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A B S T R A C T   

Inflammatory bowel disease (IBD) is a group of intestinal disorders which cause prolonged digestive tract 
inflammation. The early diagnosis of IBD through the detection of its biomarkers (including tumor necrosis factor 
alpha, C-reactive protein, cytokines and microRNAs) and imaging agents is a challenge. Nanotechnology enabled 
biosensors and enhanced image contrasting chemicals for diagnosis offer promises for an affordable, early and 
reliable confirmation of the disease and type thereof. Moreover, engineered nanoparticles (NPs) can also be used 
to deliver active drug agents directly to the region of inflammation. Major advantages of the targeted drug 
delivery are low dosage drug requirement due to localized/guided delivery and minimal side effects to other 
organs by the drug. Here, we present a mini review about different engineered nanostructures (Au NPs, Gra-
phene, Quantum dots, inorganic NPs, etc.) and plant-based nanoparticles for the detection, imaging and treat-
ment of IBD.   

1. Introduction 

Inflammatory bowel disease (IBD) is also known as a chronic re-
lapsing gastrointestinal (GI) condition that has two primary forms, ul-
cerative colitis (UC) and Crohn’s disease (CD), associated with an 
imbalance in intestinal microbiota. As of today, neither of these two 
forms can be permanently cured [29]. This morbid condition causes 
severe gastrointestinal (GI) symptoms, including abdominal pain, 
bleeding, anemia, diarrhea, and weight loss [80]. 

Being a global disease, IBD has negative impacts on the quality of life 
and has an accelerating worldwide prevalence between 40 and 50 per 
100,000 people-year [71]. It is hypothesized that in 2021, the coalescing 
prevalence of IBD might level off in Europe and America as the IBD 
population ages and, also probably due to an unanticipated rise in the 
death rate during the COVID-19 pandemic [45]. Still, this idiopathic 
condition remains a major challenge owing to the deteriorating impacts 

of the disease on the small intestine and colon. It has been estimated that 
more than 33% of IBD cases are struggling with complications farther 
than intestinal manifestations of the disease, such as arthritis, uveitis, 
ankylosing spondylitis, and a broad range of other inflammatory con-
ditions [75,80]. 

Despite progress made, a definite diagnosis of IBD still poses chal-
lenges. Many enteropathogens have been implicated as causative agents 
for UC, making it difficult to discriminate between IBD entities and 
chronic infectious colitis (IC) [54]. Besides, with the changing epide-
miology of intestinal tuberculosis (ITB) and CD, physicians have a hard 
time differentiating these two disorders, leading to delayed diagnosis or 
misdiagnosis [2]. 

On the other hand, current IBD treatments aim to maintain the pa-
tient in remission and alleviate complications of the disease, in prefer-
ence over reversing the complex underlying pathogenic mechanisms 
[80]. Depending on the severity of symptoms, several drugs including 
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immunomodulators, corticosteroids, aminosalicylates, monoclonal an-
tibodies, and some broad-spectrum antibiotics are being used to treat 
IBD patients. Whereas, fish oil, methotrexate, bismuth, and arsenical 
salts are considered alternative pharmacotherapies [6,80]. Prolonged 
use of conventional medications was found to cause serious side effects 
such as pancreatitis, allergic reactions, nausea, and elevated liver en-
zymes, making the management of IBD challenging, specifically in 
elderly and vulnerable populations [3,100]. Surgery is another option of 
IBD treatment; nevertheless, several controversies exist in IBD surgery 
[51]. Specific delivery of a drug to the colon, termed colon delivery, has 
also gained much attention as an alternative therapeutic option [76]. 
Yet, some considerations have to be made for this purpose. For example, 
each GI tract segment has different pH conditions, and at unoptimized 
pH, drugs might be oxidized, deaminated, hydrolyzed, or completely 
inactivated. Moreover, drugs might be sensitive to enzymes of the GI 
tract, such as salivary amylase, pepsin, trypsin in the intestine, gastric 
lipase in the stomach, and other enzymes produced by microbiota of the 
gut [104]. As a physical barrier, the mucus produced by the intestinal 
epithelium limits the delivery of orally administered drugs. Likewise, 
the P-glycoprotein are efflux transporters that pump drugs out of the GI 
tract, thus, inhibits optimal drug delivery [121]. 

To overcome this therapeutic hurdle, in the last decade, IBD treat-
ments has been enormously progressed, mostly as a result of advances in 
nanobiotechnology [108]. In this regard, nanoparticles (NPs), with 
various engineered properties suitable for biological applications, have 
been introduced as valuable tools revolutionizing disease diagnosis, 
treatment, and theranostics. Nowadays, NPs are widely used for the 
delivery of drugs, polypeptides, proteins, DNA, RNA, genes, and even 
vaccines [120]. Because of their nanometer-scale dimensions, specific 
delivery to inflamed tissue and controlled release, the nanomaterials 
(NMs) yield promising outcomes even at very low concentrations and 
have fewer side effects than conventional drugs [96]. This has made 
NMs an object of an even broader interest in light of successful opti-
mization of designed nanocarriers as novel drug delivery systems (DDS) 
for targeted therapies [24]. 

Recently, multiple targeted therapy approaches have been developed 
for IBD treatment, both in-vivo and in-vitro investigations. Several studies 
have focused on the pathophysiology of inflammatory responses in IBD 

patients through formulating a suitable carrier for colon delivery 
[100,121]. The application of nanocarriers for colon delivery improves 
their bioavailability and lessen the systemic complications seen in oral 
and intravenous administrations [58,100]. Some studies have suggested 
the use of NPs in forms of nanoemulsions, capsule and lipid-based 
nanocarriers, nanotubes, nanospheres, and solid lipid microparticles in 
a DDS [8,31,116]. These NPs could be derived from natural compounds 
[100] or natural products used in traditional Chinese medicine [31]. The 
majority of other studies have concentrated on the use of NPs as DDS in 
IBD treatment. 

The use of NMs has improved IBD diagnosis as well. It has been 
shown that dextran-coated NPs could be utilized as computed tomog-
raphy (CT) contrast agents for GI tract imaging in IBD patients. This 
could be very useful since conventional iodinated and barium-based CT 
agents are not specific for inflammatory sites of GI tract imaging [68]. 
Besides, polyethylene glycol-based nanocarriers, coupled with cell 
adhesion molecules and loaded with quantum dots, were generated as 
beneficial nanodevices for precise IBD diagnosis [109]. Based on our 
previous studies [10,19,33,67,83–85], in the current work, we reviewed 
different nanomaterials applied to diagnosis and treatment of IBD. Late 
advances in nanotechnology have made NMs, excellent tools to be 
deployed in the feisty fight against IBD (Scheme 1). In this review, we 
focus on different NMs applied to the treatment and diagnosis of IBD. 
(See Table 1.) 

2. Challenges and nano-diagnosis approaches for inflammatory 
bowel disease 

2.1. Serum biomarkers for inflammatory bowel disease and challenges 

Better diagnosis assessment and therapeutic response prediction is a 
core issue in medical services. Also, due to the continuously growing 
epidemic, realistic and efficient diagnostic and clinical assessment 
techniques are required. In recent IBD studies, serum biomarkers have 
made considerable progress as they are non-invasive, convenient, and 
comparatively cheaper than indicators in colonoscopy tissue, urine, air, 
and other body fluids [18]. Tumor necrosis factor alpha (TNF-α) plays an 
important role in chronic problems such as cardiovascular diseases, 

Scheme 1. Schematic representation of current approaches and use of nanostructures to enhance efficiency of these methods. Note: CT-Computed tomography 
SPECT-Single proton emission computed tomography, PET-positron emission tomography, and MRI- magnetic resonance imaging, miRNA: microRNA, TNF-alpha: 
tumor necrosis factor alpha. 
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muscular dystrophy, IBD, Parkinson’s disease and cancer. C-reactive 
proteins, cytokines, antibodies, non-coding RNAs, metabolomics and 
proteomics are other well-established biomarkers that are commonly 
used [26,53,91]. There are still no accurate IBD serum biomarkers to 
date, with such an abundance of studies. Serum sampling (blood-based 
biomarkers) and non-coding RNAs are only starting to thrive but display 
tremendous promise for future clinical practice. Overall, integrating 
different approaches can improve the diagnosis quality of IBD. 

2.2. Traditional IBD diagnostic methods and limitations 

In patients with IBD, clinical symptoms are not necessarily associated 
with disease severity i.e. differentiating between the symptoms of a 
stable intestine and those of a chronic stage is non-trivial. Mucosal lesion 
practitioners can have no or just mild symptoms [78]. Precise mea-
surements are needed to assess and monitor the development of IBD 
disease. While there is no established routine protocol for detecting the 
IBD but evaluating the symptoms of the disease or evaluating the reac-
tion to prescription/therapy are helpful. Clinicians use a mixture of 
clinical symptoms, laboratory indicators, radiation monitoring, endos-
copy, and histological analysis of tissue samples to assess disease 
occurrence and make treatment decisions [37]. In clinical IBD diag-
nostic, the use of one or more of the following imaging techniques is also 
applied. Computed tomography (CT), Single proton emission computed 
tomography (SPECT), positron emission tomography (PET), and mag-
netic resonance imaging (MRI) are most used techniques for imaging of 
IBD. Endoscopy can provide in situ imaging of mucosal lesions for IBD 
diagnosis. Nevertheless, it is painful, time-consuming, costly and asso-
ciated with a chance of perforation. Transmural inflammation cannot be 
assessed by endoscopy [27]. 

2.3. Nanoparticle-based imaging of inflammatory bowel disease 

Imaging techniques can offer promising features for imaging and 
evaluation of IBD [5,88,90,111]. Latest developments in multifunctional 
nanoparticles, use a multidisciplinary method to direct diagnosis of IBD. 
The combination of nanotechnology and imaging methodologies can 
allow early IBD diagnosis and disease severity monitoring and can also 
be used at the cellular or molecular level [55,115]. Wu et al. enhanced 
imaging quality of SPECT/CT and MRI by using indium (111In)/ iron 
oxide nanoparticles labeled macrophages [114]. Ex-vivo mass spec-
trometry demonstrated high superparamagnetic iron oxide (SPIO) 
nanoparticle uptake (7.4 pg iron per cell). 111In-labeled cells were 

present in all the tissues associated with reticuloendothelial area or in 
the mononuclear phagocyte system at 24 h. 

Basirat et al. evaluated the accuracy of 99mTc(V)-dimercaptosuc-
cinic acid (DMSA) and fecal calprotectin with ileocolonoscopy as new 
means for inflammation localization due to colonoscopy restriction in 
the evaluation of the whole intestine and patient discomfort in IBD [11]. 
In detecting active disease by colonoscopy, the calprotectin level had 
sensitivity, PLR (positive likelihood ratio), and PPV (positive predictive 
value) of 90%, 0.90, and 100% respectively. Naha et al. indicated that 
using dextran as a coating material on cerium oxide NPs would promote 
aggregation at IBD inflammation sites [68]. Dextran-coated cerium 
oxide NPs provided a good CT contrast and located it at the site of colitis 
in the intestine. To image hypoxia related with IBD, Zhou et al. devel-
oped an in-vivo hypoxia-activatable and cytoplasmic protein-powered 
fluorescence cascade amplifier (HCFA) [124]. A 4-aminobenzoic acid 
(azo)-modified mesoporous silica nanoparticle (MSN) was applied in 
their architecture as a container to load black hole quencher 2 (BHQ2) 
and cytoplasmic protein-binding squarylium dye (SQ). Then, through a 
host-guest interaction to form HCFA, the β-cyclodextrin polymer 
(β-CDP) combined with azo. The outcomes of the fluorescence imaging 
showed that HCFA could differentiate various levels of cellular hypoxia 
sensitively and monitor the variants of hypoxia in-vivo. 

2.4. Nanosensors for the detection of inflammatory bowel disease 

Since proper management of IBD is important with regard to disease 
prognosis, extensive studies have been carried out on non-invasive 
serum biomarkers to identify markers that are helpful for disease diag-
nosis, sub-classification, disease activity tracking and estimation of pa-
tient outcome and comorbidities [4,66]. Over the last few decades, 
nanosensors are being developed rapidly and are playing an increasing 
role in biological research, particularly in IBD [89]. In recent years, the 
application of nanostructures in diagnosis of IBD increased. Most recent 
studies about nano diagnosis of IBD will be discussed in the following 
paragraphs. Chemical sensors based on configurable molecularly 
modified Au NPs were reported by Karban et al. for the identification 
and discrimination between irritable bowel syndrome (IBS) and (IBD) 
[46]. The results showed an 81% accuracy of discriminative power be-
tween IBD and IBS and 75% between Crohn’s and Colitis states. 

Shepherd et al. implemented a stool analysis approach by using 
headspace gas chromatography coupled with chemiresistive metal oxide 
gas sensor. An artificial neural network software was fed with the 
variation in resistance over time data from different samples for IBD 

Table 1 
Recent biosensing investigations of various IBD biomarkers and their limit of detection (LOD).  

Biosensor type Material/active component Marker/detected molecule LOD Reference 

Electrochemical biosensor VA-NCNT electrodes lysozyme 100 fM [112] 
Electrochemical biosensor functionalized CNTs with amino groups 5-ASA and FA 36 and 3.1 nM, 

respectively 
[72] 

Electrochemical immunoassay iridium NPs-loaded graphene CRP 3.3 pg mL-1 [61] 
Electrochemical immunoassay carbon electrode (SPE) loaded with AuNPs CRP 0.15 nM [105] 
Endoscopy Fecal immunochemical testing fecal calprotectin (FCP); mucosal healing 

(MH) 
100 ng/mL; 250 μg/g [60] 

FET sensor anti-TNF-α/CNT-SiO2 TNF-α 1 pg/L [79] 
Fiber optic-SPR bioassay Functionalised Au coated optical fibers infliximab 2.2 ng/mL (15 pM) [56] 
Fluorescent sensor P1–4/AgNC/cDNA probe miRNA (miR-223) 0.018 μM [25] 
Immunosorbent assay CdSe/ZnS QDs CRP 0.46 ng/mL [59] 
Impedance spectroscopy based 

sensor 
Polyamide/ZnO CRP, IL-1β 0.2 pg/mL [41] 

Optical absorption spectroscopy ML@PDDA lysozyme 0.5 μg mL − 1 [22] 
SERS quenching nanosensor gold-coated copper oxide nanomaterial TNF-α 173 pg/L [34] 
μQLIDA PMMA microcapillary/MPO antibody/Quantum 

dots 
myeloperoxidase <5 nM [118] 

Waveguide-mode sensor Streptavidin/AuNPs CRP 10 pM [7] 

Abbreviations: 5-ASA: aminosalycilate drug mesalazine; CNT: carbon nanotubes; CRP: C-reactive protein; FA: folic acid; FET: field-effect transistor, IL-1β: interleukin- 
1β; miRNA: microRNAs; ML: Micrococcus lysodeikticus; PDDA: poly(diallyldimethylamonium); SERS: surface enhanced Raman spectroscopy; SPR: surface plasmon 
resonance; TNF-α: tumor necrosis factor alpha; μQLIDA: quantum dot-linked immuno-diagnostic assay, VA-NCNT: vertically aligned nitrogen-doped carbon nanotube. 
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detection [95]. The machine was able to separate samples from IBS and 
IBD with a sensitivity and specificity of 76% and 88%, respectively, with 
an overall mean predictive precision of 76%. Previously, miRNAs and 
silver NPs were used for fluorescence quenching diagnosis probe of 
inflammation [25]. However, theses probes have low limits of detection 
(LODs) due to interference of biomatrix. Fang et al. solved this problem 
by development of new DNA/AgNC-cDNA nanosensor that worked 
based on fluorescence enhancing approach [25]. They used miR-223 
(IBD biomarker) to target IBD infection. The newly developed probe 
showed perfect specificity and sensitivity (10 times) compared to the 
conventional fluorescence approach. 

An extremely sensitive surface enhanced Raman spectroscopy 
(SERS) quenching nanosensor (gold-coated copper oxide nanomaterial) 
for the identification of TNF-α in blood was developed by Gholami et al. 
[34]. TNF-α was measured down to 1*10− 14 M (173 pg/L) using this 
SERS quenching sensor. The cytokine measurement by the SERS 
quenching approach was cross-validated against the enzyme-linked 
immunosorbent assay (ELISA) and 93.39% agreement was found be-
tween the two methods. C-reactive protein (CRP) is produced by the 
liver in response to the inflammation. A number of sensors utilizing 
various functional nanomaterials have been developed. A multimode 
SWEATSENSER for non-invasive ongoing analysis of C-reactive protein 
and interleukin-1β has been reported by Jagannath et al. [41]. Over a 
dynamic range of 3 log orders, the sensor detected interleukin-1β and C- 
reactive protein in sweat. A mean IL-1β concentration of ~28 pg/mL was 
reported by continuous on-body measurements in the healthy cohort. 
This study showed the first solid evidence of multimode cytokine and 
inflammatory marker identification in a portable and wearable form 
factor in passively expressed eccrine sweat that can be used for better 
IBD management. A straightforward, cheap, and label-free electro-
chemical nanosensor was developed by Thangamuthu et al. to measure 
CRP in a drop of serum sample using screen printed carbon electrode and 
immobilized AuNPs that covered by anti-CRP (See Fig. 1(a)) [105]. 
Near-perfect results for detection of CRP (LOD (0.15 nM), linear range 
(0.4–200 nM) and sensitivity (90.7 nA/nM)) was achieved. 

A waveguide-mode sensor based on antibodies conjugated to strep-
tavidin- and AuNPs was developed by Ashiba et al. for detection of CRP, 
as shown in Fig. 1(b). The one-step method was based on waveguide- 
mode resonance and evanescent wave [7]. The minimum detectable 
concentration of CRP of the nanosensor was 10 pM. In recent years, 
smartphones with a high-quality camera and an operating system have 
become common sensing devices, especially in point-of-care (POC) an-
alyses. A portable smartphone-based diffusometry was developed by 
Chuang et al. for the analysis of the CRP concentration [17]. The 300 nm 

polymer fluorescent beads (polystyrene with COOH− functional group) 
were imaged by an optimized fluorescence microscopic add-on system 
for a smartphone. For a period, sequential nanobead data were captured 
and the image for the analysis of fluorescence correlation spectrometric 
(FCS) was used. The sensor demonstrates linearity in 1–8 μg/mL sensing 
range. A novel quantum dot-labeled immunosorbent assay has been 
developed by Lv et al. for rapid C-reactive protein detection [59]. The 
CRP detection assay provided a wide analytical range of 1.56–400 ng/ 
mL with the LOD of 0.46 ng/mL and the limit of Quantitation (LOQ) of 
1.53 ng/mL. 

Ma et al. prepared ionic liquid‑molybdenum disulfide /gold NPs 
hybrid and iridium NPs-loaded graphene to detect CRP [61]. The pro-
posed nanosensor showed a LOD of 3.3 pg mL-1 and a linear range of 
0.01 to 100 ng mL-1. 

3. Nano-treatment of inflammatory bowel disease 

Although the mechanism of action of IBD is still unclear, evidence 
indicate that genetic vulnerability, oxidative stress, chronic conditions, 
and changes in the microbiota can cause IBD [32,57,70]. Traditional IBD 
therapies have adverse side effects, including an elevated risk of in-
fections and certain cancers [15]. In addition, patients must undergo 
long-term drug administration in order to prevent the disorder from 
relapsing [80,86]. It will be helpful for IBD patients to discover a drug 
that can be administered and localized to the inflamed tissues and pre-
venting systemic side effects. Nanomedicine is a way of treatment that 
using nanocarriers or nanoparticles to deliver drug at targeted locations 
[92,93]. Miroliaee and colleagues reported the amelioratory role of 
newly synthesized selenium-NPs combined with silymarin in the 
experimental UC [64]. Laroui et al. opted to use engineered NPs to 
deliver KPV, an anti-inflammatory tripeptide, to the colon in a mouse 
model of UC. Based on their observation, by use of NP-based DDS, this 
tripeptide can be delivered to the inflamed site at a concentration much 
lower than that of the tripeptide alone [50]. Theiss and coworkers 
successfully delivered prohibitin, a ubiquitously expressed protein, to 
the colon via an encapsulated NP/hydrogel system and observed the 
promising ameliorating effects of NMs in drug delivery [106]. Ocansey 
et al. recommended the application of exosome-like NPs in IBD models 
for the delivery of synthetic molecules and drugs, proteins, and func-
tional RNAs to the colon [73]. Similarly, exosome-like NPs derived from 
grapes induced favorable protection against UC in mice model [44]. 
Studies have also focused on using NPs for development of novel oral 
DDS in which release of drugs in GI tract is mainly triggered by pH or in 
the presence of enzymes or reactive oxygen species [65,104,121]. RNAi- 

Fig. 1. (a). Schematic representation of the fabrication steps for the label-free C-reactive protein (CRP) immunosensor with anti-CRP functionalized AuNPs electrode, 
reproduced with permission from [105]. (b). Detection scheme of one-step method. Ab-SA: streptavidin-conjugated antibody, Ab-AuNP: gold nanoparticle- 
conjugated antibody, reproduced with permission from [7]. Here, SAM - self-assembled monolayer, L-CySH - L-cysteine, NHS - N-hydroxy succinamide, EDC - 1- 
Ethyl-3-(3-dimethylaminopropyl) carbodiimide, Ab-SA - streptavidin-conjugated antibody. 
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based NPs with varied clinical applications have also been introduced as 
efficacious drug delivery systems for IBD treatment [39]. Fabricated 
chondroitin sulfate-curcumin NPs have also exhibited great biocom-
patibility and could be employed as a desirable strategy for IBD treat-
ment [38]. Interestingly, intestinal organoids encompassing poly 
(lactide-co-glycolide)(PLGA) NPs has been regarded as a potential DDS 
to deliver conventional IBD medications to the inflamed areas [20].The 
following paragraph will address drug therapies used in the treatment of 
IBD and how the use of engineered NPs has enhanced their efficacy and 
safety profiles by offering local drug delivery, increasing drug concen-
tration, and preventing systemic side effects. 

3.1. 5-aminosalicylic acid (5-ASA) 

Function of 5-ASA in management of IBD is well known. 5-ASAs are 
quickly absorbed in the small intestine, however, minimum quantity of 
drug reach to the colon [35,119]. Experts in this area have developed 
various NP formulations loaded with 5-ASAs to give a sustained, tar-
geted and controlled release of drug. For example, chitosan-bound 
ginger nanocarriers were developed by Markam et al. for the slow and 
controlled release of the 5-ASA against IBD, [62]. The entrapment effi-
ciency (EE%) of 5-ASA from nanocarrier was more than 50%. The 
controlled release of 5-ASA at gastrointestinal pH was favorable, which 
is desirably beneficial against IBD. In another report, poly(methoxyl 
ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene gly-
col) methyl ether methacrylate) (P(CE-MAA-MEG)) pH-sensitive 
hydrogels were developed by Bai et al. for 5-ASA delivery to IBD 
target [9]. Results of animal studies showed an observable effect on the 
healing of ulcerative colitis (UC). Tang et al. also prepared 5-ASA loaded 
SiO2 NPs for nano treatment of IBD [101]. The colonic histopathology 
scores and disease activity index (DAI) of 5-ASA-loaded SiO2 NPs 
improved compared to control mice group. Ultimately, they suggested 
that 5-ASA-SiO2 NPs have a selective drug release mechanism that 
targets the inflamed colon, UC features, and may significantly improve 
therapeutic efficacy in UC. 

3.2. Corticosteroids 

Corticosteroids such as budesonide, prednisolone and dexametha-
sone are another class of drugs, anti-inflammatory, used in IBD therapy. 
Due to global immunosuppression and various other systemic side ef-
fects, their use for long-term use is restricted. [63,97]. Shams et al. 
prepared prednisolone loaded Eudragit L100–55 polymer microparticles 
as a new drug delivery system to treat IBD [101]. It was reported that the 
use of pH-responsive Eudragit L100–55 in the acidic conditions of the 
stomach will reduce the release of prednisolone, followed by rapid 
release as the pH of the release medium was changed to 6.8 after the first 
2 h. For the treatment of conditions like IBD and colon cancer, this 
feature can be useful. In three different nanocarriers (liposome coating 
aminoclay, liposome and Eudragit® S100-aminoclay double-coated 
liposome (EAC-Bud-Lip)), Kim et al. loaded budesonide (Bud) [48]. 
EAC-Bud-Lip gained excellent drug absorption in Caco-2 cells compared 
to the free Bud solution and demonstrated greater inhibition of TNF-a 
and IL-6 secretion in LPS-stimulated Raw264.7 cells. The role of TNF- 
α in inflammatory bowel disease (IBD) is shown in Fig. 2. In a similar 
study, Gite et al. prepared nanoparticles containing budesonide with the 
polymer Eudragit S100 and surfactant Poloxamer. It was determined 
that the optimized drug to polymer formulation ratio was 1:2 and the 
drug to surfactant ratio was 1:1 [36]. 

3.3. Immunomodulators 

Immunomodulators are a type of drugs that weakens or modulates 
the function of the immune system and are also referred to as immu-
nosuppressants. The use of Immunomodulators (tacrolimus, azathio-
prine, 6-mercaptopurine, and methotrexate) in IBD can decrease the 

inflammatory response of the body, which play a critical role in IBD 
flares [102,110]. An improved treatment efficacy can be achieve by 
using low cost and bio-available NPs. Regmi et al. suggested an oral drug 
delivery system (tacrolimus (FK506)-loaded microspheres) to treat in-
flammatory sites in the colon [87]. The oral administration of FK506- 
loaded thiocetal microspheres (FK506-TKM) resulted in a large aggre-
gation of FK506 in inflamed colons. At the molecular level, the infil-
tration of CD4+ and CD8+ T lymphocytes in the colon and the 
differentiation of CD4+ T cells into Th1 and Th17 cells in colon-draining 
mesenteric lymph nodes were significantly inhibited by FK506-TKM 
thorough limiting colon dendritic cell migration. Pathak et al. pro-
posed single-dose injection of FK506 (tacrolimus) loaded biodegradable 
microspheres (FK-Ms) [77]. The pharmacokinetics analysis showed the 
presence of FK506 for more than 20 days in the blood. Injection of FK-Ms 
blocked T cell infiltration into the colon and amplified the differentia-
tion of T cells into Th1 interferon-γ secreting and Th17 interleukin-17A 
secreting cells in mesenteric lymph node colon-draining cells. Akhlaq 
et al. have developed a pH-responsive gelatin and poly(vinyl) alcohol 
(Gel/PVA) hydrogel that can achieve specific targeting of methotrexate 
to treat colorectal pathologies [1]. The kinetic model showed that 
methotrexate release from Gel/PVA hydrogel follows the process of non- 
Fickian diffusion. This research study concluded that the release of 
methotrexate gel/PVA hydrogel can be achieved in the intended colon 
region for the treatment of colorectal disorders. 

3.4. Plant-based nanoparticles 

The plant-derived molecules such as flavonoids, volatile oils, alka-
loids, polyphenols, tannins, and polysaccharides are known for their 
broad biological functions and are of immense therapeutic potential in 
nanomedicines for treatment of different diseases [113]. Recently, the 
renewed attentiveness to the combinatorial approaches of nanotech-
nology with plant-based components has resulted in the development of 
nanomedicines for the treatment of inflammatory bowel disease [49]. 
Biological synthesis of nanoparticles via these natural phytochemicals 
particularly, curcumin (obtained from rhizome of Curcuma longa L.), 
silymarin (derived from seed of Silybum marianum (L.) Gaertn.), ginger 
(isolated from rhizome of Zingiber officinale Roscoe), berberine (obtained 
from the stem and root of Berberis vulgaris L.), embelin (derived from 
fruit of Embelia ribes Burm.f.), thymoquinone (isolated from seeds of 

Fig. 2. The role of TNF-α in inflammatory bowel disease (IBD). TNF-α is 
secreted from Th1 cells along with other cytokines. These cytokines cause the 
accumulation of immune cells, including intestinal fibroblasts, neutrophils, and 
macrophages in the gut. Intestinal fibroblasts cause fibrosis and stricture for-
mation. Neutrophils secrete elastase, which causes intestinal matrix degrada-
tion. Macrophages produce more inflammatory cytokines, which causes 
intestinal matrix degradation, epithelial damage, endothelial activation, and 
disruption [42]. 
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Nigella sativa L.), piceatannol (obtained from seed of Euphorbia lagascae 
Spreng.), Konjac glucomannan (a natural polysaccharide derived from 
the tubers of the plant Amorphophallus konjac K.Koch), quercetin (a 
polyphenol found in many plants, especially in onions), and resveratrol 
(RES, a polyphenol occur in many plants, especially in grapes), have 
shown a tremendous potential for IBD treatment [98]. For example, 
curcumin and embelin possesses pharmacological characteristics, 
including anti-inflammatory and antioxidant characteristics [99]. Green 
synthesis of nanoparticles with curcumin and embelin, are shown to be 
useful in treating mice with colitis [47,103]. In-vivo studies have 
demonstrated that curcumin and embelin nanoparticles were introduced 
for the protection of colon against dextran sodium sulfate (DSS)-induced 
colitis model in mice [103]. Another well-known example is ginger- 
derived nanoparticles which reduced the expression of tumor necrosis 
factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β cytokines as well as 
elevated the expression of anti-inflammatory cytokines IL-10 and IL- 1β 
[107]. The results indicate that ginger-derived nanoparticles can be 
massively produced and developed for treatment of IBD and colitis 
associated cancer. The combination effect of selenium nanoparticles and 
silymarin decreased the production of nuclear factor kappa B (NF-κB) 
and showed a promising antioxidant profile, which is a potential 
candidate for treatment of IBD. Thymoquinone has several anti- 
inflammatory and immunomodulating activities targeting NF-κB, IL-1β 
and TNF-α signaling. Treatment of DSS-induced colitis in mice with 
thymoquinone has suppresses malondialdehyde (MDA) levels and 
myeloperoxidase (MPO) activity with concomitant increase in gluta-
thione levels indicating improvement in colitis-associated tissue damage 
[52]. Moreover, there is significant reduction in the expression of in-
flammatory markers Cox-2, iNOS, Nrf2, KEAP1, and pro-inflammatory 
cytokines (IL-1β, IL-6, and TNF-α) both at the mRNA and protein 
levels [21,47,100]. 

Phytomolecules isolated from the plants, green synthesis of nano-
particles through natural proteins (for instance zein, a protein extracted 
from Zea mays L.) have shown great efficacy in IBD management [40]. 
Because of inherent hydrophobicity of zein, it could be a promising 
natural carrier specifically for the delivery of hydrophobic molecules 
[122]. It has been broadly used as a coating material to protect 
entrapped bio-actives from gastric acid and release them in intestinal 
environment. It has also received increasing attention as a protein-based 
carrier for the fabrication of delivery systems like microspheres, nano-
particles (NPs), hydrogels etc. due to its mucoadhesive, biodegradable 
properties and low cost [94]. 

Interest in the use of nutraceutical as a functional treatment has 
gained popularity over the last few years. Resveratrol is a nutraceutical 
for the treatment of IBD with promising anti-inflammatory properties. 
However, it’s extremely poor solubility and poor stability impede the 
clinical efficacy of resveratrol as an oral anti-inflammatory agent 
[28,43,117]. In a novel analysis, in β-lactoglobulin (BLG) nanospheres, 
Pujara et al. encapsulated resveratrol, with 10% w/w loading, resvera-
trol complexation with β-lactoglobulin nanospheres (BLG) improved 
resveratrol aqueous solubility by ~1.7 times [81]. Dissolution of 
resveratrol-loaded NPs was higher than free resveratrol (90% in 8 h). 
Also, BLG-RES showed an increased disease activity index (DAI) 
compared to resveratrol. Notably, histological assessments showed a 
comparable trend of striking progress in colon pathology through a rise 
in the amount of goblet cells and colonic epithelium recovery. The 
expression level of cytokine interleukin-10 (Il10) was significantly 
increased by BLG-RES, which supports the decrease in inflammation, 
possibly due to increased dissolution and stabilization of resveratrol by 
BLG complexation [81]. 

It has been stated that curcumin is successful in inducing and sus-
taining remission in UC patients, indicating that nanoparticle curcumin 
can be used to treat IBD [117]. In this context, Ohno et al. stated that 
nanoparticle curcumin can boost experimental colitis through gut 
microbiota modulation and regulatory T cell induction [74]. In another 
study, Beloqui compared the in-vitro and in-vivo effectiveness of three 

curcumin (CC) –loaded nanocarriers (lipid core-shell protamine nano-
capsules, nanostructured lipid carriers and self-nanoemulsifying drug 
delivery systems) for IBD treatments [12]. A 30-fold greater curcumin 
permeability across Caco-2 cell monolayers was obtained using nano-
structured lipid carriers. 

4. Challenges and future prospective 

Due to the improved potency of the NPs and specificity accumulating 
in damaged tissue, nanotechnology provides revolutionary therapeutic 
options for IBD. Despite their advantages, none of the NPs has been 
licensed for the clinical use against IBD. Nanoparticles often have a 
complex formulation which involve encapsulation and modifications of 
the surface that may be necessary for human administration. Most 
notably, the side effects and toxicity of NPs in human cells have not been 
fully tested. NPs use antigen-presenting cells (APCs) as a target to deliver 
their cargo in most of the studies cited. In addition, most of the current 
detection methods for IBD are not suitable for in-vivo imagining, making 
APCs a more attractive target for NPs [23]. Finally, it is very difficult to 
translate results from animal models to humans, and it varies depending 
on the animal model used. Only a small number of targeted IBD NPs are 
currently being tested and established, as this analysis clearly demon-
strated. However, there is an immediate clinical need to adopt nano-
particle technologies successfully used in other disease for IBD 
diagnostic. Despite a lot of study, existing IBD biomarkers are still far 
from ideal. Before they are introduced to clinical practice, newly iden-
tified markers should be verified in multicenter international collabo-
rations. The increased sensitivity of imaging techniques and nanosensors 
may allow IBD targets that are currently inaccessible due to low cellular 
target expression and/or high NP concentrations needed for in-vivo 
detection and monitoring. Nanomedicine may help in treating medical 
conditions such as IBD, but due to inherent side effects, some drugs have 
minimal applications. Since this is an emerging area of research, further 
studies are needed to establish the pharmacokinetics, therapeutic 
effectiveness, and protection in humans of the NPs. The studies pre-
sented so far inspire researchers to continue discovering and exper-
imenting with potential alternatives to medications. In addition, these 
experiments may serve as a tool for future human studies, with the 
ability to treat a wider variety of diseases safely by targeting their spe-
cific disease position and preventing systemic toxicity and side effects. 

On the other hand, several nanotechnology based advanced sensing 
techniques such as surface enhanced Raman spectroscopy (SERS), 
localized surface plasmon resonance (LSPR), nanoparticle enabled 
potentiometric or amperometric sensors could potentially be used for 
the early detection of IBD [13,14,30,69]. Some of these techniques have 
recently been translated into whole blood EFA (Extraction, Filtration 
and Analysis) devices, in form of microneedles, which can potentially 
measure biomarkers of interest in a cost effective manner within less 
than a minute [82]. Moreover, new routes of IBD diagnosis based on 
detection of circulating tumor cells, cell surface protein recognition and 
mRNA could lead to the development of technologies which will vital to 
save human life in near future [16,125]. However, we identify few 
bottlenecks which has so limited the use of nanotechnology in the IBD 
diagnostics: 1) Low Reliability and Acceptability of Nanotechnology: 
Often the NP based detection is affected by non-specific binding of 
biomolecules, aggregation of nano probes and low signal-to-noise ratio 
in complex biosample such as whole blood. While many of the afore-
mentioned issues are being addressed rapidly in literature, ensuring 
translational of nanosensors from academic to routine IBD diagnostics, 
still requires extensive investigations in large clinical sample pools; 2) 
large scale production of the nanosensors which have long shelf life. 
Often nanosensors involve several synthesis steps which can be non- 
trivial to integrate in an single automated process; and 3) Toxicity of 
the nanoparticles, especially for the in-vivo application in diagnostics, 
their biodistribution, biodegradability, and pharmacokinetic properties 
of nanoparticles should be considered [123]. 
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