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ABSTRACT 

 

Nanofabrication, Plasmon Enhanced Fluorescence and Photo-Oxidation Kinetics of 

CdSe Nanoparticles. (May 2010) 

Jixin Chen,  

B.S.; M.S., Nankai University  

Co-Chairs of Advisory Committee:  Dr. James D. Batteas 
Dr. Paul S. Cremer 

 

 

 Unconventional nanofabrication techniques; both those which have been newly 

developed and those under development, had brought inexpensive, facile, yet high 

quality means to fabricate nanostructures that have feature sizes of less than 100 nm in 

industry and academia.  This dissertation focuses on developing unconventional 

fabrication techniques, building studying platforms, and studying the mechanisms 

behind them.   

 The studies are divided into two main facets and four chapters.  The first facet, in 

Chapter II and Chapter III, deals with the research and development of different 

nanofabrication techniques and nanostructures.  These techniques include litho-synthesis, 

colloidal lithography, and photolithography.  The nanostructures that were fabricated by 

these techniques include the metal nanoparticle arrays, and the self-assembled CdSe 

nanoring arrays.  At the same time, the dissertation provides mechanisms and models to 

describe the physical and chemical nature of these techniques.   
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 The second area of this study, in Chapter III to Chapter V, presents the 

applications of these nanostructures in fundamental studies, i.e. the mechanisms of 

plasmon enhanced fluorescence and photo-oxidation kinetics of CdSe quantum dots, and 

applications such as molecular sensing and material fabrication.  More specifically, these 

applications include tuning the optical properties of CdSe quantum dots, bio-

modification of CdSe quantum dots, and copper ion detection using plasmon and photo 

enhanced CdSe quantum dots.   

We have successfully accomplished our research goals in this dissertation.  

Firstly, we were able to tune the emission wavelength of quantum dots, blue-shifted for 

up to 45 nm, and their surface functionalization with photo-oxidation.  A kinetic model 

to calculate the photo-oxidation rates was established.  Secondly, we established a 

simple mathematical model to explain the mechanism of plasmon enhanced fluoresce of 

quantum dots.  Our calculation and experimental data support the fluorescence 

resonance energy transfer (FRET) mechanism between quantum dots and the metal 

nanoparticles.  Thirdly, we successfully pattered the CdSe quantum dots (diameter ~4 

nm) into nanorings with tunable diameters and annular sizes on different substrates.  We 

also established a physical model to quantitatively explain the mechanism with the 

forces that involved in the formation of the nanorings. 
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CHAPTER I 

INTRODUCTION* 

 

 

1.1.  Purpose/Objective  

 The studies reported in this dissertation focus on developing unconventional 

lithography technologies for patterning colloidal CdSe quantum dots, understanding the 

mechanisms, and using these technologies to build interesting platforms for molecular 

sensing and biosensing.  This work is divided into four chapters.  The first, Chapter II 

focuses on developing templating self-assembly techniques to make nanoring structures 

on different substrates using colloidal nanoparticles as building blocks.  The second, 

Chapter III, centered on employing scanning focus laser lithography to space-selectively 

tune the optical properties as well as the surface properties of fluorescent CdSe quantum 

dots.  The third, Chapter IV, revolves around designing and developing a platform to 

study the mechanisms of plasmon enhanced fluorescence of CdSe quantum dots, and 

applying this platform to detect copper ions in water.  The forth, Chapter V, is the kinetic 

study of the photo-oxidation of colloidal CdSe quantum dots.  Parts of the study were 

done together with my groupmate Yang-Hsiang Chan, especially in Chapter III and 

Chapter IV.  I have placed each subject’s background and the corresponding detailed 

introductions for each topic in the introduction portion of the individual chapters. 

____________ 
This dissertation follows the style of the American Chemical Society. 
*Part of the data and text reported in this dissertation is reproduced with the permission 
from the American Chemical Society.  Copyright 2010 American Chemical Society. 
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I have employed various analytical techniques throughout this study, including 

atomic force microscopy (AFM), confocal fluorescence/Raman microscopy, scanning 

electron microscopy (SEM), transmitting election microscopy (TEM), UV-Vis 

spectroscopy, and x-ray photoelectron spectroscopy (XPS).  The importance and need 

for these techniques arise from the requirement to fully understanding the physical and 

chemical status of the materials and the devices I’ve made.  This full understanding of 

the sample status, combined with carefully designed experiments, allows us to 

rationalize the mechanisms, build mathematical models, and to draw conclusions.   

I will briefly introduce the CdSe nanocrystals, unconventional lithography, AFM, 

and confocal microscopy in a few of the following sections of this chapter because they 

are central to these studies.  More detailed introductions and applications of these 

instruments will be discussed in Chapters II-V. 

 

1.2.  Colloidal CdSe Quantum Dots 

 Colloidal semiconductor CdSe quantum dots, or nanoparticles/nanocrystals, and 

their analogs, such as CdS, CdTe, HgTe, InP and InAs nanocrystals have been hot 

materials since CdS nanocrystals were first synthesized by Louis E. Brus’ group in 

1982.1  These nanoparticles are now widely studied in the field of bio-labeling, sensing 

and biosensing, and luminescent and photovoltaic devices due to their unique optical and 

electronic properties.2-7  To mention a few of these properties; fluorescent CdSe quantum 

dots are bright and stable, and have narrow emission spectra and tunable colors.  
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 Colloidal CdSe nanoparticles are nowadays usually synthesized by high-

temperature growth solvents/ligands (mixture of trioctyl phosphine/trioctyl phosphine 

oxide, TOP/TOPO), combined with pyrolysis of organometallic precursors, that has been 

reported  by Bawendi group.8  A similar process was usually used to coat passivation 

layers such as ZnS or CdS on the CdSe surface to increase the brightness of the 

nanoparticle as well as to reduce the blinking behavior observed in single quantum dot.  

Using this synthetic method, typical commercial CdSe nanocrystals have a size deviation 

less than 10% and narrow emission spectra with peak widths at half height of around 30-

50 nm for small ones that have 4 nm in diameter.  

 The color changes of the CdSe quantum dots were realized by tuning the size of 

the crystals.  The bulk CdSe has a band gap ~1.7 eV at room temperature formed from 

the HOMO and LUMO within each unit cell of this semiconductor material.  However, 

when the nanoparticle size is reduced down to a few nanometers, the electron and hole 

that were generated by exciting an electron to the LUMO of the nanocrystal will 

encounter a quantum space confinement and act like particles-in-a-box.  This quantum 

effect shifts the band gap of the nanocrystal by:  

 

2

2

8 am

h
E

eff

shift           (1.1) 

 

where h is the plank constant, meff is the effective mass of the electron and hole, and a is 

the size of the nanoparticle.  This rough model eliminate the influence of passivation, the 
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electron hole interaction, and capping ligands and thus this picture is not accurate.9  

However, we get the rough idea that the band gap of the nanoparticle equals the band 

gap of bulk CdSe plus the shit of the band gap and thus is highly dependent on the size 

of the nanoparticle.  The band gap increases with decreasing size of nanoparticle as 1/a2. 

 

1.3.  Unconventional Lithography 

Technologies and materials have been the two main engines in the field of 

nanoscience.  The synthesis or discovery of new materials has been one of the main 

topics in nanoscience for more than two decades.  Every discovery with these materials 

has brought the scientist rich research on their synthetic methods, properties, and 

applications, especially for graphenes, carbon nanotubes, colloidal nanoparticles 

including noble metal and semiconductor nanocrystals, and all kinds of metal or 

semiconductor nanowires.  On the other hand, the development of new technologies in 

fabrication and characterization has also been of importance in modern nanoscience, and 

has the same significance as finding new materials and developing new theories.  Yet the 

conventional lithography techniques, especially photolithography and electron beam 

lithography can seldom take advantage of the material’s science, because these 

techniques are mainly designed for semiconductor devices that are demanded by the 

electronics and information industries.  At the same time, optical lithography is reaching 

the diffraction limit of light and both optical lithography and electron beam lithography 

are still prohibitively expensive to individual researchers.10 
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Unconventional lithography techniques refer to those that are newly developed or 

under development.  They are related to the techniques that have been fully developed 

and widely used, such as optical lithography and scanning electron beam lithography.  

Unconventional techniques, which have been extensively reviewed recently in the 

literature,10-16 such as soft lithography, nanoimprint lithography, scanning probe 

lithography, colloidal lithography, self-assembly, and block copolymer lithography, have 

better abilities to deal with materials such as colloidal nanoparticles and biological 

materials.  At the same time, excluding the combination of conventional lithography 

tools that some of them may need, these techniques are inexpensive and simple enough 

that many of them are just benchtop type processes.   

  

1.4.  Atomic Force Microscopy  

 Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a type 

of high resolution scanning probe microscopy, with resolution reported to be at the 

atomic level.  The precursor to the AFM, the scanning tunneling microscopy, was 

developed in the earlier 1980s by Gerd Binnig and Heinrich Rohrer, the 1986 winners of 

Nobel Prize for Physics.17  Binnig, Quate and Gerber invented the first AFM in 1986.18  

Since then, AFM has been widely applied in imaging and studying all kinds of different 

surfaces.   
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Piezoelectric Scanner 

ControllerLaser

Photodiode array 

Sample

Tip, cantilever & base 

 

Figure 1.1. Schematic illustration of an AFM.  The insert shows an electron micrograph 

of an AFM tip.  
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A typical AFM system consists of five main components: a probe, a piezoelectric 

scanner, a laser, a photodiode detector, and a feedback loop equipped with a controller 

(Figure 1.1).  The consumable part of the instrument is the tip, which contains a tip 

needle under the end of a flat cantilever, while the cantilever is mounted on a base for 

the tip-holder of AFM to hold so that the base is held still and the cantilever occupies 

free space.  The laser beam is focused on the end of the cantilever and is reflected into a 

square array of 4 photodiodes.  When the cantilever bends or twists because of loading 

forces or interactions with the surface, the center of the reflected laser beam also shifts, 

which is sensed by the photodiode array.  So the diode detector only simply tracks the 

deflection of the cantilever.  A controller that is linked to both the diodes and the 

piezoelectric scanner controls the movement of the sample.  The lateral movements of 

the sample are usually independent of the photodiode signal and the tip just constantly 

scans through x and y direction.  However the depth movements of the sample are in 

response to the detector signal depending on the working modes of the AFM.  This 

response allows the controller to regenerate the information from the surface.  

There are two primary working modes for AFM: contact mode and tapping mode.  

Under contact mode, the force between the sample surface and the needle of the tip is 

maintained with a certain predetermined force between the AFM tip and the surface.  

When the tip is scanning through the surface, if the force is maintained, then the relative 

height data of the tip position represents the surface topography of the sample with the 

features width broadened due to tip convolution.  The bending angle of the cantilever, 

which in signal is the intensity difference between the upper part and the lower part of 
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the diode array related to the free load signal, is proportional to the force between the tip 

and the sample surface.  The twisting angle of the cantilever during scanning is related to 

the friction force interactions between the tip and the sample surface.   

Under tapping mold, the cantilever is driven by a resonator mounted on the tip 

holder which vibrates at a certain frequency and amplitude, with the frequency ranging 

from several kHz to a few hundred kHz depending on the material and the dimensions of 

the cantilever.  At free load, the reflected laser beam also vibrates centered on the diode 

array.  When the sample is pushed closer to the vibrating center of the cantilever and the 

distance becomes smaller than the free load amplitude, i.e. the tip contacts the sample 

frequently, the vibrating center of the cantilever is also pushed away from its original 

center.  On the photodiode the vibrating amplitude of the reflected laser beam is reduced 

upon tip approach.  This amplitude reduction relates to the force that has been applied to 

the surface.  Usually, the AFM tip scans through the sample surface with fixed 

amplitude.  The distance between oscillation center of the tip and the sample surface is 

maintained by the fixed amplitude, which allows the piezo controller to regenerate the 

surface topography images of the samples.  This scanning mode can also deduce the 

relative adhesion forces between the tip and the surface.  Adhesion forces induce a phase 

delay between the driving resonator and the vibration of the tip, when a stronger 

adhesive interaction occurs, the observed phase delay is more significant.  

 Many other working modes have been developed such as frequency modulus 

mode and magnetic AFM mode, however; only contact and tapping mode AFM were 

utilized in the work presented in this dissertation. 
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1.5.  Confocal Fluorescence/Raman Microscopy 

 Confocal microscopy is a technique used to obtain high resolution optical images 

with depth sensitivity.  The principle of confocal microscopy was patented by Marvin 

Minsky in 1957.19  However it took another three decades for Thomas and Christoph 

Cremer to design the first confocal laser scanning microscopy.20  The main advantage of 

the confocal setup compared to a regular microscope is its much higher depth sensitivity 

and relatively higher lateral resolution.  Some advanced modifications to confocal 

systems have allowed confocal microscopes to reach sub-wavelength resolutions down 

to the tens of nanometers.  The primary disadvantage of the confocal microscopy, 

however, is its slow scanning and imaging time. 

 In a confocal laser scanning microscope, a laser beam is focused on the specimen 

surface/focus plane by a set of lenses with a certain volume of the space in the focus 

point that demonstrates a significantly higher light intensity than other areas (Figure 1.2).  

The laser is then reflected and scattered back from the specimen along with laser 

induced signals such as fluorescence and Raman signals.  The backward signals are 

focused back into a pinhole detector through the same set of objectives and a beam 
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splitter located in the light pathway.  For fluorescence and Raman spectra, a longpass 

filter or sometimes a narrow-band-pass filter is used to block the reflected laser signal.  

The word confocal comes from the fact that both the laser aperture and the detector pin-

hole aperture are focused on the same space of the specimen and thus only the materials 

in this volume of space are detected.  Signals from materials located outside this space 

are either blocked by the pin-holes or are negligible due to their much lower intensities 

and are therefore lost within the noise signal.  As a result of this small detecting volume, 

high resolution 3D images can be obtained by scanning this small volume through the 

specimen.  The depth resolution of confocal microscopy mainly depends on the inverse 

of the square of the numerical aperture of the objective lens.  The lateral resolution 

depends on the product of the distribution of laser intensity in the area of the focused 

laser beam and the intensity distribution of the virtual image of the detector pin-hole on 

the focus plane. 
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Figure 1.2.  Scheme of the fluorescence confocal laser scanning microscopy. 
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1.6.  Main Goals of the Study 

 Our interest and main goal during this studies aim to develop unconventional 

techniques to pattern the colloidal CdSe quantum dots, to tune their optical properties, 

and to understand the mechanism of plasmon enhanced CdSe fluorescence and photo-

oxidation of CdSe quantum dots.  We have demonstrated two techniques to pattern 

colloidal CdSe quantum dots: evaporation induced self-assemble of CdSe into nanorings, 

and confocal scanning lithography patterning of CdSe film.  

 The second goal was to investigate and model the processes that were involved in 

this study.  We established models for each system to qualitatively and quantitatively 

explain the experimental observations.  At the same time we used these models to 

predict results for similar systems and we had also tested some of these predictions. 

 This study represents and contributes to the developing of unconventional 

lithography techniques, and understanding the mechanism of plasmon fluorescence 

enhancement, photo-oxidation, as well as the application of CdSe colloidal nanocrystals. 
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CHAPTER II 

WHEN SELF-ASSEMBLY MEETS COLLOIDAL LITHOGRAPHY* 

 

 

2.1.  Introduction 

Semiconductor and metal nanoparticles can be exploited as building blocks for 

designing photonic, electronic and magnetic devices as well as for use in sensing and 

optical applications.14, 21-24  Patterned arrays of nanoparticles can even serve as platforms 

for studying fundamental physical chemistry and molecular interactions.14, 25-27  The 

fabrication of ring structures has attracted particular attention due to their applications as 

optical28-38 and electronic39-42 resonators.  Nanoring formation, however, is presently 

limited by a lack of convenient, inexpensive, and rapid templating methods.14 This 

problem has motivated considerable efforts to develop improved patterning techniques.13, 

15, 40, 43-61  

One of the most attractive routes for patterning planar surfaces has involved the 

use of mircosphere templates.14, 15, 29, 53, 59, 62-66 This technique, which is often called 

colloidal lithography, has been employed for patterning metals, soft matter, and even 

organic monolayers in regular arrays on solid substrates.  Another recent development 

has involved the use of capillary lithography   to  direct    metal   and    semiconductor 

____________ 
*Data and text reported in this chapter is reproduced with permission from ACS Nano, 
Jixin Chen, Wei-Ssu Liao, Xin Chen, Tinglu Yang, Stacey E. Wark, Dong Hee Son, 
James D. Batteas, and Paul S. Cremer, Evaporation-Induced Assembly of Quantum Dots 
into Nanorings, ACS Nano, 2009, 3, 173-180.  Copyright 2009 American Chemical 
Society. 
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Figure 2.1.  Schematic diagram of the evaporation templating procedure employed for 

forming CdSe nanorings (red particles) on planar substrates using microsphere templates 

(orange particles).  Note that the drawing is not to scale. 

 



 15 

nanoparticles to specific locations in groves and wells.23, 67  We therefore reasoned that 

arrays of nanoring structures could be formed with a high degree of control by 

combining colloidal lithography with capillary lithography.  Specifically, ~4 nm CdSe 

QDs were assembled on planar supported substrates containing hexagonal arrays of 

polystyrene microspheres ranging in size from 200 nm to 2 µm.  Well-ordered 

nanoparticle rings were left behind on the substrate surface after the microspheres were 

removed.  A schematic diagram of this process is shown in Figure 2.1.  The height and 

width of the rings could be precisely controlled down to the level of single nanoparticle 

necklaces.  Additionally, the diameter of the rings could be defined by the size of the 

microspheres used for templating.   

 

2.2.  Experimental 

2.2.1.  Synthesis of CdSe Nanoparticles  

Trioctylphospine oxide (TOPO)–capped spherical CdSe nanocrystals were 

prepared from CdO and Se by employing a well-established solvothermal method.68  

Initially, 250 mg of CdO was heated to 300 C in a mixture of trioctylphophine oxide 

(1.15 g), hexadecylamine (2.85 g), and tetradecylphosphonic acid (1.09 g) under a 

nitrogen atmosphere.  After the solution became optically clear, 0.5 g of 

tributylphosphine was added and the temperature was reduced to 260 °C.  80 mg of 

selenium dissolved in 0.72 g of tributylphosphine were quickly injected into this mixture 

to initiate the formation of the nanocrystals.  When the desired size of the nanocrystals 

was reached, the reaction mixture was cooled down to 60 °C and 10 g of nonanoic acid 
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was added.  The nanocrystals were purified by repeated precipitation/suspension cycles 

in methanol and toluene.  Passivation of the CdSe nanocrystals with 16-

mercaptohexdecanoic acid (16-MHA) was performed by heating the TOPO-capped 

CdSe nanocrystals in methanolic solutions of 16-MHA and tetraethylammonium 

hydroxide at 65C for 6 hours under refluxing conditions.51 The resulting MHA-capped 

CdSe nanocrystals were soluble in water and, as expected, exhibited reduced 

fluorescence compared to TOPO-capped nanocrystals.  The average diameter of the 

CdSe QDs was determined by transmission electron microscopy (TEM) (Figure 2.2).  

The value was 3.9 ± 0.2 nm, which corresponds only to the semiconductor nanocrystal 

core and not the 16-MHA coating.  This is not surprising, as it is difficult to observe the 

organic monolayer film by TEM.  The concentration of nanoparticle solution was 

obtained from UV-Vis absorption spectrum and the absorption cross section of CdSe 

nanocrystals.69 

 

2.2.2.  Synthesis of CdSe/ZnS QDs 

CdSe/ZnS nanoparticles were synthesized using an established layer-by-layer 

growth method.70  A 0.04 M zinc precursor solution was made by dissolving ZnO (0.3 g) 

in oleic acid (5.4 g) and 54 mL of 1-Octadecene (ODE) at 250 °C.  The 0.04 M sulfur 

precursor solution was made by dissolving sulfur (0.1 g) in 78 mL of ODE at 200 °C.  

Both solutions were heated until they became clear and were subsequently cooled to 60 

°C for the Zn solution and room temperature for the S solution.  To make CdSe coated 

with ZnS, 6.3 × 10-8 moles of TOPO-passivated CdSe nanoparticles, about 6 nm in  
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Figure 2.2.  TEM images of (A) 4 nm CdSe, (B) 6 nm CdSe and (C) CdSe/ZnS 

synthesized from (B). The statistical results of (A) and (C) were shown in Figure 2.3A 

and 2.3C respectively. 
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Figure 2.3.  Statistical result of (A) diameter of 4.0 nm CdSe quantum dots, and (B) 

corresponding CdSe nanoring height; (C) diameter of 7.3 nm CdSe/ZnS quantum dots, 

and (D) corresponding CdSe/ZnS nanoring height. 



 18 

diameter (Figure 2.2.B), were used.  The CdSe particles were dissolved in 4mL of 

toluene and added to 6 mL of ODE and 1.3 mL of oleylamine.  Using standard air-less 

procedure, the reaction mixture was degassed at room temperature for 30 minutes to 

remove the toluene and then heated to 100 °C for 10 minutes.  Under N2, the reaction 

mixture was heated to 240 °C for the layer-by-layer growth.  1.1 mL of the S precursor 

solution followed by 1.1 mL of the Zn precursor solution was injected.  This was 

followed by 2 mL of S precursor, 2 mL of Zn precursor, 3.5 mL of S precursor and 3.5 

mL of Zn precursor, for a total of 6 injections.  All injections were 10 minutes apart with 

an injection rate of 1 mL/1.5 minutes.  After the reaction was completed, the reaction 

mixture was cooled to room temperature and acetone was used to precipitate the 

CdSe/ZnS particles.  They could then be redissolved in toluene and cleaned further with 

methanol.  As reported, the nanoparticles have relatively larger size diversity as their 

CdSe core (Figure 2.2.C).70  For water soluble CdSe/ZnS particles, the previously 

described surfactant exchange procedure was used with mercaptoundecanoic acid (11-

MUA) instead of the 16-MHA. 

 

2.2.3.  Microsphere Preparation 

Polystyrene microspheres were purchased from Duke Scientific (Fremont, CA).  

The spheres were repeatedly centrifuged for 5 minutes at 9,300 g (10,000 rpm, 

Eppendorf Centrifuge 5415D, Hamburg Germany) and resuspended in ultrapure water 

(18.2 MΩ cm, NANOpure, Barnstead, Dubuque, IA) to remove surfactant molecules 
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from the solution.  This centrifugation/resuspension process was typically repeated eight 

times. 

 

2.2.4  Preparation of Substrates 

Glass cover slides (VWR) were cleaned in piranha solution (1:3 H2O2: H2SO4) 

and then annealed to 450 oC and held at that temperature for 5 hours (Caution: Piranha 

is a vigorous oxidant and should be used with extreme caution).  Next, the clean glass 

slides were modified with three different surface chemistries.  These included 3-

aminopropyltrimethoxysilane (APTMS, Sigma-Aldrich), Shipley 1805 photoresist 

(Microchem, MA), and polyvinylpyrrolidone (PVP, Sigma-Aldrich, Mw = 55,000).  

APTMS modified glass was obtained by placing a recently cleaned glass slide into a 1 

mM APTMS/ethanol solution overnight followed by rinsing with ethanol and water.  

Finally, the slides were dried by blowing compressed nitrogen gas over the surface.  

Shipley 1805 films were obtained by spin coating a clean glass slide with a 1:5 mixture 

of Shipley 1805 and Thinner P (Microchem, MA).  The substrates were then baked for 1 

min at 90 oC followed by further annealing to 120 oC for 1 min.  PVP modified surfaces 

were prepared by soaking freshly prepared glass substrates in a 1% PVP ethanol solution 

overnight.  The samples were then rinsed sequentially with ethanol and purified water 

for 1 min each.  Finally, the samples were dried by blowing nitrogen gas over the surface.  
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2.2.5.  Surface Imaging 

Atomic force microscopy (AFM) images were taken with a Nanoscope IIIa 

Multimode Scanning Probe Microscope (Veeco-Digital Instruments) using NSC15/noAl 

ultrasharp tapping mode tips (Micromash; tip radius ~10 nm; average spring constant 40 

N/m).  Additional images were captured with a WITec Alpha300 combined confocal 

fluorescence/AFM system to allow for sequential confocal fluorescence and AFM 

imaging of the same area.  For fluorescence imaging, the 488 nm line from an Ar+ laser 

was used as the excitation source.  Optical micrographs were captured with a Nikon high 

numerical aperture objective (100×, 0.9 NA).  Spectral data were acquired with an Acton 

triple grating spectrometer imaged onto an Andor Peltier cooled (-70 oC) CCD detector.  

Fluorescence images were generated from integrated spectra acquired between 500 and 

600 nm. 

 

2.3.  Results  

2.3.1.  Forming Quantum Dot Rings by Evaporative Templating 

Hexagonal arrays of nanorings made from CdSe QDs were formed by the 

procedure outlined in Figure 2.1.  In a first step, an aqueous solution containing 2 m 

diameter polystyrene spheres was added to a second aqueous solution containing the 

CdSe quantum dots.  The mixture, which contained ~1×1010 spheres/mL and ~1×1014 

QDs/mL, was then introduced onto various planar supports in a dropwise fashion (~2 µL 

droplets).  The evaporative templating process was allowed to proceed over an 

approximately 0.2 cm2 area by drying in air at 23 °C with a relative humidity of ~45 %.  
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The microspheres were gently removed from the support by applying and removing a 

piece of adhesive tape to the surface.  After this, the nanoring array patterns could be 

directly imaged in air by AFM.  

 

 

Figure 2.4.  AFM topographical images of CdSe rings on (A) clean glass, (B) APTMS 

modified glass, (C) Shipley 1805 photoresist coated glass, and (D) PVP modified glass.   

The scale bars are each 1 μm long. 
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The quality of the patterns depended intimately on the nature of the underlying 

substrate.  For example, hexagonal arrays of nanorings could be formed on glass 

surfaces; however, some nanoparticles were deposited randomly over the entire surface 

(Figure 2.4A).  Employing APTMS modified glass left even more material in the 

background (Figure 2.4B).  This was not surprising as the QDs were acid-terminated and 

should adhere strongly to the amine terminated surface via electrostatic and hydrogen 

bonding interactions.  Far better results were achieved by using Shipley 1805 coated 

(Figure 2.4C) and PVP modified glass (Figure 2.4D) substrates.  A key difference 

between these last two coatings was the fact that hexagonal nanoring patterns could be 

easily washed away from Shipley 1805 coated surfaces, but not from PVP modified 

substrates.  Such a result suggested that the interactions between the QDs and the 

Shipley-coated substrates were very weak.  On the other hand, PVP modified substrates 

appeared to have an intermediate level of interaction with the QDs.  Specifically, the 

interactions were weak enough to prevent most background particle deposition, yet 

strong enough to resist rinsing away in water.  PVP modified substrates were therefore 

used in all subsequent studies. 

As noted above, the patterns were typically formed over 0.2 cm2 areas.  Before 

their removal, individual polystyrene microspheres forming hexagonal arrays could be 

seen optically on PVP-coated surfaces.  A 60 µm × 60 µm image of one such array is 

shown in Figure 2.5A.  A few line and point defects can be clearly seen in the image 

which is typical for colloidal lithography.  Additionally, an AFM image of a 20 µm × 20 

µm array of CdSe nanorings is shown in Figure 2.5B.  This approximately represents the 
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upper size limit for a region without major defects.  Larger regions inevitably contain the 

common defects of colloidal lithography. 

 

 

 

 

Figure 2.5.  (A) Optical image of polystyrene microspheres on a PVP modified glass 

substrate.  (B) AFM topographical image and cross section of CdSe nanorings on a PVP 

modified glass substrate. 
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2.3.2.  Verification of Ring Composition 

Next, experiments were performed to verify that the nanorings were made from 

quantum dots.  This was done by repeating the evaporative templating experiments 

without any quantum dots in the aqueous solution.  In this case, no material was 

deposited on the substrate (data not shown).  More direct evidence for QD rings comes 

from confocal fluorescence microscopy/AFM experiments, which can probe the local 

optical properties of the surface-adsorbed materials with lateral resolution below one 

micron (488 nm laser excitation and 100× (0.9 NA) objective).  To examine the optical 

properties of the rings, the sample was immersed in purified water overnight and then 

rinsed with additional water for 30s to remove any impurities left on the surface.  After 

this, the sample was dried by blowing N2 over the surface.  Confocal fluorescence and 

AFM images of the identical area are shown in Figure 2.6A & B, respectively.  Both 

images show the hexagonal pattern.  The fluorescence signal collected from a single QD 

ring as well as from a background region is shown in Figure 2.6C.  The QD ring shows 

peak emission at ~540 nm which is generally consist with the fluorescence spectrum for 

4 nm CdSe QDs.71  It should be noted, however, that the peak is ~30 nm blue shifted 

compared to the 570 nm peak emission typically found in bulk solution.72 This may be 

due to the surface adsorption of the nanoparticles, their partial oxidation in air, or a 

combination of both phenonmena.73  While using CdSe/ZnS instead of CdSe, both the 

emission and the height of the nanorings consist with the size of the nanoparticles.  No 

blueshift of the emission spectra (Figure 2.7C) was observed suggesting that CdSe/ZnS 
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is stable in air, and the peak consists with the CdSe core diameter of about 6.0 nm 

(Figure 2.2.B) regardless the ZnS shell thickness variation (Figure 2.2.C). 

 

 

 

 

Figure 2.6.  (A) Confocal fluorescence image of CdSe nanorings formed on a PVP 

modified glass substrate.  (B) An AFM topographical image of the identical area as in 

(A).  The scale bars for both are 2 μm long.  (C) Fluorescent emission spectra over the 

regions labeled “1” and “2” in (A). 
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Figure 2.7.  Sample formed from 2 μL mixture of polystyrene microspheres (diameter 2 

μm, ~1 × 1010 spheres/μL) and CdSe/ZnS quantum dots (~2 × 1013 QDs/μL) dried on 

PVP-modified glass.  (A) Confocal fluorescence image of CdSe/ZnS nanorings (an area 

with 3 point defects indicated by arrows was intentionally selected).  (B) AFM 

topographical image of the identical area as in (A) (arrows show the same defects).  The 

scale bars for both are 4 μm long.  (C) Fluorescent emission spectra over the regions 

labeled “1” and “2” in (A).  (D) AFM line profile of nanorings in (B).  The height 

diversity from AFM consists with the size of CdSe/ZnS shown in Figure 2.2.C and the 

statistical results were shown in Figure 2.3. 
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2.3.3.  Controlling the Geometry of the Ring Arrays 

To form rings of varying thickness, the concentration of polystyrene 

microspheres in solution was held constant at 1×1010 spheres/mL, while the 

concentration of QDs was varied from 1×1014 to 1×1013 QD/mL (Figure 2.8).  As can be 

seen, high concentrations of CdSe quantum dots led to the formation of thicker and 

higher ring structures, while lower concentrations were associated with thinner rings and 

lower heights.  Specifically, AFM topographic height profiles reveal that a ratio of 

quantum dots to polymer spheres of 10,000:1 led to structures that were at least 6 

nanoparticle layers high (Figure 2.8A).  When this ratio was reduced to 4,000:1, three 

layer high structures were observed (Figure 2.8B).  Ratios of 2,000:1 and 1,000:1 led to 

two layer (Figure 2.8C) and single layer structures (Figure 2.8D), respectively.  For the 

two-layer QD rings shown in Figure 2.8C, each layer exhibited a thickness of ~5 nm and 

the stacking structure of the QDs within the rings is readily visible in the image.  

Moreover, individual QDs could be observed when single monolayer high nanorings 

were formed (Figure 2.8D).  The width of the structure in Figure 2.8D was about 20-30 

nm.  This is consistent with the idea that the apparent width should be dominated by the 

radius of curvature of the AFM tip, which is substantially greater than the diameter of 

the CdSe QDs.  Line profiles of all single rings revealed that they share roughly the same 

inner contour structure (Figure 2.8E), which is consistent with the QDs conforming 

around individual polymer microspheres during the last stage of the drying process.   
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Figure 2.8.  AFM topographical 3D images of CdSe nanorings obtained from solutions 

using ratios CdSe to polystyrene microsphere ratios of (A) 10,000:1, (B) 4,000:1, (C) 

2,000:1, (D) 1,000:1.  (E) Line profiles through the center of each ring.  The scale bars in 

each image are 200 nm long. 
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In a final set of experiments, we wished to verify that the inner radius of the rings 

could be varied by tuning the size of the polystyrene spheres.  This was accomplished by 

using spheres with diameters ranging from 2 µm down to 200 nm (Figure 2.9).  A line 

profile across each ring is shown immediately below the corresponding micrograph.  

These profiles can be used to measure the contact radius, Rring, as a function of 

microsphere size.  It should be noted that Rring was measured at a height of ~4 nm above 

the plane of the PVP-coated surface, which should correspond roughly to the middle of 

the lowest layer of nanoparticles.  As can be seen, the inner radius contracted from 133 

nm to 43 nm as the size of the microsphere template was shrunk.  

A 10 µm × 10 µm image is shown for each template size (2.5 µm × 2.5 µm for 

200 nm microsphere template, Figure 2.10).  As can be seen, ring heights and widths 

were quite uniform from ring to ring.  Moreover, the hexagonal pattern was well 

preserved in all cases except when the smallest polystyrene microspheres were employed.  

In this case the CdSe nanorings were more randomly distributed on the substrate.  This 

occurred because the 200 nm microspheres did not form a uniform hexagonal layer.  In 

other words, the colloidal lithography process did not work perfectly for this smallest 

sphere size. 
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Figure 2.9.  AFM topographical images and the corresponding line profiles from single 

CdSe nanorings formed with polystyrene spheres having diameters of (A) 2 µm, (B) 1 

µm, (C) 600 nm, and (D) 200 nm.  All scale bars are 200 nm long.  The evaporative 

templating process was carried out at a CdSe concentration of 2×1013 QD/mL under all 

conditions.  The microsphere concentration in the initial aqueous solutions were (A) 

1×1010 spheres/mL, (B) 2×1010 spheres/mL, (C) 8×1010 spheres/mL, and (D) 3×1011 

spheres/mL, respectively. 
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Figure 2.10.  Large areas AFM topographical images of CdSe nano rings formed with 

polystyrene spheres having diameters of (A) 2 µm, (B) 1 µm, (C) 600 nm, and (D) 200 

nm.  The concentrations of CdSe quantum dots and polystyrene microspheres were the 

same as in Figure 2.9. 
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The value of Rring for each microsphere template size could be predicted using a 

simple hard sphere contact model:  

 

22 )()( QDMSQDMSring RRRRR                     (2.1) 

 

where RMS is the radius of the microspheres, and RQD is the radius of quantum dots 

(Figure 2.11).  Fitting this formula to the four data points from Figure 2.9 yields a QD 

radius of ~4.2 nm (Figure 2.12).  Such a value is in excellent agreement with the size of 

the nanoparticles, whereby the bare CdSe QDs should be ~2 nm in radius and the length 

of the 16-MHA-capping layer will add slightly more than 2 nm to this value.  
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Figure 2.11.  Schematic diagram of the hard sphere contact model employed for 

calculating the contact radius of the CdSe nanorings.  Note that the drawing is not to 

scale. 
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Figure 2.12.  Plot of the CdSe ring radius vs. the radius of the polystyrene sphere 

templates.  The error bars on the data points are standard deviations from measurements 

of 20 separate nanorings.  Curves were calculated using Equation 2.1. 
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2.4.  Discussion 

The advantage of using polystyrene microspheres as nanoscale templates is that 

the wedge-shaped region between the spheres and the planar substrate provides a 

convenient location for the deposition of the non-volatile semiconductor particles.  

Although spheres have been employed in the present case, it is reasonable to hypothesize 

that other geometries should work as well.  For example, arrays of double lines could be 

formed by using micron-sized rods as templates.  Of course, in that case the ability to 

form long range periodic arrays would depend upon developing methods to properly 

align the rods over long distances.  This technique could also be expanded to pattern 

numerous other materials besides CdSe QDs and an example was shown in Figure 2.7.  

As noted above, however, the surface chemistry must be appropriate for high fidelity 

nanoring formation (Figure 2.4).  If solute particles adhere too strongly or weakly to the 

substrate, then patterns will either not form at all or be easily damaged merely by rinsing 

the surface with water.  Below, we briefly outline the forces which need to be taken into 

consideration. 

The CdSe QDs become sequestered into the wedge region between the 

polystyrene spheres and the planar substrate during the evaporation process by a delicate 

interplay of multiple forces.  These include capillary forces, capF , and 

nanoparticle/planar substrate adhesion forces, adF .  Moreover, the surface of the 

polystyrene spheres possess a net negative charge in aqueous solution that is 

counterbalanced by an ionic double layer.74  Therefore, there should be repulsive 

interactions between the negatively charged CdSe QDs and the microspheres.  This will 
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be manifest as an electrostatic double layer force, dlF ; whereby, the quantum dots can 

to a first approximation be treated like ions near a charged substrate.75  Capillary forces 

act to drag the QDs from the water/air interface toward the wedge region, while the 

nanoparticle/planar substrate adhesion and double layer forces act to oppose this 

movement.  Therefore, the capillary force must exceed the combination of the other two 

in order for nanorings to form.  These forces along with the corresponding frictional drag 

force, fF , which also impedes the movement of the nanoparticles, are summarized in 

Figure 2.13 and will be discussed below. 

The capillary force, capF , can be written as: 23, 67, 76 

 

)cos(2 rF cap                  (2.2) 

 

where r is the contact radius of the water/air interface around the quantum dots (Figure 

2.13), γ is the surface tension of water (0.073 N/m at 293K), and  is the contact angle, 

which can be taken to be ~30o.60  Under these conditions, the maximum radius is limited 

to the radius of the 16-MHA-capped quantum dots.  Therefore, rmax = 4 nm and capF   

1.6 nN.  Most of this force should be parallel to the plane of the surface, however, a 

small component will be normal to it.  At this process, the capillary interaction energy 

can be estimated by integrating from r = 0 to rmax.
67  The number is ~400 kT, suggesting 

that the capillary force is sufficient to overcome thermal fluctuations.  
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Figure 2.13.  Schematic diagram showing the forces involved in dragging the CdSe 

quantum dots (shown in red) to the polystyrene spheres (shown in orange).  Note that the 

drawing is not to scale.  Moreover, there is almost certainly a hydration layer that coats 

the entire hydrophilic CdSe quantum dot which has not been explicitly drawn. 
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The electrostatic double layer force, dlF , in simplified form can be written as:77    

 

d
dl PeRF   22          (2.3) 

 

where R is the nanoparticle radius, P is the surface pressure, κ-1 is the Debye length, and 

d is the separation distance between the surface of a polystyrene sphere and the surface 

of a quantum dot (Figure 2.13).  This force is somewhat difficult to estimate because the 

surface charge on the polymer particles can be difficult to measure and vary somewhat 

from particle to particle.  Moreover, the concentration of quantum dots as well as the 

ionic strength of the solution is constantly increasing during the drying process.  

Nevertheless, P has been estimated to have an upper bound of 107 N/m2, which 

corresponds to a surface potential of about 85 mV.77  Because the QDs are placed in pure 

water with only hydronium as the counter ion, κ-1 should be quite large.  For pure water 

the value would approach 1 µm, which would correspond to the minimum possible 

screening between a polymer sphere and an individual QD.  Therefore, dlF   ~1 nN. 

The adhesion force, adF , of the nanoparticles to the planar surface, can be 

approximated as: 78-82  
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where A is the Hamaker constant for the PVP-QD system in water, R is the CdSe QD 

radius, z0 is distance between the edge of the QD and the planar surface, and a is the 

contact radius.  The value of this last constant would presumably be related to the 

deformation of the 16-MHA capping layer as well as any deformation in the PVP layer 

(Figure 2.14).  For 4 nm radius nanoparticles on planar substrates under ambient 

conditions, the contact radius, a, should be ~2 nm according to continuum elastic theory 

using the MD (Maugis–Dugdale) transition model.83  The value of A can be estimated to 

be approximately 2×10-20 J based upon literature values for similar systems.75, 84  

Moreover, based upon the Bohr radius of the atoms on the substrate surface and QDs, it 

is often estimated that z0 should be ~0.4 nm.80  This leads to adF  = ~ 0.3 nN for QDs 

with R = 4 nm.  

 

 

Figure 2.14.  Schematic diagram of the 16-MHA-capped CdSe quantum dots in contact 

with a PVP modified glass substrate.  Note that the drawing is not to scale. 
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The vectoral addition of dlF  + adF   would have a maximum value of 1.3 nN if 

they were in the same direction; however, they are not (Figure 2.13).  They would add to 

approximately 1.1 nN for  = 80 degrees.  This situation occurs as the first layer of 

nanoparticles approaches contact ring.  Projecting this magnitude onto the direction 

perpendicular to the surface normal would provide a force of 0.6 nN opposite to the 

direction of capF .  This would make the combination of these two forces considerably 

smaller than the component of capF  which is parallel to the surface.  It should be noted 

that this total vector sum will also be opposed by a kinetic friction component, fF , 

which will also impede the progress of the nanoparticles in the direction of the contact 

ring. 

It is almost certainly the case that capF  exceeds dlF  + adF  + fF  for all the 

systems that were examined in Figure 2.4.  Indeed, rings were formed in all four cases.  

In Figure 2.4A & 2.4B, however, a significant fraction of CdSe QDs were adsorbed 

sporadically on the planar substrates rather than at the contact ring.  This is almost 

certainly due to the fact that the adhesion force varies greatly as a function of position.  

Indeed, defects and related strong interaction sites probably pin the CdSe QDs at specific 

locations. 

Finally, the above calculations lead to the notion that there should be an upper 

limit to the size of nanoparticles which can be templated by this combined colloidal 

lithography/capillary lithography technique.  This is because the double layer force will 

increase faster than the capillary force as the nanoparticle size increases.  Specifically, 
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the capillary force increases linearly with nanoparticle radius, while the double layer 

force increases as the square of the radius.  Based upon the equations above, one would 

expect the limit to be reached for ~30 nm nanoparticles when 2 µm polymer spheres are 

employed in conjunction with PVP-coated substrates. 
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CHAPTER III 

SCANNING FOCUS LASER LITHOGRAPHY AND ITS APPLICATION IN 

NANOFABRICATION* 

 

 

3.1.  Introduction 

Quantum dots (QDs) have found numerous applications in areas ranging from 

optoelectronics (e.g. light sources and solar cells) to tags for use in biosensing. The 

ability to create spatially addressable platforms of QDs with selective optical properties 

would greatly enhance many of these applications.2-6  Several approaches, including 

colloidal assembly, electrostatic deposition, covalent bonding, bio-recognition, 

Langmuir-Blodgett and self-assembly, have been developed to position materials such as 

metal nanoparticles and QDs on a variety of substrates.85-89  However, assembling 

different QDs on the same substrate with submicron resolution remains a significant 

challenge, as this first requires the synthesis of QDs with the desired optical properties 

and then a means of directing them to a desired location.  This can be a relatively 

laborious and non-economical process, requiring several experimental steps.90, 91  

Recently, however it has been shown that by using photo-oxidation, the effective “size”  

____________ 
*Data and text reported in this chapter are reproduced with permission from J. Am. 
Chem. Soc, Jixin Chen, Yang-Hsiang Chan, Tinglu Yang, Stacey E. Wark, Dong Hee 
Son, and James D. Batteas, Spatially Selective Tuning of Quantum Dot Thin Film 
Luminescence, J. Am. Chem. Soc., 2009, 131, 18204–18205.  Copyright 2009 American 
Chemical Society. 
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of the QDs can be modified post-synthetically to tune their emission.72, 73, 89, 92-97  

However  solution phase processing of QDs by such photochemical reactions can often 

result in aggregation, yielding undesirable spectral broadening and inhomogeneity.72, 92, 

93  It has previously been reported that spatially selective photobrightening and 

photodarkening of QD thin films has been accomplished using optical microscopy by 

controlling laser intensity.98  Combining optical lithographic patterning with post-

synthetic photochemical modification  however,  may yield a facile means of fabricating 

QD arrays with tunable optical and chemical characteristics.  Such approaches however 

remain largely unexplored. 

In this chapter I illustrate a “lithosynthesis” process in which a thin film of 

luminescent CdSe QDs can be patterned to create arrays of QDs with sub-micron 

resolution and emission at different wavelengths, but all starting from a single material 

(Figure 3.1A).  To demonstrate this, thin films of CdSe QDs (ca. 2 layers) capped with 

16-mercaptohexadecanoic acid (16-MHA) were assembled via layer-by-layer deposition 

on surfaces such as glass and oxidized Si, in which a positively charged polymer links 

the QDs to the surface (see supporting information).99  By rastering a focused Ar ion 

laser across the film with different rates at varying locations, selective photo-oxidized of 

the illuminated QDs was found to occur resulting in patterned arrays of QDs with 

different luminescence intensities and wavelengths (Figure 3.1B-C).  Changes in both 

emission wavelength and intensity can be controlled depending on the laser power, 

illumination time and most importantly, local chemical environment. 
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Figure 3.1.  (A) Schematic diagram showing the photo-tuning of CdSe optical properties 

using a focused laser beam at 488 nm.  (B) Photoluminescence image (30 m × 30 m) 

and (C) peak position image (30 m × 30 m) of patterned CdSe QDs.  The intensity of 

QDs was selectively tuned by altering the laser scanning speed ranging from 0.1 m/s to 

4 m/s.  The fluorescence intensity of the lines increases at first and then decreases as 

the laser dwell time raises, while increased exposure time results in a continuous blue-

shifting of the QD emission. 
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3.2.  Results and Discussion 

3.2.1.  Photocatalytic Oxidation of CdSe Capping Reagent and CdSe Core 

Upon laser illumination, the photoluminescence (PL) intensity of the CdSe 

initially increases up to six-fold or even higher  (photo-brightening), followed by photo-

darkening, along with a concomitant blue shift in emission wavelength (Figure 3.2).  The 

increase in photoluminescence intensity has been purported to result from several 

potential factors100 including the decrease of surface trap sites and roughness under 

illumination,72, 96, 97  desorption/absorption of physically absorbed molecules,101 or 

accumulation of electrons in the organic surroundings,98, 102 and recently the oxidation 

and delocalization of the capping reagent were also considered for colloidal QDs.103-105  

It is well known that many of the colloidal QD capping ligands are efficient quenchers 

and 16-MHA capped CdSe has a lower quantum yield than TOPO capped CdSe (ca. 1 % 

vs. 30 %).105  Thus by starting with QDs capped with 16-MHA, their removal by local 

photooxidation/patterning results in a dramatic increase in local photoluminescence.  

Under illumination, the thiol capping ligands can be removed by their photocatalytic 

oxidation to disulfide,103 while more complicated oxidation states of sulfur are also 

observed based on X-ray photoelectron spectroscopy (see the next section 3.2.2).   
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Figure 3.2.  Change in luminescence intensity (left axis) and peak position (right axis) 

of a CdSe QD film under focused laser illumination. 
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Figure 3.3.  XPS spectra of a CdSe QD film before and after UV illumination and 

following UV illumination and re-exposure to 16-MHA. 
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3.2.2. XPS Study of the Photo-Oxidized CdSe Surface 

From XPS data in Figure 3.3, both Se and S were observed to be significantly 

oxidized after UV/ozone exposure and slight oxidation of C was also observed, while no 

noticeable changes in Cd were detected.  For Se, the peak at around 54.4 eV is from 

CdSe and peak at 59.1 eV is known to arise from SeO2.
106  For sulfur, the peak around 

centered around 160.5 eV corresponds to the thiolate chemisorbed (bounded) on Cd sites, 

while the peak from 164 eV to 167 eV may be attributed to the unbounded thiols and 

chemically (bounded) or physically (unbounded) absorbed disulfide species107 on the 

CdSe surface as previously described from NMR data by Peng and co-workers.103  The 

broad peak from 168 eV to 172 eV represent oxidized sulfur species which appear in this 

range of binding energies.107    

The atomic concentrations of Cd, Se, S and C in each sample were obtained by 

integration of the peak areas with sensitivity corrections for each element using the 

Kratos Axis software (Table 3.1).  The elemental ratio of (S + C) to (Cd + Se) of CdSe 

QDs decreases after UV treatment, from 5.4 to 2.4,  and then increases back to 4.3 after 

exposing the film to 16-MHA (Table 3.1).  This suggests that the 16-MHA surfactants 

are photo-oxidized under UV illumination and exposing the underlying CdSe which is 

then active for binding new 16-MHA molecules or other thiols. 
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Table 3.1.  Elemental summary of Cd, Se, C and S in XPS spectra of Figure 3.3. 

Atomic Concentration (%) 

Elements 
Original After UV for 4 min 

Refilled with 
16-MHA 

Cd 9.96 19.08 11.83 

Se 5.57 10.67 7.04 

S 12.63 22.70 15.48 

C 71.85 47.55 65.65 

 

 

 

3.2.3.  Reversibility of the Photo-Brightening  

Importantly, this process of photo-brightening can be reversed, affording the 

ability to create patterns not only with variable wavelengths, but variable intensity as 

well, through the re-adsorption of the same or other ligands after photo-oxidation.  The 

enhanced emission can be quenched back after immersing the patterned QD film into a 

16-MHA solution and can then be “rewritten” by laser lithography at the same region 

several times with minimal relative signal loss (Figure 3.4).  Following long-term or 

intense photo-oxidation however, the PL intensity rapidly declines to less than 1% of the 

initial intensity.  

I have probed what environmental conditions may be employed to ameliorate this 

effect by using microfluidics to compare changes in PL under several different oxidizing 

environments at the same time on the same samples (Figure 3.5). By carrying out local 
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photo-oxidation in the presences of 16-MHA/ethanol, the emission may be readily blue 

shifted equivalent amounts to that in air, yet the QDs are found to retain significantly 

higher luminescence (ca. 20 times those exposed to air alone). To following changes in 

the luminescence, here again time dependent photoluminescence spectra of the QDs 

were obtained using ~ 120 W laser power through a 20 X, 0.4 NA objective (Figure 

3.5A), for which similar results were observed as those on just the silicon surface when 

exposed to air.  Interestingly, it was found that for channels filled with an ethanolic 

solution of 16-MHA, the process of photo-oxidation was much slower than in air.  

Moreover, while the QDs in the air channel showed concomitant reduction in 

luminescence intensity along with a blue shift in the spectrum, those in the 16-

MHA/ethanol channel, were found to retain a significantly higher luminescence despite 

the correspondingly greater blue shift following a nearly ten-fold increased laser 

exposure time.  The details of the binding kinetics of 16-MHA to CdSe are now under 

investigation in Dr. Batteas lab. 
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Figure 3.4.  Demonstration of reversible surface modification of QDs.  (A) A square is 

patterned onto the CdSe QD film where the QDs are partially oxidized and capping 

groups partially removed.  (B) The sample is immersed in 16-MHA solution for 5 

minutes (inset is the wavelength channel of the same region).  (C) The surface is then re-

patterned in the same location.  (D) This process can be repeated many times with 

minimal signal loss.  (E) During the cycles, the QD emission peak is continuously blue-

shifted. 
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Figure 3.5.  Time dependent luminescence of QD thin films assembled in microfluidic 

channels.  The channels are filled with (A) air (inset: a fluorescence image of the QD 

film in microfluidic channel using the green channel of an E800 fluorescence 

microscope, Nikon) and (B) under 1 mM 16-MHA in ethanol (16-MHA/EtOH).  A laser 

power of ~120 W/m2 laser power and a 20 X 0.4 NA objective were used for both 

experiments. 
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3.2.4.  Application of Photo-Oxidation in Bio-Modification of CdSe Quantum Dots 

The increased propensity of these photo-oxidized QDs to bind new molecules 

relative to the background film also enables a facile approach for spatially selective QD 

surface modification.  This approach has some advantages compared to regular deep UV, 

UV-ozone or other ligand exchange surface modification methods.  First, visible light 

may be used with little to no damage to either the supporting QDs or loading target 

molecules.  Second, by employing lithography, the modification of the QD films can be 

spatially localized.  As such, this simple patterning approach to ligand replacement 

offers a facile method for selective modification of immobilized QDs, as compared to 

functionalization  in  solution, where  long  ligand  exchange  and separation times can 

be required,  and aggregation can often occur.91  I have explored this by selective 

binding a porphyrin with a pentanethiol tether (Figure 3.6). As shown in Figure 3.7 and 

Figure 3.8, after binding of porphyrins to the patterned regions of the QD film, 

significant quenching of the QD luminescence was observed.  This can be attributed to 

the fluorescence resonance energy transfer (FRET) and/or charge transfer between the 

QDs and porphyrin.108, 109 
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Figure 3.6.  Chemical structure of TPy3PF4-SC5SH. 

 

 

 

To be more specific, by comparing the control experiment (Figure 3.8A) to the 

sample following porphyrin attachment (Figure 3.8B, C), photoluminescence images 

showed that the porphyrin thiol had insertion to the surface.  First, the CdSe 

photoluminescence was further quenched as compared to those films to which 16-MHA 

rebound to the surface, where the intensities of the first four lines in Figure 3.8 should go 

back to the background level.  This increased quenching likely results from fluorescence 

resonant energy transfer (FRET) from the CdSe to the porphyrin.  Luminescence images 

integrated over just the porphyrin fluorescence showed higher concentrations of 

porphyrin in the photo-oxidized regions as compared to the rest of the film, although 
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some nonspecific binding of porphyrin was also observed (Figure 3.8C).  Since 

nonspecific binding is surface dependent, one may expect to reduce this by surface 

modification.  However, since FRET is highly distance dependent, and the background 

CdSe QDs work as reference, from Figure 3.8B, the binding of porphyrin is very clear 

and is much better than directly using porphyrin fluorescence (Figure 3.8C) as a binding 

signal.  The results demonstrate the feasibility for the attachment of various molecules in 

the regions of interest after selective photolithography on CdSe film. 

 

 

 

A B C

8 m 8 m 8 m
 

Figure 3.7.  Photoluminescence intensity images of (A) a control sample that had been 

soaked in CH2Cl2; (B) another control sample that had been immersed in 16-MHA 

solution; and (C) a sample that had been immersed in a porphyrin thiol solution (CdSe 

emission channel).  It is shown that both 16-MHA and porphyrin thiol can be inserted 

into the CdSe capping films, which suggests a facile way for selective modification of 

immobilized CdSe QDs in the photopatterned regions. 
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Figure 3.8.  Demonstration of the application of this photolithography method to CdSe 

QD modification by additional ligands. Here molecules with thiol linkers can be 

selectively bound into the patterned regions. Photoluminescence images of samples that 

following patterning in air: a control sample that had been soaked in solvent CH2Cl2 (A); 

a sample that had been immersed in a porphyrin thiol solution (B,C) with luminescence 

image taken for the CdSe emission (B) and luminescence image of the porphyrin 

emission (C).  (D) Emission spectrum of the porphyrin thiol modified sample with two 

emission peaks from CdSe and porphyrin respectively. 
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3.3.  Summary 

In summary, upon visible light illumination, the capping ligands of the QDs are 

photo-catalytically oxidized along with the QDs themselves allowing for the selective 

modification of their local optical properties (emission intensity and wavelength).  This 

method has many distinct advantages over other approaches for creating patterned arrays 

of QDs with different optical properties, in that only a single starting material is required 

and these patterned structures can be fabricated using typically photolithographic 

techniques, affording ready industrial scale-up.  Patterns can be created with high 

densities on any surface with appropriate modification, making them useful for creating 

displays or sensing platforms.  The patterned structures can also be “erased” or modified 

by the selective addition of new surface ligands multiple times allowing the optical 

properties of the films to be reconfigurable.   

 

3.4.  Experimental 

3.4.1.  TEM  Image of CdSe QDs 

Synthesis of CdSe QDs used in this work has been described before.85, 110, 111  

Figure 3.9 shows a typical TEM image and corresponding statistical size distribution of 

the QDs. 
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Figure 3.9. (A) TEM image of 4 nm CdSe QDs. (B) Distribution of QD size. 
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3.4.2.  Immobilization of QDs onto Solid Support to Form a QD Film 

A silicon or glass substrate was first cleaned by the base piranha solution 

(NH4OH:H2O2:H2O=1:1:4) for 10 min to form a hydroxyl terminated surface (this is a 

typical semi-conductor cleaning method, e.g. RCA-1, Caution: the base piranha 

cleaning solution is highly corrosive and should be used very carefully.  The substrate 

was then rinsed by ultrapure water (18.2 MΩ·cm, NANOpure Diamond, Barnstead, Iowa 

USA) and immersed into 1 mg/mL positively charged poly(diallyldimethylammonium 

chloride) (PDADMAC, Aldrich, 20 wt. % in water, Mw 100,000-200,000) in a 0.5 M 

NaCl aqueous solution for 20 min to allow for full absorption of a single layer.  The 

polymer modified substrate was then immersed in 16-mercapto-1-hexadecanoic acid 

(16-MHA) capped CdSe QDs in aqueous solution for 8 hrs to form a thin film of QDs 

(ca. 1-2 layers).  The resulting substrate was then further rinsed by ultrapure water to 

wash away weakly bound QDs. 

 

3.4.3.  Lithography and Imaging Processes 

The lithography and imaging processes were carried out using a combined 

confocal fluorescence/AFM microscope (WITec Alpha300R, Germany) under ambient 

conditions (24 ± 2 oC) coupled with an argon ion laser with an Andor Peltier cooled (-70 

oC) CCD detector.  A Nikon high numerical aperture objective (100x, 0.9 NA) was used 

to focus the laser on a sample for both lithography and imaging.  For lithography, a laser 

power up to 150 μW/μm2 was used, while a lower laser power of 3 to 15 μW/μm2 was 

used for imaging. At lower laser power, the same behavior was observed but the time 
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required for photo-oxidation was much longer, whereby, the photo-oxidation of CdSe 

QDs was found to be negligible during the rapid integration time of ~ 50 ms/pixel. (For 

example, it takes a few hours to reach the maximum intensity under illumination of 15 

μW/μm2 laser, comparing to several seconds for 150 μW/μm2 laser).  Figure 3.2 shows 

the typical photoluminescence as a function of time under a fixed laser at the same spot 

on a CdSe film.   

 

3.4.4.  XPS Measurement of the UV/Ozone Treated Samples 

Three samples were prepared by drop casting of 50 L of QD solution (~1 ) 

on a cleaned silicon substrate.  The samples were blown dry with nitrogen and then 

immersed in 1 mM 16-MHA/ethanol solution for 10 min.  After removing the samples 

from the solution of 16-MHA, the substrates were rinsed by ethanol thoroughly.  One 

sample was examined by XPS without further treatment, while the other two samples 

were exposed to UV/ozone for 4 min to reach the maximum photoluminescence 

intensity.  One of these two samples was then subsequently re-immersed in 1 mM 16-

MHA/ethanol solution for 10 min and then rinsed with copious amounts of ethanol.  All 

three samples were then put in the XPS chamber at the same time for XPS measurements. 

The XPS data were acquired with a Kratos Axis ULTRA X-ray photoelectron 

spectrometer equipped with a 165 mm hemispherical electron energy analyzer.  The 

incident radiation was the Mg K X-ray line (1253.6 eV) with a source power of 180 W 

(15 kV, 12 mA). The analysis chamber was maintained at a steady base pressure of < 

6×10-9 Torr during sample analysis. Survey scans of up 1100 eV binding energy were 
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carried out at a analyzer pass energy of 160 eV with 1.0 eV steps and a dwell time of 

300 ms. Multiplexed high-resolution spectra of the C(1s), S(2p), Cd(3d), and Se(3d) 

regions were taken at a pass energy of 40 eV with 0.1 eV steps and a dwell time of 60 

ms. The survey and high-resolution spectra were obtained with averages of 5 and 50 

scans, respectively. The C(1s) peak at 284.8 eV was set as a reference for all XPS peak 

positions to compensate for energy shifts due to the spectrometer work function.  

 

3.4.5.  Porphyrin Addition 

The QD film samples were photo-patterned in air then transferred into 1 mM 

porphyrin thiol (TPy3PF4-SC5SH) dissolved in CH2Cl2 for 10 min (Figure 3.6).112  After 

insertion, the substrates were removed from the solution and were rinsed with 

dichloromethane and blown dry with streaming nitrogen.  The control experiment was 

carried out by immersing the sample into pure CH2Cl2 for 10 min after photolithography.  

 

3.4.6.  Laser Lithography in Microfluidic Channels 

 A key challenge in these modified systems is retaining the luminescence intensity 

following photo-oxidation and patterning. To rapidly evaluate surface chemical 

approaches for achieving this, microfluidic test structures were used such that several 

test conditions could be compared in a single experiment.  Additionally the applicability 

of utilizing these patterning approaches in microfluidic devices was also explored.  

Fabrication of the microfluidic channels has been described in detail elesewhere.113  

Here, the same method as immobilizing CdSe QDs on silicon substrate was employed to 



 61 

immobilize QDs in microfluidic channels on the surface of cleaned glass with poly-

(dimethylsiloxane) (PDMS) microfluidic channels. Caution: goggles must be worn to 

protect eyes especially during the base piranha cleaning steps, and syringe should 

avoid air bubbles when injecting solutions into the channels to avoid spilling upon 

retracting syringes.  Using the microfluidic channels all of the solutions and rinsing 

solvents are injected into the microfluidic channels slowly with syringes through 0.018 

inch PTFE (Teflon) tubing (Small Parts, Inc.) connecting the channels and the syringes.  

The fluorescence image of CdSe coated channels shows that the CdSe film had been 

uniformly formed inside the channels with this method (Figure 3.5A-insert).  
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CHAPTER IV 

PLASMON ENHANCED CdSe QUANTUM DOT FLUORESCENCE AND ITS 

APPLICATION IN COPPER ION SENSING* 

 

 

4.1.  Introduction 

It is well known that the local surface plasmon resonance (LSRP) of metal 

nanoparticles (MNPs) can be excited when the particles are optically irradiated.  The 

energy of the surface plasmon resonance is found to be dependent on the size, shape, 

composition, and organization of the metal nanostructure.  As the LSPR of MNPs is 

found to change in response to the dielectric environment surrounding the particles, 

shifts in the peak position of the LSPR can be followed as a means of detection of 

analytes.114, 115  Enhancement in the Raman scattering of molecules in the proximity of 

MNPs have also been reported, which gives rise to surface enhanced Raman spectra 

(SERS) for which detection of signals down to the single molecule level have been 

reported.116, 117  Related to this, it has been observed that the photoluminescence 

intensity of quantum dots (QDs) and quantum wells (QWs) can also be enhanced by the  

____________ 
*Data and text reported in this chapter are reproduced with permission from ACS Nano, 
Jixin Chen, Yang-Hsiang Chan (co-first author), Stacey E. Wark, Stephanie L. Skiles, 
Dong Hee Son and James D. Batteas, Using Patterned Arrays of Metal Nanoparticles to 
Probe Plasmon Enhanced Luminescence of CdSe Quantum Dots, ACS Nano, 2009, 3, 
1735-1744.  Copyright 2009 American Chemical Society.  Part of the data reported in 
this chapter is reproduced with the permission from Analytical Chemistry, submitting for 
publication. Unpublished work copyright 2010 American Chemical Society 
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electromagnetic coupling with metal surface plasmons.118-124  Time-resolved 

spectroscopic studies of QD and QW structures coupled to MNPs have shown that the 

radiative decay rate, absorption cross section, and quantum efficiencies of luminescence 

generally increase in the presence of metal nanostructures due to the increased local 

electric field surrounding the irradiated metal structures.  For example, Atwater and co-

workers have shown that for Si nanocrystals coupled with a rough Au film, that the 

quantum efficiency for luminescence could be increased by ca. 60%.122  The extent of 

the enhancement that can be achieved by coupling of QDs to metal nanostructures or 

rough films, strongly depends on the proximity of the QDs to the metal structure, and 

has been shown to decay exponentially with increasing distance between the two.  By 

bringing QDs closer to the metal, their photoluminescence can be enhanced by the 

locally increased electric field.  However, if the QDs are too close to the MNP, 

quenching of the photoluminescence is observed.  As such, a maximum in 

photoluminescence enhancement is found to occur at an optimal separation depending 

on the competitive effects of the distance dependence of the electric field and the 

quenching efficiency.  In addition to QD-particle separation, the structure and type of 

metal particles used (e.g. Ag, Au), polarization of the incident light and the laser power 

have all been found to influence the extent of plasmon enhanced photoluminescence.  

The ability to quantitatively determine the extent of photoluminescence enhancement as 

a function of QD-metal separation however can be challenging as artifacts such as 

scattering differences between samples, variations in laser intensity and differences in 
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dielectric medium, can make scaling the luminescence intensities of coupled and non-

coupled quantum dots difficult to evaluate.   

In this chapter we present a simple platform in which the coupling of CdSe 

quantum dots with Au or Ag nanoparticles has been quantitatively measured.  To 

address some of the above mentioned challenges, we have positioned single layers of 

quantum dots on top of arrays of the desired metal nanostructure positioned in a grid 

pattern, in which the separation between the two was controlled with a polymer spacer 

formed using layer-by-layer assembly.  This simple approach yields a patterned structure 

in which the photoluminescence of the QDs above the metal patterns may be directly 

scaled against those not above the metal pattern by imaging the structure with confocal 

fluorescence microscopy.  Additionally as this structure is built on a GaAs(100) single 

crystal, the inherent luminescence of the GaAs offers the means of scaling each 

measurement from sample to sample, aiding in eliminating effects of scattering or 

variations in laser intensity.  From these studies we have shown that this simple platform 

can be readily made using chemical self-assembly approaches and adapted to various 

materials.  Here we report two initial studies of the coupling of CdSe quantum dots of ca. 

4 nm and 5.5 nm in diameter, with Au nanoparticles and Ag nanoprisms respectively, as 

a function of metal-QD separation. 
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4.2.  Results and Discussion 

4.2.1.  Formation of Au or Ag Arrays on GaAs   

In order to directly compare the effects of metal nanoparticles on the 

photoluminescence of QDs, we created a patterned array of metal nanoparticles on a 

GaAs substrate by directing attachment of the metal particles to the surface with an 

amine terminated self-assembled monolayer. This patterned layer could then be covered 

by a polymer spacer layer of varying thickness through layer-by-layer assembly and then 

coated with a single layer of quantum dots.  Using this approach the ratio of the 

photoluminescence intensities from the QDs over the metal particles could be directly 

scaled against the regions without metal particles in a single photoluminescence image.  

Figure 4.1 illustrates our method of selectively patterning Au or Ag nanoparticles (NPs) 

on the GaAs surface.  While several approaches were tried, ultimately the attachment of 

alkoxysilane SAMs on the oxidized GaAs surface yielded the best results in terms of 

film stability and metal particle attachment density. 



 66 

 

 

UV-Ozone

Au/Ag NPs

APTES

OTMS

A B C

DE

 

Figure 4.1.  Schematic diagram of patterning metal NPs on GaAs.  GaAs substrates are 

first cleaned and oxidized (A), and then modified with an APTES SAM (B).  A Cu TEM 

grid is placed on top of SAM-functionalized GaAs surface and exposed to the UV-

Ozone for 20 min, leaving an APTES SAM in the unexposed regions (C).  After 

removing the grid, the GaAs surfaces are immersed in OTMS solutions for 4 h to 

backfill the excavated area (D).  The substrates are next soaked in the desired citrate 

stabilized Au or Ag NPs aqueous solution where they attach to the amine terminated 

regions of the surface (E). 
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To form the patterned metal grid structure, the cleaned and oxidized GaAs 

surface was first coated with a uniform SAM of the aminopropyltriethoxysilane (APTES) 

(Figure 4.1B).  Following APTES assembly, a Cu TEM grid was placed in conformal 

contact with the GaAs substrate to function as shadow mask, and then the sample was 

then exposed to UV/ozone to photo-oxidize the uncovered portions of the SAM layer 

(Figure 4.1C).  Following rinsing, the oxidized SAM was removed and now the 

uncovered GaAs regions were then backfilled with an octadecyltrimethoxysilane (OTMS) 

SAM resulting in a patterned array of hydrophilic and hydrophobic regions on the 

surface (Figure 4.1D).  Finally, the sample was immersed in the desired solution of Au 

or Ag NPs (ca. pH 7) to allow for the citrate stabilized NPs to attach onto the amine rich 

regions by electrostatic interaction (Figure 4.1E).  A few nanoparticles were found to 

attach to the OTMS regions, but those that did were weakly bound and could be readily 

rinsed away. 

As the assembly process was carried out in water, the stability of the SAM is of 

the utmost importance.  To confirm the high quality and stability of the silane SAMs 

formed using this method, Fourier transform infrared reflection absorption spectroscopy 

(FT-IRAS) measurements were obtained for OTMS SAMs and XPS experiments were 

performed for the APTES SAMs on the oxidized GaAs surface.  The FTIR spectra of 
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OTMS sample showed that the (CH2) asymmetric stretch was centered around 2917 

cm-1 (data not shown), which is characteristic of well ordered crystalline-like silane 

SAM.125, 126  After 8 months of air exposure, the OTMS SAMs were observed to exhibit 

no observable signal decrease for both CH2) and CH3) stretch modes and the (CH2) 

asymmetric stretch was maintained at ca. 2917 cm-1.  As compared to SAMs of 

octadecanethiol on GaAs, which we also explored for this patterning purpose, these 

films demonstrated much greater stability, as the octadecanethiol/GaAs SAMs were 

found to degrade within a couple of weeks under ambient conditions.  For the APTES 

SAMs, a representative survey spectrum of XPS is shown in Figure 4.2, confirms the 

presence of the APTES SAM on the oxidized GaAs surface.  High-resolution spectra of 

the C(1s), N(1s), and Ga(3d) regions show peak binding energies of 284.8 ± 0.1 eV, 

399.0 ± 0.1 eV and 20.5 ± 0.1 eV, respectively, while the high-resolution As(3d) signal 

can be separated into two peaks at 44.8 ± 0.1 eV for As oxides and 42.2 ± 0.1 eV 

corresponding to GaAs bulk.  The XPS data also indicates that a fresh oxidation layer 

was readily introduced by UV/ozone and the APTES monolayers were successfully 

grown on these surfaces. 
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Figure 4.2.  X-ray photoelectron survey and high-resolution spectra for APTES 

monolayers on GaAs (100).  The high-resolution spectra show the Ga(3d), As(3d), 

N(1s), and C(1s) spectral regions which show that the surface is first oxidized and then 

covered by the APTES SAM. 
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Following particle attachment, the resulting grid structures were examined by 

AFM.  Topographic AFM images of the patterned Au arrays on GaAs are shown in 

Figure 4.3A-D.  The cross-sectional profile (Figure 4.3B) reveals that the average height 

of the Au array is 18 ± 2 nm which is consistent with the size of a single-layer Au NPs, 

suggesting that the interparticle repulsive force due to the citrate stabilizer was sufficient 

to prevent the physical adsorption of a second layer of Au NPs.  Similar results were also 

observed for Ag-nanoprism patterns as presented in Figure 4.3E-H, in which the cross-

sectional analysis shows the average height of ~ 120 nm in accordance with the edge-

length of a silver nanoprism, suggesting the Ag nanoprisms stand up face by face rather 

than lie down flat and stack on the surface.  As mentioned above, the gold nanoparticles 

were found to exhibit an absorption maximum at ~ 523 nm, which suggests that the 

average size is ~18 nm in diameter.127  The silver nanoprisms of 100 ± 20 nm in edge-

length which were synthesized from small Ag nanospheres following the reported 

photoinduced transformation method128 have two broad absorption peaks around 450 nm 

and 670 nm.  The extinction spectra of each however were found to be modified after 

deposition onto the substrate (determined from deposition on APTES modified glass 

coverslips) showing the emergence of an extinction peak at 660 nm for gold NPs and the 

broadening of silver-NP plasmon peak at higher wavelength, which can potentially be 

ascribed to interparticle coupling and/or disorder of the partial NPs (Figure 4.4).129, 130  

This phenomenon would probably affect the PL enhancement of QDs due to the degree 

of spectral overlap as reported previously.121, 131, 132 
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Figure 4.3.  Topographic AFM images of the Au and Ag patterned metal nanoparticle 

arrays on GaAs(100).  Au-NP patterns: (A) 70 x 70 m and (B) its corresponding cross-

sectional plot (blue line) showing that a single layer of particles is bound to the surface, 

(C) 20 x 20 m, and (D) 10 x 10 m.  Ag-NP patterns: (E) 50 x 50 m and (F) its 

corresponding cross-sectional plot (blue line).  (G) SEM image (10 x 10 m) of the Ag 

film, and a (H) 3-D topographical plot showing the waffle like structure of the thick Ag 

film which corresponds in thickness to the long axis of the Ag nanotriangles used. 
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Figure 4.4.  UV-visible spectra of Ag NPs (solid black line) and Au NPs (solid red line) 

on APTES-modified glass with 5 layers of PSS:PDADMAC; and photoluminescence of 

5.5 nm CdSe (dash black line) and 4 nm CdSe (dash red line) nanocrystals on top of  5 

layers of PSS:PDADMAC. 
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4.2.2.  Controlling CdSe-Metal Distance   

Previous work by Kulakovich et al. has shown that layer-by-layer polymer 

assembly can be used to provide a controllable spacing layer for QD-metal films.  Here 

we have adapted this approach to our patterned array to also control separation and test 

our platform against a known system (CdSe-Au).120 Following creation of the metal grid 

structure, the CdSe quantum dots of the desired size were then attached at controlled 

distances from the metal pattern using layer-by-layer polymer assembly.  Here, 

alternating layers of poly(diallyldimethylammonium chloride) (PDADMAC) and 

poly(sodium 4-styrenesulfonate) (PSS) were put on the surface in order to build up films 

of controlled thickness.  This began with a positively charged layer of PDADMAC, 

followed by the negatively charged PSS layer.  Terminating with an additional 

PDADMAC layer yields a surface with a net positive charge, onto which our 16-MHA 

terminated CdSe particles (which carry a net negative charge at the assembly pH) could 

then be bound electrostatically (Figure 4.5A).  Although the thickness dependence of 

these different polyelectrolyte layers has been well determined previously133 for 

deposition on surfaces such as polystyrene particles, it is likely that this will dramatically 

vary from surface to surface.  As such, to accurately determine the polymer film 

thickness, in our patterned arrays, a background thickness (D1) was determined by 

tapping-mode AFM after slightly scratching through assembled polymer films with 

varying numbers of layers on the oxidized GaAs surface (Figure 4.5).  Extending this to 

the patterned grid such as for the Au-NP system, illustrated in Figure 4.5A, once the 
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value of D1 is determined, the thickness of polymer thin films above Au NPs, D, can be 

simply derived from the following relationship: 

 

1844 1  DDH  (nm)           (4.1) 

 

where 4 nm is the average diameter of the CdSe QDs, 18 nm is the average diameter of 

the Au nanoparticles, and H is the height difference between the regions with and 

without Au NPs after coating of the polyelectrolyte spacers and CdSe QDs, as 

determined from the topographic AFM images (e.g. Figure 4.6A).  Plotting the value, D1, 

against different numbers of polymer layers (Figure 4.5C) shows a nonlinear increase in 

film thickness with the number of layers.   

 

4.2.3.  Photoluminescence Measurements   

By using patterns of Au or Ag NPs on the GaAs surface, the environment of the 

CdSe QDs could be separated into two parts: regions with and without NPs under the 

polymer spacer layer.  To measure the relative photoluminescence of the two regions, 

the sample was imaged using a confocal fluorescence microscope with an Ar ion laser at 

488 nm as the excitation light.  The PL intensity of CdSe over the NPs could then be 

directly normalized to those of the adjacent CdSe without NPs.  Figure 4.6B shows a 

typical luminescence spectrum within this ensemble.  The peak around 585 nm 

originates from CdSe QDs and the peak around 845 nm is from the GaAs background.  
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Figure 4.5.  (A) Schematic cross-sectional view of the sample showing that polymers 

and 4 nm QDs were deposited onto Au-NP arrays on GaAs in sequence.  (B) AFM 

topographic image of different layers of polymers deposited on pure GaAs substrates 

without metal patterns which were removed by scratching.  (C) The polymer thickness 

on bare GaAs (D1) measured from AFM versus the number of polyelectrolyte layers. 
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Although the PL intensity from the GaAs background should remain constant during 

each experiment, undesired fluctuations of laser power can occur from sample to sample.  

Thus, by using GaAs as the support background, we could use the PL intensity from 

GaAs as a built-in reference to normalize the PL intensity of the QDs for each individual 

measurement.  A representative PL image plotted using the CdSe emission spectrum, 

integrated from 500-650 nm clearly shows that the luminescence of the QDs over the Au 

pattern is enhanced relative to the non-metal containing regions (Figure 4.6C).  From the 

cursor profile (Figure 4.6D) it can be seen that in this case the QDs over the metal 

particles show nearly twice the intensity of those not over the metal. 

One challenge in quantifying the extent of the photoluminescence enhancement 

is that reflection or scattering of the laser source by the MNPs might re-excite the CdSe 

QDs and thus results in an artificial increase in CdSe PL.  To examine the possibility of 

this factor, the sample was scanned with a low laser power (70 nW/m2) and a confocal 

scanning image was generated by collecting the 488 nm laser spectrum itself (Figure 

4.7A).  The results indicate that the gold NPs strongly absorb the laser light owing to 

their broad absorption around 523 nm rather than reflect/scatter the laser light.  As 

shown in Figure 4.7B, the laser intensity above the regions of Au NPs (white spot) 

shows 48% lower intensity than that above the regions without Au NPs (red spot).  

Nevertheless, based on this, the relative absorption is insignificant and can be neglected 

when higher laser powers (ca. several tens of W/m2) are used for the PL 

measurements. Similar results for PL enhancement of CdSe QDs of 5.5 nm in diameter 

were observed on Ag-NP arrays (Figure 4.8).   
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Figure 4.6.  (A) Topographic AFM image of CdSe QDs deposited on 19 layers of 

polymer over a Au-NP patterned GaAs surface.  The top-right inset magnifies a 10 x 10 

m area.  (B) A representative emission spectrum from the film in panel A shows both 

the CdSe and GaAs emission at ca. 585 nm and 845 nm respectively.  (C) A false color 

photoluminescence image of 4 nm CdSe QDs above 9 layers of polymers on Au-NP 

patterned GaAs surfaces (the z-scale bar is from 7-23 a.u.).  The image is produced by 

integrating the spectral region for the CdSe from 500-650 nm.  (D) The cross-sectional 

plot corresponds to the white line in panel C, illustrating the relative photoluminescence 

enhancement. 
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Figure 4.7.  (A) A confocal scanning microscopy image generated by collecting the 488 

nm laser line on 9 layers of polymers deposited upon Au-NP patterned GaAs surfaces 

(the z-scale bar is from 50-850 a.u.).  (B) Spectra on the GaAs background (red circle) 

and Au-NP patterned (white circle) regions.  The red line and the black line represent the 

averaged spectrum of the reflected laser light of red circle and white circle areas in panel 

A, respectively.
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Figure 4.8.  (A) False color photoluminescence image of 5.5 nm CdSe QDs above 5 

layers of polymer on a Ag-NP patterned GaAs surface (the z-scale bar is from 165-300 

a.u.) and (B) its cross-section analysis along the white line.  (C) The corresponding 

confocal image at the same scanning region generated by collecting the 488 nm laser 

line on 5 layers of polymers deposited upon Ag-NP patterned GaAs surfaces.  (D) 

Reflected laser light from the GaAs background (green circle) and the Ag-NP patterned 

(white circle) regions.  The green line and the black line represent the averaged spectrum 

of green circle and white circle areas in panel C, respectively.


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The plasmon enhancement of the QD photoluminescence was found to depend 

on the number of polymer layers which controls the QD-metal separation (Figure 4.9).  

For the Au-NP system, the enhancement was found to reach a maximum at 9 layers of 

polymer, corresponding to ~10.8 nm.  For the Ag-NP system, the maximum peak was at 

5 layers of polymer (~7.7 nm).  An overall maximum enhancement by a factor of two 

was observed in both the CdSe-Au and CdSe-Ag systems, and is consistent with 

previous results for coupling between CdSe and Au nanoparticles.120  These results can 

be partially attributed to the locally enhanced electric field surrounding the MNPs under 

illumination, where the maximum field enhancement should occur at the closest QD-

metal separation distance.134  At such close QD-particle distances however, competitive 

mechanisms such as quenching, prevail due to electron transfer or non-radiative energy 

transfer from the QDs to the metal.135-139  As such, these two mechanisms compete with 

each other and thus render it to be a distribution of PL enhancement as a function of 

separation between QDs and MNPs (Figure 4.9).  When the QDs are more than 20 nm 

away from the MNPs, there is little to no coupling observed between the QDs and the 

MNPs.  For the CdSe-Au system, the trend in photoluminescence enhancement as a 

function of distance was found to be highly reproducible.  For the CdSe-Ag system, 

however a large standard deviation in the photoluminescence intensity was observed for 

small separations.  We attribute this to the much larger surface corrugation of the Ag 

films, due to the much larger particles and degree of inhomogeneity in their size (~100 ± 

20 nm).   

 



 81 

3 6 9 12 15 18 21

1.0

1.5

2.0

2.5

 

 

 

 

Number of Polymer Layers

P
L

 E
n

h
a
n

c
e
m

e
n

t

3 6 9 12 15 18 21

Thickness, D (nm)

1.0

1.5

2.0

2.5
3.5 7.7 9.8 10.8 18.3 45.4 66.5 91.3 104.1

no Au/Ag

 

Figure 4.9.  PL intensity enhancement of CdSe QDs versus number of polymer layers 

between QDs and Au (black squares)/Ag (blue triangles) NPs.  The upper x-axis 

indicates the calibrated thickness of corresponding polymer spacer (D) above metal NPs 

as illustrated in Figure 4.5A. 
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While the measured enhancement for the CdSe was consistent with previous 

reports, the observed enhancement for the Ag system was lower than we expected 

considering the typically large enhancements for other optical properties such as SERS 

signals for Ag as compared to Au materials.  In one previous report, coupling between 

InGaN with rough Ag films was shown to yield enhancements by as much as 14-fold.121  

One might also expect that Ag nanoprisms should offer higher enhancement than the Au 

nanoparticles owing to the larger local electric field typically surround the sharp points 

of a Ag nanoprism.  However, perhaps this is not unreasonable considering that our yield 

of complete photoinduced conversion of Ag nanospheres to nanoprisms is only ~50% on 

the basis of the UV-visible spectra and TEM images, such that ca. half of the Ag NPs in 

the films are non-resonant with ours CdSe QDs.  We believe this low value can also 

partially be explained by the intrinsic low-coverage of citrate-coated Au or Ag NPs on 

the surfaces.140  Additionally, it has also been demonstrated that the angle of the incident 

light and polarization can greatly influence the local-field enhancement for materials 

with sharp geometries such as nanoprisims, which we did not vary in our 

measuremnts.130, 141  As such, each of these factors likely contribute to the reduced PL 

enhancement by the citrate-covered Ag nanoprisms. 

 

4.2.4.  Proposed Mechanism   

In order to elaborate on the experimental results to determine if the distance 

dependence we observed is reasonable, we separated the interactions between QDs and 

MNPs into two factors: PL quenching due to energy transfer from the QDs to the MNPs 
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and the electric field induced PL enhancement from MNPs on the QDs.  Here, due to the 

complexity of the CdSe-Ag system, we will only examine the CdSe-Au system.  Based 

on the competing factors of quenching and electric field enhancement, the final apparent 

enhancement of the PL intensity can be depicted as: 

 

EQ PP
I

I


0

          (4.2) 

 

where I is the PL intensity of QDs over the MNP-coated GaAs surface; I0 is the PL 

intensity of QDs without MNP coupling; PQ and PE are the quenching factor and 

enhancement factor, respectively, as  described in Equations 4.3 and 4.4 below.  For the 

PL quenching part, an energy transfer mechanism has been successfully employed in 

various systems including dye-dye, MNP-dye, and QD-dye platforms.108, 142, 143  In order 

to simplify our system, we will assume that for each QD there is only one MNP nearby.  

(It should be noted that experimentally, based on the average surface coverage of the 

QDs and metal nanoparticles determined by AFM measurements, that there are ca. 

three-four QDs per Au particle).   Under these conditions, the PL quenching factor can 

be written as:139, 144, 145 
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where d is the MNP-QD separation distance; RQ is the Förster like radius at which 50% 

of the fluorescence is quenched; nQ is the dependence of fluorescence quenching on the 

MNP-QD separation distance.  For the Förster dipole-dipole energy transfer or 

fluorescence resonance energy transfer (FRET) mechanism,142 the energy transfer 

quenching exhibits an (d/RQ)6 dependence.  While for other mechanisms such as the 

nanosurface energy transfer (NSET) process, nQ will equal 4.139, 146, 147  Yun et al. has 

claimed to be able to distinguish between FRET and NSET processes by controlling the 

distance between a Au NP and a dye.144  As such, by fitting our photoluminescence 

enhancement data we will also attempt to do the same. 

For the PL enhancement part, it has been theoretically and experimentally 

demonstrated that the enhancement efficiency depends on the spectral overlap between 

donor emission and LSPR of MNPs and is proportional to the near field electric field 

intensity of the metal surface.148-150  Here, we simplify the enhancement model via the 

following equation: 

 

1)(  EnE
E

d

R
P               (4.4) 

 

where RE is a constant for the MNP-QD separation at where we observe twice the 

luminescence enhancement, d is the same MNP-QD separation distance in Equation 4.3 

and nE is the distance dependence power.   

To apply these models to our data, the experimental data of the Au-QD system 

(Figure 4.9) was fit using Equation 4.2, combined with Equations 4.3 and 4.4, where nQ 
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was set to 4 or 6 and RQ was calculated directly for either the FRET or NSET models 

based on the materials (please see section 4.2.5).  All of the other parameters, d, RE, and 

nE were left to be freely variable in the fit.  If the fit to the data is better for nQ = 4, this 

would suggest that the NSET mechanism dominates the energy transfer quenching 

processes.  However, if a better fit is obtained for nQ = 6, this would be indicative of a 

FRET mechanism being the major contributor to the quenching of the QD PL.  The 

fitting of our results for both nQ = 4 and 6 are shown in Figure 4.10, in which the green 

and blue dashed lines represent the curves for quenching and electric field enhancement 

as a function of MNP-QD separation distance, respectively.  From these results, it can be 

seen that when nQ = 6 a much better fit to the data is found, suggesting that the FRET 

mechanism seems to dominate in our system.  This finding is consistent with earlier 

studies of ZnS capped CdSe coupled to Au nanoparticles via peptide tethers.139  
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Figure 4.10.  Fitting results for PL intensity enhancement for the Au-QD system.  (A) 

For nQ = 4 and (B) for nQ = 6, respectively.  The data points are from Figure 4.9.  Only 

0-50 nm of separation is shown to highlight the fit near the peak position.  The orange 

and red solid lines represent the apparent PL enhancement as described in Equation 4.2 

for the NSET and FRET mechanisms.  The green and blue dashed curves depict the 

quenching and enhancement factors as described in Equations 4.3 and 4.4, respectively. 
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4.2.5.  Calculations of FRET and NSET Radius 

The fitting results for both nQ = 4 and 6 are shown in Figure 4.10 in which the 

green and blue dashed lines represent the curves for quenching and electric field 

enhancement as a function of MNP-QD separation distance, respectively.  Briefly, the nQ 

and nE were found to be sensitive to the peak shape of the fluorescence distance 

dependent curve, while the RQ and RE were found to be decided by the peak position.  In 

the literature, many studies have described the contributions of nanosurface energy 

transfer (NSET) and Förster like energy transfer (FRET) for metal-fluorophore systems, 

and therefore we can directly estimate the value of RQ for either the FRET or NSET 

models.  Based on this, we have also compared our fitting result to NSET and FRET. 

RQ is the Förster like radius which represents the dipole-dipole energy transfer 

efficiency from an energy donor (CdSe QD) to an energy acceptor (Au-MNP).  This 

value represents this specific separation distance, where the original fluorescence 

intensity is reduced by 50%.  Therefore, the larger the value of RQ, the better the energy 

transfer, and the larger the quenching efficiency.  This value is related to the absorption 

cross section of the acceptor at the emission wavelength of the donor. 

More specifically, on the one hand, for FRET, RQ can be described as:142 

 

JQnCR DpFRETQ
42

0

6             (4.5) 

 

where C0 = 8.79×10-5 Å, and the spectral overlap integral, J, is a function of the overlap 

between the donor emission and acceptor absorption spectrum (described below), and is 
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expressed in units of M-1cm-1nm4.  κp
2 is an orientation factor that depends on the 

relative orientation of the donor and acceptor dipoles; n is the refractive index of the 

medium; and QD is the quantum yield (QY) of the donor in the absence of an acceptor.  

The value of the orientation factor κp
2 can be set to 2/3 for a NP-QD system.26  In our 

experiments, the refractive index n is ~ 1.5 for both PSS and PDADMAC polymers.151  

At room temperature, the QY of 16-MHA protected CdSe QDs has been reported to be 

~1%,152 which is much smaller than the typical value of 10-30% for TOPO capped CdSe 

QDs due to the increased trapping that occurs for CdSe in the presence of thiols.  The 

value of J can be calculated as:142 

 

  dffJ AAD
4)()(           (4.6) 

 

where fD() is the corrected dimensionless emission intensity with the whole emission 

area is normalized to unity; λ is wavelength in units of nm; fA is the normalized 

dimensionless acceptor extinction spectra with the maximum peak normalized to one; 

and εA is the extinction coefficient of the acceptor at maximum peak in units of M-1cm-1.  

Based on Equation 4.5 and Equation 4.6, RQFRET of Au-QD system can be 

calculated.  For 20 nm gold nanoparticles, the maximum extinction coefficient εA has 

been reported to be ~ 1×109 M-1cm-1.153  According to the data in Figure 4.4, using the 

extinction spectra of NPs on the surface, J was calculated to be ~8.9×1019 M-1cm-1nm4 

for our Au-QD system using Equation 4.6.  This J value is more than 4 orders of 

magnitude larger than a typical QD-dye system108 due to the high absorption cross 
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section of gold nanoparticles.  Based on this, a value of 14.8 nm was determined for 

RQFRET (Equation 4.5) in our Au-QD system.   

On the other hand, for NSET, the RQ can be calculated based on the Persson 

model:147, 154  

 

FFD

D
QNSET

k

Qc
R
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                        (4.7) 

 

where c is the speed of light; QD is the same CdSe quantum yield in Equation 4.5; D is 

the CdSe emission peak angular frequency; F and kF is the angular frequency and 

Fermi wavevector of bulk gold.  The RQNSET in unit meter is then calculated by using c = 

3×108 m s-1, QD = 0.01, D = 3.31×1015 s-1 F = 8.4×1015 s-1, kF = 1.2×1010 m-1.  The 

value of RQNEST is 3.4 nm.  

For nQ = 4, the best fit value of nE was found to be ~ 0.6 ± 0.2, and the value of 

RE was found to be ~ 5.4 ± 1.6 nm.  For nQ = 6, the best fit value of nE was found to be ~ 

5.3 ± 0.1 which is in agreement with previous reports,155, 156 and the value of RE was 

found to be ~ 17.7 ± 0.4 nm.  From the fitting results, the enhancement factor, PE, is 

more than 9 orders of magnitude larger when the MNP-QD separation is very small (< 4 

Å) as compared to separations above 200 Å.  This large enhancement is very similar to 

the enhancement factors observed in SERS experiments, but decays over much shorter 

distances in the case of SERS.157  The enhancement radius RE should depend on the 

overlap between the QD emission spectra and the MNP LSPR spectra, the orientation 
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factor, and the intensity of the local electric field.  Despite this large enhancement, 

quenching becomes quite significant below such MNP-QD separation distances.   

 

4.2.6  Application of the Platform in Copper Ion Detection 

We expected that the plasmon enhanced CdSe nanoparticles can be applied to 

detection of copper ions in water with higher sensitivity than those without enhancement. 

My groupmate Yang-Hsiang Chan did this work and find that an ultrasensitive approach 

for Cu2+ ion detection and quantification sensing using CdSe QDs self-assembled on Si 

surfaces has been developed with a detection limit of 5 nM, which is 100 times better 

than similar platforms in literatures that without plasmon enhancement, and a dynamic 

range extending up to 100 M.158  The high sensitivity for copper ion detection results 

from a combination of the plasmon-enhanced luminescence of CdSe by Ag nanoprisms 

in conjunction with photobrightening using UV or visible light.  This technique provides 

a means for different analytes of interest containing various Cu2+ concentrations to be 

readily probed on a single platform, affording a simple tool for rapid, inexpensive, and 

ultrasensitive Cu2+ analysis.  This simple platform which can be fabricated using 

directed assembly approaches should be readily adaptable to probing photoluminescence 

enhancement for a range of other materials. 

 

4.3.  Summary 

Using a patterned array of metal particles, photoluminescence enhancement for 

CdSe coupled to Au nanoparticles and CdSe coupled to Ag nanoprisms was investigated 
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as a function of the CdSe-metal separation distance.  The use of a patterned array 

allowed for the photoluminescence enhancement to be readily scaled between regions 

with and without metal particles and account for any scattering or differences in 

dielectric medium that could influence the determination of the relative enhancement, all 

in a single experiment.  The PL enhancement of CdSe coupled to Au and Ag particles 

was found to peak at a factor of two at distances of ~ 11 nm and 8 nm, respectively.  The 

resulting data can be explained by the competition between energy transfer quenching 

and plasmon-assisted enhancement of the QD photoluminescence and could be fit to a 

simple model combining these two effects.   

 

4.4.  Experimental 

4.4.1.  Preparation of Silane Monolayers  

Single side polished GaAs(100) substrates (AXT, 400 m, Si-doped, University 

Wafer, Inc., Boston, MA) were etched and cleaned following the procedures described 

previously by Jun et al. to remove the native oxide using dilute acid and base 

solutions.159  Briefly, the GaAs samples were immersed into 1:20 NH4OH/H2O solution 

for 1 min and then rinsed liberally with high purity (18.2 M•cm) water (NANOpure 

Diamond, Barnstead), followed by ethanol.  The GaAs substrates were immediately 

immersed into a 1:10 HCl/ethanol solution for 1 min.  The substrates were subsequently 

rinsed with copious ethanol, blown dry with streaming nitrogen, and treated with 

UV/ozone for 20 min to make a fresh oxide layer on the GaAs surfaces.  Self-assembled 

monolayers (SAMs) of 3-aminopropyltriethoxylsilane (APTES, purchased from Gelest, 
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Inc.) were formed by immersion of the freshly oxidized GaAs substrates in 5 mM 

APTES in ethanol for 12 h.  After being taken out from the solution of APTES, the 

SAM-modified substrates were rinsed with ethanol and blown dry under a nitrogen 

stream in preparation for patterning. 

 

4.4.2.  X-Ray Photoelectron Spectroscopy  

To evaluate the surface chemistry XPS data were acquired with a Kratos Axis 

ULTRA X-ray photoelectron spectrometer equipped with a 165 mm hemispherical 

electron energy analyzer.  The incident radiation was the MgK X-ray line (1253.6 eV) 

with a source power of 180 W (15 kV, 12 mA).  The analysis chamber was maintained at 

a steady base pressure of < 6 × 10-9 Torr during sample analysis.  Survey scans of up to 

1100 eV were carried out at an analyzer pass energy of 160 eV with 1.0 eV steps and a 

dwell time of 300 ms.  Multiplexed high resolution scans of the Ga(3d), C(1s), As(3d), 

and N(1s) regions were taken at a pass energy of 40 eV with 0.1 eV steps and a dwell 

time of 60 ms.  The survey and high resolution spectra were obtained with averages of 5 

and 50 scans, respectively.  The C(1s) peak at 284.8 eV was set as a reference for all 

XPS peak positions to compensate for energy shifts due to the spectrometer work 

function. 
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Figure 4.11.  (A) Photographs of Ag nanosphere (left) and nanoprism (right) solutions 

and (B) their corresponding absorption spectra displayed in yellow and green line, 

respectively.  (C) TEM image of photoinduced Ag nanoprisms.  The inserts show the 

electron diffraction analysis and enlarged view of single Ag nanoprisms. 
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4.4.3.  Synthesis of Gold and Silver Nanoparticles 

Two types of particles were investigated in this study, Au nanoparticles and Ag 

nanoprisms.  Au nanoparticles were prepared by reducing HAuCl4 (Alfa Aesar, 99.99% 

purity) with sodium citrate.160  The size of the citrate-stabilized gold NPs was 

determined to be ~18 nm in diameter based on by the maximum surface plasmon 

absorbance in the UV-visible spectra (USB-ISS-UV/Vis, Ocean Optics Inc.) at 523 nm. 

AFM images of isolated Au particles also confirmed the size to be 18 ± 2 nm.  The Ag 

nanoprisms, were synthesized by first creating spherical silver NPs by the reduction of 

AgNO3 (Sigma, 99+% purity) with NaBH4 in an ice bath.161  Here, 1 mL of 10 mM 

AgNO3 in water was injected into 99 mL of 1 mM NaBH4 and 0.3 mM sodium citrate 

aqueous solution.  The color of this mixed solution turned to yellow immediately (Figure 

4.11A) and was kept stirring in an ice bath for 30 min.  The photochemical shape 

conversion of spherical Ag NPs into flat nanoprisms was carried out by exposure to a 

white fluorescent lamp (15 W) for ~72 h with a sample-source distance of ~ 5 cm.  The 

color of the Ag NPs solution changed from yellow to green (Figure 4.11A) gradually 

during the period of illumination.  The average edge length and thickness of triangular 

Ag nanoprisms measured by TEM (vide infra) were 100 ± 20 nm and 12 ± 3 nm, 

respectively (Figure 4.11C).  Approximately 50% of the Ag nanoparticles were found to 

be completely converted to nanoprisms. 
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4.4.4.  Patterning of Metal Nanoparticles  

Various approaches were explored for the attachment of Au and Ag nanoparticles 

to the GaAs surface with the optimal procedure described here.  Briefly, the synthesized 

MNPs were bound to an oxidized GaAs surface by attachment to a patterned layer of 

APTES on the surface (vide supra).  Patterned arrays of the APTES SAMs were created 

on the oxidized GaAs surface by photolithography.  Here, a grid pattern was generated 

on the GaAs surface using a TEM grid (T2000-Cu, Electron Microscopy Inc.) as a 

shadow mask.  The TEM grid was placed on top of the APTES-modified GaAs and the 

mask/substrate framework was exposed to UV/ozone (em = 185 nm and 254 nm) at a 

distance of ~ 1 cm away from the sample for 15 min.  After selective photo-oxidation of 

the APTES SAM, the TEM grid was removed from the surface and the substrate was 

rinsed with ethanol and then immersed into a 5 mM solution of n-

octadecyltrimethoxysilane (OTMS) in toluene for 4 h, allowing the OTMS SAM to grow 

and fill in the exposed GaAs regions.  This resulted in a patterned array of hydrophobic 

and hydrophilic regions on the surface.  After patterning, the surfaces were rinsed in 

sequence with toluene, ethanol, and water, followed by soaked in one of the citrate-

stabilized Au or Ag nanoparticle solutions for 12 h to allow for attachment of the MNPs 

onto APTES SAMs by electrostatic attraction.  Following nanoparticle attachment, the 

samples were rinsed copiously with water to remove any Au or Ag NPs non-specifically 

bound to the hydrophobic regions of the surface.  

The same method was also used to pattern metal nanoparticles on cleaned silicon 

substrates. 
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4.4.5.  Layer-by-layer Deposition of Polymers 

To control separation distance between the patterned MNPs and the CdSe, a 

polymer spacer formed by layer-by-layer assembly was used.  Here, a positively charged 

polymer solution was prepared by adding 0.5 M NaCl to an aqueous 5 L/mL 

poly(diallyldimethylammonium chloride) (PDADMAC) (Aldrich, 20 wt. % in water, Mw 

100,000-200,000) solution.  For the negatively charged polymer solution, an aqueous 

solution of 1mg/mL poly(sodium 4-styrenesulfonate) (PSS) (Aldrich, Mw 70,000) 

containing 0.5 M NaCl was prepared.  To create different thicknesses of polymer layers, 

the patterned metal arrays on GaAs (carrying net negative charge) were immersed into 

the PDADMAC solution for 30 min to allow for full adsorption of a single layer.  The 

substrate was then rinsed liberally with water and followed by dipping into the PSS 

solution for the second layer polymer adsorption.  For multilayer deposition, this cycle 

was repeated, with the outermost layer always terminating in a positive layer of 

PDADMAC to allow for the further attachment of negatively charged 16-

mercaptohexadecanoic acid terminated CdSe QDs. 

 

4.4.6.  Sample Imaging 

AFM images were acquired with a combined confocal fluorescence/atomic force 

microscope (WITec Alpha300 R, Germany) under ambient conditions (24 ± 2 oC).  All 

AFM images were acquired in tapping mode using commercially available aluminum-

coated silicon AFM tips from Nanoscience Instrument (Phoenix, AZ) with nominal tip 

radii of less than 10 nm and nominal spring constants of 48 N/m.  Images were acquired 
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at a resolution of 512 x 512 lines at a scan rate of ~1 Hz.  The photoluminescence 

spectra were collected using an Ar ion laser at 488 nm (~70 W/m2) as the excitation 

source with a typical integration time of 36 ms/pixel.  A Nikon 100x (0.9 NA) objective 

was utilized for imaging and spectral data acquisition and the laser was focused to a spot 

size of ~1 m2.  The spectral data were acquired with an Acton triple grating 

spectrometer with an Andor Peltier cooled (-66 oC) CCD detector.  High resolution 

images are obtained by integrating the complete photoluminescence spectra for the given 

region of interest (500-650 nm for the 4 nm CdSe QDs, 550-700 nm for the 5.5 nm CdSe 

QDs and 750 – 900 nm for the GaAs) at each image pixel (typically 200 x 200 pixels per 

image). 

 

4.4.7. Detection of Copper Cations 

All salts were were purchased from Sigma-Aldrich and used as received without 

further purification.  About 2 L of 100 M ion samples were dropped onto the CdSe 

surface one by one with a center-to-center spacing of ca. 2 mm.  After 5 min of reaction 

time, the emission spectra of CdSe QDs were acquired spot by spot with the same 

imaging method as section 4.4.6.  Each spectrum of the ion samples was averaged from 

1000 different points on the surface with an integration time of 36 ms/pixel. 
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CHAPTER V 

PHOTO-OXIDATION KINETICS OF SUPPORTED THIOL CAPPED CdSe 

QUANTUM DOTS* 

 

 

5.1.  Introduction 

 Oxidation and photo-oxidation of CdSe nanoparticles have been known since the 

early years of colloidal quantum dot studies,73 but the photo-oxidation of capping ligands 

of colloidal CdSe nanoparticles has not been paid much attention until recently.105, 162-165  

The importance of studying the photo-oxidation kinetics of capping ligands rises from 

the need of understanding the photo-stability of CdSe quantum dots, which is very 

important for almost all applications of quantum dots.  Capping ligands, function both as 

stabilizers and surface passivation groups, and are key components of colloidal quantum 

dots.  There are mainly two kinds of kinetic problems regarding quantum dots and their 

capping ligands: ligand exchange kinetics, and photo-oxidation kinetics.  The former is 

related to the synthesis and surface functionalization of quantum dots, and the later is 

crucial to the stability and photo-stability of quantum dots as well as controlling the new 

functionalization approaches discussed in Chapter III.   

 
____________ 
*Part of the data reported in this chapter is reproduced with the permission from Journal 
of Physical Chemistry B, submitting for publication. Unpublished work copyright 2010 
American Chemical Society 
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In the literature, kinetics studies of quantum dot capping ligands mainly focus on 

the ligand exchange kinetics and mainly describe equilibrated samples, using steady-

state measurements.105, 166, 167  One of the main disadvantages of this approach is that 

the free ligands in the solution are very difficult to eliminate, because thorough 

washing of the CdSe solutions will often result in the irreversible aggregation of the 

CdSe nanoparticles.  Another disadvantage is that the role of oxygen, which is the 

primary component involved in the photo-oxidation processes, is difficult to evaluate 

through this approach.   

In this chapter, we describe a platform to study the kinetics of photo-oxidation of 

11-Mercapto-undecanoic acid (11-MUA) thiol capping ligands and on CdSe quantum 

dots.  Here the CdSe nanoparticles were immobilized onto a substrate surface so that 

these nanoparticles can be washed thoroughly.  This allowed us to put the film into all 

kinds of different environments such as solutions and gases with known components.  

Experimentally, we deposited the CdSe nanoparticles onto a silicon substrate using the 

layer-by-layer deposition method had described in the previous chapters.  Then samples 

were soaked into a solution with known ligand concentration and carried out the in situ 

photo-oxidation experiments under the spectral- and time- resolved confocal 

fluorescence microscope.  The CdSe film was also successfully fabricated inside 

microfluidic channels and then gases with known oxygen concentrations were purged 

into the channels during the photo-oxidation experiments.   

 In Section 5.3.1 and Section 5.3.2, models were employed for calculation of the 

surface coverages of the thiol ligands and the surface oxidation degrees of the CdSe 
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cores.  In Section 5.3.3 and Section 5.3.4, the influences of two main components, the 

laser intensities and the oxygen concentrations that involved in the photo-oxidation of 

both the CdSe thiol capping ligands and the cores were studied.  In Section 5.3.5, a 

detailed kinetic model was established to quantitatively and qualitatively explain the 

mechanism and photo-oxidation kinetics of CdSe quantum dots.   

 

5.2.  Experimental 

5.2.1. Reagents 

11-mercapto-undecanoic acid (11-MUA) capped CdSe quantum dots (QDs; 

diameter ~4 nm and emission around 580 nm) were bought from NN-LABS 

(Fayetteville, AR USA).  No. 2 micro cover glasses were bought from VWR (Batavia, 

IL USA).  Single side polished silicon wafers (phosphorous doped) were bought from 

Virginia Semiconductor Inc. (Fredericksburg, VA USA).  Sodium Chloride (GR ACS), 

ammonium hydroxide aqueous solution (GR ACS, 30%) and hydrogen peroxide aqueous 

solution (GR ACS, 30%) were bought from EMD chemicals Inc. (Gibbstown, NJ USA).  

Ethyl alcohol (ACS/USP) was bought from Pharmco, Inc. (Brookfield, CT USA).  

Poly(diallyldimethylammonium chloride) (PDADMAC, 20 wt. % in water, Mw 

100,000-200,000), poly(sodium 4-styrene-sulfonate) (PSS, Mw 70,000), 

Octadecanethiol (ODT, 98%),  and 11-mercapto-undecanoic acid (11-MUA, 95%) were 

bought from Sigama-Aldrich Chem. Co. (St. Louis, MO USA).  Poly-(dimethylsiloxane) 

(PDMS, Dow Corning Sylgard Silicone Elastomer-184) was bought from Krayden, Inc 

(Denver, CO USA).  Shipley 1813 photoresist and developer were bought from 
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MicroChem Corp (Newton, MA USA).  Water used was ultrapure water (18.2 MΩ·cm) 

that was purified from distilled water by a NANOpure Diamond system (Barnstead, 

Iowa USA). 

 

5.2.2.  Sample Preparation 

 The Silicon or glass substrates were cleaned with a base piranha solution 

(NH4OH:H2O2:H2O=1:1:4) for 10 min, caution: the base piranha cleaning solution is 

highly corrosive and should be used very carefully.  The substrates were then rinsed by 

ultrapure water and immersed into 1 mg/mL positively charged PDADMAC in a 0.5 M 

NaCl aqueous solution for 20 min to allow for full absorption of a single layer polymer.  

In addition to the first positively charged PDADMAC layer on the substrate, a 

negatively charged PSS polymer and a PDADMAC layer were applied on top of the 

samples to increase the surface roughness and thus increase the CdSe QDs adsorption 

efficiency.  In this case the PDADMAC functionalized glass was immersed in 1 mg/mL 

PSS/ 0.5 M NaCl solution for 20 min to coat a negatively charged layer of polymer 

following water rinsing.  Then the third positively charged PDADMAC layer was coated 

on top of the PSS layer. This layer-by-layer polymer modified substrate was immersed 

into an aqueous solution of 11-MUA capped CdSe QDs overnight for adhesion of CdSe 

QDs.  Weekly adsorbed QDs were rinsed away with ultrapure water, then soaked the 

substrate into 1 mM 11-MUA in ethanol (EtOH) solution for 10 min, and then rinsed it 

with copious ethanol and blown-dried with nitrogen gas.  This procedure yielded 

uniform films of CdSe QDs on silicon or glass substrates. 
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 Fabrication of microfluidic channels had been described in detail before168.  

Briefly, a glass master was fabricated first by photolithography using Shipley 1813 

photoresist followed by HF etching.  Then PDMS was cured overnight on the mask to 

form a stamp containing concaved groves.  Then the PDMS stamp was peeled off from 

the mask, holes were drilled for connection with a syringe needle, and it was sticked 

onto a cleaned cover slip after oxygen plasma treatment.   

 To make a QD film inside the microfluidic channels, the same processes 

described above were used for making QD films on substrates, except that the solutions 

were injected into the channels by syringes through 0.018 inch diameter PTFE (Teflon) 

tubing (Small Parts, Inc.), caution: goggles must be worn to protect eyes especially 

during the base piranha cleaning steps, and before injecting solutions into the 

channels, remove the air bubbles in the syringe to avoid spilling upon retracting 

syringe.  Whenever needed, the channels were washed 5 times with ultrapure water at 

total amount of ~3 mL.  After the channels was modified by polymer, ~5 L CdSe 

solution was injected through each channel and sealed the channels by Parafilm for 

overnight, with the CdSe solution inside.  Then the channels were washed and injected 1 

mM 11-MUA/EtOH solution and were let stayed for 10 min.  Uniform CdSe films were 

obtained inside the channels after washing the channels with ethanol and blow-dried the 

channels with argon. 
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5.2.3.  Fluorescence Imaging and Fluorescence Time Series  

 A combined fluorescence/AFM microscope (WITec Alpha300R, Germany) 

coupled with an argon ion laser and an Andor Peltier cooled (-70 oC) CCD detector was 

used for the photo-oxidation experiments.  A Nikon water-immersion 10x objective 

(working distance 3.5 mm) was used to focus a 488 nm Ar ion laser onto the surface.  

The solution related experiments were carried out by immersing the objective into the 

ethanol solutions (Figure 5.1A).  The laser power was measured out of focus of the 

objective by a Thorlabs PM100 Optical Power Meter (Thorlabs GmbH, Karlsfeld 

Germany) equipped with a Thorlabs S130A silicon detector with a power range of 5 nW 

- 5 mW and wavelength range of 400 nm - 1100 nm.   

The microfluidic channel experiments were carried out by using the same 10x 

objective to focus through the glass side of the microfluidic device.  Here, the 

environment in the channels was controlled by pumping an oxygen and argon gas 

mixture into the channels by p ~ 0.5 atm with a gas mixer (Figure 5.1B).  The 

concentration of the oxygen in the gas mixture was controlled by the flow ratio between 

the oxygen and argon, controlled by mass flow controllers (Matheson Multiple Dyna-

Blender 8284 controller box equipped with Matheson 8272-0451 controllers, Matheson 

Tri-Gas Inc.).  The flow rate of each mass flow controller was calibrated by a bubble 

flow titration tube opened to air. 
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Figure 5.1.  Experimental setup for this study.  (A) Both the CdSe film sample and the 

objective were immersed in the solution.  (B) In some of the experiments, oxygen 

concentrations were controlled in microfluidic channels.  Oxygen and argon cylinders 

with output pressure of 2 bar were connected to valves of mass flow controller.  Then 

the gasses were joined together in a 50 mL glass container connected to a pressure meter 

and a microfluidic device.  The pressure inside the mixer was tuned by a vent valve 

connected to the mixer.  The outlet of channel was connected through an elongated tube 

to a beaker of water which was opened to air.  A 488 nm argon ion laser was focused by 

the confocal microscope objective on the PDMS-glass microfluidic channel through the 

glass side of the channel device. 
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5.3.  Results and Discussion 

5.3.1.  Modeling the Ligand Coverage on the CdSe Surface 

Here we present a model to determine the ligand surface coverage of the CdSe 

quantum dots from their fluorescence intensity data assuming that the initial CdSe 

quantum dots have saturated coverage of ligands.   

The first step is to get clean fluorescence spectra of the CdSe quantum dots by 

removing all kinds of backgrounds.  For the experiments done in ethanol solutions, 

Raman signals of ethanol were also detected in our setup (Figure 5.2).  When the 

fluorescence spectra of the CdSe film were taken by immersing the microscope objective 

in ethanol solution, the laser traveled 3.5 mm, the working distance of our objective, 

through the solution and excites the CdSe fluorescence, then the fluorescence signal and 

~40% of the original laser intensity were reflected back by the silicon substrate to be 

corrected by the objective.  Since the laser traveled significant distance of ethanol, the 

Raman signals of the ethanol were observed such as the peak around 2933 cm-1, the C-H 

stretching peak.  The intensity of this peak in this case was expected to be a more 

accurate laser power indicator instead of measuring the laser intensity every time, since 

the Raman intensities also took into account the human errors caused by the slight focus 

difference among samples.  The values were consistent between the Laser intensities 

measured by the power meter, and the Laser intensities calculated from ethanol Raman 

intensities and the calibration curve in Figure 5.2B.  Clean spectra were obtained after 

background subtraction (Figure 5.3). 
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Figure 5.2.  (A) A Raman spectrum of EtOH collected by focusing the 10x water-

immersion objective on a clean silicon wafer that was immersed in EtOH (red line), and 

a typical spectrum of CdSe film on silicon substrate that was immersed in EtOH (black 

line).  (B) the linear relationship between intensity of 2933 cm-1 peak of the EtOH 

Raman spectra and the total power of the 488 nm excitation laser measured by the power 

meter (a clean silicon wafer was immersed in EtOH serving as a mirror when taking 

EtOH Raman data (red curve in A). 
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Figure 5.3.  Selected Raman background corrected spectra at different illumination 

time of a series of data obtained by confocal microscope.  In this series, the excitation 

laser intensity is 25.9 W and the integration time is 2 s for each spectrum. 
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On the next step, the surface coverage of thiols on CdSe surface  was calculated 

from the normalized intensity data.  It had been assumed that the quantum yield of thiol 

capped CdSe quantum dots was linearly dependent on the surface coverage of the 

capping ligands.105  We fitted the intensity data in pure ethanol with a first order 

exponential decay165 and obtained a  maximum enhancement of the intensity at 75.7 (a.u.) 

times the initial intensity (Figure 5.4).  This first order exponential decay was also 

discussed and self-supported at the end of section 5.3.5.  This number means that if all 

the capping ligands were removed, the fluorescence intensity would increase to 75.7 

times of its original intensity.  As such, the ligand coverage in our system is: 

 

17.75

7.75




 nomI

         (5.1) 

 

where Inom was the fluorescence intensity of the CdSe quantum dots normalized to its 

initial intensity under laser illumination.  This normalization was carried out to reduce 

the influence of variations, such as packing densities of CdSe quantum dots on the 

substrate surface, from sample to sample.  Note: variation of the maximum enhancement 

value under the same assumption will affect the value of θ but will not affect the 

mechanisms that relate to θ. 
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Figure 5.4.  Normalized fluorescence intensity change for CdSe nanoparticles under 

laser illumination as a function of time. 
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Destructive oxidation/photo-bleaching was not significant under our 

experimental conditions.  Photo-bleaching was observed and became more obvious for 

higher laser intensity, longer time laser irradiation, and higher oxygen concentration.  

Significant photo-bleaching changed the shape of the curve in Figure 5.4, in which case 

the change in CdSe fluorescence intensity vs. time could not be fit by a first order 

exponential decay but rather a second order exponential decay (discussed later), and at 

the same time the fluorescence intensity of the CdSe quantum dots decreased after 

photo-brightening and showed a peak of enhancement in the curve (Figure 3.2).  We had 

carefully chosen our experiment conditions in this study with relatively lower laser 

intensities, lower oxygen concentrations, and shorter time, comparing the conditions we 

used for lithography in Chapter III.  We will consider the photo-bleaching in the future 

studies. 

Thermal effects of the laser were also found to be negligible in our system, 

probably due to the low surface density of the single layer CdSe quantum dots on the 

substrates (~400 m-2).  Quantum dots have been reported to be good local temperature 

probes, where the fluorescence intensity of the quantum dots decreased with the increase 

of the local surroundings temperature.169-171  We tested the temperature effect by 

randomly turning off laser with a shatter during fluorescence measurements.  If the 

temperature effect was detectable (i.e. the laser heated the CdSe quantum dots), we 

should observe an increase in fluorescence intensity after turning off the laser for a while, 

because the temperature was expected to go back to ambient after turning off the 
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Figure 5.5.  Photo-brightening curves of CdSe fluorescence with laser being turned off 

frequently.  The lower black curve is the CdSe fluorescence intensity curve under ~120 

W laser illumination.  When the laser was turned off by a shatter, the fluorescence 

intensity went zero.  The upper red curve is the same as the lower curve but deleting the 

gaps when the laser was off (one datum point with duration of 0.1 s was left in this curve 

for each gap corresponding to each gap in the lower curve.).  The upper curve is smooth 

as if there did not exist laser-off-gaps, which suggesting that the CdSe maintained room 

temperature.   
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excitation laser.  However, for laser intensity that was higher than the maximum laser 

intensity we used in the rest of this study, we did not see significant increase of CdSe 

fluorescence intensity before and after turning off laser (Figure 5.5).  This observation 

suggests that the temperature effect was not significant in our system. 

 

5.3.2. Modeling CdSe Surface Oxidation 

In order to calculate the CdSe radii and photo-oxidation degrees at different laser 

illumination time from its emission peak position data that were obtained by fitting a 

Gaussian equation to the data like the ones in Figure 5.3, a few mathematical conversion 

steps for the raw data were carried out based on a few assumptions.16  These 

assumptions were listed here and were further explained later: (1) the CdSe quantum 

dots emission band gap and effective CdSe radius obey the simple particle-in-a-box law;  

(2) the outer layer of the CdSe is much easier to be oxidized then an inner layer, and the 

oxidized layer still cover the CdSe surface in ethanol environment as a new passivation 

layer;  (3) the oxidized CdSe emits light the same as those synthesized bare CdSe 

quantum dots that have the same core size;  (4) when the surface atoms are oxidized, the 

effective radius of this position of the surface reduced one atom diameter;  (5) the 

effective size of the partially oxidized CdSe quantum dots is statistically the average of 

the distances of CdSe surface atoms to the particle center. 
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Figure 5.6.  Fitting of CdSe emission energy vs. effective radius. (Data from NN-Labs 

LLC, AR USA).172 
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So the effective radii of the CdSe quantum dots can be calculated from their 

fluorescence emission peaks.  Quantum mechanically, according to the simple particle in 

a box model, the band gap increases with the decrease of the quantum dot size.  

According to the modified effective mass approximation (EMA) proposed by 

Franceschetti et al.,173 the single particle energy band gap shift E = Eg - Eg
bulk scales 

1/R2 with R being the radius of the quantum dot and the Coulomb energy scales as 

1/R0.86 for CdSe quantum dots.  Thus Equation 5.2 below can be used to fit the data of 

emission peak energy vs. effective radius of CdSe QD: 

 

86.02 R

B

R

A
EE

bulk

gg           (5.2) 

 

where A and B are constants and the bulk band gap of quantum dot Eg
bulk was fixed to be 

1.74 eV at room temperature.174  Using the data from NN-Labs about CdSe size and 

emission peak position, the parameters in Equation 5.2 were fitted to be A = 0.512 and B 

= -0.366 (Figure 5.6).  Note that the emission peaks united in nm were converted to eV 

by Equation 5.3. 
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
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where h, c and e are the Plank constant, the speed of light in vacuum and the electron 

charge magnitude respectively. 
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The Coulombic attraction between electron and hole was supposed to have negative 

effect of the band gap.175  However, our best fit gave positive value for this term, and 

made our equation empirical.  This difference was possibly due to the multi-exciton 

effect.  Since we only looked into a very small range of size change in this work, this 

empirical equation met our requirement and should give us acceptable results on the size 

of CdSe quantum dots.  So we adapt this equation for following calculations.  Even more, 

for practical reason, i.e. to back calculate the radius R from the emission peak Eg, the 

fitted curve was further fitted with the empirical equation below: 

 

RR
eVEg

44.043.0
74.1)(

2
          (5.4) 

 

From CdSe radius 0.5 nm to 4 nm, the two curves from Equation 5.2 and Equation 5.4 

overlapped each other with negligible difference, which meant that they had the same Eg 

and R at points on the calibration curve of Figure 5.6 in this range.  So Equation 5.4 was 

used to back calculate the CdSe radius from a known emission peak.   
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Figure 5.7.  Scheme of the coverage of oxidants on the surface of CdSe quantum dot 

and the radii of the quantum dots before and after photo-oxidation.  Before photo-

oxidation, there are N surface atoms and the effective radius of the nanoparticle is R0.  

After photo-oxidation, the number of oxidized sites is n and the number of unoxidized 

sites becomes N-n.  The unoxidized sites still have effective radius R0 and the oxidized 

sites have effective radius R0-(sqrt(6)/3)d where d is the average atom diameter and 

sqrt(6)/3 comes from the average closest surface distance of hexagonal close packing of 

atoms. 
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However, before calculating the oxidation rate, the lattice parameters of the CdSe 

nanocrystal should be obtained first.  Let’s assume that the crystal is close packed balls 

of Cd and Se atoms.  The main crystal structure of CdSe quantum dots was believed to 

be wurtzite structure that has lattice parameters a = 0.43 nm and c = 0.70 nm with less 

than 0.5% lattice contraction compared to bulk parameters.174, 176  These parameters give 

an average packing volume of Cd and Se 0.432×0.70×cos(60o)/4 = 0.028 nm3 and an 

average atom volume of 0.028×74% = 0.021 nm3 (4 effective atoms in one unit cell, 

with 74% packing efficiency for wurtzite structure).  This atom volume leads to an 

average atom diameter of 0.34 nm. 

Based on our assumptions mentioned before, statistically, the effective radius of 

CdSe quantum dots after photo-oxidation can be:  
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where N is the number of surface CdSe atoms, n is the number of oxidized sites, R0 is the 

initial CdSe radius and d is the average atom diameter, and = n/N is the surface 

oxidation ratio (Figure 5.7).  So 
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Nn                               (5.8) 

 

From Equation 5.5 to Equation 5.8, the number of oxidized sites n and the 

surface oxidation ratio σ can be calculated from the effective radius.  The effective 

radius of the CdSe quantum dots Rt can be calculated from the emission peak center of 

quantum dots from our in situ confocal data.   

 

5.3.3. Laser Intensities and Photo-Oxidation Kinetics 

The influence of the main driving force, the excitation laser, on the 

photocatalytic oxidation of CdSe was firstly studied.  The automatic oxidation of CdSe 

in air was negligible during our experimental period, because weeks and months were 

expected for this oxidation to happen.  When we increased the laser intensity, the photo-

brightening of CdSe fluorescence was more significant (Figure 5.8A).  The in situ data 

of time series with different laser intensities were converted to ligand surface coverage 

with the model we adapted in section 5.3.1 (Figure 5.8B).  The initial slops of the curves 

in Figure 5.8B, i.e. the oxidation rates of the ligands, were then obtained and plotted 

with the laser intensities (Figure 5.8C).   
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The data in Figure 5.8C showed a linear relationship between the coverage 

decreasing rates and the laser intensities with a slop of -4.8×10-5 W-1s-1.  This number 

means that if the total laser intensity increased by 1 W, the absolute rate of removing 

the ligand coverage increases 4.8×10-5 s-1.  Assuming a 0.2 nm2 surface coverage of each 

thiol molecule,163, 165 the thiols were removed ~0.01 per second per W per quantum dot 

(4 nm diameter) at the beginning of laser illumination, when the surface coverage of 

ligands equaled 1.  More specifically, e.g. for 100 W laser, the thiols were removed at a 

speed of 1 per second per quantum dot at the beginning.  Then the speed of ligand 

removal slowly decreased due to the decrease of ligand surface coverage.  If the power 

density was preferred than the total power of laser, the average laser power density was 

about 4 W/cm2 per 1 W of total power, with the waist area of our Gaussian laser beam 

~2.6×10-7 cm2 (radius at 1/e2 intensity ~2.9 m, obtained by Gaussian fitting the cross 

lines of images taken by the CCD camera).  
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Figure 5.8.  The influence of the laser power on the photo-oxidation of the thiol capping 

ligands.  (A) A few examples of CdSe fluorescence intensities (with Raman background 

subtraction and the initial intensities were normalized to unit) changed with laser 

illumination time under different laser power intensities (experiments done in ethanol; 

relative small laser intensities were studied to reduce the influence of photo-bleaching).  

(B) Conversion of the intensity to ligand coverage on CdSe surface. (C) The linear 

relationship between the first derivative of the surface ligand coverage curve at the 

starting point (slop of the first 10 data points) and the laser power. 
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Figure 5.9.  The influence of the laser power on the photo-oxidation of the CdSe cores. 

(A) Selected time series of CdSe oxidation ratio  with different excitation laser power 

(experiments done in ethanol; signal-noise ratio increased with increase of laser 

intensities when the fluorescence intensity increased;  Data points were taken every 2 

s).  (B) Initial derivative of the time series data (the slops of first 20 s points of the 

curves) as a function of laser power. 
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The initial oxidation rate of the CdSe cores was also linearly dependent on the 

laser power as 1.51×10-4 W-1s-1, indicating that the oxidation of the CdSe surface was 

also proportional to the number of photo-generated electron and hole densities (Figure 

5.9B).  Oxidations of the CdSe core were calculated based on the in situ emission data of 

the CdSe and the model we employed in the section 5.3.2.  Comparing the fluorescence 

intensity data (Figure 5.8) with the oxidation data (Figure 5.9), the rate of thiols leaving 

from the surface kept constant while the curve of CdSe core oxidation bended as an 

exponential curve during the same time range of about 200 s.   

Interestingly that the initial oxidation rate of the CdSe quantum dots was about 

three times faster then became much slower later than the thiol removal rate, comparing 

Figure 5.8C and Figure 5.9B data points.  This was possibly because when one thiol left 

the CdSe surface, two or more surface sites were exposed for the oxygen to react.  They 

were the Cd site and the adjacent Se sites, which in total probably 3 times the number of 

surface thiol molecules for Se-rich CdSe quantum dots.177  It was also possible that some 

of the thiols that were photo-removed from the surface were trapped in the capping 

ligand shell matrix and were able to rebind back to the CdSe surface at the beginning of 

laser illumination.  The oxidation rate of CdSe core became similar to the thiol leaving 

rate in about 30 s, e.g. for the 26 W curve, and became even smaller after that (Figure 

5.9A).  This relative slower oxidation rate than the thiol-leaving rate after certain time of 

laser illumination explained our previous observations that we were able to modify the 

photo-activated surface by soaking the sample into solutions with free thiol molecules in 

Chapter III, because there were photo-activated CdSe surface sites exposed without 
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ligand covering them after photo-oxidation.178  The mechanism behind these oxidation 

curves was discussed later in the section 5.3.5. 

 

5.3.4.  The Influence of Oxygen Concentration on Photo-Oxidation Kinetics 

 The influence of one of the critical components, the oxygen, on the photo-

oxidation of CdSe quantum dots was studied under fixed laser intensity and zero free 

thiol concentration next.  Linear dependence of photo-oxidation rates on oxygen 

concentrations was observed (Figure 5.10 and Figure 5.11).  When increasing the 

oxygen concentration in the environments, the photo-oxidation of both ligands and cores 

increased.  Experimentally, the oxygen concentrations on the CdSe surface were 

indirectly controlled by blowing a mixture of oxygen/argon through microfluidic 

channels where film of CdSe quantum dots was immobilized (Figure 5.1), assuming that 

the oxygen concentrations on the CdSe surface were proportional to the bulk oxygen 

concentrations.  The data in Figure 5.10 and Figure 5.11 were converted based on the 

models in Section 5.3.1 and Section 5.3.2 from the in situ fluorescence spectra of CdSe 

films under laser illumination.  The initial photo-oxidation rates of both ligands and 

CdSe cores were plotted as a function of the oxygen concentrations in bulk gas mixtures.   

Only the initial 20 s slops of the curves in Figure 5.10A and 5.11A were 

considered because we expected that the photo-bleaching in this time period was not 

significant.  We carefully chose the experimental conditions with relatively low oxygen 

concentrations to reduce the photo-bleaching of CdSe photo-oxidation, however photo-

bleaching was observed for oxygen concentration greater than 2% (Figure 5.10A), where 
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oxygen diffused into the matrix of the crystals through the vacancies opened on the 

capping shells and oxidized the inner layers of CdSe crystals.  We used the initial 

oxidation rates, where photo-bleaching is negligible, instead of fitting the whole curves 

which were contributed from both the ligand oxidation and the photo-bleaching of CdSe 

cores, when the whole curves were better fitted with second order exponential decay 

curves.  For zero oxygen concentration in bulk gas where we had flowed pure argon for 

more than 2 hours before the photo-oxidation experiments, we still observed photo-

oxidation of both capping ligands and CdSe cores, and the fitting lines in Figure 5.10B 

and Figure 5.11B were slightly off the origin of the axis.  This was because the surface 

trapped oxygen on the sample, the container, and the PDMS mold surfaces could not be 

removed by ambient pressure argon flow.  Trace oxygen must exist in the bulk gas 

and/or on the CdSe surface to give detectable photo-oxidation signals.  It is also possible 

that the first step of the photo-oxidation reactions did not involve oxygen or there co-

existed an oxygen-free initial step, such as radical reactions or ionization reactions.  

Then the products of this first reaction reacted with oxygen.  The later hypothesis was 

useful to explain the mechanism of Auger ionization of CdSe that was observed in 

literatures.179 
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Figure 5.10.  Influence of oxygen concentration on the displacement of thiols from the 

CdSe surface (CdSe film was fabricated in microfluidic channels and experiments were 

done under controlled oxygen/argon flow; laser intensity was ~85 W; data points were 

taken every 50 ms).  (A) The surface coverage of thiols on CdSe surface changing with 

laser illumination time under different oxygen concentration (converted from selected 

fluorescence intensity data; the number adjacent to each curve represents the oxygen 

percentages in O2/Ar mix gas.  The concentration of oxygen was ~0.7 mM for every 1% 

oxygen in the gas mixture assuming pressure P = 1.5 atm.)  (B) The initial slops of 

curves in (A) at the first 20 s.   
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Figure 5.11.  Dependence of the oxidation rates of CdSe cores on oxygen concentrations 

(CdSe film was fabricated in microfluidic channels and experiments were done under 

controlled oxygen/argon flow; laser intensity was ~85 W; data points were taken every 

50 ms).  (A) Surface coverage of oxidants on CdSe surface changing with laser 

illumination time under different oxygen concentrations (converted from selected 

fluorescence peak center data; the numbers above the curves represents the oxygen 

percentages in O2/Ar gas mixtures. The concentration of oxygen was ~0.7 mM for every 

1% oxygen in the gas mixture assuming pressure P = 1.5 atm.)  (B) The initial slops of 

curves in (A) at the first 20 s. 
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The details of this reaction was not clear yet, however, we should still be able to 

draw a conclusion that the photo-oxidation rates of both the ligands and the CdSe cores 

were dependent on the oxygen concentrations, very possibly in first order.  This 

conclusion will be tested and discussed with more details in the next section.  The value 

of the rate constants obtained here were larger than the ones obtained from the previous 

section, because the diffusion rates and/or the surface absorption rates of oxygen in the 

gas mixtures were larger than those of the previous experiments that were done in 

ethanol and thus accelerated the photo-oxidation reactions.  However, we expected that 

the photo-oxidation mechanism was the same under both conditions. 

 

5.3.5. ODT/EtOH Experiment and ODT Diffusion Control of the Equilibrium State 

 Finally, the influence of free thiol molecules on the photo-oxidation of CdSe 

quantum dots was studied under fixed laser intensity and oxygen concentration, and the 

kinetic models of CdSe photo-oxidation were established.  The samples of CdSe film 

were immersed in 1-mercapto-octadecanethiol ethanol (ODT/EtOH) solutions with 

different ODT concentrations to study the rebinding kinetics of thiol molecules to the 

photo-oxidized CdSe quantum dots.  Neutral ODT was used instead of the native 

capping ligand 11-MUA to simplify the guest molecule-capping ligand interaction, such 

as electrostatic repulsion and carboxylic interaction of 11-MUA.  The stabilized CdSe 

nanoparticles were refilled by 11-MUA before the experiments and were washed 

thoroughly with ethanol, so the ligand coverage of which should be 1, and the film was 

considered to be free of extra ligands at the beginning, as such the free thiol ligand 
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concentrations only depended on the ODT concentrations in bulk solutions added back 

later.   

When the laser beam was focused on the film surface, the native capping ligands, 

11-MUAs were partially removed and opened windows on the capping shell for ODT 

and oxygen to bind to the CdSe surface.  Based on the results in Section 5.3.3 and 5.3.4, 

we expected that there were four main reactions happening on the surface with rate 

constants and concentrations of each species listed below: 
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where CdSe-thiol stands for the thiol capped CdSe quantum dots with ligand surface 

coverage θ that less than or equaled 1; [CdSe]v represents the vacancies on the capping 
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shell; and CdSe-O indicates the oxidized products or intermediates of CdSe surface with 

surface coverage σ; CO is the concentration of O2 and CS is the concentration of free 

thiols.  The vacancies of the capping ligands [CdSe]v were only generated by photo-

oxidation and had a rate constant kL that was dependent on the laser intensity.  The free 

thiol and oxygen molecules bound to the vacancies with certain rate constants.   

This model logically represents the summary of a series of unit reactions.  We 

only put the reactions that were critical to the kinetics in this model and simplified the 

reactions without considering some intermediates and final products.  For example, the 

oxidation reagent can be either absorbed surface oxygen O2 and/or photo-catalytically 

generated singlet oxygen.  We assume that the over all concentrations of them are 

proportional to the bulk oxygen concentration, and thus incorporate the adsorption rate 

constants and oxygen split rate constants into the rate constants of kL and kO.  Reactions 

5.9 to 5.11 had been discussed before in Section 5.3.3 and Section 5.3.4 and Reaction 

5.12 came from the experimental observation that fluorescence intensities of the 

oxidized CdSe nanocrystals were quenched to the original intensities by soaking the 

sample into thiol solutions, indicating the replacement of the oxidized species from the 

CdSe surface by free thiols.  The final products of CdSe cores and ligands from the 

photo-oxidation had been studied by XPS in Chapter III, where such as CdO, SeO2 , 

disulfide, and sulfate were observed. 

The influence of photo-bleaching had been reduce by relatively mild reaction 

conditions, however, if there was any, this photo-bleaching effect would have been 
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incorporated into the thiol rebinding rate constant kr in our model, i.e. this photo-

bleaching effect might increased the value of kr slightly. 

We assumed that the rate of the intermediate species, the vacancies, to be steady-

state, so: 

 

0][][  VCkvCkCk
dt

dV
OOSrOL           (5.13) 

 

We assumed first order reactions for thiol and oxygen binding to the vacancies here 

based on the results from previous Sections and would check whether this assumption 

worked for the curves or not later.  The vacancy concentration  

 

  1][V        (5.14) 

 

Thus from Equation 5.13 and 5.14, the coverage of oxidants on CdSe surface  
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The rate of photo-oxidation of ligands from Reactions 5.9-5.12 was 
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Let  aCk SS    and  bCk
CkCk
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
, then 
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Integration of the above equation from 1 to θ yielded: 

 

bte
b

ba

b

a 
 )(         (5.18) 

 

This Equation 5.18 was then used to fit the ligand coverage data that were calculated 

from the intensity data (Figure 5.12A).  Both fitting constants a and b were dominated 

by kSCS and they overlapped with each other under our experimental conditions.  We 

pulled out a and b and related them to the thiol concentrations (Figure 5.12B).  This 

relationship gave out the binding constant of free thiols on the oxidized CdSe surface, kS, 

to be 2.5×10-3 M-1s-1 or 2.5×103 M-1s-1.   
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Figure 5.12.  The change of ligand surface coverage upon laser irradiation under 

different ODT concentrations (laser intensity about 85 W).  (A) Surface coverage data 

calculated from the data of normalized fluorescence intensity of CdSe film.  (B) Fitting 

parameters a and b in Equation 5.18 vs. the ODT concentrations. 

 



 133 

 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

E
q

u
il
ib

ri
u

m
 

e
q

ODT Concentration (M)

eq = 
0.96 CS

1 + 0.96 CS

 

Figure 5.13.  Langmuir isotherm fitting of the equilibrium eq.   
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The equilibrium eq, the θ at t = ∞, was also pulled from the fitting results of the 

Data in Figure 5.12A, and was related to the ODT concentrations.  A Langmuir isotherm 

curve was observed in Figure 5.13: 

 

SLangmuir

SLangmuir

eq
CK

CK




1
         (5.19) 

 

The Langmuir isotherm binding constant was fitted to be KLangmuir = 0.96 M-1 or 

9.6×105 M-1.  This number is among equilibrium binding constants that were measured 

in the literatures where 2×104 M-1 to 1×109 M-1 were obtained.105, 163, 165, 167 

From the fitting results, our assumption made before was appropriate for our 

system that the rebinding of the free thiol to the CdSe was a first order reaction.  It is 

interesting to note that the thiol coverage was controlled by the replacing the oxidized 

species by free thiol molecules.  This was probably because that the replacement of 

oxidized surface was much slower than replacement of the vacancies and was the time 

dependent limit step of re-quenching of CdSe fluorescence. 
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Figure 5.14.  Photo-oxidation of CdSe cores upon laser irradiation under different ODT 

concentrations (laser intensity about 85 W). 
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This kinetic model also predicted that the photo-oxidation of the CdSe can be 

suppressed by increasing free thiol concentration.  We found that when the ODT 

concentration increased, the oxidation rate decreased and was totally suppressed when 

free ODT concentrations were above 1 mM (Figure 5.14).  This was explained by the 

equations and discussions below. 

 From Reactions 5.9-5.12, the oxidation rate 
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Integrating Equation 5.20 from 0 to σ yields the surface coverage of the oxidants 

 

)1( cte
c

d      (5.21) 

 

At high thiol concentration such as CS = 1 mM, kSCS = 2.5 and was relatively 

large (kS was the slop in Figure 5.12B).  Under our experimental conditions, assuming 

our laser intensities and oxygen concentrations were maintained constants, both d/c and 

the exponential term in 5.21 were brought to zero by this large kSCS value.  So σ = 0 and 
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the oxidation of the CdSe cores was prevented.  Equation 5.21 can qualitatively explain 

the photo-oxidation behavior of the CdSe cores and quantitatively get kS from fitting 

results of 10 M to 100 M data with Equation 5.21, ~kS = 1×103 M-1s-1, at the same 

order of magnitude than the result obtained through Equation 5.18.  However, we failed 

to obtain kr when using the kL and kO into d in Equation 5.21.  There are two possible 

explanations.  It was possible because the oxygen concentration on the surface was 

diffusion controlled and thus was different than the bulk oxygen concentration which 

resulted in a relatively larger kO than real in our previous calculations.  It was also 

possible that the oxidation of the CdSe cores was sensitive to the photo-bleach that our 

model ignoring photo-bleach was not accurate to describe the behaviors of the curves in 

our whole time ranges. 

Equation 5.18 and 5.21 explained the first order exponential decay curves for 

photo-oxidations of both capping ligands and CdSe cores.  Equation 5.18 also suggests 

that it was suitable for the model we used in Figure 5.4 to calculate the surface ligand 

coverage of CdSe quantum dots.   

In summary, since the oxygen related reactions were linearly dependent on the 

oxygen concentrations, we put the oxygen concentrations into the constants we have 

obtained in Section 5.3.3.  Since we have bubbled the ethanol with air before 

experiments, we believe the oxygen was saturated in ethanol ~6 mM.180  So in ethanol, 

with our argon laser and our 10x objective, the photo-oxidation rate of the thiols on our 4 

nm 11-MUA CdSe quantum dots was dependent on the laser intensities and the oxygen 

concentrations with rate constant kL = 8.0×10-3 W-1M-1s-1; the photo-oxidation of the 
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CdSe cores was dependent on the laser intensities, the oxygen concentrations, and the 

surface exposed, with rate constant kO = 2.5×10-2 W-1M-1s-1.  The rate of the free thiols 

binding on the oxidized CdSe surface was dependent on the free thiol concentrations in 

the bulk solution and the oxidized surface coverage, with rate constant kS = 2.5×103 M-

1s-1.  This larger kS comparing to kO means that, even at 100 W laser intensity, ~400 

W/cm2, the binding of the thiols to the vacancies of the CdSe capping shells is 3 orders 

of magnitude faster than the oxidation of the vacancies.  As a result, a few M of thiols 

in ethanol solution will significantly change the oxidation rate of the CdSe cores.  This 

affect of the trace free ligands explains the difficulties of establishing a kinetic model on 

the data obtained from colloidal solution phase experiments, since the free thiols are 

difficult to be washed away under the colloidal solution conditions. 

 

5.4.  Summary 

 The knowledge obtained here will greatly enrich our understanding on photo-

oxidation and photo-stability of quantum dots, and will support approaches either to 

suppress or to utilize the photo-oxidation of quantum dots.  Experimental techniques 

such as confocal microscopy (both spectral and time resolved) and microfluidic channels 

were employed here in studying photo-oxidation kinetics of thiol capped CdSe 

nanoparticles.  We found that both the photo-oxidation of the thiol capping ligands and 

the photo-oxidation of colloidal CdSe quantum dot cores were linearly dependent on the 

illuminating laser intensities, the oxygen concentrations, and the inverse of the bulk free 

thiol concentrations.  We have qualitatively and quantitatively built up kinetic models 
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for the photo-oxidation of the thiol capping ligands and CdSe quantum dot cores.  The 

method described in this chapter, predicting the amount of free thiols to suppress the 

photo-oxidation of CdSe cores, is critical to the approaches to enhance the photo-

stability of the quantum dots, and thus is useful in designing quantum dot based light 

emitting diodes and solar cells.  The method developed here will also be a tool to screen 

new capping ligands for quantum dots, by deconvoluting the ligand photo-dissociation 

constant from the complex photo-oxidation behavior of quantum dots.  The same model 

can be used to understand the mechanism of utilizing photo-oxidation in CdSe surface 

modification, which is important in bio-labeling and bio-functionalization.  In addition to 

the ligand exchange method, it could be another good approach to tag one single target 

molecule to a single quantum dot by controlling the photo-oxidation and ligand 

recombination conditions.  The method developed here and the quantitative kinetic 

model should also work for the systems in colloidal solution phase.  The models 

established in this study for thiol-CdSe quantum dots should be extended to all kinds of 

semiconductor nanocrystals too.  In conclusion, the method and kinetic model developed 

in this chapter will be very useful to all kinds of applications of colloidal quantum dots.   
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CHAPTER VI 

SUMMARY AND PROSPECTIVE VIEW 

 

 

I have demonstrated in this dissertation that unconventional nanofabrication 

techniques can be useful to build mesostructures and/or nanostructures on supported 

substrates.  These techniques are inexpensive and many are simple benchtop processes.  

In this dissertation, interesting platforms were designed with these techniques to study 

fundamental chemical and physical processes as well as applications.  At the same time, 

mechanisms of the working systems were proposed and physical models were 

established.   

In Chapter II, microsphere/colloidal lithography was employed as a template for 

self-assembly of sub 10 nm colloidal nanoparticles.  With this method, 16-mercapto-

hexanoic acid (16-MHA) capped CdSe nanoparticles were self-assembled around the 

junction between the micrometer size polystyrene microspheres and the substrate surface 

during the evaporation of the solvent.  Thus nanorings with tunable diameters from sub 

100 nm to micrometers were formed by changing the size of the microsphere templates.  

The whole structure appears as a sub-10-nm wide nanoparticle chain bent into a ring.  

More interestingly, the width of the annulus can be tuned from 10 to 100 nm by varying 

the concentration ratio between nanoparticles and the microsphere templates.  Since the 

microsphere templates themselves self-assemble into a hexagonal array on the substrate, 

the nanorings under each microsphere also form as a hexagonal array.  Before drawing 
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this conclusion, careful experiments were designed to confirm that the nanorings were 

aggregations of nanoparticles rather than surfactants or impurities. 

To explain this self-assembly phenomena, a physical model (Figure 2.13) was 

established with several micro-forces involved.  In this model, the capillary force that 

occurred at the frontier of the water meniscus under each microsphere was the driving 

force to induce the formation of nanoparticle rings.  When the volume of the meniscus 

shrunk with evaporation, the capillary force that naturally exists at the water air interface 

dragged and carried the nanoparticles that were dissolved inside the meniscus to the 

wedge-shape junctions between the microspheres and the substrate.  At the same time 

there co-existed two forces against the capillary force.  One of them was the adhesion 

induced friction force between the nanoparticles and the substrate.  This force explained 

the different degree of nonspecific binding observed between the nanoparticles outside 

the nanorings on different substrates.  Another force was the double layer repulsion force 

between the nanoparticles and the microsphere surface.  This force was required to 

prevent the nonspecific or specific aggregation between the microsphere templates and 

the nanoparticles.  However it also became the main force that worked against the 

formation of nanorings under each microsphere.   

Regarding all these forces, qualification was not enough, and quantitative 

calculations were required to explain the phenomena.  Using all parameters involved in 

the model, we estimated the values of all three forces and found out that the capillary 

force was larger than the sum of the double layer force and the friction force.  This 
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conclusive calculation result explained the formation of the nanorings on the substrate 

and validated the experimental observation. 

This model was established not only to explain the phenomena we observed in 

the polystyrene 16-MHA capped CdSe nanoparticle system, but also to predict results on 

similar systems.  We predicted that with the same sized microspheres and larger CdSe 

nanoparticles, the double layer repulsion force might exceed the capillary force and the 

nanoring would not form at that case.  The predicted upper size limit of the CdSe was 

~30 nm if the surface properties of the CdSe were maintained.  This prediction suggested 

that in order to form nanorings with larger CdSe nanoparticles, surface modification 

would be required to lower the double layer repulsion force between the microsphere 

templates and the CdSe nanoparticles.  This prediction has not yet been tested but we 

have tested another prediction: that the double layer repulsion force between citrate-

stabilized gold nanoparticles and the same microspheres will be greater than that 

observed for the CdSe nanoparticles and will exceed the capillary force due to the 

greater surface charge density of the gold nanoparticles.  Under these conditions, the 

gold nanoparticles would be deposited around the microspheres with a certain distance 

to the microsphere surface upon evaporation.  Our preliminary data (not shown) showed 

that this was the case for the microsphere gold nanoparticle system.  After we modified 

the gold nanoparticle surface with different ligands, the surface charges of gold 

nanoparticles were reduced and we observed the formation of gold nanoparticle rings 

again. 
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In Chapter III, we used the photo-oxidation of 16-MHA capped colloidal CdSe 

nanoparticle combined with focus laser lithography to tune the optical properties of the 

CdSe nanoparticles with one micrometer resolution.  A laser beam was focused on the 

surface of a CdSe nanoparticle film and scanned through the surface, leaving lines where 

the fluorescence intensity of CdSe nanoparticles was changed and the color blue-shifted.  

This phenomenon occurred due to the photo-oxidation of the CdSe nanoparticles. 

The photo-oxidation mechanism was proposed using X-ray Photoelectron 

Spectroscopy (XPS) results and snapshots of the photo-oxidation steps for 16-MHA 

capped CdSe nanoparticles were proposed.  At the beginning, the photon energy was 

absorbed by the CdSe nanocrystal, which generated both a free electron and a free hole.  

Some of the holes were trapped by the surface capping ligands and induced a cleavage of 

the Cd-S bounds.  Then, the ligands left the surface, which induced empty cavities on the 

capping shell.  The oxygen subsequently diffused to the surface with a certain 

probability of oxidizing the exposed CdSe surface.  

Based on this photo-oxidation mechanism, we predicted that when the thiol 

capping ligands were wholly or partially removed from the CdSe capping shell by the 

photocatalytic oxidation, a window was opened for new capping ligands to bind onto the 

exposed CdSe surface.  This process however had to compete with surface oxidation of 

the CdSe, which forms a passivating oxidant layer on the CdSe surface and thus prevents 

the binding of the free ligands.  This idea was tested by soaking the 

photolithographically created CdSe sample into a solution of either free 16-MHA, the 

capping ligand itself, or a solution of thiol tethered porphyrin molecules.  These 
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experiments indicated that the free thiol surfactants inserted into the capping matrix after 

photo-oxidation.   

These findings opened a new way for post-synthetic modification of both optical 

properties and surface properties of CdSe nanoparticles.  The advantage of this method 

lies in that the visible light source was used for photo-oxidation which had no impact on 

the ligand molecules.  This would allow in situ functionalization/bioconjugation of the 

CdSe surface with photo-oxidation.  we expect this method to be of interest to 

researchers in the quantum dot community.  

In Chapter IV, we focused on plasmon enhanced fluorescence among a system 

where the separation between metal and CdSe nanoparticles were controlled precisely at 

the nanometer scale.  The effects of plasmon enhancement have been known for some 

time, but the detailed mechanisms were still not understood.  We intended to gather data 

with better reliability and quality to distinguish between two popular mechanisms: 

fluorescence resonance energy transfer (FRET) and nanosurface energy transfer (NSET).   

Experimentally, the system was assembled with electrostatic interactions.  Using 

the polymer molecular ruler, the spacing between the metal nanoparticle and the CdSe 

nanoparticle was tuned from 3 nm to 100 nm with increasing intervals.  The fluorescence 

enhancement values were defined by comparing the fluorescence intensity of CdSe on 

top of metal nanoparticle with that of CdSe on top of bare substrate surface.  This 

stratagem was designed in order to perform the measurements on a single chip and thus 

to reduce the influence of sample fabrication fluctuations.  In these experiments, we used 

both silver and gold nanoparticles.  Both systems exhibited an individual optimum 
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separation distance existed between the metal nanoparticles and the CdSe quantum dots 

that gave a maximum enhancement peak for the fluorescence of CdSe quantum dots.   

A simple model was established to explain this plasmon enhancement factor, in 

which the quantum dots felt both a plasmon enhancement and an energy transfer 

quenching from the metal nanoparticle simultaneously.  In this model we proposed that 

both the nanoparticle and the quantum dot had four roles: light absorber and light emitter, 

as well as energy donor and energy acceptor.  For the quantum dots, they absorbed 

energy from the excitation laser photons and gave out energy as fluorescence photons.  

But before the emission of fluorescence photons, there was another pathway that 

quenched the energy through energy transfer from the CdSe nanoparticles to metal 

nanoparticles.  This quenching effect had been expected in literatures to be either FRET 

or NSET and both mechanisms had models for quantification calculations.  For the gold 

nanoparticles, they absorbed energies from both the excitation laser photons and the 

CdSe excitons.  At the same time this plasmonic energy was scattered out or absorbed by 

the nearby CdSe nanoparticles.  In this system, there had been limited mechanisms 

proposed for the nanoparticle’s role in the system.  We proposed a FRET like model for 

the metal nanoparticle plasmon enhancement.  In this model, we expected that the 

photon energy absorbed by the metal nanoparticle was also transferred to CdSe 

nanoparticle through FRET too.  This enhancement effect should be related to the 

extinction coefficient of the gold nanoparticle at the excitation wavelength, and the 

overlap between the emission spectra of the metal nanoparticle and the absorption 

spectra of the CdSe nanoparticle.  However, it was not clear whether this energy transfer 
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was directly related to scattering or the absorption of the metal nanoparticles, more 

specifically, the fluorescence of the metal nanoparticles.  As a result of this ambiguity, 

we were not able to calculate the value of this energy transfer from the metal 

nanoparticles to the CdSe quantum dots.  So we calculated the Föster radius of CdSe 

nanoparticle to metal nanoparticle for FRET and Föster like radius for NSET.  Then we 

fitted our experimental data with the proposed bi-factor model, leaving the Föster like 

radius of metal nanoparticle to CdSe nanoparticle free of variation.  The fitting result 

showed that the FRET model was a better fit to our system.   

Based on this model, we predict that if the Föster radius of CdSe to metal is 

shorter than the Föster radius from metal to CdSe; i.e. the plasmon enhancement effect is 

stronger than the quenching effect around the Föster radius separation.  Therefore, a neat 

enhancement of CdSe fluorescence will be observed when tuning the separation between 

metal and CdSe nanoparticles.  On the other hand, if these two values are reversed, only 

quenching of CdSe fluorescence can be observed throughout all separation distances.  

This quenching-only-effect might explain the phenomena observed from the small metal 

nanoparticle-dye pair in literature.  Also we predict that for our current system, tuning 

the laser wavelength to match the maximum absorption/scattering peak of the metal 

nanoparticles will be the optimal method to achieve the best possible enhancement factor.  

We also expected that the enhanced fluorescence signal of CdSe would bring a 

better detection of copper cations where the specific binding of copper ions on the CdSe 

surface was used to turn off the fluorescence of the CdSe nanoparticles.  We tested this 

assumption and observed an approximately 100 time enhancement on the detection 
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sensitivity of copper ions in water compared to similar quantum dot systems that without 

the plasmon enhancement.  

In Chapter V, the mechanisms and kinetics of the photo-oxidation of thiol 

capping ligands and CdSe quantum dot cores were studied.  Both the photo-oxidation of 

the thiol capping ligands and the photo-oxidation of colloidal CdSe quantum dot cores 

were linearly dependent on the illuminating laser intensities, the oxygen concentrations, 

and the inverse of the free thiol concentrations.  We have qualitatively and quantitatively 

built up models for the photo-oxidation kinetics of capping ligands and CdSe quantum 

dot cores.  The models established in this study should not be limited to CdSe quantum 

dots, but should be extended to all kinds of semiconductor nanocrystals.  The knowledge 

obtained here will greatly enrich our understanding of fundamental of quantum dot 

photo-oxidation and photo-stability, and will guide the methods either to utilize or to 

suppress the photo-oxidation of quantum dots.  The kinetic model will be very useful in 

all kinds of applications for colloidal quantum dots, especially in the area of bio-labeling 

and bio-functionalization. 

In summary, nanofabrication techniques played a central rule throughout all of 

the projects I have illustrated in this dissertation.  Without these techniques, none of the 

experiments could have been carried out.  At the same time, I believe the rationalization 

and building models to explain observed phenomenon are also very important.  

Fundamental researchers will be able to glean much more information out of the 

experimental data because of the provided model, even if it is currently incomplete.  A 
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further, more proven model that could accurately predict what these systems could 

achieve would be a powerful tool in the hands of researchers.  

We have provided theoretical or semi-empirical models for our systems.  These 

models became the key breakthroughs in my study.  However, I expect that corrections 

or even remodeling of these models will occur in the future to deepen our understanding 

of the phenomena as well as to help better design working systems. With that, I here end 

my dissertation and extend a sincere thanks for your patience while reading.  
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