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In this article, a biallelic reversible mutation model with linear and quadratic selection is analysed.
The approach reconnects to one proposed by Kimura (1979), who starts from a diffusion model and
derives its equilibrium distribution up to a constant. We use a boundary-mutation Moran model, which
approximates a general mutation model for small effective mutation rates, and derive its equilibrium
distribution for polymorphic and monomorphic variants in small to moderately sized populations.
Using this model, we show that biased mutation rates and linear selection alone can cause patterns of
polymorphism within and substitution rates between populations that are usually ascribed to balancing
or overdominant selection. We illustrate this using a data set of short introns and fourfold degenerate
sites from Drosophila simulans and Drosophila melanogaster.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Our article draws on a model introduced by Kimura (1981):
e considered a normally distributed phenotypic trait that has
ormal fitness effects and is influenced by multiple biallelic loci.
he forces acting on individual sites are expanded up to second
rder to account for dominance and over- and underdominance.
he purpose of Kimura’s article is twofold: (i) to show that (near-
y-)neutral evolution is possible under stabilizing selection, and
ii) to explain codon usage bias, i.e., the preferential use of certain
odon triplets for identical amino acids or termination signals. His
reatment is, however, inconsistent because he switches between
odels with reversible mutation for modelling polymorphism
nd irreversible mutation for modelling substitution rates. It is
lso incomplete because he ignores the influence of biased mu-
ation rates. In this article, we revive the linear and quadratic
election scenario of Kimura (1981) and incorporate it into a
iallelic boundary-mutation Moran model, which allows for bi-
sed, reversible mutations from monomorphic states (Vogl and
lemente, 2012). This model is consistent in the sense that it can
e used for modelling both polymorphism and substitution rates.
ith it, we demonstrate the importance of the interplay between
irectional and quadratic selection and mutation bias.
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According to the neutral theory (Kimura, 1983), newly mu-
tated alleles are either selectively neutral and thus subject only to
random drift, or strongly selected and thus quickly weeded out or
fixed. Therefore neutral alleles alone contribute to polymorphism.
Nevertheless, Kimura himself proposed and analysed models that
include weak selection. Assuming a single segregating allele that
originated by mutation, the probability of fixation can be de-
termined in the presence of linear and quadratic selection (e.g.,
Kimura, 1962). Later, Kimura (1969) proposed the infinite sites
model, in which derived alleles originate by mutation from in-
finitely many ancestral sites with a given mutation rate. Derived
alleles may be favoured or disfavoured by directional selection.
Note that with this model mutations are irreversible. Due to the
infinite supply of ancestral alleles, a quasi-equilibrium between
mutation, drift and directional selection with constant polymor-
phism may develop, whereas the fitness increases or decreases
indefinitely depending on the direction of selection. Under these
assumptions, Kimura derived expressions for site heterozygosity.
The Ewens–Watterson estimator of genetic diversity can also be
determined with this approach (see Section 4.2). Later still, Ohta
(1979) argued for the pervasive occurrence of slightly deleterious
mutations to explain the constancy of substitution rates among
organisms with different generation times. Her work ultimately
led to the nearly-neutral theory (Ohta and Gillespie, 1996), where
the strength of selection and drift is approximately equal.

The (nearly-)neutral theory sets the stage for comparing poly-
morphism and substitutions between different classes of muta-
tions with the McDonald–Kreitman test (McDonald and Kreitman,

1991): Mutation of a site within a coding sequence may lead
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o replacement of an amino acid, and therefore this mutation
s likely subject to (weak or strong) selection. However, the
utation may also leave the amino acid unaltered and therefore

ikely be neutral on this level of selection. Substitution rates are
iven by the product of mutation rates and fixation probabilities,
hich depend on the scaled selection strength. Polymorphism is

nfluenced by the same forces, but is less affected by selection
han substitutions. Ratios of non-silent (replacement) vs. silent
ubstitutions (the Dn/Ds ratio) and of non-silent vs. silent poly-
orphism (the Pn/Ps ratio) are then reported as part of the testing
aradigm. Interestingly, McDonald and Kreitman (1991) found
n excess of replacement substitutions within the alcohol dehy-
rogenase gene of Drosophila, which seems to indicate positive
election. Later, the Dn/Ds ratio was used to infer negative or pos-
itive selection of a specific gene or lineage vs. neutral (Yang and
Nielsen, 1998; Yang and Bialewski, 2000; Yang and Nielsen, 2002)
or neutral and purifying (Zhang et al., 2005) evolution. In this
framework, a debate about the relative proportions of neutral,
positive, and negative mutations has developed (e.g., Yang and
ielsen, 2000; Smith and Eyre-Walker, 2002; Nielsen and Yang,
003).
Irreversible mutations, as in the infinite sites model, are con-

istent with the usual model for substitutions (Kimura, 1962):
he trajectory of a single mutation in a population is followed
o either fixation or loss with a diffusion approach. Irreversible
utation models do not allow an equilibrium to develop in
population of finite size. Reversible mutation–selection–drift
odels, however, reach an equilibrium. With a diffusion approach
nd a general mutation model, the equilibrium distribution for
llele frequencies was given by Wright (1931) and often used
ater (e.g., Kimura, 1981; Li, 1987; Bulmer, 1991). In this case, the
oundaries are inaccessible for nontrivial mutation parameters,
hich is not consistent with the above substitution model. With
election, Wright’s distribution is defined up to a constant of
roportionality that usually needs to be determined numerically.
Assuming small scaled mutation rates, only a single mutation

ill likely segregate in a small to moderately sized population
ample. In this limit, it is possible to derive models that allow
or explicit calculation of equilibrium distributions, substitution
ates, and other informative quantities by assuming a boundary-
utation Moran model (Vogl and Clemente, 2012) (see Section 2
nd Section 3). We note that the mathematical tractability of
he boundary models also enables their use in phylogenetic set-
ings (De Maio et al., 2013; De Maio et al., 2015), where recurrent
utations need to be assumed. Using expressions derived from
uch models, it can be shown that mutation bias and linear
directional) selection of the same magnitude can affect polymor-
hism and substitutions in surprising ways (see Section 4). This
nteresting interplay has already been demonstrated by McVean
nd Charlesworth (1999), who intuitively combined reversible
utations (with positively and negatively selected alleles) with

he infinite sites model. In the appropriate limit, many of their re-
ults are identical to those obtained with the boundary-mutation
oran model (as we show throughout our article). Since mutation
iases are rarely extreme, the selection strength γ acting on them
s often within the nearly-neutral range of 0.2 < |γ | < 3
(Tachida, 1991), where γ = 4Ns with the diploid Wright–Fisher
odel and γ = Ns with the haploid Moran model.
Silent mutations seem to be under selective constraint in a

ide array of organisms: codon usage bias has been shown to
lter the silent substitution rate in mammals and birds (Rous-
elle et al., 2019), the aspen tree Populus tremula (Ingvarsson,
2010), as well as fruitfly species of the genus Drosophila (Akashi,
994). Machado et al. (2020) and Lawrie et al. (2013) have also
hown that codon usage bias appears to account for a substantial
mount of the total selective pressure acting on fourfold degen-
rate sites in D. melanogaster: Indeed, synonymous sites seem
2

to be under varying selection strength including strong purifying
selection. Generally, only directional selection is considered in
the context of codon usage bias instead of balancing (or other
forms of quadratic) selection. This follows Li (1987) and Bulmer
(1991), who argued that mutation bias and opposing linear selec-
tion determine codon usage bias, rather than balancing selection
as Kimura (1981) postulated. Nevertheless, dominance and other
non-additive effects could also contribute.

For D. melanogaster and D. simulans, the ratio of nucleotides
[AT ] to nucleotides [CG] is approximately 2 : 1 in short autosomal
introns, which likely reflects mutation bias (Clemente and Vogl,
2012b). In fourfold degenerate sites of D. simulans, however, the
ratio is approximately 1 : 2. This likely reflects the joint action
of mutation bias and directional selection (Clemente and Vogl,
2012a). One can then define a polymorphism ratio that can be
used as a proxy for directional selection as it correlates well with
divergence measures (Machado et al., 2020; Lawrie et al., 2013).
In populations of D. simulans (which are generally not too far
from mutation–selection–drift equilibrium), directional selection
has a strength of approximately γ = 1.39 favouring C and G
nucleotides that compensates for the mutation bias in fourfold
degenerate sites (Vogl and Bergman, 2015; Jackson et al., 2017).

Usually, silent vs. replacement amino acid substitutions are
compared with the McDonald–Kreitman test. Scenarios like the
above suggest extending the approach to comparing short introns
(as a neutral reference) with fourfold degenerate sites (which are
under weak directional selection). Selection on the latter is so
weak that reversible models must be considered. In this article,
we derive equilibrium substitution rates (Section 4.3) and het-
erozygosities (Section 4.2) for a boundary-mutation-(directional)
selection–drift model. This makes it possible to go beyond test-
ing for deviation from neutrality and also infer the strength of
selection causing this change.

The layout of the article is as follows: Section 2 provides a
review of the boundary-mutation Moran model. Section 3 in-
troduces the extension to linear and quadratic selection. We
will see that considering a finite number of sites subject to
a biallelic, reversible mutation scheme (with only one muta-
tion segregating at a time) enables the derivation of an exact
equilibrium distribution in Section 3.2. We also provide a conve-
nient approximation in Section 3.4. We further calculate various
statistics including a measure for expected heterozygosity that
relates to both Kimura (1969) and McVean and Charlesworth
(1999), as well as the Ewens–Watterson estimator (Ewens, 1972,
1974; Watterson, 1975) in Section 4.2, and simple formulae for
substitution rates that relate to both the substitution rate and
evolutionary rate of Kimura in Section 4.3. We use these esti-
mators to infer the selection strength acting against mutation
bias in fourfold degenerate sites of Drosophila simulans within the
McDonald–Kreitman framework in Section 5.

2. The boundary-mutation Moran model and diffusion ap-
proximations

2.1. Conceptual introduction to the boundary-mutation Moran
model

The Moran model was introduced as a model for genetic
drift (Moran, 1958b,a, 1962). It assumes a monoecious, haploid
population of N individuals with alleles of a focal and non-focal
type. At each step, a randomly chosen individual is replaced by
the offspring of another randomly chosen individual. This system
induces a tridiagonal transition matrix with absorbing states 0
and N . With mutation, the process can always ‘escape’ the bound-
ary states as well as drift into them, so the boundaries formally
become partially reflecting (Karlin and Taylor, 1975, chapt. 2.2).
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ith the decoupled Moran model (Baake and Bialowons, 2008),
utation, directional selection, and drift are parameterized as
eparate processes. All the above Moran models are equivalent
o finite state birth–death processes with appropriate boundary
onditions (Karlin and Taylor, 1975, chapt. 4).
With pure drift and mutation, i.e., without selection, and with
constant population size N the equilibrium distribution of a

ample (without replacement) of size M (with M ≤ N) is a beta-
inomial distribution and the probability of obtaining a certain
umber of focal alleles z in a biallelic setting becomes:

Pr(Z = z|M, θ, β) =

(
M
z

)
Γ (θ )

Γ (M + θ )
Γ (z + βθ )Γ (M − z + (1 − β)θ )

Γ (βθ )Γ ((1 − β)θ )
,

(1)

here the scaled rate βθ is the mutation rate towards the focal
llele (with θ denoting the mutation rate, β the bias) and (1−β)θ
he mutation rate away from it.

As with the Wright–Fisher model (Ewens, 2004, chapter 4),
olmogorov forward and backward equations can be derived
ith the Moran model; with the decoupled mutation–drift Moran
odel using only the first and second symmetric derivatives

Bergman et al., 2018). This is particularly relevant because stan-
ard population genetic results were derived by Kimura using
he Kolmogorov backward equation, such as formulae for fixation
robabilities (Kimura, 1962) and heterozygosity (Kimura, 1969).
nference based on the decoupled Moran model thus converges
o these classic diffusion results (Etheridge and Griffiths, 2009). In
articular, the beta-binomial is also the distribution of a sample
f size M from the population in the diffusion limit.
The boundary-mutation Moran model with mutation bias has

hus far been studied for the case of either neutral evolution or
inear selection (Vogl and Clemente, 2012; Vogl and Bergman,
015; Bergman et al., 2018). The neutral boundary-mutation
oran model (Vogl and Clemente, 2012) was originally intro-
uced as a simplified decoupled Moran model, with the additional
ssumption that overall scaled mutation rates θ are sufficiently
mall such that mutations only occur at the monomorphic bound-
ries. The interior transitions of polymorphic sites are due to
rift (or selection and drift). It is straightforward to derive the
quilibrium distribution of the neutral equilibrium boundary-
utation Moran model (Vogl and Clemente, 2012; Vogl and
ergman, 2015).
Expanding the beta-binomial distribution above with a first

rder Taylor series in θ results in a distribution identical to that
f a sample from the boundary-mutation Moran model (Vogl,
014). Simulations show that this approximation holds well if the
xpected equilibrium heterozygosity 2β(1 − β)θ < 0.025 (Vogl
nd Clemente, 2012), where β is the mutation bias towards the
ocal allele. In protein coding genes of eukaryotes the expected
eterozygosity, which is approximately the scaled mutation rate,
as been shown to be approximately 10−2 or less (Lynch et al.,
016).

.2. Formal introduction to the boundary-mutation Moran model

Consider a phenotypic trait in a population of small to mod-
rate size N that is influenced by K sites, indexed by k with
≤ k ≤ K . Each site is assumed to be biallelic with one allele

oded as 1 and the other as 0, so there are 2K possible allelic
ombinations in total. Per generation (a generation corresponds
o N birth–death Moran events) and per site, a mutation from
llele 0 to allele 1 occurs at a scaled rate βθ ; a mutation in the
everse direction occurs at a scaled rate (1 − β)θ . The effect of
xchanging allele 0 with allele 1 is a proportional increase in
itness of the phenotype. Thus there are K + 1 fitness states.
3

Assume that each site fixes independently. This assumption is
approximately valid (i) if the scaled recombination rate is much
larger than the scaled mutation rate, or (ii), in the case of very
low effective recombination rates, if scaled mutation rates are so
small that only one site segregates in the population at a time. Im-
portantly, the assumption of independence usually holds for the
small scaled mutation rates relevant for the boundary-mutation
Moran model (Vogl and Clemente, 2012).

Now we can formally define the neutral boundary-mutation
Moran model: Let x(t) denote the relative frequency (or propor-
tion) of allele 1 at a focal locus at time t . In the interior, i.e., for
x(t) =

i
N with 1 ≤ i ≤ N-1, the transition probabilities from t to

+ 1 are:⎧⎪⎨⎪⎩
Pr(x(t + 1) =

i−1
N |x(t) =

i
N ) =

i(N−i)
N2

Pr(x(t + 1) =
i
N |x(t) =

i
N ) = 1 − 2 i(N−i)

N2

Pr(x(t + 1) =
i+1
N |x(t) =

i
N ) =

i(N−i)
N2 .

(2)

At the boundary with i = 0, we have:{
Pr(x(t + 1) = 0|x(t) = 0) = 1 − β θ

N
1

1−βθHN−1

Pr(x(t + 1) =
1
N |x(t) = 0) = β θ

N
1

1−βθHN−1
,

(3)

where Hn =
∑n

i
1
i is the harmonic number. The normalizing

term 1
1−βθHN−1

ensures that, in equilibrium, mutations enter the
olymorphic region at an identical average rate β θ

N per Moran
drift event, irrespective of N . At the boundary i = N , we have
analogously:{
Pr(x(t + 1) = 1|x(t) = 1) = 1 − (1 − β) θN

1
1−(1−β)θHN−1

Pr(x(t + 1) =
N−1
N |x(t) = 1) = (1 − β) θN

1
1−(1−β)θHN−1

.
(4)

Since a generation corresponds to N Moran events, the mutation
rates must be multiplied by N to obtain the mutation rate per
generation.

Note that with the general mutation model, mutations mainly
arise from close to the boundaries when mutation rates are low.
With the boundary mutation model, mutations arise exclusively
from the boundaries. The terms normalizing the mutation rates at
the boundaries in Eqs. (3) and (4) compensate for this difference.

The equilibrium distribution of the proportion of alleles X at
each locus is then (Vogl, 2014):

π = Pr(X =
i
N

| N, β, θ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − β)(1 − βθHN−1) i = 0;

β(1 − β)θ
N

i(N − i)
1 ≤ i ≤ N − 1;

β(1 − (1 − β)θHN−1) i = N.

(5)

From the equilibrium distribution it follows that the distribution
of a sample of size M taken without replacement is independent
of N .

An irreducible, positive recurrent, aperiodic Markov chain
with a tridiagonal transition matrix is reversible. Thus the distri-
bution Eq. (5) can be shown to be the equilibrium distribution,
as it fulfils detailed balance. Note that the boundary-mutation
Moran model is also a birth–death process with partially reflect-
ing boundaries, as is the general mutation Moran model. Thus the
stationary distribution can also be derived using the theory of a
finite birth–death process (Karlin and Taylor, 1975, chapt. 4.6):

πi = π0
βθ

1 − βθHN−1

N
i(N − i)

for 1 ≤ i ≤ N − 1,

πN = π0
β 1 − (1 − β)θHN−1

,

(6)
1 − β 1 − βθHN−1
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0 =
1

1 +
∑N

i=1 πi
. (7)

Equivalence to the stationary distribution (Eq. (5)) follows im-
mediately. The symmetry between the boundary terms π0 and
N and the difference of both from the polymorphic terms are,
owever, not as readily apparent as in Eq. (5).

.3. Population size and polymorphism limits

Note that for large N either Pr(X = 0), Pr(X = 1), or both
ecome negative. This naturally imposes a limit on the population
ize for the boundary-mutation Moran model, making it valid
nly for small to moderate population sizes depending on θ .
ore precisely: Assume without loss of generality that β < 0.5

(which can be achieved by convenient labelling of alleles). Then
β − β(1 − β)θHN−1 > 0 must hold. For large N , HN−1 ≈

log(N − 1) and therefore N < e
1

(1−β)θ must hold. Recall that
the upper limit of validity of the boundary-mutation model as an
approximation to the general mutation model is approximately
2β(1−β)θ = 0.025 (Vogl and Clemente, 2012), and that mutation
ias is usually not extreme. Therefore, we determine N < e10

as an approximate upper bound for the population size. This is
larger than most effective population sizes and therefore hardly
a practical limitation. Note that with N close to this limit, prob-
ability mass is focused mainly in the polymorphic region just
as with the general Moran model, because the proportionate
increase in mutation probabilities from the boundaries in Eq. (4)
compensates for the absence of mutations in the polymorphic
region. We will return to these considerations in Section 3.3.

Let us now address the upper limit of polymorphism per-
mitted in a boundary-mutation Moran model that we referred
to in the previous paragraph. Below, we show the Kullback–
Leibler (KL) divergence between two distributions: (i) samples
taken without replacement from the beta-binomial distribution
that corresponds with Wright’s equilibrium distribution (Wright,
1931) (these samples are also beta-binomially distributed) and
(ii) the equilibrium distributions of the general mutation Moran
model and the boundary-mutation Moran model respectively,
both with N always of the same size as the sample drawn from
the population, for varying mutation rates (Fig. 1). Note that in
the case of the general mutation model, a sample from the sta-
tionary distribution also conforms to a beta-binomial compound
distribution, since the stationary distribution is the beta distribu-
tion (Wright, 1931). Hence the beta-binomial distributions from
(i) and (ii) are identical in this. Thus the KL divergences should be
zero for the general mutation Moran model and the observed de-
viations are caused by numerical errors. The divergence estimates
of the general mutation Moran model and the boundary-mutation
Moran model only start to differ noticeably for θ > 0.01 and the
difference remains small even for θ = 0.1. This speaks for the
approximation accuracy of the boundary-mutation Moran model.
Again, we will return to this topic in Section 3.3.

3. Moran model with biased mutation, linear, and quadratic
selection

3.1. Selection coefficients

Note that with a strictly haploid model dominance and over-
and underdominance are impossible. A diploid selection model
allowing for these effects involves two alleles that are lost or
gained when a diploid individual competes against another
diploid individual. With two alleles lost or gained, the transition
4

Fig. 1. Kullback–Leibler divergence: We start with 5 neutrally evolving pop-
ulations of size N = 1000 with mutation bias β = 1/3 and mutation rates
θ = (0.00001, 0.0001, 0.001, 0.01, 0.1) respectively. We model them as evolving
ccording to a general mutation Moran model which is here identical to Wright’s
quilibrium. For each θ , we sample from these populations with replacement
o obtain population samples of sizes M = (3, 10, 30, 100). For each θ , we then
alculate the equilibrium distributions of a general and a boundary-mutation
oran model with population sizes equal to the sample sizes and compare

o the corresponding downsampled equilibrium distribution via the Kullback–
eibler divergence. This is defined as DKL = −

∑
i pi log(

qi
pi
), where qi are the

ndividual allele frequencies in downsampled equilibrium and pi are those of the
espective model used for the sample. Above, we show this divergence (y-axis)
or varying θ (x-axis). The equilibrium distributions of samples modelled by the
eneral mutation Moran model vs. the downsampled population are represented
y solid lines, and the samples modelled by a boundary-mutation Moran model
s. the downsampled population by dotted lines. The shading of both line types
ecomes lighter for increasing sample size.

atrix could no longer be tridiagonal. In order to model diploids
n a haploid framework with a tridiagonal matrix, we use a
imilar argument for obtaining selection coefficients to Muirhead
nd Wakeley (2009). Consider a population in Hardy–Weinberg
quilibrium. The focal allele partners up with an allele randomly
rawn from the population to obtain its fitness; it competes with
nother allele, which also obtains its fitness by partnering up
ith a further allele randomly drawn from the population. We
efine B1 as determining the strength of first order and B2 the

strength of second order selection (so if B2 = 0, the fitness effects
are purely additive). Then the relative fitnesses for a diploid
individual with 0, 1, and 2 alleles of the focal type are given by
1, 1+

B1
2N +

B2
2N , and 1+ 2 B1

2N . The relative differences in fitness of
two (ordered) genotypes are given Table 1, where the competing
alleles are in bold. The two columns on the right correspond to
the ordered genotypes containing the focal allele, the two on the
left to the ordered genotypes involving the competitor allele; and
analogously for the rows. The focal allele replaces its competitor
according to their marginal fitness difference, whereas the two
partner alleles remain unaffected. In other words, the probability
of a selective change in the allele frequency from i to i + 1 per
Moran event is:

(N − i)i
N2 si→i+1 =

(N − i)i
2N5

(
(N − i)2(B1 + B2) + i2(−B1 + B2)

+ 2i(N − i)B1 + 2i2(B1 − B2)
)

si→i+1 =
B1
2N −

B2(2i−N)
2N2 ,

(8)
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itnesses of two genotypes.

00 01 10 11

00 0 B1
2N +

B2
2N

B1
2N +

B2
2N

2B1
2N

01 −
B1
2N −

B2
2N 0 0 B1

2N −
B2
2N

10 −
B1
2N −

B2
2N 0 0 B1

2N −
B2
2N

11 −
2B1
2N −

B1
2N +

B2
2N −

B1
2N +

B2
2N 0

where si→i+1 is the selection coefficient. The selection coefficient
in the reverse direction is analogously:

si→i−1 = −
B1

2N
+

B2(2i − N)
2N2 . (9)

While the Kolmogorov forward (i.e., diffusion) and backward
equations generally can be derived from Wright–Fisher (Ewens,
2004, chapt. 4) and Moran models, such a derivation requires
only the definition of the first and second symmetric derivatives
for the decoupled mutation–drift Moran model (Bergman et al.,
2018, Appendix 7.1). Following this procedure, one easily sees
that the diffusion approximation of a boundary-mutation Moran
model including the selection coefficients above corresponds to
Kimura’s diffusion approach (Kimura, 1981) except for a reversal
of signs for the parameter B2. This is because Kimura starts from
a normally distributed phenotype, assumes a fitness function
proportional to a normal distribution, and then considers the
response of a biallelic locus influencing the trait under stabilizing
phenotypic selection. Near the fitness optimum there are two
possible scenarios: (i) The population itself is close to the fitness
optimum, resulting in linear selection towards the optimum;
(ii) the population is right at the optimum, resulting in under-
dominance. Thus, while in our case a positive B2 corresponds
to overdominant selection, in Kimura’s case it corresponds to
underdominant selection.

3.2. Exact stationary distribution

Using the selection coefficients derived in the previous sub-
section, we get the exact interior transition probabilities:⎧⎪⎨⎪⎩

Pr(x(t + 1) =
i−1
N |x(t) =

i
N ) =

(
1 −

B1
2N +

B2(2i−N)
2N2

) i(N−i)
N2

Pr(x(t + 1) =
i
N |x(t) =

i
N ) = 1 − 2 i(N−i)

N2

Pr(x(t + 1) =
i+1
N |x(t) =

i
N ) =

(
1 +

B1
2N −

B2(2i−N)
2N2

) i(N−i)
N2 .

(10)

Note that this transition matrix deviates from the one used earlier
for only linear selection (Vogl and Clemente, 2012; Vogl and
Bergman, 2015), but converges to the same diffusion limit. At the
boundary i = 0, we have the boundary transitions:{
Pr(x(t + 1) = 0|x(t) = 0) = 1 − β θ

N

(
1 +

B1
2N +

B2
2N

)
C0

Pr(x(t + 1) =
1
N |x(t) = 0) = β θ

N

(
1 +

B1
2N +

B2
2N

)
C0 ,

(11)

ith

0 =

(
1 − βθ

N−1∑
i=1

1
i
Ri

)−1

. (12)

where

Ri =

(∏i−1
j=0(1 +

B1
2N −

B2(2i−N)
2N2 )∏i B1 B2(2i−N)

)
. (13)
j=1(1 − 2N +
2N2 )

5

Set

RN =

∏N−1
i=0 (1 +

B1
2N −

B2(2i−N)
2N2 )∏N−1

i=0 (1 −
B1
2N +

B2(2i−N)
2N2 )

. (14)

t the boundary i = N , we then have:{
Pr(x(t + 1) = 1|x(t) = 1) = 1 − (1 − β) θN

(
1 −

B1
2N −

B2
2N

)
C1

Pr(x(t + 1) =
N−1
N |x(t) = 1) = (1 − β) θN

(
1 −

B1
2N −

B2
2N

)
C1 ,

(15)

with

C1 =

(
1 − (1 − β)θR−1

N

N−1∑
i=1

1
N − i

Ri

)−1

. (16)

Set

=
β(1 − β)θ

(1 − β) + βRN
(17)

nd

=
βRN

(1 − β) + βRN
. (18)

t follows that the exact equilibrium distribution for a boundary-
utation Moran model with both linear and quadratic selection
s well as biased mutation can be written as:

= Pr(X =
i
N |B1, B2, ϕ, ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ϕ) − ω

N−1∑
i=1

1
i
Ri i = 0;

ω
N

i(N − i)
Ri 1 ≤ i ≤ N − 1;

ϕ − ω

N−1∑
i=1

1
N − i

Ri i = N .

(19)

We recall that because the transition matrix is tridiagonal,
detailed balance must hold for nearest neighbours in equilibrium.
In the interior, so for 1 ≤ i+ 1 ≤ N − 1, the flow balances, as the
flow from the state X =

i+1
N to X =

i
N is:

Pr
(
x(t + 1) =

i−1
N |x(t) =

i
N

)
Pr

(
X =

i
N

)
=

(
1 +

B1
2N − B2

2i − N
2N2

)
i(N − i)

N2 ω

×

∏i−1
j=0(1 +

B1
2N − B2

2j−N
2N2 )∏i

j=1(1 −
B1
2N + B2

2j−N
2N2 )

N
i(N − i)

=
ω

N

∏i
j=0(1 +

B1
2N − B2

2j−N
2N2 )∏i

j=1(1 −
B1
2N + B2

2j−N
2N2 )

,

(20)

and that in the reverse direction:

Pr
(
x(t + 1) =

i
N |x(t) =

i+1
N

)
Pr

(
X =

i+1
N

)
=

(
1 −

B1
2N + B2

2(i + 1) − N
2N2

)
(i + 1)(N − i − 1)

N2 ω

×

∏(i+1)−1
j=0 (1 +

B1
2N − B2

2j−N
2N2 )∏(i+1)

j=1 (1 −
B1
2N + B2

2j−N
2N2 )

N
(i + 1)(N − i − 1)

=
ω

N

∏i
j=0(1 +

B1
2N − B2

2j−N
2N2 )∏i B1 2j−N

.

(21)
j=1(1 − 2N + B2 2N2 )
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t the boundary i = 0, the flow also balances, as the flow from
X = 0 to X =

1
N is:

Pr
(
x(t + 1) =

1
N |x(t) = 0

)
Pr

(
X = 0

)
= β

θ

N

(
1 +

B1
2N + B2

N
2N2

)
C0

×

(
(1 − ϕ) − ω

N−1∑
i=1

1
i

∏i−1
j=0(1 +

B1
2N − B2

2j−N
2N2 )∏i

j=1(1 −
B1
2N + B2

2j−N
2N2 )

)
= β

θ

N

(
1 +

B1
2N + B2

N
2N2

)
C0(1 − ϕ)

1
C0

=
ω

N

(
1 +

B1
2N + B2

N
2N2

)
,

(22)

and that in the reverse direction:

Pr
(
x(t + 1) = 0|x(t) =

1
N

)
Pr

(
X =

1
N

)
=

(
1 −

B1
2N + B2

2 − N
2N2

) (N − 1)
N2 ω

( 1 +
B1
2N + B2

N
2N2

1 −
B1
2N + B2

2−N
2N2

)
N

(N − 1)

=
ω

N

(
1 +

B1
2N + B2

N
2N2

)
.

(23)

The other boundary i = N follows analogously.
We have thus validated Eq. (19) as the unique stationary

distribution, as long as the boundary terms at i = 0 and i =

N are positive. As any other Markov process with a tridiagonal
transition matrix, the boundary-mutation Moran model with both
linear and quadratic selection and biased mutation corresponds
to a finite birth–death process.

3.3. Population size and polymorphism limits

With selection, it is less straightforward to determine a closed
form upper bound for the population size of the boundary-
mutation Moran model, which we were able to do for the neutral
case (Section 2.3). Assuming no mutation bias, we evaluated
the maximum mutation rate possible for a range of population
sizes without incurring negative boundary terms (Fig. 2). We
see that directional selection substantially reduces the strength
of mutation rates that can be modelled in a population of a
given size (Fig. 2A). However, even the combination of large
populations and strong nearly-neutral directional selection is un-
likely to invalidate the use the boundary-mutation Moran model
in eukaryote systems Lynch et al. (2016). Quadratic selection
impacts the critical combination of mutation rate and population
size less severely (Fig. 2B).

We also evaluate the difference between modelling samples
drawn from a larger population with a general mutation scheme
using either a general mutation Moran model or a boundary-
mutation Moran model by comparing Kullback–Leibler (KL)
divergences as in Section 2.3. This time, however, we include
varying strengths of directional and quadratic selection: For a
combination of directional selection and low mutation rates, the
boundary-mutation Moran model with small sample sizes seems
to approximate the large population (which can be thought of
as close to the stationary distribution of the diffusion equation)
better than the general mutation model with the same sample
sizes (Fig. 3). This effect becomes more pronounced with greater
selection strengths, and although it tapers off for increasing
population sizes and increasing mutation rates, it does hold for
many reasonable parameter combinations. The qualitative differ-
ence between the divergence estimates obtained by modelling
the samples with either a general or boundary-mutation Moran
model in the presence of quadratic selection seem similar to the
6

Fig. 2. For varying population size N (x-axis), fixed mutation bias β = 1/2
(no bias), and varying selection strengths (A) B1 = (0, 1, 2, 3, 4), B2 = 0 and
B) B1 = 0, B2 = (−10,−5, 0, 5, 10) respectively, we determine the maximum
alue of θ (y-axis) permitted by the boundary-mutation Moran model without
he boundary terms becoming negative. The shade of the lines decreases with
ncreasing positive value of selection strength.

Fig. 3. Kullback–Leibler divergence for directional selection: The stationary dis-
tribution of populations of size N = 1000 with mutation bias β = 1/3 and mu-
ation rates θ = (0.00001, 0.0001, 0.001, 0.01, 0.1) respectively, is calculated for
general mutation Moran model with B1 = 1, B2 = 0 (A) and B1= 3, B2 = 0 (B).
e show the KL divergence (y-axis) for varying θ (x-axis) between the

quilibrium distributions of the samples modelled by a general mutation Moran
odel vs. the downsampled population (solid line), and the samples modelled
y a boundary-mutation Moran model vs. the downsampled population (dotted
ine) for sample sizes M = (3, 10, 30, 100) (the shading of both types of lines
ecomes lighter with increasing sample size). For details about the divergence
easure see Fig. 1.

esults for directional selection except perhaps for larger samples
nd lower negative values of quadratic selection (Fig. 4). Note,
owever, that the order of divergence is in the range of numerical
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Fig. 4. Kullback–Leibler divergence for balancing selection: The stationary distribution of populations of size N = 1000 with mutation bias β = 1/3 and mutation
ates θ = (0.00001, 0.0001, 0.001, 0.01, 0.1) respectively, is calculated for a general mutation Moran model with B1 = 0, B2 = 1 (A) and B1= 0, B2 = 3 (B) and
1 = 0, B2 = −1 (C) and B1= 0, B2 = −3 (D). We show the Kullback–Leibler divergence (y-axis) for varying θ (x-axis) between the equilibrium distributions of
he samples modelled by a general mutation Moran model vs. the downsampled population (solid line), and the samples modelled by a boundary-mutation Moran
odel vs. the downsampled population (dotted line) for sizes M = (3, 10, 30, 100) (shades of both types of lines decrease with increasing sample size). For details
bout the divergence measure see Fig. 1.
T

rrors, such that the equilibrium distributions of the models
re nearly indistinguishable. These results suggest that working
ith the boundary-mutation Moran model is advantageous when

orced to work with small sample sizes, either for numerical or
ther practical reasons.

.4. Approximate stationary distribution

In this subsection, we find an exponential approximation to
he exact boundary-mutation Moran model with biased mutation,
nd directional and quadratic selection. We will see that it has
simpler form that may be advantageous for implementation
urposes and that it provides a more immediate comparison to
lassic diffusion results in Section 4.

.4.1. Asymptotics of the drift and selection terms
Let us examine the asymptotics of the terms for drift and

election: Assuming that N is suitably large and B1 and B2 are
t most of first order, the numerator can be approximated by:

fi =

i−1∏
j=0

(
1 +

B1
2N − B2

2j−N
2N2

)
= exp

(
1
2N

(
iB1 + B2

i(N−i+1)
N

))
+ O(1/N2) .

(24)

ote that this is essentially a first order Taylor expansion of the
xponential in reverse. From es = (1+ s)+O(s2), we can see that

the exponential reliably approximates the exact process for the
large population sizes usually encountered in population genetics
(in particular, for approximately s ≤ 0.1). The denominator can
7

be analogously approximated:

gi =

i∏
j=1

(
1 −

B1
2N + B2

2j−N
2N2

)
= exp

(
−

1
2N

(
iB1 + B2

i(N−i−1)
N

))
+ O(1/N2) .

(25)

herefore the approximate drift and selection terms are given by:

fi
gi

≈

exp
(

1
2N

(
iB1 + B2

i(N−i+1)
N

))
exp

(
−

1
2N

(
iB1 + B2

i(N−i−1)
N

)) = exp
(
B1

i
N + B2

i(N−i)
N2

)
.

(26)

3.4.2. Approximate exponential transition rates and stationary dis-
tribution

We can define approximate interior transition rates for the
boundary-mutation Moran model with linear and quadratic se-
lection, and biased mutation as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pr(x(t + 1) =
i−1
N |x(t) =

i
N ) = e−

B1
2N +B2

2i−N
2N2 i(N−i)

N2

Pr(x(t + 1) =
i
N |x(t) =

i
N ) = 1 − (e−

B1
2N +B2

2i−N
2N2

+e
B1
2N −B2

2i−N
2N2 ) i(N−i)

N2

i+1 i
B1
2N −

B2(2i−N)
2N2 i(N−i)

(27)
Pr(x(t + 1) = N |y(t) = N ) = e
N2 .
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Fig. 5. The equilibrium probability (y-axis) of observing the focal allele within
the polymorphic region at a certain frequency (x-axis) with Wright’s equilibrium
distribution (solid line) and the boundary-mutation Moran model (symbols: ‘o’,
‘+’, and ‘x’ for B1 = (0, 1, 2), respectively). Parameters are: β = 1/3, θ = 0.02,

= 50, B1 = (0, 1, 2), and B2 = 0.

The boundary at i = 0 becomes:⎧⎨⎩Pr(x(t + 1) = 0|x(t) = 0) = 1 − β θ
N e

B1+B2
2N D0

Pr(x(t + 1) =
1
N |x(t) = 0) = β θ

N e
B1+B2
2N D0 ,

(28)

ith

0 =

(
1 − βθ

N−1∑
i=1

1
i
Fi

)−1

, (29)

here

i = eB1
i
N +B2

i(N−i)
N2 . (30)

nalogously, at the boundary i = N the approximation yields:⎧⎨⎩Pr(x(t + 1) = 1|x(t) = 1) = 1 − (1 − β) θN e
−B1+B2

2N D1

Pr(x(t + 1) =
N−1
N |x(t) = 1) = (1 − β) θN e

−B1+B2
2N D1 ,

(31)

with

D1 =

(
1 − (1 − β)θe−B1

N−1∑
i=1

1
N − i

Fi

)−1

. (32)

Set ϖ =
β(1−β)θ

(1−β)+βeB1
and ϱ =

βeB1
(1−β)+βeB1

. The approximate
equilibrium distribution becomes:

π = Pr(X =
i
N

|B1, B2, ϱ,ϖ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ϱ) −ϖ

N−1∑
i=1

1
i
Fi i = 0;

ϖ Fi
N

i(N − i)
1 ≤ i ≤ N − 1;

ϱ −ϖ

N−1∑
i=1

1
N − i

Fi i = N. .

(33)

Detailed balance can be shown analogously as in the exact
ersion and the proof is therefore omitted here.
For small θ , this approximate equilibrium of the boundary-

utation Moran model is an excellent approximation of Wright’s
8

Fig. 6. (A.) The equilibrium probability (y-axis) of observing the focal allele
within the polymorphic region at a certain frequency (x-axis) under different
strengths of linear selection. The neutral scenario is given by the dashed line;
the thinner black lines are the exact equilibrium probability for the selection
scenarios, the exponential approximation is depicted by the thicker grey lines.
Parameters are: β = 1/3, θ = 0.02, N = 200, B1 = (3, 10), and B2 = 0.
B.) The equilibrium probability (y-axis) of observing the focal allele within the
olymorphic region at a certain frequency (x-axis) under different strengths of
uadratic selection. The neutral scenario is given by the dashed line; the thinner
lack lines are the exact equilibrium probability for the selection scenarios, the
xponential approximation is depicted by the thicker grey lines. Parameters are:
= 1/3, θ = 0.02, N = 200, B1 = 0, and B2 = (−4, 4, 10, 15).

Fig. 7. (A.) The equilibrium probability (y-axis) of observing the focal allele
within the polymorphic region at a certain frequency (x-axis) under different
strengths of linear selection. The neutral scenario is given by the dashed line;
the thinner black lines are the exact equilibrium probability for the selection
scenarios, the exponential approximation is depicted by the thicker grey lines.
Parameters are: β = 1/3, θ = 0.02, N = 200, B1 = (2, 4, 8, 12), and B2 = 8.
B.) The equilibrium probability (y-axis) of observing the focal allele within the
olymorphic region at a certain frequency (x-axis) under different strengths of
uadratic selection. The neutral scenario is given by the dashed line; the thinner
lack lines are the exact equilibrium probability for the selection scenarios, the
xponential approximation is depicted by the thicker grey lines. Parameters are:
= 1/3, θ = 0.02, N = 200, B1 = 4, and B2 = (2, 5, 10, 15).

quilibrium distribution with general mutation rates (Wright,
931) (Fig. 5).

.5. Dynamics of the stationary distribution

Varying the values of B1 and B2, either individually or simulta-
eously, accounts for a wide range of possible selection scenarios.
he exponential distributions are generally good approximations
or the exact versions even for very strong selection and small
opulation sizes (Figs. 6 and 7).
Note that quadratic selection acts symmetrically around a

aximum at frequency 1 when B = 0. Adjusting the latter
2 1



C. Vogl and L.C. Mikula Theoretical Population Biology 139 (2021) 1–17

s
s
d
a
i
t
(
m
s
a
B
a

e
h

w

T
p

T
t
d
C

H

hifts the target frequency (Figs. 6B and 7). With stabilizing
election around a given optimum, selection may be either mainly
irectional (far away from the optimum) or underdominant (right
t the optimum) (Kimura, 1981). In the case of overdominance,
.e., concave fitness on the locus level, a fitness maximum inside
he polymorphic region may lead to an increase in polymorphism
Fig. 6B). But in this case the main assumption of the boundary-
utation model, i.e., that mutations only occur in monomorphic
tates, may be violated. Recall that the fitness advantage (or dis-
dvantage) through fixation of a mutant allele of the focal type is
1 (irrespective of B2). With the focal allele completely dominant
nd favoured by selection, we have B2 = B1; without dominance

B2 = 0. Hence, dominance makes no difference to zeroth order
in θ , i.e., when drift is strong relative to mutation. This changes
when first order terms are included as polymorphism may in-
crease with overdominance and decrease with underdominance,
even with relatively low selection coefficients.

4. Divergence, substitution rates, and heterozygosity

In this section formulae for variation within and between pop-
ulations are derived. We will often use the exponential approxi-
mation to the equilibrium distribution from Eq. (33) as a starting
point to contrast with neutral versions derived from Eq. (5). This
is partly for convenience, but we also wish to compare our results
to classic diffusion derivations.

4.1. Equilibrium distribution among populations

Let ϖ → 0 in Eq. (33) and compare to the version without
selection by letting θ → 0 in Eq. (5). We see from the boundary
terms at i = 0 and i = N of Eq. (33) that the selective advantage of
the preferred allele in the entire population is γ = B1 to zeroth
order in θ . Given K sites with equal effects on the phenotype,
a tridiagonal transition rate matrix results and hence we again
have detailed balance between nearest neighbours, this time not
between alleles within a site but between loci fixed for alternative
alleles. Set the number of sites fixed for the focal allele to y. In
quilibrium the following detailed balance equation must then
old:

Pr(y|K , β, γ )(K − y)β = Pr(y + 1|K , β, γ )(y + 1)(1 − β)e−γ .

(34)

One then sees that the binomial distribution

Pr(y|K , ρ) =

(
K
y

)
ρy(1 − ρ)K−y , (35)

ith ρ = βeγ /((1−β)+βeγ ) is the equilibrium distribution since(
K
y

)
ρy(1 − ρ)K−y(K − y)β =

(
K

y + 1

)
ρy+1(1 − ρ)K−y−1

× (y + 1)(1 − β)e−γ

(1 − β)K−yβy+1eyγ = (1 − β)K−yβy+1e(y+1)γ e−γ

(1 − β)K−yβy+1eyγ = (1 − β)K−yβy+1eyγ .

(36)

he mean of the binomial distribution is Kρ, the variance among
opulations Kρ(1 − ρ). The variance within populations is zero

since each population is assumed fixed at all sites with the
first order approximation we made at the start of this subsec-
tion. When selection opposes mutation bias, it may increase the
variance compared to neutral equilibrium.

Note that ρ corresponds to the expected proportion of favoured

alleles fixed among the K sites. The equilibrium rates of favoured

9

and disfavoured new mutations are:

rβ,θ,γ =

K∑
k=0

K !

k!(K − y)!
ρy(1 − ρ)K−yβθ (K − y) = K (1 − ρ)βθ

rβ,θ,−γ = Kρ(1 − β)θ .

(37)

he equilibrium ratio of favourable to unfavourable new muta-
ions is independent of the mutation parameters and
epends only on selection, as previously noted by McVean and
harlesworth (1999):
rβ,θ,γ
rβ,θ,−γ

=
K (1 − ρ)βθ
Kρ(1 − β)θ

=
β(1 − β)θ
βeγ (1 − β)θ

= e−γ . (38)

Note that the ratio of the probability of fixation of favourable and
unfavourable mutations in equilibrium is 1.

4.2. Expected heterozygosity

Starting from the boundary-mutation Moran model, an ex-
pression for the expected level of heterozygosity can easily be de-
termined. We point out connections between this result,
Kimura’s formula for heterozygosity (Kimura, 1969), and the
Ewens–Watterson estimator for molecular diversity (Ewens, 1972,
1974; Watterson, 1975).

4.2.1. Neutral expected heterozygosity
In the context of the boundary-mutation Moran model, we

can simply sum over the polymorphic region of the equilibrium
distribution to obtain a formula for the expected heterozygosity
(in contrast to the general model). In the past this has been done
for the neutral case from Eq. (5) (Vogl and Clemente, 2012):

Hβ,θ =

N−1∑
i=1

β(1 − β)θ
N

i(N − i)
= 2β(1 − β)θHN−1 , (39)

where HN−1 is again the harmonic number.
Note that this result multiplied by the number of loci is essen-

tially a version of the Ewens–Watterson estimator of molecular
diversity (Ewens, 1972, 1974; Watterson, 1975) for biased muta-
tion. The standard derivations of the Ewens–Watterson estimator
use forward diffusion on infinite alleles/sites or coalescent ar-
guments, but in Appendix A.1.1 and Appendix A.1.2 we show
that the estimator can be easily derived from Kimura’s earlier
backward diffusion approach as well (Kimura, 1969).

The boundary-mutation Moran model naturally separates
monomorphic and polymorphic dynamics. We can approximate
the summation over polymorphic sites with an integral by replac-
ing the allele frequency with the allele proportion x = i/N and
taking the limit N → ∞:

β,θ = lim
N→∞

∫ 1−1/N

1/N
2x(1−x)β(1−β)θ

1
x(1 − x)

dx = 2β(1−β)θ .

(40)

This is then identical to the neutral measure of heterozygos-
ity determined via the Kolmogorov backward diffusion (Kimura,
1969).

4.2.2. Expected heterozygosity under linear selection
The first derivation of expected heterozygosity under linear

selection is due to Kimura (1969). He assumed the infinite sites
model and used boundary-mutation reasoning: A single mutant
allele initially segregates at a proportion of 1/N (or 1 − 1/N).
With the Kolmogorov backward diffusion equation the course of
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he allele proportion within the polymorphic region is modelled
etween 1/N and 1 − 1/N (although Kimura integrated from 0
o 1 for simplicity), conditional on drift and selection. The reason
or neglecting the monomorphic region is that passing a boundary
odel to the diffusion limit leads to inconsistencies: The diffusion
pproximation requires the assumption of N → ∞ for the
olymorphic interior. The same assumption causes negative, and
hus impossible, probabilities of occupancy at the boundaries as
iscussed in Section 2.2. This can easily be seen from our formulae
or equilibrium distributions, e.g. Eqs. (5), (19), (33).

Let us now look at the boundary-mutation Moran model with
inear selection, i.e., γ = B1, as well as mutation. We will use
he exponential approximation of the equilibrium distribution
Eq. (33)) to derive the expected heterozygosity and immediately
pproximate the sum over the polymorphic region by an integral
n order to more readily compare to the diffusion approach. The
xpected heterozygosity for N → ∞ is then (Vogl and Bergman,
015):

Hβ,θ,γ = lim
N→∞

∫ 1−1/N

1/N
2x(1 − x)

β(1 − β)θ
(1 − β) + βeγ

eγ x
1

x(1 − x)
dx

= 2
β(1 − β)θ

(1 − β) + βeγ
eγ − 1
γ

= 2ϖ
eγ − 1
γ

,

(41)

e show this is equivalent to Kimura’s result (Kimura, 1969) in
ppendix A.1.1.
In order to detect the action of putative adaptive evolution, the

atio of the expected heterozygosity under linear selection to the
xpected heterozygosity at neutrality must be evaluated. Using
10
the diffusion approximation, this is given by:

Hβ,θ,γ
Hβ,θ

=

2 β(1−β)θ
(1−β)+βeγ

eγ−1
γ

2β(1 − β)θ
=

1
(1 − β) + βeγ

eγ − 1
γ

. (42)

hile directional selection always decreases heterozygosity
hen mutation rates are unbiased, directional selection oppos-

ng mutation bias may increase heterozygosity (Fig. 8A–C). This
appens because directional selection increases the overall mu-
ation rate by favouring the allele with the higher mutation rate.
ote that Eq. (42) is identical to that given by McVean and
harlesworth (1999) (see also Appendix A.1.4 for a comparison).

.2.3. Expected heterozygosity under quadratic selection
In continuous models, derivations of heterozygosity that in-

lude over- and underdominance involve solving the Gaussian
rror function. Within the framework of the boundary-mutation
oran model, a sum is taken over the polymorphic region of the
pproximate equilibrium distribution for the boundary-mutation
oran model with quadratic selection, instead of an integral

Eq. (33)):
Set λ = B1 +

B2
N and recall ϖ =

β(1−β)θ

(1−β)+βeB1+
B2
N
. Then:

Hβ,θ,λ =

N−1∑
i=1

ϖ eB1
i
N +B2

i(N−i)
N2

N
i(N − i)

= ϖAN−1 , (43)

where AN−1 =
∑N−1

i=1 eB1
i
N +B2

i(N−i)
N2 N

i(N−i) . The expected heterozy-
gosity under linear and quadratic selection relative to neutrality
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Fig. 9. Heterozygosity (A-C) and substitution rate (D-F) relative to neutrality (Eq. (44), and Eq. (57) respectively) depending on directional selection B for B = −1
1 2
for A and D, B2 = 0 for B and E, B2 = 1 for C and F. The black line corresponds to β = 1/2, the grey line to β = 1/3, and the light grey line to β = 1/5.
Fig. 10. Heterozygosity (A-C) and substitution rate (D-F) relative to neutrality (Eq. (44), and Eq. (57) respectively) depending on directional selection B2 for B1 = −1
or A and D, B1 = 0 for B and E, B1 = 1 for C and F. The black line corresponds to β = 1/2, the grey line to β = 1/3, and the light grey line to β = 1/5.
hen becomes:

Hβ,θ,λ
Hβ,θ

=
1

2((1 − β) + βeγ )
AN−1

HN−1
. (44)

In (Fig. 9A–C), we see that for a fixed value of quadratic se-
ection the dynamics between linear selection and mutation bias
emain the same as without quadratic selection. Relative to neu-
rality, there is a shift towards lower heterozygosity with negative
2 and towards higher heterozygosity with positive B2. Fig. 10B
akes it apparent that mutation bias only affects quadratic se-

ection if it acts jointly with linear selection. For a fixed value of
inear selection, quadratic selection will increase heterozygosity
onvexly with increasing strength (see Fig. 10A, C).
11
4.3. Substitution rates

In this subsection, we examine the dynamics of substitution
rates, first for varying strengths of mutation bias and opposing
linear selection, and then for quadratic selection.

4.3.1. Fixation probabilities in the boundary-mutation Moran model
The fixation probability of a new mutation that initially segre-

gates at the boundary and comes under both linear and quadratic
selection is given by e.g., Eq. (15) of Kimura (1981) as:

uβ,θ,λ

(
x =

1
N

)
=

1

N
∫ 1
0 e−B1x+B2x(1−x) dx

. (45)

This result is derived using the Kolmogorov backward diffusion.
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We have previously relied on Markov process arguments for
he majority of our calculations: In Vogl and Clemente (2012),
he fixation rates for a boundary-mutation Moran model with
inear selection are determined via balancing conditional flows.
owever, this is more cumbersome than solving the following
iscrete difference equation for the fixation probabilities:

uβ,θ,λ(i) = uβ,θ,λ(i − 1) Pr
(
x(t + 1) =

i − 1
N

|x(t) =
i
N

)
+uβ,θ,λ(i)

(
1 − Pr

(
x(t + 1) =

i − 1
N

|x(t) =
i
N

)
− Pr

(
x(t + 1) =

i + 1
N

|x(t) =
i
N

) )
+uβ,θ,λ(i + 1) Pr

(
x(t + 1) =

i + 1
N

|x(t) =
i
N

)
,

(46)

here the transition rates are from the exact equilibrium distri-
ution Eq. (19).
This is of course the precise discrete equivalent in method

o that of Kimura (see also Kimura, 1962). Given the boundary
onditions uβ,θ,λ(0) = 0 and uβ,θ,λ(1) = 1, the general result for
= 1, . . . ,N is:

uβ,θ,λ(j) =
1 +

∑i−1
j=1 e

−B1
j
N +B2

j(N−j)
N2 N

i(N−i)

1 +
∑N−1

j=1 e−B1
j
N +B2

j(N−j)
N2 N

i(N−i)

, (47)

nd, most importantly, for the case of a single segregating muta-
ion this yields:

uβ,θ,λ

(
x =

1
N

)
=

1

1 +
∑N−1

j=1 e−B1
j
N +B2

j(N−j)
N2 N

i(N−i)

. (48)

.3.2. Substitution rates under linear selection and the neutrality
ndex

With only linear selection, i.e., γ = B1, the substitution rate
er generation in equilibrium is balanced between favourable and
eleterious mutations. The mutation rate from allele 0 to 1 is
β(1−β)θ
βeγ+(1−β) . If we approximate the fixation probability in Eq. (48)
ith the continuous version equivalent in Eq. (46), the substitu-
ion rate per generation from allele 0 to allele 1 is:

β(1 − β)θ
βeγ + (1 − β)

uβ,θ,γ

(
x =

1
N

)
≈

β(1 − β)θ
βeγ + (1 − β)

1

N
∫ 1
0 e−γ x dx

=
β(1 − β)θ

βeγ + (1 − β)
γ

N(1 − e−γ )
.

(49)

In the reverse direction we have eγ more mutations, but the
selection coefficient is reversed:

β(1 − β)θeγ

βeγ + (1 − β)
uβ,θ,−γ

(
x =

1
N

)
≈

β(1 − β)θeγ

βeγ + (1 − β)
1

N
∫ 1
0 eγ x dx

=
β(1 − β)θ

βeγ + (1 − β)
γ eγ

N(eγ − 1)

=
β(1 − β)θ

βeγ + (1 − β)
γ

N(1 − e−γ )
.

(50)
 t
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Recall that ρ = βeγ /((1 − β) + βeγ ). The overall substitution
rate then becomes:

Sβ,θ,γ = 2
K∑

k=0

K !

k!(K − k)!
ρk(1 − ρ)K−k k(1 − β)θ

γ /N
eγ − 1

= 2K
θ

N
γ

eγ − 1
(1 − β)ρ .

(51)

Without selection this rate reduces to

Sβ,θ = 2K
θ

N
β(1 − β) . (52)

he ratio of the nearly-neutral and neutral rates is then:

Sβ,θ,γ
Sβ,θ

=
ρ

β

γ

eγ − 1
=

γ

(βeγ + (1 − β))(1 − e−γ )
. (53)

Note that while γ

eγ−1 is always smaller than 1 for γ > 0, ρ

β

may be larger because linear selection opposing the mutation bias
increases overall mutation rates. Altogether, linear selection may
thus increase substitution rates over the neutral rate with biased
mutation (Fig. 8D-F).

Following Ohta (1972), the common understanding of selec-
tion against deleterious mutations is that it slows down the
substitution rate and thus the rate of divergence in proportion
to the effective population size. Usually substitution rates ele-
vated above the neutral rate are interpreted as resulting from
recent positive selection and not from an equilibrium of linear
selection and biased mutation. Yet we are not the first to note
that in equilibrium, a strong mutation bias against the opti-
mal codon may actually increase the substitution rate: McVean
and Charlesworth (1999) revived the investigation into this phe-
nomenon; Lawrie et al. (2011) also discuss how this interplay can
confound maximum likelihood estimates of branch lengths and
therefore inference of positive selection on phylogenies.

In Appendix A.2, we provide a comparison between our Eq.
(53) and the equivalent formula derived by Kimura (1981).

We note that the neutrality index for linear selection vs. neu-
trality is independent of the mutation parameters: It is 1 for
γ = 0, and always greater than 1 for γ ̸= 0. This can be shown
as follows:

Hβ,θ,γ
Hβ,θ

Sβ,θ
Sβ,θ,γ

=
1

(1 − β) + βeγ
eγ − 1
γ

(βeγ + (1 − β))(1 − e−γ )
γ

=
eγ − 1
γ

1 − e−γ

γ

=

(
eγ /2 − e−γ /2

γ

)2

=

( ∞∑
i=0

(γ /2)2i

(2i + 1)!

)2

.

(54)

The squared power series contains only even powers of γ ,
uch that the neutrality index must be greater than 1 (since the
erm for i = 0 is always 1). Indeed, the neutrality index is
nchanged by reversing the sign of γ , which actually corresponds
o an exchange of the labels of the two alleles (Fig. 11).

.3.3. Substitution rates under quadratic selection and the neutrality
ndex

As with heterozygosity, obtaining an expression for the sub-
titution rate that includes quadratic as well as linear selection
ithin the framework of the boundary-mutation Moran model

nvolves summation rather than solving the Gaussian error func-
ion. We now have λ = B +

B2 . Set ρ = β/((1−β)+βeλ). Then
1 N 2
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Fig. 11. Neutrality index in dependence of B1 (A) and B2 (B) relative to neutrality
(Eq. (58)). In (A), the black line corresponds to B2 = 0, the grey line to B2 = −1,
and the light grey line to B2 = 1. In (B), the black line corresponds to B1 = 0,
he grey line to B1 = −1, and the light grey line to B1 = 1.

he substitution rate is given by:

Sβ,θ,λ = 2
K∑

k=0

K !

k!(K − k)!
ρk
2(1 − ρ2)K−kk(1 − β)θuβ,θ,λ

(
x =

1
N

)
= 2K

θ

N
ρ2uβ,θ,λ

(
x =

1
N

)
.

(55)

ithout selection this reduces to:

Sβ,θ = 2K
θ

N
β(1 − β)

1
1 + 2HN−1

. (56)

herefore the substitution rate with quadratic and linear selection
elative to neutrality becomes:
Sβ,θ,λ
Sβ,θ

=
1

(βeλ + (1 − β))(1 + 2HN−1)uβ,θ,λ

(
x =

1
N

) .
(57)

nversely as with heterozygosity, quadratic selection causes a
hift towards lower substitution rates for positive values and
owards higher substitution rates for negative ones relative to
eutrality (Fig. 9D–F). This shift appears linear and the slope
epends on the interaction between linear selection and mutation
ias (Fig. 10A–C).
Let us take another look at the so-called neutrality index:

Hβ,θ,λ
Hβ,θ

uβ,θ
uβ,θ,λ

=
1

2HN−1
AN−1uβ,θ,λ

(
p =

1
N

)
. (58)

It is independent of the mutation parameters and has a parabolic
shape in dependence on linear selection and a positive curvature
in dependence on quadratic selection (Fig. 9). Underdominance
results in values < 1 with weak to no linear selection (ex-
act dynamics depending on orientation), whereas overdominance
always causes values > 1.

5. Analysis of Drosophila data

We now apply our formulae to Drosophila data. This con-
sists of an alignment of ten haploid genomes of Malagasy D.
simulans (from inbred isofemale lines) (Rogers et al., 2014) and
ten haploid genomes of mainland African D. melanogaster (from
haploid embryos) (Lack et al., 2016), from which we extract a
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Table 2
Short intron data.
SI 0 1 2

0 56777 919 3145
1 2575 981 27656

Table 3
Fourfold degenerate site data.
FF 0 1 2

0 291665 6616 35918
1 17960 14848 613465

Table 4
Expectations under neutrality.
neutral 0 1 2

0 (1 − β − ϑ)(1 − τ ) ϑ (β − ϑ)τ
1 (1 − β − ϑ)τ ϑ (β − ϑ)(1 − τ )

Table 5
Expectations under selection.
selected 0 1 2

0 (1 − ρ − ϑζ )(1 − ητ ) ϑζ0 (ρ − ϑζ )ητ
1 (1 − ρ − ϑζ )ητ ϑζ1 (ρ − ϑζ )(1 − ητ )

joint site frequency spectrum of fourfold degenerate (FF) and
short intronic sites (SI; positions 8–30 bp of introns < 66 bp
long) from all autosomal loci. The bases A and T are encoded as
allele 0 and the bases C and G as allele 1. Then we downsample
this spectrum to a sample size of two for D. simulans (columns)
and one for D. melanogaster (rows). The joint allele spectrum of
short introns is given in Table 2, where the sum of the second
column (i.e., the sum of the cells [0, 1] and [1, 1]) corresponds to
the heterozygosity and the sum of the cells [0, 2] and [1, 0] to the
divergence.

The joint allele spectrum of the fourfold degenerate sites is
given in Table 3.

Using only polymorphism and divergence data, a McDonald–
Kreitman test of the SI vs. FF sites shows a highly significant
deviation from neutrality (χ̂2

= 44.4, p ≈ 0). The FF sites, pre-
sumably under selection, are more variable than the presumably
neutral SI sites (χ̂2

= 10.732, p = 0.001), which is usually
interpreted as indicative of balancing selection. As we discussed,
as long as the selection direction opposes mutation bias (in this
case β̂1 = 0.34), linear (directional) selection may increase
polymorphism.

In neutral equilibrium, the expected proportions are given in
Table 4, where ϑ = β(1−β)θ , τ = β(1−β)θ t . Here t is the time
of separation of the two species in multiples of N generations.
We use the expected proportions in Table 4 together with the
SI data (Table 2) to estimate the parameters: ϑ̂ = 0.0101, β̂ =

0.345, and τ̂ = 0.0625. From this we conclude that these two
species separated t = τ/ϑ = 6.17 generations times the effective
population size N ago.

With selection, the expected proportions are given in Table 5,
with

η =
γ

(1 − e−γ )(1 − β + βeγ )
, (59)

ζ0 =
1

1 − β + βeγ

( (
1

1 − e−γ
−

1
γ

)
(1 − ϑητ )

+

(
eγ

−
1

−γ

)
ϑητ

)
,

(60)
γ 1 − e
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nd

ζ1 =
1

1 − β + βeγ

( (
1

1 − e−γ
−

1
γ

)
ϑητ

+

(
eγ

γ
−

1
1 − e−γ

)
(1 − ϑητ )

)
.

(61)

e note that ζ0 and ζ1 are weighted averages of the unidirec-
ional heterozygosity given in Eq. (75). Substituting the estimates
ˆ , β̂ , and τ̂ into Table 5 and using the fourfold degenerate site
ata (Table 3), we obtain an estimator for the directional selection
trength of γ̂ = 1.364 by direct search.

. Conclusions

In this article, we introduce a biallelic Moran model with
iased, reversible mutation and linear and quadratic selection
ith mutations from the boundaries only. It approximates the
eneral mutation model when scaled mutation rates are small.
e parameterize selection similarly to Kimura (1981), who ana-

ysed a model with many biallelic loci contributing to a nor-
ally distributed trait. Our model additionally takes mutation
ias into account. While McVean and Charlesworth (1999) also
onsider mutation bias, they do not include quadratic selection.
n contrast to both, we derive the exact stationary distribution
ather than only determining it up to a constant and additionally
rovide an accurate approximation. This enables particularly di-
ect derivation of expressions for heterozygosity and substitution
ates.

We apply our model to a Drosophila dataset where sites from
short introns are presumably unselected and sites from fourfold
degenerate sites are presumably under directional selection. With
a McDonald–Kreitman test, heterozygosities and divergence be-
tween these two site-classes can be compared and tested for
deviation from normality. From the short intron data, we can
estimate mutation bias, molecular diversity, and divergence time.
Conditional on these estimates, directional selection on fourfold
degenerate sites can be determined. We thus go beyond merely
demonstrating a deviation from neutrality. We note that molec-
ular diversity is higher for fourfold degenerate sites than for
short introns. As long as the direction of directional selection
opposes the mutation bias (in this case about β̂1 = 0.34), linear
r directional selection may increase polymorphism. With the
nferred parameters, such an effect is expected. It is thus not
ecessary to postulate balancing selection to explain this result.
Note that dominance, over- and underdominance, and balanc-

ng selection (which are special cases of linear plus quadratic
election) have received a lot of attention in recent years. Many
tudies have analysed the signature quadratic selection leaves on
inked sites (e.g., DeGiorgio et al., 2014; Bitarello et al., 2018).
here are, however, also widely known cases of quadratic selec-
ion where linkage does not play a role, such as the human ABO
lood polymorphism (Villanea et al., 2015).
The reversibility of mutations in our model also implies that

he rate of negatively and positively selected new mutations (the
atio of which is determined by mutation bias and selection) may
each a stationary distribution. Thus the effects of deleterious mu-
ations (background selection, Charlesworth et al., 1993) as well
s positively selected mutations (hitchhiking, Innan and Stephan,
002) on the effective population size may also equilibrate. In-
eed, whether one parameterizes such models with positive or
egative selection strength, the resultant equilibrium distribution
ill be identical. This is a promising setting for future explo-
ations of more complex dynamics involving, e.g., background
election (see also ideas raised by McVean and Charlesworth,
999).
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In the struggles over the neutral (Kimura, 1983) and nearly-
neutral (Ohta and Gillespie, 1996) theories following Gillespie’s
review (Gillespie, 1984), subtleties in the models and common
ideas in the approaches of individual scientists took a back-
seat. Advances were driven by data and computer-intensive ap-
proaches. Nowadays, two strands of research appear to prevail
within population genetics: one centred on data sets that con-
trast amino acid changing and silent substitutions (McDonald
and Kreitman, 1991; Yang and Nielsen, 2000; Smith and Eyre-
Walker, 2002), where theory is based on the infinite sites model
with deleterious mutations (Ohta and Gillespie, 1996); the other
centred on data sets that contrast fourfold degenerate sites with
short introns (Haddrill et al., 2005; Haddrill and Charlesworth,
2008; Clemente and Vogl, 2012b,a; Jackson et al., 2017), where
theory is based on biallelic, reversible mutation models and
selection–mutation–drift equilibrium (Li, 1987; Bulmer, 1991;
McVean and Charlesworth, 1999; Vogl and Bergman, 2015). Note
that both approaches only allow for linear selection; quadratic
selection (Kimura, 1981) is ignored. We posit that reversible
mutation models such as ours can provide the framework for
rigorous analysis of the interplay between mutation bias and both
linear and quadratic selection. Broadening the field of application
of such reversible models to scenarios in which they are not
traditionally used could bring together modelling approaches that
seem to have diverged unnecessarily.
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Appendix. Comparison to earlier results

A.1. Expected heterozygosity

A.1.1. Expected heterozygosity — Kimura
Kimura (1969) was the first to derive the expected equilib-

rium heterozygosity with directional selection in an infinite sites
model. He did this by using the Kolmogorov backward diffusion
equation. He assumed time t runs forward through generations.
Then, p is the allele proportion t generations earlier with the
mean change in proportion over a time interval denoted as Mδp
and the variance as Vδp. The backward equation is then:

∂φ(p, x; t)
∂t

=
1
2
Vδp
∂2φ(p, x; t)

∂p2
+ Mδp

∂φ(p, x; t)
∂p

. (62)

Next, Kimura takes νm to be the number of sites per generation
at which a new mutation appears in the population in a Wright–
Fisher model. We instead count the per generation mutations
from state 0 to state 1 within a Moran model — these occur at
rate ϱ . In our case, ϱφ(p, x; t)dx then represents the contribution
2 2
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f mutants appearing t generations earlier at initial frequency (or
ather proportion) p to the present mutant frequencies within the
ange x+dx (i.e. from x to x+dx). Thus, considering all the contri-
utions made by mutations in the past, the expected number of
ites at which the mutants presently fall in the frequency range
+ dx is:

(p, x)dx =

(
ϱ

2

∫
∞

0
φ(p, x; t) dt

)
dx (63)

Given that the expected heterozygosity under panmixia is
2x(1− x), the number of heterozygotes in the population is then:

H(p) =

∫ 1

0
2x(1 − x)φ(p, x) dx

=
ϱ

2

∫ 1

0

(∫
−∞

0
φ(p, x; t) dt

)
dx .

(64)

Note that the dx appears in the wrong place in the second line
of Eq. (5) in Kimura, 1969.) Then Kimura uses the open interval
0 < x < 1 for convenience, but argues that 1/N and 1 − 1/N
ould be more appropriate. He proceeds by multiplying both
ides of the backward diffusion in Eq. (62) with 2x(1 − x) and
ntegrating first over x and subsequently over t to obtain

(p, x; 0) = δ(x − p) . (65)

ltogether, he arrives at

=
1
2
Vδp

d2φ(p, x)
dp2

+ Mδp
dφ(p, x)

dp
+ ϱp(1 − p) , (66)

which he proceeds to solve for different assumptions on Mδp.
Kimura starts his discussion of specific scenarios from the gen-
eral solution of this diffusion equation with boundary conditions
H(0) = H(1) = 0. This is given as:

H(p) = (1 − u(p))
∫ p

0
ψH (ξ )u(ξ ) dξ + u(p)

∫ 1

p
ψH (ξ )(1 − u(ξ )) dξ ,

(67)

where

ψH (ξ ) = 2ϱξ (1 − ξ )
∫ 1

0
G(x) dx

1
VδξG(ξ )

, (68)

nd the ultimate probability of fixation is

(p) =

∫ p
0 G(x) dx∫ 1
0 G(x) dx

, (69)

here

(x) = e
−2

∫ x
0

Mδξ
Vδξ . (70)

In our Moran model, we have Mδp = (B1−B2(2p−1))p(1−p) =

p(1 − p) and Vδp = p(1 − p). We then obtain:

H,γ ,ϱ(ξ ) = 2
ϱ

γ
eγ ξ (1 − e−γ ) , (71)

nd

γ (p) =
1 − e−γ p

1 − e−γ
, (72)

here

γ (x) = e−γ x . (73)

We now wish to show that our formula for the expected het-
erozygosity can be obtained to order 1

N from the general solution
of the backward Kolmogorov diffusion. We assume mutations
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occur only at the boundaries in accordance with our mutation
model and in this case also with Kimura. Let us consider the initial
allele frequency p = 1/N at t = 0. We will eventually take
he limit N → ∞. The result is the probability of observing a
olymorphic sample of size two (weighted by the mutation rate)
n the current generation conditional on a single polymorphism
egregating at time t = 0.
We begin with Kimura’s general formula for heterozygosity

Eq. (67)) and substitute our Moran parameters from above:

Hγ ,ϱ(p) = (1 − uγ )
∫ p

0
ψH,γ ,ϱ(ξ )u(ξ ) dξ

+ uγ (p)
∫ 1

p
ψH,γ ,ϱ(ξ )(1 − uγ (ξ )) dξ

=

(
1 −

1 − e−γ p

1 − e−γ

)∫ p

0
2
ϱ

γ
eγ ξ (1 − e−γ )

(
1 − e−γ ξ

1 − e−γ

)
dξ

+

(
1 − e−γ p

1 − e−γ

)∫ 1

p
2
ϱ

γ
eγ ξ (1 − e−γ )

(
1 −

1 − e−γ ξ

1 − e−γ

)
dξ

= 2
ϱ

γ

(
1 −

1 − e−γ p

1 − e−γ

)∫ p

0
(eγ ξ − 1)dξ

+ 2
ϱ

γ
(1 − e−γ ξ )

∫ 1

p
eγ ξdξ

+ 2
ϱ

γ

(
1 −

1 − e−γ p

1 − e−γ

)∫ 1

p
(eγ ξ − 1)dξ

= 2
ϱ

γ

(
1 −

1 − e−γ p

1 − e−γ

)(
eγ ξ

γ
|
p
0 −ξ |

p
0

)
+ 2

ϱ

γ
(1 − e−γ ξ )

eγ ξ

γ
|
1
p

+ 2
ϱ

γ

(
1 −

1 − e−γ p

1 − e−γ

)(
eγ ξ

γ
|
1
p −ξ |

1
p

)
(74)

ow, let us set p =
1
N and take the limit N → ∞ but retain

erms of order 1
N . In doing so, we approximate exponentials with

a Taylor expansion around 0:

lim
N→∞

Hγ ,ϱ(p =
1
N
) = 2ϱ

(
1 −

γ

N(1 − e−γ )

)
· 0

+ 2
ϱ

N

(
1 −

eγ − 1
γ

)
− 2

ϱ

N(1 − e−γ )

(
eγ − 1
γ

− 1
)

+ O
(

1
N2

)
=2

ϱ

N
eγ − 1
γ

−

(
2
ϱ

γ

eγ

γ

− 2
ϱ

N(1 − e−γ )

)
+O

(
1
N2

)
=2

ϱ

N

(
1

1 − e−γ
−

1
γ

)
+ O

(
1
N2

)
.

(75)

So far, the result corresponds to the proportion of the het-
erozygosity in equilibrium that arose through mutations from
allele 0 in the reversible boundary-mutation model. To obtain the
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eterozygosity for a reversible model, we need to add the propor-
ion that arises through mutations from allele 1 in equilibrium:

Hγ ,ϱ = 2
ϱ

N

(
1

1 − e−γ
−

1
γ

+ eγ
(

1
1 − eγ

+
1
γ

))
= 2

ϱ

N
eγ − 1
γ

.

(76)

The final result is identical to our Eq. (41).

A.1.2. Expected heterozygosity — Ewens
Ewens (2004)(Eq. (9.23)) gives the equilibrium distribution of

allele proportions in an infinite sites model with scaled mutation
rate θ and selection coefficient α as:

Pr(X = i | N, α, θ ) = θ
eα(1−x)

− 1
eα − 1

1
x(1 − x)

. (77)

ultiplying this with 2x(1−x) and integrating yields the equilib-
ium heterozygosity:

Hα,θ =

∫ 1

0
θ
eα(1−x)

− 1
eα − 1

1
x(1 − x)

2x(1 − x) dx

=

∫ 1

0
θ
eα(1−x)

− 1
eα − 1

dx

=
2θ

eα − 1

∫ 1

0
eα(1−x)

− 1 dx

=
2θ

eα − 1

(
eα − 1
α

− 1
)

= 2θ
(
1
α

−
1

eα − 1

)
.

(78)

This is identical to Kimura’s formula if we set −α = γ and θ = ϱ.

A.1.3. Ewens-Watterson estimator
Given the equivalence between Kimura’s and Ewens’s results

for the expected heterozygosity in an infinite sites model, it
is of interest to check whether the Ewens–Watterson estima-
tor (Ewens, 1972, 1974; Watterson, 1975) can be obtained with
an approach analogous to that of Kimura (1969). Starting from
Eq. (66), we do not take the expected heterozygosity as 2x(1− x)
but more generally draw y alleles from a sample of size M:

0 =
1
2
Vδp

d2φ(p, x)
dp2

+ Mδp
dφ(p, x)

dp
+ ν

(
M
y

)
py(1 − p)M−y . (79)

Assume neutrality and u( 1
N ) =

1
N . Then:

lim
N→∞

ψP,ϱ(ξ )(p =
1
N
) = Nϱ

(
M
y

)
ξ y(1 − ξ )M−y

∫ 1
0 e0 dx
ξ (1 − ξ )

= Nϱ
(
M
y

)
ξ y−1(1 − ξ )M−y−1 .

(80)

ubstituting into the analog of Eq. (67), we obtain for 1 ≤ y ≤ M:

Pr(Y = y|M, ϱ) = ϱ

(
M
y

)∫ 1

0
ξ y−1(1 − ξ )M−y−1 dx

= ϱ

(
M
y

)
Γ (y)Γ (M − y)

Γ (M)

= ϱ
M

= ϱ(My +
M

M−y ) .

(81)
y(M − y)
16
Summing over y from 1 to M − 1, we obtain:
M−1∑
y=1

Pr(Y = y|M, ϱ) =

M−1∑
y=1

ϱ(My +
M

M−y )

= 2ϱ
M−1∑
y=1

1
y = 2ϱHM−1 ,

(82)

where HM−1 is the harmonic number. Multiplying by the number
of sites L, we obtain the expected number of polymorphic sites
and the Ewens–Watterson estimator of genetic diversity if θ =

2ϱ.

A.1.4. Expected heterozygosity according to Mcvean and
Charlesworth

McVean and Charlesworth (1999) give the following approxi-
mate formula for the expected heterozygosity in their reversible
mutation model (in our notation) as:

Hβ,θ,γ (MC) = 4βθ
(1−β)
β

(eγ − 1)

γ
( (1−β)

β
+ eγ

) (83)

ne can easily see that this is identical to our Eq. (76) up to
factor of two that stems from the difference between the
right–Fisher and the Moran model.

.2. Evolutionary rate

Kimura (1981) gives the relative evolutionary rate (in terms of
utant substitutions) under directional selection compared with

he strictly neutral case in his Eq. (25):

β,θ,γ /Sβ,θ = 2f1f2 log(f2/f1)/(f2 − f1) . (84)

ere, f2 is the equilibrium proportion of the positively selected
llele and f1 that of the other.
Assuming unbiased mutation, Kimura’s Eq. (22) for the ratio

f allele proportions gives f2/f1 = eγ .
Substituting this into the above Eq. (84), we get

Sβ,θ,γ /Sβ,θ = 2
eγ

(1 + eγ )2
log(eγ )

1 + eγ

eγ − 1

= 2
γ eγ

(1 + eγ )(eγ − 1)

= 2
γ

(1 + eγ )(1 − e−γ )
.

(85)

This is identical to our Eq. (53) without mutation bias, i.e.,
=

1
2 . With mutation bias, a different formula from ours

would result. From the numerical example, it can be concluded
that Kimura assumed the absence of mutation bias, to which
he generally seems to have given little thought. In this case,
the substitution rate cannot increase under directional selection
compared to neutrality.
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