% (all purposes), 47% (work or education), 78% (business), 
67% (social or recreational) and 58% (shopping, personal business, escort or other) of the respective life cycle CO2 emissions. Those in 
the top decile were more likely to be male, have higher household incomes, holding a driving license and always have access to a car, 
be in full-time employment, have higher BMI, have poor bus or train accessibility and live in Orebro, Antwerp or Rome. In contrast, 
those in the bottom decile of emitters were more likely to be female, economically inactive or a student, living in a household without 
kids, be on lower household incomes, not to hold a driving license, without access to a car, own a bike, have lower BMI, live nearer to 
train stations, and live in Barcelona or London. To explain this it is worth highlighting that while Antwerp and Orebro had signifi
cantly2 higher cycling trip shares amongst the case study cities, they also had higher car shares (together with Rome) and low walking 
shares (also together with Rome). On the contrary, Barcelona and London had lower car trip shares (like Vienna and Zurich) and higher 
walking shares (Supplementary Table S3). 

In our sample, respondents in Orebro and Rome produced significantly higher-than-average CO2 emissions (mean 4.56 kgCO2/day 
and 3.93 kgCO2/day, respectively) due to the higher car mode shares, while those in Barcelona and Vienna produced lower emissions 
(mean 2.47 kgCO2/day and 2.65 kgCO2/day, respectively) due to higher share of walking (Barcelona) and a combination of lower car 
and higher public transport shares (Vienna) (Table 2 and Supplementary Table S3). Those in Antwerp had the highest active travel 
share, but also higher (than sample average) car and lower public transport shares, resulting in higher than average CO2 emissions 
overall (mean 3.49 kgCO2/day). These figures are generally in line with regional per capita CO2 emissions estimates. Differences 
between cities can partially be explained by differences in sample demographics, socio-economics and observed mode shares (Sup
plementary Table S1 and Table S3). 

3.3. Transport mode usage 

We found statistically significant associations between life cycle CO2 emissions and transport mode usage across all modes of travel 
(Table 3a): those who cycled or walked more had lower daily mobility-related CO2 emissions, while those who drove more or used 
public transport more had higher daily total CO2 emissions. In the fully-adjusted model (model 2), log-transformed life cycle carbon 

2 Comparing deciles with chi-square tests of independence. 
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emissions decreased by a factor of 0.15 (95%CI 0.13–0.17) for each additional cycling trip. They also decreased by a factor of 0.96 (95%CI 
0.94–0.98) for one less car trip. When converting the log-transformed results into physical units, we find that for each avoided car trip 
daily life cycle CO2 emissions from transport decreased by 62% (95%CI 61–63%) while for each additional bike trip life cycle CO2 
emission decreased by 14% (95%CI 12–16%). While this may be confusing at first, it is the result of converting log-transformed 
outcomes to physical units, as is common practice in such regression models (Vittinghoff et al., 2012). To derive percentage 
changes of the untransformed outcome, we exponentiated the regression coefficient, subtracted 1 and multiplied by 100. For example, 
the coefficient of − 0.962 for one less car trip (see also Table 3), we first exponentiate (=0.382), then subtract 1 (=− 0.618) and 
multiply by 100 (=61.8) to obtain a 62% decrease. Those who made one less car trip and one more bike trip a day (a proxy for mode 
shift from car to bike) decreased life cycle CO2 emissions from transport by 67% (95%CI 66–68%). 

Adjusting for demographic, socio-economic, other individual variables as well as including random effects parameters (city, in
dividual, weekday) only slightly changed the estimates in the partly and the fully adjusted models (model 1 and model 2) compared to 
the unadjusted model (model 0). The addition of car availability and bus station accessibility in the fully adjusted model (model 2) 
slightly lowered the estimate for car but increased the estimate for public transport use compared to the unadjusted (0) and partly 
adjusted models (1). 

The effects of transport mode use on transformed carbon emissions was partially mediated via total distance travelled (see Fig. 2): 
the indirect effects of total distance travelled were +0.13 for car use (13% mediated), − 0.02 for cycling (14% mediated), +0.10 for 
public transport use (13% mediated), and − 0.05 for walking (18% mediated). Neither BMI nor health status mediated this association. 

A series of sensitivity analyses largely confirmed our results (Fig. 3a): excluding participants older than 35 or on lower incomes did 
not change our conclusions; and differences between those ‘working’ and ‘not working’ and those being ‘overweight’ (above 25 kg/m2) 
and ‘healthy weight’ were small. For people who did not have access to a car the effects were larger for motorized travel and smaller for 
active travel, suggesting that active travel for non-car owning households may substitute for public transport and other active travel. 

The associations between log-transformed life cycle CO2 emissions for the four trip purposes (secondary outcomes) and transport 
mode usage were also largely significant (Table 4a and Supplementary Fig. S3a). Cycling frequency had larger effects on emissions 
from commuting to work or place of education than on emissions from all purposes (primary outcome models). Motorized transport 
mode use showed larger effects on life cycle CO2 emissions from social, shopping and recreational travel than for work/business travel. 
The ‘economically inactive’ (home duties, retired, unemployed, etc.) showed significantly higher emissions for social, recreational, 
shopping and personal business purposes, with lower emissions from work or educational trips, as expected. Those with children living 
at home had significantly lower business, social and recreational emissions, while emissions from shopping, personal business and 
escort trips were higher. Poor bus accessibility and better car access meant higher emissions from work or educational trips. 

3.4. Main mode of travel (by daily distance travelled) 

We also found statistically significant associations between life cycle CO2 emissions and the main modes of travel according to daily 
distance travelled (Table 3b): when compared to using a bike as the main mode, using the car or public transport increased CO2 while 
walking decreased CO2. In the fully adjusted model (model 2) CO2 emissions were 98 (95%CI 98–98) percent higher for using a car or 
van as the main mode than for using a bike. An average person using a car or van as the main mode had 7.1 kgCO2/day higher life cycle 

Table 3 
Results from the linear fixed-effects and mixed-effects models for the four exposures (n = 9858). Full models are presented in the Supplementary 
Information.   

Model 0: unadjusted (fixed effects) Model 1: partly adjusted (mixed effects) † Model 2: fully adjusted (mixed effects) #  

Coefficient (95% CI) p-value Coefficient (95% CI) p-value Coefficient (95% CI) p-value 

(a) Association between log-transformed life cycle CO2 emissions and transport mode usage (trips/day) (full model in Table S4) 
Bike − 0.154 (− 0.172 to − 0.137) <0.0001 − 0.16 (− 0.179 to − 0.142) <0.0001 − 0.151 (− 0.17 to − 0.132) <0.0001 
Car 0.997 (0.976–1.017) <0.0001 0.974 (0.953–0.996) <0.0001 0.962 (0.94–0.983) <0.0001 
Public transport 0.741 (0.719 to 0.763) <0.0001 0.737 (0.714–0.76) <0.0001 0.748 (0.724–0.771) <0.0001 
Walk − 0.287 (− 0.305 to − 0.269) <0.0001 − 0.278 (− 0.297 to − 0.259) <0.0001 − 0.273 (− 0.292 to − 0.254) <0.0001 
(b) Association between log-transformed life cycle CO2 emissions and main transport mode categories (full model in Table S6) 
Bike 0 – 0 – 0 – 
Car 3.89 (3.84–3.939) <0.0001 3.881 (3.829–3.932) <0.0001 3.866 (3.813–3.919) <0.0001 
Public transport 2.599 (2.554–2.643) <0.0001 2.624 (2.575–2.673) <0.0001 2.635 (2.586–2.684) <0.0001 
Walk − 1.071 (− 1.137 to − 1.005) <0.0001 − 0.956 (− 1.023 to − 0.888) <0.0001 − 0.931 (− 0.999 to − 0.862) <0.0001 
(c) Association between log-transformed life cycle CO2 emissions and cycling frequency categories (full model in Table S7) 
None 0 – 0 – 0 – 
Once or twice a day − 1.697 (− 1.781 to − 1.612) <0.0001 − 1.768 (− 1.855 to − 1.681) <0.0001 − 1.747 (− 1.835 to − 1.659) <0.0001 
Three + times a day − 2.016 (− 2.116 to − 1.916) <0.0001 − 2.071 (− 2.177 to − 1.966) <0.0001 − 2.038 (− 2.145 to − 1.932) <0.0001 
(d) Association between log-transformed life cycle CO2 emissions and cycling (yes/no) (full model in Table S8) 
Not cycling 0 – 0 – 0 – 
Cycling − 1.822 (− 1.893 to − 1.75) <0.0001 − 1.875 (− 1.952 to − 1.797) <0.0001 − 1.848 (− 1.927 to − 1.769) <0.0001  

† Model 1 adjusted for sex, age, education level, employment status, household income, household composition; city and person as random effects. 
# Model 2 adjusted for sex, age, education level, employment status, household income, household composition, driver license, car access, bike 

access, self-rated health, BMI, bus accessibility, rail accessibility; city, person and day of the week as random effects. 
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A 
Car: 11.11*** 
Bike: -1.90*** 
Public transport: 8.58*** 
Walk: -4.17*** 

Total distance 

Transport mode 
frequency Lifecycle CO2

Transport mode 
frequency 

Lifecycle CO2

Direct effects: 
Car: 0.85*** 
Bike: -0.13*** 
Public transport: 0.67*** 
Walk: -0.22*** 

B 
0.0113*** 

Total effects: 
Car: 0.98*** 
Bike: -0.15*** 
Public transport: 0.77*** 
Walk: -0.27*** 

Indirect effects (A*B): 
Car: 0.13*** 
Bike: -0.02*** 
Public transport: 0.10***
Walk: -0.05*** 

Fig. 2. Mediation of total daily travel distance in the association between transport mode frequency and log-transformed lifecycle CO2 emissions. 
The mediation models were adjusted for sex, age, education level, employment status, household income, household composition, driver license, car 
access, bike access, self-rated health, BMI, bus accessibility, rail accessibility, day of the week; city was included as a random effect. The numbers 
presented in the figure are the regression coefficients (‘***’ denotes level of statistical significance at p < 0.001). 

Fig. 3. Sensitivity analyses. Exposure variables are: transport mode usage in panel (a), main mode of travel (by distance) in panel (b), cycling 
frequency in panel (c), and cycling (no/yes) in panel (d). The dots are the beta coefficients and indicate differences in log-transformed CO2 emissions 
(error bars are 95% CIs). 
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Table 4 
Results from the fully-adjusted mixed-effects models for the four exposures, by trip purpose.  

n = 9858 Work or education # Business # Social or recreational # Shopping, personal business, escort, or ‘other’ #  

Coefficient (95% CI) p-value Coefficient (95% CI) p-value Coefficient (95% CI) p-value Coefficient (95% CI) p-value 

(a) Association between log-transformed life cycle CO2 emissions and transport mode usage (trips/day) (full model in Table S9) 
Bike − 0.24 (− 0.27 to − 0.209) <0.001 0.019 (− 0.008 to 0.046) 0.174 0.062 (0.031–0.094) <0.001 0.158 (0.126–0.189) <0.001 
Car 0.191 (0.157–0.226) <0.001 0.172 (0.141–0.203) <0.001 0.725 (0.689–0.761) <0.001 0.826 (0.79–0.861) <0.001 
PT 0.412 (0.375–0.449) <0.001 0.168 (0.134–0.201) <0.001 0.475 (0.436–0.514) <0.001 0.393 (0.354–0.431) <0.001 
Walk − 0.272 (− 0.302 to − 0.242) <0.001 − 0.064 (− 0.091 to − 0.037) <0.001 − 0.092 (− 0.123 to − 0.061) <0.001 − 0.025 (− 0.056 to 0.006) 0.112 
(b) Association between log-transformed life cycle CO2 emissions and main transport mode categories (full model in Table S10) 
Bike 0 – 0 – 0 –  – 
Car 1.532 (1.424–1.641) <0.001 0.762 (0.662–0.863) <0.001 2.281 (2.164–2.397) <0.001 1.987 (1.867–2.108) <0.001 
PT 1.873 (1.774–1.973) <0.001 0.469 (0.378–0.561) <0.001 1.002 (0.895–1.108) <0.001 0.677 (0.566–0.787) <0.001 
Walk − 0.648 (− 0.787 to − 0.509) <0.001 − 0.141 (− 0.27 to − 0.011) 0.033 − 0.784 (− 0.934 to − 0.634) <0.001 − 0.462 (− 0.617 to − 0.306) <0.001 
(c) Association between log-transformed life cycle CO2 emissions and cycling frequency categories (full model in Table S11) 
None 0 – 0 – 0 –  – 
1–2 times − 1.086 (− 1.188 to − 0.983) < 0.001 − 0.433 (− 0.522 to − 0.344) < 0.001 − 0.865 (− 0.977 to − 0.754) < 0.001 − 0.77 (− 0.882 to − 0.658) < 0.001 
3 + times − 1.498 (− 1.622 to − 1.374) < 0.001 − 0.218 (− 0.324 to − 0.111) < 0.001 − 0.756 (− 0.89 to − 0.622) < 0.001 − 0.344 (− 0.479 to − 0.21) < 0.001 
(d) Association between log-transformed life cycle CO2 emissions and cycling (yes/no) (full model in Table S12) 
Not cycling 0 – 0 – 0 –  – 
Cycling − 1.229 (− 1.321 to − 1.136) <0.001 − 0.356 (− 0.435 to − 0.277) <0.001 − 0.826 (− 0.925 to − 0.727) <0.001 − 0.617 (− 0.717 to − 0.517) <0.001 

PT = public transport. 
# Models are mixed effects models fully adjusted for sex, age, education level, employment status, household income, household composition, driver license, car access, bike access, self-rated health, 

BMI, bus accessibility, rail accessibility; city, person and day of the week as random effects. 
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CO2 emissions than someone using a bike as their main mode of transport. A comparison with the results of the non-transformed model 
suggested that using a car or van increased emissions by 8.9 kgCO2/day when compared to cycling as the main mode (Supplementary 
Table S5 and Fig. S2) – suggesting the linear model slightly overestimated differences in emissions by main mode when compared to 
the (statistically superior) log-linear model. Those using public transport as the main mode had 71 (95%CI 71–71) percent lower 
emissions than those mainly using a car, van or motorcycle; for an average person this difference equated to 5.1 kgCO2/day. 

Again, the sensitivity analysis (Fig. 3b) largely confirmed our results. Total distance travelled partially (12%) mediated the effects 
of main mode (by daily distance) on transformed life cycle CO2 emissions. The associations for log-transformed CO2 emissions by 
journey purpose were also all significant (Supplementary Table S10 and Fig. S3), with the strongest effects for mainly using public 
transport for work or education and car for social and shopping trips. Women, those with a degree or no access to a car had significantly 
lower work or education emissions. As expected, the economically inactive had significantly higher social, recreational and shopping/ 
personal business emissions, yet lower work/education emissions. 

3.5. Cycling frequency and cycling vs not cycling 

Associations between life cycle CO2 emissions and cycling frequency were all highly significant. Table 3c shows that in the fully 
adjusted model (model 2) life cycle CO2 emissions were 83 (95%CI 81–84) percent lower for ‘occasional cyclists’ (i.e. those cycling 
‘once or twice a day’) than for those who did not cycle; and they were even lower for ‘frequent cyclists’ (those cycling ‘three or more 
times a day’) with 87 (95%CI 86–88) percent lower daily life cycle CO2. The sensitivity analysis (Fig. 3c) generally confirmed our 
results, with slightly higher effects for high earners and lower effects if you were younger or without access to a car. Regular cycling 
was also associated with reduced life cycle CO2 emissions for all the four trip purposes, with the strongest effect observed for 
commuting and social trips (Supplementary Table S11): cycling three or more times a day decreased life cycle CO2 emissions for work 
or education by 78 (95%CI 75–80) percent, for social or recreational trips by 53 (95%CI 46–59) percent, for shopping and personal 
business by 29 (95%CI 19–38) percent, and for business travel by 20 (95%CI 10–28) percent. 

As expected, the binary cyclist/non-cyclist analysis showed similar effect sizes and correlations to the analysis of cycling frequency 
for both primary and secondary outcome measures. ‘Cyclists’ had 84 (95%CI 83–85) percent lower life cycle CO2 emissions than ‘non- 
cyclists’ (Table 2d and Supplementary Table S12); this translated into 0.97 (95%CI 0.54–1.74) kgCO2/day lower life cycle CO2 
emissions for an average person who cycled. The sensitivity analysis showed that the effects were lower for the younger respondents 
and those without access to a car, and higher for those on higher incomes (Fig. 3d). 

Fig. 4. Effect sizes from the fully adjusted model and sensitivity analyses (city stratification). Exposure variables: transport mode usage in panel a; 
main mode of transport (by distance) in panel b; cycling frequency in panel c; and cycling/not cycling in panel d. The dots indicate differences in 
CO2 emissions and the error bars indicate 95% CIs. 
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3.6. Sensitivity: city effects 

The random intercepts of city explained 2.2% (a: transport mode usage), 5.4% (b: main mode of transport), 2.6% (c: cycling 
frequency) and 2.5% (d: cycling yes/no) of the residual variance in the fully adjusted models. Mean CO2 emissions were significantly 
lower in Barcelona and Vienna and higher in Orebro and Rome (Table 2). Further sensitivity analyses of the fully adjusted models 
stratified by city showed that the effect estimates for cycling were generally the lowest in Barcelona and highest in Orebro and Rome 
(see Fig. 4). By comparison, CO2 effects for car travel were highest in Barcelona (and Vienna to some extent) and lowest in London and 
Rome. 

4. Discussion 

4.1. Summary of results 

This paper started on the premise that we still do not know very much about how much carbon from passenger transport is saved – 
overall – by active travel. In this multi-city study with thousands of participants providing nearly 10,000 valid person-days of travel 
activity, we found highly significant associations between transport mode choice and total life cycle CO2 emissions. We showed that 
cyclists had significantly lower total CO2 emissions than non-cyclists. More cycling or walking decreased mobility-related life cycle 
CO2 emissions – suggesting that active travel indeed substitutes for motorized travel (i.e. this was not just additional travel over and 
above motorized travel). This means that even if not all car trips could be substituted by bicycle trips the potential for decreasing 
emissions is very high. A number of sensitivity analyses that tested for potential interactions and biases in the study sample confirmed 
our main results and provided new insights into differences of emission levels and exposures by city, journey purpose and key 
covariates. The differences in mean emissions and effect sizes in the seven cities may be explained by contextual factors such as 
differences in modal shares, mode trip lengths, and the provision (or not) of good public transport services and active travel infra
structure – it may also be due to differences in sampling (Raser et al., 2018). The analysis of emissions for each trip purpose highlighted 
the relative importance of emissions from non-work/business trips, particularly trips for social and shopping purposes. 

4.2. Comparison with previous studies 

Mean total CO2 emissions of 3.18 kgCO2/day were much higher than the median (0.81 kgCO2/day) and near the upper end of the 
derived interquartile range (0.07–3.27 kgCO2 per day), confirming a positively skewed distribution of emissions. In other words, a 
relatively small share of individuals was responsible for the vast majority of carbon emissions, a finding that is very much in line with 
the evidence on unequal carbon emissions distributions (Brand and Boardman, 2008; Büchs and Schnepf, 2013; Ko et al., 2011; Preston 
et al., 2013; Susilo and Stead, 2009). Our findings that the likelihood of being in top or bottom emissions decile depended on de
mographic, socio-economic, car availability, health, public transport accessibility and contextual factors further support the growing 
evidence on travel emissions inequalities (Banister, 2018; Bel and Rosell, 2017; Brand, 2008; Ko et al., 2011). 

The analysis of transport mode use as the main exposure showed that each additional cycling trip reduced life cycle CO2 emissions 
from all travel activity by about 14% when compared to baseline emissions. On average, those who did one less trip by car and one 
more by bike or public transport decreased emissions by 67% and 19% respectively. To further aid interpretation of the factorial results 
we need to apply the percentage changes to baseline (or mean) levels of our measured outcomes. For example, an average person 
‘shifting modes’ from car (from 3 to 2 trips a day) to bike (from 0 to 1 trip a day) decreased emissions by 3.2 (95%CI 2.0–5.2) kgCO2/ 
day. Similarly, a person ‘shifting modes’ from car (from 3 to 2 trips a day) to public transport (from 0 to 1 trip a day) decreased 
emissions by 0.9 (95%CI 0.6–1.5) kgCO2/day. If 10% of the population were changing travel behavior this way, emissions would be 
expected to decrease by about 10% (car → bike) and 3% (car → public transport). The size and direction of emissions changes are in 
line with some of the few empirical (Brand et al., 2013; Goodman et al., 2012) and scenario/modelling (Goodman et al., 2019; Rabl and 
de Nazelle, 2012; Tainio et al., 2017; Woodcock et al., 2018) studies in this area. 

The differences in emissions between people using different modes for the majority (defined by max. distance travelled) of their 
daily travel were also highly significant, although the effects were partially (12%) mediated by total daily distance travelled. Our 
finding that, on average, using a bike as the main mode decreased life cycle CO2 emissions by about 7.1 kgCO2/day when compared to 
using a car or van suggests that making more sustainable choices on to how we get from A to B has significant carbon benefits. 
Similarly, our finding that doing at least one trip a day by bike significantly decreased mobility-related life cycle CO2 emissions 
provides further evidence of mode substitution away from motorized travel. 

Much of the research in this area has focused on travel activity and associated carbon emissions from work and business travel 
(Bearman and Singleton, 2014; Clark et al., 2016). In our study, commuting, education and business travel emissions represented 
‘only’ about half (49%) of total emissions, ranging from 39% in Antwerp to 59% in London and Rome. The findings that life cycle CO2 
emissions from social, shopping, personal business and recreational journeys were more strongly associated to car and, to some extent, 
public transport use suggest for research and policy to go beyond commuting and business travel and consider the whole range of 
journey purposes when investigating mode shift away from motorized to active travel (Brand et al., 2013). This seems to be partic
ularly important with the growing shares of the elderly in the population. Shopping and personal business trips were found to be 
significantly shorter, therefore increasing the potential for mode shift to active travel. 

The mediation analysis by distance travelled indicated that lower carbon emissions for cyclists was unlikely to be entirely caused by 
increased bike usage. The remaining emissions difference might be explained by distance-related factors that influence mode choice 

C. Brand et al.                                                                                                                                                                                                          



Transportation Research Part D 93 (2021) 102764

14

such as urban form and location of housing, services and jobs (Banister et al., 1997; Beenackers et al., 2012; Curtis, 1996; Welch, 
2013). 

While focusing on cycling above we also found that using public transport was more beneficial than private motorized transport 
across all exposure measures, thus confirming findings from the large body of literature that already exists in this area (see e.g. 
Banister, 2008; Graham-Rowe et al., 2011; Nieuwenhuijsen, 2020; Woodcock et al., 2009). 

Last but not least, it is important to highlight that increased active and reduced motorized travel have significant benefits beyond 
climate change mitigation, particularly with regards to improving population health through increased physical activity and reduced 
local air pollution (Nieuwenhuijsen, 2020; Shaw et al., 2014). The relative importance of these impacts depends on the context, but the 
evidence is convincing (Gössling et al., 2019; Götschi et al., 2020; Rodrigues et al., 2020). 

4.3. Potential limitations of the study, and how we addressed them 

In interpreting these findings we need to bear in mind the study’s limitations. First, the recruitment and sampling strategy means 
that our study sample of adults living in urban areas cannot be assumed to be representative of the general population. Orebro was the 
lone city that made a concerted effort for random sampling, whereas in other cities an opportunistic recruitment strategy was followed 
(Dons et al., 2015). However, by oversampling some of the less frequent transport modes, we had a sufficiently large sample of cyclists 
in all cities to find statistically significant associations. Furthermore, we have made a concerted attempt to account for any potential 
bias in the study sample through application of multi-level modelling, adjusting for the key socio-demographic predictors/control 
variables, and conducting extensive sensitivity analyses of potential biases and interactions. We have confidence, therefore, that the 
findings are generalisable in the context of the adult population in European cities. 

Second, recall bias and participant burden of a substantive survey instrument may have impacted the travel diary reporting, which 
may have reduced the number of reported trips. However, the observed trip frequencies (e.g. 3.47 trips per person per day on average) 
and mode shares (e.g. significantly higher cycling shares in Antwerp, lower cycling shares in Barcelona, higher public transport shares 
in London, Vienna and Zurich) were in line with figures reported for the cities (Raser et al., 2018). While trip distances were derived 
from Google API data, trip durations were self-reported. Trip durations from self-completion travel diaries are known to be over- 
reported (Kelly et al., 2013), so mean speeds may have been lower than actual speeds leading to increased emissions rates in urban 
areas. However, further investigation of mean speeds by mode of transport showed that the derived mean speeds of 4.8 kph for 
walking, 15.6 kph for cycling/e-biking, 39.9 kph for driving a car or van, and 17.9 kph for urban public transport were in line with 
figures reported elsewhere (Raser et al., 2018). Note these are daily averages not just peak-time speeds (as often reported). 

Third, outcome and exposure variables were reported at different time points and days of the week – this was taken into account in 
the mixed effect models by including ‘day of the week’ and person ID as random (intercept) variables. Other periodic effects cannot be 
excluded and we tried to cover for that as much as possible by including relevant time-varying covariates (such as participant age) and 
factors influencing outcomes such as ambient temperature (for ‘cold start’ emissions). 

Fourth, our analysis is cross-sectional, meaning that the direction of causality (if any) behind many of the observed associations is 
unclear. A longitudinal analysis of change in emissions by change in exposures has been completed and published in Brand et al. 
(2021). 

Fifth, while we accounted for several influencing factors that were often not available in previous studies, such as trip data by mode 
and purpose, accessibility and health status, our regression models did not account for more than 78% of the variation in the popu
lation (see Supplementary results). This suggests that travel choices and associated CO2 emissions are also influenced by other factors 
such as other built environment factors or lifestyle and socio-cultural factors (Brand et al., 2019; Panter et al., 2013; Weber and Perrels, 
2000). We initially explored and added more ‘objective’, GIS based data at both home and work locations to the analysis, including 
street density, building density, richness of facilities, home-work distance, and public transport availability (timetables, frequency) 
(Gascon et al., 2019). However, none of these factors improved the models significantly, and the main findings were unchanged. 

Sixth, we excluded carbon emissions from dietary intake as the evidence is not strong on whether day-to-day active travel (as 
opposed to performance/sport activity) significantly increases overall dietary intake when compared to motorized travel (Tainio et al., 
2017). 

Finally, the interdisciplinary breadth of the PASTA study meant that we measured daily travel behavior, individual and spatial- 
environmental characteristics using briefer survey tools than might have been feasible in a single-discipline study. This may have 
introduced some measurement error that could have attenuated our effect sizes. However, the multi-city approach in different 
countries with different travel patterns, built environments, public transport accessibility levels and active mobility use adds value to 
the analysis, which clearly showed additional insights compared to smaller, single-location studies. 

5. Conclusions 

This paper started on the premise that we still do not know very much about how much carbon from passenger transport is saved – 
overall – by travelling actively. It investigated to what extent active travel is associated with lower mobility-related life cycle CO2 
emissions by using primary data collected in a large European multicentre study to derive total and purpose-specific life cycle CO2 
emissions from travel activity at the individual and population levels. The analysis of a sample of thousands of participants and nearly 
10,000 person-days of daily travel across the seven sites provided quantitative estimates of the life cycle carbon benefits of active travel 
using a variety of metrics that could be used in other European cities and beyond. 

Active travel has attributes of social distancing that are likely to be desirable for some time (Kissler et al., 2020). It could help to cut 
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back transportation energy use, CO2 emissions and air pollution while improving population health (Nieuwenhuijsen, 2020; Shaw 
et al., 2014) as confinement is eased. Therefore, locking in, investing in and promoting active travel should be a cornerstone of 
sustainability strategies, policies and planning (Andor et al., 2020; Creutzig et al., 2016; Creutzig et al., 2020) to meet our very 
challenging sustainable development goals that are unlikely to be met without significant mode shift to sustainable transport (Creutzig 
et al., 2018). 
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Creutzig, F., Agoston, P., Minx, J.C., Canadell, J.G., Andrew, R.M., Quéré, C.L., Peters, G.P., Sharifi, A., Yamagata, Y., Dhakal, S., 2016. Urban infrastructure choices 
structure climate solutions. Nat. Clim. Change 6 (12), 1054–1056. 

Creutzig, F., Javaid, A., Koch, N., Knopf, B., Mattioli, G., Edenhofer, O., 2020. Adjust urban and rural road pricing for fair mobility. Nat. Clim. Change. 
Creutzig, F., Roy, J., Lamb, W.F., Azevedo, I.M.L., Bruine de Bruin, W., Dalkmann, H., Edelenbosch, O.Y., Geels, F.W., Grubler, A., Hepburn, C., Hertwich, E.G., 

Khosla, R., Mattauch, L., Minx, J.C., Ramakrishnan, A., Rao, N.D., Steinberger, J.K., Tavoni, M., Ürge-Vorsatz, D., Weber, E.U., 2018. Towards demand-side 
solutions for mitigating climate change. Nat. Clim. Change 8 (4), 268–271. 

Cuenot, F., Fulton, L., Staub, J., 2012. The prospect for modal shifts in passenger transport worldwide and impacts on energy use and CO2. Energy Policy 41, 98–106. 
Curtis, C., 1996. Can strategic planning contribute to a reduction in car-based travel? Transp. Policy 3 (1–2), 55–65. 
de Nazelle, A., Morton, B.J., Jerrett, M., Crawford-Brown, D., 2010. Short trips: an opportunity for reducing mobile-source emissions? Transp. Res.: Part D: Transport 

Environ. 15 (8), 451–457. 
DEFRA/DECC, 2016. UK Government conversion factors for Company Reporting, full 2016 dataset. Department for the Environment, Food and Rural Affairs and 

Department for Energy and Climate Change, London. 
DfT, 2015. Transport Statistics Great Britain: 2015 Edition. Department for Transport, London. 
Dons, E., Gotschi, T., Nieuwenhuijsen, M., de Nazelle, A., Anaya, E., Avila-Palencia, I., Brand, C., Cole-Hunter, T., Gaupp-Berghausen, M., Kahlmeier, S., 

Laeremans, M., Mueller, N., Orjuela, J.P., Raser, E., Rojas-Rueda, D., Standaert, A., Stigell, E., Uhlmann, T., Gerike, R., Int Panis, L., 2015. Physical Activity 
through Sustainable Transport Approaches (PASTA): protocol for a multi-centre, longitudinal study. BMC Public Health 15 (1), 1126. 

Dons, E., Rojas-Rueda, D., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Cole-Hunter, T., de Nazelle, A., Eriksson, U., Gaupp-Berghausen, M., Gerike, R., Kahlmeier, S., 
Laeremans, M., Mueller, N., Nawrot, T., Nieuwenhuijsen, M.J., Orjuela, J.P., Racioppi, F., Raser, E., Standaert, A., Int Panis, L., Götschi, T., 2018. Transport mode 
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