
Noname manuscript No.
(will be inserted by the editor)

Appearance-invariant place recognition by adversarially
learning disentangled representation

Cao Qin · Yunzhou Zhang* · Yan Liu · Sonya Coleman · Dermot
Kerr · Guanghao Lv

Received: date / Accepted: date

Abstract Place recognition is an essential component1

to address the problem of visual navigation and SLAM.2

The long-term place recognition is challenging as the3

environment exhibits significant variations across dif-4

ferent times of the days, months, and seasons. In this5

paper, we view appearance changes as multiple domains6

and propose a Feature Disentanglement Network (FD-7

Net) based on a convolutional auto-encoder and adver-8

sarial learning to extract two independent deep features9

– content and appearance. In our network, the content10

feature is learned which only retains the content in-11

formation of images through the competition with the12

discriminators and content encoder. Besides, we utilize13

the triplets loss to make the appearance feature encode14

the appearance information. The generated content fea-15

tures are directly used to measure the similarity of im-16

ages without dimensionality reduction operations. We17

use datasets that contain extreme appearance changes18

to carry out experiments, which show how meaningful19

recall at 100% precision can be achieved by our pro-20

posed method where existing state-of-art approaches21

often get worse performance.22
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1 Introduction 26

Visual-based navigation systems have achieved impres- 27

sive results in the past few years and are widely used in 28

robotic applications. When mobile robots work in un- 29

structured and dynamic environments, their position- 30

ing performance will be degraded due to the drift and 31

error of state estimation. Therefore, the robot should 32

not only have enough ability to locate itself but also be 33

able to rectify the estimated odometry or recover the 34

robot’s position in localization failure scenarios. The 35

traditional way to enhance robustness is to recognize 36

places that the robot has visited before by place recog- 37

nition or loop closure detection (in SLAM). Tracking 38

is relatively easy if the change of appearance between 39

frames is gradual and small. However, the appearance 40

of a place will change dramatically when the robot ex- 41

plores a long-time trajectory. Visual place recognition 42

(vPR) becomes a very challenging problem because of 43

di↵erent day periods (days and nights) or weather con- 44

ditions (winter or summer). In general, place recogni- 45

tion methods describe the visual content of a given im- 46

age by using descriptors. The first method is to repre- 47

sent the image as a whole and build descriptors such as 48

Gist [46], color histogram [4] and HOG [13]. However, 49

the performance can be influenced by many factors such 50

as viewpoint changes. Another kind of method is to ex- 51

tract local descriptors such as SIFT [30] or SURF [5]. 52

In this context, images are represented as vectors that 53

account for the number of occurrences of local image 54

features taken from a dictionary. This method is called 55

bag of visual words (BoW) [12], which can work quickly 56

and e↵ectively for many applications [47,39]. Nonethe- 57

less, the BoW-based method is highly sensitive to light- 58

ing and environmental di↵erences. 59
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Fig. 1 The overall framework of our method. The original images are mapped to two independent feature spaces through the
content encoder and appearance encoder. Besides, the features from two feature spaces should reconstruct the original image.
The content feature will be used to measure the similarity of images.

While the convolution neural network (CNN) has60

shown a prominent e↵ect in object classification and61

recognition [23], features extracted from CNN are used62

for judging whether images are similar or not. Some pre-63

trained models based on CNNs have proven to have bet-64

ter image recognition ability and robustness than tradi-65

tional artificially designed image features. Even though66

they perform very well in the case of changes in appear-67

ance and perspective [50], satisfactory results cannot be68

achieved in a scene with severe appearance changes.69

Extreme changes in appearance make it di�cult to70

distinguish even images taken at the same location. One71

way to solve this problem is to learn how the appearance72

changes, and then generalize the learned factor to the73

original location to obtain new images. The query im-74

age is compared with the generated image to determine75

whether the reached position is similar. Recently, Gen-76

erative Adversarial Networks (GANs) [18] has demon-77

strated its powerful ability to generate domain-specific78

images. Through the generative network, images can be79

converted from the source domain (spring) to the tar-80

get domain (winter). In this way, even for scenes with81

extreme changes in appearance, images taken at the82

same location will become easier to be recognized after83

transformation. This idea of domain translation gen-84

erally requires that images have a known one-to-one85

correspondence across domains, but labeling all corre-86

spondences is time-consuming and might not always be87

possible.88

Changes in appearance can make images from the89

same place appear drastically di↵erent from each other,90

but they must have some commonalities such as the91

structure and layout of objects. Learning an interpre-92

tative representation of characteristics, with the abil-93

ity to explore relationships between data across dif- 94

ferent domains has also attracted the attention of the 95

researchers [27]. In order to understand and excavate 96

the hidden common features among cross-domain data, 97

cross-domain feature representation disentanglement aims 98

to derive a latent feature space where the generated fea- 99

tures can represent specific semantic information [6]. 100

Once feature representation is successfully learned, the 101

most distinguishing feature will be used to deal with 102

various problems like visual classification or cross-domain 103

image translation. 104

In view of the above consideration, we propose a 105

Feature Disentanglement Network (FDNet) based on 106

a convolutional auto-encoder and adversarial learning 107

which can handle the place recognition problem of multi- 108

domains within a unified framework. Based on the as- 109

sumption that the image is composed of appearance and 110

content factors, this approach removes the e↵ect of ap- 111

pearance on image through adversarial learning. Thus 112

the deep features that are not related to appearance 113

changes for place recognition can be extracted. The 114

latent feature space is learned from sets of images in 115

each domain without requiring one-to-one image corre- 116

spondences across the domains. Fig. 1 shows the overall 117

framework of our method and the main contributions 118

of our work are summarized as follows: 119

– We design a Feature Disentanglement Network (FD- 120

Net) based on a convolutional auto-encoder and ad- 121

versarial training, which learns deep disentangled 122

feature representation for place recognition. 123

– Our FDNet views appearance information and im- 124

age content of interest as two latent factors to be 125

disentangled, which handles the place recognition 126

of multi-domains within a unified framework. 127



Appearance-invariant place recognition by adversarially learning disentangled representation 3

– We analyze the e↵ect of length of the deep feature on128

the recognition performance, and achieve the mea-129

surement of similarity between images without any130

dimensionality reduction operations.131

– A wide set of results comparing the proposed method132

against the main state-of-the-art algorithms in data-133

sets with drastic appearance changes, while the dis-134

entangled feature representation is appearance-invar-135

iant and shows promising ability.136

The remainder of this work is structured as follows.137

After reviewing the related work in the next section, we138

introduce in detail the proposed approach in Section 3.139

Our methods implementation and experimental results140

are presented in Section 4 and Section 5, while the last141

Section is devoted to the conclusion and future works.142

2 Related Work143

2.1 Appearance-changing Place Recognition144

Visual place recognition has been a key part of the lo-145

calization and mapping systems, and a lot of research146

works have been done in recent years [31]. There are147

two general methods to solve the appearance change in148

visual place recognition. One is to compute the visual149

characteristics that exhibit invariance properties to ap-150

pearance; the other is to learn and predict appearance151

change.152

Traditional visual features like SIFT and SURF are153

prone to be a↵ected by the change appearance of the en-154

vironment. Based on local keypoint features, Valgren et155

al. [53] used U-SURF features and achieved high recog-156

nition performance by comparing single-image pairs acr-157

oss di↵erent illumination conditions. A hybrid RatSLAM158

+ FAB-MAP system was proposed in [17] for mapping159

in the di�cult outdoor environment. This approach sho-160

wed that it is practical to map in varying outdoor con-161

ditions visually. However, the authors also concluded162

that SURF features are sensitive to changes in illumi-163

nation. Considering matching local sequences of images164

instead of matching a single location, SeqSLAM [38]165

was the first to achieve promising performance for local-166

ization across seasons and times of the day. Tayyab et167

al. [40] utilized the semi-dense image descriptors (HOG168

and AlexNet-based) and sequential information from169

network flows to improve the localization performance.170

Nevertheless, sequence-based methods only work with171

some assumptions such as similar velocity patterns and172

overlapping trajectories.173

Since the potential of CNN over many computer174

vision tasks is excavated, a variety of methods have175

been proposed that address the vPR problem through176

CNN-derived description vectors. Carlevaris et al. [8] 177

trained a convolutional multi-layer perceptron model 178

to learn visual feature point descriptors that are ro- 179

bust to changes in scene lighting. In [50], feature maps 180

were extracted from pre-trained models used for object 181

recognition, which had proven to be e↵ective in dealing 182

with place recognition problems. Authors in [50] also 183

concluded that the convolutional layer Conv3 performs 184

better than all other layers under significant changes in 185

appearance, and the higher fully-connected layer pro- 186

vides better viewpoint robust features. Roberto et al.[3] 187

extracted information from di↵erent convolutional lay- 188

ers at di↵erent levels, and integrated them together to 189

form CNN features. The feature compression techniques 190

are applied to reduce the redundant data of CNN fea- 191

tures to get the final representation. The research in 192

[41] exploited the salient contents of the image and 193

fused them with the convolutional features using fea- 194

ture aggregation to create a dense scene description. 195

The learned discriminative image representation is able 196

to improve the localization accuracy under challeng- 197

ing perceptual conditions. Our proposed approach is 198

not limited to extracting image features from the mid- 199

dle layer of the network, but aims at providing feature 200

representation with appearance-invariant characteristic 201

through feature disentanglement. 202

The learning approaches use training data to find 203

out how image features change with appearance, and 204

to predict the image or its features after the appear- 205

ance changes [42]. The authors in [34,36] transformed 206

the images into illumination-invariant color space to 207

significantly alleviate the negative e↵ects of daily light 208

and shadow. Nonetheless, it remains to prove that this 209

transformation can be applied to other environmental 210

changes, such as weather conditions. Lowry et al. [32] 211

investigated how the overall appearance of the image 212

changed with time and used linear regression to trans- 213

form images from morning to afternoon. This trans- 214

formation has been shown to improve the performance 215

of visual localization compared with the matching be- 216

tween the original images. In [43], a superpixel vocab- 217

ulary was built for each season and translates images 218

across di↵erent seasons before matching. It demonstrates 219

that SeqSLAM [38] and BRIEF-Gist [49] can benefit 220

from this operation greatly. However, this method re- 221

quires one-to-one correspondence of images in di↵erent 222

seasons for training. Yasir et al. [25] took advantage of 223

the popular GAN to generate the appearance of a place 224

given the current environmental conditions. The fea- 225

tures extracted from the first fully-connected layer are 226

used for place recognition under the di↵erent weather 227

conditions. Although it does not need to use paired cor- 228
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respondence across seasons, this system implements im-229

age conversion between only two di↵erent domains.230

2.2 Adversarial Learning231

Recent work [18] has shown that adversarial training232

contributes to improving the performance of many com-233

puter vision tasks such as image generation [52], im-234

age super–resolution [26] and style transfer [56]. A typ-235

ical GAN network is composed of generator G and dis-236

criminator D. G captures the mathematical distribution237

model of real data and generates new samples from the238

learned distribution model. The generator tries to make239

the generated image unable to be distinguished between240

true or false in the discriminator. D is a classifier used241

to determine whether the input is real data or generated242

samples. They compete to outperform each other con-243

stantly to improve their generating and discriminating244

abilities and achieve a balance. With this adversarial245

training, the generator can learn a mapping method to246

project the hidden space to the image domain we want.247

WGAN [2] improved GAN from the point of view of248

the loss function. It used Wassertein distance to mea-249

sure the distance between generating data distribution250

and real data distribution instead of Jensen-Shannon251

divergence, thus alleviating the training instability of252

GAN. Subsequently, WGAN-GP [19] proposed a method253

to replace weight clipping in the WGAN discriminator,254

which used a gradient penalty to solve the problem of255

gradient disappearance or explosion in training. This256

method has a faster convergence rate than standard257

WGAN and can be widely used in a variety of GAN258

frameworks.259

There are a lot of works on GAN and di↵erent ap-260

plications, but we are more concerned about using this261

type of network for domain adaptation or domain trans-262

fer which is closely related to feature disentanglement.263

Ganin et al. [16] obtained domain invariant features264

by optimizing two discriminative classifiers at the same265

time, where the gradient reversal algorithm is used to266

realize adversarial losses. The Bidirectional Generative267

Adversarial Networks (BiGAN) [14] is an extension of268

the GAN which learns the inverse mapping from the269

image data back into the latent space in an unsuper-270

vised way. It was indicated that the learned feature271

representation is useful for image classification tasks.272

CoGAN [28] applied GAN to domain adaptation and273

image transformation by training a tuple of GANs for274

each image domain. The weight-sharing constraint in275

the high-level layer was used to generate a domain-276

invariant feature space. Markus et al. [54] improved the277

performance of free-space segmentation under varying278

appearance by applying adversarial domain adaptation279

techniques. They also proposed an approach IADA [55] 280

to solve the domain adaptation problem of lifelong, con- 281

tinuously changing appearance. 282

Inspired by the adversarial learning method to solve 283

the problem of domain adaptation and domain transfer, 284

we consider transforming the place recognition prob- 285

lem in the case of extreme changes in appearance into 286

multi-domain adaptation problem, and use adversarial 287

training to map the images into the generated common 288

space, so as to extract features that are insensitive to 289

changes in appearance. 290

2.3 Representation Disentanglement 291

Disentangling hidden factors from images has enabled 292

a deeper understanding of images [35,44]. The work in 293

[20] is among the first to utilize an encoder-decoder 294

structure for representation learning, whereas it is not 295

explicitly disentangled. Kenshimov et al. [22] consid- 296

ered individual feature maps as the smallest indivis- 297

ible units of analysis, and evaluated the performance 298

to omit the activation maps that are significantly var- 299

ied as the environment changes. Although this method 300

can improve cross-seasonal place recognition, the fea- 301

ture extracted from a mid leveled CNN layer has low 302

e�ciency in matching. 303

With the recent development of generative models 304

like generative adversarial networks (GANs) and varia- 305

tional autoencoders (VAEs), some researches on feature 306

disentangling attempt to learn an interpretable rep- 307

resentation from large amounts of data through deep 308

neural networks (DNN). Odena et al. [45] realized fea- 309

ture disentangling based on the auxiliary classifier GAN 310

(AC-GAN) proposed by them. Given attribute informa- 311

tion in the training process, the model can automati- 312

cally generate images to be conditioned on the desirable 313

latent factors. In [9] InfoGAN was proposed to learn dis- 314

entangled representations through unsupervised learn- 315

ing. The mutual information between pre-specified la- 316

tent factors and the synthesized images are maximized. 317

However, the semantic meaning of the feature in the 318

latent space cannot be explicitly explained. Fader Net- 319

works [24] proposed a new method to learn attribute- 320

invariant latent representations and generate variations 321

of images by sliding attributes. The values of attributes 322

and the salient information of the image are disentan- 323

gled through an encoder-decoder architecture. A frame- 324

work of Cross-Domain Representation Disentangler (C- 325

DRD) was proposed in [29] to solve the problem of 326

ground truth annotation of training data in the fea- 327

ture disentangling process. It was demonstrated that 328

the domain adaptation and cross-domain feature disen- 329

tanglement can be simultaneously executed for solving 330



Appearance-invariant place recognition by adversarially learning disentangled representation 5

classification tasks of unsupervised domain adaptation.331

A Multimodal Unsupervised Image-to-image Transla-332

tion (MUNIT) framework [21] was presented to solve333

the problem of unsupervised Image-to-Image transfor-334

mations. The author assumed that image representa-335

tion can be decomposed into a domain-invariant con-336

tent code and a style code that can characterize domain-337

specific properties. The final image translation is gen-338

erated by reorganizing the content code of the original339

image with a style code randomly extracted from the340

target domain.341

The above methods have promising performance in342

feature disentangling and image generation. Motivated343

by them, we consider that the image is decomposed344

into two di↵erent feature spaces, content space and ap-345

pearance space by an encoder-decoder architecture at346

extreme changing scenes. Instead of generating or pre-347

dicting the changed image, we directly use features in348

latent content as image features for place recognition.349

In our setting, we have several domains that share the350

same content distribution but have di↵erent appearance351

distribution.352

3 Proposed Approach353

In this section, we will introduce the architecture of354

the proposed method in detail, which integrates convo-355

lutional auto-encoder and adversarial training to gen-356

erate common feature space. The model maps a high-357

dimensional original image to a low-dimensional feature358

space with the propriety of high compression and invari-359

ance to appearances. The network structure is trained360

by unsupervised learning which does not need too many361

labels, so the method is e�cient and feasible.362

3.1 Motivation and Pipeline363

A widely used method to deal with the problem of364

visual place recognition is to find an appropriate fea-365

ture space for images. In this feature space, feature366

vectors have characteristics: they are not a↵ected by367

changes in appearance and viewpoints, and the dis-368

tance between feature vectors can measure the simi-369

larity between images. In other words, the greater the370

distance between feature vectors, the less similar struc-371

ture or context the original images have. Once such a372

feature space is found, the place recognition problem373

can be transformed into the problem of measuring the374

di↵erence between feature vectors. In this paper, we375

focus on how to deal with extreme changes in environ-376

mental appearance. The images captured at the same377

place at di↵erent times or under di↵erent weather con- 378

ditions are quite di↵erent. As a result, we treat the ap- 379

pearance changes as multiple domains and map images 380

from di↵erent domains to the pre-defined feature space 381

by means of feature disentangling. These appearance 382

changes can also be viewed as being modeled into dis- 383

crete classes and classified by a discriminator. Based on 384

the above considerations, we try to find such a feature 385

representation through adversarial learning and pro- 386

pose a unified network architecture which can derive 387

appearance-invariant feature from images across multi- 388

ple domains (appearances). To be mentioned, our ar- 389

chitecture is limited to coping with scenes with discrete 390

changes in appearance such as spring to winter and day 391

to night. 392

We first assume that the latent space of images 393

can be decomposed into an appearance space and a 394

content space. The content vector encodes the infor- 395

mation that should be preserved during the appear- 396

ance change, which is what we desire for place recog- 397

nition. Given image sets {Xc}Nc=1 across N domains 398

(such as di↵erent seasons), the proposed method learns 399

a domain-invariant representation z for the input image 400

xc 2 Xc (in each domain c). Fig. 2 shows an overview 401

of the model and its learning process. The network 402

consists of a content encoder Ec, an appearance en- 403

coder Ea, a decoder De and an appearance discrimina- 404

tor Da. Take domain X as an example, the content en- 405

coder Ec maps images onto a shared, domain-invariant 406

content space (Ec : X ! C) and the appearance en- 407

coder Ea maps images onto a domain-specific attribute 408

space (Ea : X ! A). The decoder De restores images 409

by accepting the feature vector from the two encoders 410

(De : {C,A} ! X). It is worth mentioning that we 411

impose constraints on the appearance encoder to en- 412

sure that the appearance features do not contain addi- 413

tional content information. Triplet loss is used so that 414

the appearance features generated by images belonging 415

to the same domain are closer to each other, while the 416

appearance features of di↵erent domains are far from 417

each other. The appearance discriminator Da aims to 418

distinguish whether the extracted content representa- 419

tions are from the same domain or not. 420

3.2 Description of the Loss Function 421

3.2.1 Auto-encoder loss 422

As shown in the middle of Fig . 2, image xc is entered 423

into the two encoders Ec and Ea to obtain a content 424

vector vc and an appearance vector va: 425

vc = Ec(xc), va = Ea(xc) (1)



6 Cao Qin et al.

Appearance 
Encoder

Content 
Encoder

Decoder

Content 
Encoder

Appearance 
Discriminator

Appearance 
Encoder

Triplet Loss

Content vector

Appearance vector

Same appearance 
or not

Same or 
different 

appearance 
As close or as far 
away as possible

Adversial training

Same or 
different 

appearance 

Ec

Ec

Ea

Ea

De

Da

va

vc

Fig. 2 Overview of our model and the learning process. Da tries to tell if two content vectors come from the same domain.
The purpose of the encoder Ec is to trick the appearance discriminator Da so that it can not classify appearance features
correctly. Triplets loss is used to make the appearance feature to encode the appearance information.

Then vc and va are fed to the decoder De to reconstruct426

the original image xc. Thus we get the reconstructed427

output:428

x̃c = De(vc, va) (2)

The mean squared error (MSE) is minimized in the429

training procedure. So the reconstruction loss Lr is given430

as:431

Lr(✓c, ✓a, ✓dec) =
X

xc2Xc

kxc � x̃ck22 (3)

where ✓c, ✓a, ✓dec are the parameters of the encoders432

and the decoder respectively.433

3.2.2 Appearance encoder loss434

The proposed method embeds input images onto a sh-435

ared content space C, and domain-specific space A. In-436

tuitively, the content encoders should encode the com-437

mon information that is shared between domains onto438

C, while the appearance encoder should map the re-439

maining appearance information onto A.440

Let’s take two domains for example. Let x1 2 X1441

and x2 2 X2 be images from two di↵erent image do-442

mains. x1 and x2 obtain the feature vectors in the fea-443

ture space C and A respectively through the same en-444

coder. However, sharing the same mapping functions445

cannot guarantee the representations in the latent space446

encode the same information for both domains. So we447

impose additional constraints on the encoder during the448

training process to obtain two disjoint feature spaces.449

First, we want the appearance encoder to be able to450

capture the appearance information in the image. For451

instance, when season changes we want the feature in 452

this space to contain only seasonal information but not 453

the structure or content information in the image. There- 454

fore for appearance encoding of the same domain the 455

distance between them should be closer, while for ap- 456

pearance encoding of di↵erent domains, the distance 457

between them should be further and thus greater than 458

a certain threshold. As shown in the lower part of Fig. 2, 459

we train the network through a triplet embedding scheme, 460

where the appearance encoder is used to produce three 461

vectors vaai,v
p
ai,v

n
ai. They are from three input images 462

and form the positive pair {vaai, v
p
ai} and the negative 463

pair {vaai, vnai}. Thus we want: 464

kvaai � vpaik
2
2 + ↵ < kvaai � vnaik22 (4)

where ↵ is a margin that is enforced between positive 465

and negative pairs. Ea is learned to minimize the fol- 466

lowing triplet loss function [48]: 467

La(✓a) =
KX

i

max(kvaai � vpaik
2
2 � kvaai � vnaik22 + ↵, 0)

(5)

which is zero when the distance of the negative pair 468

is larger than the distance of the positive pair by at 469

least a margin ↵. Triplets not satisfying this condition 470

will produce non-zero costs that the training process 471

will attempt to reduce by updating the weights of the 472

CNN accordingly through stochastic gradient descent. 473

✓a is the parameter of the appearance encoder. K is the 474

number of all triplets in the training set. 475
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3.2.3 Adversarial loss476

The auto-encoder itself with equation (3) cannot make477

the latent representation Ec appearance-independent.478

The appearance information of the original image xc479

existing in vc inevitably degrades the final performance.480

This is why we train an extra appearance discrimina-481

tor in order to regularize the encoder Ec to make vc482

appearance-independent. As shown in the upper right483

corner of Fig. 2, appearance discriminator Da takes two484

content vectors vci and vcj as inputs and tries to deter-485

mine if the two vectors come from the same domain.486

The purpose of the encoder Ec is to trick the appear-487

ance discriminator Da so that it does not classify ap-488

pearance features correctly.489

Da is treated as a binary classifier. For each training490

pair {xi, xj} with its ground truth label y, when y = 1491

xi and xj are from the same domain and when y = 0492

they are from di↵erent domains. The classification loss493

can be defined as the cross-entropy between predicted494

class distribution Da(vci, vcj) and the label y:495

Ladv
d (✓d) = �

X

(xi,xj)2D

y ⇤ log(Da(Ec(xi), Ec(xj)))

+ (1� y) ⇤ log(1�Da(Ec(xi), Ec(xj))) (6)

where y 2 {0, 1}, and ✓d is the parameter of the496

discriminator, which can also be represented as:497

Ladv
d (✓d) = Ev[logDa(v)] (7)

where v is the concatenation of content vectors Ec(xi)498

and Ec(xj). The discriminator Da is trained to mini-499

mize Ladv
d (✓d) in equation (3). In contrast, the encoder500

Ec is trained to maximize Ladv
d (✓d) in order to remove501

the information of appearance in vc. As a result, the502

objective of the encoder Ec is derived as follows:503

Ladv
e (✓c) = �Ladv

d (✓d) = �Ev[logDa(v)] (8)

In this way, only the content information is learned504

in vc, while only the appearance characteristics are en-505

coded in the appearance vector va. However, as men-506

tioned in WGAN [2], cross-entropy is not a stable loss507

function during adversarial training if there is a large508

gap between the predicted distribution and the real dis-509

tribution. With the loss in equation (7), optimization510

becomes even more unstable due to the volatile gradi-511

ent. To stabilize the training process, we replace equa-512

tion (7) with Wasserstein GAN objective with gradient513

penalty [19] defined as:514

Ladv
d (✓d) = Ev[logDa(v)] + �gpEv̂[(krv̂Da(v̂)k2 � 1)2]

(9)

v̂ is sampled uniformly along the straight lines con-515

necting pairs of training data (vi, vj), where vi and vj516

have di↵erent labels. �gp is a weighting parameter.517

To train the whole network, we alternatively up- 518

date the encoder, decoder, and discriminator with the 519

following gradients: 520

✓c, ✓a, ✓dec
+ � ��✓c,✓a,✓dec(Lr + La + Ladv

e )

✓d
+ � ��✓d(L

adv
d )

(10)

It is worth noting that ✓c, ✓a and ✓dec are jointly up- 521

dated in each iteration. ✓d is updated separately. Fi- 522

nally, the pseudo-code for training the method is sum- 523

marized in Algorithm 1. Implementation details of our 524

network architectures will be presented in Section 4.

Algorithm 1 Learning of FDNet
Input: batch size B , domain num Nd , A set of training

images X
Output: parameters: ✓c, ✓a, ✓e, ✓d
1: ✓c, ✓a, ✓e, ✓d  initialize;
2: for Iters. of whole model do
3: Xb  Sample mini-batch from Xs

4: T  generate triplets according to Algorithm 2
5: P  generate pairs with its label by sampling from

Xb

6: for Iters. of updating auto-decoder do

7: ✓c, ✓a, ✓dec
+ � ��✓c,✓a,✓dec

(Lr + La + Ladv
e )

8: end for

9: for Iters. of updating discriminator do

10: ✓d
+ � ��✓d

(Ladv
d )

11: end for

12: end for

13: return ✓c, ✓a, ✓e, ✓d

525

4 Implementation 526

4.1 Network Architecture 527

Fig. 3 displays the network architecture of the encoder, 528

decoder, and the discriminator. Before training begins, 529

every image in the set of training images is resized to 530

224⇥224 and used to create image pairs (see Algorithm 531

2). The salmon-colored blocks represent input and out- 532

put images. The numbers below the block represent 533

the shape of feature maps output by the block. The 534

content encoder and appearance have the same struc- 535

ture as shown on the left side of Fig. 3. Each encoder 536

contains several encoding blocks and a fully-connected 537

layer. Each encoding block consists of a convolution 538

layer (filter size 5, stride 2), followed by batch normal- 539

ization and a Leaky Rectified Linear Unit (slope 0.2). 540

L is the length of the output vector from the encoder. 541

It’s worth mentioning that the parameters of the two 542

encoders are not shared, in order to ensure that the 543
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224*224*3
112*112*16

56*56*64 28*28*128 14*14*256 7*7*512
1*1*L

Encoder

1*1*2L 4*4*L/8 7*7*L/4
14*14*L/2 28*28*L/4 56*56*L/8

112*112*L/32

224*224*3 

Concat

Decoder

1*1*2L

Concat

1*1*512 1*1*100 1*1*1

Discriminator 

Fig. 3 Network architectures of of the encoder, decoder and the discriminator.

appearance and content features have di↵erent distri-544

butions in the feature space. The decoder accepts vec-545

tors from two encoders and concatenates them to re-546

construct the original image. The decoder contains sev-547

eral upsample blocks. Each upsample block consists of a548

deconvolution layer, batch normalization and a Leaky549

Rectified Linear Unit. The discriminator accepts two550

vectors from the content encoder. It has three fully-551

connected layers which are mapped to a single output552

for classification. In the experimental section, we show553

that the content encoder learns appearance-independent554

features that can be used for place recognition.555

Dropout: It is useful to add dropout to improve556

the robustness of the model. The dropout rate is set as557

0.5 in the encoder, and 0.25 in the classifier.558

Hyper-parameters: The batch size is 4, and all559

weights are initialized from the zero-centered normal560

distribution with a standard deviation of 0.02. An Adam561

optimizer is used with a learning rate of 0.0001 and mo-562

mentum 0.5. �gp is set to 10 and the margin ↵ in triplet563

loss is set to 0.1.564

Training details: We first pretrained the encoder565

and decoder for 5000 mini-batches, then pretrained the566

discriminator for 8000 mini-batches. Finally, we trained567

the encoder/decoder for 1 iteration and 2 iterations for568

the discriminator. The joint stage was trained for 60000569

mini-batches in total.570

4.2 Feature Embedding and Matching571

The disentanglement of image features is completed572

when the whole network is trained. The output of Ec is573

a vector that provides a representation of the original574

image which is useful to accurately discriminate im-575

ages under changing conditions. The evaluation is per-576

formed by single-image nearest neighbor search based 577

on the cosine distance of the extracted feature vectors. 578

However, computing the cosine distance between high- 579

dimension vectors is an expensive operation. For exam- 580

ple, the convolutional feature in Conv3 [50] used in the 581

matching process will lead to high computational load. 582

Although Locality Sensitive Hashing (LSH) is used to 583

reduce the dimension of the feature vectors to improve 584

the e�ciency, such dimensionality reduction depresses 585

the performance of place recognition. In our method, 586

since we directly output the required feature vectors 587

through the fully-connected layer of the encoder, we 588

can obtain the vector of di↵erent lengths by modifying 589

the structure of the network when considering the fea- 590

ture dimension. Thus, the problem of feature dimension 591

is ignored during the process of network construction. 592

In view of this, we make performance comparison of 593

vectors with di↵erent lengths in Section 5.2.1. 594

In this way, the final feature vector F̂ can be ob- 595

tained. The query feature F̂q of the query location lq 596

and the database feature vector F̂db are compared us- 597

ing the cosine distance as in equation (11) 598

s(F̂q, F̂db) =
F̂q · F̂db

kF̂qkkF̂dbk
(11)

The location ls with the minimum distance to the query 599

location lq is regarded as a true positive match if it is 600

from the same location as lq (within dataset tolerances– 601

see Table 1 for a summary of tolerances). 602

4.3 Hard Triplets Selection 603

To learn the desired feature vector produced by the ap- 604

pearance encoder, triplets must be chosen to provide 605
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Table 1 Tolerances for true positives matches

Dataset Location Tolerances
Nordland 5 frames
Alderley 2 frames
Oxford RobotCar 30 meters
St Lucia 30 meters
FAS 3 frames

Margin

Before Training After Training

Fig. 4 Schematic illustration of samples before training (left)
versus after training (right) by minimizing the triplet loss.

relevant visual cues. As seen in Fig. 4, the distance be-606

tween an anchor and a positive is minimized so that607

samples that have the same identity will be aggregated.608

The distance between the anchor and a negative will be609

maximized to maintain at least the distance between610

dissimilar samples.611

We adopt the method of hard triplets selection. As-612

suming that the training set contains images of Nd dif-613

ferent domains. For each mini-batch with the shape614

(B,Nd), the features corresponding to all data are ob-615

tained by the appearance encoders and the distance be-616

tween features are calculated and stored in the matrix.617

Then we need to find the positive sample with the max-618

imum distance and the negative sample with the mini-619

mum distance for each anchor. In this way, the hardest620

triplet for every anchor is obtained. Finally, a total of621

B ⇤Nd triplets for a mini-batch can be generated. The622

pseudo of the calculation is listed in Algorithm 2.623

5 Experiments624

In this section, we conduct several experiments to demon-625

strate the performance of the proposed method. We626

firstly introduce the setup of the experiment, including627

the datasets, the sequences, and the evaluation method-628

ology. Then, we provide details of experiments com-629

pared with other approaches and give quantitative and630

qualitative results in terms of the place recognition ac-631

curacy.632

Algorithm 2 Generating Triplets
Input: batch size B , domain num Nd , A set of training

images X
Output: triplets T
1: T  initialize;
2: Xb  Sample mini-batch from X in shape (B,Nd)
3: Vb  get embeddings from Xb

4: Mb  calculate pair distance for each embedding of Vb

5: (Av, Pv)(Av, Nv)  get all valid positive pairs and neg-
ative pairs

6: for a in Xb do

7: (a, p) find elements with the maximum distance in
(Av, Pv) according to Mb

8: (a, n) find elements with the maximum distance in
(Av, Nv) according to Mb

9: T  T.append(a, p, n)
10: end for

11: return T

5.1 Experimental setup 633

5.1.1 Datasets 634

In order to evaluate our approach, datasets are required 635

to traverse the path in di↵erent environments but with- 636

out too much view-point change. Moreover, ground truth 637

information, such as the corresponding scenes should be 638

contained in the datasets. 639

Nordland: The Nordland dataset is one of the most 640

challenging place recognition datasets due to the chang- 641

ing landscape and weather, as Fig.5 (a) illustrates. It 642

includes four simultaneous video streams of di↵erent 643

seasons. Each 9-hour video corresponds to a season, 644

and they were manually aligned so that frames with 645

the same numeral are from the same location. In ad- 646

dition to the extreme changes in appearance produced 647

by the season, these images also include extreme blur- 648

ring because of the train’s excessive speed. We extract 649

the image from video at a rate of a frame per second 650

removing all frames where the train was in a tunnel or 651

stationary. Then the sequence is divided into two parts, 652

one for training including 27000 images, and the other 653

for testing including 1000 images. 654

Alderley: The Alderley dataset was first introduced 655

in SeqSLAM [38]. It consists of two videos, one on rainy 656

nights and the other on sunny days. Fig.5(b) shows an 657

example of images that contains severe changes in il- 658

lumination and weather conditions in a given location. 659

These two pictures are di�cult to identify the same 660

place even for humans. Frame correspondences are pro- 661

vided in the dataset for place recognition as ground- 662

truth. We used the first 1000 frames of the sequence for 663

the test set, and the rest for the training of the network. 664

Oxford RobotCar: The Oxford RobotCar Dataset 665

[33] consists of over 100 repetitions of car traverses 666

through Oxford, UK, recorded over a year across dif- 667
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ferent times of day. We extract images at 5 frames per668

second from the route, which corresponds to approx-669

imately three kilometers through Oxford. The videos670

were recorded on a sunny day (2014-12-16-09-14-09)671

spring summer fall winter

(a)

day night

(b)

day night

(c)

morning afternoon

(d)

summer winter

(e)

Fig. 5 Randomly selected sample images from the dataset.
(a) Images in Nordland Dataset. (b) Images in Alderley
Dataset. (c) Images in Oxford RobotCar Dataset. (d) Images
in St Lucia Dataset. (e) Images in FAS Dataset.

and a night day (2014-12-10-18-10-50). The training set 672

includes 1758 images and the remaining 754 images are 673

used for testing. We use a ground truth tolerance of 30 674

meters. 675

St Lucia: The St Lucia dataset [17] contains sev- 676

eral car traverses through the suburb of St Lucia, Quee- 677

nsland. The videos are captured with a forward-facing 678

camera placed on the roof of a car across five di↵er- 679

ent times of day. We train the network and test on 680

the early morning sequence (time:190809 0845) and the 681

late afternoon sequence (time:180809 1545) which con- 682

tains significant appearance changing. We use the pro- 683

vided GPS information and set ground-truth tolerance 684

to 30 meters. The images are extracted from the 15 FPS 685

videos. The first 3500 images are used for training and 686

the next 500 are for evaluation. 687

FAS: The Freiburg Across Seasons dataset (FAS) 688

[40] was recorded by a camera-equipped car in Freiburg 689

city, Germany, across di↵erent seasons including sum- 690

mer and winter. The ground truth was provided for all 691

the localization sequences with reference to the Map- 692

ping sequence. We use the Localization-2 sequence and 693

the Mapping sequence for training and testing, which 694

contain 3130 image pairs and 1347 image pairs, respec- 695

tively. The ground truth tolerance is set to 3 frames. 696

5.1.2 Evaluation Methodology 697

To evaluate the performance of the proposed method, 698

we compared it with several di↵erent state-of-the-art 699

approaches such as: 700

(a) Gist: A holistic representation of images which can 701

retain the context information. 702

(b) DBoW: We use the DBoW [15] vocabulary tree 703

applied in ORB-SLAM [39]. 704

(c) Conv3: The conv3 feature discussed in [50] is used 705

in this paper to carry out the experiment. The origi- 706

nal conv3 feature from AlexNet is a vector of 64896 707

dimensions, which makes the matching ine�cient. 708

We use the Gaussian random projection (GRP) [7] 709

to compress the conv3 feature to the same dimen- 710

sion as our method, because GRP is more e�cient in 711

dimensionality reduction than LSH in the practical 712

test. 713

(d) Landmarks: The method proposed by Zetao et 714

al.[11] extracts several di↵erent salient regions to ex- 715

press the global features of images while requiring 716

no labeled data for training. 717

(e) Conv4 fine-tuned: The conv4 features extracted 718

from the HybridNet [10] which is fine-tuned and 719

trained specifically for place recognition. 720

(f) NetVLAD: It achieved weakly supervised train- 721

ing for place recognition using a CNN architecture 722
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Precision-recall curves comparing di↵erent lengths of the vector with our method on Nordland Dataset. (a) spring
versus summer. (b) spring versus fall. (c) spring versus winter. (d) summer versus fall. (e) summer versus winter. (f) fall versus
winter

that embeds a traditional VLAD layer. We have em-723

ployed the Pytorch implementation of NetVLAD [1]724

with the hardest triplet loss.725

(g) CALC: An unsupervised deep neural network [37]726

for fast and robust loop closure. The authors uti-727

lized the auto-encoder to reconstruct the HOG de-728

scriptor of original input images. The open-source729

implementation is utilized in our experiments.730

The designed methodology for testing performance731

is principally based on precision-recall curves, which are732

calculated from the similarity matrix obtained in each733

test set. A threshold is set and used in the matching734

process between the similarity matrix and ground-truth735

matrix. In this way, the occurrence times of TP (True736

Positive), TN (True Negative), FP (False Positive) and737

FN (False Negative) on the dataset are obtained. The738

values of precision (P) and recall (R) are calculated as739

follows:740

P =
TP

TP + FP
,R =

TP

TP + FN
(12)

The final precision-recall curve is obtained by varying741

the threshold value ✓ in a uniform distribution between742

0 and 1. In our tests, 500 values of ✓ are taken in order743

to obtain well-defined curves.744

Maximum recall at 100% precision: The proportion745

of correct matches that can be achieved with no false746

positives. This can be observed visually in any precision- 747

recall curve, as it will be the recall rate where the pre- 748

cision first dips down from 1.0 and a higher value is 749

desired. 750

5.2 Results 751

5.2.1 Vector Length 752

As mentioned in the previous section, vector length 753

makes a di↵erence in the performance of place recogni- 754

tion and the e�ciency of matching. In our experiment, 755

the length of feature vectors extracted by the content 756

encoder can be adjusted by constructing di↵erent fully- 757

connected layers. On the premise of high e�ciency, we 758

need to find the most appropriate length of the feature 759

vector. We tested the performance of di↵erent vector 760

lengths as shown in Fig. 6. It can be seen that the length 761

of 2048 performs worse than other lengths in six test ex- 762

periments except summer-fall comparison and the other 763

three lengths have similar results. However, according 764

to the principle of selecting a higher value on maximum 765

recall at 100% precision, it is not di�cult to see that 766

the feature vector of 512 performs better. 767

Table 2 summarizes the required time for the fea- 768

ture extraction and feature matching between reference 769
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Precision-recall curves comparing the di↵erent approaches with our novel method on the Nordland dataset. (a) spring
versus summer. (b) spring versus fall. (c) spring versus winter. (d) summer versus fall. (e) summer versus winter. (f) fall versus
winter

Table 2 Runtime comparison between di↵erent lengths of
the vector with our method on the Nordland Dataset.

Feature
Extraction

(ms)

Feature
Matching

(ms)
FDNet 256 20.9 0.32
FDNet 512 21.2 0.35
FDNet 1024 22.6 0.36
FDNet 2048 28.7 0.40

and a single query image. We tested 2000 images from770

the Nordland Dataset and obtained the average value.771

There was no significant di↵erence in time consumption772

of feature matching under di↵erent feature lengths. The773

time of feature extraction are all less than 30ms, and the774

time of feature matching are within 0.4ms. Considering775

the performance and time consumption of di↵erent fea-776

ture lengths, we finally choose the vector of length 512777

for the subsequent experiments.778

5.2.2 Results on Nordland Dataset779

Firstly, we show the precision–recall curves on the Nord-780

land dataset as displayed in Fig. 7. In order to show781

the robustness of the method to appearance changes,782

we cross-compare the data of four di↵erent seasons and783

generate a Precision-Recall(PR) curve. Table 3 shows784

the precision and recall values obtained at maximum785

recall and precision respectively. It is observed that our 786

method has a significantly higher performance in the 787

majority of cases. Even when the weather changes from 788

spring, summer or fall to winter, FDNet can maintain a 789

higher value on maximum recall at 100% precision. The 790

main reason for the improvement is that the content 791

features contain little appearance information and are 792

therefore able to cope with changes in appearance. A 793

good example is the second column of images in Fig. 9. 794

Since there are obvious seasonal changes between the 795

query image and the dataset image, the appearance 796

characteristics are no longer preserved. Except for FD- 797

Net and CALC, all other methods match the wrong 798

image for this query. 799

However, we can also see that the accuracy of FD- 800

Net declines more rapidly in the high recall area. This 801

is because the highly compressed feature vectors in- 802

evitably lose part of the image information, resulting in 803

the di↵erence among most image features is not so obvi- 804

ous. Generally speaking, the proposed method tends to 805

localize more precisely than other state-of-the-art ap- 806

proaches, providing better resistance to the changing 807

of appearance. 808

On this dataset, NetVLAD is comparable to FDNet 809

for that it gets the closest recall value to our method. 810

CALC shows moderate performance and the fine-tuned 811

conv4 feature improved greatly compared with the orig- 812
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Fig. 8 The similarity matrices belonging to our approach
in the test sequence of Nordland dataset.

inal conv3 feature. Furthermore, DBow3 performs the813

worst in most cases because of the limitations of hand-814

crafted features.815

Since we know that image sequences on di↵erent816

seasons are synchronized, the ground truth similarity817

matrix is a diagonal matrix. Fig. 8 depicts the simi-818

larity matrices obtained with the test sequence on the819

Nordland dataset. We also cross-compare the data of820

four di↵erent seasons. It can be seen that there is a sig-821

nificant di↵erence among the elements on the diagonal822

line and those on the non-diagonal line. However, the823

di↵erence between the non-diagonal elements is not so824

great as to be di�cult to distinguish. This is because825

the Nordland dataset captures the railway scene, and826

most of the images are very similar in content.827

In order to evaluate the discriminant ability of the828

content vector from a quantitative perspective, we pre-829

sented the changes in the content vector under di↵erent830

appearances of the same scene in the form of a his-831

togram. Fig.11 (a) displays the absolute di↵erence of 832

content vectors extracted from location T1 in Fig. 10 833

across di↵erent seasons. It can be seen that the value 834

of the absolute di↵erence is small and below 0.05 even 835

if the appearance changes. Fig. 11(b) is the absolute 836

di↵erence generated by the location T1 and T2. When 837

location changes, the absolute di↵erence increases sig- 838

nificantly and is higher than the result in (a). This 839

demonstrates that the content vectors generated by fea- 840

ture disentanglement have the ability to perceive image 841

content when appearances change. 842

To quantitatively analyze the invariance of the ap- 843

pearance vector, we display the response of appearance 844

vectors belonging to images from Fig. 10. As shown 845

in Fig.12, it is obvious that the appearance vectors ex- 846

tracted from images under the same season only change 847

slightly even if location changes, which indicates that 848

the appearance vectors extracted can accurately encode 849

the appearance information of images. Additionally, we 850

find that there is a significant di↵erence between ap- 851

pearance features from winter and appearance features 852

extracted from other seasons, while the appearance fea- 853

tures extracted from spring, summer, and fall show a 854

smaller di↵erence. This is caused by the obvious dispar- 855

ities between winter images and other seasonal images. 856

We visualize the distribution of appearance features 857

mapped to two-dimensional space subsequently. As sho- 858

wn in Fig. 13(a), points belonging to the same class 859

are easier to gather together, and the distribution of 860

points under winter has obvious distance from the other 861

seasons. Although the feature points of spring, summer 862

and fall are close to each other, it is not di�cult to 863

distinguish them. 864

5.2.3 Results on Alderley Dataset 865

Apart from the typical seasonal changes previously stud- 866

ied, we also perform evaluations under extremely vari- 867

able illumination conditions. We conduct experiments 868

on Alderley Dataset. This dataset contains image se- 869

quences in both day and night scenarios, and the changes 870

between images at the same location are more signifi- 871

cant. Table 4 shows the precision and recall values ob- 872

tained at maximum recall and precision respectively. 873

On the whole, all the methods performed poorly on this 874

dataset. The third query (column) in Fig. 9 is an exam- 875

ple that all the methods fail to find the correct match. 876

The PR curves plotted in Fig. 14 show an acceptable 877

accuracy for our method in this challenging case, and 878

we can see that the proposed method (10.82%) per- 879

forms second only to NetVLAD (11.54%) and maintains 880

higher accuracy in the region of low recall. In addition, 881

we also draw the point distribution mapped by appear- 882



14 Cao Qin et al.

Query
Image

Conv3

Gist

DBow3

Landmarks

Conv4_
fine-tuned

NetVLAD

Nordland Alderley St.Lucia
Oxford 

RobotCar FAS

spring-summer winter-fall day-night

CALC

FDNet_512

night-day
morning-
afternoon

summer-
winter

Fig. 9 Samples of matched/mismatched images by di↵erent methods. Each column represents a query and matched images
of various methods. Images with green frames are correct matches, while the ones with red frames are incorrect matches.
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Table 3 Recall and precision values at maximum precision and recall respectively comparing di↵erent methods on the Nordland
dataset.

spring-summer spring-fall spring-winter summer-fall summer-winter fall-winter
Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

FDNet 512 51.83% 16.42% 52.69% 24.83% 40.52% 3.50% 88.52% 93.20% 33.74% 3.82% 33.39% 5.40%
Conv3 1.91% 7.24% 1.47% 9.28% 3.48% 4.89% 1.91% 24.50% 0.35% 3.44% 1.39% 4.22%
Gist 14.61% 47.08% 4.87% 51.47% 1.04% 2.27% 63.65% 95.67% 0.35% 2.14% 1.22% 2.28%
DBow3 0.52% 1.11% 0.52% 1.19% 0.17% 0.91% 12.0% 3.99% 0.70% 0.84% 0.52% 0.76%
Landmarks 7.39% 17.43% 10.43% 17.57% 9.13% 7.49% 80.43% 85.82% 4.78% 4.28% 0.87% 4.03%
Conv4 fine-tuned 8.34% 14.6% 2.43% 27.11% 7.34% 8.17% 8.52% 31.88% 1.04% 3.72% 1.04% 4.70%
NetVLAD 33.91% 59.43% 37.83% 52.87% 25.22% 22.63% 83.04% 91.63% 30.87% 22.12% 10.00% 21.39%

CALC 16.33% 45.41% 41.8% 40.95% 28.92% 15.62% 57.90% 85.47% 15.27% 20.13% 15.10% 15.58%

Table 4 Recall and precision values at maximum precision and recall respectively comparing di↵erent methods on the Alderley,
Oxford RobotCar, St Lucia and FAS Dataset.

Alderley
day-night

Oxford RobotCar
night-day

St Lucia
morning-afternoon

FAS
summer-winter

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

Recall
at 100%
precision

Precision
at max
recall

FDNet 512 10.82% 10.28% 7.13% 9.73% 14.43% 11.13% 24.80% 15.69%
Conv3 0.37% 9.41% 2.57% 12.22% 0.17% 9.06% 3.80% 10.11%
Gist 2.24% 20.15% 5.40% 11.85% 2.43% 8.42% 4.77% 7.99%
DBow3 1.12% 3.85% 1.74% 7.00% 0.87% 5.37% 0.42% 2.96%
Landmarks 1.12% 22.75% 2.77% 16.60% 3.91% 20.54% 1.42% 14.41%
Conv4 fine-tuned 4.48% 6.10% 7.73% 10.91% 5.40% 12.31% 8.28% 12.26%
NetVLAD 11.54% 33.40% 8.97% 31.27% 13.04% 24.23% 20.11% 22.35%

CALC 6.40% 19.30% 6.97% 20.30% 4.83% 16.97% 10.46% 15.69%

ance vectors to low-dimensional space in Fig. 13 (b).883

It is observed that there is a gap between the feature884

distribution under the day and that under the night.885

However, the distribution of points drawn is not very886

concentrated, and it seems to be able to describe the887

direction information of the original images. Perhaps888

because appearance vectors perceive that there are ob-889

vious trajectory changes of the images on the test set.890

891

spring summer fall winter

T1

T2

T3

Fig. 10 Examples of di↵erent location in Nordland dataset.

5.2.4 Results on Oxford RobotCar Dataset 892

The PR performance on the Oxford RobotCar dataset 893

is shown in Fig. 15. It is notable that NetVLAD has 894

achieved far better results (8.97% recall at max preci- 895

sion) than all other methods, while CLAC follow-ups 896

with relatively poor performance. Gist and DBoW3, 897

which are based on hand-crafted features, still perform 898

poorly. Disappointingly, our method doesn’t show any 899

advantages in this dataset (only 7.13% recall at max 900

precision). The main reason could be the significant 901

loss of visual information at night-time and dynamic 902

objects such as pedestrians and cars. As displayed in 903

the fourth query (column) of Fig. 9, the FDNet can not 904

obtain the right match because a moving car appears 905

in the scene. 906

5.2.5 Results on St Lucia Dataset 907

The PR curves plotted in Fig. 16 show competitive 908

accuracy for the proposed method in this challenging 909

case. As expected, our method achieves the best per- 910

formance in terms of the recall values at max precision 911

(14.43%) followed by NetVLAD (13.04%). CALC and 912

Conv4 fine-tuned have shown similar performance on 913

this dataset. Landmarks obtain slightly better results 914

than Conv3 and DBow3, thanks to the fact that the 915

scene contains some visible road signs. The fifth query 916

(column) in Fig. 9 is an example. In the case of moder- 917
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Fig. 11 The response of the absolute di↵erence of content
vectors. (a) The absolute di↵erence of content vectors in loca-
tion T1 across di↵erent seasons. (b)The absolute di↵erence of
content vectors in location T1 and T2 across di↵erent seasons.
Where ’spring-summer’ represents the first location is under
the spring and the second location is under the summer.

ate changes in appearance, most methods can find the918

right matches.919

5.2.6 Results on FAS Dataset920

Similar to the results on the Nordland dataset (summer-921

winter), our method achieves e↵ective place recognition922

accuracy on the FAS dataset (as shown in Fig. 17).923

In terms of recall values at max precision, our method924

(24.80%) outperforms all others significantly. CALC and925

Conv4 fine-tuned su↵er noticeable performance degra-926

dation, with respect to our method and NetVLAD. This927

experiment shows that under the condition of seasonal928

variation, our approach can always maintain relatively929

better performance.930

5.3 Robustness to viewpoint changes931

Viewpoint change is also a major challenge for visual932

place recognition systems. The previous sections have933

examined the performance of the proposed method in934

the case of significant changes in appearance. In this935

section, we conduct experiments on the Nordland dataset936

and simulate viewpoint changes by using shifted image937

crops with reference to [51]. We use 2000 pairs of images938

in the summer and winter season which are cropped939

Table 5 Runtime comparison between di↵erent methods on
The Nordland Dataset

VPR
System

Feature
Extraction

(ms)

Feature
Matching

(ms)
Conv3 136 0.34
Gist 223 0.38

DBoW3 2.3 0.013
Landmarks 737 19

Conv4 fine-tuned 158 0.36
NetVLAD 980 0.038
CALC 39 0.31

FDNet 512 21.2 0.35

to half of their original width. Viewpoint changes are 940

simulated by shifting the queried images to the right. 941

Consequently, the performance of various overlaps be- 942

tween images in 100%, 90%, 75% and 65% are com- 943

pared. Fig. 18 demonstrate the results of this experi- 944

ment. We found that our method can perform relatively 945

stable in the case of slight viewpoint change (overlap in 946

90%), but once the viewpoint changes too much, the 947

performance will be significantly reduced. As a result, 948

we continue to explore which features the viewpoint 949

changes are encoded into in our method. An image of 950

the summer is selected as a reference, and its viewpoint 951

changes are simulated as shown in Fig. 19(a). We can 952

observe the changes of content vector and appearance 953

vector of these images in Fig. 19(b) and Fig. 19(c). The 954

phenomenon that the content feature changes greatly 955

while the appearance feature does not change at all in- 956

dicates that the viewpoint change is considered as ’con- 957

tent’ in our algorithm. 958

5.4 Computational Performance 959

In this section, we evaluate the computational cost in 960

terms of the running time for (1) feature extraction 961

from the networks, (2) feature matching between refer- 962

ence and a single query image. Note that the reported 963

times in this paper were tested on Intel Xeon CPU at 964

2.10GHz, and that feature extraction was performed on 965

NVIDIA TITANX GPU with 12GB memory. Table 5 966

shows evaluation results on the Nordland Dataset. We 967

run experiments on 2000 images and record the average 968

runtime. As expected, CNNs-based approaches always 969

take more time to encode an image. Among the com- 970

peting approaches, the NetVLAD is slower than others. 971

DBoW3 is the most e�cient, with an average time of 972

2.3ms per image, followed by ours at 21.2ms. 973
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Fig. 12 The response of appearance vectors. From top to bottom, each row in turn belongs to T1, T2 and T3

(a) (b)

Fig. 13 The distribution of appearance features mapped
into two-dimensional space. (a) Nordland dataset (b) Alder-
ley dataset.

6 Conclusion and future works974

In this work, we have proposed a method for visual975

place recognition which exploits the content informa-976

tion extracted by feature disentanglement. Employing977

Fig. 14 Precision-recall curves comparing the di↵erent ap-
proaches with our novel method on the Alderley dataset.

the convolutional auto-encoder and adversarial learn- 978

ing, the original image is decoupled into content and 979

appearance information. Through the competition with 980

the discriminators and content encoder, the encoder 981

learns to extract features good for content factor recog- 982

nition but not useful for appearance factor recogni- 983

tion. Furthermore, the network is trained stably with- 984

out perfectly aligned images and can handle multiple 985

appearance changes in place recognition within a uni- 986

fied framework. The generated content features are di- 987

rectly used to compare the similarity of images with- 988

out dimensionality reduction operations. Finally, we use 989

the similarity matrix to check possible loops in the test 990

datasets to evaluate the performance. 991

We have performed thorough comparison studies 992

on di↵erent datasets against the state-of-the-art image 993

description methods for place recognition, where the 994

Fig. 15 Precision-recall curves comparing the di↵erent ap-
proaches with our novel method on the Oxford RobotCar
dataset.
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extensive experimental results have demonstrated that995

the proposed method achieves a satisfactory precision996

in changing conditions and generally outperforms the997

benchmarks in terms of the recall at perfect precision.998

Moreover, the two-dimensional distribution of appear-999

ance features was displayed, which demonstrated that1000

the appearance feature accurately encodes the appear-1001

ance information of images.1002

While the proposed method only considers discrete1003

appearance changes, we will try to deal with the place1004

recognition problem in the continuously changing envi-1005

ronment [55] because most appearance changes such as1006

weather and lighting always change with time. Besides,1007

we will furthermore address the remaining challenge of1008

viewpoint robustness.1009
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Fig. 16 Precision-recall curves comparing the di↵erent ap-
proaches with our novel method on the St Lucia dataset.

Fig. 17 Precision-recall curves comparing the di↵erent ap-
proaches with our novel method on the FAS dataset.
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Fig. 18 Experiments under synthetic viewpoint change us-
ing cropped and shifted images of the Nordland summer and
winter dataset. Top row: Examples for the simulated view-
point variation. Bottom: Precision-recall curves for di↵erent
overlap values.
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