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Abstract: Rivers play an essential role to humans and ecosystems, but they also burst their banks 

during floods, often causing extensive damage to crop, property, and loss of lives. This paper char-

acterizes the 2014 flood of the Indus River in Pakistan using the US Army Corps of Engineers Hy-

drologic Engineering Centre River Analysis System (HEC-RAS) model, integrated into a geographic 

information system (GIS) and satellite images from Landsat-8. The model is used to estimate the 

spatial extent of the flood and assess the damage that it caused by examining changes to the differ-

ent land-use/land-cover (LULC) types of the river basin. Extreme flows for different return periods 

were estimated using a flood frequency analysis using a log-Pearson III distribution, which the Kol-

mogorov–Smirnov (KS) test identified as the best distribution to characterize the flow regime of the 

Indus River at Taunsa Barrage. The output of the flood frequency analysis was then incorporated 

into the HEC-RAS model to determine the spatial extent of the 2014 flood, with the accuracy of this 

modelling approach assessed using images from the Moderate Resolution Imaging Spectroradiom-

eter (MODIS). The results show that a supervised classification of the Landsat images was able to 

identify the LULC types of the study region with a high degree of accuracy, and that the most af-

fected LULC was crop/agricultural land, of which 50% was affected by the 2014 flood. Finally, the 

hydraulic simulation of extent of the 2014 flood was found to visually compare very well with the 

MODIS image, and the surface area of floods of different return periods was calculated. This paper 

provides further evidence of the benefit of using a hydrological model and satellite images for flood 

mapping and for flood damage assessment to inform the development of risk mitigation strategies. 

Keywords: flood characterization; HEC-RAS; hydraulic simulation; Indus River; Landsat; MODIS. 

 

1. Introduction 

Flooding is one of the most common environmental hazards, affecting many coun-

tries worldwide [1]. Pakistan, like many South Asian countries, is often severely impacted 

by flooding [2]. The Indus River is the longest river [2] and the most crucial water source 
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in Pakistan, providing water to irrigate the land that produces 90% of the agricultural out-

puts of the country [3]. This river, however, often bursts its banks during the monsoon 

season, causing extensive damage to property and crops, as well as loss of lives. Droughts 

are also a recurrent feature in Pakistan, affecting agriculture, livelihoods, and the economy 

[4]. To better cope with the two extremes of the hydrological cycle, barrages and dams 

were built along the Indus River to store water during dry periods and to protect against 

the risk of flooding, respectively [5,6]. One such barrage is Taunsa Barrage, whose flood 

attenuation capability has decreased over the years due to severe sedimentation [7]. 

Flood mitigation is based on flood risk maps. The drawing of those maps is often 

based on the outputs of a hydrological model, which requires a digital elevation model 

(DEM) to represent the topographical surface and define a flood pathway [8]. A DEM can 

take the form of a digital terrain model (DTM) or a digital surface model (DSM). A DTM 

is a bare-Earth DEM [9]. Simultaneously, a DSM includes man-made features such as roads 

and buildings, vegetation, or any other features on the ground that can affect water flow 

[10]. The latter is particularly important in urban environments where a DSM is preferred 

for flood studies [11]. Data from various sources are used to develop a DEM, including 

land surveying, aerial photos, and, more commonly, remote sensing (RS) [9,10].  

Flood risk mapping has seen the development of new applications over the years, 

notably the integration of hydrological models with RS in a geographic information system 

(GIS) [12]. The literature abounds in the use of GIS and RS in flood hazard mapping, for 

example [13–16], and more recently on using optical and radar satellite images to validate 

flood risk maps, for example [8]. Research in GIS and RS has since expanded from what 

was essentially the delineation of areas at risk of flooding to real-time monitoring of a flood 

and assessment of its impacts on population and infrastructure [17], and time and cost-

effective crop loss assessment after a flood [18], notably for insurance purposes [19].  

In 2014, heavy rains combined with glacier melting triggered flash flooding on the 

Indus River plains [7,20]. This was one of the worst river flooding disasters to affect the 

country, destroying crops, homes, and other infrastructure [21,22]. Given the Indus River 

basin exposure to flooding and the devastating impacts that this hazard causes, as well as 

the likelihood that flooding might increase in the future due to anthropogenic climate 

change [23], further research is needed to develop flood alleviation measures, including 

better flood monitoring. In this regard, satellite imagery has become increasingly im-

portant, particularly given improvements in image resolution, their processing in GIS, and 

the availability of 3D technology [24,25]. This paper presents an approach to map and as-

sess the impacts of the 2014 flood of the Indus River in Pakistan using a hydrological model 

integrated within GIS and satellite images from Landsat-8. The simulated flood and its 

impacts are then compared with MODIS images, and recommendations are provided on 

mitigating future flood risks on the basics of the level of accuracy of the flooding simula-

tions. 

2. Materials and Methods 

2.1. Study Area 

The Indus River has its origins in the Tibetan Plateau; it flows through western 

China, the Ladakh region of India, and then enters Pakistan through the Gilgit-Baltistan 

region [4]. It continues its journey across the country’s entire length in a southerly direction 

to empty into the Arabian Sea near Sindh, the port of Karachi [26]. The river passes through 

the Muzaffargarh District of the Punjab region (Figure 1), which forms the focus of this 

study. This district comprises four subregions, with one of them bearing the same name as 

the district. To the north of the district is Taunsa Barrage, which was built to control the 

flow of the Indus River for irrigating agricultural land and for flood mitigation [27].  

 

 



Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 17 

 

 

 

  

Figure 1. The subdivisions of Muzaffargarh District in the Punjab province of Pakistan. 

2.2. Data and Model 

2.2.1. Remote Sensing Data for Land-Use/Land-Cover Type Classification 

Images from the operational land imager (OLI) and thermal infrared sensor (TIRS) 

onboard the Landsat-8 satellite were obtained from the United States Geological Survey 

(USGS: http:/earthexplorer.usgs.gov/) to identify the land-use/land-cover (LULC) types of 

the river basin. The study area is covered by Path 151 of the Landsat-8 satellite, providing 

images at a temporal resolution of approximately 16 days. Three satellite images were ob-

tained over the study area: before the flood (July 22), during the flood (August 7), and after 

it (September 24). Google Earth images were also obtained for comparison with the LULC 

types derived from the Landsat images.  

2.2.2. The HEC-RAS Model and DEM Data 

The US Army Corps of Engineers Hydrologic Engineering Centre River Analysis 

System (HEC-RAS) was applied to the study region to estimate the extent—and damage—

of the 2014 flood. The n-values of Manning’s coefficient required by the model were based 

on the LULC type, with the LULC classification identified using the Landsat images men-

tioned above.  

The HEC-GeoRAS GIS extension of the model comprises a set of procedures and 

tools for preparing geometric data for import into the HEC-RAS model to give a 3D view 

of the river basin, thereby allowing for an estimation of the spatial extent of a flood and its 

depth [28,29]. This import file requires a DTM represented by triangulated irregular net-

works (TIN). Each triangle represents a uniform slope steepness and flows direction. The 

DTM was created using data from the Shuttle Radar Topography Mission (SRTM) at 30 

m resolution as distributed by the Consortium for Spatial Information (CSI). The study 
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area in the dataset fell within one single tile. Several studies have used SRTM data to ex-

tract the boundary of a watershed and its drainage network [30,31]. This approach was 

followed, with the watershed delineated using the following steps in the GIS software 

ArcMap 10.6: i) importing the SRTM data, ii) creating a depression-less DTM over the 

study region, with the “Fill” method used to remove all sinks to create an accurate repre-

sentation of flow direction, iii) determine the flow path for each cell in the DTM using a 

technique named “Flow Path,” and (iv) calculate the flow aggregation value at each cell 

given the number of upstream cells flowing into it. Depressions, also referred to as sinks, 

have no drainage due to being surrounded by cells at higher elevations and are often the 

result of DTM processing.  

To represent the DTM as a TIN, points were extracted around the edge of the DTM 

spaces, and then, the surface was filled for each gap, creating a filled surface from the DTM. 

TINs were calculated from these points and converted to a base surface. The filled base 

surface from the TINs was subtracted from the filled surface from the DTM, and the result 

was added to the DTM base surface. The contour intervals were made over the area of 

interest, and the TIN was generated using these contours to create the geometric data.  

2.2.3. Streamflow Data 

Pakistan Water and Power Development Authority (WAPDA) provided discharge 

data for the Indus River at Taunsa Barrage from 1986 to 2014, which were used to identify 

the maximum daily discharge. The HEC-RAC model, however, requires as input the max-

imum instantaneous peak flow. As there is a lack of instantaneous peak flow data at the 

study location, it was estimated using Equation 1, a linear regression model based on 12 

pairs of maximum instantaneous and maximum daily discharge data with a Pearson cor-

relation coefficient of 0.94 [32]:  

𝑄𝑝 = 1.238𝑄𝑀 − 305.47                         (1) 

where Qp = maximum instantaneous discharge (m3-s-1) and QM = maximum daily dis-

charge (m3-s−1). Table 1 depicts the resulting maximum instantaneous discharge at Taunsa 

Barrage.  

Table 1. Maximum instantaneous discharge (𝑄𝑀) and maximum daily discharge (𝑄𝑝) at Taunsa Barrage. 

Serial Number Year 𝑸𝑴 (m3-s-1) 𝑸𝒑 (m3-s-1) Serial Number Year 𝑸𝑴 (m3-s-1) 𝑸𝒑 (m3-s-1) 

1 1986 2530 2170 16 2001 3510 2456 

2 1987 2850 2230 17 2002 3220 2235 

3 1988 2942 2632 18 2003 2930 2156 

4 1989 3442 2563 19 2004 2720 2230 

5 1990 4530 3325 20 2005 2420 1562 

6 1991 4918 2635 21 2006 2520 1456 

7 1992 3513 2546 22 2007 2210 1320 

8 1993 2967 2364 23 2008 2518 1648 

9 1994 3840 3385 24 2009 2695 1241 

10 1995 3868 3265 25 2010 4230 2530 

11 1996 3510 2568 26 2011 3834 2359 

12 1997 3420 2346 27 2012 3540 2640 

13 1998 3630 3156 28 2013 3530 2654 

14 1999 3340 3562 29 2014 4130 3125 

15 2000 3689 2963 - - - - 

2.3. Methodology 

2.3.1. LULC Classification  

Figure 2 illustrates the methodological approach used in this study. The OLI Land-

sat-8 images were pre-processed using layer stacking and mosaicking. They were subject 

to atmospheric and radiometric correction with the sensor-specific information in the 
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metadata file analyzed in ENVI v 5.4. In this process, spectral radiance was transformed to 

a planetary or exoatmospheric reflectance by normalizing solar irradiance to eliminate the 

influence of different solar zenith angles. The process accounted for different values of 

exoatmospheric solar irradiance resulting from the difference in a spectral band [33]. At-

mospheric correction was also performed to remove the influence of ambient atmospheric 

conditions, including aerosols, thereby increasing the interpretability of the satellite image.  

 

 

Figure 2. Schematic representation of the methodological approach used in this study. 

Radiometric correction is associated with a sensor that records the electromagnetic 

radiation intensity as a digital number (DN) for each pixel. These DNs may be translated 

to more practical real-life units such as radiance, reflectance, or temperature by using the 

sensor-specific information obtained from the metadata file of the Landsat image. Some 

software packages for image processing include radiometric calibration tools; for instance, 

Landsat-8 data can be translated to reflectance in ENVI v 5.4 without measuring the radi-

ance first.  

After atmospheric and radiometric corrections, ArcGIS 10.6 was used to perform a 

supervised classification on the Landsat images obtained before, during, and after the oc-

currence of the 2014 flood to identify the LULC types during each period (Figure 3) fol-

lowing the example of [34,35]. A maximum likelihood classification (MLC) [36,37] was also 

applied on the outcomes of the supervised classification, which resulted in a LULC classi-

fication with six categories, i.e., crop/agricultural land, built-up area, barren land, sand, 

water/wetland, and deposited material.  



Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 

 

2.3.2. Satellite-Based Flood Damage Assessment and its Validation 

Flood damage was assessed using a change detection technique, which consisted of 

calculating the surface area of the different LULC types of the watershed changing cate-

gory because of the flood. For instance, an area shifting from “built-up area” or “agricul-

tural/cropland” to “deposited material” in a satellite image obtained after the flood was 

considered a damaged area.  

Google Earth images and a total of 212 samples with a minimum of 30 samples for 

each LULC type were collected by a team of WAPDA together with their GPS location. 

These were used to validate the LULC type classification after the flood. The verification 

was done at random points using the random sample points method in the ArcGIS Spatial 

Analyst extension. These points were then converted into KML format so that they could 

be displayed in Google Earth. The accuracy of the LULC type classification after the flood 

was then measured using 600 ArcGIS random points and the 212 GPS points.  

Furthermore, 25 GPS points of the selected groups were used for the post-flood ver-

ification process. The accuracy of maps that depicted flooded areas was assessed using 440 

ArcGIS random points on the Google Earth images and 160 GPS points, with the uncer-

tainty matrix established using the results obtained from this comparison. The assessment 

was then quantified using the Kappa coefficient (K). 

2.3.3. Mapping the Spatial Extent of Floods of Different Return Periods and Comparing 

the Extent of the 2014 Flood with MODIS Imagery 

The floodplain maps were produced using the following steps: (1) a flood frequency 

analysis was performed to relate the discharge data at Taunsa Barrage to specific return 

periods; (2) development of the SRTM-based DTM model; (3) extract the boundary of the 

watershed and its drainage network; (4) prepare the geometric data using the HEC-

GeoRAS extension; (5) run the HEC-RAS model to simulate river discharge; (6) produce 

floodplain maps for floods of various return periods using the peak discharge identified 

from the flood frequency analysis.  

In the flood frequency analysis, the log-Pearson form III [38], the Gumbel [39,40], and 

the log-normal [41,42] distributions were fitted to the discharge data depicted in Table 1. 

The Kolmogorov–Smirnov (KS) test identified the log-Pearson III as the best distribution 

using the approach described in Khattak et al. [32]. The distribution was then used to esti-

mate the peak discharge value for a flood of a given return period. This peak discharge 

value was input into the HEC-RAS model to map the extent of the flood.  

The watershed characteristics, such as the river centerline, were extracted from the 

DTM using the Geospatial Hydrologic Modeling Extension of the HEC model (HEC-

GeoHMS). Geometric data for the river, such as cross-sections and bank stations and flow 

direction lines, were prepared using HEC-GeoRAS. In addition to the DTM, geo-refer-

enced natural-color images from Google Earth were obtained to estimate Manning’s 

roughness coefficient, a model parameter, for each of the relevant LULC categories (Table 

2). For this, separate polygons were drawn for each LULC category and Manning’s rough-

ness coefficient was calculated for each polygon using the method proposed by McCuen 

[43] and Chow et al. [20], while assigning a value of 0.32 for single-story and double-story 

houses [44]. After implementing all geometric data specifications and assigning Manning’s 

roughness coefficient values to each LULC category, the GIS file was imported into the 

HEC-RAS.  

Table 2. The estimated Manning's n value for different land use categories. 

Scheme  Land use Manning’s “n” 

1 Water 0.015 

2 Soil 0.32 

3 Vegetation 0.045 

4 Healthy Vegetation 0.19 
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The next step consisted of providing the steady flow and boundary conditions. For 

steady and unsteady analyses, standard depth is the most employed boundary state and, 

accordingly, the HEC-RAS model uses this value to estimate the depth of a flood. The en-

ergy slope can be estimated by calculating the slope of the river stretch downstream of the 

modeled river reach. To run an unsteady model, external boundary conditions are re-

quired. These are the boundary conditions that must be applied to the upstream and 

downstream ends of the river. Internal border requirements are optional and allow the 

user to identify gate operations and associated modifications to the flow along the length 

of the river. 

The level of the flood along the different stretches of the river was simulated using 

the peak river flow introduced into the HEC-RAS model. This peak river discharge corre-

sponded to floods with a return period of 5-, 10-, 50-, 100-, and 150-year, along with using 

the maximum instantaneous discharge value of the 2014 flood. The model produced as 

outputs the flow depth, the cross-sectional discharge, and other related data. After deleting 

all errors and after the water surface generation and floodplain delineation, the output file 

from HEC-RAS was imported into ArcGIS, and a floodplain map was produced. Only the 

flood depth could be obtained on this map; therefore, a smooth water surface was created.  

The UNITAR Operational Satellite Application Network (UNOSAT) analyzed the 

2014 Indus River flood using a MODIS image taken on July 31. This image was used to 

examine the extent of the flood and its damage and to compare it with that simulated by 

the model. 

3. Results 

3.1. Changes in LULC After the Flood and Assessment of Accuracy  

Figure 3 illustrates the LULC types before the flood, during the flood, and after it. 

‘Deposited material’ was not a LULC category for the image taken during the flood but 

only for the image after it. The change detection technique reveals significant changes for 

all LULC types. Before the flood, the watershed, covering a surface area of approximately 

581.8 km2, consisted of 63.8% crop/agricultural land, 11.3% built-up area, 21.1% barren 

land, 0.9% sand, and 1.1% deposited material (Figure 4). The ‘Water/Wetlands’ category 

covered only 1.1% of the watershed area, but, as expected, this increased dramatically to 

38% during the flood, therefore affecting other LULC types. Specifically, the ‘built-up’ 

LULC type decreased from 11.34 to 9.35%, the ‘crop/agricultural land’ category, which co-

vers the largest surface area of the catchment, decreased from 63.8 to 55.9%, and the ‘barren 

land’ LULC type decreased from 21.1 to 17.2% because of the flood; hence explaining the 

extensive damage that the 2014 flood caused to crops and the built environment.  
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Figure 3. LULC classification of Muzaffargarh District before the flood (left), during (middle), and after (right) the 2014 

flood as identified using Landsat images. 

 

Figure 4. Change in LULC in Muzaffargarh District according to Landsat 8 images before, during, and after the 2014 flood. 

Different measures were used to assess the accuracy of the supervised and MLC  

classification to categorize the watershed into the six LULC types. The highest overall ac-

curacy (OA) value, i.e., 96%, was obtained from the pre-flood image (July 22), while the 

post-flood image (September 24) had the lowest OA of 90%. The highest UA of the ‘built-

up’ area class was attained for the pre-flood image, with a value of 98.98%, while the lowest 

was 80.11% for ‘water/wetland’ class for the image taken during the flood (August 8). The 

OA and K for Muzaffargarh District are 0.96 and 0.94 (corrected samples, 576), 0.93 and 

0.91 (corrected samples, 545), 0.90 and 0.85 (corrected samples, 560) for the pre-flood, dur-

ing the flood, and post-flood image, respectively (Table 3).  
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Table 3. Accuracy assessment (%) of the LULC before, during, and after the 2014 flood. 

Classes 
Pre-flood During the flood Post-flood 

UA PA OA K UA PA OA K UA PA OA K 

Crop/agricultural land 82.35 98.98 

0.96 

 

0.94 

 

91.94 80.28 

0.93 

 

0.91 

 

91.84 81.82 

0.90 

 

0.85 

 

Built-up area 98.98 97.23 96.02 93.53 88.73 88.73 

Barren land 84.81 94.37 93.85 93.85 93.10 73.97 

Sand 95.85 94.29 94.64 96.15 80.79 83.59 

Water/wetlands 98.90 93.75 80.11 84.56 90.30 83.71 

Deposited material 81.56 84.53 90.59 93.33 90.91 98.90 

UA = user’s accuracy, PA = producer’s accuracy, OA = overall accuracy, K= Kappa coefficient 

 

Overall, the results reveal a high level of accuracy of the LULC categorization tech-

nique. For the pre-flood image, the highest UA, i.e., 98.98%, is attained for the ‘built-up 

area’ class, while the highest PA, also at 98.98%, is seen for the ‘crop/agricultural land’ 

LULC type. After the flood, the water category returned nearly to its original pre-flood 

level, decreasing from 38% to 1.87%. However, the percentage of the watershed covered 

by the ‘built-up’ LULC category did not return to its original value, but to only 9.35%. This 

is likely because after the flood water receded, materials were deposited, hence this cate-

gory showed a significant increase from 1.10% to 15.04% in the post-flood image (Figure 

4). An increase from 45.22% to 55.92% was also seen in the ‘crop/agricultural land’ cate-

gory, while the ‘barren land’ LULC type, for its part, remained unchanged. The category 

defined as ‘sand’ increased marginally from 0.14 to 0.60%, as seen in Figure 3 (right image).  

3.2. Damage Assessment 

This study shows that the ‘crop/agricultural land’ was the most damaged LULC class 

because of the 2014 flood. Approximately 371.2 km2 of crop/agricultural land was inun-

dated compared to 65.98 km2 for the built-up area. Furthermore, the results highlight that 

deposited material damaged about 45.91 km2 of agricultural/cropland and 11.57 km2 of 

built-up area (Figure 5). 

 

 

Figure 5. Damage assessment to the ‘crop/agricultural land’ and ‘built-up areas’ LULC categories 

for each subdivision of the district following the 2014 flood. 
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3.3. Frequency Analysis 

The maximal instantaneous discharges at Taunsa Barrage for floods of different re-

turn periods are indicated in Table 4 using the LN, Gumbel, and LP3 distributions, while 

Figure 6 depicts the discharge for each of those distributions. For the three distributions, 

the recorded discharge values are higher than those provided by [2]. The expected flood 

peaks using the LN distribution are larger than those obtained using the LP3 and Gumbel 

distributions for all return periods greater than 50 years. The K-S test results for Taunsa 

Barrage are shown in Table 5.  

The LP3 distribution was used to predict flood peaks at Taunsa Barrage based on the 

value of the K-S statistical test. For the return periods of 5-, 10-, 50-, 100-, and 150-year as 

well as for the 2014 flood, the instantaneous flows derived from the LP3 distribution were 

used as steady flow inputs into the HEC-RAS model. The first segment was downstream 

from lower Taunsa at some distance. The topography was comparatively precise com-

pared to the upstream parts, while the second part was at the intersection of the Indus 

River. Both floods with 100- and 150-year return periods show higher water levels than the 

water levels that occurred during the 2014 flood (Figure 7).  

Table 4. Maximum instantaneous discharge (m3s−1) according to the LN, Gumbel, and LP3 proba-

bility distributions at Taunsa Barrage for floods of various return periods. 

Station Taunsa Barrage 

Return Period (years) 5 10 50 100 150 

LN 3842 4422 5476 5862 6134 

Gumbel 3923 4372 5360 5777 6021 

LP3 3861 4435 5299 5710 6110 

  

  

Figure 6. The discharge of the Indus River at Taunsa Barrage using the log-Pearson type III, Gum-

bel, and log-normal probability distributions. 

Table 5. Result of the K-S statistical test at Taunsa Barrage. 

Distribution 

Taunsa Barrage  

Test Statistic (D) Fit Ranking 
Sample 

Size 

LN 0.065 Yes 3 0.103 
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Gumbel 0.063 Yes 1 0.126 

LP3 0.064 Yes 2 0.113 

 

  

Figure 7. Water level for floods with different return periods 1118 m downstream from Taunsa 

Barrage. 

3.4. Flood Plain Mapping 

The flooded area for floods of different return periods was delineated using the 

model and Figure 8 depicts the areas of the river basin expected to be flooded for a flood 

with a 50-year return period. Figure 9 illustrates the extent of the flood according to the 

model in comparison to the extent observed on the MODIS satellite image. Through visual 

inspection, the hydraulic model simulates very well the spatial extent of the 2014 flood. 

Although the timing of the satellite image does not exactly correspond with the peak flood 

timing, field surveys in the study area indicate that the highest flood happened around 

August 7. However, some positions had minor deviations, the accuracy of the floodplain 

geometry used in the HEC-RAS model may cause those deviations. There were several 

islands and reservoirs on the water surface created by ArcGIS, possibly because the DEM 

elevations had a 1 m interval. The surface of water assumed constant elevation values. 

Consequently, compared to the lower reach, the flooded area in the upper section of the 

river and flow depth are comparatively smaller.  

Near Taunsa Barrage lies the highest area impacted. It can be seen from Table 6 that 

for the 100-year return period, more than 147% of the surface area is expected to be flooded.  
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Figure 8. Areas in the Muzaffargarh District expected to be flooded for a flood with a 50-year return period. 
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Figure 9. Comparison of the extent of the 2014 flood according to the MODIS satellite image and 

the hydraulic simulation of the flood. 

Table 6. Percentage of the surface area flooded during floods of different return periods. 

Serial 

Number 
Return period Area affected (km2) Percentage w.r.t normal flow (%) 

1 Normal flow 23.29 100 

2 5-year 130.95 139 

3 10-year 136.56 143 

4 50-year 138.40 145 

5 100-year 141.54 147 

6 150-year 143.22 149 

 

Overall, this study indicates that the accuracy of the HEC-RAS model to simulate the 

spatial extent of the 2014 flood of the Indus River to be very good, through visual inspec-

tion, but better calibration of the channel roughness could potentially further increase the 

accuracy of the model.  

4. Discussion 

Pakistan is a country highly vulnerable to floods [45,46]. For instance, in the past 

decade, other disasters were overshadowed by floods due to the heavy death toll and the 

significant disruption to the economy that they caused [34,47]. In 2014, heavy monsoon 

rains resulted in a high discharge of the Indus River, which exceeded the channel capacity, 

causing a major flood in Muzaffargarh District of the Punjab province. 
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This paper showed that a supervised classification of Landsat images was able to 

identify the LULC types of the study region with a high degree of accuracy. Even though 

Landsat images are available at a relatively high spatial resolution, they are typically avail-

able every 15 days over the study area [34], a time interval that is not frequent enough for 

flood monitoring and that is also often not suitable for damage assessment, especially 

given that cloud coverage sometimes restricts the use of optical images [48,49]. This was 

different for path 151 of the Landsat, which provided cloud-free images over the study 

area at the time of the 2014 flood, allowing for the current study to be performed.  

Previous research has shown the potential of optical satellite imagery to monitor in-

undated farmland and built-up areas [2]. This study has further expanded this evidence to 

other LULC types. Moreover, the potential of using Landsat images for damage assess-

ment, even many days following a flood, is demonstrated in this paper, a result in agree-

ment with other studies [26,37]. This paper also shows that sediment build-up can also be 

detected with good accuracy over crop/agricultural fields and built-up areas [49].  

When assessing the reliability of the flood monitoring reports, the precision of the 

satellite data and the methods used to process and analyze them must also be considered. 

This analysis performed in this paper has provided an accuracy of more 85% for the LULC 

categorization. This analysis identified ‘sand’ with an accurate accuracy, however, wet 

sand has often been mistaken with water and vegetation/agricultural land in some in-

stances. This is also observed in some situations where blurred pixels, crop/agricultural 

land, and built-up areas are also misclassified in transition areas. 

For flood mapping and damage assessment, high-resolution SAR data are suggested 

[50]. This is because radar satellite imagery can penetrate clouds, thereby they can be used 

under any weather conditions [50], and they are considered more accurate to assess dis-

ruption to crop/agricultural land and built-up areas [6,48]. However, freely available SAR 

images could not be obtained during the timing of the 2014 flood. Finally, in built-up areas 

where floodwaters flow over buildings, roads, and other elements, the modest 30 m spatial 

resolution of the Landsat images can lead to misclassification.  

Another objective of this study was to evaluate the suitability of the HEC-RAS model 

to simulate the water surface profiles and determine the spatial extent of floods of different 

return periods. It was found that the HEC-RAS model was able to replicate the magnitude 

of the 2014 flood. The floodplain map showed that the flood levels were about four times 

higher for a flood with a 50-year return period than those under typical flow conditions. 

 During the field surveys, it was noticed that the marginal barriers are necessary to 

restore, because the villagers cut them down in many places and build passages for their 

tractors and cattle. The deterioration of the foundations of barriers has contributed to the 

extent of the 2014 flood. The interference by citizens is another related concern with the 

protection of the floodplain in the basin. In recent years, the population and anthropogenic 

activities have increased in the floodplains. The floodplain must be reinstated or main-

tained to its natural undeveloped state to ensure citizens and infrastructure safety. Protec-

tion from damage and restoring the floodplain will significantly mitigate the risk of flood-

ing. This paper has shown the potential of applying the HEC-RAS model in the simulation 

of the 2014 flood and could be used by relevant authorities to inform risk mitigation strat-

egies. It is cost-effective and would allow government agencies to reduce flood damage. 

While hydraulic models are known to be challenging to implement, several institutions in 

Pakistan are now familiar with the HEC-RAS model. 

 

5. Conclusions 

This study proposed a modelling approach using GIS and RS to depict the spatial 

extent of the 2014 flood of the Indus River in Pakistan, comparing the model output with 

MODIS satellite imagery, and determining the extent of floods of different return periods 

for the basin, in addition to assessing the damage caused by the flood. The methodology 
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consisted of using Landsat images to identify the various LULC types over the watershed 

and the approach was subsequently evaluated using Google Earth images and field data 

with an overall classification accuracy of 85% obtained. Also, the analysis found that the 

‘crop/agricultural land’ LULC type was the most affected by the flood. This research also 

evaluated the HEC-RAS model to simulate the 2014 flood and using the model to simulate 

floods of different return periods. The K-S statistical test identified the LP3 probability dis-

tribution to be best at simulating the flow regime of the Indus River at Taunsa Barrage, 

and this distribution was then used to identify the peak river discharge for floods with a 

5-, 10-, 50-, 100-, and 150-year return period, which was then used as input into the HEC-

RAC model to estimate the areas of the watershed at risk of flooding for each return period. 

The spatial extent of the 2014 flood, as simulated by the model, was found to agree very 

well with the extent of the flood as observed on a MODIS satellite image, showing the 

potential of using the model and the approach presented in this paper for risk mitigation.  
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