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ABSTRACT 
 
 

FDTD Analysis of Metamaterial Coated Microwave Antenna. (May 2010) 

Vipin Krishna Reddy Cholleti, B.Tech, Indian Institute of Technology Guwahati 

Chair of Advisory Committee: Dr. Robert D. Nevels 
 
 

Due to the growth in mobile wireless systems, electrically small antennas (ESAs), which 

are efficient and have significant bandwidth, are in great demand. But these 

requirements are contradictory. ESAs are known to be highly capacitive in nature. As a 

result of this, matching a power source to the ESA requires a matching network which 

increases the cost in terms of manufacturing as well as real estate. In recent years a new 

class of materials called metamaterials has emerged. These manmade materials with 

their unusual constitutive parameters possess immense potential to solve the problem of 

size reduction. This study seeks to validate, using Finite Difference Time Domain 

(FDTD) technique, a new metamaterial construct to achieve the desired objectives. 

FDTD code is developed for a cylindrical metamaterial wrapped around a modified 

biological antenna. The metamaterials are modeled using a Drude constitutive parameter 

model to simulate frequency dispersion. Epsilon Negative (ENG) as well as Double 

Negative (DNG) metamaterials are taken into consideration. Results show that the ESA 

using a metamaterial wraparound is found to have a quality factor lower than the 

theoretical Chu Limit. Both ENG as well as DNG metamaterials exhibit their potential. 

The resonant frequency of the metamaterial antenna is reduced over the classical design 

while the radiation pattern of the antenna remains virtually unchanged.  
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NOMENCLATURE 

 

FDTD Finite Difference Time Domain 

c Speed of Light in Vacuum 

LHM                           Left Handed Material 

RHM                           Right Handed Material 

ESA Electrically Small Antenna 

Q Quality Factor 

ENG Epsilon Negative  

DNG Double Negative 

DPS Double Positive 

SRR Split Ring Resonator 
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CHAPTER I 

INTRODUCTION 

 

 

1.1  Introduction 

Antennas which are electrically small, efficient and have significant bandwidth are in 

great demand. These requirements are contradictory. Electrically small antennas (ESAs) 

are known to be highly capacitive in nature. As a result of this matching a power source 

to the ESA requires a matching network which increases the cost both in terms of 

manufacturing expense as well as real estate. In recent years a new class of materials 

called metamaterials has emerged. These materials with their unusual constitutive 

parameters possess immense potential to solve the problem of size reduction. This study 

seeks to propose and validate a new metamaterial construct to achieve the desired 

objectives; electrically small, efficient, impedance matched and with reasonable 

bandwidth. 

 

1.2 Thesis Outline 

Chapter I provides an introduction to the thesis including the thesis outline. Chapter II 

introduces the procedure for applying finite-difference time domain (FDTD) method to 

time-domain Maxwell equations. Specifically the Yee's FDTD formulation is illustrated. 

  

 
This thesis follows the style of IEEE Transactions on Antennas and Propagation. 
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In Chapter II the Yee FDTD scheme will be restricted to a model with linear, 

non-dispersive and non-magnetic dielectric. Three Dimensional as well as Two 

Dimensional computer implementations of FDTD will be explained. Various 

considerations such as numerical dispersion, stability, boundary conditions and Fourier 

transform implementation of the model are also discussed. 

 In Chapter III, a brief overview of metamaterials is provided. Some of the unique 

properties of metamaterials are discussed. FDTD formulation for metamaterials in a 2D 

rectangular coordinate system is also explained. To validate the FDTD code, a 

metamaterial slab is simulated to demonstrate the inverse Snell’s law and show the 

refocusing of incident waves. 

 In Chapter IV limiting characteristics of ESAs are discussed. An ESA will be 

modeled using FDTD technique. The antenna design is discussed in a step by step 

manner and at each step FDTD is used to analyze the antenna. A modified version of the 

antenna is also simulated which will be used in Chapter V along with the metamaterial 

construct. 

 Chapter V provides a paradigm for achieving an efficient ESA. A metamaterial 

wrap is added around the modified antenna of Chapter IV. An FDTD code for 

cylindrical dispersive metamaterial is formulated. It is then used to discern the different 

properties of the metamaterial antenna. Use of Epsilon Negative (ENG) metamaterials 

and Double Negative (DNG) metamaterials is investigated. ESA-metamaterial system is 

shown to have a Q factor less than the Chu limit. 
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CHAPTER II 

INTRODUCTION TO FINITE DIFFERENCE TIME DOMAIN METHOD 

 

 

2.1  Introduction 

In 1966 Kane Yee presented what we now refer to as the Finite-Difference Time-

Domain (FDTD) [1] method for modeling electromagnetic phenomenon. The Yee's 

algorithm, as it is usually called in the literature, is well known for its robustness and 

versatility. The method approximates the differentiation operators of the Maxwell 

equations with finite-difference operators in time and space. It updates the Electric field 

(E) and Magnetic field (H) equations throughout the computational domain in terms of 

the past fields. The update equations are used in a leap-frog scheme to incrementally 

march Electric field (E) and Magnetic field (H) forward in time. After more than 30 

years of development and improvement, the FDTD scheme has become well established 

and used widely in the modeling of all kinds of electromagnetic problems including 

propagation, scattering and radiation. 

 This chapter introduces the procedure for applying the FDTD method to time-

domain Maxwell equations. Specifically the Yee's FDTD formulation will be illustrated. 

In this chapter the Yee FDTD scheme will be restricted to a model with a linear, non-

dispersive and non-magnetic dielectric. Three Dimensional as well as Two Dimensional 

computer implementations of FDTD will be explained. Various considerations such as 
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numerical dispersion, stability, boundary conditions and Fourier transform 

implementation of the model will also be discussed. 

 

2.2 Maxwell Equation 

Generalized Maxwell's equations in time domain including magnetic current density and 

magnetic charge density are, 

                                           BE M
t


  

   


  (Faraday’s Law)                            (2.2.1a)                            

                                            DH J
t


  

  


  (Ampere’s Law)                              (2.2.1b) 

                                      eD 


    (Gauss’s Law for electric field)                       (2.2.1c) 

                                      mE 


     (Gauss’s Law for magnetic field)            (2.2.1d) 

The parameters for (2.2.1a)-(2.2.1d) are listed as follows: 

E


 - Electric field intensity (volts/meter) 

H


 - Magnetic field intensity (amperes/meter) 

D


 - Electric flux density (coulombs/meter2) 

B


 - Magnetic flux density (webers/meter2) 

J


- Electric current density (amperes/meter2) 

M


- Magnetic current density (volts/meter2) 

e  - Electric charge density (coulombs/meter3) 

m  - Magnetic charge density (webers/meter3) 
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 In Linear, isotropic, non-dispersive materials (i.e., materials having field-

independent, direction independent and frequency independent electric and magnetic 

properties), we can relate D to E and B to H using simple proportions: 

                                                     0D E Er  
  

                                               (2.2.2a) 

                                                    0B H Hr  
  

                                          (2.2.2b) 

where, 

r  - Relative electric permittivity (dimensionless) 

0 - Magnetic charge density (8.85410-12 farads/meter) 

r  - Relative magnetic permeability (dimensionless) 

0 - Free space magnetic permeability (4 10-7 henrys/meter) 

 Note that J


 and M


account for independent sources as well as losses via 

conversion to heat energy. Therefore, 

                                                           sourceJ J E
  

                                               (2.2.3a) 

                                                          *
sourceM M H

  

                                          (2.2.3b) 

where, 

  - Electric conductivity (Siemens/meter) 

*  - Magnetic conductivity (Ohms/meter) 
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2.3 FDTD Formulation and Algorithm Implementation 

There are a number of finite-difference schemes for Maxwell's equations, but Yee 

scheme persists as it is very robust and versatile. The Yee algorithm solves for both 

electric and magnetic fields in time and space using the coupled Maxwell’s curl 

equations, rather them solving each independently using wave equations. The solution is 

applicable for a wider class of structures and much more accurate. For simplicity, 

suppose the model is a three-dimensional (3D) model with linear, isotropic, non-

dispersive dielectrics, and there are no electric and magnetic sources and magnetic losses 

are zero ( 0sourceJ


 , 0sourceM


 , * 0  ). From (2.2.1a), (2.2.1b), 

                                                          EH E
t

 


  
  


                                        (2.3.1a) 

                                                           HE
t




 
  


                                            (2.3.1b) 

Equations (2.2.4a)-(2.2.4b) form the basis of Yee's FDTD scheme. Under Cartesian 

coordinate system, these can be further expanded as: 

                                                    1 yx z EH E
t y z

  
      

                                      (2.3.2a) 

                                                    
1y x zH E E

t z x
         

                         (2.3.2b)

                                                   1 yxz EEH
t y x

 
      

                        (2.3.2c) 

                                               1 yx z
x

HE H E
t y z




  
       

                                (2.3.2d) 
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1y x z

y

E H H E
t z x




          
             (2.3.2e)  

                                              1 yxz
z

HHE E
t y x




 
       

             (2.3.2f)      

Let us introduce the notation ( , , ) ( , , )n
x i j k xE E i x j y k z     and so on for yE , zE xH , yH  

and zH  components. In Yee's scheme, the model is first divided into many small cubes. 

The edges of each cube will form the three-dimensional space grid. The Yee's scheme 

can be generalized to variable cube size and non-orthogonal grid. The position of the E 

and field components in the space grid is shown in Figure 2.1. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.1: Position of field components on the cube (i,j,k) 
 

 1 1( , , )
2 2

z i j k
H

 
  1( , , )

2
x i j k

E


 

 1 1( , , )
2 2

y i j k
H

 
 

 1( , , )
2

y i j k
E


 

 1 1( , , )
2 2

x i j k
H

 
 

 1( , , )
2

z i j k
E


 

 (i,j,k+1) 

 (i,j+1,k)  (i+1,j+1,k) 

 (i+1,j,k) 

 (i+1,j,k+1)  (i,j,k+1) 

 (i,j,k) 

z  
 

x  

Y 

Z 

X 

y  
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The cube in Figure 2.1 is called the Yee Cell. From Figure 2.1, it is observed that each 

electric field component is surrounded by four magnetic field components and each 

magnetic field component is surrounded by four electric field components (If the field 

components on adjacent cubes are taken into account). For example, the component 

1 1( , , )
2 2

x i j k
H

 
is surrounded by 1( , , )

2
z i j k

E


, 1( , 1, )
2

z i j k
E

 
, 1( , , )

2
y i j k

E


and 1( , , 1)
2

y i j k
E

 
. The 

inspiration for choosing this arrangement stems from the curl equations (2.3.1a)-(2.3.1b). 

As an example converting (2.3.1a) into integral form after using Stokes Theorem: 

                                                       . .
c s

E dl B ds
t


 
                                             (2.3.3) 

This equation states that a changing magnetic flux will generate a circular 

electric field surrounding the 'flux tube'. Similarly the integral form of (2.3.1b) also 

states that a changing electric flux and an electric current will generate a circular 

magnetic field surrounding the 'flux tube'. Using the center difference operator to replace 

the time and space derivatives at time-step n and space lattice point 

1 1( , ( ) , ( ) )
2 2

i x j y k z     on (2.3.2a): 

                 
1 11 1 ( , 1, ) ( , , )
2 22 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1 1( , , 1) ( , , )
2 2

1

1 1(
1

n n

z i j k z i j kn n

x i j k x i j k
n n

y i j k y i j k

E E
y

H H
t

E E
z



   

   

  

  
                  

        (2.3.4) 
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1 11 1 ( , 1, ) ( , , )
2 22 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1 1( , , 1) ( , , )
2 2

1

1

n n

z i j k z i j kn n

x i j k x i j k
n n

y i j k y i j k

E E
ytH H

E E
z



   

   

  

  
                 

      (2.3.5a) 

Repeating the procedure for other field components, 

                       
1 11 1 ( , , 1) ( , , )
2 22 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1 1( 1, , ) ( , , )
2 2

1

1

n n

x i j k x i j kn n

y i j k y i j k
n n

z i j k z i j k

E E
ztH H

E E
x



   

   

  

  
                

        (2.3.5b) 

                        
1 11 1 ( , , 1) ( , , )
2 22 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1 1( , , 1) ( , , )
2 2

1

1

n n

y i j k y i j kn n

z i j k z i j k
n n

x i j k x i j k

E E
xtH H

E E
y



   

   

  

  
                

        (2.3.5c)                      

          

1 1
2 2

1 1 1 11 1 ( , , ) ( , , )
2 2 2 22 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1 1 1 1( , , ) ( , , )
2 2 2 2

1
1

2 2
11 1

2 2

n n

z i j k z i j kn n

x i j k x i j k n n

y i j k y i j k

t t H H
y

E Et t
H H

z

 
 

 
 

 

    

   

   

                               

(2.3.5d) 

         

1 1
2 2

1 1 1 11 1 ( , , ) ( , , )
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(2.3.5f) 
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Examination of (2.3.5a)-(2.3.5f) shows that all the field components fall on the locations 

accounted for by the space grid of Figure 2.1. Equations (2.3.5a)-(2.3.5f) are explicit in 

nature, thus computer implementation does not require solving a determinant or 

inverting a large matrix. To facilitate the implementation in digital computer, the indexes 

of the field components are renamed as shown in Figure 2.2, so that all the indexes 

become integers. This allows the value of each field component to be stored in a three-

dimensional array in the software, where the array indexes correspond to the spatial 

indexes of Figure 2.2. In the figure additional field components are drawn to improve the 

clarity of the convention. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Renaming the indexes of E and H field components corresponding to Cube (i,j,k) 
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Using the new spatial indexes, the field components as in Figure 2.2, (2.3.3a)-

(2.3.3f) become: 
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        (2.3.6f) 
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Equations (2.3.6a)-(2.3.6f) form the basis of computer implementation of Yee's FDTD 

scheme for solving Maxwell's equations. Since (2.3.6a)-(2.3.6f) compute the new field 

components from the field components at previous time-steps, these equations are 

frequently called update equations. Notice that in the equations the temporal location of 

the E and H field components differs by half time-step ( 1
2

t ). In a typical simulation 

flow, one would determine the new H field components at n + 1
2

from the previous field 

components using (2.3.6a)-(2.3.6c). Then the new E field components at n + l will be 

calculated using (2.3.6d)-(2.3.6f). The process is then repeated as many times as required 

until the last time-step is reached. Because of this, this scheme is sometimes called a 

“leapfrog scheme”. The divergence equations (2.2.1c) and (2.2.1d) can be shown to be 

implicit in (2.3.6d)-(2.3.6f). 

 

2.4 Reduction to Two Dimensions 

Let neither the electromagnetic field excitation nor the modeled geometry have any 

variation in the z-direction. In effect, we assume that the partial derivative with respect 

to z on any of the field components is zero ( 0
z




). Equations (2.3.6a)-(2.3.6f) can be 

written as: 
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       (2.4.1f) 

Equations (2.4.1a)-(2.4.1f) when uncoupled can be separated into Transverse Magnetic 

(TM) and Transverse Electric (TE) modes. 

 

2.5 Numerical Dispersion 

The numerical algorithms for Maxwell’s curl equations as defined by (2.3.6a)-(2.3.6f) 

causes dispersion in the simulated wave modes in the computational domain. For 

instance in vacuum, the phase velocity of the numerical wave modes in the FDTD grid 

can differ from vacuum speed of light. In fact the phase velocity of the numerical wave 

modes is a function of wavelength, the direction of propagation and the size of the cubes. 

This numerical dispersion can lead to nonphysical results such as broadening and ringing 
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of single-pulse waveforms, imprecise cancelation of multiple scattered waves and 

pseudo refraction. A detailed analysis of this numerical dispersion is presented in 

Chapter V of Taflove [2] and consequently will not be discussed here. It is shown in [1, 

2] that to limit the amount of numerical dispersion, the edges of each cube must be at 

least ten times smaller than the shortest wavelength expected to propagate in the 

computational domain. Of course the numerical dispersion will be suppressed even 

further if a smaller cube size is chosen. However using a cube size that is too small will 

increase the number of cubes needed to fill the computational domain and hence increase 

computational resource demand of the model. The rule-of-thumb of 0, ,
10

x y z 
   

where 0 is the wavelength corresponding to the expected highest significant harmonics 

in the model is adequate for most purposes. For 1D FDTD, if one chooses xt
c


  , there 

will be no numerical dispersion regardless of the choice of x . This is called the ‘magic 

time step’. There is no ‘magic time step’ for 2D and 3D cases. 

 

2.6    Numerical Stability 

The numerical algorithm for Maxwell's curl equations as defined by (2.3.6a)-(2.3.6f) 

requires that the time increment t have a specific bound relative to the spatial 

discretization ( ,x y  , z ). For an isotropic FDTD analysis based on central 

differencing to remain stable the following mathematical statement must be true; 

                                                 2 2 2

1 1 1
( ) ( ) ( )

t c
x y z

   
  

                                  (2.6.1) 
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where, c is the velocity of light in free space. 

                                             
3

x y z t
c


                                         (2.6.2) 

Equation (2.6.1) is known as Comant-Freidrichs-Lewy (CFL) Stability Criterion. In an 

unstable model the computed result for E and H field components will increase without 

limit as the simulation progresses. 

 

2.7 Sources 

To simulate a voltage source excitation, it is necessary to impose an electric field in a 

computational grid. Sources are characterized according to their shape or FDTD 

implementation. 

2.7.1 Gaussian and Sinusoid Source 

A source can either be sinusoidal or a Gaussian pulse. A Gaussian pulse is desirable as 

the excitation because its frequency spectrum is also Gaussian and will provide 

frequency-domain information from dc to the highest frequency that will propagate in 

the numerical lattice. Ramped Sinusoid is particularly useful for visualizing field 

interactions. Figure 2.3(a) and (b) show the Gaussian pulse and ramped sinusoid of 

frequency 20 GHz along with their frequency spectrum respectively. 

 

 



16 
 

 

Figure 2.3(a): Gaussian Pulse along with its frequency spectrum 

 

 

Figure 2.3(b): Ramped Sinusoid along with its frequency spectrum 
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In discrete form the Gaussian time pulse is given by, 

                                                       
2

0
2

( )
( )( )

n t n t
tg n t e 

  


                                         (2.7.1.1) 

where n is the time increment and n0 is the number of time increments it takes for the 

pulse to reach its peak value. A ‘rule of thumb’ for choosing n0 is that at the ‘turn on’ 

time (n = 0) the Gaussian time function should be down ~140dB. 

2.7.2 Hard and Soft Source 

There are two types of sources depending on computer implementation, the Hard Source 

and the Soft Source. If a source is assigned a fixed E-field, it is referred to as hard 

source. If a propagating wave value is added to E-field at a certain point, it is referred to 

as soft source. With a hard source, a propagating wave will be reflected from source 

point, which appears to be a conducting wall to the incoming wave, but a soft source will 

allow the propagating wave to pass through. A soft source is modeled as, 

                              
111 1 1

2
1 1
2 2s ss

s

n
n n n nn n

z source z y yi ii
i

tE E E H H
x


   

 

        
               (2.7.2.1a) 

A hard source is modeled as, 

                                                         
11
2

s

n nn
z sourcei

E E
 
                                          (2.7.2.1b) 

 

2.8 Frequency Domain Analysis 

The FDTD method is conducted in the time domain. In order to obtain frequency domain 

characteristics such as scattering parameters, reflection coefficients and input 
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impedance, Fourier Transform is used to post process the results. The Fourier transform 

of an electric field E(t) at frequency f = fk is calculated by, 

                                                     2( ) ( ) kj f t
ke f E t e dt






                                          (2.8.1) 

Discretizing this equation, the N point Discrete Fourier Transform (DFT) is given by, 

                                                 
1

2

0
( ) ( ) k

N
j f t

k
n

e f t E n t e 


 



                                        (2.8.2) 

The DFT does not require the storage of large data sets as it can be implemented on the 

fly by choosing in advance at which frequency we want the system response. The 

reflection coefficient is given by, 

                                                , , , ,

, ,

( )
( )

( )
k

k

total inc
f i j k i j k

k inc
f i j k

DFT E E
f

DFT E


                                      (2.8.3) 

 

2.9 Boundary Conditions 

In order to analyze Electromagnetic interactions in unbounded media, one must truncate 

the mesh in such a way that the exterior boundary looks like an unbounded medium. 

Various Boundary conditions are available like Engquist-Majda[3], Mur[4], Liao[5], 

Perfectly matched layer[6] to name a few. A perfectly matched layer boundary condition 

will be implemented in Chapter II and Liao boundary condition will be used in Chapter 

III. 
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2.10    Implementation of Basic FDTD Algorithm 

Figure 2.4 shows the flow chart for the implementation FDTD Algorithm.  

 

 

Figure 2.4: FDTD Algorithm flow chart 
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2.10    Summary 

In this chapter, the fundamental issues regarding the original Yee FDTD algorithm were 

introduced and the algorithm implementation discussed. Several key aspects of the 

FDTD algorithm like dispersion, stability, sources and boundary conditions have also 

been dealt in a brief manner.  
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CHAPTER III 

METAMATERIALS AND DISPERSIVE FDTD 

 

3.1  Introduction 

Over the last decades, a new class of artificially created materials, known as 

electromagnetic metamaterials [7-8] or simply metamaterials, has received considerable 

attention both in the physics and engineering communities. Metamaterials can offer 

electromagnetic properties that are difficult or impossible to achieve with conventional, 

naturally occurring materials. A medium of this type is called “Left-handed 

Metamaterial” (LHM), a term first applied by Veselago in 1968 [9] because the wave 

vector, electric field vector, and magnetic field vector form a left-handed system. In his 

pioneering work, Veselago pointed out that LHMs have simultaneously negative 

permittivity and permeability and some unique properties, such as inverse Snell effect, 

an inverse Doppler shift and backwards-directed Cherenkov radiation. In 1999, Pendry 

et al [8] demonstrated that materials with an array of split ring resonators (SRRs) 

produce negative permeability over certain frequency bands. Combining a two- 

dimensional (2D) array of SRRs interspersed with a 2D array of metallic wires, to give 

negative permittivity, enabled the construction of LHMs with both effective permittivity 

and permeability negative. In 2001, Smith et al [7] demonstrated for the first time the 

experimental existence of LHMs. 

 In this chapter, a brief overview of metamaterials is provided. Some of the 

unique properties of metamaterials are discussed. An FDTD formulation for 
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metamaterials in a 2D rectangular coordinate system is provided for numerically 

simulating these structures. To validate the FDTD code, a metamaterial slab is simulated 

to demonstrate the inverse Snell’s law discussed in section 3.3 of the thesis and show the 

refocusing of incident waves. 

 

3.2 Electromagnetic Metamaterials 

Metamaterials are engineered materials which can be either composites or combination 

of electrical and magnetic elements (eg. split rings and wires) that exhibit superior 

properties not found in nature and are not observed in the constituent materials. Almost 

all natural materials follow the so called right-hand rule because their permeability (  ) 

and permittivity ( ) both have positive signs. Such materials are referred to as Right 

Handed materials (RHM). The electric field ( E


), magnetic field ( H


) and wave vector    

( k


) in such materials form a right handed set of vectors as shown in Figure 3.1(a), 

wherein E


is along the +x direction, H


is along the +y direction and the wave propagates 

along +z direction, and thus E


, H


and k


build a right-handed triplet. All materials 

encountered so far in a natural form are RHM. In LHM, k


is reversed in comparison with 

what it should have been for a RHM, E


 and H


make a left-handed triplet with k


. That 

means that if E


is along +x direction and H


is along the +y direction, the wave will 

propagate along the -z direction in LHM as shown in Figure 3.1(b). 
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Figure 3.1(a) Right handed triplet for normal materials and (b) Left handed triplet for 

metamaterials 
 
 
 

 
Now, examine the direction of the energy flow in LHM, which is characterized by the 

Poynting Vector ( S


) as follows, 

                                                           4
cS E H


  

 
 
                                          (3.2.1) 

The Poynting vector power density can be written as: 

                                            
2

1E H k E k H
 

               
                               

(3.2.2a) 

                                                      
21 kk E E E
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
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(3.2.2b) 

                                                     
21 kH k H H
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               
(3.2.2c) 
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In a RHM (  > 0 and  > 0), the Poynting vector S


 is in the same direction as k


as 

shown in Figure 1.1, wherein both S


and k


are along the +z direction. For LHM (  < 0 

and  < 0), k


 is along the -z direction as shown in Figure 1.2. As derived in equations 

(3.2.2b) and (3.2.2c), the Poynting vector S


 is in the opposite direction of k


 for (  < 0 

and  < 0). Thus S


is in the opposite direction of k


 and along the +z direction as shown 

in Figure 3.1(b). Consequently, the energy flow and the phase velocity in LHM are in 

opposite directions. 

 

3.3 Unique Properties of LHMs 

 Negative Refractive Index: A conventional material with r  > 0 and r > 0 has 

a refractive index is given by r rn   , and therefore possesses a positive refractive 

index. A LHM has both negative permittivity ( ( )r  < 0) and negative permeability       

( ( )r  < 0), and hence the refractive index n has negative value. 

 

 Inverse Snell's Law: An incident light that enters LHMs from a right-handed 

medium will undergo refraction, but opposite to that usually observed for two right-

handed media. Snell's law is described as: 

                                                                         

2

1

sin( )
sin( )

i

r

n
n





                                                             

(3.3.1) 
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where i is the incident angle, r  is the refraction angle, 1n is the refractive index for the 

incident medium and 2n  is the refractive index for transmitted medium.  

 

 Negative Phase Velocity: The phase velocity expression
( )p
cv

n 
 shows that 

the phase velocity pv is inversely related to the index of refraction ( )n  , here c denotes 

the speed of light in a vacuum. A LHM has a negative refractive index ( ( )n  < 0), and 

therefore the phase velocity has a negative value. In LHM, the phase velocity is in the 

opposite direction of the energy flow in the sense that the energy flow leaves the source 

in waves with a phase velocity pointing backward. 

 

 Veselago also predicted that the Doppler and Cerenkov effects will be reversed 

in LHM. An approaching source will appear to radiate at a lower frequency and charged 

particles moving faster than the speed of light in the medium will radiate in a backward 

cone, not a forward cone. These two exotic properties are not employed in this thesis, 

however details about them can be found in [3]. 

 

3.4  Applications of LHMs 

LHMs with a negative refractive index would enable some new devices to be created. At 

optical and microwave frequencies, it could be possible to build a complete planar lens 

that nevertheless focuses light to a perfect geometric point [10]. Instead of grinding the 

lens to specific convex or concave angles, LHMs combined with traditional materials 
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should be able to serve all lens needs with easy-to-make planar surfaces. A lightweight 

concave lens made from LHMs could do the same job as a convex lens made from 

conventional material, which is much heavier, more expensive and more difficult to 

manufacture. One application, under development by Boeing Company in United States, 

is to uses lenses made of LHMs for radar. 

As outlined in the last section, the wave in LHMs propagates in the backward 

direction. Thus, LHMs can be employed to design a phase shifter, which exhibits a linear 

phase response with frequency [11]. Especially, the phase of the wave can be kept 

unchanged after the wave passes through one vacuum slab and one LHM slab that have 

the same thickness and absolute value of refractive index but opposite sign. This 

property may be applied to construct zero phase delay transmission line to feed antenna 

arrays. 

 Usually, a normal lens cannot produce an image better resolved than one 

wavelength, since the evanescent wave containing the finest details of an object is 

confined to the vicinity of the source and cannot be restored by the normal lens. 

However, an evanescent wave entering LHM is actually amplified due to the excitation 

surface Plasmon resonance at the RHM/LHM interface [12]. Thus the one-wavelength 

resolution limitation can be broken and LHM lens could focus light into an area smaller 

than its wavelength creating sharper beams that could, for example, be used to burn 

more information onto CDs and DVDs or etch more tightly packed features onto 

semiconductor chips [13]. Now, the amount of information that can be written onto a CD 

or DVD is limited by the diameter of a laser beam, which is limited by the wavelength of 
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laser light. One feature film can be comfortably recorded onto one DVD at present. If the 

laser light can be focused to a spot much smaller than its wavelength, up to 1,000 movies 

can be recorded on each DVD. 

 

3.5  Numerical Techniques for LHMs 

In order to verify the predicted properties of LHMs and simulate electromagnetic wave 

interaction with LHMs, the importance of full-wave numerical simulations is enormous 

as available experimental data is very limited. So far, several numerical methods have 

been employed to investigate the properties of LHMs. In [14], the Transfer Matrix 

Method (TMM) is employed to calculate the transmission, reflection and phase 

properties of LHMs. However, the method of TMM cannot describe the time evolution 

of the electromagnetic field interaction with LHMs. The dispersive FDTD method, one 

of the best available full-wave numerical methods, has been proved to be able to 

investigate the properties of LHMs successfully and thus will be employed in this thesis. 

 Some commercial software’s have been employed to investigate the properties of 

LHMs as well. High Frequency Structure Simulator (HFSS), a commercial finite-

element based electromagnetic solver, has been employed to study the electromagnetic 

scattering properties of LHMs [15]. In [16], Microwave studio (MWS), which is based 

on the finite integration technique, has been used to calculate the transmission properties 

of LHMs. 

 Why choose the dispersive FDTD method in this thesis? Firstly, in FDTD, the 

results are directly obtained from Maxwell's equations and the constitutive relations of 
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the materials, so that unnecessary assumptions and unessential complications can be 

avoided. Secondly, the FDTD method is a time-domain method, thus it can provide 

detailed and accurate description on the temporal dynamics of the interaction between 

electromagnetic waves and LHMs. Thirdly, FDTD can simulate the evanescent mode 

wave interaction with LHM structures. This is very important because some applications 

on LHMs are dependent on evanescent waves and thus a method that models evanescent 

waves in EM structures comprising of LHM components is essential. Fourthly, FDTD is 

a powerful tool that could be applied to antenna problems [17], for example, it can 

predict antenna patterns and terminal impedances in a straightforward manner. Therefore 

the FDTD method is a good tool that can be employed to design antennas related to 

LHMs. It is also very easy to implement using any of the available programming 

languages such as Fortran or MATLAB. 

3.5.1  Characterization of LHMs 

Since the dispersive FDTD method will be employed to investigate LHMs in this thesis, 

the details on how to characterize LHMs with a dispersive FDTD method will be 

presented in this section. As outlined above, LHMs have simultaneous negative 

permittivity and permeability; it is worth noting that simultaneous negative values of 

permittivity and permeability can be realized only when there is frequency dispersion. 

This can be seen from the relation between energy density W and electric field E and 

magnetic field H. 

                                                     
2 21 1

2 2
W E H  

                                     
(3.5.1.1) 
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If both  and  are negative values and they are non-dispersive, the total energy would 

be negative in this case, that will break the normal law of energy. When there is 

frequency dispersion, the relation (3.5.1.1) will be replaced as in [9] by, 

                                  

   2 21
2

W E H
     
 

                                          
(3.5.1.2) 

For the energy density given by equation (3.5.1.2) to be positive, it is required that ( ) 

and ( )  must satisfy the following constraints.  

                                                       

 
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(3.5.1.3a) 
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
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(3.5.1.3b) 

As suggested in [18], realistic LHMs can be characterized by the Drude mode [19] as: 
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 

                                      
(3.5.1.4b) 

ep is the electric plasma frequency and e is the electric damping factor related to loss. 

Likewise, mp is the magnetic plasma frequency and m is the magnetic damping factor 

related to loss. It can be shown that the permittivity function (3.5.1.4a) and the 

permeability function (3.5.1.4b) satisfy the constraints of (3.5.1.3a) and (3.5.1.3b) 

respectively and thus they will be employed to characterize LHMs in this thesis. 
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3.5.2  Available FDTD Techniques for LHM Modeling 

FDTD was proposed with the assumption that medium was non-dispersive. To model 

dispersive medium, the standard Yee time-stepping equations need to be modified. 

Several techniques have been proposed to incorporate frequency dispersion into the 

FDTD models. They can roughly be categorized into three types: Recursive Convolution 

(RC) method [20], Auxiliary Differential Equation (ADE) method [21] and Z-transform 

(ZT) method [22]. 

 In summary, the RC method discussed here is first-order accurate in time while 

the original ADE approach is temporally second-order accurate. The disadvantage of the 

original ADE method is that it is memory intensive. However, the LHMs in this thesis 

are characterized by Drude medium models, thus the required additional storage for the 

original ADE approach is not significant. Taking account of the need for the Uniaxial 

Perfect Matched Layer (UPML) [23] Absorbing Boundary Condition (ABC) for 

dispersive medium, which will be briefly discussed in this chapter, the original ADE 

approach is the one being implemented easily and requiring minimal numerical coding 

effect. Consequently, the original ADE approach is chosen here to model LHMs. 

 

3.6  ADE FDTD for LHM Modeling 

The ADE approach is a two step approach. The constitutive relations are employed to 

find the corresponding electric or magnetic field components. The frequency domain 

equations are transformed to time domain using Inverse Fourier Transforms. A Second 

order central difference scheme is then applied to discretize the arithmetic operators. A 
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semi-implicit scheme is to be used in order to get rid of instability in the code. The fields 

nF at time t n t  are approximated by, 

                                                

1 12
4

n n n
n F F FF

  


                                             
(3.6.1) 

Consider a 2D TE case consisting of field components ,z x yE H and H . The 2D FDTD 

simulator involves the following set of equations, 
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Since multiplication by j  in the frequency domain are equivalent to time derivatives in 

time domain, equations (3.6.2b), (3.6.2d) and (3.6.2f) are equivalent to 
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Applying second order FDTD discretization both in space and time to equations (3.6.2a), 

(3.6.2c) and (3.6.2e),  
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Applying the semi-implicit scheme along with second order FDTD discretization both in 

space and time to equation (3.6.3a), the explicit time-stepping expression for Ez is 

derived as follows, 
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The same approach can be applied to equations (3.6.3b) and (3.6.3c) to yield Hx and Hy 

respectively. 
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Thus, the iteration procedure of ADE FDTD on LHMs can be summarized in Figure 3.2. 
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Figure 3.2: Iteration Procedure of ADE FDTD for LHMs 
 

 

3.7  Validating the FDTD Code 

To validate both the ADE FDTD code, a test scheme is shown in Figure 3.2(a)-(d). The 

simulation proves the inverse Snell’s law for the metamaterials. A sinusoidal continuous 

wave point source of frequency 5 GHz is used to excite the 320 by 320 grid. In order to 

truncate the computational grid, an absorbing boundary condition called the Uniaxial 

perfectly matched layer (UPML) [18] is used. The UPML boundary of order 4 extends 

15 cells in each direction. The spatial increments are chosen to be 1/40th of the incident 

wavelength and the time increment has been decided by the courant condition. The 

source is placed 40 cells away from the metamaterial slab. The slab is 80 cells wide. As 

seen in figure 3.2(d), the original source reappears in the metamaterial slab as well as in 

the region after the slab.  
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Figure 3.3(a): FDTD Simulation of Gaussian source adjacent to a metamaterial slab at 
time t = 0.1 nsec. 

 
 
 

 

Figure 3.3(b): FDTD Simulation of Gaussian source adjacent to a metamaterial slab at 
time t = 0.5 nsec. 
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Figure 3.3(c): FDTD Simulation of Gaussian source adjacent to a metamaterial slab at 
time t = 10.5 nsec. 

 
 
 

 

Figure 3.3(d): FDTD Simulation of Gaussian source adjacent to a metamaterial slab at 
time t = 2.6 nsec. 
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3.8  Summary 

In this chapter, properties of metamaterials have been briefly discussed. FDTD 

implementation of metamaterials along with UPML boundary conditions have also been 

touched upon. To validate the code, a test scheme designed to show the Inverse Snall’s 

law for metamaterials. 
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CHAPTER IV 

ELECTRICALLY SMALL ANTENNAS 

 

 

4.1  Introduction 

Antennas which are small, efficient and have significant bandwidth would fulfill many 

of today’s emerging wireless technology requirements, especially in the areas of 

communication and sensor networks. Such devices also called as Electrically Small 

Antennas (ESAs), have some contradictory demands to be met in order to be a good 

radiator. There are physical limitations on antenna performance related to the size of the 

antenna and the limits are difficult to reach. 

 This chapter introduces various properties of ESAs along with a brief discussion 

of their characteristics. A modified form of Catheter antenna in [1] which falls under the 

category of an ESA will be modeled using FDTD technique. The Catheter antenna 

design is discussed in a step by step manner and at each step FDTD is used to analyze 

the antenna. The final Catheter antenna results obtained using FDTD is matched to the 

measured results in [24]. 
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4.2 Electrically Small Antennas 

Wheeler [25] in 1947 was the first one to look at the fundamental limitations of ESAs. 

He defined ESA as one whose maximum dimension is less than
2



. In other words an 

antenna where, 

                                                                  1ka                                                         (4.2.1) 

2k 


 (radians/meter) is the propagation constant 

 (meter) is the free space wavelength at resonance 

a is the radius of sphere enclosing the maximum dimensions of the antenna 

This is illustrated in figure 4.1. 

 

 

 

 

 

 

Figure 4.1: Sphere enclosing an electrically small radiating element 

 

L. J. Chu [26] in 1948 determined he fundamental limits on the radiation quality factor 

Q, associated with ESAs in what is now called as Chu’s limit. The quality factor of an 

antenna is defined as, 

ESA in 
free space 

a 



40 
 

                                                 2 ( )Peak energy storedQ
Power lost per period


                                    (4.2.2) 

The Quality factor or Q factor characterizes the bandwidth of a resonator relative to the 

center frequency. If 3dBf and 3dBf represent the 3 dB cutoff frequencies above and 

below the resonant frequency, the fractional bandwidth (FBW) is related to Q factor as, 

                                                             1Q
FBW

                                                     (4.2.3) 

where 
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                                                       (4.2.6) 

Higher Q values lead to lower FBW or narrowband and lower Q values lead to higher 

FBW or broadband. Chu’s limit is the minimum Q value attainable by an ESA has been 

shown to be, 
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3 2
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                                            (4.2.7) 

A more exact result for the limits on Q factor was shown by McLean [27], although still 

referred to as Chu limit is, 
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                                                       3
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                                              (4.2.8) 

If 1ka  , the Chu limit reduces to, 

                                                           3

1
( )chuQ
ka

                                                     (4.2.9) 

These equations are valid for a perfect lossless matching network. Figure 4.2 shows the 

difference between the approximated Chu’s limit and the original Chu limit. 

 

 

Figure 4.2: Q vs. ka for exact and approximated Chu limit 

 

We observe from the plot that for small values of ka (0.2-0.5), the difference between 

the approximated and exact Chu limit is negligible for all practical purposes. As the size 

of the antenna decreases, the Chu limit or the minimum Q value attainable dramatically 
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increases. This causes a decrease in the maximum fractional bandwidth attainable by an 

ESA. The Q factor and FBW will approach the Chu limit only if one efficiently utilizes 

the available volume in designing the ESA.  

 

4.3 Microwave Catheter Antenna 

Transcatheter ablation is a non surgical procedure for localized destruction of cardiac 

tissue involved in generating disturbances of cardiac rhythm. One of the many methods 

available for transcatheter ablation involves the use of Catheter Antenna, a microwave 

antenna system [24]. Because of the operating environment, the Catheter antenna has to 

be extremely small in size. Figure 4.4 shows a catheter antenna described in [24] which 

will be used modified to include a metamaterial coating in later part of the thesis.  

 

 

Figure 4.3: (a) 3D view of the catheter antenna without Teflon coating 
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Figure 4.3: (b) Cross sectional view of the catheter antenna 

 

The Catheter Antenna is rotationally symmetric. This aspect of the antenna will 

be exploited while numerically modeling the antenna using FDTD. Further the 

symmetry in figure 4.3(b) will be used to reduce the computational burden for faster 

analysis. Figure 4.4shows the dimensions of the Catheter Antenna. 

 

Figure 4.4: Cross sectional view of the catheter antenna with dimensions 
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4.4 FDTD Formulation of the Antenna Problem 

The antenna considered in figure 4.4 is symmetric in cylindrical coordinates and is 

exited by a rotationally symmetric source. Therefore the electromagnetic field is 

independent of the cylindrical coordinate . Maxwell equations can be uncoupled into 

two independent sets: one that involves the components , ,r zE H H , the TE field; one 

that involves the components , ,r zH E E , the TM field. Since the excitation for the 

antenna is Transverse Electromagnetic Mode (TEM) which has only , rH E , only the 

rotationally symmetric TM modes are excited [28]. The relevant Maxwell’s equations in 

time domain are given by, 
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Equations (4.4.1a), (4.4.1b) and (4.4.1c) are discretized in space and time using the 

Yee’s FDTD methods as in Chapter II of the thesis. The Maxwell’s equations after 

discretized are, 

      1
1

(2 ) 2( , ) ( , ) ( , ) ( , 1)
(2 ) (2 )

n n o r
z z j j

o r o r

t tE i j E i j r H i j r H i j
t t  

  
     




  
   

   
  (4.4.2a) 

     1
1

(2 ) 2( , ) ( , ) ( , ) ( 1, )
(2 ) (2 )

n n o r
r r j j

o r o r

t tE i j E i j r H i j r H i j
t t  

  
     




  
   

   
   (4.4.2b) 



45 
 

                              
 

 

1( , ) ( , ) ( , 1) ( , )
2

( 1, ) ( , )
2

n n
z z

o r

r z
o r

tH i j H i j E i j E i j
r

t E i j E i j
r

   

 

 
   




  


             (4.4.2c) 

The incident electric field is given by, 
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ln( / )
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 

                                               (4.4.3) 

where g(t) is the Gaussian source and a, b are the inner and outer radii of the coax feed. 

Since we plan to model only half of the antenna structure as shown in figure 4.4, at the 

boundary r = 0, we need to implement the symmetric condition. 
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As 0r  , both the denominator and the numerator tend to zero. Using L’Hospitals rule, 
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At r = 0, H curls around zE . Hence equation (4.4.5) can be written as, 
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To calculate the field components on the rest of the boundary, Circular Liao boundary 

condition [29] is used. The Courant-Friedrichs condition for stability is given by, 

                                                        
2 2

2 2

r zc t
r z
 

 
 

                                              (4.4.7) 

 

4.5 FDTD Simulation of the Catheter Antenna 

To validate the FDTD code, the antenna in [24] is simulated starting from a monopole to 

the one in figure 4.4. The antenna is given a Teflon coating to prevent it from coming in 

contact with human tissue. The Teflon has a permittivity of 2.03. The antenna is placed 

in blood medium with permittivity of 50.3 and a conductivity of 2.0145. The space 

increments ,r z  are set to 0.123 mm in order to have at least 5 cells in the coax cable 

where the source excitation is placed. 

4.5.1 Monopole Antenna 

Figure 4.5(a) shows the monopole antenna along with its dimensions. Figure 4.5(b) 

shows the S11 parameters of the antenna. Figure 4.5(c) shows the Specific absorption 

rate (SAR) profile of antenna. 
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Figure 4.5(a): Monopole Antenna in blood medium along with dimensions 

 

 

 

Figure 4.5(b): S11 for the Monopole Antenna in blood medium 
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Figure 4.5(c): SAR profile for the Monopole Antenna in blood medium 

 

The SAR gives a measure of amount of RF energy absorbed by a lossy medium. 

It is given by, 

                                                             
2ESAR 


                                                 (4.5.1.1) 

The monopole with a length of 10.37 mm immersed in Teflon medium should resonate 

at 5.05 GHz. The resonant frequency of the antenna by FDTD simulation is found to be 

5.39 GHz. The slight shift in the resonant frequency can be attributed to the lossy blood 

medium around the antenna and the discretization of the antenna. The 10 dB bandwidth 

has been found to be 2.454 GHz. The FDTD results match with the published results in 

[24].  
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4.5.2 Monopole Antenna with Terminating Cap 

Figure 4.6(a) shows the monopole antenna along with its dimensions. Figure 4.6(b) 

shows the S11 parameters of the antenna. Figure 4.6(c) shows the Specific absorption 

rate profile of antenna. 

 

 

 Figure 4.6(a): Antenna with termination cap in blood medium along with dimensions 

 

 

Figure 4.6(b): S11 for the antenna with termination cap in blood medium 
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Figure 4.6(c): SAR profile for the antenna with termination cap in blood medium 

 

The monopole with a termination cap resonates at 2.71 GHz. The 10 dB 

bandwidth has been found to be 1.462 GHz. The FDTD results match with the published 

results in [24]. From the SAR profile it is evident that there is a lot of power dissipation 

towards the back end of the antenna. To get rid of this, a sleeve choke is used. 

4.5.3 Monopole Antenna with Terminating Cap and Choke 

Figure 4.7(a) shows the monopole antenna along with the terminating cap and the choke. 

Figure 4.7(b) shows the S11 parameters of the antenna. Figure 4.7(c) shows the Specific 

absorption rate profile of antenna. 
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Figure 4.7(a): Antenna with termination cap and Sleeve choke in blood medium along 
with dimensions 

 

 

 

Figure 4.7(b): S11 for antenna the with termination cap and Sleeve choke in blood 
medium 
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Figure 4.7(c): SAR profile for the antenna with termination cap and Sleeve choke in 
blood medium 

 

 

The monopole with termination cap and sleeve choke resonates at 2.41 GHz. The 

10 dB bandwidth has been found to be 0.82 GHz. The FDTD results match with the 

published results in [24]. From the SAR profile, it is evident that the power dissipation is 

towards the front of the antenna.  

4.5.4 Monopole Antenna with Terminating Cap, Choke and Dielectric 

Figure 4.8(a) shows the monopole antenna along with the terminating cap, the choke and 

a dielectric with a permittivity of 12. Figure 4.8(b) shows the S11 parameters of the 

antenna. Figure 4.8(c) shows the Specific absorption rate profile of antenna. 
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Figure 4.8(a): Antenna with termination cap, Sleeve choke and Dielectric in blood 
medium along with dimensions 

 
 

 

Figure 4.8(b): S11 for the antenna with termination cap, Sleeve choke and dielectric in 
blood medium 
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 Figure 4.8(c): SAR profile for the antenna with termination cap, Sleeve choke and 
dielectric in blood medium 

 

The monopole with a length of 10.5 mm immersed in Teflon medium should 

resonate at 2.38 GHz. The 10 dB bandwidth has been found to be 0.95 GHz. The 

antenna with the dielectric has a wider bandwidth because of better matching between 

the blood medium and the antenna. The FDTD results match with the published results 

in [24].   

 This antenna is immersed in Blood media. Hence Wheelers ESA formulation will 

not be applicable for this antenna. To overcome this, a new antenna with different 

dimensions in air medium is designed. The same FDTD code is used for analysis of the 

structure. 

4.5.5 Modified Catheter Antenna as an ESA in Air Medium 

The previous antenna design is not an electrically small antenna. Figure 4.9(a) shows the 

monopole antenna along with the terminating cap and a in air medium. Figure 4.9(b) 
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shows the S11 parameters of the antenna in both air media for different dielectric 

constants. The choke was found to be having a dominant effect on the antenna 

performance. Hence it was removed to prevent it from dominating over the metamaterial 

coating as the main objective is to study the effects of metamaterial on an ESA. 

 

 

Figure 4.9(a): Antenna that will be modified as an ESA 

 

 

Figure 4.9(b): S11 for the antenna in air media with different dielectric constants 
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The maximum dimension of the antenna is approximately 10.6 mm. The resonant 

frequency of the antenna is around 5 GHz. The value of ka is 0.555 and is therefore an 

ESA according to Wheelers formulation. The minimum Q factor or the Chu limit from 

McLean’s exact equation for this antenna is 7.65. The Input Impedance of the antenna 

with a dielectric constant of 2 is shown in figure 4.10. It is clear from the imaginary part 

of the input impedance that the ESA is highly capacitive in nature. This is also a reason 

for rather poor S11 characteristics of the antenna in figure 4.9(b). 

 

 

Figure 4.10: Real and Imaginary parts of Input Impedance for the ESA 

 

 

 



57 
 

4.6 Summary 

In this chapter, fundamental properties of ESA’s have been detailed. FDTD formulation 

of the Cylindrical Catheter Antenna was developed in section 4.4. The simulated results 

from the FDTD code are in agreement with those in [24]. An ESA is developed from the 

catheter antenna and its Q factor is calculated. The Q factor obtained was found to be 

higher than the Chu limit. 
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CHAPTER V 

METAMATERIAL ANTENNA 

 

 

5.1  Introduction 

ESA suffer from very small radiation resistance and high capacitive reactance. To 

overcome the large impedance mismatch, good matching networks need to be 

implemented. In the era where every inch of real estate costs, this is certainly not an 

optimized solution. Metamaterials with their engineered electromagnetic responses have 

been recently found to be useful in tackling this problem [30-31]. Incorporating 

Metamaterials into ESA systems can provide a good FBW as well as efficiency.  

 This chapter provides a paradigm for achieving an efficient ESA. Part of the 

wrap around dielectric in the antenna in Figure 4.8(a) is replaced with a metamaterial. 

An FDTD code for cylindrical dispersive metamaterial is formulated. It is then used to 

discern the different properties of the metamaterial antenna. Use of Epsilon Negative 

(ENG) metamaterials and Double Negative (DNG) metamaterials is investigated. ESA-

metamaterial system is shown to have a Q factor less than the Chu limit.  

 

5.2 Metamaterial for ESA 

In Chapter IV we showed an ESA design that was highly capacitive in nature. This 

design has a very small radiation resistance while simultaneously having a large 

capacitive reactance. To match such an antenna, a large inductance is required. ENG or 

DNG Metamaterials with negative permittivity are inductive in nature. Negative 
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permittivity leads to negative capacitance which is nothing but inductance. When an 

ESA is placed in a metamaterial medium, they match up to form a LC resonant circuit. 

This leads to a good match with the input source and hence good efficiency.  

 The ESA-metamaterial system is characterized using two different quality 

factors, the transmission line quality factor or QTL [32] and the half power quality factor 

or QVSWR [33]. The QTL is calculated form -10 dB return loss frequency points as, 

                                                             0

10
TL

dB

fQ
f




                                                 (5.2.1) 

The half power quality factor is given by, 
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2
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Q
FBW

                                            (5.2.2) 

where FBW-3dB is the fractional bandwidth calculated from form -3 dB return loss 

frequency points. Both these quality factors will be compared with the Chu limit to 

establish that an ESA-metamaterial system will indeed lead to wider bandwidth and 

much more efficient antenna systems. 

 

5.3 FDTD for Cylindrical Metamaterial Antenna 

5.3.1 Drude Medium 

All Realistic LHMs exhibit dispersive properties [34]. To model the dispersive nature of 

LHMs, permittivity and permeability are expressed as a function of frequency using the 

Drude model. The Drude model is described by,  
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where  is the permittivity at infinite frequency, ep  is the electric plasma frequency 

and e is the electric damping factor related to loss. Likewise,  is the permeability at 

infinite frequency, mp  is the magnetic plasma frequency and m is the magnetic 

damping factor related to loss. The loss terms e and m are specified as a factor of 

corresponding plasma frequency. 

The parameters 1p and 2p are used for coding convenience. They have no 

significance as far as Drude model is concerned. These constants will allow us to model 

all kinds of available materials using the same general FDTD code instead of using 

different code for different materials in the grid. For example if an antenna made of 

different materials is gridded for FDTD coding, we need to use a different set of FDTD 

equations to solve for the fields in different media. To solve this 1p and 2p are 

introduced, which can be toggled between 0 or 1 to solve for the fields.  

For a lossless dielectric, we set  = r , where r is the dielectric constant of the 

material, 1p =1 and ep = e =0. Equation 5.3.1.1(a) reduces to ( )r  =  which 

represents a lossless dielectric. 

For a lossy dielectric Amperes law can be written as,  

                                0 0
0

( )r rH E j E j E
j


    


   

                             (5.3.1.2) 
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Comparing Equation (5.3.1.1(a)) and (5.3.1.2), for a lossy dielectric, we set  = r , 1p

=0, e = 0        and 2
ep = .  

For a perfect electric conductor or a metal, electric and magnetic fields inside the 

conductor are zero. Hence set all the Drude variables to zero. While coding it is ensured 

that the denominators are not set to zero. 

For a metamaterial, we set  =1, ep = (1 ) (2 )rep f  , where the permittivity 

is –ep at a frequency f= rf , 1p =1 and e depends on loss. e =0 for a lossless case. For 

ENG metamaterial implementation only the Drude permittivity is set up but in case of 

DNG metamaterial, both permittivity and permeability are set up. 

In case of a lossy metamaterial, we have both real and imaginary values for 

permittivity and permeability values, whichever is modeled. Figure 5.1 shows the real 

values for permittivity modeled using equation 5.3.1.1(a) for both lossless as well as 

lossy case. The Drude model parameters are set such that for a lossless case, the 

permittivity at 5 Ghz is -9. This is obtained by setting ep = (1 9) (2 5)    and p1 

=1. It can be observed from the plot as loss increases, the permittivity values get lower 

and lower. 
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Figure 5.1: Permittivity values obtained using Drude model 

 

5.3.2 FDTD Modeling 

In Chapter III of the thesis, FDTD implementation of 2D metamaterial structures in 

Cartesian coordinates has already been discussed. FDTD implementation of cylindrical 

metamaterial is no different except that the equations have to be redone. There is no 

need for UPML boundary condition as the metamaterial does not coincide with the 

boundary in our case. The Lorentz media characterization of dispersive metamaterials as 

explained in Chapter II is given by, 
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The Maxwell’s equation in time domain for the antenna structure are given by, 
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They are worked upon in steps as in Chapter II. The final equations obtained for 

implementation of FDTD code are given below.  
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The term E in equation (5.3.2.3(a)) refers to both zE and rE ; D  in equation (5.3.2.3(a)) 

refers to corresponding zD and rD . 
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The iteration procedure can be summed up as in figure 5.1. 

 

Figure 5.2: Iteration sequence for the FDTD code 

 

Figure 5.3 shows the catheter antenna in air medium to be modeled. Cylindrical Liao 

boundary condition explained in Chapter IV is used to determine the field components 

on the boundary. At r = 0, the same technique is applied as in Chapter II. 
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Figure 5.3: 2D view of Antenna to be modeled 

 

5.4 ENG Metamaterial Wraparound Antenna 

ENG or epsilon negative metamaterials are materials which have negative permittivity 

but positive permeability. A cylindrical ENG wraparound acts as an inductive medium. 

As discussed earlier, ESA are capacitive in nature. When an ESA radiates in the 

presence of a properly engineered ENG wraparound, an LC resonator is formed. The 

resonance frequency depends on the permittivity and the thickness of the ENG 

wraparound.  

Figure 5.4 shows the return loss in dB for varying thickness of the lossless ENG 

wraparound. The permittivity variation of the ENG wraparound is shown in Figure 5.1 

While varying the thickness of the ENG wraparound, the DPS dielectric width is also 

varied in order to completely fill up the free space in the ESA. 
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Figure 5.4: Return loss for an ESA with varying thickness of a lossless ENG 

 

Table 5.1 summarizes the results obtained by using an ENG wraparound with 

varying thickness. 

 

Table 5.1: Results obtained for an ENG wraparound by varying thickness 

Thickness Resonant 
Frequency 

Ka Qchu FBW QTL QVSWR 

0.8 mm 3.22 Ghz 0.3574 24.697 13.98% 7.155 - 

0.75 mm 3.481 Ghz 0.3864 19.921 13.72% 7.2977 - 

0.7 mm 3.666 Ghz 0.4069 17.297 12.79% 7.8166 5.324 

0.65 mm 3.755 Ghz 0.4168 16.208 12.38% 8.0753 5.518 

0.6 mm 3.777 Ghz 0.4192 15.948 12.24% 8.19 5.202 
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 From Table 5.1, all the QTL and QVSWR values of the ENG-ESA system are less 

than the Chu limit. It is clear from the table that as the thickness of the ENG wraparound 

decreases, the QTL values increases. QVSWR does not follow the same trend as the QTL 

values but compares well with QTL values obtained. Decrease in ENG wraparound 

thickness also leads to an increase in the resonant frequency. This can be interpreted as a 

decrease in the amount of inductance added by the ENG wraparound to the ESA system. 

 

5.5 DNG Metamaterial Wraparound Antenna 

DNG or Double negative metamaterials are materials which have negative values of 

both permittivity and permeability. A cylindrical DNG wraparound adds an inductance 

as well capacitance to the ESA system. The negative value of permittivity acts as an 

inductance and the negative value of permeability acts as a capacitance. The resonance 

frequency depends on the permittivity, permeability and the thickness of the DNG 

wraparound.  

The permittivity and permeability variation of the DNG wraparound is shown in 

Figure 5.5. Figure 5.6 shows the return loss in dB for varying thickness of the lossless 

DNG wraparound. While varying the thickness of the DNG wraparound, the DPS 

dielectric width is also varied in order to completely fill up the free space in the ESA. 
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Figure 5.5: Permeability and Permittivity variation for a DNG metamaterial 

 

 

Figure 5.6: Return loss for an ESA with varying thickness of a lossless DNG 

metamaterial 
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Table 5.2 summarizes the results obtained by using a DNG wraparound with 

varying thickness. 

 

Table 5.2: Results obtained for an DNG wraparound by varying thickness 

Thickness Resonant 
Frequency 

Ka Qchu FBW QTL QVSWR 

0.75 mm 3.745 Ghz 0.415 16.32 2.48% 40.269 - 

0.7 mm 3.916 Ghz 0.434 14.475 8.7% 11.484 5.688 

0.65 mm 3.976 Ghz 0.441 13.89 8.82% 11.334 6.68 

0.6 mm 3.993 Ghz 0.443 13.74 8.48% 11.767 6.95 

 

 From Table 5.2, all the QTL and QVSWR values of the ENG-ESA system are less 

than the Chu limit except for the case with a thickness of 0.75 mm. This can be 

attributed to improper DNG metamaterial engineering. It is clear from the table that as 

the thickness of the DNG wraparound decreases, the QTL values increases. QVSWR 

follows the same trend as the QTL values and compares well with QTL values obtained. 

Decrease in DNG wraparound thickness also leads to an increase in the resonant 

frequency. This can be interpreted as a decrease in the amount of inductance added by 

the ENG wraparound to the ESA system.  

 

5.6  Summary 

In this chapter, FDTD formulation of the Metamaterial Catheter Antenna was developed. 

The simulated results from the FDTD code are presented in section 5.3 and 5.4. The 
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ESA is used in conjunction with both ENG and DNG wraparounds and the Q factor is 

calculated in both the cases. The Q factors obtained are found to be significantly lower 

than the Chu limits thus validating the claim that an ESA-metamaterial syetm when 

properly engineered can provide much higher bandwidths than theoretically permissible 

limits.  
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CHAPTER VI 

CONCLUSIONS 

 

 

6.1  Summary 

This thesis presented a new paradigm for ESA by combining a coax fed modified 

catheter antenna and a cylindrical metamaterial. It was shown that a properly engineered 

configuration of metamaterial and ESA is capable of much lower resonant frequency 

when compared with its free space counterpart. The inductive nature of metamaterials 

with negative permittivity compensates the highly capacitive ESA. This combination 

forms a LC tank to provide a good resonance. This thesis included metamaterials with 

dispersion characteristics as well as loss modeled using a Drude model. 

 An ADE FDTD code was developed to model the antenna and discern its 

characteristics. The metamaterials used were both DNG and ENG in nature. For the 

same dispersion characteristics used, the ENG metamaterials were found to have a lower 

resonant frequency when compared with its DNG characteristics. The metamaterial ESA 

system when engineered properly was found to have higher bandwidths and lower 

quality factors than the Chu limit without any degradation of radiation patterns of the 

constituent antenna.  
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