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ABSTRACT

The Development of Dynamic Operational Risk Assessment in Oil/Gas and

Chemical Industries. (May 2010)

Xiaole Yang, B.S., Tianjin University of Science & Technology

Chair of Advisory Committee: Dr. Mahboobul Mannan

In oil/gas and chemical industries, dynamics is one of the most essential charac-

teristics of any process. Time-dependent response is involved in most steps of both

the physical/engineering processes and the equipment performance. The conventional

Quantitative Risk Assessment (QRA) is unable to address the time dependent effect

in such dynamic processes. In this dissertation, a methodology of Dynamic Opera-

tional Risk Assessment (DORA) is developed for operational risk analysis in oil/gas

and chemical industries. Given the assumption that the component performance state

determines the value of parameters in process dynamics equations, the DORA prob-

abilistic modeling integrates stochastic modeling and process dynamics modeling to

evaluate operational risk. The stochastic system-state trajectory is modeled based on

the abnormal behavior or failure of the components. For each of the possible system-

state trajectories, a process dynamics evaluation is carried out to check whether

process variables, e.g., level, flow rate, temperature, pressure, or chemical concen-

tration, remain in their desirable regions. Monte Carlo simulations are performed to

calculate the probability of process variable exceeding the safety boundaries. Compo-

nent testing/inspection intervals and repair time are critical parameters to define the

system-state configuration; and play an important role for evaluating the probability

of operational failure. Sensitivity analysis is suggested to assist selecting the DORA
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probabilistic modeling inputs. In this study, probabilistic approach to characterize

uncertainty associated with QRA is proposed to analyze data and experiment results

in order to enhance the understanding of uncertainty and improve the accuracy of

the risk estimation. Different scenarios on an oil/gas separation system were used

to demonstrate the application of DORA method, and approaches are proposed for

sensitivity and uncertainty analysis. Case study on a knockout drum in the distilla-

tion unit of a refinery process shows that the epistemic uncertainty associated with

the risk estimation is reduced through Bayesian updating of the generic reliability

information using plant specific real time testing or reliability data. Case study on

an oil/gas separator component inspection interval optimization illustrates the cost-

benefit analysis in DORA framework and how DORA probabilistic modeling can be

used as a tool for decision making. DORA not only provides a framework to evalu-

ate the dynamic operational risk in oil/gas and chemical industries, but also guides

the process design and optimization of the critical parameters such as component

inspection intervals.
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CHAPTER I

INTRODUCTION

A. Background

Offshore oil/gas operations and chemical process activities receive a great deal of

public awareness and concern regarding their potential hazardous impact on people,

environment and society. The offshore plants typically involve a number of stages of

oil, gas and water separation, gas compression, and dehydration. Process operation,

together with transportation and drilling operation, are the most hazardous activities

on an offshore oil and gas platform[1]. A small mishap in the process operation might

escalate to a catastrophic event due to the limited space, compact geometry of the

process area, less ventilation, and difficult escape routes. The risk associated with

a typical offshore installation may be categorized into: process risk, dropped object

risk, structural failure risk, helicopter accident risk, and ship collision risk. Process

risk, which is defined as the risk due to fire and explosion in the process facility,

contributes more than 50% of the total risk of the offshore installation[2]. In chemical

plants, processes involve activities including mixing, separation, high pressure and/or

high temperature operation, reactive chemical reaction, etc. Mechanical hazards can

cause worker injuries from tripping, falling, or moving equipment. Fire and explosion

hazards, as well as reactivity hazards and toxic hazards are also significant in chemical

plants.

Case histories show that incidents in oil/gas and chemical industries usually cause

significant casualties and unbearable economic loss. For example, the Flixborough

disaster, which occurred in a chemical plant that produced caprolactam, a precursor

The journal model is IEEE Transactions on Automatic Control.



2

chemical used in the manufacture of nylon, in Flixborough, England, on June 1, 1974,

killed 28 people and seriously injured 36[3]. The Bhopal disaster[3] took place at a

Union Carbide pesticide plant in Bhopal, India, on December 3, 1984. The incident

released methyl isocyanate (MIC) gas, exposing more than 500,000 people to MIC

and other chemicals. It killed at least 3,800 people and caused significant morbidity

and premature death for many thousands more. An explosion and resulting fire in

the Piper Alpha disaster[4] destroyed the oil production platform on July 6, 1988,

killing 167 people, and the total insured loss was $3.4 billion. A massive explosion in

a high-density polyethylene plant in Pasadena, Texas, on October 23, 1989, killed 23

people, injured 314, and resulted in over $715 million capital losses[3]. In the recent

past years, several offshore and refinery disasters have occurred. On March 23, 2005,

a series of explosions occurred during the startup of the hydrocarbon isomerization

unit at BP Texas City refinery killing 15 people, injuring 180 others and resulting in

$1.5 billion losses[5]. On July 26, 2005, a fire at India’s largest oil and gas platform

Mumbai High North Platform, completely destroyed the platform and caused 22

fatalities[6].

All these accidents had a significant impact on public perceptions and the chem-

ical engineering profession. Concerns to add new emphasis and standards in the

practice of safety have been translated into federal or state regulations. For exam-

ple, the Occupational Safety and Health Administration’s (OSHA) Process Safety

Management (PSM) standard, the Environmental Protection Agency’s (EPA) Risk

Management Program (RMP), Instrumentation, Systems, and Automation Society’s

(ISA) Safety Instrumented System (SIS) related standards: ISA-S84.01 and Interna-

tional Electrotechnical Commission’s (IEC) IEC61508, and other federal regulations

are dedicated to process safety[3].

The investigation on most of the major accidents shows that those tragedies
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could be avoided with effective risk analysis and safety management programs. Risk

assessment approaches need to be consistently improved for better risk analysis and

safety management. Development of Dynamic Operational Risk Assessment (DORA)

methodology for oil/gas and chemical industries is the subject matter of this doctoral

dissertation. Principal problems, research objectives, research contributions of the

present work and the organization of the dissertation are presented in this Chapter

together with the necessary introductory materials. In Section B, a brief description

of the principal problem is presented. The dynamic concerns in Quantitative Risk

Assessment (QRA) define the objectives of this work, which are presented in Section

C. In the subsequent sections, the contributions of the work and the organization of

the dissertation are described.

B. Problem Statement

The oil/gas and chemical process systems exhibit complicated and dynamic be-

havior. Various time-dependent effects such as season changes, aging of process equip-

ment, physical processes, stochastic processes, operator response time, etc. are in-

volved in such dynamic processes. With the accumulated experience of QRA and the

progressive awareness of dynamic characteristics of reliability and safety, conventional

approaches that are static reveal their weakness in nature when applied to dynamic

processes[7, 8]. For instance, fault tree/event tree analysis (FTA/ETA)[9], initially

applied in nuclear power plants, collects a set of logical expressions to represent static

relationship between a component output event and component failure or another

component output event in the process system. FTA is a good implementation tool

using logic to identify output deviations due to input deviations or internal failures,

but overlooks the system dynamic response to time, process variables, and human
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behavior[10]. FTA/ETA methods often used on a static basis consider only the ma-

jor incidents or accidents but ignore minor incidents, abnormal events or near misses.

Similarly, the conventional reliability assessment without profound understanding of

the dynamics of both physical process and system performance is insufficient to help

understand the operational risk that may trigger catastrophe when the critical process

variables exceed their safety boundaries without being detected. Those conventional

risk and reliability assessment methods fail to capture the variation of operational

risks as time-dependent deviations or changes in the process take place.

In oil/gas and chemical processes, operation conditions, such as separation, high-

pressure compression, storage, desulphurization, and blending, are vulnerable to es-

calate small mishaps into catastrophe. Abnormal events that are called accident pre-

cursors may result in incidents and near misses during the life of process. Protection

systems are designed to monitor the process variables and take appropriate action

if any or a combination of them exceed a predetermined desirable region. However,

those protection systems may provide false or misleading information. The failure

of this class of protection system becomes significant if it coincides with a deviation

of the monitored parameters. For example, investigation on the BP Texas City in-

cident found that the level transmitter indicated the level in the spliting tower was

declining gradually but the level was actually rising during the startup. The level

indicator read 7.9 feet in the tower; however, the tower level was actually 158 feet[5].

It is not experimentally practical to replicate such catastrophic events to evaluate

the operational incident probability. Therefore, a new simulation tool for dynamic

operational risk assessment is needed to assess the probability of operational incidents

that potentially lead to a catastrophe.
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C. Research Objective

The main objective is to develop a practical and systematic risk assessment

method starting from conceptual design to mathematical modeling then to optimal

resource allocation solutions. This methodology will improve understanding of the

operational risk associated with dynamic processes in oil/gas and chemical industries.

The objective is achieved through the following phases:

Phase I:

• Design the conceptual framework of DORA that can be generically applied to

any dynamic process in oil/gas and chemical industries.

• Develop mathematical models for the dynamic risk assessment for oil/gas and

chemical processes. Those models should be able to characterize the process

dynamics governed by laws of physics and engineering and also the dynamics

driven by the equipment performance and deterioration.

Phase II:

• Design algorithms to solve the mathematical models integrating discrete event

simulation, process dynamics simulation and Monte Carlo simulation.

• Implement the algorithms and subsequent programming to a practical process.

Phase III:

• Establish a probabilistic approach to evaluate the quality of a QRA study. This

approach should be able to characterize the uncertainty associated with risk

analysis.
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• Develop uncertainty reduction strategies to improve QRA study.

Phase IV:

• Optimize the resource allocation for risk reduction in the case study used in

Phase II.

D. Research Contributions

Hazard identification, hazard assessment and risk estimation are key aspects in

oil/gas and chemical process plant design and operation. One of the most important

contributions of this research is to introduce a new simulation-base dynamic opera-

tional risk assessment approach to oil/gas and chemical industries and illustrated by

case studies. Different from the conventional QRA approaches and other dynamic

risk assessment tools, this research provides industries with:

• A systematic approach, DORA, for operational risk estimation.

• A prediction tool targeting the component/system abnormal events, also re-

ferred to as accident precursors. Accident precursors are considered so that this

tool is able to prevent a failure from actually occurring. DORA methodology is

applicable to scenarios with either system shutdown due to component failure

or system remaining in process in the presence of component abnormal events.

• Monitoring on the simultaneous failure/abnormal events of multiple compo-

nents using the stochastic simulation in DORA framework. The system-state

trajectory is simulated upon Monte Carlo sampling from the distribution of

stochastic variables.

• Characterization of the system state trajectory considering critical parameters

in reliability and safety engineering, such as component inspection interval,
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maintenance time, testing time, repair time, etc. Component states are not

limited to only up and down to study the system stochastic behavior. Test-

ing/inspection intervals and component repair times are important parameters

to define the component states. It provides insights for testing/inspection in-

terval optimization.

In the design phase of an oil/gas or chemical process or plant, DORA aids opera-

tional hazard identification and hazard assessment. Operational failure scenarios will

be identified in order to recommend improvement in design for risk reduction. Mean-

while, DORA provides a risk measurement using a standard computational space

storage and time consumption to assist evaluating the competing control system or

safety system designs. In operation phase, implementing resource optimization pro-

posed in DORA assists decision making on cost-effective inspection or test scheduling.

This framework is implemented as an ongoing model to guide implementation and

continual updating of safety program components such as risk-based and cost-effective

monitoring, testing, maintenance, reliability assessment, component replacement tim-

ing, shutdown times, and timing of other operational decisions including selection of

minimal reliability criteria during maintenance shutdowns.

E. Organization of This Dissertation

Following this introduction Chapter, three independent Chapters will explain the

Dynamic Operational Risk Assessment (DORA) methodology, uncertainty character-

ization and reduction in QRA, and component inspection interval optimization. In

Chapter II the author explains the development of DORA framework, including the

steps of Scope Identification and System Description, Hazard Identification, Scenario

Identification, Component Failure Mode Identification, DORA Probabilistic Modeling,
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Incident Consequence Modeling, Risk Determination, Modification on the Design or

Operation, Cost-Benefit Analysis, and Build and/or Operate the System. The focus

of the quantitative analysis is the development of DORA Probabilistic Modeling and

the uncertainty characterization in Incident Consequence Modeling. Chapter III ex-

plores different types of uncertainty associated with a QRA, how to characterize the

uncertainty in a fault tree analysis, and how to reduce epistemic uncertainty through

Bayesian updating the reliability information of a system using real life reliability

data or equipment testing data. Chapter IV extends the case study in Chapter II

and optimizes the component inspection interval using multiobjective optimization

approaches. Different multiobjective optimization techniques are introduced and two

of them are applied in the case study. Chapters II through IV have their own intro-

duction, literature review, body, and summary. The information in each chapter is

relative but self-contained, Chapter V provides an overall summary of the conclusions

and recommendations, followed by the Section of References. Other supplementary

data are summarized in the Appendix.
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CHAPTER II

DORA METHODOLOGY∗

A. Introduction

A methodology of Dynamic Operational Risk Assessment (DORA) is proposed

for operational risk analysis in oil/gas and chemical industries. In this Chapter,

DORA methodology will be introduced comprehensively starting from the conceptual

framework design to mathematical modeling and to decision making based on cost-

benefit analysis. The probabilistic modeling part of DORA integrates stochastic

modeling and process dynamics modeling to evaluate operational incident probability.

The stochastic system-state trajectory is modeled according to the abnormal behavior

or failure of each component in the system. For each of the possible system-state

trajectories, a process dynamics evaluation is carried out to check whether process

variables, e.g., level, flow rate, temperature, pressure, or chemical concentration,

remain in their desirable regions. DORA methodology not only provides a framework

to evaluate the dynamic operational risk in oil/gas and chemical industries, but also

guides the process design and further optimization. Chapter II explores the literature

on QRA in oil/gas and chemical industries as well as research in the dynamic risk

assessment field, and explains the DORA framework development in detail. The

main objective of this Chapter is to provide a general framework of DORA and

the development of DORA probabilistic modeling. A case study on level control

in an oil/gas separator will be used to illustrate the incident probabilistic modeling.

∗Part of this chapter is reprinted with permission from ”An Uncertainty and Sen-
sitivity Analysis of Dynamic Operational Risk Assessment Model: A Case Study.” by
Xiaole Yang and M. Sam Mannan, 2010. Journal of Loss Prevention in the Process
Industries, vol. 23, no. 2, pp. 300-307, Copyright[2010] by Elsevier.
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Sensitivity analysis will be performed to evaluate the importance of selection of model

input distribution type in the DORA case study.

B. Literature Review

Risk is a measure of the potential loss, such as loss of human life, adverse health

effects, loss of property, environmental damage, and economic loss, etc, due to nat-

ural or human activities[11]. Risk analysis is the process that involves a series of

activities including characterizing, managing, and informing others about the exis-

tence, nature, magnitude, prevalence, contributing factors, and uncertainties of the

potential losses[11]. Risk analysis has three core elements: risk assessment, risk man-

agement, and risk communication[12]. In risk assessment, three basic questions posed

by Kaplan and Garrick include[13]:

• What can go wrong?

• How likely is it?

• What are the losses (consequences)?

Both qualitative and quantitative techniques can be used to address those ques-

tions. Quantitative Risk Assessment (QRA) is preferred when adequate data and

other evidences exist to estimate the probability and magnitude of the losses, and is

required early in the project life cycle for major risk contributors identification and

assessment[14].

QRA has been widely used in oil/gas and chemical industries; it dates back to

the 1970s. The US ’Reactor Safety Study’[9], a project conducted for research and

development purpose in 1975, investigated the availability of analysis methodologies

and sufficient sophistication and robustness of data. Classical QRA approach such
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as Fault Tree Analysis(FTA) studied in this research is still widely used nowadays.

FTA was first developed in 1961 at Bell Telephone Laboratories for a missile launch

control reliability study during the Polaris project. It was extensively used in relia-

bility studies in the nuclear and aerospace industries, and also adapted to chemical

process industries. In 1981, the Norwegian Petroleum Directorate(NPD) issued their

guidelines for safety evaluation of platform conceptual design[15]. QRA is required

in these guidelines for all new offshore installations in the conceptual design phase

in Norway. An efficient methodology was established and subsequently extended to

application on existing installations. Ten years later, these NPD guidelines were re-

placed by regulations for the use and execution of risk analysis in 1991[16]. QRA

became an official requirement for offshore after the Piper Alpha platform disaster

that took place in 1988. Lord Cullen in his report recommended QRA as a technique

to provide a structured, objective and quantitative approach to understanding risks

and of the means to control them[17].

More extensive studies have also emerged since 1992 UK Safety Case Legislation

required the use of offshore risk analysis in industry in the UK to be a part of the

safety cases for existing and new installations. Vinnem[18] summarized the devel-

opment of QRA in the offshore oil and gas industry for the last 20 years, since the

research activities in the North Sea. Crawley and Grant[19] proposed a screening

tool for offshore risk assessment that permits the risk assessment of design options

in a methodical, consistent and auditable manner. The goal of this tool is to reduce

front-end design costs and target design efforts in a cost-effective and safety-oriented

manner. The application of QRA in design on modern offshore platform was discussed

by Falck et al.[20]. Work methodology, selection of tools and data, and organization of

QRA with other activities were addressed in this study. Rettedal et al.[21] proposed

a method integrating QRA and SRA(structural reliability analysis) in a Bayesian
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framework for risk measurement in marine operation. Two examples show that the

integration of SRA with ’fully Bayesian approach’ is better than the integration with

’classical Bayesian approach’. QRA models for oil tankers were developed by Cross

and Ballesio[22]. QRA is used in this study as a tool to evaluate competing designs,

the relative benefits of redundancy, and the impact of equipment unavailability during

operations. QRA study for loading and uploading facilities in marine hydrocarbon

terminals sited in ports was published by Ronza et al.[23]. A number of studies on

consequence analysis for offshore and chemical processes have been published. De

León and Ortega presented an indirect losses calculation for an offshore oil com-

plex in Mexico[24]. Explosion recurrence modeling has been studied by Yasseri and

Prager[25]. A revised fire consequence model for offshore was developed by Pula et

al.[26].

The review by Siu regarding the research on reliability and safety assessment of

dynamic process systems is an important summary of the work already performed

in this field of study[27]. The first Dynamic Probabilistic Risk Assessment (DPRA)

approach was DYLAM, proposed by Amendola[28] to study the likelihood of accident

sequences in a nuclear reactor. The DYLAM method couples the probabilistic and

physical behavior of a system for a reliability analysis. Numerical simulation is con-

ducted to study the physical system where the components are modeled in different

working states: nominal, failed on, failed off, stuck, etc. DYLAM is designed to fol-

low all the paths resulting from different component working state transitions and to

drive the corresponding physical process simulation. The probability of occurrence

of a certain top event is obtained by adding the probability of the corresponding se-

quences. The applications of DYLAM, DYLAM-3, and DYLAM-TRETA have been

published[29, 30, 31, 32, 33].
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Upgrades in the conventional event tree analysis for dynamics concern have re-

sulted in two alternate groups of methods: Continuous Dynamic Event Tree (C-

DET)[34] and Discrete Dynamic Event Tree (D-DET)[35]. Which method is used

is dependent on how the branching times are selected. Monte Carlo sampling from

the distribution of stochastic variables is the basis for event time selection in the

C-DET approach, whereas branching time selection in the D-DET approach follows

a set of rules, such as a discrete approximation of the corresponding C-DET[36].

Computer code, MSAS (Monte Carlo Simulation for Accident Sequences)[37], is de-

signed to implement C-DET; and codes DYLAM[28], DETAM[38], as well as ADS[36],

are designed for D-DET. In some of the approaches above, Monte Carlo techniques

have been applied as an important tool in reliability assessment for dynamic pro-

cess systems. A simulation-based approach proposed by Deoss [39] uses Monte Carlo

techniques for introducing failures in time. A general theory to describe the determin-

istic and stochastic nature of incident events proposed by Smidts and Devooght[40]

employs Monte Carlo techniques to study a fast reactor transit. A Monte Carlo dy-

namic approach to reliability was proposed by Marseguerra and Zio[41] and compared

to classic static analysis.

Markov theory[42] is applicable to describe the stochastic behavior of a chemical

process if it has Markov property:

• The system can be specified at any time by defining its process state at the

time being; the system can be in any of a finite number of states.

• The conditional distribution of any future state given the past states and the

present state, is independent of the past states and only depends on the present

state.

• The individual Markov transition diagrams are mutually exclusive.
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• Time at the transition from one state to another is independent and an expo-

nentially distributed random variable. In a semi-Markov process, the restriction

of exponential distribution type is removed.

• Transition probability from the instant state to itself is zero.

Let Xn ∈ ℜ denote a finite number of possible instant states of the process.

When Xn = i, it says the component is the process in state i at time n. At the state

of i, the probability of the process will next be in state j, Pij is given by:

Pij = P {Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X1 = i1, X0 = i0} (2.1)

for all states i0, i1,. . . , in−1, i, j and all n ≥ 0. This process is known as Markov chain.

For a Markov chain, given the past states and the present state, the future states are

only dependent on the present state, but independent of the past states, regardless of

the whole state evolution process. An important assumption of its application is that

the time at the transition from one state to another is an exponentially distributed

random variable. Semi-Markov process is a generalization of the Markov and renewal

process, which is not restricted to exponential distribution on the sojourn time. The

evolution of the semi-Markovian process in time is an increasing sequence of random

variables:

0 = T0 ≤ T1 ≤ T2 ≤ . . . ≤ Tn ≤ . . . (2.2)

with value in [0,∞) and this random variable Tn is the time that the nth transit

occurs when n ≥ 1. So if Xn = j, Tn+1 − Tn is the random length of the episode in

state j. The state (Xn, Tn) has the semi-Markov property if
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P [Xn+1 = j, Tn+1 − Tn ≤ t| (Xk, Tk, k = 0, 1, . . . , n)] (2.3)

= P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i] (2.4)

for all n = 0, 1, 2, . . ., and t ≥ 0.

Furthermore, the right side of equation 2.4 can be written in terms of the distri-

bution function of the episode time Fij (x):

P [Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i] = pijFij (x) (2.5)

where pij = P [Xn+1 = j|Xn = i].

Unlike the forward Kolmogorov differential equations in continuous time Markov

jump processes, Markov renewal integral equations play a fundamental role in semi-

Markov process analysis. Markov renewal equation is defined as:

Pij (t) = Dij (t)
∑
k ̸=j

∫ t

0

Qik (s)Pkj (t− s) ds (2.6)

where Pij is an unknown matrix-valued function, and Dij is a known matrix-value

function. The process enters state k at some point s ∈ (0, t] before entering state j.

This equation can be written in the following form by using convolution ∗:

P = D +Q ∗ P (2.7)

Blin et al.[43] discussed the use of Markov processes for reliability problems. Pa-

pazoglou presented the elements of Markovian reliability analysis [44] and discussed

the need of Markovian reliability analysis[8]. Aldemir[45] proposed a computer as-

sisted Markov failure modeling for process control systems with control loops and

continuous state dynamic variables. Markov models were used to describe the proba-
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bilistic evolution of the controlled variables in discrete time and discretized controlled

variable state space in a data base oriented method for closed loop control systems

by Hassan and Aldemir[46]. A mathematical formulation of probabilistic dynamics

was adapted to dynamic process analysis[47]. The mixed probabilistic and deter-

ministic dynamics formulation involves process variables, semi-Markovian process of

the system transition, and human error modeling. Papazoglou and Gyftopoulos ap-

plied Markovian reliability analysis on a shutdown system of the clinch river breeder

reactor[48]. Other approximate application of the Markovian method can be found

in several publications[49, 50, 51].

C. DORA Framework

The conceptual framework of DORA is shown in Figure 1. The detailed approach

of each step and the algorithm associated if any will be discussed in rest of the section.

1. Scope Identification and System Description

Scope Identification and System Description plays an important role in DORA

as a foundation and starting point for further hazard identification and mathematical

model development. The scope of a DORA project has to be defined for the study

to be better managed, controlled, verified, and communicated to the stakeholders

or customers. According to the demand of the stakeholders/customers, the analysis

scope varies from a small scale of system, for instance a liquid storage tank, to a

middle size of system, say, a cracker unit, to a large scale of system (perhaps the whole

refinery plant) and so forth. Regardless of the size of the study scope, the system will

be broken down into several subsystems, further components. Each component or a

group of components within the same subsystem has its own fashion of failure mode.
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Fig. 1. DORA methodology scheme.
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Fig. 2. A liquid storage tank.

For example, a liquid storage tank as shown in Figure 2[52] can be separated into

two components as pump system and valve. The distribution of failure probability of

this storage tank system can be used as a subsystem input when the study scope is

enlarged.

2. Hazard Identification

Generally, hazard identification by itself can be performed at any stage dur-

ing the initial design or ongoing operation of a process. However, it is required to

be performed before the mathematical modeling for probabilistic safety analysis in

the DORA framework. The DORA mathematical modeling is scenario and failure

mode specific. And Hazard Identification is the step directing to the discovery of
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the scenario and component failure mode. Therefore, Hazard Identification and the

subsequent Scenario Identification and Component Failure Mode Identification steps

are necessary in the early stage of the operational risk assessment in a DORA study.

The hazard identification methods for DORA are adapted from general hazard iden-

tification.

• Hazards Checklists

A hazards checklist is simply a list of all the possible problems to be checked.

This list reminds the operator, reviewer, or risk analyst of the potential haz-

ardous areas. Checklists are suggested to be applied only during the preliminary

stages of hazard identification and should not be used as a replacement for a

more complete hazard identification procedure. A typical process safety check-

list might contain the following items[53]:

– Consequences of exposure to adjacent operations considered?

– Special fume or dust hoods required?

– Process laboratory checked for runaway explosive conditions?

– Provisions for protection from explosions?

– Hazardous reactions possible due to mistakes or contaminations?

– Provisions for rapid disposal of reactants in an emergency?

– Failure of mechanical equipment possible cause of hazards?

– Hazards possible from gradual or sudden blockages in piping or equipment?
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• Hazards Surveys

A hazard survey can be one of the two popular forms: the Dow Fire and Ex-

plosion Index (F&EI)[54] and the Dow-Chemical Exposure Index (CEI)[55]. It

also could be simple as an inventory of hazardous materials in a facility. F&EI

and CEI are two formal systematic approaches using a rating form to provide

a relative ranking of the hazard. The steps and application of F&EI and CEI

forms can be found in AIChE’s publications[54, 55]. Hazards survey approach

is suitable for hazard identification associated with equipment design, layout,

material storage, etc., but improper for operation or upset conditions.

• Hazard and Operability Studies

A Hazard and Operability (HAZOP) study is a formal procedure of hazard

identification in a chemical process facility. A multi-disciplinary HAZOP team is

required to be led by a faciliator who is experienced with the HAZOP procedure

and the chemical process under review. It is a qualitative technique based on

guide-words. The HAZOP procedure includes the following steps[56, 3]:

1. Break a detailed flow sheet into a number of process units. Select one for

study.

2. Identify a study node.

3. Describe the design intent of the study node.

4. Choose a process parameter, e.g., temperature, pressure, pH, level, flow,

viscosity, and so forth.

5. Apply a guide word to the process parameter to suggest possible deviations.

6. Determine the possible causes and note any protective systems if the de-

viation is applicable.
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7. Evaluate the consequences of the deviation if any.

8. Recommend action.

9. Record information.

10. Repeat steps 5 through 9 until all applicable guide words have been applied

to the chosen process parameter.

11. Repeat steps 4 through 10 until all applicable process parameters have

been considered for the predetermined study node.

12. Repeat steps 2 through 11 until all study nodes have been considered for

the given section and proceed to the next one on the flow sheet.

• Safety Reviews

A safety review is used to identify safety problems in laboratory and process

areas. Solutions are then developed in the review for significant improvement.

Usually, a formal safety review is for new processes, substantial changes in

existing processes, and processes that need an updated review. However, an

informal safety review is for small changes to existing processes and small bench

scale or laboratory processes.

• What-If

This is a structured brainstorming method of determining what can go wrong

in an operation process by asking questions starting from ’what-if. . . ’. Those

questions could be relative to human errors, process upsets, and equipment

failures. The errors and failures considered can be in the situation of normal

operations, under construction, during maintenance activities, etc.
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3. Scenario Identification

There could be several scenarios that lead to the same consequence in a process.

For example, for fire hazard in a fuel storage tank system, multiple scenarios might be

identified as the direct causes coincided with an ignition source: overflow of the storage

tank, leakage at the tank bottom, leakage at piping, etc. The process dynamics

modeling and incident consequence analysis are scenario specific. In each scenario,

a unique dynamics model is developed to characterize the physical features of the

process. Probabilities of hazardous scenarios are the outputs of DORA Probabilistic

Modeling that will be discussed in subsection 6.

4. Component Failure Mode Identification

It is important to identify the component failure mode in a DORA study. The

reasons are:

Firstly, any scenario identified in the third step has resulted from certain compo-

nent failures or abnormal events. In this study, we will use the term ’failure mode’ for

both actual equipment failure mode and abnormal event mode. An explicit DORA

study is dependent on identifying all the possible hazards, scenarios and component

failure mode combinations. There are usually multiple components in the same sys-

tem. Different component failure mode combinations could lead to the same scenario.

The relationship among Scope Identification and System Description, Hazard Identi-

fication, Scenario Identification, and Component Failure Mode Identification is shown

in Figure 3. For any one of the a hazards identified, there are b scenarios needing to

be analyzed. In each of the b scenarios, there could be c possible component failure

mode combinations driving the scenario. Therefore, in the system under review, there
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Fig. 3. The relationship among Scope Identification and System Description, Hazard

Identification, Scenario Identification, and Component Failure Mode Identifi-

cation.

will be total number of U system performance modelings and the associated DORA

probabilistic modelings required:

U = c ∗ b ∗ a (2.8)

Secondly, this step is the tunnel between the previous qualitative steps and the

following quantitative assessment steps. The reliability data needed for further sys-

tem performance analysis is failure mode specific. For the same piece of equipment,

reliability data for different failure modes are totally different. The component failure

mode identification will determine what component reliability data to be used as the

input of the quantitative analysis steps(Figure 4).

5. DORA Probabilistic Modeling

DORA probabilistic modeling integrates process dynamics modeling and stochas-

tic modeling to analyze the behavior of process variables in the presence of component

failure/abnormal event. The evolution of incidental sequences in a process system is a
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Fig. 4. The connection between qualitative steps and quantitative steps in a DORA

study through Component Failure Mode Identification.
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combination of deterministic and stochastic events. The physical behavior of a process

is a set of deterministic events; and the system component performance determines

the stochastic events. The linkage between the two is that the stochastic system-state

trajectory is the driven force of the process physical variable trajectory. In this subsec-

tion, attention is confined to developing a systematic DORA probabilistic modeling

for computing the probability of process variables exceeding the operational safety

boundaries using considerable computational space storage and time consumption.

a. System-state Trajectory Modeling

The system-state trajectory modeling is designed to model the system perfor-

mance. Discrete event simulation is the foundation of developing the system-state

trajectory modeling. In discrete-event simulation, a chronological sequence of events

represent the operation of a system in which each event occurs at an instant in time

and marks a change of system-state[57]. Terminologies are stated as the following for

the discrete event simulation:

Component : Any equipment, instrument, hardware or software, etc., composing

the system that is under assessment. For example, a pump, a valve, a vessel, an

alarm, etc. They are the smallest physical units in the DORA modeling construction.

Component-state: Each of the components can be specified at any time by defin-

ing its performance behavior state at that time. A component can be in any of a finite

number of states. In this study, a component visits one of the three states indicat-

ing their instantaneous performance status, which are Normal Operating, Abnormal

Event Undetected, and Abnormal Event Detected and Under Repair. The transition

of component states follows a certain direction(Figure 5). Prior to each assessment,

the component failure mode has to be defined to locate the corresponding failure rate

or abnormal event rate data. At any instant, any component is only able to remain
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Fig. 5. Component states flow diagram.

in a unique state.

System-state: a combination of component states to describe the system behavior

at the time being. If there are N components within a system, through A, B, . . . , to

N , the total number of possible system state, M , is given by:

M = 3N (2.9)

The system-state trajectory is a sequence of part or all of the M system states.

Sojourn time: a random variable to represent the time a component or system

spends in a state. By probabilistic law, the sojourn time follows a certain type of

distribution. The parameters of those distributions are specific in each case.

Process variable: variables that are used to describe the physical dynamics of

the system process, for instance, temperature in the reactor, pressure in the vessel,
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level in the storage tank, etc. We use a vector x̄ to denote a set of process variables

of interest.

The first step in system-state trajectory simulation is to characterize the compo-

nent state sojourn time distribution. The component-state sojourn time is the time a

component spends in a specific state. For State 1 of a component, Normal Operating,

the sojourn time is defined as the time between failures or abnormal event occur-

rences. Let random variable, X, denote the length of an episode between failures or

abnormal event occurrences. In reliability engineering, a common assumption is that

the time between failures is an exponentially distributed random variable. The expo-

nential distribution assumption is also applicable in this study. Therefore, X follows

an exponential distribution. The parameter(s) for the distribution of X depend on

the failure rate or abnormal event rate. The probability density function of State 1

sojourn time distribution is given by:

f(x;λ) = λe−λx (2.10)

The time a component remains in State 2, Abnormal Event Undetected, is defined

as the time between an abnormal event occurs without being detected and the ab-

normal event detected through testing or inspection. The sojourn time at this state

is determined by both the failure rate or abnormal event rate and the component

testing/inspection interval. Let random variable, Y , denote the length of an episode

in component State 2. The relationship among X, Y , and the testing/inspection

interval T is demonstrated in Figure 6. An important assumption for the problem

formulation is that the testing/inspection interval T is a constant. The probability

distribution function of Y is given by:
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Fig. 6. The relationship among component State 1 sojourn time(X, the empty bars),

component State 2 sojourn time(Y , the bold bars), and the testing/inspection

interval(T ) along time axis.

P (Y < y) = P (T −X < y|X < T )P (X < T )

+P (2T −X < y|T < X < 2T )P (T < X < 2T )

+P (3T −X < y|2T < X < 3T )P (2T < X < 3T ) + · · · (2.11)

This is equivalent to:

P (Y < y) = P (X > T − y|X < T )P (X < T )

+P (X > 2T − y|T < X < 2T )P (T < X < 2T )

+P (X > 2T − y|2T < X < 3T )P (2T < X < 3T ) + · · · (2.12)

Using conditional probability law:

P
(
A
∩

B
)
= P (B)P (A|B) (2.13)

Equation 2.12 is simplified as:
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P (Y < y) = P (T − y < X < T )+P (2T − y < X < 2T )+P (3T − y < X < 3T )+· · ·

(2.14)

According to the equation of distribution probability density function ofX (equa-

tion 2.10), and equation 2.14, the probability distribution function of Y is given by:

P (Y < y) =
e−λ(T−y) − e−λT

1− e−λT
(2.15)

The sojourn time distribution of component State 3, Abnormal Event Detected

and Under Repair, is obtained by fitting appropriate distributions to industry data.

The industry data is in the form of recorded labor hours to repair the components.

Exponential distribution, gamma distribution, lognormal distribution and Weibull

distribution are suggested for the fitting as they are the four widely used distribution

types to describe the time to repair in reliability engineering.

The system-state trajectory depends on how long the system remains in each

state before transiting to the next one, and which component(s) changes state at

the transition time. The component state transition is a deterministic process as

shown in Figure 5. If any of the components in the system changes its state, the

system transits to the next state subsequently. According to this principle, random

numbers are generated by Monte Carlo sampling from the current state sojourn time

distribution of each component; and in each simulation run, the minimum value of

those random numbers decides the point of time when system transits to next state.

Algorithm for the system-state trajectory is designed as the following(Algorithm

1). The total number of components in a system under review is N . The total number

of transition steps is J . If total number of K simulations will be performed for the

system-state trajectory prediction, the following items are defined for the algorithm:
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1. A 3-D array S(I,N,K) to record the system-state trajectory.

2. A matrix time(I − 1, K) to record the transition time.

3. A vector container(1, N) to temporarily hold the random numbers generated

at each step.

4. State1 == 0, State2 == 1, State3 == 2.

5. S(1, :, k) = zeros(1, N).

6. time(0, k) = 0.

7. Random Generator 1 - random generate a number from exponential distribution

equation 2.10 with the component specific failure rate.

8. Random Generator 2 - random generate a number from probability distribution

function equation 2.15 with the component specific failure rate and inspection

interval.

9. Random Generator 3 - random generate a number from probability distribution

function equation fitted using industrial repair time data.

There are two options to call i to stop the kth discrete event simulation. The

first one is when:

time(i− 1, k) ≤ ψ

time(i, k) ≥ ψ (2.16)

where ψ is a predetermined number in the unit of time. For example, it could be a

plant lifetime, or it could be a number of years the analyst decides will be considered

for the risk assessment.
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Algorithm 1: The pseudocode of system-state trajectory.

for each simulation run k do1

for each transition run i do2

for each component n do3

if S(i, n, k) = 0 then4

call Random Generator 1 to get ti;5

end6

else if S(i, n, k) = 1 then7

call Random Generator 2 to get ti;8

end9

else if S(i, n, k) = 2 then10

call Random Generator 3 to get ti;11

end12

container(1, n) = ti;13

end14

min(container(1, :)); q = component index of min(container(1, :));15

time(i, k) = time(i− 1, k) +min(container(1, :));
if S(i, q, k) = 0 then16

S(i+ 1, q, k) = 1, and the rest of the q − 1 component remain at the17

same state as at i
end18

else if S(i, q, k) = 1 then19

S(i+ 1, q, k) = 2, and the rest of the q − 1 component remain at the20

same state as at i
end21

else if S(i, q, k) = 2 then22

S(i+ 1, q, k) = 0, and the rest of the q − 1 component remain at the23

same state as at i
end24

end25

call Eliminator 1 equation2.16 or Eliminator 2 equation2.1726

end27



32

The other way to eliminate the kth simulation is when:

i = ω (2.17)

where ω is an integer that represents the number of discrete transition steps. In this

case, analyst decides the number of transition steps prior to the modeling.

b. Process Dynamics Modeling

The subject of oil/gas and chemical process dynamics is the evolution over time of

physics and engineering variables such as temperature, pressure, liquid level, reactiv-

ity, flow rate, heat transfer, mass transfer, energy transfer, etc. The process dynamics

is essentially governed by the laws of physics and engineering, such as kinetic theory,

chemical reaction, statistical mechanics, thermodynamics, and transportation theory,

etc. The process units either must be maintained closed to their steady states for

continuous operation or follow optimal trajectories for batch operation. Once the

study scope is defined, interests of process variables are determined. Mathematical

equations will be developed to characterize the process dynamics. We define the pro-

cess vector x̄ whose elements include all process variables of interest under the DORA

study. Ordinary differential or partial differential equations are used in this section

to illustrate process description:

dmx̄

dt
= fi(x̄)

or

∂mx̄

∂t
= fi(x̄) (2.18)

with initial condition x̄(0) = x̄0 and where i is the index of system-state.

Safety criteria are needed for any risk assessment. From a safety point of
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view, the criteria in DORA are defined as upper/lower boundary conditions x̄u =

(xu1, xu2, xu3, . . . , xun) and x̄l = (xl1, xl2, xl3, . . . , xln). Those values generate a sur-

face or sphere to define the safe domain of the system. These boundary conditions

will be used as cutoff values for the probabilistic simulation.

In Markovian method for dynamic risk assessment, a Markovian state in a system

is described by three elements: process variable, system-state, and time. The history

of state transition in a system is a succession of states (x̄1, i1, t1), (x̄2, i2, t2), . . .,

(x̄n, in, tn). A transition at time tn is in process variable state x̄n and has just entered

discrete system-state in. Discretization is not merely needed for system-state trajec-

tory. The evolution of process variables are also needed to be discretized to charac-

terize the state of a system. The characterization of process variables in a Markovian

approach requires explicit discretization to model the real process variable trajectory.

On the other hand, a definitive discretization required in both system-state trajectory

and process variable evolution will increase the numerical computation difficulties.

In this DORA study, discretization of process variables is not necessarily driven

by Markovian properties. Process variable is not integrated into the state characteri-

zation in the discrete system-state trajectory simulation. In fact, the system-state tra-

jectory determines where and when to discretize the process variable evolution(Figure

7). The system state configuration decides the parameters in function fi for system-

state i in equation 2.18; whereas the sojourn time of the system on certain state

quantified how long the process variable evolution will follow the rule determined by

function fi(Algorithm 2).

In an overview, the structure of discrete event simulation could be broken down

at system-state transition level and component state transition level. The discrete

event simulation simulator is connected to process dynamics simulator at system-state

transition level. Discrete event simulation starts from component state transition,
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Fig. 7. The relationship between system-state trajectory and process variable evolu-

tion.

Algorithm 2: The pseudocode of DORA probabilistic computation.

countu = 0;1

countl = 0;2

for each discrete event simulation run k do3

the process variable initial conditions are x̄04

for each transition run i do5

connect to algorithm1 to get the system-state identity;6

fi is determined immediately according to this identity;7

solve fi with initial condition of xtime(i−1,k), and the integration upper8

limit of time(i, k);
end9

u = find(x̄ > x̄u);10

l = find(x̄ < x̄l);11

if length(u) > 0 then12

countu = countu + 1;13

end14

and;15

if length(l) > 0 then16

countl = countl + 1;17

end18

end19

the probability of process variable exceeding upper safety boundary = countu/K;20

the probability of process variable exceeding lower safety boundary = countl/K;21
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and transfers the data to process dynamics simulator after finishing a system-state

trajectory simulation. Reliability information, inspection interval, and repair rate

are the information needed to initiate the discrete event simulation according to

Algorithm 1. Information exchange occurs between the two simulators once a full

system-state trajectory is determined in each loop.

c. Computation Reduction

In different system states, the parameters in equation 2.18 are different to char-

acterize the evolution of process variables in phases. The system-state trajectory

needs to be determined to specify those parameters in each state. The discrete event

simulation on system-state trajectory demonstrates when and what component be-

comes abnormal, how long the state sojourn time is, and how long it will take to

restore the system to normal operating conditions. However, it is not true that the

process variable would go beyond the desirable region whenever an abnormal event

occurs. To study operational risk, the Monte Carlo simulation needs to be performed

on the process variable evolution upon every single system-state trajectory. There-

fore, it ends up with the total number of continuous simulations on the entire process

variable evolution needed as:

n = nk (2.19)

where:

n - total number of simulations on the whole process variable evolution needed

nk - number of simulations needed on system-state trajectory

Even though the number of simulation runs is equal to the system-state tra-
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jectory simulation number, the numerical simulation on the whole evolution of pro-

cess variable is still a great deal of work. Therefore, problem decomposition should

be considered to save computational storage space. A reasonable argument is that

the process variable evolution at steady state does not necessarily need to be simu-

lated. The process variable should remain in the steady state region as long as all

the components are under normal operation no matter in which system-state trajec-

tory configuration. It saves computational storage space to have a pre-Monte Carlo

simulation on the probability of process variables exceeding safety boundaries given

that each individual component becomes into an abnormal state(Algorithm 3). The

pre-Monte Carlo simulation calculates the probability of process variables exceeding

safety boundary only when the components become abnormal. The probability of

the system process variable exceeding the desirable operating region is determined

using the probability of component abnormal event and the probability of the process

variable exceeding the desirable operating region when the individual component goes

into abnormal state:

P = ΣN
n=1qnpn (2.20)

where:

P - probability of a process variable exceeding safety boundary in the system

n - index of the component in the system

N - total number of the components in the system

qn - probability of process variable exceeding the safety boundary when the compo-

nent n goes into abnormal state

pn - probability of component n goes into abnormal state
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Algorithm 3: The pseudocode of pre-Monte Carlo simulation in DORA.

for each simulation run k do1

the process variable initial conditions are x̄0;2

for each component n do3

parameters for fi is determined immediately according to component4

abnormal status;
solve fi with initial condition of x0, and eliminate the integration until the5

integration time is long enough for any test/inspection interval to be
applied.

end6

Random generate a number r from an uniform distribution between [0, 1];7

cuttime = f−1 of equation 2.15 with r and an inspection interval T ;8

cuttime = ceil(cuttime); and ¯var = x̄(1 : cuttime);9

above = find( ¯var > x̄u); and below = find( ¯var < x̄l);10

if length(above) == 0 (length(below) == 0) then11

countabove(k, 1) = 0 (countbelow(k, 1) = 0)12

end13

else14

countabove(k, 1) = 1 (countbelow(k, 1) = 1)15

end16

end17

the probability of process variable exceeding upper safety boundary18

= length(find(countabove == 1))/K;
the probability of process variable exceeding lower safety boundary19

= length(find(countbelow == 1))/K;
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qn can be gained by pre-Monte Carlo simulations(Algorithm 3), whereas pns can

be obtained by the Monte Carlo simulation on system-state trajectory(Algorithm 1).

The total number of simulations needed in this decomposed strategy is n
′
:

n
′
= N × nd + nk (2.21)

where

n
′
- total number of simulations needed

N - total number of the components in the system

nd - number of simulations needed on process dynamics upon each component ab-

normal event

nk - number of simulations needed on system-state trajectory

n
′
is a larger number than n, however, in the decomposed strategy, simulation

on the process variable evolution given all the components operate in normal state is

omitted. The process dynamics differential equations are not required to be solved

at the whole time span but only when component goes into abnormal state.

6. Incident Consequence Modeling

The consequence analysis in DORA is nothing different from general consequence

modeling except the uncertainty characterization. DORA incident consequence mod-

eling includes toxic release models, source models, dispersion models, fires and explo-

sions, etc. In many cases, parameters in those models are uncertain and usually need

to be determined by expert judgment. In DORA, a probabilistic approach is proposed

to characterize this epistemic uncertainty in the consequence modeling. Assuming Z̄
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in consequence modeling O is a vector of uncertain variables, algorithm 4 is designed

for the uncertainty characterization in DORA consequence modeling.

7. Risk Determination

Risk is defined as:

risk = probability × consequence (2.22)

After DORA probabilistic analysis and incident consequence analysis, risk pro-

files should be generated considering both the aspects of probability and consequence

of potential incidents in the system.

8. Is the Risk Acceptable?

A zero risk level is not attainable. After risk profiles are generated in DORA,

an argument should be made not merely whether the risks are acceptable or not, but

also how low a risk level can be achieved by feasible risk reduction if it is already

in a tolerable region. These two questions need to be addressed in sequence. In

this step, the question of ”whether a risk is in totally unacceptable region or not”

will be addressed. The decision is made according to health and safety guidelines,

international standards and laws, and suggestion from advisory bodies, etc. If the

risk level is higher than the minimum acceptance criteria, the assessed risk is in

the totally unacceptable region. In this case, modifications on the process design,

operation procedure or emergency strategy have to be made and the risk assessment

will start over again from the very beginning at Step 1 through Step 7. This process

will be eliminated until the risk level is below the totally unacceptable criteria.
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Algorithm 4: The pseudocode of uncertainty characterization for conse-

quence modeling in DORA.

Define Z̄min and Z̄max;1

for each Monte Carlo simulation run i do2

Random generate a number η from uniform distribution between (0, 1);3

Z̄
′
= η × (Z̄max − Z̄min) + Z̄min;4

solve modeling U using Z̄
′
and results are saved in r̄e(1, i);5

end6

ū1 = min(r̄e);7

ū2 = max(r̄e);8

Define a bin number nbin to calculate u-population;9

% width of bins10

d̄u = (ū2− ū1)/nbin;11

% values at center of bins12

ūc = ū1 + d̄u/2 : d̄u : ū2− d̄u/2;13

% calculates populations in bins14

¯upop = zeros(1, nbin);15

for i = 1 : length(re) do16

% falls in to the idx’th bin17

idx = ceil(( ¯re(i)− ū1)/d̄u);18

if idx == 0 then19

idx = 1;20

end21

¯upop(idx) = ¯upop(idx) + 1;22

end23

% renormalizes so that sum(upop) = 124

¯upop = ¯upop∗100
totalnumberofsimulationrun ;25

plot ¯upop vs. r̄e.26
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Fig. 8. ALARP(As Low As Reasonably Practicable).

9. Cost-Benefit Analysis

Determining that a risk has been reduced to ALARP (As Low As Reasonably

Practicable)(Figure 8)(HSE) involves a cost-benefit analysis. When the risk remains

in the tolerable region, the question of ”how low a risk level can be achieved by feasible

risk reduction efforts” needs to be addressed. Usually, the region of ’risk is totally

unacceptable’ is much smaller than ’risk is tolerable’ region. In most cases, risk is not

only expected to be in the tolerable region but expected to be reduced to ALARP.

This practice must work within the real world constraints of feasibility, practicality

and cost. DORA will provide efficient cost-benefit analysis to decision makers. An

optimization on component inspection interval in an oil/gas separation system will

be illustrated in Chapter VI.
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Fig. 9. A simplified PFD of an oil/gas and water separator.

10. Build and/or Operate the System

With the completion of the previous steps, the system is ready to be built or

operated.

D. Case Study I - Level Control in an Oil/Gas Separator

1. Process Description

In offshore plants, gravity separators are used to separate oil, gas and water for

exportation. A simplified PFD of this separation is shown in Figure 9.

Consider the material balance of liquids in separators, and assume a linear rela-

tionship between the height H and the volume, then:

dH(t)

dt
=
Qin(t)−Qout(t)

A
(2.23)
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where Qin(t) is the inlet volumetric flow rate, and Qout(t) is the outlet volumetric

flow rate. For simplicity, the outlet water flow and the outlet oil flow are assumed to

be equal. The openness dynamic of the control valve is considered fast. A factor µ is

related to the valve openness. Then, the outlet flow rate is given by:

Qout = 2µ
√
H (2.24)

PI controller is one of the most used controllers for level and flow control in

industry. Given that PI controller is applied in this case study, µ is governed by:

µ = µ0 +Kc[e(t) +
1

τl
∫ t

0
e(t∗)dt∗

] (2.25)

where e(t) = Hset −H(t). The inlet flow rate is given by:

Qin = εQin nor (2.26)

where Qin nor is the inlet flow rate in normal operation state. ε is a factor between

(0, 1) to quantify the inlet flow abnormal situation. When the pump normally op-

erates, ε = 1. Substituting equation 2.24, equation 2.25, and equation 2.26 into

equation 2.23, we can obtain the following equation after linearization:

A
dH

dt
= εQinnor +

µ0

√
H0

2
− µ0

2
√
H0

H −
√
H0µ (2.27)

with initial values µ(0) = µ0 and H(0) = H0. Therefore, the process transfer function

is given by:

G(s) =
H(s)

µ(s)
=

−
√
H0

As+ µ0

2
√
H0

(2.28)
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Table I. Process parameters of the separator system.

Process parameters

Qinnor 310m3/h

H 1.5m

A 1.766m2

Hset 0.7m

Qoutnor 155m3/h

PI controller model A is selected according to IMC method[58], which is:

G(s) =
K

τs+ 1
(2.29)

KcK =
τ

τc
(2.30)

τI = τ (2.31)

In our case:

τc = 1 (2.32)

K = −2H0

µ0

(2.33)

τ =
2A

√
H0

µ0

(2.34)

All the process parameters and control parameters are summarized in Table I.

The following DORA probabilistic modeling is specific for the hazard, scenario and

failure mode of fire hazard → overflow/dryout scenario → failure mode combination:

pump - low output; CV - random valve opening; LT - random level reading error.
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2. Component Sojourn Time Distribution Characterization

The system-state trajectory simulation inputs are the component state sojourn

time distribution parameters. To formulate the sojourn time distribution of compo-

nent State 1, the failure rates for the components in this study are collected from the

OREDA database[59]. Low output is selected as the failure mode for the pump; spuri-

ous operation is selected as the failure mode for the CV; abnormal instrument reading

is selected as the failure mode for the LT. The reliability data are specific to those

failure modes respectively. All of the three failure modes are not necessarily leading

to a system shutdown, but may cause an operational failure. The parameters in the

process equations and control equations vary as the component state transits(Table

II).

With exponential distribution assumption discussed before, the probability den-

sity functions of the sojourn time of component State 1 are summarized as the fol-

lowing equations:

for pump:

fA(x;λA) = 2.5× 10−6e−2.5×10−6x (2.35)

for CV:

fB(x;λB) = 6.1× 10−7e−6.1×10−7x (2.36)

for LT:

fC(x;λC) = 2.4× 10−7e−2.4×10−7x (2.37)

where λA, λB, and λC are the failure rates of pump, CV and LT in the failure mode of
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abnormal as low output, abnormal as random valve opening, and abnormal as random

level reading error respectively.

The sojourn time distribution functions of component State 2 are summarized

as follows according to equation 2.15, with the assumption of constant inspection

interval TA, TB, and TC for pump, CV and LT respectively:

PA(y;λA) =
e−2.5×10−6(TA−y) − e−2.5×10−6TA

1− e−2.5×10−6TA
(2.38)

PB(y;λB) =
e−6.1×10−7(TB−y) − e−6.1×10−7TB

1− e−6.1×10−7TB
(2.39)

PC(y;λC) =
e−2.4×10−7(TC−y) − e−2.4×10−7TC

1− e−2.4×10−7TC
(2.40)

The sojourn time distributions of component State 3 are obtained by distribution

fitting. The repair labor hour data of each component is collected from industry. The

repair time for the pump and CV fits to Weibull distribution, and the repair time for

LT fits to exponential distribution:

fA(z;λ
′

A, kA) =
0.73

8.13
(
z

8.13
)−0.27e−( z

8.13
)0.73 (2.41)

fB(z;λ
′

B, kB) =
1.25

5.83
(
z

5.83
)0.25e−( z

5.83
)1.25 (2.42)

fC(z;λ
′

C) =
1

2.92
e−

1
2.92

z (2.43)
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Fig. 10. Pump, CV, and LT abnormal event probabilities using different inspection

intervals: half daily, daily, weekly, monthly, semi-annually, annually, every

two years, and every three years.

3. System-state Trajectory Simulation

Given the assumption that the plant has a 30-year lifetime, Monte Carlo sim-

ulations on the system-trajectory are performed to study the probabilities of pump

abnormal event, CV abnormal event and LT abnormal event. Since the inspection

interval is considered as an important parameter in this study, different inspection

intervals for pump, CV and LT are tested to research their impact on component ab-

normal event probability. Half day, daily, weekly, monthly, semi-annually, annually,

two years, and three years are tested in the simulations. When the inspection interval

of one component is varied, the inspection intervals for all other components are fixed

at 12h. The abnormal event probabilities of each component given eight different in-

spection intervals are shown in Figure 10. It is found that the inspection interval has

no impact on component abnormal event probability. This is because the sequence

of component behavior is defined as: normal operation → failure or abnormal event

occurs without being detected → failure or abnormal event is detected → repair and
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restore the component to normal operation. Abnormal event always occurs before

being detected through inspection. However, the inspection interval has impact on

overflow/dryout probability as it determines how fast the system can be restored to

normal operating conditions. An optimal inspection interval will find the component

abnormal situation and corrective action will always be taken to restore the system

before the process parameters exceed the desirable regions. In this study, mean value

of component abnormal event probabilities with eight different inspection intervals

will be used in the future calculation:

ppump = 0.93

pCV = 0.33

pLT = 0.14 (2.44)

The frequencies of pump abnormal event, CV abnormal event and LT abnormal

event are also simulated in a prolonged time period and the results are summarized

in Figure 11. The mean values of component abnormal event frequencies turn out to

be the same as the frequency data we collected in the OREDA database and used as

input. The results of the frequencies simulation confirm the conclusion that the in-

spection interval in this study has no impact on the frequency of component abnormal

event. In addition, it validates the algorithm for system-state trajectory. It cannot

be emphasized more that inspection interval does affect the frequency of component

fatal failure, but not abnormal event as inspection detects abnormal situation and

corrective action must be taken before the fatal failure actually occurs.
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Fig. 11. Mean values and standard deviations of Pump, CV, and LT abnormal event

frequencies using different inspection intervals: half daily, daily, weekly,

monthly, semi-annually, annually, every two years, and every three years.

4. Probability of Incident Due to Individual Component Precursor

In this case study, the safe boundaries are defined as:

Hu = 1.5m

Hl = 0.1m (2.45)

Therefore, Monte Carlo simulation based on Algorithm 3 is performed to study

the probability of separator overflow (H > 1.5m) and dryout (H < 0.1m) when each

of the components, pump, CV, and LT, individually goes from normal operation to

abnormal situation until the abnormal situation is detected. The simulation time

span is sufficiently long to study the impact of testing/inspection interval on the

probabilistic simulation results. Different inspection intervals, 12 hours, one day, one

week, one month, semi-annual, annual, two years, and three years, are tested in the
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Fig. 12. Overflow probability due to individual pump abnormal event, CV abnormal

event and LT abnormal event respectively using different inspection intervals:

half daily, daily, weekly, monthly, semi-annually, annually every two years and

every three years.

study. As the inspection interval increases, the probability of overflow and dryout

due to pump abnormal event, CV abnormal event, and LT abnormal event increases

except probability of dryout due to CV abnormal event(Figures 12 and 13).

The probability of separator dryout due to CV abnormal event is zero no matter

what inspection interval among the tested eight applies. The overflow probability due

to CV abnormal is 17.4 ∼ 359 times greater than that due to pump abnormal event;

the overflow probability due to LT abnormal event is 14.6 ∼ 244.5 times greater than

that due to pump abnormal event; and the dryout probability due to LT abnormal

event is 5.1 ∼ 29.7 times greater than that due to pump abnormal event. Therefore,

the CV abnormal event is the most critical reason for overflow scenario, whereas the

LT abnormal event is the most critical reason for dryout scenario.
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Fig. 13. Dryout probability due to individual pump abnormal event, CV abnormal

event and LT abnormal event respectively using different inspection intervals:

half daily, daily, weekly, monthly, semi-annually, annually every two years and

every three years.

5. Separator Overflow/Dryout Probability

The probability data of separator overflow and dryout upon pump, CV, and

LT abnormal event individually by the pre-Monte Carlo simulation are summarized

in Table III and Table IV. They will be used to calculate probability of separator

overflow/dryout in the plant lifetime and frequency of separator overflow/dryout.

Results are plotted in Figures 14, 15, 16, and 17. Each point in the figures carries the

information on annual total inspection cost, separator overflow/dryout probability or

frequency, and the corresponding component inspection intervals. Inspection interval

less than one day for LT keeps the dryout frequency at least around 10 times lower

than that when the interval is more than one day. The probability of dryout will

be kept less than 0.1 if LT inspection interval is less than one month. However,

the objective of this step in DORA is to provide industry a tool to assess dynamic

operational risk. Further inspection interval optimization study is needed and will
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Fig. 14. Separator overflow probability vs. annual total component inspection cost.

be demonstrated in Chapter V in this dissertation. The decision on the component

testing/inspection interval is left to decision makers according to the cost-benefit

analysis.

6. Sensitivity Analysis on Model Inputs

For DORA probabilistic modeling, component state sojourn time distributions

are the inputs for system-state trajectory simulation. Among the three component

states, normal operating, abnormal event undetected, and abnormal event detected

and under repair, the third state sojourn time distribution is obtained by fitting

distribution to industry component repair time data. In the case that the collected

data is sufficient enough, distribution fitting is statistically satisfied with accepted

uncertainty. However, it is not always possible to find enough data. In a highly

reliable system, a single failure may occur at a frequency in order of 10−6 and repair
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Fig. 15. Separator dryout probability vs. annual total component inspection cost.

Fig. 16. Separator overflow frequency vs. annual total component inspection cost.
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Fig. 17. Separator dryout frequency vs. annual total component inspection cost.

happens at a corresponding low frequency so that the repair data is usually not enough

for a good distribution fitting. Given the limited repair time data points, the major

concern on this probabilistic modeling uncertainty includes:

• what distribution type should be selected for component repair time distribution

fitting;

• whether the distribution type is a sensitive factor for DORA probabilistic mod-

eling results.

When a failure occurs to a component, the component must be repaired and it

is then unavailable for processing during a certain amount of time called the repair

time[60]. In reliability engineering, random variables from exponential distribution,

gamma distribution, log-normal distribution or Weibull distribution are usually as-

sumed to characterize the time-to-repair distribution in most of the models. By se-
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lecting candidates from those distribution families, epistemic uncertainty is reduced

by engineering expert judgment. The uncertainty is further reduced by selecting the

distribution model according to the rank of goodness-of-fit. The objective of this sub-

section is to propose and apply statistical techniques to characterize the uncertainty

and sensitivity on the distribution model selection and the associated parameters de-

termination, in order to study how the DORA probabilistic modeling output can be

apportioned by the distribution model selection.

There are several techniques to examine how well a sample of data agrees with a

given distribution as its population. In those goodness-of-fit techniques, hypothesis

test is based on measuring the discrepancy or consistency of the sample data to the

hypothesized distribution. Chi-square test is used to measure how well the fit matches

the data if the data are represented by discrete points with Gaussian uncertainties[61].

However, the value of the chi-square test statistic depends on how the data is binned.

Another disadvantage of chi-square is that it requires an adequate sample size for the

approximations to be valid. Pearson’s chi-square test is distinguished from the case

with Gaussian errors, and is applied if the data are represented by integer numbers of

events in discrete bins, following Poisson statistics rule[62]. Kolmogorov-Smirnov (K-

S) test is a goodness-of-fit measurement technique for one-dimensional data samples.

It is used to test whether the data sample comes from a population with a specific

distribution[63]. Anderson-Darling test[64] is a modification of K-S test and gives

more weight to the tails than does the K-S test. There are several others, such as the

Shapiro-Wilk test[65] and the probability plot[66] for goodness-of-fit measurement.

Chi-square test, Kolmogorove-Smirnov test, and Anderson- Darling test are proposed

in this subsection to measure the goodness-of-fit to rank the distribution models for

characterizing the component repair time distribution.
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a. The Chi-square Test

The null hypothesis in a chi-square test is:

H0: The data follow a specified distribution.

Ha: The data do not follow the specified distribution.

The data are divided into k bins and the test statistic is defined as:

χ2 =
k∑

i=1

(Oi − Ei)
2

Ei

(2.46)

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin

i, which is given by:

Ei = F (Yu)− F (Yl) (2.47)

where F is the cumulative distribution function (CDF) for the distribution being

tested, Yu is the upper limit for class i, and Yl is the lower limit for class i. The test

statistic approximately follows a chi-square distribution with (k − c − 1) degrees of

freedom where k is the number of non-empty cells and c is the number of estimated

parameters for the distribution. Therefore, the hypothesis that the data are from a

population with the specified distribution is rejected if

χ2 > χ2
(1−α,k−1) (2.48)

where χ2
(1−α,k−1) is the chi-square inverse CDF with (k− 1) degrees of freedom and a

significance level of α. Though the number of degrees of freedom is (k − c− 1), it is

calculated as (k − 1) since this kind of test is least likely to reject the fit in error.

b. The Kolmogorov-Smirnov Test

The null hypothesis in a Kolmogorov-Smirnov test is:

H0: The data follow a specified distribution.
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Ha: The data do not follow the specified distribution.

The K-S test statistic is defined as:

D = max1≤i≤N(F (Yi)−
(i− 1)

N
,
i

N
− F (Yi)) (2.49)

where i is the index of the total N ordered data points Y1,Y2,. . . ,YN . F is the cumula-

tive distribution function of the distribution being tested which must be a continuous

distribution. The hypothesis is rejected at significance level α if the test statistic, D,

is greater than the critical value obtained from a table. There are variations of these

tables in different literatures that use different scaling for the K-S test statistic and

critical regions. The software programs that perform a K-S test provide the relevant

critical values.

c. The Anderson-Darling Test

The null hypothesis in an Anderson-Darling test is:

H0: The data follow a specified distribution.

Ha: The data do not follow the specified distribution.

The Anderson-Darling test statistic is defined as:

A2 = −N − S (2.50)

where

S =
N∑
i=1

(2i− 1)

N
[lnF (Yi) + ln (1− F (YN+1−i))] (2.51)

F is the cumulative distribution function of the specified distribution and Yi are the

ordered data points. The critical values for the Anderson-Darling test depend on

the specific distribution that is being tested. The hypothesis that the data follow a

specified distribution is rejected if the test statistic, A, is greater than the critical
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value. The software programs that were used to perform an Anderson-Darling test

provide the relevant critical values.

d. Graphical Goodness-of-fit Measurement

To illustrate the goodness-of-fit measurement graphically, probability-probability

(P-P) plot, quantile-quantile (Q-Q) plot and probability difference graph are created.

The P-P plot is a graph of the empirical CDF values plotted against the theoretical

CDF values. The Q-Q plot is a graph of the input data points plotted against the

theoretical distribution quantiles. The reference diagonal line in the Q-Q plot is the

line along which the graph points should fall. Both P-P plot and Q-Q plot will be

approximately linear if the specified theoretical distribution is the correct model to

represent the input data. The probability difference graph is a plot of the difference

between the empirical CDF and the theoretical CDF.

Four widely used distribution types in reliability engineering modeling: expo-

nential, gamma, lognormal, and Weibull are used to fit the collected repair time

data. Each type has two distributions with different number of parameters. They

are exponential with single parameter (exponential), exponential with two parame-

ters (exponential (2P)), gamma with two parameters (gamma), gamma with three

parameters (gamma (3P)), lognormal with two parameters (lognormal), lognormal

with three parameters (lognormal (3P), Weibull with two parameters (Weibull), and

Weibull with three parameters (Weibull (3P)). The fitting distribution parameters

are summarized in Table V.
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The goodness-of-fit measurement results in chi-square test are summarized in

Table VI. K-S test results are shown in Tables VII, VIII, and IX. A-D test results

can be found in Table X, XI, and XII. P-P plots of pump, CV, and LT repair time

fitting to lognormal distribution are shown in Figures 18, 19, and 20 respectively. Q-

Q plots of pump, CV, and LT repair time fitting to lognormal distribution are shown

in Figures 21, 22, and 23 respectively. Probability different graphs of pump, CV, and

LT repair time fitting to lognormal distribution are shown in Figures 24, 25, and 26

respectively.

The Chi-square test and K-S test results for pump repair time fitting show that

all the distribution fitting hypotheses are rejected. In A-D test, lognormal and log-

normal (3P) fitting for pump repair time are not rejected at low α values. In K-S

test, result for CV repair time fitting shows that all the distribution fitting hypothe-

ses are accepted but the fittings in A-D test reject the hypotheses on exponential

(2P), gamma (3P), lognormal (3P), and Weibull (3P). All the LT repair time dis-

tribution fitting hypotheses are accepted in K-S test, but the fittings to exponential

(2P), gamma (3P), and Weibull (3P) are rejected. Therefore, the distribution fitting

selection and ranking results are: ”lognormal (3P), lognormal” for pump repair time

distribution fitting, ”lognormal, exponential, gamma, Weibull” for CV repair time

distribution fitting and ”lognormal (3P), lognormal, gamma, exponential, Weibull”

for LT repair time distribution fitting. Those selected distributions with associated

parameters will be used in the following sensitivity analysis.

The sensitivity of the component repair time distribution type is measured in this

case study on the level control system of an oil/gas separator. Overflow is defined as

the scenario when the level in the separator is greater than 1.5m. Dryout is defined

as the scenario when the level in the separator is less than 0.1m. The probability of

overflow and dryout will be the output of the DORA probabilistic modeling(Figure27).
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Fig. 18. Probability-probability (P-P) plot of pump repair time fitting to lognormal

distribution.

Fig. 19. Probability-probability (P-P) plot of CV repair time fitting to lognormal dis-

tribution.
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Fig. 20. Probability-probability (P-P) plot of LT repair time fitting to lognormal dis-

tribution.

Fig. 21. Quantile-quantile (Q-Q) plot of pump repair time fitting to lognormal distri-

bution.
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Fig. 22. Quantile-quantile (Q-Q) plot of CV repair time fitting to lognormal distribu-

tion.

Fig. 23. Quantile-quantile (Q-Q) plot of LT repair time fitting to lognormal distribu-

tion.
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Fig. 24. Probability difference graph of pump repair time fitting to lognormal distri-

bution.

Fig. 25. Probability difference graph of CV repair time fitting to lognormal distribu-

tion.
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Fig. 26. Probability difference graph of LT repair time fitting to lognormal distribu-

tion.

Fig. 27. Scheme of DORA probabilistic model.
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Fig. 28. Component abnormal event probability vs. different distribution types to

characterize pump repair time as DORA probabilistic modeling input.

It is shown in Figure 27 that the paths to compute probability of component ab-

normal event and probability of operation out-of-control upon individual component

abnormal event are independent of each other. The uncertainty on the component

State 3 sojourn time distribution type would change the probability of operation

out-of-control only by affecting the probability of component abnormal event.

Through Monte Carlo simulation, the probability of the pump, CV, and LT

abnormal event are computed using different component State 3 sojourn time distri-

bution as inputs as shown in Figures 28, 29, and 30.

As shown in the results, the selection among lognormal and lognormal (3P) for

pump repair time distribution has no significant impact on studying the probability

of overflow in the oil/gas separator in the case study. The same conclusion is made

for the selection among exponential, gamma, lognormal and Weibull distributions for

CV repair time, and the selection among exponential, gamma, lognormal, lognormal

(3P) and Weibull distribution for LT repair time.
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Fig. 29. Component abnormal event probability vs. different distribution types to

characterize CV repair time as DORA probabilistic modeling input.

Fig. 30. Component abnormal event probability vs. different distribution types to

characterize LT repair time as DORA probabilistic modeling input.
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E. Summary

The DORA methodology presented in this Chapter provides a complete frame-

work for dynamic operational risk assessment in oil/gas and chemical industries. The

quantitative analysis development focuses on the DORA Probabilistic Modeling step

and the uncertainty characterization in Incident Consequence Modeling step. Algo-

rithms are designed for the specific goals. The probabilistic modeling uses stochastic

process and process dynamics to study the operational risk of a dynamic process with

standard computational space storage and time consumption. The objective is not

to assess whether a sequence of component failures will cause the system to fail or

not. This methodology aims to assess the probability of the operational failure of a

system. The DORA methodology also aids in incident prevention as it studies the

system degraded behavior due to component abnormal event before a failure actually

occurs. The dynamic modeling provides us a simulation tool to study the process

dynamics in the presence of the possibility that a protection system malfunctions.

The outcomes of DORA probabilistic modeling applied to the level control case

study provide significant insight for further component inspection interval optimiza-

tion. The control valve is preliminarily identified as the most critical component to the

overflow scenario and level transmitter to dryout scenario. More industry inspection

scheduling cost data is needed for further component inspection interval optimization

study. The optimization will be discussed in Chapter IV. In the sensitivity analy-

sis, the component State 3 sojourn time was characterized by fitting distributions to

the limited industrial data. Four time-to-repair distribution types widely applied in

reliability engineering and used in this study are exponential distribution, gamma dis-

tribution, lognormal distribution, and Weibull distribution. Two distributions with

different number of parameters from each distribution type were selected as the fit-
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ting candidates. Goodness-of-fit measurement results show that pump and LT repair

time data fit to lognormal distribution with three parameters the best and CV repair

time data fit to lognormal distribution the best. Uncertainty associated with the

component State 3 sojourn time distribution type was reduced by ranking the fitting

hypothesis using chi-square test, K-S test, and A-D test. Sensitivity analysis results

show that the probability of operation out-of-control has no significant response to

the component repair time distribution model chosen as the DORA inputs in this

level control system in the oil/gas separator case study. This conclusion does not

mean that any distribution type could be selected as DORA input. On the contrary,

the uncertainty and sensitivity analysis proposed in this paper should be performed

for any other DORA probabilistic modeling to achieve a desirable quality of risk

assessment.
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CHAPTER III

UNCERTAINTY CHARACTERIZATION AND REDUCTION IN QRA∗

A. Introduction

Quantitative risk assessment (QRA) in the oil/gas and chemical industries aims

to quantify risk as a function of occurrence probabilities and consequences of ma-

jor accident scenarios. System component failure rates used in point values from

laboratory or generic data have generally been accepted in the past by industry to

estimate the system failure occurrence probabilities in a QRA. However, this practice

includes uncertainty and may mislead the QRA evaluation as well as the subsequent

decision-making. As the results of QRA provide information to prevent losses in ma-

jor accident hazards and aid in many decisions on risk management, it is important

to increase accuracy of the results. Uncertainty is a broad and general term used to

characterize a variety of various concepts including indeterminacy, judgment, approx-

imation, linguistic imprecision, error, and significance[67]. A discussion of uncertainty

is critical for the risk characterization in order to fully evaluate the implications and

limitations of the risk assessment[68], evaluate how close the assessment is from real-

ity and how the risk is reliably identified, in order to make critical chemical process

safety design decisions.

In a simple and commonly used reliability model, the failure rate of a component

is assumed to be constant. The variation of the failure rates of the same piece of

equipment but from different reliability information resources belongs to aleatory

∗Part of this chapter is reprinted with permission from ”Uncertainty Reduction for
Improved Mishap Probability Prediction: Application to Level Control of Distillation
Unit” by Xiaole Yang, William J. Rogers, and M. SamMannan, 2009. Journal of Loss
Prevention in the Process Industries, vol. 22, pp. 1-8, Copyright[2009] by Elsevier.
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uncertainty category that is irreducible; however the epistemic uncertainty on the

failure rates can be reduced using Bayesian theory by updating the parameter(s) of

the reliability models. In Bayesian updating, the probability distribution represents

our knowledge and uncertainty about the optimum value of parameter(s). Our prior

knowledge about the failure rates is combined with observation and test evidence,

which is the plant specific real life reliability data used in this study, to gain a posterior

distribution. As our knowledge of the component reliability increases, the uncertainty

of prediction on incident occurrence probability is reduced by continually updating

the component failure rate distribution parameters.

In this Chapter, probabilistic approach will be proposed to characterize aleatory

uncertainty. Bayesian approach will be used to reduce the epistemic uncertainty in a

QRA study.

B. Literature Review

The risk assessment community distinguishes different types of uncertainty as

either aleatory uncertainty or epistemic uncertainty[69]. Aleatory uncertainty is due

to randomness and is irreducible in principle. Vagueness arises from natural ran-

domness and unpredictable variation in the performance of the system components

under assessment, such as the variation in atmosphere conditions and the variation in

fatigue life of compressor and turbine blades. Aleatory uncertainty is typically incor-

porated into a QRA with an experimental design based on importance sampling[70].

On the other hand, epistemic uncertainty results from inadequate information or in-

complete knowledge about the behavior of system components under assessment, such

as unknown modeling parameters. Distinctive from aleatory uncertainty, epistemic

uncertainty is reducible by increasing the information/knowledge of the system. In
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a different way for uncertainty categorization, it is also helpful to distinguish uncer-

tainty according to where it originates. The sources of uncertainty include: statistical

variation, subjective judgment, linguistic imprecision, variability, inherent random-

ness, disagreement, incomplete/imprecise data/information, approximation and so

forth.

The importance of uncertainty characterization was earlier emphasized by the

U.S. Nuclear Regulatory Commission: ”The Commission is aware that uncertain-

ties are not caused by the use of quantitative methodology in decision making but

are merely highlighted through use of the quantification process. Confidence in the

use of probabilistic and risk assessment techniques has steadily improved. In fact,

through the quantitative techniques, important uncertainties have been and continue

to be brought into better focus and may even be reduced compared with those that

would remain with a sole reliance on deterministic decision making. To the extent

practicable the Commission intends to ensure that the quantitative techniques used

for regulatory decision making take into account the potential uncertainties that ex-

ist so that an estimate can be made on the confidence level to be ascribed to the

quantitative results.”[71]

The classical method, referring to the statistical method, is working with mea-

surement uncertainty. This statistical method determines the randomness and sys-

tematic errors by calculating standard deviations, confidence intervals, and other

statistical parameters. An elaborate discussion on measurement uncertainty analysis

can be found in the U.S./ISO guide[72] and in the NIST (National Institute of Stan-

dards and Technology) guide[73]. In these guidelines, two types of uncertainty eval-

uation were discussed: uncertainty evaluation based on any valid statistical method

for treating data and uncertainty evaluation based on scientific judgement. The valid

statistical methods include: calculating the standard deviation of the mean of a se-
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ries of independent observation, least squares method to fit a curve to data for model

parameter estimation and standard deviation estimation, variance analysis to iden-

tify and quantify random effects in certain kinds of measurements, etc. However,

scientific judgement includes previous measurement data, experience, manufacturers

specifications, and calibration reports.

The application of modern probabilistic theories for the characterization of un-

certainty was discussed in reliability engineering, risk analysis, and system safety

analysis[74, 75]. Probabilistic approaches are applied in the case that we can assume

the model structure is accurate[76]. The central limit theorem can be implemented

for propagation of distributions. The theorem is stated as the distribution function of

the sum of a sufficiently large number of independent variables approaches the normal

distribution[77]. Approximation methods based on Taylor series expansion, such as

statistical error propagation, are used to propagate the mean and other central mo-

ments of random variables through a model. However information regarding the tails

of each input distribution is not considered in those approximation methods. In prob-

abilistic risk assessment (PRA) field, methods for the propagation of the uncertainty

on the basic events through the quantification process, to generate a characterization

of uncertainty on the output of the assessment are established[78]. The uncertainties

on parameters are generally characterized by probability distributions, and the most

used technique is Monte Carlo method[79, 80, 81]. The acceptance and application of

Bayesian theorem[82] has been increased for probabilistic estimation combining prior

information about the system under analysis and likelihood function which usually

could be testing or observation data. A Bayesian reliability assessment procedure for

complex systems in binomial sampling proposed by Cole[83]. A Bayesian reliability

analysis of series systems of binomial subsystems and components was presented by

Martz et al.[84] Rubost Bayesian analysis was proposed by Berger for the applica-
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tion where sets of prior distributions and sets of likelihood functions are considered

instead of single prior distribution and single likelihood function[85, ?]. Zhang and

Mahadevan proposed a Bayesian procedure to quantify the modeling uncertainty and

the uncertainty in distribution parameters[86]. Forest et al.[87] applied Bayes’ theo-

rem to quantify the uncertainties in climate system properties with the use of recent

climate observation.

A number of alternative mathematical structures for the representation of un-

certainty have been proposed, including fuzzy set theory, evidence theory and possi-

bility theory. Fuzzy set theory was first introduced in 1965 by Zadeh[88]. Fuzzy

sets imprecisely define classes of sets to describe the uncertainty or imprecision

that are non-statistical in nature but play an important role in the processes and

communication[89]. Vague concepts can be defined in a mathematical sense in fuzzy

set theory. A membership function is assigned to a set. All the sets are mapped

into the entire unit interval [0, 1] and the value of the membership function of a set

indicates the degree to which this objective satisfies the properties of the set. Fuzzy

sets application is discussed in several texts[90, 91, 92, 93]. Evidence theory[94, 95,

96, 97, 98, 99] provides two specifications of the uncertainty associated with a set of

possible analysis inputs or results: a belief and a plausibility. The belief provides a

measure of the extent to which the available information implies that the true value is

contained in the set under consideration, whereas the plausibility provides a measure

of the extent to which the available information implies that the true value might be

contained in the set under consideration[100]. The belief and plausibility interpret the

smallest possible probability and largest possible probability for the set that is con-

sistent with all available information. The plausibility of something being true plus

the belief in it not being true is equal to one. Therefore, evidence theory is viewed as

a logic independent of probability theory for reasoning under uncertainty[?]. While
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evidence theory is tied to probability theory, another alternative to probabilistic ap-

proach, possibility theory, is more closely tied to fuzzy set theory[101, 102]. Possibility

theory[103] involves two specifications of likelihood for the representation of uncer-

tainty: a necessity and a possibility. Like evidence theory, the sum of necessity and

possibility equals to one.

C. Uncertainty Reduction by Bayesian Updating in Risk Prediction

In this Section, probabilistic approach is used to characterize uncertainty associ-

ated with a QRA. Bayesian theory is applied to reduce the risk prediction uncertainty

by enhancing our knowledge on the reliability of the system. In the remainder of the

Section, Bayesian updating method will be discussed and a case study on knockout

drum in a distillation unit will be used to illustrate the method proposed.

1. Methodology

In probability theory, the Bayesian theorem relates the conditional and marginal

probabilities of two random events. This theorem is often used to compute posterior

probabilities given observations. The posterior probability density function (pdf) for

a continuous random variable θ is given by:

f(θ|t) = h(θ)l(t|θ)∫∞
−∞ h(θ)l(t|θ)dθ

(3.1)

where h(θ) is a continuous prior pdf of θ, and l(θ|t) is the likelihood information based

on sample data. In order to keep reliability information updated by the increased

knowledge on the system under assessment, we use the failure rates data from the

OREDA database as prior information and onsite equipment real life reliability data

as the likelihood information. As we keep updating the failure rates of equipment,
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we gain increased knowledge about the equipment reliability.

a. Prior Distribution

Reliability data are usually provided as component failure modes and rates and

used as the input of risk assessment models, such as fault tree/event tree analysis.

Instead of point values, the input reliability data for this study are all presented as

distributions. Since the failure rates in the available databases or handbooks are from

generic data or similar plants, they are not significantly representative for the specific

case under assessment; but they are sound enough to be used as prior distribution

for the further Bayesian updating.

OREDA2002[59] is one of the major resources of reliability data for offshore reli-

ability analysis. OREDA2002 collects reliability data from multiple companies. The

variation from multi-samples is described by a gamma distribution with parameters

given in the OREDA2002 handbook. The gamma distribution of failure rates in

OREDA is used as prior distribution in this study:

h(λ;α, β) = λα−1β
−αe−

1
β

Γ(α)
(3.2)

b. Likelihood Information

If in a test or field observation in which there are n exactly same items, r distinct

times failure founded to or between t1 < t2 < · · · < tr, and n − r times normal

operating observation founded to censoring tc1, tc2, · · · , tc(n−r). The total time T to

detect r times failures of a single item is given by:

T =
r∑

i=1

ti +
n−r∑
i=1

tci (3.3)
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The likelihood function can be written with the exponential distribution assump-

tion on the time between failures:

l(t|λ) = Πn−r
i=1 λe

−λtiΠn−r
i=1 e

−λtci = λre−λT (3.4)

When plant testing data is available, the total testing time and component failure

number will be used to develop likelihood function for each component. However, it

is very common that this testing information is not available prior to a QRA. In the

absence of testing data, the plant real life reliability data is a suitable alternative and

can be used as likelihood information.

c. Posterior Distribution

Substituting equation 3.2 and equation 3.4 into Bayesian theory(equation 3.1),

the posterior distribution of failure rates is given by:

f(λ|T ) = e−λ(T+ 1
β
)λr+α−1∫∞

0
e−λ(T+ 1

β
)λr+α−1dλ

(3.5)

By the definition of gamma function:∫ ∞

0

λr+α−1eλ(T+ 1
β
)dλ =

Γ(α+ r)

(T + 1
β
)α+r

(3.6)

Finally, the posterior pdf of λ is rewritten as:

f(λ|T ) =
(T + 1

β
)α+r

Γ(α+ r)
λα+r−1e−λ(T+ 1

β
) (3.7)
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2. Case Study II - Flammable Liquid Overfilling from a Knockout Drum of the

Distillation Unit

The objective of this subsection is to apply a probabilistic quantitative risk assess-

ment on a knockout drum of the distillation unit, analyze the uncertainty associated

with the risk evaluation, reduce the uncertainty through Bayesian updating on the

component reliability data and guide process safety design.

In petroleum refineries, petrochemical and chemical plants, and natural gas

processing plants, continuous and steady-state fractional distillation is widely used.

Henry Kister, a distillation tower expert, analyzed recent trends in distillation tower

malfunctions from 900 cases, and found that half of the tower base malfunctions in-

volved high liquid levels[104]. The U. K. Health and Safety Executive reported that

overflow was the second leading cause in analysis of 718 loss of containment incidents

for vessels[105]. As part of a distillation unit, a knockout drum (KO drum) is an

empty vessel where vapor-liquid separation takes place. Many of the accidents and

unit upsets associated with KO drums negatively affect petroleum refineries. Liquid

overfilling incidents in vapor-liquid separation vessels, which carried to high conse-

quences, occurred in the past decades. For example, BPs Texas City Refinery incident

on March 23, 2005 occurred during the start-up, following a temporary outage of the

isomerization Unit (ISOM) and involved an explosion and fires which killed 15 work-

ers and injured more than 170 others. The incident was investigated exhaustively

in the final investigation report released on the CSB website. (http://www.csb.gov).

Kister similarly concluded that faulty level measurement and control are the primary

cause of tower high level events, as seen in BP ISOM incident[5, 106]. The case study

in this subsection focuses on a fault tree analysis on liquid overfilling a KO drum in a

distillation unit and uncertainty analysis associated with the probability estimation.
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Fig. 31. Process flow diagram of the distillation unit with a knockout drum.

a. Fault Tree Development

A simplified process flow diagram in Figure 31 is used to demonstrate the process.

A fault tree developed to analyze the overfilling of KO drum is shown in Figure 32

The Boolean logic expression of the top event is given by:

T = A
∩

{(F
∪

C)
∪

[(D
∪

C
∪

B)
∪

(A1
∩

A2
∩

E)]} (3.8)

where: T - Flammable liquid overfilling from the KO drum

A - LAH(Level Alarm High) fails

A1 - LAH1(Level Alarm High) fails

A2 - LAH2(Level Alarm High) fails

B - V-4 fails to open

C - Piping blockage
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Fig. 32. Fault tree of flammable liquid overfilling from knockout drum in the distilla-

tion unit.
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D - Pump 3 fails

E - LT(Level Transmitter) fails

F - F-6 fails to open

With the assumption that LAH, LAH1, and LAH2 share the same failure rate

data, the probability of flammable liquid overfilling from the KO drum, is given by:

Ptop−event = [(PF + PC) + (PD + PC + PB) + P 2
A × PE]× PA (3.9)

b. Uncertainty Reduction through Bayesian Updating

OREDA2002 and CCPS(Center for Chemical Process of Safety)[107] handbook

are the two major sources of the reliability data for this study. OREDA2002 data

was introduced in the previous section. CCPS handbook obtains reliability data by

conducting a literature search and an industry survey. The lognormal distribution

is chosen in the CCPS handbook due to the general shape, popularity among data

analysts, and ease of calculation[107]. The lognormal distribution parameter infor-

mation is insufficient in CCPS handbook. Therefore, different failure rate lognormal

distribution parameter σ values of Piping blockage and LT fails were assumed in a

set of experiments to study the impact of input uncertainty on output uncertainty.

Reliability data for all the basic events used as the first set of prior function in this

study are shown in Table XIII.

We assume that the Bayesian updating interval is two years in this case study.

Thus, the updating interval and component failure number detected within the two

years are the likelihood information for Bayesian updating. For two basic events,

Piping blockage and LT fails, the real life reliability data is not available. So their

prior distributions will be directly used as the input without any Bayesian updating.
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All the likelihood information is summarized in Table XIV.

Three continual updatings were conducted in the case study. The posterior

distribution after each updating is used as prior distribution for the next updating.

In doing so, all the available information about the component reliability is included

to update the failure rate distribution parameters. Through Bayesian updating, the

uncertainty is reduced. The prior distribution parameters, likelihood information,

and updated posterior distribution parameters of equipment used for this analysis

can be also found in Table XIV. And the Bayesian updating distribution graphs are

shown in Figure 33.
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Fig. 33. Prior distribution and posterior distributions for failure rates of LAH, pump,

V-4, and V-6.
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Bayesian Updating on Basic Event Probability Distribution Parame-

ters

The real life reliability data provided likelihood information to update the failure

rate distributions (Figure 33). As shown in Figure 33, after being updated, component

failure rate pdf curves changed their shape from the prior pdf curve and all the

updated curves shifted upon each updating. Through the updating, all of the three

new α
′
parameters of posterior gamma distributions of LAH failure rate, pump failure

rate, and V-6 failure rate were one order of magnitude higher than the prior α; All

the three new β
′
parameters of posterior gamma distributions of V-6 failure rate

and the last two times updated β
′
parameters of V-4 failure rate were one order

of magnitude lower than the prior β (Table XIV). Therefore, our knowledge on

component failure rates is enhanced and more accurate QRA results are expected

using renewed information.

Uncertainty in Top Event Probability Affected by Input Probability

Uncertainty

Due to insufficient testing data or real life reliability data for piping and LT,

their prior lognormal distributions were used directly as the inputs for the top event

probability calculation. In order to study the effect of input (basic events of piping

blockage and LT fails) uncertainty on the output (top event), different σ values of

the input lognormal distribution were used. As shown in Figure 34, at the same time

point, the 5th year since the prior evaluation, both mean value and standard deviation

of the top event probability changed as the σ value changed. In Figure 35, a plot

of upper, lower, mean and SD of top event probability distribution vs. different σ

values of the lognormal distributions of input basic events illustrates: when σ < 1, the

risk estimation is considered accurate as there is no significant difference between the

upper value line and lower value line; and the SD is converged to zero; when σ > 1,
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Fig. 34. Top event probabilities simulated using different σ values of failure rate dis-

tributions of piping blockage and LT fails. The basic event failure rate distri-

butions used to generate the graphs are the second posterior distributions at

the 5th year since the prior evaluation.
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Fig. 35. Uncertainty of the top event probability distribution vs. parameter σ of the

basic events (piping blockage and LT fails) probability distributions.

the upper-lower range increased, and the SD of the top event probability estimation

was increased by the raising σ values of two input lognormal distributions (piping

blockage and LT fails). Therefore, the uncertainty associated with the input of our

QRA has a significant impact on the top event probability estimation accuracy.

Probability Prediction Uncertainty Reduction by Bayesian Updating

Assuming the lifetime of this process unit is about 25 years, the probability

of flammable liquid release is changing over time due to the lifetime of equipment

performance. We calculated four predictions on flammable liquid release probability

throughout the system lifetime using the four sets of basic event probabilities dis-

tribution parameters. The four predictions were based on one prior information set,

and the other three posterior distributions parameter sets upon Bayesian updating

shown in Table XIV. Figure 36 shows the prediction on mean value of flammable

liquid release probability distribution over time with σ = 0 for the lognormal proba-
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Fig. 36. Predictions on mean value of flammable liquid release probability using con-

tinually updating failure rates distribution.

bility distribution of piping blockage and LT fails. The mean values of the probability

increased over time due to the deterioration of the equipment. Figure 37 shows the

uncertainty of the four predictions. The four mean value prediction curves overlapped

among each other (Figure 36), but the predictions based on updated failure rates in-

formation had lower uncertainty than the prediction based on the prior information

(Figure 37). The conclusion is that the accumulated information about component

failure rates increased our knowledge on the system performance and the uncertainty

of the estimation has been reduced.

D. Summary

At all levels, the understanding of uncertainty associated with risk of major chem-

ical industrial hazards should be enhanced. This Chapter aims to draw attention to
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Fig. 37. Uncertainty profiles associated with the four top event probability predictions.

uncertainty characterization and reduction using probabilistic approaches. The fault

tree analysis on case study II identified five minimum cut sets for the top event of

flammable liquid overfilling from knockout drum in the distillation unit. They are:

(LAH fails, V-6 fails to open), (LAH fails, piping blockage), (LAH fails, pump fails),

(LAH fails, V-4 fails to open), and (LAH fails, LT fails). LAH fails was identified as

the most critical issue to initiate a flammable liquid overfilling. This FTA conclusion

confirms that level measurement and control is a primary cause for a high level inci-

dent. The FTA results showed that the probability of this top event increases over

time. The uncertainty analysis revealed that: 1) the aleatory uncertainty of failure

rates from various data resources can be efficiently characterized by probability dis-

tributions, and further used to propagate the output uncertainty through a fault tree

analysis model. 2) uncertainty of inputs (basic event probabilities) has a significant

impact on the uncertainty of output (top event probability) in a QRA. In this study,
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uncertainty analysis proves that more information on the piping blockage and level

transmitter failure is needed to improve the accuracy of further QRA; 3) uncertainty

of the top event probability prediction is reduced by Bayesian updating of the com-

ponent failure rates using real life reliability data at the absence of component testing

data.

The approaches presented in this Chapter, Monte Carlo simulations to get a

probability distribution instead of point values and Bayesian updating using real life

reliability data to enhance our knowledge on the system continually, provide industry

a tool to characterize and reduce uncertainty for improving overall mishap probability

prediction.
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CHAPTER IV

COMPONENT INSPECTION INTERVAL OPTIMIZATION

A. Introduction

Preventive maintenance is undertaken regularly at predetermined intervals in

order to reduce or eliminate accumulated deterioration of the system[108]. In most of

the current maintenance practices, the frequency of testing, inspection, and repair is

determined by the component maintenance history. Scheduled component inspections

play an important role in maintenance program because they provide a means to

discover dormant failures and/or degradation before it leads to catastrophe. As with

other maintenance activities, it is crucial to determine the appropriate inspection

schedule to meet certain performance expectations of the system. From an operational

risk point of view, the inspection schedule should be able to detect system degradation

before process variables, e.g., temperature, pressure, and level, exceed desired bounds

and abnormal events occur.

It is widely recognized that the decision on inspection scheduling is a series of

compromises among performance, risk, cost, and quality attributes, etc. In con-

ventional approaches to inspection planning, various inspection criteria, such as fa-

tigue lives, member criticality, stress levels, past inspection data, previous experi-

ence, etc., are combined qualitatively to produce the optimal inspection plan[109].

Reliability/risk-based inspection planning techniques were developed in a quantita-

tive manner through the use of probabilistic functions which take into account the un-

certainties associated with the parameters that determine component reliability[110,

111, 112, 113]. There are several industrial guidelines and techniques, such as API 580

- Risk-based Inspection in petroleum industry[114] and Reliability Centered Mainte-
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nance (RCM)[115], to help make decisions on the inspection intervals. Cost is usually

treated as a constraint. However, in practical risk assessment, overall risk and inspec-

tion cost are conflicting objectives. It is more reasonable to perform a multiobjective

optimization that rigorously considers these objectives.

This Chapter deals with component inspection interval optimization of the oil/

gas separation system in offshore plants described in Chapter II. In this Chapter,

we propose a set of Pareto optimal solutions focusing on the inspection scheduling

of pump, control valve, and level transmitter in the system. A numerical pareto

optimization technique based on an evolutionary algorithm and scaler method in

which a scaling factor is used to represent the weights of trade-off objectives are

used in this Chapter. Pareto optimal curves were generated to represent the optimal

inspection budget and scheduling. The results show that both methods are favorable

to identify the pareto set of the problem prior to a final decision on what component

inspection interval of the system should be selected.

B. Literature Review

As the name suggests, a multiobjective optimization problem (MOOP) deals

with a vector of objective functions to be minimized or maximized. In single objective

optimization, the goal is to find a solution or solutions that optimize the sole objective

function. Decision space is the only search space when solving a single objective

optimization problem. However, a multiobjective optimization problem deals with

two search spaces, decision space and objective space. This is one of the striking

differences between single objective and multiobjective optimization problems[116].

These two spaces are linked by a unique mapping that is often nonlinear. Figure

38 illustrates the two search spaces in a two objective functions optimization and a
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Fig. 38. Representation of the decision space and the corresponding objective space.

mapping between them. A multiobjective optimization problem can be stated as:

minJ(x,p)

s.t.g(x,p) ≤ 0

h(x,p) = 0

xi,l ≤ xi ≤ xi,u(i = 1, 2, 3, ..., n) (4.1)

where J is the objective function vector. x is the decision vector and p is the fixed

parameter vector. g and h are the inequality and equality constraints. xi,l and xi,u

are the lower and upper boundaries of the ith design variable.

Pareto optimality was first introduced into engineering and sciences in 1970s by

Stadler[117]. The Pareto-optimal set is a non-dominated set in which the members

are not dominated by any member of a set of solutions[116]. If the non-dominated

set is valid for the entire feasible search space, this non-dominated set is the global

Pareto-optimal set. Otherwise, a local Pareto-optimal set is defined as:

If for every member x in a set P there exists no solution y (in the neighborhood of x

such that ∥y− x∥∞ ≤ ϵ, where ϵ is a small positive number) dominating any member
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Fig. 39. Pareto-optimal sets are marked in the bold continuous curves for four different

scenarios in a two objectives optimization problem.

of the set P , then solutions belonging to the set P constitute a locally Pareto-optimal

set [118, 119].

On many occasions, the Pareto-optimal set refers to the global Pareto-optimal

set since solutions of this set are not dominated by any feasible member of the search

space so that they are optimal solutions of the multiobjective optimization problem.

Figure 39 illustrates the continuous Pareto curves in four different scenarios for a two

objective optimization problem. The solutions in the Pareto-optimal set are all on a

particular edge of the feasible search region.

In the past decades, classical methods for solving multiobjective functions have

been developed. Cohon[120] classified those algorithms into two types:

• Generating methods: a few non-dominated solutions are generated without
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a priori knowledge of relative importance of each objective for the decision-

makers.

• Preference-based methods: some known preference for each objective is used in

this method.

The simplest and most widely used method for multiobjective optimization is

the weighted sum method. This method belongs to Cohon’s preference-based method

category because it uses perference information in the optimization process. Weighted

sum method transfers a multiobjective optimization problem into an aggregated single

objective optimization problem weighting each individual objective. The aggregated

objective function is given by:

Jweightedsum = w1J1 + w2J2 + w3J3...+ wnJn (4.2)

where wi(i = 1, 2, 3, ..., n) is a weighting factor for the ith objective function Ji. For

a single objective formulation, the weights are selected in proportion to the relative

importance of each individual objective in the problem. Each point on the Pareto

curve is an optimization solution corresponding to a particular set of values for the

weights. The weighted sum method adjusts the weights systematically in order to

traverse the Pareto curve.

Initial work on weighted sum method can be found in Zadeh’s publication in

1963[121]. The advantage of this method is due to its simplicity. Its concept is

intuitive and easy to implement. This method guarantees finding the entire Pareto-

optimal solution set for problems having a convex Pareto-optimal front. However, the

disadvantages were also discussed in a number of studies[122, 123, 124]. First of all,

the Pareto-optimal solutions are not uniformly distributed. It is difficult to set the

weight vectors to obtain a Pareto-optimal solution in a desired region in the objec-
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tive space. Moreover, weighted sum method fails to find the Pareto-optimal solution

in the case of an non-convex objective space. In AWS method, additional inequal-

ity constraints are imposed in the usual weighted sum method. The optimization is

performed only in a newly-defined feasible region where more exploration is needed.

The AWS method produces well-distributed solutions and finds Pareto-optimal so-

lutions in non-convex regions. However, AWS method is only applied in the case of

two objective functions which refers to bi-objective adapted weighted sum method.

The same authors published adapted weighted sum method for multiobjective op-

timization in 2006[125]. Instead of inequality constraints in bi-objective problem,

additional equality constraints are imposed to connect the pseudo-nadir point and

the expected locations of Pareto-optimal solutions on the piecewise linearized plane

in the objective space. Suboptimizations are performed for further refinement along

equality constraint lines to determine solutions near desired positions, which leads to

a well-distributed mesh representation of the Pareto.

The ϵ-Constraint method was proposed by Marglin[126] in 1967. Haimes et

al.[127] in 1971 suggested reformulating MOOP in order to alleviate the difficulties

in solving non-convex objective spaces in weighted sum method, by just keeping one

of the objectives and restricting the rest of them within user-supplied values:

minJµ(x, p)

s.t.Jm(x, p) ≤ ϵm

g(x, p) ≤ 0

h(x, p) = 0

xi,l ≤ xi ≤ xi,u(i = 1, 2, 3, ..., n) (4.3)
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where ϵm represents an upper bound of the value of Jm but not necessarily a small

value close to zero. The advantage of ϵ-Constraint method is that it can be applied

for any arbitrary problem either having convex or non-convex objective spaces. On

the other hand, the disadvantage of this method depends on how much information

is obtained from the user. As the number of objectives increases, there are more

elements in ϵ vector so that more information is required from users. In addition,

elements in ϵ vector have to be chosen within the minimum or maximum values of

the individual objective function. Otherwise, there exists no feasible solution to the

optimization problem.

The goal programming methods were first introduced in single objective linear

programming problem by Charnes et al. in 1955[128]. After the work of Lee[129],

Ignizio[130, 131], and many others, goal programming methods became more popular.

Romero[132] has presented a comprehensive overview of the goal programming tech-

niques and their application in engineering[133, 134]. In goal programming method,

the goal is to to find solutions which attain a predefined target for one or more ob-

jective functions. If there exists a solution with the desired target, the task of goal

programming is to identify this particular solution. On the other hand, if there is no

solution which achieves predetermined targets in all objective functions, the task is

to find solutions which minimize the deviations from the predefined targets.

Interactive methods are another alternative. As some Pareto-optimal solutions

are found, their location and interactions are analyzed. Some of the most popular in-

teractive methods include: interactive surrogate worth trade-off (ISWT) method[135],

step method[136], reference point method[137], guess method[138], nondifferentiable

interactive multi-objective bundle-based optimization system (NIMBUS) approach[139],

and light beam search method[140].

There are some other classical methods to solve multiobjective optimization prob-
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lems. Weighted Tchebycheff metric methods[119], Benson’s method[141, 142], the

value function method[119], etc. All the classical methods described above are based

on a similar premise, namely, converting a multiobjective optimization problem into a

sequence of single objective optimization problem. However, difficulties are observed

in those methods[116]:

• One simulation in the classical algorithm run can find only one Pareto-optimal

solution.

• Some classical algorithms fail to find all Pareto-optimal solutions in non-convex

multiobjective optimization problems.

• All classical algorithms require some prior knowledge.

Thinking on the disadvantages stated above, it would not be surprising that

a number of non-classical, unorthodox and stochastic search and optimization algo-

rithms have been developed over the past decades. Evolutionary algorithms (EAs) for

MOOP are inspired by biological evolution such as inheritance, mutation, selection,

and crossover, etc, and drives the search towards an optimal solution in a process

which mimics nature’s evolutionary principles. Over the last decade, genetic algo-

rithms (GAs) have been extensively used in science, commerce and engineering. In

GAs, a population of abstract representations (called chromosomes or the genotype)

of candidate solutions (called phenotypes) to an optimization problem evolves toward

better solutions. Genetic algorithm was first introduced by John Holland[143]. The

genetic algorithms can be found in several textbooks[143, 144, 145, 146, 147, 148], and

a more comprehensive description in a compiled handbook[149]. The major journals

that are now dedicated to promote research on GA include: ’Evolutionary Computa-

tion Journal’ published by MIT Press, ’Transactions on Evolutionary Computation’
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published by IEEE and ’Genetic Programming and Evolvable Machines’ published

by Kluwer Academic Publishers.

Several widely used evolutionary algorithms are listed here:

• Vector Evaluated Genetc Algorithm (VEGA)[150] is a straightforward extension

of a single objective GA for multiobjective optimization. In a MOOP which

has N objectives, VEGA divides GA populations into N equal subpopulations

randomly at every generation. Fitness is assigned to each subpopulation based

on different objective function. In doing so, each of the N objectives is used to

evaluate some members in the population.

• Weighted-Based Genetic Algorithm (WBGA)[151] is a weighted-based algo-

rithm. Each objective function is multiplied by a weighting factor. The fitness

of a solution is calculated based on the weighted objective function values. How-

ever, each individual in a GA population is assigned a different weighting vector.

In this way, one simulation run can find multiple Pareto-optimal solutions.

• Multiple Objective Genetic Algorithm (MOGA)[152] is the first algorithm to

emphasize non-dominated solutions and meanwhile maintains diversity in the

non-dominated solutions. The fitness value is assigned to each solution in the

population. That is the difference of the MOGA from a classical GA, but the

rest is the same.

• Non-dominated Sorting Genetic Algorithm (NSGA)[144, 153] is one of the first

evolutionary algorithms. The fitness assignment procedure initiates from the

first non-dominated set and successively proceeds to dominated sets. The main

advantage of an NSGA is that fitness is assigned according to non-dominated

sets. Therefore, the selection procedure in an NSGA progresses towards the
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Pareto-optimal front. Moreover, performing sharing in the design space can

find phenotypically diverse solutions when using NSGAs. However, criticisms

on NSGA were stated by Deb et al.[154]: high computational complexity of

non-dominated sorting, lack of elitism, and need for specifying the sharing pa-

rameter.

• Niched-Pareto Genetic Algorithm (NPGA)[155] was proposed based on the non-

domination concept. VEGAs, NSGAs, and MOGAs use proportionate selection

method for the selection operator, while NPGAs use binary tournament selec-

tion as they have better growth and convergence properties compared to pro-

portionate selction.

• Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)[154] uses an ex-

plicit diversity-preserving mechanism instead of using only an elite-preservation

strategy as in algorithms described above. The crowded comparison selection

operator in NSGA-II selects the best solutions in a mating pool created by

combining the parent and child populations. NSGA-II becomes more popular

due to its low computational requirements, elitist approach, and parameter-less

sharing approach.

• Strength Pareto Evolutionary Algorithm (SPEA)[156] is also an elitist evolu-

tionary algorithm which explicitly maintains a fixed size of external population.

This population stores a set of non-dominated solutions and the solutions are

compared to newly found non-dominated solutions at every generation. The

resulting non-dominated solutions are preserved.

• Pareto-Archived Evolution Strategy (PAES)[157] is a (1+1) evolution algorithm

which employs local search and uses a reference archive of previously found
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solutions for a place in an elite population. Elitism is ensured by the ’plus’

strategy and the continuous update of an external archive with better solutions.

Comparison of multi-objective evolutionary algorithms can be found in Zitzler,

Deb and Thiele’s studies[158, 159], Veldhuizen’s study[160], Knowles and Corne’s

study[157], Deb, Agrawal, Pratap and Meyarivan’s study[154], etc.

C. Case Study III - Component Inspection Interval Optimization in the Oil/Gas

Separator

In this Section, we perform an optimization study on component inspection inter-

val determination focusing on level control in an oil/ gas separator system. As liquid

overflow has been considered one of the major contributors to incidents involving the

vapor-liquid separation system, component inspection interval should be optimized

to reduce the risk of the oil/gas separator overflow. There are two objective functions

in the inspection interval optimization problem in this study; one is the operational

risk function in form of probability of separator overflow, and the other is the annual

component inspection cost function. There are multiple components involved in the

same system. Given the same total amount of annual inspection budget, multiple

component inspection scheduling plans could be proposed but only one of them is on

the Pareto curve.

1. Optimization Problem Formulation

As mentioned earlier, the objective functions in this multiobjective optimization

problem include risk function that is essentially defined in equation 2.20 and cost

function. The probability of a component becoming abnormal, pn, can be obtained

by simulation using component failure rate data and be used as a set of constant



113

parameters in the optimization. The probability of overflow when the component n

goes abnormal is function of component inspection interval. Variable In is defined

as In = 365×24
Tn

, where Tn is the actual inspection interval. Eight different inspection

intervals, half daily, daily, weekly, monthly, semi-annually, annually, every two years,

and every three years, were used as the inputs for probability simulation to calculate

the probability of overflow due to individual component abnormal events. Therefore,

function qIn in equation 2.20 can be obtained by regress of those simulation results to

obtain the relationship between qIn and In. Therefore, the risk function is given by:

f1(I) =
3∑

n=1

pnqIn (4.4)

Denote component unit inspection cost as Cn, the cost function is given by:

f2(I) =
3∑

n=1

CnIn (4.5)

Generally speaking, inspection can be categorized as operator inspection and me-

chanical inspection. Operator inspection has no impact on failure rate; it is intended

for detecting abnormal event. The cost for operator inspection is usually cheap; it

does not include the cost for mechanical checks and repairs. However, mechanical

inspection inspection does affect failure rate, and it is usually expensive. The cost

function in this study refers to operator inspection only.

The operator inspection cost includes only the actual labor and material required

to inspect plant equipment. It does not include the impact of inspection or mainte-

nance on availability, production capacity, operating costs, product quality and the

myriad of other factors that limit plant effectiveness. The component inspection unit
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cost are approximately given from cost history as:

C1:pump = 141.5$/task (4.6)

C2:CV = 107.5$/task (4.7)

C3:LT = 100$/task (4.8)

The pn is the probability of nth component becoming abnormal. The pns for all

components in the case study were computed using reliability data and listed here:

p1:pump = 0.93 (4.9)

p2:CV = 0.33 (4.10)

p3:LT = 0.14 (4.11)

In order to obtain the qns through regression, eight different inspection intervals

for each component in this separator system, pump, CV and LT, are tested: half

day, one day, one week, one month, half year, one year, two years and three years.

The simulation results are shown in Figures 40,41,42. The coefficients and r-square

values of the exponential regression are summarized in Table XV. Therefore, the first

objective function, the probability of separator overflow can be written as:

f1(I) = 0.93(0.06211e−0.003565∗141.5I1) + 0.33(0.5434e−0.0001924∗107.5I2 +

0.4534e−5.674e−6∗107.5I2) + 0.14(0.8047e−9.283e−5∗100I3) (4.12)

The second objective function, the total annual component inspection cost is

given by:
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Fig. 40. Overflow probability due to individual pump abnormal event regression on

annual individual pump inspection cost.

Fig. 41. Overflow probability due to individual CV abnormal event regression on an-

nual individual CV inspection cost.
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Fig. 42. Overflow probability due to individual LT abnormal event regression on an-

nual individual LT inspection cost.
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f2(I) = 141.5I1 + 107.5I2 + 100I3 (4.13)

2. Optimization Results and Discussion

In the weighted sum method (WSM), a weighting factor, α, is introduced to

describe the weights of objective functions under consideration in the optimization.

Thus, this multiobjective optimization problem is transformed to a single objective

problems:

f = α(0.93(0.06211e−0.003565∗141.5I1) + 0.33(0.5434e−0.0001924∗107.5I2 +

0.4534e−5.674e−6∗107.5I2) + 0.14(0.8047e−9.283e−5∗100I3)) +

(1− α)(141.5I1 + 107.5I2 + 100I3) (4.14)

The optimization problem is formulated in AMPL[161] and solved using IPOPT[162].

The α value starts from 0.001 and is adjusted at an increment of 0.001 up to 1, and

thus 1000 data points were computed to generated the Pareto curve. This Pareto

curve is presented in Figure 43.

Kanpur Genetic Algorithms Laboratory developed NSGA - II: an evolutionary al-

gorithm for solving multiobjective optimization problem is used in this study. Pareto

curves at different generations generated using NSGA -II in C language are shown in

Figure 43. The simulation data points and a Pareto curve generated based on these

points is also shown in Figure 43.

The shape of the curves represents the expected trade-off situation where the

annual total component inspection cost is to be judged against operational risk. The

Pareto curves by both NSGA-II at 500 generation and WSM show a smooth behavior.
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Fig. 43. Pareto curves generated using generic algorithm at different generations and

using the WSM.

The lower generation Pareto curves by NSGA-II, as well as all the simulation results

in Figure 43, are above the NSGA-II 500 gen and the WSM Pareto curves. However,

NSGA-II only achieves the local optimal as it failed to find the optimal solutions in the

entire feasible search space. The WSM Pareto curve and the 500 gen NSGA-II Pareto

curve overlap with each other before the total annual inspection cost exceeds around

200, 000$/yr. Beyond this budget, the WSM optimal solutions are below NSGA-

II Pareto curve. The risk reduction rate before the overflow probability decreased

to 0.1 is dramatically larger than that afterwards. Increase the inspection budget

from ∼ 175$/yr to ∼ 14, 507$/yr and the probability of separator overflow will be

reduced by about 2 times from 0.48 to 0.25. A further decrease of the probability from

0.25 to 0.1 requires an increase in the budget of 10 times more to ∼ 114, 924$/yr.

However, the risk reduction as a function of increasing inspection budget is relatively



120

slow after the overflow probability is reduced below 0.1. Doubling the inspection

budget to ∼ 231, 023$/yr only reduces the overflow probability from 0.1 to 0.05. The

total annual inspection has to be increased to ∼ 860, 261$/yr to further decrease the

overflow probability to 0.002. The functions and design variables associated with each

solution on the WSM Pareto curve were plotted in Figures 44, 45, 46, and 47. A single

point in function space Figure 44 has a unique mapping to a single point in Figures

45,46,and 47 respectively. The risk is reduced while the inspection intervals of all three

components are monotonically decreasing. However, the inspection intervals for three

components have different sensitive zone. Decreasing pump inspection interval has a

linear pattern impact on risk reduction. Inspection interval within 50hr ∼ 10hr for

CV is the most sensitive range for risk reduction as in this range risk reduction has

sharper slope than the out of this range. Decreasing the LT inspection interval has

larger impact on the risk reduction when the probability of overflow is above 0.25.

Below 0.25, the probability of overflow is reduced at a slower pace as the LT inspection

interval decreases. In order to keep probability of overflow around or below 0.1, the

inspection intervals of all three components need to be tuned up simultaneously for

better cost effective inspection scheduling.

D. Summary

This Chapter has presented mathematical modeling for assessing the operational

risk, focusing on overflow scenario in oil/gas separation system, and optimizing the

component inspection interval in the same system. The weighted sum method and

evolutionary algorithms were utilized to solve the multiobjective optimization prob-

lem. WSM achieved better optimal solutions in an oil/gas separation system, whereas

the evolutionary algorithm only found the local optimal solutions of the inspection
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Fig. 44. The WSM Pareto-optimal solutions in function space.

Fig. 45. Design variable I pump inspection interval associated with the WSM Pare-

to-optimal solutions.
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Fig. 46. Design variable II CV inspection interval associated with the WSM Pareto-op-

timal solutions.

Fig. 47. Design variable III LT inspection interval associated with the WSM Pare-

to-optimal solutions.



123

interval optimization problem in this MOOP case study. The results of the opti-

mization process yield an immediate choice of component inspection interval sets for

whatever relative weighting is considered as the most appropriate one for the actual

design problem by the final decision makers. The pump was identified as the highest

priority component on the inspection interval management for risk reduction in the

oil/gas separation system in the case study.
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CHAPTER V

SUMMARY AND RECOMMENDATION

The main subject of this dissertation is to improve the current quantitative risk

assessment approaches and develop a methodology for dynamic operational risk as-

sessment in oil/gas and chemical industries. The previous three chapters following the

introduction chapter are self-contained but relative in the same vein of the innovation

in quantitative risk assessment research.

Chapter II is the main contribution of this dissertation. This chapter develops a

complete conceptual DORA framework for quantitative risk assessment of dynamic

processes in oil/gas and chemical industries. This methodology can be implemented as

an ongoing model to guide implementation and continual updating of safety program

components such as risk-based and cost-effective monitoring, testing, maintenance,

reliability assessment, component replacement timing, shutdown times, and timing

of other operational decisions including selection of minimal reliability criteria dur-

ing maintenance shutdowns. The DORA framework emphasizes the importance to

identify hazards, scenarios and component failure mode combinations in the system

in a sequential order. This preliminary analysis on hazardous scenarios and compo-

nent performance consists of the logic structure behind DORA probabilistic modeling.

DORA probabilistic modeling design is the most novel contribution in this chapter.

It well considers the time-dependent factors in a dynamic process, and models the

process using a generic algorithm which is not limited to the currently used Markovian

approaches. The component performance is not modeled by any stochastic models

with many restrictions, such as a Markovian chain or a Semi-Markovian chain with-

out the restriction on exponential distribution on sojourn time. On the contrary,

any component performance process, including the ones carry Markovian properties,
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can be modeled using DORA probabilistic modeling proposed in this dissertation.

Simultaneous component failures also can be detected using the stochastic simulation

in DORA probabilistic modeling. Furthermore, even though the author is not the

first one to propose the integration of stochastic modeling on component performance

and dynamics modeling on the physical process, the way to achieve this integration

is an innovation. At the steady state, the evolution of process variable is governed by

the same dynamics equation set. However, when the component precursor exists, the

trajectory of process variable does not follow the dynamics equations for steady state

anymore. DORA probabilistic modeling monitors the component precursors and sim-

ulates the probability of operation out of control based on the information predicted

when and only when component abnormal event occurs. In doing this, computa-

tional space is saved. This advantage will be more revealed when DORA is applies to

a complex system. Matlab is the software used for programming in this dissertation

for the level control in oil/gas separator case study. However, since the system in the

case study is relatively small compared to what this method could be apply for, the

programming needs to be improved to achieve faster computation speed for analysis

on more complicated systems. Therefore, recommendations on the future work for

the DORA probabilistic modeling include the application on a complex system and

coding the algorithm using a more advanced computer language to save computation

time.

Uncertainty is an emerging topic in quantitative risk assessment research area

nowadays. Throughout the whole dissertation, uncertainty associated with a QRA

is considered when developing any quantitative modeling in DORA framework. For

example, the inputs of DORA probabilistic modeling are component reliability data

in form of distributions instead of point values, the analysis on uncertainty associ-

ated with selecting distribution type for the DORA probabilistic modeling inputs,



126

and the uncertainty treatment in the consequence modeling in DORA framework,

etc. Algorithm was designed for uncertainty characterization when one applies in-

cident consequence modeling during the implementation of DORA framework. It

was discussed in Chapter II. A more comprehensive discussion on uncertainty char-

acterization and reduction in quantitative risk assessment is discussed in Chapter III.

The contribution of the author in this area is that a Bayesian approach for uncer-

tainty reduction using plant specific real time reliability data for Bayesian updating

is proposed to enhance our knowledge on the system continually, providing industry

a practical tool to characterize and reduce uncertainty for improving overall mishap

probability prediction.

Chapter IV is an extension of Chapter II. Cost-benefit analysis is one of the steps

composing DORA framework and is illustrated in Chapter IV by a case study. The

work in Chapter IV shows how one can implement DORA probabilistic modeling for

practical decision making. The recommendation for further optimization work is to

include the cost due to unavailability of the component, the potential profit loss on

the shutdown time due to any repair activities, and the cost due to repair if any

abnormal event is detected, etc. in order to better formulate the cost function. In

this case, excessively more industrial data may needed for the future work.
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zürich, Switzerland, 1999, dissertation ETH No. 13398.

[159] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary

algorithms: Empirical results,” Evolutionary Computation, vol. 8, no. 2, pp.

173–195, 2000.

[160] D. Veldhuizen, “Multiobjective evolutionary algorithms: Classifications, analy-

sis, and new innovations,” Air Force Institute of Technology, Dayton, OH, Tech.

Rep. AFIT/DS/ENG/99-01, 1999.

[161] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for

Mathematical Programming. Belmont, CA: Duxbury Press, 2002.

[162] A. Wchter and L. T. Biegler, “On the implementation of a primal-dual inte-

rior point filter line search algorithm for large-scale nonlinear programming,”



146

Mathematical Programming, vol. 106, no. 1, pp. 25–27, 2006.



147

APPENDIX A

THE WSM PARETO CURVE

alpha risk cost, $/yr T1, h T2, h T3, h

0.001 0.499 7.900E-04 4380000000 4380000000 2920000000

0.002 0.499 7.700E-04 4380000000 4380000000 2920000000

0.003 0.499 7.800E-04 4380000000 4380000000 2920000000

0.004 0.499 8.000E-04 4380000000 4380000000 2920000000

0.005 0.499 8.100E-04 4380000000 4380000000 2920000000

0.006 0.499 8.300E-04 4380000000 4380000000 2920000000

0.007 0.499 8.500E-04 4380000000 4380000000 2920000000

0.008 0.499 8.700E-04 4380000000 4380000000 2920000000

0.009 0.499 8.900E-04 2920000000 4380000000 2920000000

0.01 0.499 9.100E-04 2920000000 4380000000 2920000000

0.011 0.499 9.400E-04 2920000000 4380000000 2920000000

0.012 0.499 9.700E-04 2920000000 4380000000 2920000000

0.013 0.499 1.010E-03 2920000000 4380000000 2920000000

0.014 0.499 1.050E-03 2190000000 4380000000 2920000000

0.015 0.499 1.090E-03 2190000000 4380000000 2920000000

0.016 0.499 1.150E-03 2190000000 2920000000 2920000000

0.017 0.499 1.210E-03 1752000000 2920000000 2920000000

0.018 0.499 1.280E-03 1752000000 2920000000 2920000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.019 0.499 1.360E-03 1460000000 2920000000 2920000000

0.02 0.499 1.450E-03 1460000000 2920000000 2920000000

0.021 0.499 1.560E-03 1251428571 2920000000 2920000000

0.022 0.499 1.700E-03 1095000000 2920000000 2920000000

0.023 0.499 1.860E-03 973333333 2920000000 2920000000

0.024 0.499 2.040E-03 796363636 2920000000 2920000000

0.025 0.499 2.270E-03 730000000 2920000000 2920000000

0.026 0.499 2.550E-03 625714286 2920000000 2920000000

0.027 0.499 2.900E-03 515294118 2920000000 2920000000

0.028 0.499 4.300E-04 4380000000 8760000000 8760000000

0.029 0.499 4.400E-04 4380000000 8760000000 8760000000

0.03 0.499 4.600E-04 4380000000 8760000000 8760000000

0.031 0.499 4.700E-04 4380000000 8760000000 8760000000

0.032 0.499 4.900E-04 4380000000 8760000000 8760000000

0.033 0.499 5.200E-04 4380000000 8760000000 8760000000

0.034 0.499 5.400E-04 4380000000 8760000000 8760000000

0.035 0.499 1.590E-03 1251428571 2920000000 2920000000

0.036 0.499 1.690E-03 1095000000 2920000000 2920000000

0.037 0.499 1.820E-03 973333333 2920000000 2920000000

0.038 0.499 1.980E-03 876000000 2920000000 2920000000

0.039 0.499 2.190E-03 796363636 2920000000 2920000000

0.04 0.499 2.500E-03 625714286 2920000000 2920000000

0.041 0.499 3.010E-03 515294118 2920000000 2920000000

0.042 0.499 4.090E-03 350400000 2920000000 2920000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.043 0.499 7.410E-03 182500000 2920000000 2920000000

0.044 0.499 2.060E-03 673846154 8760000000 8760000000

0.045 0.499 1.112E-02 118378378 2920000000 2920000000

0.046 0.499 4.209E-02 29594595 8760000000 8760000000

0.047 0.498 4.343E+00 285444 8760000000 8760000000

0.048 0.497 1.054E+01 117587 2920000000 2920000000

0.049 0.496 1.661E+01 74610 8760000000 8760000000

0.05 0.495 2.259E+01 54883 2920000000 2920000000

0.051 0.494 2.843E+01 43601 2920000000 2920000000

0.052 0.493 3.417E+01 36276 2920000000 2920000000

0.053 0.492 3.981E+01 31138 2920000000 2920000000

0.054 0.491 4.535E+01 27334 2920000000 2920000000

0.055 0.490 5.079E+01 24405 2920000000 2920000000

0.056 0.489 5.614E+01 22079 2920000000 2920000000

0.057 0.488 6.140E+01 20187 2920000000 2920000000

0.058 0.487 6.658E+01 18617 2920000000 2920000000

0.059 0.486 7.167E+01 17294 2920000000 2920000000

0.06 0.486 7.669E+01 16164 2920000000 2920000000

0.061 0.485 8.162E+01 15187 2920000000 2920000000

0.062 0.484 8.648E+01 14333 2920000000 2920000000

0.063 0.483 9.127E+01 13581 2920000000 2920000000

0.064 0.483 9.599E+01 12914 2920000000 2920000000

0.065 0.482 1.006E+02 12317 2920000000 2920000000

0.066 0.481 1.052E+02 11781 2920000000 2920000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.067 0.481 1.097E+02 11296 2920000000 2920000000

0.068 0.480 1.142E+02 10855 2920000000 2920000000

0.069 0.479 1.186E+02 10453 2920000000 2920000000

0.07 0.479 1.229E+02 10084 2920000000 2920000000

0.071 0.478 1.272E+02 9744 2920000000 2920000000

0.072 0.478 1.314E+02 9431 2920000000 2920000000

0.073 0.477 1.356E+02 9141 2920000000 2920000000

0.074 0.477 1.397E+02 8871 2920000000 2920000000

0.075 0.476 1.438E+02 8620 2190000000 2920000000

0.076 0.476 1.478E+02 8386 2190000000 2920000000

0.077 0.475 1.518E+02 8167 2190000000 2920000000

0.078 0.475 1.557E+02 7961 2190000000 2920000000

0.079 0.474 1.596E+02 7767 2190000000 2920000000

0.08 0.474 1.634E+02 7585 2190000000 2920000000

0.081 0.473 1.672E+02 7413 2190000000 2920000000

0.082 0.473 1.710E+02 7251 8760000000 8760000000

0.083 0.473 1.747E+02 7097 8760000000 8760000000

0.084 0.472 1.783E+02 6951 8760000000 8760000000

0.085 0.472 1.819E+02 6813 8760000000 8760000000

0.086 0.471 1.855E+02 6681 8760000000 8760000000

0.087 0.471 1.891E+02 6555 8760000000 8760000000

0.088 0.471 1.926E+02 6436 8760000000 8760000000

0.089 0.470 1.961E+02 6322 8760000000 8760000000

0.09 0.470 1.995E+02 6213 8760000000 8760000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.091 0.470 2.029E+02 6108 8760000000 8760000000

0.092 0.469 2.063E+02 6008 8760000000 8760000000

0.093 0.469 2.096E+02 5913 8760000000 8760000000

0.094 0.469 2.130E+02 5821 8760000000 8760000000

0.095 0.468 2.162E+02 5733 8760000000 8760000000

0.096 0.468 2.195E+02 5648 8760000000 8760000000

0.097 0.468 2.227E+02 5566 8760000000 8760000000

0.098 0.467 2.259E+02 5488 4380000000 8760000000

0.099 0.467 2.290E+02 5412 4380000000 8760000000

0.1 0.467 2.322E+02 5339 4380000000 8760000000

0.101 0.467 2.353E+02 5268 4380000000 8760000000

0.102 0.466 2.384E+02 5200 4380000000 8760000000

0.103 0.466 2.414E+02 5135 4380000000 8760000000

0.104 0.466 2.444E+02 5071 4380000000 8760000000

0.105 0.466 2.474E+02 5010 4380000000 8760000000

0.106 0.465 2.504E+02 4950 4380000000 8760000000

0.107 0.465 2.533E+02 4893 4380000000 8760000000

0.108 0.465 2.563E+02 4837 4380000000 8760000000

0.109 0.465 2.592E+02 4783 4380000000 8760000000

0.11 0.464 2.620E+02 4730 4380000000 8760000000

0.111 0.464 2.649E+02 4679 4380000000 8760000000

0.112 0.464 2.677E+02 4630 4380000000 8760000000

0.113 0.464 2.705E+02 4582 4380000000 8760000000

0.114 0.463 2.733E+02 4535 4380000000 8760000000



152

alpha risk cost, $/yr T1, h T2, h T3, h

0.115 0.463 2.761E+02 4490 4380000000 8760000000

0.116 0.463 2.788E+02 4445 4380000000 8760000000

0.117 0.463 2.816E+02 4402 4380000000 8760000000

0.118 0.463 2.843E+02 4360 4380000000 8760000000

0.119 0.462 2.870E+02 4320 4380000000 8760000000

0.12 0.462 2.896E+02 4280 4380000000 8760000000

0.121 0.462 2.923E+02 4241 4380000000 8760000000

0.122 0.462 2.949E+02 4203 4380000000 8760000000

0.123 0.462 2.975E+02 4167 4380000000 8760000000

0.124 0.461 3.001E+02 4131 4380000000 8760000000

0.125 0.461 3.027E+02 4095 4380000000 8760000000

0.126 0.461 3.052E+02 4061 1460000000 2920000000

0.127 0.461 3.078E+02 4028 1460000000 2920000000

0.128 0.461 3.103E+02 3995 1460000000 2920000000

0.129 0.461 3.128E+02 3963 1460000000 2920000000

0.13 0.460 3.153E+02 3932 1460000000 2920000000

0.131 0.460 3.177E+02 3901 1460000000 2920000000

0.132 0.460 3.202E+02 3871 1460000000 2920000000

0.133 0.460 3.226E+02 3842 1460000000 2920000000

0.134 0.460 3.251E+02 3813 1460000000 2920000000

0.135 0.460 3.275E+02 3785 1251428571 2920000000

0.136 0.459 3.299E+02 3758 1251428571 2920000000

0.137 0.459 3.323E+02 3731 1251428571 2920000000

0.138 0.459 3.346E+02 3704 1251428571 2920000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.139 0.459 3.370E+02 3678 1251428571 2190000000

0.14 0.459 3.393E+02 3653 1251428571 2190000000

0.141 0.459 3.416E+02 3628 1251428571 2190000000

0.142 0.459 3.439E+02 3604 1251428571 2190000000

0.143 0.458 3.462E+02 3580 1251428571 2190000000

0.144 0.458 3.485E+02 3557 1095000000 2190000000

0.145 0.458 3.508E+02 3534 1095000000 2190000000

0.146 0.458 3.530E+02 3511 1095000000 2190000000

0.147 0.458 3.553E+02 3489 1095000000 2190000000

0.148 0.458 3.575E+02 3467 1095000000 2190000000

0.149 0.458 3.597E+02 3446 1095000000 2190000000

0.15 0.458 3.619E+02 3425 1095000000 2190000000

0.151 0.457 3.641E+02 3404 973333333 2190000000

0.152 0.457 3.663E+02 3384 973333333 2190000000

0.153 0.457 3.685E+02 3364 973333333 2190000000

0.154 0.457 3.706E+02 3344 973333333 2190000000

0.155 0.457 3.728E+02 3325 973333333 2190000000

0.156 0.457 3.749E+02 3306 876000000 2190000000

0.157 0.457 3.771E+02 3287 876000000 2190000000

0.158 0.457 3.792E+02 3269 876000000 2190000000

0.159 0.456 3.813E+02 3251 876000000 2190000000

0.16 0.456 3.834E+02 3233 876000000 2190000000

0.161 0.456 3.854E+02 3216 796363636 2190000000

0.162 0.456 3.875E+02 3199 796363636 2190000000



154

alpha risk cost, $/yr T1, h T2, h T3, h

0.163 0.456 3.896E+02 3182 796363636 2190000000

0.164 0.456 3.916E+02 3165 730000000 2190000000

0.165 0.456 3.937E+02 3149 730000000 2190000000

0.166 0.456 3.957E+02 3133 730000000 2190000000

0.167 0.456 3.977E+02 3117 673846154 2190000000

0.168 0.455 3.997E+02 3101 673846154 2190000000

0.169 0.455 4.017E+02 3085 673846154 2190000000

0.17 0.455 4.037E+02 3070 625714286 2190000000

0.171 0.455 4.057E+02 3055 625714286 2190000000

0.172 0.455 4.077E+02 3040 584000000 2190000000

0.173 0.455 4.097E+02 3026 584000000 2190000000

0.174 0.455 4.116E+02 3011 547500000 2190000000

0.175 0.455 4.136E+02 2997 547500000 2190000000

0.176 0.455 4.155E+02 2983 515294118 2190000000

0.177 0.455 4.174E+02 2970 486666667 2190000000

0.178 0.455 4.193E+02 2956 486666667 2190000000

0.179 0.454 4.213E+02 2942 461052632 2190000000

0.18 0.454 4.232E+02 2929 438000000 2190000000

0.181 0.454 4.251E+02 2916 417142857 2190000000

0.182 0.454 4.269E+02 2903 398181818 2190000000

0.183 0.454 4.288E+02 2891 417142857 2190000000

0.184 0.454 4.307E+02 2878 380869565 2190000000

0.185 0.454 4.326E+02 2866 365000000 2190000000

0.186 0.454 4.344E+02 2853 350400000 2190000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.187 0.454 4.363E+02 2841 336923077 2190000000

0.188 0.454 4.381E+02 2829 312857143 2190000000

0.189 0.454 4.399E+02 2818 292000000 2190000000

0.19 0.454 4.418E+02 2806 273750000 2190000000

0.191 0.453 4.436E+02 2794 257647059 2190000000

0.192 0.453 4.454E+02 2783 236756757 2190000000

0.193 0.453 4.472E+02 2772 224615385 2190000000

0.194 0.453 4.490E+02 2761 203720930 2190000000

0.195 0.453 4.508E+02 2750 190434783 2190000000

0.196 0.453 4.526E+02 2739 171764706 2190000000

0.197 0.453 4.544E+02 2728 156428571 2190000000

0.198 0.453 4.561E+02 2718 141290323 2190000000

0.199 0.453 4.579E+02 2707 126956522 2190000000

0.2 0.453 4.597E+02 2697 113766234 2190000000

0.201 0.453 4.614E+02 2687 100689655 2190000000

0.202 0.453 4.631E+02 2676 88484848 2190000000

0.203 0.453 4.649E+02 2666 76842105 2190000000

0.204 0.453 4.666E+02 2657 796363636 4380000000

0.205 0.452 4.683E+02 2647 730000000 4380000000

0.206 0.452 4.700E+02 2637 673846154 4380000000

0.207 0.452 4.718E+02 2628 625714286 4380000000

0.208 0.452 4.735E+02 2618 584000000 4380000000

0.209 0.452 4.752E+02 2609 547500000 4380000000

0.21 0.452 4.769E+02 2599 486666667 4380000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.211 0.452 4.785E+02 2590 438000000 4380000000

0.212 0.452 4.802E+02 2581 143606557 2190000000

0.213 0.452 4.819E+02 2572 126956522 2190000000

0.214 0.452 4.836E+02 2563 109500000 2190000000

0.215 0.452 4.852E+02 2555 90309278 2190000000

0.216 0.452 4.869E+02 2546 67906977 2190000000

0.217 0.452 4.886E+02 2537 40183486 2190000000

0.218 0.452 4.903E+02 2529 13094170 1752000000

0.219 0.452 4.919E+02 2520 23485255 1752000000

0.22 0.452 4.935E+02 2512 15840868 4380000000

0.221 0.451 5.105E+02 2504 61218 4380000000

0.222 0.450 5.430E+02 2495 20371 1752000000

0.223 0.449 5.754E+02 2487 12226 1752000000

0.224 0.448 6.076E+02 2479 8747 1752000000

0.225 0.446 6.398E+02 2471 6813 1752000000

0.226 0.445 6.719E+02 2463 5582 1752000000

0.227 0.444 7.039E+02 2456 4729 1752000000

0.228 0.443 7.358E+02 2448 4105 1752000000

0.229 0.442 7.676E+02 2440 3627 1752000000

0.23 0.441 7.993E+02 2433 3250 1752000000

0.231 0.440 8.310E+02 2425 2945 4380000000

0.232 0.439 8.625E+02 2418 2692 4380000000

0.233 0.438 8.939E+02 2410 2481 4380000000

0.234 0.437 9.253E+02 2403 2300 4380000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.235 0.436 9.566E+02 2396 2144 4380000000

0.236 0.435 9.877E+02 2388 2009 4380000000

0.237 0.434 1.019E+03 2381 1890 4380000000

0.238 0.433 1.050E+03 2374 1784 4380000000

0.239 0.432 1.081E+03 2367 1690 4380000000

0.24 0.431 1.112E+03 2360 1606 1752000000

0.241 0.430 1.142E+03 2353 1530 1752000000

0.242 0.429 1.173E+03 2347 1461 1752000000

0.243 0.428 1.204E+03 2340 1398 1752000000

0.244 0.427 1.234E+03 2333 1340 1752000000

0.245 0.426 1.265E+03 2326 1287 1752000000

0.246 0.425 1.295E+03 2320 1238 1752000000

0.247 0.424 1.325E+03 2313 1193 1752000000

0.248 0.423 1.355E+03 2307 1151 1752000000

0.249 0.422 1.385E+03 2300 1112 1752000000

0.25 0.421 1.415E+03 2294 1076 1752000000

0.251 0.421 1.445E+03 2288 1042 1752000000

0.252 0.420 1.475E+03 2281 1010 1752000000

0.253 0.419 1.505E+03 2275 981 1752000000

0.254 0.418 1.535E+03 2269 953 1752000000

0.255 0.417 1.564E+03 2263 926 1752000000

0.256 0.416 1.594E+03 2257 901 1752000000

0.257 0.415 1.624E+03 2251 878 1752000000

0.258 0.415 1.653E+03 2245 855 1752000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.259 0.414 1.682E+03 2239 834 1752000000

0.26 0.413 1.712E+03 2233 814 1752000000

0.261 0.412 1.741E+03 2227 795 1752000000

0.262 0.411 1.770E+03 2221 777 1752000000

0.263 0.410 1.799E+03 2216 760 1460000000

0.264 0.410 1.828E+03 2210 743 1460000000

0.265 0.409 1.857E+03 2204 727 1460000000

0.266 0.408 1.886E+03 2199 712 1460000000

0.267 0.407 1.915E+03 2193 698 1460000000

0.268 0.406 1.944E+03 2187 684 1460000000

0.269 0.406 1.972E+03 2182 671 1460000000

0.27 0.405 2.001E+03 2177 658 1460000000

0.271 0.404 2.030E+03 2171 646 1460000000

0.272 0.403 2.058E+03 2166 634 1460000000

0.273 0.403 2.087E+03 2160 622 1460000000

0.274 0.402 2.115E+03 2155 612 1460000000

0.275 0.401 2.143E+03 2150 601 1460000000

0.276 0.400 2.172E+03 2145 591 1460000000

0.277 0.400 2.200E+03 2139 581 1460000000

0.278 0.399 2.228E+03 2134 572 1460000000

0.279 0.398 2.256E+03 2129 563 1460000000

0.28 0.397 2.284E+03 2124 554 1460000000

0.281 0.397 2.312E+03 2119 545 1460000000

0.282 0.396 2.340E+03 2114 537 1460000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.283 0.395 2.368E+03 2109 529 1460000000

0.284 0.394 2.396E+03 2104 521 1460000000

0.285 0.394 2.424E+03 2099 514 1460000000

0.286 0.393 2.451E+03 2094 506 1460000000

0.287 0.392 2.479E+03 2089 499 1460000000

0.288 0.392 2.507E+03 2085 493 1460000000

0.289 0.391 2.534E+03 2080 486 1460000000

0.29 0.390 2.562E+03 2075 479 1460000000

0.291 0.390 2.589E+03 2070 473 1460000000

0.292 0.389 2.616E+03 2066 467 1460000000

0.293 0.388 2.644E+03 2061 461 1460000000

0.294 0.388 2.671E+03 2056 455 1460000000

0.295 0.387 2.698E+03 2052 450 1460000000

0.296 0.386 2.726E+03 2047 444 1251428571

0.297 0.386 2.753E+03 2043 439 1251428571

0.298 0.385 2.780E+03 2038 434 1251428571

0.299 0.385 2.807E+03 2034 429 1251428571

0.3 0.384 2.834E+03 2029 424 1251428571

0.301 0.383 2.861E+03 2025 419 1251428571

0.302 0.383 2.888E+03 2020 414 1251428571

0.303 0.382 2.915E+03 2016 409 1251428571

0.304 0.381 2.941E+03 2012 405 1251428571

0.305 0.381 2.968E+03 2007 401 1251428571

0.306 0.380 2.995E+03 2003 396 1251428571
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alpha risk cost, $/yr T1, h T2, h T3, h

0.307 0.380 3.022E+03 1999 392 1251428571

0.308 0.379 3.048E+03 1995 388 1251428571

0.309 0.378 3.075E+03 1990 384 1251428571

0.31 0.378 3.101E+03 1986 380 1251428571

0.311 0.377 3.128E+03 1982 376 1251428571

0.312 0.377 3.154E+03 1978 373 1251428571

0.313 0.376 3.181E+03 1974 369 1251428571

0.314 0.375 3.207E+03 1970 365 1251428571

0.315 0.375 3.234E+03 1966 362 1251428571

0.316 0.374 3.260E+03 1962 358 1251428571

0.317 0.374 3.286E+03 1958 355 1251428571

0.318 0.373 3.312E+03 1954 352 1251428571

0.319 0.373 3.338E+03 1950 348 1251428571

0.32 0.372 3.365E+03 1946 345 1095000000

0.321 0.371 3.391E+03 1942 342 1095000000

0.322 0.371 3.417E+03 1938 339 1095000000

0.323 0.370 3.443E+03 1934 336 1095000000

0.324 0.370 3.469E+03 1930 333 1095000000

0.325 0.369 3.495E+03 1926 330 1095000000

0.326 0.369 3.521E+03 1922 327 1095000000

0.327 0.368 3.547E+03 1919 325 1095000000

0.328 0.368 3.572E+03 1915 322 1095000000

0.329 0.367 3.598E+03 1911 319 1095000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.33 0.367 3.624E+03 1907 317 1095000000

0.331 0.366 3.650E+03 1904 314 1095000000

0.332 0.366 3.675E+03 1900 312 1095000000

0.333 0.365 3.701E+03 1896 309 1095000000

0.334 0.365 3.727E+03 1893 307 1095000000

0.335 0.364 3.752E+03 1889 304 1095000000

0.336 0.364 3.778E+03 1885 302 1095000000

0.337 0.363 3.803E+03 1882 299 1095000000

0.338 0.363 3.829E+03 1878 297 1095000000

0.339 0.362 3.854E+03 1875 295 973333333

0.34 0.362 3.880E+03 1871 293 973333333

0.341 0.361 3.905E+03 1868 291 973333333

0.342 0.361 3.931E+03 1864 288 973333333

0.343 0.360 3.956E+03 1861 286 973333333

0.344 0.360 3.981E+03 1857 284 973333333

0.345 0.359 4.006E+03 1854 282 973333333

0.346 0.359 4.032E+03 1850 280 973333333

0.347 0.358 4.057E+03 1847 278 973333333

0.348 0.358 4.082E+03 1843 276 973333333

0.349 0.357 4.107E+03 1840 274 973333333

0.35 0.357 4.132E+03 1837 272 973333333

0.351 0.356 4.158E+03 1833 270 973333333

0.352 0.356 4.183E+03 1830 269 973333333
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alpha risk cost, $/yr T1, h T2, h T3, h

0.353 0.355 4.208E+03 1827 267 876000000

0.354 0.355 4.233E+03 1823 265 876000000

0.355 0.354 4.258E+03 1820 263 876000000

0.356 0.354 4.283E+03 1817 262 876000000

0.357 0.354 4.308E+03 1814 260 876000000

0.358 0.353 4.333E+03 1810 258 876000000

0.359 0.353 4.357E+03 1807 256 876000000

0.36 0.352 4.382E+03 1804 255 876000000

0.361 0.352 4.407E+03 1801 253 876000000

0.362 0.351 4.432E+03 1798 252 876000000

0.363 0.351 4.457E+03 1794 250 876000000

0.364 0.350 4.481E+03 1791 249 796363636

0.365 0.350 4.506E+03 1788 247 796363636

0.366 0.350 4.531E+03 1785 245 796363636

0.367 0.349 4.556E+03 1782 244 796363636

0.368 0.349 4.580E+03 1779 242 796363636

0.369 0.348 4.605E+03 1776 241 796363636

0.37 0.348 4.630E+03 1773 240 796363636

0.371 0.348 4.654E+03 1770 238 796363636

0.372 0.347 4.679E+03 1767 237 796363636

0.373 0.347 4.703E+03 1764 235 796363636

0.374 0.346 4.728E+03 1761 234 730000000

0.375 0.346 4.752E+03 1758 233 730000000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.376 0.345 4.777E+03 1755 231 730000000

0.377 0.345 4.801E+03 1752 230 730000000

0.378 0.345 4.826E+03 1749 229 730000000

0.379 0.344 4.850E+03 1746 227 730000000

0.38 0.344 4.875E+03 1743 226 730000000

0.381 0.343 4.899E+03 1740 225 673846154

0.382 0.343 4.923E+03 1737 224 673846154

0.383 0.343 4.948E+03 1734 222 673846154

0.384 0.342 4.972E+03 1731 221 673846154

0.385 0.342 4.996E+03 1728 220 673846154

0.386 0.342 5.021E+03 1726 219 673846154

0.387 0.341 5.045E+03 1723 218 673846154

0.388 0.341 5.069E+03 1720 217 625714286

0.389 0.340 5.093E+03 1717 215 625714286

0.39 0.340 5.118E+03 1714 214 625714286

0.391 0.340 5.142E+03 1712 213 625714286

0.392 0.339 5.166E+03 1709 212 625714286

0.393 0.339 5.190E+03 1706 211 584000000

0.394 0.338 5.214E+03 1703 210 584000000

0.395 0.338 5.238E+03 1701 209 584000000

0.396 0.338 5.262E+03 1698 208 584000000

0.397 0.337 5.287E+03 1695 207 584000000

0.398 0.337 5.311E+03 1692 206 547500000

0.399 0.337 5.335E+03 1690 205 547500000
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alpha risk cost, $/yr T1, h T2, h T3, h

0.4 0.336 5.359E+03 1687 204 547500000

0.401 0.336 5.383E+03 1684 203 547500000

0.402 0.336 5.407E+03 1682 202 547500000

0.403 0.335 5.431E+03 1679 201 515294118

0.404 0.335 5.455E+03 1676 200 515294118

0.405 0.334 5.479E+03 1674 199 515294118

0.406 0.334 5.503E+03 1671 198 486666667

0.407 0.334 5.527E+03 1668 197 486666667

0.408 0.333 5.551E+03 1666 196 486666667

0.409 0.333 5.575E+03 1663 195 486666667

0.41 0.333 5.599E+03 1661 194 461052632

0.411 0.332 5.623E+03 1658 193 461052632

0.412 0.332 5.646E+03 1656 192 547500000

0.413 0.332 5.670E+03 1653 191 547500000

0.414 0.331 5.694E+03 1650 191 547500000

0.415 0.331 5.718E+03 1648 190 515294118

0.416 0.331 5.742E+03 1645 189 1460000000

0.417 0.330 5.766E+03 1643 188 1460000000

0.418 0.330 5.790E+03 1640 187 1460000000

0.419 0.330 5.813E+03 1638 186 1460000000

0.42 0.329 5.837E+03 1635 185 1460000000

0.421 0.329 5.861E+03 1633 185 1251428571

0.422 0.329 5.885E+03 1630 184 1251428571

0.423 0.328 5.908E+03 1628 183 1251428571
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alpha risk cost, $/yr T1, h T2, h T3, h

0.424 0.328 5.932E+03 1625 182 1251428571

0.425 0.328 5.956E+03 1623 181 461052632

0.426 0.327 5.980E+03 1621 181 461052632

0.427 0.327 6.004E+03 1618 180 438000000

0.428 0.327 6.027E+03 1616 179 438000000

0.429 0.326 6.051E+03 1613 178 438000000

0.43 0.326 6.075E+03 1611 178 417142857

0.431 0.326 6.098E+03 1609 177 417142857

0.432 0.326 6.122E+03 1606 176 398181818

0.433 0.325 6.146E+03 1604 175 398181818

0.434 0.325 6.169E+03 1601 175 398181818

0.435 0.325 6.193E+03 1599 174 380869565

0.436 0.324 6.217E+03 1597 173 380869565

0.437 0.324 6.240E+03 1594 172 365000000

0.438 0.324 6.264E+03 1592 172 365000000

0.439 0.323 6.288E+03 1590 171 350400000

0.44 0.323 6.311E+03 1587 170 350400000

0.441 0.323 6.335E+03 1585 170 336923077

0.442 0.323 6.359E+03 1583 169 336923077

0.443 0.322 6.382E+03 1581 168 324444444

0.444 0.322 6.406E+03 1578 168 324444444

0.445 0.322 6.430E+03 1576 167 312857143

0.446 0.321 6.453E+03 1574 166 302068966

0.447 0.321 6.477E+03 1571 166 302068966
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alpha risk cost, $/yr T1, h T2, h T3, h

0.448 0.321 6.500E+03 1569 165 292000000

0.449 0.320 6.524E+03 1567 164 282580645

0.45 0.320 6.548E+03 1565 164 273750000

0.451 0.320 6.571E+03 1562 163 265454545

0.452 0.320 6.595E+03 1560 162 257647059

0.453 0.319 6.618E+03 1558 162 250285714

0.454 0.319 6.642E+03 1556 161 243333333

0.455 0.319 6.666E+03 1554 160 236756757

0.456 0.318 6.689E+03 1551 160 230526316

0.457 0.318 6.713E+03 1549 159 219000000

0.458 0.318 6.736E+03 1547 159 213658537

0.459 0.318 6.760E+03 1545 158 203720930

0.46 0.317 6.784E+03 1543 157 194666667

0.461 0.317 6.807E+03 1540 157 182500000

0.462 0.317 6.831E+03 1538 156 171764706

0.463 0.317 6.854E+03 1536 156 159272727

0.464 0.316 6.878E+03 1534 155 148474576

0.465 0.316 6.901E+03 1532 155 134769231

0.466 0.316 6.925E+03 1530 154 120000000

0.467 0.315 6.949E+03 1528 153 105542169

0.468 0.315 6.972E+03 1525 153 91250000

0.469 0.315 6.996E+03 1523 152 76173913

0.47 0.315 7.019E+03 1521 152 62127660

0.471 0.314 7.043E+03 1519 151 48938547
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alpha risk cost, $/yr T1, h T2, h T3, h

0.472 0.314 7.066E+03 1517 151 37435897

0.473 0.314 7.090E+03 1515 150 312857143

0.474 0.314 7.114E+03 1513 150 292000000

0.475 0.313 7.137E+03 1511 149 273750000

0.476 0.313 7.161E+03 1509 149 250285714

0.477 0.313 7.184E+03 1507 148 84230769

0.478 0.313 7.208E+03 1505 148 76842105

0.479 0.312 7.231E+03 1503 147 68976378

0.48 0.312 7.255E+03 1501 146 60000000

0.481 0.312 7.279E+03 1499 146 49772727

0.482 0.312 7.302E+03 1496 145 36500000

0.483 0.311 7.326E+03 1494 145 21736973

0.484 0.311 7.350E+03 1492 144 9711752

0.485 0.311 7.373E+03 1490 144 73000000

0.486 0.310 7.397E+03 1488 143 18061856

0.487 0.310 7.420E+03 1486 143 5622593

0.488 0.310 7.444E+03 1484 142 4143803

0.489 0.310 7.477E+03 1482 142 97538

0.49 0.309 7.543E+03 1480 142 16996

0.491 0.308 7.610E+03 1478 141 9253

0.492 0.308 7.676E+03 1476 141 6361

0.493 0.307 7.743E+03 1475 140 4842

0.494 0.306 7.810E+03 1473 140 3912

0.495 0.306 7.876E+03 1471 139 3281
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alpha risk cost, $/yr T1, h T2, h T3, h

0.496 0.305 7.943E+03 1469 139 2825

0.497 0.304 8.010E+03 1467 138 2480

0.498 0.304 8.077E+03 1465 138 2211

0.499 0.303 8.144E+03 1463 137 1994

0.5 0.302 8.210E+03 1461 137 1816

0.501 0.301 8.277E+03 1459 136 1667

0.502 0.301 8.344E+03 1457 136 1541

0.503 0.300 8.411E+03 1455 136 1432

0.504 0.300 8.478E+03 1453 135 1338

0.505 0.299 8.544E+03 1451 135 1255

0.506 0.298 8.611E+03 1449 134 1182

0.507 0.298 8.678E+03 1447 134 1117

0.508 0.297 8.745E+03 1446 133 1059

0.509 0.296 8.812E+03 1444 133 1007

0.51 0.296 8.879E+03 1442 133 959

0.511 0.295 8.946E+03 1440 132 916

0.512 0.294 9.013E+03 1438 132 876

0.513 0.294 9.079E+03 1436 131 840

0.514 0.293 9.146E+03 1434 131 807

0.515 0.292 9.213E+03 1432 130 776

0.516 0.292 9.280E+03 1431 130 747

0.517 0.291 9.347E+03 1429 130 721

0.518 0.291 9.414E+03 1427 129 696

0.519 0.290 9.481E+03 1425 129 673
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alpha risk cost, $/yr T1, h T2, h T3, h

0.52 0.289 9.548E+03 1423 128 651

0.521 0.289 9.615E+03 1421 128 631

0.522 0.288 9.683E+03 1420 128 612

0.523 0.287 9.750E+03 1418 127 594

0.524 0.287 9.817E+03 1416 127 577

0.525 0.286 9.884E+03 1414 126 561

0.526 0.286 9.951E+03 1412 126 546

0.527 0.285 1.002E+04 1410 126 532

0.528 0.284 1.009E+04 1409 125 518

0.529 0.284 1.015E+04 1407 125 505

0.53 0.283 1.022E+04 1405 125 493

0.531 0.283 1.029E+04 1403 124 481

0.532 0.282 1.035E+04 1401 124 470

0.533 0.281 1.042E+04 1400 123 459

0.534 0.281 1.049E+04 1398 123 449

0.535 0.280 1.056E+04 1396 123 440

0.536 0.280 1.062E+04 1394 122 430

0.537 0.279 1.069E+04 1393 122 421

0.538 0.279 1.076E+04 1391 122 413

0.539 0.278 1.083E+04 1389 121 404

0.54 0.277 1.089E+04 1387 121 396

0.541 0.277 1.096E+04 1386 121 389

0.542 0.276 1.103E+04 1384 120 381

0.543 0.276 1.110E+04 1382 120 374
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alpha risk cost, $/yr T1, h T2, h T3, h

0.544 0.275 1.116E+04 1380 119 368

0.545 0.275 1.123E+04 1379 119 361

0.546 0.274 1.130E+04 1377 119 355

0.547 0.273 1.137E+04 1375 118 348

0.548 0.273 1.144E+04 1373 118 343

0.549 0.272 1.150E+04 1372 118 337

0.55 0.272 1.157E+04 1370 117 331

0.551 0.271 1.164E+04 1368 117 326

0.552 0.271 1.171E+04 1367 117 321

0.553 0.270 1.178E+04 1365 116 316

0.554 0.270 1.184E+04 1363 116 311

0.555 0.269 1.191E+04 1361 116 306

0.556 0.268 1.198E+04 1360 115 301

0.557 0.268 1.205E+04 1358 115 297

0.558 0.267 1.212E+04 1356 115 293

0.559 0.267 1.218E+04 1355 114 288

0.56 0.266 1.225E+04 1353 114 284

0.561 0.266 1.232E+04 1351 114 280

0.562 0.265 1.239E+04 1350 113 277

0.563 0.265 1.246E+04 1348 113 273

0.564 0.264 1.253E+04 1346 113 269

0.565 0.264 1.259E+04 1345 112 266

0.566 0.263 1.266E+04 1343 112 262

0.567 0.263 1.273E+04 1341 112 259
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alpha risk cost, $/yr T1, h T2, h T3, h

0.568 0.262 1.280E+04 1340 112 255

0.569 0.261 1.287E+04 1338 111 252

0.57 0.261 1.294E+04 1336 111 249

0.571 0.260 1.301E+04 1335 111 246

0.572 0.260 1.308E+04 1333 110 243

0.573 0.259 1.314E+04 1331 110 240

0.574 0.259 1.321E+04 1330 110 237

0.575 0.258 1.328E+04 1328 109 234

0.576 0.258 1.335E+04 1327 109 232

0.577 0.257 1.342E+04 1325 109 229

0.578 0.257 1.349E+04 1323 108 226

0.579 0.256 1.356E+04 1322 108 224

0.58 0.256 1.363E+04 1320 108 221

0.581 0.255 1.370E+04 1318 108 219

0.582 0.255 1.377E+04 1317 107 216

0.583 0.254 1.384E+04 1315 107 214

0.584 0.254 1.391E+04 1314 107 212

0.585 0.253 1.397E+04 1312 106 210

0.586 0.253 1.404E+04 1310 106 207

0.587 0.252 1.411E+04 1309 106 205

0.588 0.252 1.418E+04 1307 106 203

0.589 0.251 1.425E+04 1306 105 201

0.59 0.251 1.432E+04 1304 105 199

0.591 0.250 1.439E+04 1302 105 197
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alpha risk cost, $/yr T1, h T2, h T3, h

0.592 0.250 1.446E+04 1301 104 195

0.593 0.249 1.453E+04 1299 104 193

0.594 0.249 1.460E+04 1298 104 191

0.595 0.249 1.467E+04 1296 104 189

0.596 0.248 1.474E+04 1294 103 188

0.597 0.248 1.481E+04 1293 103 186

0.598 0.247 1.489E+04 1291 103 184

0.599 0.247 1.496E+04 1290 102 182

0.6 0.246 1.503E+04 1288 102 181

0.601 0.246 1.510E+04 1287 102 179

0.602 0.245 1.517E+04 1285 102 177

0.603 0.245 1.524E+04 1284 101 176

0.604 0.244 1.531E+04 1282 101 174

0.605 0.244 1.538E+04 1280 101 173

0.606 0.243 1.545E+04 1279 101 171

0.607 0.243 1.552E+04 1277 100 170

0.608 0.242 1.559E+04 1276 100 168

0.609 0.242 1.566E+04 1274 100 167

0.61 0.242 1.574E+04 1273 100 165

0.611 0.241 1.581E+04 1271 99 164

0.612 0.241 1.588E+04 1270 99 162

0.613 0.240 1.595E+04 1268 99 161

0.614 0.240 1.602E+04 1267 98 160

0.615 0.239 1.609E+04 1265 98 158
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alpha risk cost, $/yr T1, h T2, h T3, h

0.616 0.239 1.617E+04 1263 98 157

0.617 0.238 1.624E+04 1262 98 156

0.618 0.238 1.631E+04 1260 97 155

0.619 0.237 1.638E+04 1259 97 153

0.62 0.237 1.645E+04 1257 97 152

0.621 0.237 1.653E+04 1256 97 151

0.622 0.236 1.660E+04 1254 96 150

0.623 0.236 1.667E+04 1253 96 149

0.624 0.235 1.674E+04 1251 96 147

0.625 0.235 1.682E+04 1250 96 146

0.626 0.234 1.689E+04 1248 95 145

0.627 0.234 1.696E+04 1247 95 144

0.628 0.234 1.703E+04 1245 95 143

0.629 0.233 1.711E+04 1244 95 142

0.63 0.233 1.718E+04 1242 94 141

0.631 0.232 1.725E+04 1241 94 140

0.632 0.232 1.733E+04 1239 94 139

0.633 0.231 1.740E+04 1238 94 138

0.634 0.231 1.747E+04 1236 94 137

0.635 0.231 1.755E+04 1235 93 136

0.636 0.230 1.762E+04 1233 93 135

0.637 0.230 1.769E+04 1232 93 134

0.638 0.229 1.777E+04 1230 93 133

0.639 0.229 1.784E+04 1229 92 132
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alpha risk cost, $/yr T1, h T2, h T3, h

0.64 0.228 1.792E+04 1227 92 131

0.641 0.228 1.799E+04 1226 92 130

0.642 0.228 1.806E+04 1224 92 129

0.643 0.227 1.814E+04 1223 91 128

0.644 0.227 1.821E+04 1221 91 128

0.645 0.226 1.829E+04 1220 91 127

0.646 0.226 1.836E+04 1219 91 126

0.647 0.226 1.844E+04 1217 90 125

0.648 0.225 1.851E+04 1216 90 124

0.649 0.225 1.859E+04 1214 90 123

0.65 0.224 1.866E+04 1213 90 123

0.651 0.224 1.874E+04 1211 90 122

0.652 0.224 1.881E+04 1210 89 121

0.653 0.223 1.889E+04 1208 89 120

0.654 0.223 1.897E+04 1207 89 119

0.655 0.222 1.904E+04 1205 89 119

0.656 0.222 1.912E+04 1204 88 118

0.657 0.222 1.919E+04 1202 88 117

0.658 0.221 1.927E+04 1201 88 116

0.659 0.221 1.935E+04 1200 88 116

0.66 0.220 1.942E+04 1198 88 115

0.661 0.220 1.950E+04 1197 87 114

0.662 0.220 1.958E+04 1195 87 113

0.663 0.219 1.965E+04 1194 87 113
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alpha risk cost, $/yr T1, h T2, h T3, h

0.664 0.219 1.973E+04 1192 87 112

0.665 0.218 1.981E+04 1191 86 111

0.666 0.218 1.988E+04 1189 86 111

0.667 0.218 1.996E+04 1188 86 110

0.668 0.217 2.004E+04 1187 86 109

0.669 0.217 2.012E+04 1185 86 109

0.67 0.216 2.019E+04 1184 85 108

0.671 0.216 2.027E+04 1182 85 107

0.672 0.216 2.035E+04 1181 85 107

0.673 0.215 2.043E+04 1179 85 106

0.674 0.215 2.051E+04 1178 84 105

0.675 0.215 2.059E+04 1177 84 105

0.676 0.214 2.066E+04 1175 84 104

0.677 0.214 2.074E+04 1174 84 104

0.678 0.213 2.082E+04 1172 84 103

0.679 0.213 2.090E+04 1171 83 102

0.68 0.213 2.098E+04 1169 83 102

0.681 0.212 2.106E+04 1168 83 101

0.682 0.212 2.114E+04 1167 83 101

0.683 0.212 2.122E+04 1165 83 100

0.684 0.211 2.130E+04 1164 82 100

0.685 0.211 2.138E+04 1162 82 99

0.686 0.210 2.146E+04 1161 82 98

0.687 0.210 2.154E+04 1160 82 98
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alpha risk cost, $/yr T1, h T2, h T3, h

0.688 0.210 2.162E+04 1158 82 97

0.689 0.209 2.170E+04 1157 81 97

0.69 0.209 2.178E+04 1155 81 96

0.691 0.209 2.186E+04 1154 81 96

0.692 0.208 2.194E+04 1152 81 95

0.693 0.208 2.203E+04 1151 81 95

0.694 0.208 2.211E+04 1150 80 94

0.695 0.207 2.219E+04 1148 80 94

0.696 0.207 2.227E+04 1147 80 93

0.697 0.206 2.235E+04 1145 80 93

0.698 0.206 2.244E+04 1144 80 92

0.699 0.206 2.252E+04 1143 79 92

0.7 0.205 2.260E+04 1141 79 91

0.701 0.205 2.268E+04 1140 79 91

0.702 0.205 2.277E+04 1138 79 90

0.703 0.204 2.285E+04 1137 79 90

0.704 0.204 2.293E+04 1136 78 89

0.705 0.204 2.302E+04 1134 78 89

0.706 0.203 2.310E+04 1133 78 88

0.707 0.203 2.319E+04 1131 78 88

0.708 0.203 2.327E+04 1130 78 87

0.709 0.202 2.335E+04 1129 77 87

0.71 0.202 2.344E+04 1127 77 86

0.711 0.202 2.352E+04 1126 77 86
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0.712 0.201 2.361E+04 1124 77 86

0.713 0.201 2.369E+04 1123 77 85

0.714 0.200 2.378E+04 1122 76 85

0.715 0.200 2.387E+04 1120 76 84

0.716 0.200 2.395E+04 1119 76 84

0.717 0.199 2.404E+04 1117 76 83

0.718 0.199 2.412E+04 1116 76 83

0.719 0.199 2.421E+04 1115 75 83

0.72 0.198 2.430E+04 1113 75 82

0.721 0.198 2.438E+04 1112 75 82

0.722 0.198 2.447E+04 1110 75 81

0.723 0.197 2.456E+04 1109 75 81

0.724 0.197 2.465E+04 1108 74 81

0.725 0.197 2.473E+04 1106 74 80

0.726 0.196 2.482E+04 1105 74 80

0.727 0.196 2.491E+04 1104 74 79

0.728 0.196 2.500E+04 1102 74 79

0.729 0.195 2.509E+04 1101 73 79

0.73 0.195 2.518E+04 1099 73 78

0.731 0.195 2.527E+04 1098 73 78

0.732 0.194 2.536E+04 1097 73 77

0.733 0.194 2.545E+04 1095 73 77

0.734 0.194 2.554E+04 1094 73 77

0.735 0.193 2.563E+04 1092 72 76
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0.736 0.193 2.572E+04 1091 72 76

0.737 0.193 2.581E+04 1090 72 76

0.738 0.192 2.590E+04 1088 72 75

0.739 0.192 2.599E+04 1087 72 75

0.74 0.192 2.608E+04 1086 71 75

0.741 0.192 2.618E+04 1084 71 74

0.742 0.191 2.627E+04 1083 71 74

0.743 0.191 2.636E+04 1081 71 73

0.744 0.191 2.645E+04 1080 71 73

0.745 0.190 2.655E+04 1079 70 73

0.746 0.190 2.664E+04 1077 70 72

0.747 0.190 2.674E+04 1076 70 72

0.748 0.189 2.683E+04 1074 70 72

0.749 0.189 2.692E+04 1073 70 71

0.75 0.189 2.702E+04 1072 70 71

0.751 0.188 2.711E+04 1070 69 71

0.752 0.188 2.721E+04 1069 69 70

0.753 0.188 2.730E+04 1067 69 70

0.754 0.187 2.740E+04 1066 69 70

0.755 0.187 2.750E+04 1065 69 69

0.756 0.187 2.759E+04 1063 68 69

0.757 0.186 2.769E+04 1062 68 69

0.758 0.186 2.779E+04 1061 68 69

0.759 0.186 2.789E+04 1059 68 68
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0.76 0.186 2.798E+04 1058 68 68

0.761 0.185 2.808E+04 1056 68 68

0.762 0.185 2.818E+04 1055 67 67

0.763 0.185 2.828E+04 1054 67 67

0.764 0.184 2.838E+04 1052 67 67

0.765 0.184 2.848E+04 1051 67 66

0.766 0.184 2.858E+04 1049 67 66

0.767 0.183 2.868E+04 1048 66 66

0.768 0.183 2.878E+04 1047 66 65

0.769 0.183 2.888E+04 1045 66 65

0.77 0.182 2.898E+04 1044 66 65

0.771 0.182 2.908E+04 1042 66 65

0.772 0.182 2.919E+04 1041 66 64

0.773 0.182 2.929E+04 1040 65 64

0.774 0.181 2.939E+04 1038 65 64

0.775 0.181 2.950E+04 1037 65 63

0.776 0.181 2.960E+04 1036 65 63

0.777 0.180 2.970E+04 1034 65 63

0.778 0.180 2.981E+04 1033 64 63

0.779 0.180 2.991E+04 1031 64 62

0.78 0.179 3.002E+04 1030 64 62

0.781 0.179 3.013E+04 1029 64 62

0.782 0.179 3.023E+04 1027 64 62

0.783 0.179 3.034E+04 1026 64 61
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0.784 0.178 3.045E+04 1024 63 61

0.785 0.178 3.055E+04 1023 63 61

0.786 0.178 3.066E+04 1022 63 60

0.787 0.177 3.077E+04 1020 63 60

0.788 0.177 3.088E+04 1019 63 60

0.789 0.177 3.099E+04 1017 62 60

0.79 0.176 3.110E+04 1016 62 59

0.791 0.176 3.121E+04 1014 62 59

0.792 0.176 3.132E+04 1013 62 59

0.793 0.176 3.143E+04 1012 62 59

0.794 0.175 3.155E+04 1010 62 58

0.795 0.175 3.166E+04 1009 61 58

0.796 0.175 3.177E+04 1007 61 58

0.797 0.174 3.189E+04 1006 61 58

0.798 0.174 3.200E+04 1005 61 57

0.799 0.174 3.212E+04 1003 61 57

0.8 0.174 3.223E+04 1002 60 57

0.801 0.173 3.235E+04 1000 60 57

0.802 0.173 3.246E+04 999 60 56

0.803 0.173 3.258E+04 997 60 56

0.804 0.172 3.270E+04 996 60 56

0.805 0.172 3.282E+04 995 60 56

0.806 0.172 3.293E+04 993 59 55

0.807 0.172 3.305E+04 992 59 55
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0.808 0.171 3.317E+04 990 59 55

0.809 0.171 3.329E+04 989 59 55

0.81 0.171 3.342E+04 987 59 54

0.811 0.170 3.354E+04 986 58 54

0.812 0.170 3.366E+04 985 58 54

0.813 0.170 3.378E+04 983 58 54

0.814 0.170 3.391E+04 982 58 53

0.815 0.169 3.403E+04 980 58 53

0.816 0.169 3.416E+04 979 58 53

0.817 0.169 3.428E+04 977 57 53

0.818 0.168 3.441E+04 976 57 53

0.819 0.168 3.454E+04 975 57 52

0.82 0.168 3.466E+04 973 57 52

0.821 0.168 3.479E+04 972 57 52

0.822 0.167 3.492E+04 970 56 52

0.823 0.167 3.505E+04 969 56 51

0.824 0.167 3.518E+04 967 56 51

0.825 0.166 3.532E+04 966 56 51

0.826 0.166 3.545E+04 964 56 51

0.827 0.166 3.558E+04 963 56 51

0.828 0.166 3.572E+04 961 55 50

0.829 0.165 3.585E+04 960 55 50

0.83 0.165 3.599E+04 958 55 50

0.831 0.165 3.612E+04 957 55 50
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0.832 0.164 3.626E+04 955 55 49

0.833 0.164 3.640E+04 954 54 49

0.834 0.164 3.654E+04 953 54 49

0.835 0.164 3.668E+04 951 54 49

0.836 0.163 3.682E+04 950 54 49

0.837 0.163 3.696E+04 948 54 48

0.838 0.163 3.711E+04 947 53 48

0.839 0.163 3.725E+04 945 53 48

0.84 0.162 3.740E+04 944 53 48

0.841 0.162 3.754E+04 942 53 48

0.842 0.162 3.769E+04 941 53 47

0.843 0.161 3.784E+04 939 53 47

0.844 0.161 3.799E+04 938 52 47

0.845 0.161 3.814E+04 936 52 47

0.846 0.161 3.829E+04 935 52 47

0.847 0.160 3.844E+04 933 52 46

0.848 0.160 3.860E+04 932 52 46

0.849 0.160 3.875E+04 930 51 46

0.85 0.159 3.891E+04 928 51 46

0.851 0.159 3.907E+04 927 51 45

0.852 0.159 3.922E+04 925 51 45

0.853 0.159 3.938E+04 924 51 45

0.854 0.158 3.955E+04 922 50 45

0.855 0.158 3.971E+04 921 50 45
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0.856 0.158 3.987E+04 919 50 45

0.857 0.158 4.004E+04 918 50 44

0.858 0.157 4.021E+04 916 50 44

0.859 0.157 4.038E+04 915 49 44

0.86 0.157 4.055E+04 913 49 44

0.861 0.156 4.072E+04 911 49 44

0.862 0.156 4.089E+04 910 49 43

0.863 0.156 4.106E+04 908 49 43

0.864 0.156 4.124E+04 907 48 43

0.865 0.155 4.142E+04 905 48 43

0.866 0.155 4.160E+04 903 48 43

0.867 0.155 4.178E+04 902 48 42

0.868 0.154 4.196E+04 900 48 42

0.869 0.154 4.215E+04 899 47 42

0.87 0.154 4.234E+04 897 47 42

0.871 0.154 4.253E+04 895 47 42

0.872 0.153 4.272E+04 894 47 41

0.873 0.153 4.291E+04 892 46 41

0.874 0.153 4.311E+04 891 46 41

0.875 0.153 4.330E+04 889 46 41

0.876 0.152 4.350E+04 887 46 41

0.877 0.152 4.371E+04 886 46 40

0.878 0.152 4.391E+04 884 45 40

0.879 0.151 4.412E+04 882 45 40
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0.88 0.151 4.433E+04 881 45 40

0.881 0.151 4.454E+04 879 45 40

0.882 0.151 4.475E+04 877 44 40

0.883 0.150 4.497E+04 876 44 39

0.884 0.150 4.519E+04 874 44 39

0.885 0.150 4.542E+04 872 44 39

0.886 0.149 4.564E+04 871 44 39

0.887 0.149 4.587E+04 869 43 39

0.888 0.149 4.610E+04 867 43 38

0.889 0.148 4.634E+04 866 43 38

0.89 0.148 4.658E+04 864 43 38

0.891 0.148 4.682E+04 862 42 38

0.892 0.148 4.707E+04 860 42 38

0.893 0.147 4.732E+04 859 42 38

0.894 0.147 4.758E+04 857 42 37

0.895 0.147 4.784E+04 855 41 37

0.896 0.146 4.810E+04 853 41 37

0.897 0.146 4.837E+04 852 41 37

0.898 0.146 4.865E+04 850 40 37

0.899 0.145 4.893E+04 848 40 36

0.9 0.145 4.921E+04 846 40 36

0.901 0.145 4.950E+04 844 40 36

0.902 0.144 4.980E+04 843 39 36

0.903 0.144 5.010E+04 841 39 36
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0.904 0.144 5.041E+04 839 39 36

0.905 0.143 5.072E+04 837 38 35

0.906 0.143 5.105E+04 835 38 35

0.907 0.143 5.138E+04 833 38 35

0.908 0.142 5.172E+04 832 38 35

0.909 0.142 5.206E+04 830 37 35

0.91 0.142 5.242E+04 828 37 34

0.911 0.141 5.279E+04 826 37 34

0.912 0.141 5.317E+04 824 36 34

0.913 0.141 5.356E+04 822 36 34

0.914 0.140 5.396E+04 820 36 34

0.915 0.140 5.437E+04 818 35 34

0.916 0.139 5.480E+04 816 35 33

0.917 0.139 5.525E+04 814 34 33

0.918 0.139 5.571E+04 812 34 33

0.919 0.138 5.620E+04 810 34 33

0.92 0.138 5.670E+04 808 33 33

0.921 0.137 5.723E+04 806 33 33

0.922 0.137 5.778E+04 804 32 32

0.923 0.136 5.836E+04 802 32 32

0.924 0.136 5.898E+04 800 31 32

0.925 0.135 5.963E+04 798 31 32

0.926 0.135 6.033E+04 796 30 32

0.927 0.134 6.108E+04 794 30 31
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alpha risk cost, $/yr T1, h T2, h T3, h

0.928 0.134 6.188E+04 792 29 31

0.929 0.133 6.276E+04 790 29 31

0.93 0.132 6.371E+04 787 28 31

0.931 0.131 6.476E+04 785 27 31

0.932 0.130 6.592E+04 783 26 31

0.933 0.130 6.723E+04 781 26 30

0.934 0.128 6.870E+04 779 25 30

0.935 0.127 7.038E+04 776 24 30

0.936 0.126 7.229E+04 774 23 30

0.937 0.125 7.447E+04 772 22 30

0.938 0.123 7.691E+04 770 21 29

0.939 0.121 7.962E+04 767 20 29

0.94 0.119 8.255E+04 765 19 29

0.941 0.117 8.567E+04 763 18 29

0.942 0.115 8.893E+04 760 17 29

0.943 0.113 9.231E+04 758 16 29

0.944 0.111 9.578E+04 755 15 28

0.945 0.109 9.933E+04 753 14 28

0.946 0.107 1.029E+05 750 13 28

0.947 0.105 1.066E+05 748 13 28

0.948 0.103 1.104E+05 745 12 28

0.949 0.101 1.142E+05 743 12 27

0.95 0.099 1.181E+05 740 11 27

0.951 0.097 1.221E+05 738 11 27
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0.952 0.094 1.262E+05 735 10 27

0.953 0.092 1.303E+05 732 10 27

0.954 0.090 1.345E+05 730 9 26

0.955 0.088 1.389E+05 727 9 26

0.956 0.086 1.433E+05 724 9 26

0.957 0.084 1.478E+05 721 8 26

0.958 0.082 1.524E+05 718 8 26

0.959 0.080 1.571E+05 715 8 25

0.96 0.078 1.619E+05 712 8 25

0.961 0.076 1.668E+05 709 7 25

0.962 0.074 1.719E+05 706 7 25

0.963 0.072 1.771E+05 703 7 25

0.964 0.070 1.824E+05 700 7 24

0.965 0.068 1.879E+05 697 6 24

0.966 0.066 1.935E+05 694 6 24

0.967 0.064 1.993E+05 690 6 24

0.968 0.062 2.052E+05 687 6 24

0.969 0.060 2.114E+05 683 5 23

0.97 0.058 2.177E+05 680 5 23

0.971 0.056 2.243E+05 676 5 23

0.972 0.054 2.310E+05 672 5 23

0.973 0.052 2.380E+05 669 5 22

0.974 0.050 2.453E+05 665 5 22

0.975 0.048 2.528E+05 661 4 22
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0.976 0.046 2.607E+05 657 4 22

0.977 0.044 2.688E+05 652 4 21

0.978 0.042 2.773E+05 648 4 21

0.979 0.040 2.862E+05 644 4 21

0.98 0.038 2.956E+05 639 4 21

0.981 0.036 3.054E+05 634 4 20

0.982 0.034 3.157E+05 629 3 20

0.983 0.032 3.266E+05 624 3 20

0.984 0.030 3.381E+05 619 3 20

0.985 0.029 3.504E+05 613 3 19

0.986 0.027 3.635E+05 607 3 19

0.987 0.025 3.776E+05 601 3 19

0.988 0.023 3.928E+05 594 3 18

0.989 0.021 4.093E+05 587 3 18

0.99 0.019 4.273E+05 580 3 18

0.991 0.017 4.472E+05 572 2 17

0.992 0.015 4.695E+05 563 2 17

0.993 0.013 4.947E+05 554 2 16

0.994 0.011 5.237E+05 543 2 16

0.995 0.009 5.581E+05 531 2 15

0.996 0.008 6.001E+05 517 2 15

0.997 0.006 6.541E+05 500 2 14

0.998 0.004 7.303E+05 478 1 13

0.999 0.002 8.603E+05 445 1 12
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