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ABSTRACT 

 

An Inverse Source Location Algorithm for Radiation Portal Monitor Applications.   

(May 2010) 

Karen Ann Miller, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. William Charlton 

 

Radiation portal monitors are being deployed at border crossings throughout the world to 

prevent the smuggling of nuclear and radiological materials; however, a tension exists 

between security and the free-flow of commerce. Delays at ports-of-entry have major 

economic implications, so it is imperative to minimize portal monitor screening time. 

We have developed an algorithm to locate a radioactive source using a distributed array 

of detectors, specifically for use at border crossings.  

 

To locate the source, we formulated an optimization problem where the objective 

function describes the least-squares difference between the actual and predicted detector 

measurements. The predicted measurements are calculated by solving the 3-D 

deterministic neutron transport equation given an estimated source position. The source 

position is updated using the steepest descent method, where the gradient of the 

objective function with respect to the source position is calculated using adjoint transport 

calculations. If the objective function is smaller than a predetermined convergence 

criterion, then the source position has been identified.  



 iv 

To test the algorithm, we first verified that the 3-D forward transport solver was working 

correctly by comparing to the code PARTISN (Parallel Time-Dependent SN). Then, we 

developed a baseline scenario to represent a typical border crossing. Test cases were run 

for various source positions within each vehicle and convergence criteria, which showed 

that the algorithm performed well in situations where we have perfect knowledge of 

parameters such as the material properties of the vehicles. We also ran a sensitivity 

analysis to determine how uncertainty in various parameters—the optical thickness of 

the vehicles, the fill level in the gas tank, the physical size of the vehicles, and the 

detector efficiencies—affects the results. We found that algorithm is most sensitive to 

the optical thickness of the vehicles. Finally, we tested the simplifying assumption of 

one energy group by using measurements obtained from MCNPX (Monte Carlo N-

Particle Extended). These results showed that the one-energy-group assumption will not 

be sufficient if the code is deployed in a real-world scenario. While this work describes 

the application of the algorithm to a land border crossing, it has potential for use in a 

wide array of nuclear security problems.  
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CHAPTER I 

INTRODUCTION 

 

I.A. Description of the Problem
1
  

 

Radiation portal monitors are being deployed at border crossings throughout the world to 

prevent the smuggling of nuclear and radiological materials; however, a tension exists 

between security and the free flow of commerce. Today’s companies rely on the 

efficient operation of global supply chains to stock their just-in-time inventories. Delays 

at ports-of-entry can have major economic implications, so it is imperative to minimize 

portal monitor screening time.1  

 

Typically at land border crossings, there are several lanes of traffic, each equipped with 

a portal monitor. A typical setup is shown in Fig. 1 and Fig. 2. A vehicle containing a 

radioactive source can set off detectors in multiple lanes. Moreover, the vehicle does not 

have to be inside the portal monitor stall to set it off. If this happens, border agents must 

stop traffic and search for the source using handheld detectors. The screening process 

can be time-consuming and inefficient. This process could possibly be enhanced by 

using the portal monitor signals as a guide to where the source might be located 

throughout the lanes of traffic. 

 

                                                 
This dissertation follows the style of Nuclear Science and Engineering. 
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There has been at least one previous effort on the related problem of determining the 

lane in which a moving vehicle containing a radioactive source is located.2 The method 

studied requires a detailed characterization of detector responses caused by a source in 

different locations prior to being implemented in a real traffic scenario. To calibrate the 

system, a grid is created within the field of the detectors. Measurements are taken of the 

detector responses from a source located at each grid point. These measurements are 

normalized and populate a table of detector responses based on different source 

positions. When a vehicle sets off the detectors, the detector responses are compared to 

the tabulated response functions in order to determine which simulation most closely 

matches the actual data, thus indicating the lane of the vehicle. One of the limiting 

factors of this method is that it relies solely on  attenuation. Asymmetrical shielding 

in the field of view of the detectors due to other vehicles on the road can perturb the 

detector response and cause the source location algorithm to fail. No follow-up work 

was done on this project. 

 

 

Fig. 1. Land border crossing with several lanes and a portal monitor in each lane. 
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Fig. 2. Detail view of a portal monitor. 

 

In this dissertation, we introduce, analyze, and numerically test a new approach to 

locating a radioactive source using a distributed array of detectors based on an inverse 

transport approach adapted from the general algorithm published by Norton.3 The 

algorithm developed here is specifically for neutron transport, but it can be used for 

gamma rays, as well. Unlike the previous research, this method takes into account 

attenuation through vehicles near the source. The primary application is for use with 

portal monitors at land border crossings, but the method may be useful in other nuclear 

security applications as well as in medical imaging. 

 

In the algorithm developed here, forward and adjoint deterministic transport calculations 

are used in an iterative solver to minimize an objective function. The objective function 

contains a weighted least-squares error functional describing the difference between 

calculated and measured detector responses. It is minimized using the least-squares 

method. An important step in the algorithm is calculating the gradients of the objective 

Portal Monitor 
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function with respect to the unknown parameters. These gradients are called the Fréchet 

derivatives. Calculation of the Fréchet derivatives involves solving the adjoint transport 

equation for the system, where the objective function is the adjoint source. The 

algorithm uses a type of penalty term to account for a priori information about the 

problem.4 

 

Adjoint functions have been used to calculate gradients in inverse problems in fields 

such as optical tomography, the geosciences, and heat conduction; however, there have 

been few instances of applications to the neutron transport equation. In outlining the 

general algorithm, Norton gave the examples of reconstructing unknown cross sections 

and scattering functions. Later, the method was used to determine interface locations and 

unknown materials in multilayer shields.5,6  The work described in this dissertation 

applies the method to an inverse source problem, which has not been explored 

previously. 

 

I.B. Illicit Trafficking of Nuclear and Radiological Materials 

 

Illicit nuclear trafficking is defined as ―the unauthorized acquisition, provision, 

possession, use, transfer, or disposal of nuclear or other radiological materials, whether 

intentional or unintentional and with or without crossing international borders.‖
7 It has 

become a growing concern due to several high-profile cases involving weapons-grade 

materials. The largest reported seizure occurred in 1993. An individual was arrested in 
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St. Petersburg, Russia in possession of nearly three kilograms of highly-enriched 

uranium, which he had stolen from a nuclear facility.8 In February 2006, 79.5 g of 89%-

enriched uranium, shown in Fig. 3, was confiscated during a sting in the South Ossetia 

region of Georgia.9  

 

 

Fig. 3. 79.5 g HEU seized in Georgia. 

 

There are a number of open-source databases and reports that contain information on 

incidents of illicit trafficking, including the International Atomic Energy Agency’s Illicit 

Trafficking Database (ITDB), which was established in 1995. As of December 31, 2006, 

the ITDB contained 1,080 confirmed incidents. Several hundred other incidents reported 

in various open sources are tracked by the ITDB but not included in the statistics.10 

 

The United States has two main initiatives aimed at deploying radiation portal monitors 

to detect illicit trafficking of nuclear materials. The National Nuclear Security 
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Administration’s Second Line of Defense (SLD) program works with foreign partners to 

install radiation detection equipment at key transit points. SLD has two thrust areas: (1) 

the Core Program, which installs detection equipment at border crossings, strategic 

feeder seaports, and airports and (2) the Megaports Program, which installs detection 

equipment for screening maritime cargo at major international seaports.11 The 

Department of Homeland Security’s Customs and Border Protection agency is installing 

portal monitors domestically at land border crossings, seaports, rails crossings, 

international airports, and international mail and express consignment courier facilities.12 

 

The same forces of globalization and interconnectivity that brought sushi to Arkansas 

and information technology to India have given small organizations the resources to 

build big weapons. The easiest way to stop rouge nations and terrorist organizations 

from acquiring nuclear weapons is to prevent the spread of nuclear materials. Using 

radiation portal monitors at border crossings can help detect and deter illicit nuclear 

trafficking, but the systems need to be optimized to reduce their impact on the 

throughput of vehicles. The implications of not acting to prevent illicit nuclear 

trafficking are serious threats to international peace and security, which is why it is 

important to develop portal monitors that work effectively and efficiently. 
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I.C. Radiation Portal Monitors  

 

Radiation portal monitors are large-scale, field-deployable radiation detectors. 

Originally, the systems were developed for the exits of nuclear facilities and to prevent 

the inadvertent disposal of radioactive scrap metal. Today, portal monitors are also used 

at ports-of-entry to detect the illicit trafficking of nuclear and radiological materials.  

 

Radiation portal monitors are capable of detecting both neutron and gamma radiation. 

Most portal monitors use 3He tubes for neutron detection and a plastic scintillator such 

as polyvinyl toluene (PVT) for gamma detection. Because neutrons are neutral in charge, 

they do not interact directly with electrons in matter. Neutron detection relies on indirect 

measurements—by measuring charged particles released in neutron interactions. 

Helium-3 detectors utilize the following reaction: 

 . (1)  

Helium-3 interacts with a neutron to produce one hydrogen atom and one tritium atom 

along with 756 keV of energy. 

 

PVT is a type of organic scintillator. When a photon enters a PVT detector, it may 

deposit part of its kinetic energy, leaving atoms in an excited state. The excess energy is 

emitted as photons. The scintillating material is optically coupled to a photocathode. 

When the emitted photons impinge on the photocathode, electrons are emitted through  
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the photoelectric effect. The electrons are accelerated through a photomultiplier tube 

(PMT) onto an anode, where they create an electrical output signal.13 

 

The portal monitors used at border crossings are configured in two pillars that are placed 

on either side of a roadway, partially shielded by a lead case as shown in Fig. 1 and Fig. 

2. The detectors can be arranged and scaled for maximum efficiency. The software in 

typical systems is programmable and can integrate data from an array of detectors as 

well as cameras.14   

 

I.D. Inverse Problem Theory 

 

Inverse problems are often encountered in the applied sciences. Examples include fitting 

a curve to a set of measurements, evaluating geophysical data to determine the structure 

of the earth, and analyzing a computed tomography (CT) scan to diagnose medical 

conditions. Similarly, using portal monitor data to determine the location of a radioactive 

source is an inverse problem.  

 

Inverse theory is the set of mathematical techniques used to make inferences about the 

physical world using measurements and observations. Within any physical system there 

are model parameters, which completely describe the system, and observable 

parameters, which are the things that can be measured. In a forward problem, the model 

parameters (e.g., geometry and material composition) are known. They are used in a 
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mathematical model to estimate observable parameters (e.g., a detector response). 

Inverse problems, on the other hand, work in the reverse direction. Observable 

parameters are used in a mathematical model to estimate model parameters.15 This 

concept is illustrated in Fig. 4. 

 

 

        Forward Problem: 

 

          Inverse problem: 

 

Fig. 4. Flowcharts for forward and inverse problems. 

 

In the 1970s, Siewert, McCormick, and Sanchez began investigating inverse transport 

problems to determine scattering coefficients.16,17,18,19,20 Most of their work concentrated 

on finding explicit expressions for the quantities of interest in terms of experimental 

data.  

 

In the 1980s, Larsen, Sanchez and McCormick began using adjoint functions to solve 

inverse transport problems indirectly with iterative methods. Sanchez and McCormick 

used the adjoint of the transport operator in deriving a set of linear equations that could 

be solved for the isotropic scattering operator in a homogeneous slab.21 Larsen showed 

that the adjoint angular flux is a measureable quantity on the surface of an object and 

Model 
Parameters Model Estimates 

of Data

Data Model
Estimates 
of Model 

Parameters
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derived relationships using the adjoint angular fluxes to obtain information about the 

scattering function. He did this for multigroup, anisotropically-scattering problems as 

well as multidimensional problems.22,23  

 

In 1997, Norton proposed a new solution method for solving inverse transport 

problems.3  Although adjoint functions had been used previously in solving inverse 

transport problems, Norton used the adjoint flux in a novel way. The problem of 

determining some unknown material property was formulated as an optimization 

problem. The adjoint flux was used to calculate the Fréchet derivative of a global error 

functional, also referred to as the objective function, which related measured and 

calculated values and then used that derivative to minimize the error functional. The 

same idea had been implemented in solving inverse heat conduction problems.24 

 

A similar method was developed in the field of optical tomography. Hielscher and Klose 

worked on a model-based iterative image reconstruction scheme for medical imaging 

problems.25,26 They used a technique called adjoint differentiation to calculate the 

gradient of the objective function. In this technique, the chain rule is continually applied 

to the objective function to decompose it into a series of differentiable function steps. 

The disadvantage of adjoint differentiation is that it requires a large amount of computer 

storage. 
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Most recently, the 2006 American Nuclear Society Winter Meeting included a session 

on inverse methods for radiation transport problems. In this session, two papers called 

attention to the field of inverse source problems. Klose discussed the importance of 

inverse source problems in molecular imaging, where optical probes report on targeted 

molecular processes inside biological tissue.27 Sanchez and McCormick noted that the 

growth of passive screening processes for radioactivity since September 11, 2001 has 

opened the door to research in inverse source problems.28 Thoreson et al. also 

recognized the importance of inverse problems in homeland security applications.29  

 

I.E. Overview of Chapters 

 

In this chapter, we described the problem and explained the implications of the research. 

The consequences of not acting to prevent illicit nuclear trafficking were explained 

along with the detection mechanism of radiation portal monitors. Finally, we introduced 

general inverse theory and described previous efforts in inverse transport problems.  

 

Chapter II describes optimization problems, specifically the least-squares approximation 

that we used to develop the source location algorithm. Gradient-based minimization 

schemes are discussed, and the Fréchet derivative with respect to the source location and 

strength is derived.  
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In Chapter III, the theory behind the solution mechanisms is explained. For the forward 

model, this includes the angular and spatial discretization and the source iteration 

method. For the inverse model, this is the steepest descent algorithm. Additionally, 

Chapter III explains how the initial guess for the source position is chosen, how penalty 

terms are used to decrease computational time, and how the convergence criterion was 

chosen. The chapter concludes by tying together the entire source location algorithm.  

 

The results of forward model test problems are given in Chapter IV. The accuracy of the 

3-D deterministic transport solver was determined by a comparison with a code called 

PARTISN. Based on the results of an array of 3-D problems with varying model 

parameters, it was determined that the forward solver was functioning as expected.  

 

The results of the inverse model test problems are given in Chapter V. The chapter starts 

with a description of the model parameters such as mesh size, vehicle geometry, and 

cross sections as well as an assessment of the simplifying assumptions used such as one-

group cross sections. We developed a baseline test case on which to compare all of the 

inverse test cases. The baseline scenario represents a typical configuration of vehicles 

and portal monitors with typical cross sections. It demonstrates the code’s ability to 

locate the source position given perfect model parameters. We also conducted a 

sensitivity analysis to determine what factors (e.g., optical thickness of the vehicles or 

detection efficiency of the portal monitors) have the biggest affect on the solution.   

 



 13 

We finish our discussion in Chapter VI with a summary of the results as well as general 

conclusions and recommendations.  
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CHAPTER II  

OPTIMIZATION PROBLEM 

 

II.A. Least-Squares Approximation 

 

Unconstrained optimization problems have the form 

 , (2)  

where  is an objective function.30 The objective function is a measure of 

length, or the norm, of an n-dimensional vector. If that norm is the L2 norm, then it is a 

special class of optimization problems called a least-squares problem. The L2 norm is 

denoted by  and computed by31 

  . (3)  

 

A least-squares problem can be recognized by verifying the objective function is a 

quadratic function. Consider the least-squares problem 

  (4)  

where  is a known matrix,  is an unknown vector, and  is a known vector. Expanding 

 gives the quadratic form 

 . (5)  
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If  is a symmetric positive-definite matrix, then the gradient of  with respect to  is 

 . (6)  

By setting the gradient equal to zero, it can be seen that  is minimized by the 

solution to the system of equations .  

 

To illustrate the concept of a least-squares problem, take the example of fitting a line to a 

set of measurements. Recall that in an inverse problem, model parameters are recovered 

using measured data. When data is predicted based on estimated model parameters, there 

will be error between the predicted data and the measured data. Consider 

 measurements and the predictions of those measurements . Using the least-

squares approximation, a best-fit line is found with 

  (7)  

Fig. 5 illustrates the line fitting problem. The error for each measurement is the 

difference between the data point and the predicted line. The line that minimizes the 

global error is the best fit. 
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Fig. 5. Least-squares approximation for fitting a line to a set of measured data points. 

 

The least-squares method has a number of statistical interpretations, and there are 

variations on the standard form of the equations to facilitate practical applications. One 

of those variations is the weighted least-squares approximation, where the objective 

function is weighted by a parameter such as the uncertainty in each measurement. This 

technique is used, for example, in recovering an unknown vector  when the 

measurements have been corrupted by Gaussian noise. The weighted least-squares 

problem has the form 

  (8)  

where  is the weighting matrix. 

 

 

 

mn 

pn 
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II.B. Gradient-Based Minimization Schemes 

 

At this point, it is necessary to know how the objective function is minimized. There are 

several different methods that can be used. One of those is Newton’s method. While 

Newton’s method works well for some problems, it requires the inversion of an ill-

conditioned Jacobian matrix at each step in nonlinear problems. The method is not well-

suited for large-scale inverse problems.32 The Levenberg-Marquardt method can be used 

for solving least-squares problems. It also requires inverting an ill-conditioned Jacobian 

matrix, but convergence is not as dependent on the initial guess for the solution as it is in 

Newton’s method. For this work, we use a gradient method called the steepest descent 

method.  

 

The general form of gradient descent schemes represent the first order Taylor 

approximation of  about : 

  (9)  

Gradient methods have the form  

 . (10)  

They are iterative methods, and the superscript  denotes the iteration number. The 

unknown vector  is updated by adding a step size  times the negative of the gradient of 

. The step size is a parameter that specifies how far to go in the direction of the 
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gradient. There are various ways to calculate the step size such as a line search method 

or by using parameters derived at each iteration.  

 

The matrix  is symmetric, positive-definite. This means that the quadratic function 

 is shaped like a paraboloid bowl. The gradient, by definition, points in the direction 

of greatest increase. The minus sign in Eq. 10 means that the search direction is the 

negative of the gradient, making it the direction of greatest decrease. Thus, to minimize 

the least-squares formulation for the portal monitor problem, we need the gradient of the 

quadratic function. The process is iterative, where the gradient can be recalculated at 

each iteration, and continues heading in that direction until the bottom of the paraboloid 

bowl is reached. 

 

II.C. Problem Setup 

 

The problem of locating a radioactive source at a border crossing using multiple portal 

monitor measurements is similar to a line-fitting problem. In this case, the goal is to 

recover the source position that produces the predicted measurements that best fit the 

actual measurements.  

 

The equation we use to predict the measurements is the forward transport equation, or 

simply the transport equation. The transport equation describes the expected distribution 
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of free neutrons in a phase-space volume.33 It is a balance equation that quantifies the 

change rate of neutrons as the production rate minus the loss rate. It can be written as 

 

(11)  

where the scalar flux is given by 

  (12)  

The first term on the left-hand side of the equation represents the change rate of 

neutrons. The next two terms describe the net out-leakage rate and loss rate due to 

collisions, respectively. The first term on the right-hand side of the equation is the gain 

rate of neutrons due to scattering into the phase space. Finally, the last term represents an 

extraneous source. It is also called the inhomogeneous source. Other sources can be 

included in the transport equation (e.g., fission or delayed neutrons), but we consider 

only an inhomogenous source  for the border monitoring application.  
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For the purposes of this dissertation, we use the steady-state, mono-energetic version of 

the transport equation. We also assume that scattering is isotropic. Thus, the equation 

can be simplified to  

  (13)  

For brevity, this can be written  

 . (14)  

 

Recall that the weighted least-squares problem has the form 

 . (15)  

The response function of detector  is  

  (16)  

Letting  represent the measurements for detectors and  represent the 

calculated angular flux, the least-squares formulation for this problem is 

 

 

(17)  
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The equation can be further simplified by combining the angular flux and detector 

response function into one variable to represent the estimated measurement . 

 

 

(18)  

In this case and referring to Eq. 15, the known matrix  is merely the identity matrix, the 

unknown vector  is , the known vector  is the actual measurements , and the 

weighting function  is  to give a relative difference between the measurements. 

 

To minimize Eq. 18 with a gradient method, it is necessary to take the derivative with 

respect to the quantities of interest. Here, we restrict the volume integral to the cell 

containing the source.  Omitting several intermediate steps (derived similarly by 

Norton), taking the derivative with respect to  gives 

  (19)  

Because we do not have an expression for the derivative of the angular flux with respect 

to , we would like to replace it with something we can calculate. To do this, we need 

the adjoint neutron transport equation given by34 
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  (20)  

which can be written concisely as  

 . (21)  

The adjoint source is defined as the difference between the actual and predicted detector 

response. It is given by 

  (22)  

Recognizing the adjoint source in Eq. 19, it can be rewritten as  

 

  (23)  

Assuming vacuum boundary conditions, the duality principle reads35 

  (24)  

Using the duality principle, Eq. 23 can be transformed: 
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  (25)  

If the model parameters such as cross sections or the source position are perturbed, then 

there will be a change in the flux. Using the chain rule, the change in the transport 

equation is 

 

, or 

 . (26)  

Using this expression to replace the derivative term in Eq. 25 gives 

  (27)  

For the source location problem, the cross sections of the system are assumed to be 

known, so the transport operator  is a constant. Thus, the equation can be further 

simplified to  

  (28)  

The source is modeled as a point source with strength . In three-dimensions, this can be 

written as 
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(29)  

where  is the source position. Evaluating the integrals gives 

 

 

  (30)  

To evaluate the integral involving the derivative of a delta function, integrate by parts 

using the following relationship: 

  (31)  

Thus, the gradient of the least-squares functional with respect to  is 

  (32)  
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The gradient of the functional with respect to the -position, -position, and source 

strength  are derived using the same steps. The resultant equations are 

  (33)  

  (34)  

and 

  (35)  

These equations are used in a gradient method to minimize the least-squares functional 

and identify the source location.  

 

II.D. Penalty Terms 

 

It is well known that inverse problems are ill-posed, meaning they are sensitive to small 

perturbations in input data resulting from experimental uncertainty or a lack of data.36 In 

other words, there are too many degrees of freedom and there may not be a unique 

solution. If a priori information about the problem can be quantified into a solution 

method, it can be very useful in constraining the solution. For example, consider the 

problem of fitting a line to a set of measurements. If there was only one data point as 

shown in Fig. 6(a), the problem would be ill-posed; however, if a priori it was known 

that the line passed through the origin, then a line could be fit as seen in Fig. 6(b). 
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                               (a)                                                                      (b) 

Fig. 6. (a) Ill-posed line-fitting problem and (b) use of a priori information. 

 

Using penalty terms is a way to provide supplemental constraints on the solution space. 

Penalty terms are often incorporated into the solution mechanism as an additional term 

in the objective function. Chapter III explains how we use a penalty term to constrain the 

solution for the border application problem. 
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CHAPTER III  

SOLUTION METHOD 

 

III.A. Overview 

 

The first step in the objective function minimization scheme is to understand the 

problem setup. For this problem, it is assumed that the geometry and material properties 

are known. The actual detector measurements are also known. The unknowns are the 

source location and source strength. To obtain the estimated detector measurements, we 

will choose a guess for the source information and solve for the scalar flux in the 

detectors. This guess will be updated via the steepest descent method until the objective 

function is minimized to a value below the convergence tolerance.   

 

To minimize the objective function, we must be able to solve the neutron transport 

equation. This is the forward problem. One approach is to solve using a Monte Carlo 

method. This class of methods tracks particle histories through a medium by simulating 

the random nature of interactions.37 While Monte Carlo methods are useful for many 

applications, the source location problem is not one of them. One of the objectives of 

this research is to locate the source quickly, and Monte Carlo solution methods are too 

time intensive. Another approach is to solve the transport equation using a deterministic 

method. To do this, the continuous information contained in the exact solution is 

replaced by discrete values, and the calculus problem is transformed into an algebra 
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problem. The flux is solved for at a number of finite locations called grid points. As the 

number of grip points gets large, the numerical solution is expected to approach the 

exact solution. Deterministic problems can generally be solved quickly, making them 

more suitable for the border security application. 

 

The solution to the neutron transport equation is used to calculate estimated detector 

responses. The estimated detector responses are then used to solve the inverse problem. 

To find the source location that minimizes the difference between the estimated and 

actual detector response, we could test the source location at each grid point, but in a 

system with tens of thousands of cells, this method quickly becomes infeasible due to the 

time constraints. Instead, we make an initial guess of the source location and let the 

gradient of the objective function point us in the right direction.  

 

III.B. Angular Discretization 

 

Recall the steady-state, mono-energetic neutron transport equation with isotropic 

scattering: 

  (36)  

The scalar flux is calculated by integrating the angular flux over 4π. To do this 

numerically, the angular variable is broken up into a number of discrete directions as 

shown by 
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  (37)  

The integral over the direction variable is replaced by a quadrature sum with quadrature 

weights . This is called the discrete ordinates (SN) method. Letting 

, 

 

 

(38)  

The SN method transforms the integro-differential transport equation into a set of  

differential equations. 

 

The quadrature set is chosen based on the application. For this research, we used the 

level symmetric quadrature set.38 The angle vector  is defined by  coordinates. 

The quadrature is completely symmetric, meaning that the  coordinates are 

invariant under all 90⁰ rotations.39 

 

III.C. Spatial Discretization 

 

The  differential equations derived by discretizing the angular variable also need to be 

discretized spatially. This involves superimposing a Cartesian mesh onto the system and 
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rewriting the equations to be consistent with the mesh. The following shows the 

equations written out in longhand: 

 
(39)  

 

The discretized  equations are derived by making approximations to the derivative terms 

using Taylor series expansions. Consider the grid shown in Fig. 7 for cell  with edges 

 and  and width . 

 

 

 

Fig. 7. Example grid for Taylor series expansion. 

 

The Taylor series expansions of a function about evaluated at  and are given 

by40 

  (40)  

  (41)  
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Subtracting the two equations, solving for , and truncating the Taylor series gives 

  (42)  

This is the centered-difference approximation of the derivative of  at . The truncation 

error is second order and depends on the step size . As the step size decreases, the 

truncation error decreases with . 

 

Substituting the centered-difference approximation into the transport equation produces 

a set of finite difference equations. For the three-dimensional case, the mesh is divided 

into  coordinates with cell widths of , , and . The cross sections are 

assumed to be piecewise constant, changing values at cell edges only. The angular fluxes 

that are incoming and outgoing from a cell are defined as follows for  and similarly for 

 and : 

 

 

   

 

 

(43)  

 

The fully discretized transport equation is given by  
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(44)  

By discretizing the angular and spatial variables, the calculus problem is transformed 

into an algebra problem that can be solved using numerical methods.  

 

III.D. Solving the Forward Problem 

 

The discrete transport equation can be solved iteratively using source iteration.41 Recall 

the operator notation for the transport equation from Chapter II: 

  (45)  

The transport operator  can be broken into its loss component (streaming and 

collision) and its scattering component : 

  (46)  

Source iteration has the following iteration scheme: 

  (47)  
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where  denotes the iteration number. Source iteration works by introducing the ―old‖ 

estimate of the scalar flux on the right-hand side of the equation at each iteration. The 

―new‖ value for the angular flux is used to update the scalar flux with the relationship  

  (48)  

The process is repeated until the difference between successive fluxes is less than the 

convergence criteria.  

 

To solve the forward problem, we must make another approximation to the discretized 

transport equation. Eq. 44 contains both cell-centered angular fluxes and edge values of 

angular flux. The incoming fluxes are known from the boundary conditions, which in 

this application, are vacuum boundary conditions. We will solve for the cell-centered 

angular flux, so an auxiliary relationship is used to eliminate the outgoing flux. The most 

commonly used auxiliary relationship is the diamond difference approximation, but it 

can lead to negative flux values. To guarantee no negative fluxes, a method such as the 

step difference approximation can be used. The step difference approximation for the  

component, is given by 

  (49)  

Substituting the step difference approximation into Eq. 44 gives the following: 
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(50)  

 

Two additional simplifications are made to this equation. First, the angular flux in the 

scattering term can be replaced by the scalar flux. Second, the source for this application 

is assumed to be isotropic. The angularly-dependent source  can be replaced by 

the isotropic source  to yield  

 
 

(51)  

Rearranging to solve for   gives the following: 

 

 

 

(52)  

In this form, everything on the right-hand side is known and the cell-centered angular 

flux can be solved for directly. We know the ―old‖ scalar flux from the previous 
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iteration. Also, all incoming angular fluxes are known from the vacuum boundary 

conditions.  

 

III.E. Solving the Inverse Problem 

 

The forward model predicts a set of measurements for a given source position. In the 

inverse model, an objective function is defined that describes the difference between the 

actual and predicted measurements. Least-squares methods are based on the premise that 

the residual at the solution is small. Recall from Chapter II that a weighted least-squares 

optimization problem has the form 

 . (53)  

 

In this case, the optimization problem is 

  (54)  

 

In this form, the coefficient matrix  is equal to the identity matrix; however, it is not a 

trivial problem. It is a nonlinear problem because the estimated measurements are a 

function of the source position, which is also the unknown parameter. The residual is 

defined as the value of . 
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For the arbitrary detector, we assume that the measurements are proportional to the 

scalar flux in the detector. While we do have an expression for the Fréchet derivative of 

the objective function with respect to the source strength , we devised an alternative to 

solving for the source strength. Because we are comparing the measurements of an array 

of detectors, the response pattern should be the same regardless of the source strength. 

To exploit this, we normalize the actual and predicted measurements before comparing 

them. This eliminates the need to know the source strength. 

 

The general minimization algorithm is given by the following: 

 
Given a starting point  
Repeat 

1. Determine a descent direction  
2. Line search 
3. Update  

Until the stopping criteria is met 
 

To minimize the objective function, the first step is to take the gradient with respect to 

the unknown parameter. Then, perform a line minimization in the negative direction of 

the gradient. Once the new minimum along the line is found, a new gradient at that 

position is calculated. This is repeated until the convergence criteria are met. The 

remainder of this section will discuss the specifics of the algorithm. 

 

The adjoint flux is calculated using the same mesh and source iteration solver as the 

forward transport problem. The difference is that instead of the driving term being the 
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actual radioactive source, it is the residual of the objective function evaluated at each 

detector position: 

  (55)  

 

The gradient terms were derived in Chapter II and given by Eq. 32-34. The source 

strength is not used, so it is set equal to one (  in the derivative terms. The gradient 

is calculated by taking finite differences of the adjoint flux.  

 

Because the unknown parameter is the source position and the spatial dimension is 

broken up into discrete values, the unit step size is naturally suited to be the cell width. 

For the line search, the residual is calculated for each cell in the direction of steepest 

descent. The cell with the minimum residual value is used as the estimated source 

position to calculate the next gradient. The minimization is a function of three unknown 

variables: x-, y-, and z-direction. The line searches alternate between the three 

directions. Once the minimum x-value is calculated along a line, the new gradient is 

calculated at that point and a line search is performed in the y-direction. Similarly, the 

minimum y-value is found along that line before moving on to the z-direction. 
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III.F. Initial Guess 

 

An ill-posed optimization problem is one that does not have a well-defined global 

minimum. This can be due to the existence of several local minima or to a global 

minimum surrounded by other possible solutions that result in almost identical residuals. 

The border application is an ill-posed problem and thus has a strong dependence on the 

initial guess for source position.  

 

Heurisitic techniques are often employed to determine an initial guess. These are 

techniques that are based on experimentation or trial-and-error methods. One technique 

that was explored was to triangulate the position of the source given the actual 

measurements while assuming a vacuum. Fig. 8 illustrates the triangulation concept. 

While computationally efficient, this technique was however abandoned due to 

erroneous results for certain detector configurations. 

 

Instead, a different heuristic approach was used to acquire an initial guess for the source 

position. The spatial mesh was divided such that one coarse region was used per vehicle. 

A forward transport problem was run for each region with the source located in the 

center of the region. The residuals calculated at each position were then ranked in 

ascending order. The position with the smallest residual was used as the initial guess. 

The minimization scheme was given a user-specified number of iterations to converge 

before jumping to the vehicle with the next smallest residual. 
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Fig. 8. Triangulation concept. 

 

Furthermore, if the residual calculated in the initial guess algorithm is more than five 

times that of the smallest residual, then that region is eliminated as a feasible solution. 

This helps save computational time by not allowing the code to spend time in areas that 

are highly unlikely to be the source position. A scenario where this is a useful feature is 

when the modeling error is such that the residual at the actual source position is larger 

than the convergence tolerance. If no position falls below the tolerance after all of the 

plausible vehicles are investigated, then a ―best guess‖ solution is returned. Of all the 

positions investigated, this is the one that produced the smallest residual. 

 

The approach that was chosen represents a very accurate method of obtaining the initial 

guess but is less computationally efficient than the triangulation method. If the 

computational time associate with the method is too big in practice, there are several 

Detector 1 

Detector 2 

Detector 3 

Source Position 
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intermediate approaches that could be used. Alternatives could include using a coarser 

grid for the initial guess than is used for the minimization or even using ray tracing 

through a homogeneous (or vacuum) space. These approaches represent a compromise 

between computational time and accuracy.  

 

III.G. Penalty Term 

 

Penalty terms quantify a priori information about the problem to provide supplemental 

constraints on the solution space. Often, they are incorporated into the solution 

mechanism as an additional term in the objective function. We used a variation on the 

typical penalty term to constrain the solution to only the cells contained within a vehicle 

as opposed to the air space or concrete floor. Instead of adding a term to the objective 

function, the penalty term was incorporated simply by adding a cross-section check 

during the line search. As the line minimization runs along a line, it will stop when it 

gets to a cell with the cross section of air or concrete. This constrains the line 

minimization to a vehicle, thus saving an enormous amount of computational effort. If 

the residual does not meet the convergence criteria inside a given vehicle after a 

preassigned number of iterations, then the solver jumps to the next most likely vehicle. 
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III.H. Convergence Criteria 

 

The convergence criterion on the objective function signals when the steepest descent 

method should stop. The objective function is defined as the relative difference between 

the actual and estimated detector measurements, so the convergence criterion is the 

acceptable difference between the measured and simulated detector signals.  

 

In the real-world application of the code, there will be modeling uncertainties associated 

with the geometric and material properties of the vehicles (i.e., the optical thickness of 

each vehicle, the amount of gasoline in the gas tank, the physical size of each vehicle, 

etc.) as well as the efficiency of the detectors and statistical error in the counts. In 

addition, there will be computational error based on the size of the spatial mesh. 

Minimizing the computational time is an important aspect of the real-world application 

of the code, so there must be a balance between the accuracy of the solution and the time 

it takes to converge. Given the potential for large uncertainties in modeling parameters, 

the convergence goal is simply to identifying the correct vehicle. Given perfect 

knowledge of the geometry and cross sections and with unlimited time, it is likely 

possible to identify the exact position of the source within the vehicle given very good 

measurement statistics. 

 

The convergence criterion is the sum of two independent contributions. The first 

represents the maximum tolerance to reliably identify the correct vehicle given perfect 
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knowledge about the model parameters. This quantity is empirically derived using a 

series of test cases that approximate a real-world scenario. The second contribution to 

the convergence criterion is a value based on the assumed uncertainty in the model. The 

total represents the maximum-allowable percent difference in the actual and estimated 

measurements.   

 

III.I. The Full Algorithm  

 

Pulling together the forward and inverse models along with the initial guess, Fig. 9 

shows a flowchart with the full source location algorithm. The source code for the full 

algorithm is given in Appendix D. The algorithm steps are the following: 

1. The algorithm begins when a source is detected and the model parameters (i.e., 

material and geometry of the system) are determined.  

2. Next, the computational system setup is performed. This includes steps such as 

reading the input files containing the model parameters and measurements, 

allocating arrays, and creating the mesh.  

3. After that, the initial guess algorithm is run.  

4. Once the initial guess is determined, the code moves onto the forward model. 

The initial guess for the source position is run through the forward transport 

solver to give the estimated detector measurements.  

5. The estimated detector measurements are compared to the actual detector 

measurements using the least-squares objective function. If the relative 
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difference is less than the specified convergence tolerance, then the source 

location has been identified. If it is larger than the convergence tolerance, then 

the code moves onto the inverse model.  

 

 

Fig. 9. Flowchart showing the full source location algorithm. 
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6. In the inverse model, the adjoint transport solver calculates the adjoint flux in the 

system. The value of the objective function at each detector location is the 

inhomogeneous source term.  

7. The gradient of the objective function with respect to the quantity of interest—

the x-, y-, and z-position of the source—is calculated using the adjoint flux.  

8. Once the gradient is calculated, the code performs a line search in either the x-, 

y-, or z-direction. The line search identifies a new estimated source position.   

9. The code now returns to the forward model. The new estimated source position is 

used in the forward model to produce a new set of estimated detector 

measurements.  

10. This process is iterated until the convergence criteria are met. 

 

There are also nuances within some of the steps. For instance, if the source position has 

not been identified after five x-y-z iterations, then the estimated source position jumps to 

the next most likely region identified in the initial guess algorithm. The same process is 

repeated until either the relative difference between estimated and actual measurements 

is less than the convergence tolerance or the system runs out of plausible solution 

regions. Throughout the iteration process between forward and inverse models, the 

source location that resulted in the absolute minimum residual is stored. If the code 

investigates all plausible solution regions with converging, then the estimated source 

position that produced the absolute minimum residual is identified as the most likely 

source position.  
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CHAPTER IV 

FORWARD CODE RESULTS 

 

IV.A. Introduction 

 

To verify that the 3-D forward transport solver works correctly, a series of test problems 

were compared to problems run using PARTISN.42 PARTISN is a deterministic SN 

transport code developed at Los Alamos National Laboratory. It can solve the neutral-

particle transport equation on a number of grid types, including a 3-D Cartesian grid. 

The spatial discretization used for the test problems was diamond difference with a fix-

up to eliminate negative fluxes. The angular variable was discretized using a Gauss 

Legendre (P8) quadrature.   

 

Five cases were chosen to test the code under a variety of different conditions. The five 

test cases were: 

1. A distributed source with average cross sections (i.e., in a medium with no strong 

absorbers or highly scattering materials), 

2. A point source (i.e., a distributed source in only one cell) with average cross 

sections, 

3. A point source in a highly scattering medium, 

4. A point source in a strongly absorbing medium, and 

5. A point source in a near vacuum. 
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For each of the test cases, the system was 18 cm×18 cm×18 cm with 15 cells per side. 

Although this is significantly smaller in scale than the portal monitor applications, the 

forward model tests are merely show that the forward code is functioning as expected.  

The source strength was 19.82 n/cm3-sec. All cases had homogeneous cross sections and 

vacuum boundary conditions. The test cases were all 3-D, but the results shown  are 1-D 

and 2-D slices through the geometry. Fig. 10 shows the geometry of the system with the 

origin at . A sample PARTISN input deck is included in Appendix B. 

 

 

 

 

 

 

Fig. 10. Forward test problem geometry and origin. 

 

IV.B. Test Problem 1 

 

The first test problem was a distributed source problem with average cross sections. The 

cross sections and scattering ratio, c, used are given in Table 1.  
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Table 1. Forward Test Problem 1 Material Properties. 

σs 0.085 cm-1 

σt 0.097 cm-1 

c 0.876 

 

Fig. 11 shows plots of the scalar flux in the x- and y-directions outputted from both 

PARTISN and the forward model code for the mid-plane of the test problem in the z-

direction. Fig. 12 shows a plot of the scalar flux in the x-direction along  and 

. Also shown in Fig. 12 is the analytical diffusion solution, which is hyperbolic 

cosine shaped. Generally good agreement is found between PARTISN and the forward 

model code. The peak flux differs by 4% with PARTISN slightly overestimating the 

peak flux and the forward model code slightly underestimating the peak flux. 

Differences in the results are from differences in the solution mechanism used by each 

code (i.e., quadrature set, spatial approximations, etc.).  

 

 
(a)                                                            (b) 

Fig. 11. Scalar flux surface plots for forward test problem 1 showing 
(a) PARTISN and (b) forward code results. 
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Fig. 12. 1-D scalar flux plot for forward test problem 1. 

 

IV.C. Test Problem 2 

 

Test problems 2-5 all contained a point source in the center of the cube rather than a 

distributed source, and they differed in the cross sections used. The results were 
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Test problem 2 was very similar to test problem 1. The cross sections used as the same 

as those given in Table 1. Fig. 13 shows surface plots of the scalar flux through the 

 mid-plane for both PARTISN and the forward model code. Both plots show the 

flux at a maximum in the center where the point source is located with a sharp drop-off 

moving away from the center, which generally agrees with our intuition. 

 

 
(a)                                                            (b) 

Fig. 13. Scalar flux surface plots for forward test problem 2 showing 
(a) PARTISN and (b) forward code results. 

 

Fig. 14 shows the scalar flux in the x-direction for  and . The PARTISN 

results are slightly higher than the forward model code just beyond the center peak, but 

the two codes generally agree well throughout the rest of the domain. Fig. 15 shows the 

same data on a semi-log plot. 
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Fig. 14. 1-D scalar flux plot for forward test problem 2. 

 

 

Fig. 15. 1-D scalar flux plot for forward test problem 2 on a semi-log plot. 
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IV.D. Test Problem 3 

 
In the remaining forward test problems, the surface plots were omitted because of the 

similarity to Fig. 13. Test problem 3 was a point source within a highly scattering 

medium. The cross sections and scattering ratio used are given in Table 2. Here, the 

scattering ratio was increased from 0.876 for the case of average cross sections to 0.986 

in this case. The total cross section was also increased by approximately an order of 

magnitude.  

 

Table 2. Forward Test Problem 3 Material Properties. 

σs 1.884 cm-1 

σt 1.910 cm-1 

c 0.986 

 

Fig. 16 shows the scalar flux in the x-direction for  and . Again, the data is 

shown on a semi-log plot in Fig. 17. As in test problem 2, there is a distinctive peak in 

the center of the plot where the source is located. Also, the PARTISN results are higher 

near the peak but fit well with the forward code results away from the center of the plot. 

Finally, even with a significantly larger total cross section compared to test problem 2, 

we can see that the width of the peak is still larger in Fig. 16 than in Fig. 14 due to an 

increased scattering ratio.  
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Fig. 16. 1-D scalar flux plot for forward test problem 3. 

 

 

Fig. 17. 1-D scalar flux plot for forward test problem 3 on a semi-log plot. 
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IV.E. Test Problem 4  

 

Forward test problem 4 was a point source in a strongly absorbing medium. The cross 

sections used are given in Table 3. In this case, the scattering ratio was 0.300.  

 

Table 3. Forward Test Problem 4 Material Properties. 

σs 0.666 cm-1 

σt 2.221 cm-1 

c 0.300 

 

Fig. 18 shows the scalar flux in the x-direction for  and . As expected, the 

peak is narrower than in the other test cases due to a relatively high absorption cross 

section. With what is shown in Fig. 18, PARTISN and the forward code appear to have 

excellent agreement. However, this is only because the results are difficult to visualize 

on a linear scale. When viewed on a semi-log scale (as shown in Fig. 19), it is clear that 

the scalar flux calculated using PARTISN does not decrease exponentially with distance 

from the source as is expected for a strongly absorbing medium. This is because one of 

the default settings in PARTISN is to solve the transport equation using diffusion 

synthetic acceleration (DSA), which can degrade in performance for extreme cases of 

non-diffuse problems such as test problem 4. The problem was run a second time using 

PARTISN but with DSA turned off. The results are shown on a semi-log scale in Fig. 

19. The non-accelerated PARTISN solution shown in green matches the exponential fall 

off of the forward code closely. The DSA solution is shown in blue. 
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Fig. 18. 1-D scalar flux plot for forward test problem 4. 

 
 

 

Fig. 19. 1-D scalar flux plot for forward test problem 4 showing PARTISN 
results using both DSA and no acceleration. 
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IV.F. Test Problem 5 

 

The final forward test case is a point source in a near-vacuum medium. The cross 

sections are given in Table 4. In this case, the total cross section is three orders of 

magnitude small than in the average case (test problems 1 and 2).  

 

Table 4. Forward Test Problem 5 Material Properties. 

σs 7.50E-05 cm-1 

σt 8.57E-05 cm-1 

c 0.875 

 

The results are shown in Fig. 20. As seen in the plot, there seems to be good agreement 

between the PARTISN and forward code results; however, examination of the results on 

a semi-log plot shows otherwise. Again, we ran the problem in PARTISN with DSA 

turned off, yielding the additional curve in Fig. 21. The PARTISN solution approaches 

zero faster than the forward code, but overall, the two codes match very well when 

PARTISN is run without acceleration. 
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Fig. 20. 1-D scalar flux plot for forward test problem 5. 

 

 

Fig. 21. 1-D scalar flux plot for forward test problem 5 showing PARTISN 
results using both DSA and no acceleration. 
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IV.G. Summary of Forward Model Verification 

 

In this chapter, the 3-D forward transport code was verified using PARTISN as well as 

analytical results where appropriate. Five test problems were run using both codes. The 

problems were chosen to test the forward code under a wide variety of source and 

material property configurations.  

 

In test problem 1, it was shown that the magnitude of the scalar flux calculation was 

reasonably close to the magnitude calculated with PARTISN and the homogeneous, 

distributed source problem was cosine-shaped, as expected. The forward code results for 

test problems 2-5 displayed good agreement with PARTISN for average, highly 

scattering, near vacuum, and especially strongly absorbing cross sections. Because of the 

overall concordance between the two codes, it can be concluded that the forward code is 

functioning correctly. 

  



 58 

CHAPTER V  

INVERSE CODE RESULTS 

 

V.A. Model Parameters 

 

The model setup for the inverse code included creating both the geometry and cross 

section sets for a border crossing. Instead of starting with a Cartesian mesh and assigning 

cross sections to each cell, the geometry was first modeled using MCNPX. MCNPX is a 

general Monte Carlo radiation transport code developed at Los Alamos National 

Laboratory.43 To test the inverse code, a baseline model was created to approximate a 

typical border crossing. A sample MCNPX input deck is given in Appendix C. We 

tested the code on the baseline model and then made perturbations to the baseline model 

to analyze the sensitivity of the code to parameters with uncertainty such as the optical 

thickness of the vehicles and the detection efficiency of the portal monitors.  

 

The baseline model consisted of three lanes of traffic, three vehicles deep, for a total of 

nine vehicles. Each lane has one portal monitor. A 3-D rendering of the MCNPX model 

is shown in Fig. 22. Each vehicle was divided into four compartments: the engine block, 

the passenger cabin, the windows, and the trunk. This is shown in Fig. 23. The gasoline 

tank in the vehicle was located at the bottom of the trunk. The vehicle shown has 16-

gallons of gasoline and rubber tires. A list of materials is given in Table 5. 
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Fig. 22. 3-D rending of the MCNPX baseline scenario. 

 

 

Fig. 23. MCNPX model of a vehicle (side view). 
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Table 5. Vehicle Materials and Macroscopic Cross Sections. 

Material Density [g/cm
3
] 

Total Cross 

Section [cm
-1

] 

Scattering Cross 

Section [cm
-1

] 

Stainless Steel 1.98E+00 3.024E-01 2.495E-01 

Carbon Steel 7.84E+00 1.121E+00 2.521E-01 

Polyurethane Foam 1.00E-02 1.340E-02 1.319E-02 

Gasoline 7.00E-01 2.245E+00 2.239E+00 

Glass 2.52E+00 2.924E-01 2.830E-01 

Rubber 1.50E+00 2.518E+00 2.485E+00 

Dry Air 1.20E-03 5.009E-04 4.350E-04 

 

The portal monitors are based on the Yantar-1A systems. They contain 3He tubes 

embedded in polyethylene for neutron counting and a plastic scintillator for gamma-ray 

counting. The entire system is enclosed in a thin aluminum case. The MCNPX model is 

displayed in Fig. 24, which shows the top and side views of a portal monitor. A list of 

materials is given in Table 6.  
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Fig. 24. MCNPX model of a radiation portal monitor (top and side views). 

 

Table 5 and 6 also show the one-group cross sections used in the deterministic code. The 

one-group cross sections for each material were calculated using the Maxwellian 

averaged cross sections at 0.0235 eV from the Table of Nuclides.44  
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Table 6. Portal Monitor Materials and Macroscopic Cross Sections. 

Material Density [g/cm
3
] 

Total Cross 

Section [cm
-1

] 

Scattering Cross 

Section [cm
-1

] 

Helium-3 5.00E-04 4.735E-01 3.130E-04 

Plastic Scintillator 1.03E+00 6.832E+00 6.731E+00 

Polyethylene 9.60E-01 1.910E+00 1.884E+00 

Stainless Steel 1.98E+00 3.024E-01 2.495E-01 

Dry Air 1.20E-03 5.009E-04 4.350E-04 

 

We used the MCNPX-generated geometries of the vehicles and portal monitors to create 

a mesh for the deterministic code. The cross sections were volume averaged to match the 

MCNPX model as closely as possible. One of the considerations when creating the mesh 

was the trade-off between the fineness of the mesh and computational time. A finer mesh 

gives more accurate results, but the code also takes more time to execute. To get an idea 

of the appropriate size mesh for the time constraints of the border crossing problem, 

several homogeneous problems were run. For each problem, a different sized grid was 

used. Table 7 shows the number of cells and the execution time for each problem. The 

execution time refers to the time for the transport solver to converge. The results are also 

plotted in Fig. 25. As seen on the plot, the execution time increases linearly with the 

number of cells.  
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Table 7. Execution Times for Homogeneous Problems. 

Cells 

[x-dir] 

Cells 

[y-dir] 

Cells 

[z-dir] 

Total 

Cells 

Time 

 [sec] 

35 35 35 42,875 203.17 

30 30 30 27,000 123.84 

25 25 25 15,625 68.55 

20 20 20 8,000 27.86 

15 15 15 3,375 8.09 

10 10 10 1,000 1.45 

 

 

 

Fig. 25. Execution time for homogeneous problems as a function of the number of cells. 
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before the source position is identified, the execution time needs to be on the order of 

seconds, not minutes. We want the execution time to be less than 30 seconds. 

 

Using the results from the homogeneous problems as a guide to approximate execution 

times, we created four meshes for the baseline scenario with the number of cells ranging 

from approximately 4,000 cells to 50,000 cells. The execution times are given in Table 8 

and plotted in Fig. 26. Again, the execution time increases linearly with the number of 

cells. These execution times are longer than the times in the heterogeneous cases 

discussed later. The 64×31×4-cell mesh was chosen for the baseline test cases because it 

represents an appropriate balance between accuracy and computational time. 

 

Table 8. Execution Times for the Baseline Scenario. 

Cells 

[x-dir] 

Cells 

[y-dir] 

Cells 

[z-dir] 

Total 

Cells 

Time 

 [sec] 

64 64 12 49,152 116.78 

32 64 12 24,576 66.17 

64 31 4 7,936 13.69 

32 31 4 3,968 7.75 
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Fig. 26. Execution time for the baseline scenario as a function of the number of cells. 
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indicates the lane and the second number indicates the row. The vehicles in the row 

closest to the portal monitors make up row one.  

 

 

Fig. 27. Vehicle numbering scheme. 

 

We focused on two factors in the baseline test: (1) the source position and (2) the 

convergence tolerance. With the first factor, we tested the code with the source located 
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a total of 45 different locations. The five locations tested were the center, left, and right 
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between the actual source position and the source position predicted by the inverse 

model. 
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Table 9. Baseline Scenario Test Results of Varying Source Positions within each Vehicle. 

Compartment Vehicle Correct Vehicle? Distance from  
Source [cm] 

Engine 

(1,1) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 

141.51 
108.17 
108.17 
120.93 
30.00 
30.00 
33.54 
0.00 

68.74 

Passenger Cabin 
 

Center 

(1,1) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

0.00 
0.00 
0.00 

30.00 
30.00 
30.00 
0.00 

60.00 
33.54 

Passenger Cabin 
 

Right Side 

(1,1) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

0.00 
0.00 
0.00 

15.00 
0.00 

30.00 
30.00 
30.00 
42.43 

Passenger Cabin 
 

Left Side 

(1,1) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

0.00 
0.00 

84.85 
68.74 
0.00 

30.00 
214.77 
30.00 
73.48 

Trunk 

(1,1) 
(2,1) 
(3,1) 
(1,2) 
(2,2) 
(3,2) 
(1,3) 
(2,3) 
(3,3) 

Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 
Yes 

0.00 
0.00 
0.00 
0.00 

189.74 
90.00 
68.74 
30.00 
30.00 
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In all but two cases, the code converged to the correct vehicle for a success rate of 96%. 

In the case of vehicle (1,2) with the source located in the engine compartment, the code 

predicted the source was located in vehicle (1,1). This is a reasonable error considering 

the engine compartment is located at the front of vehicle (1,2). In the case of the vehicle 

(2,2) with the source located in the trunk, again, the error is reasonable because the 

estimated source position was the vehicle directly behind (2,2). 

 

The average distance from the expected to the actual source for this test was 41.83 cm. If 

the engine compartment, which is an unlikely place for a source to be located, is omitted 

from the results, the average distance drops to 31.03 cm. This test shows that the 

algorithm performs very well when the geometry, cross sections, and detector 

efficiencies are known with absolute certainty.  

 

In the source position test, the total convergence tolerance for the objective function was 

set to 0.5, which represents the sum of the errors for all of the detectors. A tighter 

convergence would likely have resulted in a 100% success rate, but the computational 

time would also likely be prohibitively expensive.  

 

In the next baseline test case, the convergence tolerance was perturbed to assess the 

effect on the code’s ability to identify the correct vehicle. In this test, the same 45 source 

locations were run for tolerances ranging from 0.5 to 2.5 in increments of 0.5.  
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A graphical representation of the results is shown in Fig. 28 through Fig. 36. Each figure 

represents the results for one vehicle. In other words, Fig. 28 shows the estimated source 

locations when the actual source location was in vehicle (1,1). This includes test cases of 

all five locations within vehicle (1,1) for the entire range of tolerances (i.e., 25 test cases 

on each plot—five locations per vehicle including the center, left, and right side of the 

passenger cabin; the engine block; and the trunk for five different tolerance values).  

 

In each figure, the upper plot is an overhead map of the three lanes of vehicles. It 

provides a clear view of where code estimated the source to be for a series of test cases 

on a single vehicle. The estimated locations are shaded. The lower plot is a rotated view 

of the three lanes of traffic. The vehicles and portal monitors appear as gray boxes. The 

frequency of each solution is superimposed on top of the vehicles. It shows how often a 

given location was the expected source location for the vehicle under consideration. The 

combination of these plots provides an overall picture of how the source location 

algorithm performs for a variety of locations within each vehicle and for different 

convergence tolerance values. 
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Fig. 28. Source position and convergence tolerance baseline test for vehicle (1,1). 
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Fig. 29. Source position and convergence tolerance baseline test for vehicle (2,1). 
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Fig. 30. Source position and convergence tolerance baseline test for vehicle (3,1). 
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Fig. 31. Source position and convergence tolerance baseline test for vehicle (1,2). 
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Fig. 32. Source position and convergence tolerance baseline test for vehicle (2,2). 
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Fig. 33. Source position and convergence tolerance baseline test for vehicle (3,2). 
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Fig. 34. Source position and convergence tolerance baseline test for vehicle (1,3). 
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Fig. 35. Source position and convergence tolerance baseline test for vehicle (2,3). 
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Fig. 36. Source position and convergence tolerance baseline test for vehicle (3,3). 
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The first feature to notice about the plots is that the results of the vehicles located in the 

first row, closest to the portal monitors, all converged to the correct vehicle. Based solely 

on the relative distances from the vehicles to the portal monitors, the first-row vehicles 

should be the easiest cases for the code to identify correctly as containing the source.  

 

The code performed the worst when the source was located in a second-row vehicle. In 

principle, third-row vehicles should be the most difficult to identify correctly, but the 

fact that the system boundary is behind the third row in the baseline case contained the 

spread of solutions that was seen in the second-row vehicles. The spread was largest for 

vehicle (2,2), which had adjacent vehicles in all directions. 

 

A final note on Fig. 28 through Fig. 36 concerns the lack of symmetry in the results. 

While it would be logical to think that, for instance, vehicles (1,1) and (3,1) should have 

results that mirror each other from symmetry, this is not the case. The reason has to do 

with the mesh used in the deterministic transport solver. The vehicles have an even 

number of cells in the x-direction, so when the source is said to be located on the 

centerline of the vehicle (engine, center of the passenger cabin, or the trunk), it is 

actually shifted slightly to one side or the other. The source locations at the left and right 

sides of the passenger cabin are similarly shifted. The result of this is an asymmetry in 

the results. 

 



 80 

Fig. 37 shows the average distance from the predicted source position to the true source 

position versus convergence tolerance. The data in Fig. 37 shows the overall average 

distance as well as the distances broken down into the specific locations inside each 

vehicle (center, left, and right sides of the passenger cabin; engine; and trunk). In 

general, we see that the distance increases with increasing tolerance (especially above a 

tolerance of 1.0); however, the results vary drastically by starting location. 

 

 

Fig. 37. Summary of source position and convergence tolerance baseline tests. 
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Fig. 37 generally shows that the results are well behaved, meaning there is no 

exponential functionality or other drastic increase, which would be cause for concern. 

Also, there is a clear distinction in the results for different locations within each vehicle. 

When the actual source location is in the center of the passenger cabin, the code 

performs very well, even when the convergence tolerance is increased. This is because 

the initial guess algorithm starts the forward model at the center of the most likely 

vehicle. When the actual source location is in the trunk, the code performs better than 

average, while the left, right, and engine locations perform worse than average for large 

tolerance values. 

 

The plot also shows that the error remains relatively small for tolerances of 0.5 and 1.0, 

jumps up, and then saturates at a tolerance of about 1.5. Because of the jump in error 

between tolerances of 1.0 and 1.5, we can conclude that the total tolerance should not 

exceed 1.0 for optimal results. 

 

V.C. Sensitivity Analysis 

 

In the baseline test cases, we assumed perfect knowledge of the geometry, cross 

sections, and detector efficiencies; however, in a real-world application, there may, in 

fact, be large uncertainties in some or all of these parameters. A sensitivity analysis was 

performed to explore the effects of these uncertainties. This can provide a quantitative 

means of understanding which parameters are the most important. The parameters we 



 82 

investigated are (1) the optical thickness of the vehicles, (2) the fill level in the gas tank, 

(3) the physical size of the vehicles, and (4) the detector efficiencies. In the following 

test cases, the code was tested with the actual source located in the center of the 

passenger cabin and in the trunk of each vehicle with different combinations of 

perturbed values. 

 

V.C.1. Optical Thickness 

 

In the optical thickness suite of tests, the total and scattering cross sections that make up 

the vehicles used to obtain the actual measurements were increased or decreased in 

order-of-magnitude steps from 0.001 to 1,000 times the baseline cross sections. In other 

words, the ratio of optical thicknesses in the perturbed cases to the baseline case ranged 

from 0.001 to 1,000. This large range is not inconsistent with a real scenario where, 

based on the values in Table 5, the total cross sections of common vehicle materials span 

four orders of magnitude. The cross sections of the air space and detectors were not 

perturbed. 

 

We tested three different distributions of perturbed vehicles, shown by the blue shaded 

vehicles in Fig. 38. In the first distribution, all of the vehicles are perturbed. In the 

second and third distributions, the perturbed vehicles are in opposite checkerboard 

patterns. Plots of the results for each vehicle are given in Appendix A. Each figure 

shows the results for the actual source located in the center of the passenger cabin and 
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the trunk for all three distributions over the range of perturbed values (optical 

thicknesses) for a given vehicle. 

 

 

 

 

 

 

Fig. 38. Three distributions of perturbed vehicles for the sensitivity analysis.  

 

In these sensitivity analysis test cases, the feature we are looking at on the frequency 

plots is the spread of the results. The more spread in the results, the more sensitive the 

code is to that particular parameter. In this case, the plots show that the code is very 

sensitive to the optical thickness of the vehicles. There is significant spread in the first- 

and third-row vehicles, and the results of the second-row vehicles are all over the map, 

especially vehicle (2,2).  

 

Fig. 39 shows the average distance between the predicted source position and the true 

source position versus the ratio of optical thicknesses. The summary plot shows what 

happened to the error (i.e., the distance between the true and predicted source positions) 

as a function of the optical thickness of the vehicles. There are three curves on the plot 

showing the overall average error as well as the error broken down by whether the true 

source position was located in the passenger cabin or the trunk. 
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Fig. 39. Summary of optical thickness sensitivity analysis results showing the average distance between 
the true and predicted source as a function of the ratio of optical thickness in the perturbed case to the 

baseline case. 

 

The results behave in a predictable manner, with the error increasing with the change in 

optical thickness. The error plateaus in both directions once the optical thickness reaches 

a two-order-of magnitude change. At those points, the vehicles essentially become 

invisible or totally opaque to the radiation and further increasing or decreasing the 

optical thickness ceases to affect the results. 

 

0

50

100

150

200

250

300

350

0.001 0.01 0.1 1 10 100 1000

A
vg

 D
is

ta
n

ce
 f

ro
m

 S
o

u
rc

e 
[c

m
]

Ratio

Average

Center

Trunk



 85 

V.C.2. Gas Tank Fill Level 

 

The second parameter investigated in the sensitivity analysis was the fill level in the gas 

tank. Gasoline has a high scattering ratio for neutrons and thus has the potential to shift 

the results. The gas tank is located at the bottom of the trunk in the vehicle modeled. In 

the baseline case, the gas tank contains 16 gallons of gasoline. This test examines how 

the code performs over a range of fill levels—from an almost empty (0.16 gallons) gas 

tank to the entire trunk being filled with gasoline with two intermediate fill levels. As 

with the optical thickness test, three distributions of perturbed vehicles were used (Fig. 

38) to obtain the actual measurements. The baseline cross sections were used in the 

inverse code to locate the source. Two source positions were tested for each vehicle: the 

center of the passenger cabin and the trunk. The results for each vehicle are given in 

Appendix A. 

 

Recall that we are looking for the spread of the results in the sensitivity analysis. In this 

case of the gas tank fill level, the spread is very minimal. The first row vehicles were not 

affected at all by the change. There was some minor spread in the second- and third-row 

vehicles, with only the case of vehicle (2,2) being identified incorrectly.  

 

The summary of the gas tank fill level results is given in Fig. 40. The figure shows the 

average distance between the true and predicted source position as a function of the ratio 

of perturbed gas tank fill level to the baseline fill level. There are three curves on the plot 
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showing the overall average error as well as the error broken down by whether the true 

position was in the passenger cabin or the trunk.   

 

 

Fig. 40. Summary of gas tank fill level sensitivity analysis results showing the average distance between 
the true and predicted source as a function of the ratio of gas tank fill levels in the perturbed case to the 

baseline case. 

 

As evident on the plot, when the source was located in the center of the passenger cabin, 

the results were not affected. This is a rational result considering the gas tank is located 

in the trunk of the vehicle. While there would certainly have been a change in the 
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amount of neutrons scattered from a source located in the passenger cabin by the change 

in the gas tank fill level, that change was not enough to change the expected source 

position. 

 

The summary plot shows an unexpected result in that the average error decreases from 

the unperturbed value, except for the extreme case of the entire trunk being full of 

gasoline. However, if the magnitude of the change in error is compared to that of the 

optical thickness case, it seems the effect of the gas tank fill level is all in the noise. Over 

the range of values investigated for the optical thickness of the vehicles, the average 

error changed by over 200 cm and over 250 cm if only the trunk is considered. The 

change in error due to the gas tank fill level spans less than 20 cm. The relative effect of 

each of these parameters is not surprising considering the optical thickness is a wide-area 

change and the gas tank fill level is much more localized.  

 

V.C.3. Physical Size 

 

The third sensitivity parameter we examined was the physical size of the vehicles. For 

this test, the volume of the vehicles was perturbed by ±22%. The size was only changed 

in the x- and y- directions. The results for each vehicle are given in Appendix A. 

 

As with the optical thickness and gas tank fill level tests, three distributions were tested 

with the source located in the center of the passenger cabin and the trunk of each vehicle. 
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The physical size of the vehicles affects the results by opening or closing streaming 

lanes for the neutrons from the source location to the portal monitors. The frequency 

maps show an intermediate level of spread in the results. The summary plot in Fig. 41 

shows the average distance between the true and predicted source position as a function 

of the percent change in the physical size of the vehicles. There are three curves 

representing the overall error and the error associated with a true source position in 

either the passenger cabin or the trunk. The plot shows a range of approximately 30 cm 

in the error due to the change in volume of the vehicles, which is consistent with the 

frequency plots. 

 

A final observation about the results of the physical size sensitivity analysis concerns the 

shape of the error shown in Fig. 41. The center and trunk curves have almost identical 

shapes, with the magnitude difference likely stemming from the initial guess algorithm. 

While a wider range of size differences are needed to say conclusively, this suggests that 

the physical size of the vehicles affects both source locations in the same way. 
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Fig. 41. Summary of physical size sensitivity analysis results showing the average distance between the 
true and predicted source as a function of the change in physical size of the vehicles. 

 

V.C.4. Detector Efficiency  

 

The final parameter studied in the sensitivity analysis was the detector efficiency. The 

previous cases have examined changes in the vehicles in three different distributions. For 

this case, the baseline cross sections were used, but three distributions of detector 

efficiencies were analyzed. In the first distribution, the portal monitors in lanes one and 

three (i.e., the outside lanes) were perturbed. In the second distribution, only the portal 
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monitor in lane two was perturbed, and in the third distribution, lanes one and two were 

perturbed. None of the test cases perturbed the portal monitors in all three lanes because 

the objective function only compares the relative difference in the measurements, which 

would not be affected if all of the measurements were perturbed by the same amount. 

The efficiency perturbations ranged from -50% to 50% in increments of 25%. 

 

As in the previous sensitivity tests, the source positions in the center of the passenger 

cabin and in the trunk were tested for each vehicle for the three distributions of detector 

efficiencies. The results for each vehicle are given in Appendix A. 

 

The results of the test cases showed a fairly wide spread of estimated source positions, 

suggesting that detector efficiency is one of the more dominant sensitivity parameters. 

While there was not as much spread as seen in the optical thickness case, it was a 

significant amount, especially in the second- and third-row vehicles. This test case has 

more singular outliers (as seen in vehicles (1,2) and (3,2)) than in the gas tank fill level 

and physical size tests. In those cases, there was more clustering between preferred 

locations within one or two vehicles.  

 

Fig. 42 shows the summary plot. The average distance between the true and predicted 

source positions is plotted as a function of the change in detector efficiency. The three 

curves correspond to the overall error, the error resulting when the true source position is 
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in the passenger cabin of the vehicle, and the error resulting when the true source 

position is in the trunk. 

 

 

Fig. 42. Summary of detector efficiency sensitivity analysis results showing the average distance between 
the true and predicted source as a function of the change in detector efficiency. 

 

The error increases as the change in efficiency grows. The average change spans slightly 

less than 80 cm, making the efficiency parameter second to only the optical thickness of 

the vehicles in the error it induces. As with the physical size case, the shape of the curves 
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for the center and trunk cases is nearly identical, meaning the detector efficiency affects 

both positions equally. 

 

V.C.5. Summary of Results 

 

A summary of the results for each vehicle is given in Fig. 43 through Fig. 51. Each 

figure shows the predicted source locations when the true source location is in a given 

vehicle. These plots combine the baseline test cases that looked at five different 

locations within each vehicle for a range of tolerance values as well as the test cases in 

the sensitivity analysis for the optical thickness of the vehicles, the gas tank fill level, the 

physical size of the vehicles, and the detector efficiencies. The upper plot in each figure 

shows an overhead map of the three lanes of traffic. The shaded areas represent the 

predicted source locations. The lower plot is a tilted view of the three lanes 

superimposed with the frequency with which each position was predicted.    

 

Each of the plots contains 145 data points for a total of 1,305 test cases for all nine 

vehicles. Although there is spread in the results and the wrong vehicle was identified in 

some cases, the frequency plots show that, overwhelmingly, the correct vehicle was 

identified as possessing the source. There is always a chance that the code will chose the 

wrong vehicle as containing the source, but the overall success rate was 84.4%. Because 

the probablilty that an adversary will be caught is so high, this technology can serve as a 

deterent against smuggling as well as a means to detect it. 
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Fig. 43. Summary of results for vehicle (1,1). 
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Fig. 44. Summary of results for vehicle (2,1). 

 



 95 

 

Fig. 45. Summary of results for vehicle (3,1). 
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Fig. 46. Summary of results for vehicle (1,2). 
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Fig. 47. Summary of results for vehicle (2,2). 
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Fig. 48. Summary of results for vehicle (3,2). 
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Fig. 49. Summary of results for vehicle (1,3). 
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Fig. 50. Summary of results for vehicle (2,3). 
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Fig. 51. Summary of results for vehicle (3,3). 
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V.D. Assessment of the One-Energy-Group Assumption 

 

Recall from the problem setup in Chapter II that we used several simplifying 

assumptions in the transport equation including the assumption of only one energy 

group. The MCNPX baseline model shown in Fig. 22 was used to assess the validity of 

this assumption. MCNPX is a continuous-energy code, and the portal monitor 

measurements calculated by MCNPX are as close to experimental values as was possible 

for this project.  

 

Measurements from the MCNPX baseline case were obtained by modeling a point 

source in the center of the passenger cabin of each vehicle. Two different energy spectra 

were modeled for each location: a 252Cf spontaneous fission source and a 100 keV 

mono-energetic source. A total of nine simulations were run. There was one for the 

source located in each vehicle for two different neutron energy spectra. Reaction rate 

tallies (i.e, F4 tallies) for each portal monitor were used to calculate the detector signals. 

These measurements were then used as input in the inverse source location algorithm.  

 

The results showed that the one-group assumption is probably inadequate for real-world 

applications. For the case of the 252Cf source, the correct vehicle was only identified 

three out of nine times with an average error of 304.10 cm. Using the measurements 

from the mono-energetic source test, the correct vehicle was identified four out of nine 

times with an average error of 230.21 cm. A comparison to the code’s performance 



 103 

using measurements obtained from the forward model is given in Table 10. One thing to 

note is that the forward and inverse models are self consistent. The same grid spacing 

and cross sections were used to obtain the measurements as were used to solve the 

inverse problem. 

 

Table 10. Comparison of Continuous-Energy and One-Group Test Case Results. 

Measurement Origin 
Correct Vehicle ID’ed / 

Total Test Cases 

Average Distance from 

Source [cm] 

MCNPX, 252Cf Source 3 / 9 304.10 

MCNPX,  
Mono-Energetic Source 4 / 9 230.21 

Forward Model 9 / 9 30.00 

 

The results in Table 10 were obtained from test cases using the same source locations 

and a total convergence tolerance of 1.0. The inverse source location code performed 

slightly better with the 100 keV mono-energetic source, but there is not enough data to 

say this conclusively. It is, however, clear from the inability of the code to reliably 

identify the correct vehicle and the large average error in the results that more energy 

groups should be added for any real-world application of the code. We have shown that 

one-group simulations work in identifying the correct vehicle in most cases. There is 

nothing special about the group we chose, so because the Law of Superposition applies, 

the algorithm should work for multiple groups. It is more a question of how long the 

code will take to run. Again, computational time and accuracy will need to be optimized, 

but an upgrade to two or three groups is unlikely to make a major difference in 
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computational time and is likely justified by increased accuracy. If the increase in 

computational time from running a multi-group transport solver is too large, it can also 

be balanced by running on a coarser grid. 
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CHAPTER VI  

CONCLUSIONS AND RECOMMENDATIONS 

 

VI.A. Summary of Results  

 

In this work, we have demonstrated an algorithm to locate a radioactive source using a 

distributed array of detectors. The algorithm was specified for use with radiation portal 

monitors at land border crossings, where delays caused by radiation detectors can have 

major economic implications. In the algorithm, we derived a mathematical technique 

based on radiation transport theory to reconstruct information about the location of a 

source within a field of vehicles. 

 

The algorithm uses forward and adjoint transport calculations in an optimization 

problem posed to minimize an objective function. The objective function describes the 

least-squares difference between the actual and estimated detector measurements and is 

minimized using the steepest-descent method. The gradient used in the steepest-descent 

method is calculated using the adjoint flux in the estimated source location. The 

algorithm iterates between the forward and inverse models until the source location is 

identified. The forward model consists entirely of a forward transport solver; whereas, 

the inverse model includes the adjoint transport solver, gradient calculation, and line 

search algorithm. 
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To verify that the forward solver performed as expected, a series of test problems were 

executed with a 3-D transport solver and compared to results for the same problems run 

using PARTISN. Five test cases were chosen to test the code under a variety of 

conditions: (1) a distributed source with average cross sections, (2) a point source with 

average cross sections, (3) a point source in a highly scattering medium, (4) a point 

source in a strongly absorbing medium, and (5) a point source in a near vacuum. The test 

problems showed that, with reasonable certainty, the forward transport code produced 

good results. 

 

To test the inverse code, we first developed a baseline scenario to represent a typical 

land border crossing. The baseline scenario consisted of three lanes of traffic, three 

vehicles deep, with a radiation portal monitor in each lane. A series of tests were run to 

assess the performance of the code under different conditions. These included the 

following: the position of the source within a given vehicle, convergence tolerance, 

optical thickness of the vehicles, fill level in the gas tank, physical size of the vehicles, 

detector efficiency, and measurements obtained using MCNPX (a continuous-energy 

code). 

 

Using the baseline cross sections and geometry, the code was tested with the source in 

five different locations within each vehicle (the center, left, and right side of the 

passenger cabin; the engine; and the trunk). The inverse code performed extremely well 

with a success rate for identifying the correct vehicle of 96%.  
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Because there is a need to balance the computational time with accuracy, the 

convergence tolerance was also assessed. It was found that the average error increases 

with increasing tolerance, and a tolerance value of 1.0 represents the optimal 

compromise between time and accuracy. 

 

In the baseline case, we assumed perfect knowledge of the geometry and cross sections. 

To assess the effect of uncertainties in various parameters, we performed a sensitivity 

analysis. Our analysis revealed that, in order of most to least impact, the code is sensitive 

to the optical thickness of the vehicles, the detector efficiency, the physical size of the 

vehicles, and the fill level in the gas tank.  

 

Finally, we assessed the validity of the one-energy-group assumption to a real-world 

scenario. To do this, we modeled the baseline scenario using MCNPX to obtain the 

portal monitor measurements. The code did not perform well with these measurements, 

suggesting the one-energy-group assumption will not be valid for a real-world border 

scenario. 

 

VI.B. Recommendations for Future Work 

 

Within the defined scope of this project, the algorithm performed very well; however, a 

few fundamental improvements can be made to the code in future work: 
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1. Upgrade the code from one-energy group to multi-energy groups. The MCNPX 

comparison made it clear that the code will need to include more than just one 

energy group before it is deployed in a real-world situation. As seen throughout 

this project, the computational time and the accuracy of the code need to be 

optimized. It is expected that the addition of one to two energy groups should be 

enough to improve the accuracy of the code without seriously affecting the 

computational time. If the computational time associated with the addition of 

more energy groups is too large, then it can be balanced by running the transport 

solver on a coarser grid. 

2. Develop more accurate geometry and material properties for the system. For the 

purposes of this work, we considered a fairly rough 3-D approximation of a 

vehicle with Maxwellian-averaged cross sections. While this was sufficient for a 

proof-of-concept project, more accurate models should be developed for a real-

world application. 

3. Incorporate camera and image recognition technology into the algorithm. For this 

work, we assumed that the geometry and cross sections of the vehicles were 

known quantities. In practice, this will not be known a priori. Cameras are 

already deployed at border crossings, so once the portal monitors are alarmed, 

photographic images of the vehicles can be processed with image recognition 

software. This information can be used with pre-built cross section libraries to 

build the model parameters. This type of general image recognition technology 

currently exists in commercial, off-the-shelf form. 
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4. Incorporate the ability to handle multiple sources and distributed sources. For 

this code, we assumed that there was only one source present in the system, but it 

is possible that multiple sources may be present. We also assumed the source was 

a point source, but it is possible that a source could be distributed. These two 

assumptions constrain the solution, so removing them adds more degrees of 

freedom to the problem. In principle, the code can be expanded to handle 

multiple and/or distributed sources if deemed an important feature, although it 

will also increase the computational time and the likelihood of the code making 

an error.  

5. Benchmark the code with real measurements. While computational modeling can 

provide good predictions of how the code will perform in a real-world scenario, 

there is no better test than real measurements. For this work, real measurements 

were time and resource prohibitive, but the algorithm should be tested with real 

vehicles, portal monitors, and sources before it is used in a real-world scenario. 

6. Investigated the algorithm in additional contexts. We have only investigated the 

code for use at a land border crossing, but there is potential for the code to be 

used in any number of situations where there is a distributed array of detectors. 

Examples include international safeguards (e.g., for use in a large glovebox), 

emergency response scenarios, and covert intelligence gathering. The potential 

for the inverse source location algorithm to be used in these alternate applications 

should be explored in future work. 
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APPENDIX A  

INVERSE CODE PLOTS 
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Optical Thickness Results 

 

Fig. A.1. Optical thickness sensitivity analysis results for vehicle (1,1). 
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Fig. A.2. Optical thickness sensitivity analysis results for vehicle (2,1). 
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Fig. A.3. Optical thickness sensitivity analysis results for vehicle (3,1). 
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Fig. A.4. Optical thickness sensitivity analysis results for vehicle (1,2). 
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Fig. A.5. Optical thickness sensitivity analysis results for vehicle (2,2). 
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Fig. A.6. Optical thickness sensitivity analysis results for vehicle (3,2). 
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Fig. A.7. Optical thickness sensitivity analysis results for vehicle (1,3). 
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Fig. A.8. Optical thickness sensitivity analysis results for vehicle (2,3).  
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Fig. A.9. Optical thickness sensitivity analysis results for vehicle (3,3). 
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Gas Tank Fill Level Results 

 

Fig. A.10. Gas tank fill level sensitivity analysis results for vehicle (1,1). 
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Fig. A.11. Gas tank fill level sensitivity analysis results for vehicle (2,1). 
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Fig. A.12. Gas tank fill level sensitivity analysis results for vehicle (3,1). 
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Fig. A.13. Gas tank fill level sensitivity analysis results for vehicle (1,2). 
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Fig. A.14. Gas tank fill level sensitivity analysis results for vehicle (2,2). 
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Fig. A.15. Gas tank fill level sensitivity analysis results for vehicle (3,2). 
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Fig. A.16. Gas tank fill level sensitivity analysis results for vehicle (1,3). 
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Fig. A.17. Gas tank fill level sensitivity analysis results for vehicle (2,3). 
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Fig. A.18. Gas tank fill level sensitivity analysis results for vehicle (3,3). 
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Physical Size Results 

 

 

Fig. A.19. Physical size sensitivity analysis results for vehicle (1,1). 
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Fig. A.20. Physical size sensitivity analysis results for vehicle (2,1). 
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Fig. A.21. Physical size sensitivity analysis results for vehicle (3,1). 
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Fig. A.22. Physical size sensitivity analysis results for vehicle (1,2). 
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Fig. A.23. Physical size sensitivity analysis results for vehicle (2,2). 
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Fig. A.24. Physical size sensitivity analysis results for vehicle (3,2). 
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Fig. A.25. Physical size sensitivity analysis results for vehicle (1,3). 
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Fig. A.26. Physical size sensitivity analysis results for vehicle (2,3). 
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Fig. A.27. Physical size sensitivity analysis results for vehicle (3,3). 
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Detector Efficiency Results 

 

 

Fig. A.28. Detector efficiency sensitivity analysis results for vehicle (1,1). 
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Fig. A.29. Detector efficiency sensitivity analysis results for vehicle (2,1). 
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Fig. A.30. Detector efficiency sensitivity analysis results for vehicle (3,1). 
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Fig. A.31. Detector efficiency sensitivity analysis results for vehicle (1,2). 
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Fig. A.32. Detector efficiency sensitivity analysis results for vehicle (2,2). 
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Fig. A.33. Detector efficiency sensitivity analysis results for vehicle (3,2). 
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Fig. A.34. Detector efficiency sensitivity analysis results for vehicle (1,3). 
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Fig. A.35. Detector efficiency sensitivity analysis results for vehicle (2,3). 
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Fig. A.36. Detector efficiency sensitivity analysis results for vehicle (3,3). 
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APPENDIX B  

SAMPLE PARTISN INPUT DECK 

 

     1 

  Distributed Source Test Case 

/ 

/ block 1 

/ 

  igeom=x-y-z ngroup=1 isn=8 

  niso=1 mt=1 nzone=1 

  im=15 it=15 jm=15 jt=15 km=15 kt=15 

  T 

/ 

/ block 2 

/ 

  xmesh=0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 13.2 14.4 15.6 16.8 18.0 

  xints=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  ymesh=0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 13.2 14.4 15.6 16.8 18.0 

  yints=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  zmesh=0.0 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8 12.0 13.2 14.4 15.6 16.8 18.0 

  zints=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  zones=15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

        15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

              15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 15r1; 

  T 

/ 

/ block 3 



 152 

/ 

  lib=odninp 

  maxord=0 

  ihm=4 iht=3 ihs=4 

  ifido=2 

  T 

  0.167 0.0 0.833 0.666 / 

  T 

  0.167 0.0 0.833 0.666 / 

  T 

/ 

/ block 4 

/ 

  matls=isos 

  assign=matls 

  T 

/ 

/ block 5 

/ 

  ievt=0 

  ibl=0 ibr=0 ibt=0 ibb=0 ibfrnt=0 ibback=0 

  fluxp=1 kprint=8 xsectp=2 sourcp=3 

  sourcx=15r1 

  sourcy=15r1 

  sourcz=15r1 

  source=19.82 

  T 

/ 

/ block 6 

/ 

  pted=1 

  igrped=0 

  T 
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APPENDIX C  

SAMPLE MCNPX INPUT DECK 

 

 

Base Case for Border Crossing 

c 

c @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

c 

c Author: Karen Miller 

c 

c Date: 20 Aug 2009 

c 

c Description: Three lanes for vehicles - each containing a portal monitor - with three 

c              vehicles in each lane. 

c 

c @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

c 

c ---------------------------------------------------------------- 

c                             CELL CARDS 

c ---------------------------------------------------------------- 

c 

c ------------ LEFT PORTAL MONITOR 1 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

100   6    -2.7     1000 -1001       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

101   6    -2.7     -1002 1003       imp:n=1  $ aluminum tube 1 

102   6    -2.7     -1004 1005       imp:n=1  $ aluminum tube 2 

103   6    -2.7     -1006 1007       imp:n=1  $ aluminum tube 3 

104   6    -2.7     -1008 1009       imp:n=1  $ aluminum tube 4 

105   6    -2.7     -1010 1011       imp:n=1  $ aluminum tube 5 

106   6    -2.7     -1012 1013       imp:n=1  $ aluminum tube 6 

c 

107   1  -5.00E-04  -1003            imp:n=1  $ he-3 fill tube 1 

108   1  -5.00E-04  -1005            imp:n=1  $ he-3 fill tube 2 

109   1  -5.00E-04  -1007            imp:n=1  $ he-3 fill tube 3 

110   1  -5.00E-04  -1009            imp:n=1  $ he-3 fill tube 4 

111   1  -5.00E-04  -1011            imp:n=1  $ he-3 fill tube 5 

112   1  -5.00E-04  -1013            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

113   2    -0.96    -1014 1002 1004 1006 

                     1008 1010 1012        imp:n=1  $ he-3 tube bank 

114   2    -0.96    -1015                  imp:n=1  $ back panel 

115   2    -0.96    -1016                  imp:n=1  $ middle panel 

116   2    -0.96    -1017                  imp:n=1  $ front panel 

117   2    -0.96    -1018                  imp:n=1  $ left panel 

118   2    -0.96    -1019                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

119   3   -1.032    -1020                  imp:n=1  $ left scintillator 

120   3   -1.032    -1021                  imp:n=1  $ right scintillator 

121   4   -7.92     -1022                  imp:n=1  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

122  10  -1.204E-03  -1023                 imp:n=1  $ top air gap 
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123  10  -1.204E-03  -1024                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

124   4    -7.92     -1025                 imp:n=1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 1 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

200   6    -2.7     2000 -2001       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

201   6    -2.7     -2002 2003       imp:n=1  $ aluminum tube 1 

202   6    -2.7     -2004 2005       imp:n=1  $ aluminum tube 2 

203   6    -2.7     -2006 2007       imp:n=1  $ aluminum tube 3 

204   6    -2.7     -2008 2009       imp:n=1  $ aluminum tube 4 

205   6    -2.7     -2010 2011       imp:n=1  $ aluminum tube 5 

206   6    -2.7     -2012 2013       imp:n=1  $ aluminum tube 6 

c 

207   1  -5.00E-04  -2003            imp:n=1  $ he-3 fill tube 1 

208   1  -5.00E-04  -2005            imp:n=1  $ he-3 fill tube 2 

209   1  -5.00E-04  -2007            imp:n=1  $ he-3 fill tube 3 

210   1  -5.00E-04  -2009            imp:n=1  $ he-3 fill tube 4 

211   1  -5.00E-04  -2011            imp:n=1  $ he-3 fill tube 5 

212   1  -5.00E-04  -2013            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

213   2    -0.96    -2014 2002 2004 2006 

                     2008 2010 2012        imp:n=1  $ he-3 tube bank 

214   2    -0.96    -2015                  imp:n=1  $ back panel 

215   2    -0.96    -2016                  imp:n=1  $ middle panel 

216   2    -0.96    -2017                  imp:n=1  $ front panel 

217   2    -0.96    -2018                  imp:n=1  $ left panel 

218   2    -0.96    -2019                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

219   3   -1.032    -2020                  imp:n=1  $ left scintillator 

220   3   -1.032    -2021                  imp:n=1  $ right scintillator 

221   4   -7.92     -2022                  imp:n=1  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

222  10  -1.204E-03  -2023                 imp:n=1  $ top air gap 

223  10  -1.204E-03  -2024                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

224   4    -7.92     -2025                 imp:n=1  $ SS304 topper 

c 

c ------------ LEFT PORTAL MONITOR 2 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

125   6    -2.7     1100 -1101       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

126   6    -2.7     -1102 1103       imp:n=1  $ aluminum tube 1 

127   6    -2.7     -1104 1105       imp:n=1  $ aluminum tube 2 

128   6    -2.7     -1106 1107       imp:n=1  $ aluminum tube 3 

129   6    -2.7     -1108 1109       imp:n=1  $ aluminum tube 4 

130   6    -2.7     -1110 1111       imp:n=1  $ aluminum tube 5 

131   6    -2.7     -1112 1113       imp:n=1  $ aluminum tube 6 

c 
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132   1  -5.00E-04  -1103            imp:n=1  $ he-3 fill tube 1 

133   1  -5.00E-04  -1105            imp:n=1  $ he-3 fill tube 2 

134   1  -5.00E-04  -1107            imp:n=1  $ he-3 fill tube 3 

135   1  -5.00E-04  -1109            imp:n=1  $ he-3 fill tube 4 

136   1  -5.00E-04  -1111            imp:n=1  $ he-3 fill tube 5 

137   1  -5.00E-04  -1113            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

138   2    -0.96    -1114 1102 1104 1106 

                     1108 1110 1112        imp:n=1  $ he-3 tube bank 

139   2    -0.96    -1115                  imp:n=1  $ back panel 

140   2    -0.96    -1116                  imp:n=1  $ middle panel 

141   2    -0.96    -1117                  imp:n=1  $ front panel 

142   2    -0.96    -1118                  imp:n=1  $ left panel 

143   2    -0.96    -1119                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

144   3   -1.032    -1120                  imp:n=1  $ left scintillator 

145   3   -1.032    -1121                  imp:n=1  $ right scintillator 

146   4   -7.92     -1122                  imp:n=1  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

147  10  -1.204E-03  -1123                 imp:n=1  $ top air gap 

148  10  -1.204E-03  -1124                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

149   4    -7.92     -1125                 imp:n=1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 2 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

225   6    -2.7     2100 -2101       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

226   6    -2.7     -2102 2103       imp:n=1  $ aluminum tube 1 

227   6    -2.7     -2104 2105       imp:n=1  $ aluminum tube 2 

228   6    -2.7     -2106 2107       imp:n=1  $ aluminum tube 3 

229   6    -2.7     -2108 2109       imp:n=1  $ aluminum tube 4 

230   6    -2.7     -2110 2111       imp:n=1  $ aluminum tube 5 

231   6    -2.7     -2112 2113       imp:n=1  $ aluminum tube 6 

c 

232   1  -5.00E-04  -2103            imp:n=1  $ he-3 fill tube 1 

233   1  -5.00E-04  -2105            imp:n=1  $ he-3 fill tube 2 

234   1  -5.00E-04  -2107            imp:n=1  $ he-3 fill tube 3 

235   1  -5.00E-04  -2109            imp:n=1  $ he-3 fill tube 4 

236   1  -5.00E-04  -2111            imp:n=1  $ he-3 fill tube 5 

237   1  -5.00E-04  -2113            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

238   2    -0.96    -2114 2102 2104 2106 

                     2108 2110 2112        imp:n=1  $ he-3 tube bank 

239   2    -0.96    -2115                  imp:n=1  $ back panel 

240   2    -0.96    -2116                  imp:n=1  $ middle panel 

241   2    -0.96    -2117                  imp:n=1  $ front panel 

242   2    -0.96    -2118                  imp:n=1  $ left panel 

243   2    -0.96    -2119                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

244   3   -1.032    -2120                  imp:n=1  $ left scintillator 

245   3   -1.032    -2121                  imp:n=1  $ right scintillator 

246   4   -7.92     -2122                  imp:n=1  $ SS304 spacer 
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c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

247  10  -1.204E-03  -2123                 imp:n=1  $ top air gap 

248  10  -1.204E-03  -2124                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

249   4    -7.92     -2125                 imp:n=1  $ SS304 topper 

c 

c ------------ LEFT PORTAL MONITOR 3 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

150   6    -2.7     1200 -1201       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

151   6    -2.7     -1202 1203       imp:n=1  $ aluminum tube 1 

152   6    -2.7     -1204 1205       imp:n=1  $ aluminum tube 2 

153   6    -2.7     -1206 1207       imp:n=1  $ aluminum tube 3 

154   6    -2.7     -1208 1209       imp:n=1  $ aluminum tube 4 

155   6    -2.7     -1210 1211       imp:n=1  $ aluminum tube 5 

156   6    -2.7     -1212 1213       imp:n=1  $ aluminum tube 6 

c 

157   1  -5.00E-04  -1203            imp:n=1  $ he-3 fill tube 1 

158   1  -5.00E-04  -1205            imp:n=1  $ he-3 fill tube 2 

159   1  -5.00E-04  -1207            imp:n=1  $ he-3 fill tube 3 

160   1  -5.00E-04  -1209            imp:n=1  $ he-3 fill tube 4 

161   1  -5.00E-04  -1211            imp:n=1  $ he-3 fill tube 5 

162   1  -5.00E-04  -1213            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

163   2    -0.96    -1214 1202 1204 1206 

                     1208 1210 1212        imp:n=1  $ he-3 tube bank 

164   2    -0.96    -1215                  imp:n=1  $ back panel 

165   2    -0.96    -1216                  imp:n=1  $ middle panel 

166   2    -0.96    -1217                  imp:n=1  $ front panel 

167   2    -0.96    -1218                  imp:n=1  $ left panel 

168   2    -0.96    -1219                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

169   3   -1.032    -1220                  imp:n=1  $ left scintillator 

170   3   -1.032    -1221                  imp:n=1  $ right scintillator 

171   4   -7.92     -1222                  imp:n=1  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

172  10  -1.204E-03  -1223                 imp:n=1  $ top air gap 

173  10  -1.204E-03  -1224                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

174   4    -7.92     -1225                 imp:n=1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 3 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c    mat    den     surfaces         importance 

250   6    -2.7     2200 -2201       imp:n=1  $ aluminum case 

c 

c *** Helium-3 Tubes *** 

c 

c    mat    den     surfaces         importance 

251   6    -2.7     -2202 2203       imp:n=1  $ aluminum tube 1 

252   6    -2.7     -2204 2205       imp:n=1  $ aluminum tube 2 



 157 

253   6    -2.7     -2206 2207       imp:n=1  $ aluminum tube 3 

254   6    -2.7     -2208 2209       imp:n=1  $ aluminum tube 4 

255   6    -2.7     -2210 2211       imp:n=1  $ aluminum tube 5 

256   6    -2.7     -2212 2213       imp:n=1  $ aluminum tube 6 

c 

257   1  -5.00E-04  -2203            imp:n=1  $ he-3 fill tube 1 

258   1  -5.00E-04  -2205            imp:n=1  $ he-3 fill tube 2 

259   1  -5.00E-04  -2207            imp:n=1  $ he-3 fill tube 3 

260   1  -5.00E-04  -2209            imp:n=1  $ he-3 fill tube 4 

261   1  -5.00E-04  -2211            imp:n=1  $ he-3 fill tube 5 

262   1  -5.00E-04  -2213            imp:n=1  $ he-3 fill tube 6 

c 

c *** Polyethylene Moderator *** 

c 

c    mat    den     surfaces               importance 

263   2    -0.96    -2214 2202 2204 2206 

                     2208 2210 2212        imp:n=1  $ he-3 tube bank 

264   2    -0.96    -2215                  imp:n=1  $ back panel 

265   2    -0.96    -2216                  imp:n=1  $ middle panel 

266   2    -0.96    -2217                  imp:n=1  $ front panel 

267   2    -0.96    -2218                  imp:n=1  $ left panel 

268   2    -0.96    -2219                  imp:n=1  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c    mat    den     surfaces               importance 

269   3   -1.032    -2220                  imp:n=1  $ left scintillator 

270   3   -1.032    -2221                  imp:n=1  $ right scintillator 

271   4   -7.92     -2222                  imp:n=1  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c    mat    den      surfaces              importance 

272  10  -1.204E-03  -2223                 imp:n=1  $ top air gap 

273  10  -1.204E-03  -2224                 imp:n=1  $ bottom air gap 

c 

c *** SS304 Topper *** 

c 

c    mat    den      surfaces              importance 

274   4    -7.92     -2225                 imp:n=1  $ SS304 topper 

c 

c ------------ VEHICLE (1,1) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

300   4    -1.98    -3000              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

301   5    -7.84    -3001 3002         imp:n=1  $ carbon steel frame 

302  11    -0.01    -3002              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

303   5    -7.84    -3003 3004         imp:n=1  $ carbon steel frame 

304   7    -0.70    -3004 -3005        imp:n=1  $ gasoline 

305  10  -1.204E-03 -3004 3005         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

306   8    -2.52    -3006 3007         imp:n=1  $ glass windows 

307  10  -1.204E-03 -3007              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

308  12    -1.50    -3008 3009 -3016   imp:n=1  $ rubber tire, right front 

309  10  -1.204E-03 -3009 -3016        imp:n=1  $ air in tire, right front  

c 

310  12    -1.50    -3010 3011 -3016   imp:n=1  $ rubber tire, left front 

311  10  -1.204E-03 -3011 -3016        imp:n=1  $ air in tire, left front  

c 
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312  12    -1.50    -3012 3013 -3016   imp:n=1  $ rubber tire, right back 

313  10  -1.204E-03 -3013 -3016        imp:n=1  $ air in tire, right back 

c 

314  12    -1.50    -3014 3015 -3016   imp:n=1  $ rubber tire, left back 

315  10  -1.204E-03 -3015 -3016        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (2,1) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

316   4    -1.98    -3100              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

317   5    -7.84    -3101 3102         imp:n=1  $ carbon steel frame 

318  11    -0.01    -3102              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

319   5    -7.84    -3103 3104         imp:n=1  $ carbon steel frame 

320   7    -0.70    -3104 -3105        imp:n=1  $ gasoline 

321  10  -1.204E-03 -3104 3105         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

322   8    -2.52    -3106 3107         imp:n=1  $ glass windows 

323  10  -1.204E-03 -3107              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

324  12    -1.50    -3108 3109 -3116   imp:n=1  $ rubber tire, right front 

325  10  -1.204E-03 -3109 -3116        imp:n=1  $ air in tire, right front  

c 

326  12    -1.50    -3110 3111 -3116   imp:n=1  $ rubber tire, left front 

327  10  -1.204E-03 -3111 -3116        imp:n=1  $ air in tire, left front  

c 

328  12    -1.50    -3112 3113 -3116   imp:n=1  $ rubber tire, right back 

329  10  -1.204E-03 -3113 -3116        imp:n=1  $ air in tire, right back 

c 

330  12    -1.50    -3114 3115 -3116   imp:n=1  $ rubber tire, left back 

331  10  -1.204E-03 -3115 -3116        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (3,1) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

332   4    -1.98    -3200              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

333   5    -7.84    -3201 3202         imp:n=1  $ carbon steel frame 

334  11    -0.01    -3202              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

335   5    -7.84    -3203 3204         imp:n=1  $ carbon steel frame 

336   7    -0.70    -3204 -3205        imp:n=1  $ gasoline 

337  10  -1.204E-03 -3204 3205         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

338   8    -2.52    -3206 3207         imp:n=1  $ glass windows 

339  10  -1.204E-03 -3207              imp:n=1  $ air space   

c 

c *** Tires *** 

c 
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c    mat    den     surfaces           importance 

340  12    -1.50    -3208 3209 -3216   imp:n=1  $ rubber tire, right front 

341  10  -1.204E-03 -3209 -3216        imp:n=1  $ air in tire, right front  

c 

342  12    -1.50    -3210 3211 -3216   imp:n=1  $ rubber tire, left front 

343  10  -1.204E-03 -3211 -3216        imp:n=1  $ air in tire, left front  

c 

344  12    -1.50    -3212 3213 -3216   imp:n=1  $ rubber tire, right back 

345  10  -1.204E-03 -3213 -3216        imp:n=1  $ air in tire, right back 

c 

346  12    -1.50    -3214 3215 -3216   imp:n=1  $ rubber tire, left back 

347  10  -1.204E-03 -3215 -3216        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (1,2) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

348   4    -1.98    -3300              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

349   5    -7.84    -3301 3302         imp:n=1  $ carbon steel frame 

350  11    -0.01    -3302              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

351   5    -7.84    -3303 3304         imp:n=1  $ carbon steel frame 

352   7    -0.70    -3304 -3305        imp:n=1  $ gasoline 

353  10  -1.204E-03 -3304 3305         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

354   8    -2.52    -3306 3307         imp:n=1  $ glass windows 

355  10  -1.204E-03 -3307              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

356  12    -1.50    -3308 3309 -3316   imp:n=1  $ rubber tire, right front 

357  10  -1.204E-03 -3309 -3316        imp:n=1  $ air in tire, right front  

c 

358  12    -1.50    -3310 3311 -3316   imp:n=1  $ rubber tire, left front 

359  10  -1.204E-03 -3311 -3316        imp:n=1  $ air in tire, left front  

c 

360  12    -1.50    -3312 3313 -3316   imp:n=1  $ rubber tire, right back 

361  10  -1.204E-03 -3313 -3316        imp:n=1  $ air in tire, right back 

c 

362  12    -1.50    -3314 3315 -3316   imp:n=1  $ rubber tire, left back 

363  10  -1.204E-03 -3315 -3316        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (2,2) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

364   4    -1.98    -3400              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

365   5    -7.84    -3401 3402         imp:n=1  $ carbon steel frame 

366  11    -0.01    -3402              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

367   5    -7.84    -3403 3404         imp:n=1  $ carbon steel frame 

368   7    -0.70    -3404 -3405        imp:n=1  $ gasoline 

369  10  -1.204E-03 -3404 3405         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 
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c 

c    mat    den     surfaces           importance 

370   8    -2.52    -3406 3407         imp:n=1  $ glass windows 

371  10  -1.204E-03 -3407              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

372  12    -1.50    -3408 3409 -3416   imp:n=1  $ rubber tire, right front 

373  10  -1.204E-03 -3409 -3416        imp:n=1  $ air in tire, right front  

c 

374  12    -1.50    -3410 3411 -3416   imp:n=1  $ rubber tire, left front 

375  10  -1.204E-03 -3411 -3416        imp:n=1  $ air in tire, left front  

c 

376  12    -1.50    -3412 3413 -3416   imp:n=1  $ rubber tire, right back 

377  10  -1.204E-03 -3413 -3416        imp:n=1  $ air in tire, right back 

c 

378  12    -1.50    -3414 3415 -3416   imp:n=1  $ rubber tire, left back 

379  10  -1.204E-03 -3415 -3416        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (3,2) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

380   4    -1.98    -3500              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

381   5    -7.84    -3501 3502         imp:n=1  $ carbon steel frame 

382  11    -0.01    -3502              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

383   5    -7.84    -3503 3504         imp:n=1  $ carbon steel frame 

384   7    -0.70    -3504 -3505        imp:n=1  $ gasoline 

385  10  -1.204E-03 -3504 3505         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

386   8    -2.52    -3506 3507         imp:n=1  $ glass windows 

387  10  -1.204E-03 -3507              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

388  12    -1.50    -3508 3509 -3516   imp:n=1  $ rubber tire, right front 

389  10  -1.204E-03 -3509 -3516        imp:n=1  $ air in tire, right front  

c 

390  12    -1.50    -3510 3511 -3516   imp:n=1  $ rubber tire, left front 

391  10  -1.204E-03 -3511 -3516        imp:n=1  $ air in tire, left front  

c 

392  12    -1.50    -3512 3513 -3516   imp:n=1  $ rubber tire, right back 

393  10  -1.204E-03 -3513 -3516        imp:n=1  $ air in tire, right back 

c 

394  12    -1.50    -3514 3515 -3516   imp:n=1  $ rubber tire, left back 

395  10  -1.204E-03 -3515 -3516        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (1,3) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

400   4    -1.98    -3600              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

401   5    -7.84    -3601 3602         imp:n=1  $ carbon steel frame 

402  11    -0.01    -3602              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 
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c 

c    mat    den     surfaces           importance 

403   5    -7.84    -3603 3604         imp:n=1  $ carbon steel frame 

404   7    -0.70    -3604 -3605        imp:n=1  $ gasoline 

405  10  -1.204E-03 -3604 3605         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

406   8    -2.52    -3606 3607         imp:n=1  $ glass windows 

407  10  -1.204E-03 -3607              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

408  12    -1.50    -3608 3609 -3616   imp:n=1  $ rubber tire, right front 

409  10  -1.204E-03 -3609 -3616        imp:n=1  $ air in tire, right front  

c 

410  12    -1.50    -3610 3611 -3616   imp:n=1  $ rubber tire, left front 

411  10  -1.204E-03 -3611 -3616        imp:n=1  $ air in tire, left front  

c 

412  12    -1.50    -3612 3613 -3616   imp:n=1  $ rubber tire, right back 

413  10  -1.204E-03 -3613 -3616        imp:n=1  $ air in tire, right back 

c 

414  12    -1.50    -3614 3615 -3616   imp:n=1  $ rubber tire, left back 

415  10  -1.204E-03 -3615 -3616        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (2,3) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

416   4    -1.98    -3700              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 

c 

c    mat    den     surfaces           importance 

417   5    -7.84    -3701 3702         imp:n=1  $ carbon steel frame 

418  11    -0.01    -3702              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

419   5    -7.84    -3703 3704         imp:n=1  $ carbon steel frame 

420   7    -0.70    -3704 -3705        imp:n=1  $ gasoline 

421  10  -1.204E-03 -3704 3705         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

422   8    -2.52    -3706 3707         imp:n=1  $ glass windows 

423  10  -1.204E-03 -3707              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

424  12    -1.50    -3708 3709 -3716   imp:n=1  $ rubber tire, right front 

425  10  -1.204E-03 -3709 -3716        imp:n=1  $ air in tire, right front  

c 

426  12    -1.50    -3710 3711 -3716   imp:n=1  $ rubber tire, left front 

427  10  -1.204E-03 -3711 -3716        imp:n=1  $ air in tire, left front  

c 

428  12    -1.50    -3712 3713 -3716   imp:n=1  $ rubber tire, right back 

429  10  -1.204E-03 -3713 -3716        imp:n=1  $ air in tire, right back 

c 

430  12    -1.50    -3714 3715 -3716   imp:n=1  $ rubber tire, left back 

431  10  -1.204E-03 -3715 -3716        imp:n=1  $ air in tire, left back  

c 

c ------------ VEHICLE (3,3) ------------ 

c 

c *** Engine Block *** 

c 

c    mat    den     surfaces           importance 

432   4    -1.98    -3800              imp:n=1  $ engine block, SS304 at 25% of full density 

c 

c *** Passenger Compartment *** 
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c 

c    mat    den     surfaces           importance 

433   5    -7.84    -3801 3802         imp:n=1  $ carbon steel frame 

434  11    -0.01    -3802              imp:n=1  $ passenger compartment, polyurethane foam at 50% of 

full density 

c 

c *** Trunk & Gas Tank *** 

c 

c    mat    den     surfaces           importance 

435   5    -7.84    -3803 3804         imp:n=1  $ carbon steel frame 

436   7    -0.70    -3804 -3805        imp:n=1  $ gasoline 

437  10  -1.204E-03 -3804 3805         imp:n=1  $ air space in trunk 

c 

c *** Windows *** 

c 

c    mat    den     surfaces           importance 

438   8    -2.52    -3806 3807         imp:n=1  $ glass windows 

439  10  -1.204E-03 -3807              imp:n=1  $ air space   

c 

c *** Tires *** 

c 

c    mat    den     surfaces           importance 

440  12    -1.50    -3808 3809 -3816   imp:n=1  $ rubber tire, right front 

441  10  -1.204E-03 -3809 -3816        imp:n=1  $ air in tire, right front  

c 

442  12    -1.50    -3810 3811 -3816   imp:n=1  $ rubber tire, left front 

443  10  -1.204E-03 -3811 -3816        imp:n=1  $ air in tire, left front  

c 

444  12    -1.50    -3812 3813 -3816   imp:n=1  $ rubber tire, right back 

445  10  -1.204E-03 -3813 -3816        imp:n=1  $ air in tire, right back 

c 

446  12    -1.50    -3814 3815 -3816   imp:n=1  $ rubber tire, left back 

447  10  -1.204E-03 -3815 -3816        imp:n=1  $ air in tire, left back  

c 

c ------------ UNIVERSE ------------ 

c 

c *** Universe *** 

c 

c    mat    den      surfaces                             importance 

900  10  -1.204E-03  -9999  9000 1001 2001 1101 2101  

                      1201 2201 3000 3001 3003 3006 3008  

                      3010 3012 3014 3100 3101 3103 3106 

                      3108 3110 3112 3114 3200 3201 3203  

                      3206 3208 3210 3212 3214 3300 3301  

                      3303 3306 3308 3310 3312 3314 3400  

                      3401 3403 3406 3408 3410 3412 3414  

                      3500 3501 3503 3506 3508 3510 3512  

                      3514 3600 3601 3603 3606 3608 3610  

                      3612 3614 3700 3701 3703 3706 3708  

                      3710 3712 3714 3800 3801 3803 3806  

                      3808 3810 3812 3814                 imp:n=1  $ inside the universe, dry air 

901   9    -2.35     -9999 -9000                          imp:n=1  $ concrete floor 

902   0               9999                                imp:n=0  $ the nothing 

 

c ---------------------------------------------------------------- 

c                            SURFACE CARDS 

c ---------------------------------------------------------------- 

c 

c ------------ LEFT PORTAL MONITOR 1 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c           Vx   Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

1000  box   0.1  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

1001  box   0.0  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c           Vx   Vy     Vz   Hx   Hy   Hz     R 

1002  rcc   9.1  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

1003  rcc   9.1  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

1004  rcc   9.1  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

1005  rcc   9.1  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

1006  rcc   9.1  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

1007  rcc   9.1  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 
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c 

1008  rcc   9.1  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1009  rcc   9.1  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

1010  rcc   9.1  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1011  rcc   9.1  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

1012  rcc   9.1 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1013  rcc   9.1 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx   Vy     Vz   A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

1014  box   2.6  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

1015  box   0.1  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

1016  box  15.6  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

1017  box  27.1  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

1018  box   0.1   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

1019  box   0.1 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c           Vx   Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1020  box  18.1  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

1021  box  18.1 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

1022  box  18.1  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx    Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1023  box   22.1  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

1024  box    2.6  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

1025  box    0.1  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 1 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c           Vx    Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

2000  box  279.9  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

2001  box  279.8  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c           Vx    Vy     Vz   Hx   Hy   Hz     R 

2002  rcc  300.9  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

2003  rcc  300.9  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

2004  rcc  300.9  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

2005  rcc  300.9  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

2006  rcc  300.9  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

2007  rcc  300.9  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 

c 

2008  rcc  300.9  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2009  rcc  300.9  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2010  rcc  300.9  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2011  rcc  300.9  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2012  rcc  300.9 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2013  rcc  300.9 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx     Vy    Vz   A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

2014  box  294.4  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

2015  box  307.4  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

2016  box  291.9  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

2017  box  279.9  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

2018  box  279.9   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

2019  box  279.9 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 
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c *** Plastic Scintillator *** 

c 

c           Vx    Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

2020  box  287.9  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

2021  box  287.9 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

2022  box  287.9  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx    Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

2023  box  282.9  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

2024  box  282.9  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

2025  box  279.9  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ LEFT PORTAL MONITOR 2 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c             Vx   Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

1100  box   330.1  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

1101  box   330.0  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c            Vx     Vy    Vz   Hx   Hy   Hz     R 

1102  rcc   339.1  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

1103  rcc   339.1  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

1104  rcc   339.1  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

1105  rcc   339.1  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

1106  rcc   339.1  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

1107  rcc   339.1  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 

c 

1108  rcc   339.1  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1109  rcc   339.1  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

1110  rcc   339.1  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1111  rcc   339.1  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

1112  rcc   339.1 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1113  rcc   339.1 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx     Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

1114  box  332.6  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

1115  box  330.1  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

1116  box  345.6  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

1117  box  357.1  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

1118  box  330.1   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

1119  box  330.1 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c           Vx    Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1120  box  348.1  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

1121  box  348.1 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

1122  box  348.1  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx     Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1123  box   352.1  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

1124  box   332.6  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

1125  box  330.1  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 2 ------------ 

c 
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c *** Aluminum Instrument Case *** 

c 

c           Vx    Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

2100  box  609.9  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

2101  box  609.8  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c           Vx    Vy     Vz   Hx   Hy   Hz     R 

2102  rcc  630.9  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

2103  rcc  630.9  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

2104  rcc  630.9  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

2105  rcc  630.9  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

2106  rcc  630.9  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

2107  rcc  630.9  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 

c 

2108  rcc  630.9  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2109  rcc  630.9  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2110  rcc  630.9  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2111  rcc  630.9  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2112  rcc  630.9 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2113  rcc  630.9 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx     Vy    Vz   A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

2114  box  624.4  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

2115  box  637.4  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

2116  box  621.9  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

2117  box  609.9  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

2118  box  609.9   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

2119  box  609.9 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c           Vx    Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

2120  box  617.9  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

2121  box  617.9 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

2122  box  617.9  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx    Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

2123  box  612.9  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

2124  box  612.9  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

2125  box  609.9  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ LEFT PORTAL MONITOR 3 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c             Vx   Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

1200  box   660.1  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

1201  box   660.0  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c            Vx     Vy    Vz   Hx   Hy   Hz     R 

1202  rcc   669.1  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

1203  rcc   669.1  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

1204  rcc   669.1  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

1205  rcc   669.1  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

1206  rcc   669.1  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

1207  rcc   669.1  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 

c 

1208  rcc   669.1  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1209  rcc   669.1  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 
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c 

1210  rcc   669.1  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1211  rcc   669.1  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

1212  rcc   669.1 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

1213  rcc   669.1 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx     Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

1214  box  662.6  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

1215  box  660.1  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

1216  box  675.6  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

1217  box  687.1  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

1218  box  660.1   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

1219  box  660.1 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c           Vx    Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1220  box  678.1  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

1221  box  678.1 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

1222  box  678.1  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx     Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

1223  box   682.1  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

1224  box   662.6  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

1225  box  660.1  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ RIGHT PORTAL MONITOR 3 ------------ 

c 

c *** Aluminum Instrument Case *** 

c 

c           Vx    Vy   Vz   A1x   A1y  A1z  A2x  A2y    A2z  A3x  A3y   A3z 

2200  box  939.9  0.1  0.1  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  168.0 $ inner box wall 

2201  box  939.8  0.0  0.0  30.2  0.0  0.0  0.0  126.2  0.0  0.0  0.0  168.2 $ outer box wall 

c 

c *** Helium-3 Tubes *** 

c 

c           Vx    Vy     Vz   Hx   Hy   Hz     R 

2202  rcc  960.9  25.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 1 wall 

2203  rcc  960.9  25.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 1 wall 

c 

2204  rcc  960.9  38.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 2 wall 

2205  rcc  960.9  38.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 2 wall 

c 

2206  rcc  960.9  51.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 3 wall 

2207  rcc  960.9  51.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 3 wall 

c 

2208  rcc  960.9  74.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2209  rcc  960.9  74.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2210  rcc  960.9  87.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2211  rcc  960.9  87.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

2212  rcc  960.9 100.6  70.0  0.0  0.0  92.0  3.3  $ outer tube 4 wall 

2213  rcc  960.9 100.6  70.1  0.0  0.0  91.8  3.2  $ inner tube 4 wall 

c 

c *** Polyethylene Moderator *** 

c 

c           Vx     Vy    Vz   A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y   A3z 

2214  box  954.4  19.1  70.0  13.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ he-3 tube bank 

2215  box  967.4  19.1   0.1   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ back panel 

2216  box  951.9  19.1  70.0   2.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0   92.0  $ middle panel 

2217  box  939.9  19.1   0.1   3.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  161.9  $ front panel 

2218  box  939.9   0.1   0.1  30.0  0.0  0.0  0.0  19.0  0.0  0.0  0.0  161.9  $ left panel 

2219  box  939.9 126.1   0.1  30.0  0.0  0.0  0.0 -19.0  0.0  0.0  0.0  161.9  $ right panel 

c 

c *** Plastic Scintillator *** 

c 

c           Vx    Vy     Vz   A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 
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2220  box  947.9  19.1  70.0  4.0  0.0  0.0  0.0  39.0  0.0  0.0  0.0  92.0  $ left scintillator 

2221  box  947.9 107.1  70.0  4.0  0.0  0.0  0.0 -39.0  0.0  0.0  0.0  92.0  $ right scintillator 

2222  box  947.9  58.1  70.0  4.0  0.0  0.0  0.0  10.0  0.0  0.0  0.0  92.0  $ SS304 spacer 

c 

c *** Air Gap *** 

c 

c            Vx    Vy    Vz    A1x  A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

2223  box  942.9  19.1  70.0   5.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  92.0  $ top air gap 

2224  box  942.9  19.1   0.1  24.5  0.0  0.0  0.0  88.0  0.0  0.0  0.0  69.9  $ bottom air gap  

c 

c *** SS304 Topper *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x   A2y   A2z  A3x  A3y  A3z 

2225  box  939.9  0.1  162.0  30.0  0.0  0.0  0.0  126.0  0.0  0.0  0.0  6.1  $ SS304 topper 

c 

c ------------ VEHICLE (1,1) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3000  box   80.0  0.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3001  box  80.0  90.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3002  box  83.0  93.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3003  box  80.0  180.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3004  box  83.0  183.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3005  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3006  box  80.0  90.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3007  box  81.0  91.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3008  rcc   80.0   61.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3009  rcc   81.0   61.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3010  rcc  230.0   61.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3011  rcc  229.0   61.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3012  rcc   80.0  209.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3013  rcc   81.0  209.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3014  rcc  230.0  209.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3015  rcc  229.0  209.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3016  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (2,1) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3100  box  410.0  0.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3101  box  410.0  90.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3102  box  413.0  93.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3103  box  410.0  180.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3104  box  413.0  183.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 
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c 

3105  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3106  box  410.0  90.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3107  box  411.0  91.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3108  rcc  410.0   61.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3109  rcc  411.0   61.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3110  rcc  560.0   61.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3111  rcc  559.0   61.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3112  rcc  410.0  209.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3113  rcc  411.0  209.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3114  rcc  560.0  209.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3115  rcc  559.0  209.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3116  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (3,1) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx   Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3200  box  740.0  0.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3201  box  740.0  90.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3202  box  743.0  93.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3203  box  740.0  180.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3204  box  743.0  183.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3205  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx    Vy    Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3206  box  740.0  90.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3207  box  741.0  91.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3208  rcc  740.0   61.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3209  rcc  741.0   61.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3210  rcc  890.0   61.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3211  rcc  889.0   61.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3212  rcc  740.0  209.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3213  rcc  741.0  209.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3214  rcc  890.0  209.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3215  rcc  889.0  209.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3216  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (1,2) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3300  box   80.0  350.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 
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c *** Passenger Compartment *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3301  box  80.0  440.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3302  box  83.0  443.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3303  box  80.0  530.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3304  box  83.0  533.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3305  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3306  box  80.0  440.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3307  box  81.0  441.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3308  rcc   80.0  411.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3309  rcc   81.0  411.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3310  rcc  230.0  411.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3311  rcc  229.0  411.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3312  rcc   80.0  559.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3313  rcc   81.0  559.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3314  rcc  230.0  559.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3315  rcc  229.0  559.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3316  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (2,2) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3400  box  410.0  350.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3401  box  410.0  440.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3402  box  413.0  443.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3403  box  410.0  530.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3404  box  413.0  533.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3405  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3406  box  410.0  440.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3407  box  411.0  441.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3408  rcc  410.0  411.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3409  rcc  411.0  411.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3410  rcc  560.0  411.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3411  rcc  559.0  411.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3412  rcc  410.0  559.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3413  rcc  411.0  559.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3414  rcc  560.0  559.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 
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3415  rcc  559.0  559.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3416  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (3,2) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3500  box  740.0  350.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3501  box  740.0  440.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3502  box  743.0  443.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3503  box  740.0  530.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3504  box  743.0  533.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3505  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3506  box  740.0  440.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3507  box  741.0  441.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3508  rcc  740.0  411.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3509  rcc  741.0  411.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3510  rcc  890.0  411.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3511  rcc  889.0  411.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3512  rcc  740.0  559.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3513  rcc  741.0  559.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3514  rcc  890.0  559.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3515  rcc  889.0  559.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3516  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (1,3) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3600  box   80.0  700.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3601  box  80.0  790.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3602  box  83.0  793.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3603  box  80.0  880.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3604  box  83.0  883.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3605  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3606  box  80.0  790.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3607  box  81.0  791.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 
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c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3608  rcc   80.0  761.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3609  rcc   81.0  761.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3610  rcc  230.0  761.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3611  rcc  229.0  761.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3612  rcc   80.0  909.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3613  rcc   81.0  909.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3614  rcc  230.0  909.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3615  rcc  229.0  909.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3616  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (2,3) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3700  box  410.0  700.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3701  box  410.0  790.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3702  box  413.0  793.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3703  box  410.0  880.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3704  box  413.0  883.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

3705  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3706  box  410.0  790.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3707  box  411.0  791.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3708  rcc  410.0  761.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3709  rcc  411.0  761.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c  

3710  rcc  560.0  761.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3711  rcc  559.0  761.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3712  rcc  410.0  909.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3713  rcc  411.0  909.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3714  rcc  560.0  909.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3715  rcc  559.0  909.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3716  pz    15.0  $ bottom of vehicle 

c 

c ------------ VEHICLE (3,3) ------------ 

c 

c *** Engine Block *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3800  box  740.0  700.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ engine block 

c 

c *** Passenger Compartment *** 

c 

c            Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3801  box  740.0  790.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3802  box  743.0  793.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 

c 

c *** Trunk & Gas Tank *** 

c 

c           Vx    Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3803  box  740.0  880.0  15.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer frame wall 

3804  box  743.0  883.0  18.0  144.0  0.0  0.0  0.0  84.0  0.0  0.0  0.0  62.0  $ inner frame wall 
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c 

3805  pz    23.0  $ gas fill level (19.0=3.2gal, 21.0=9.6gal, 23.0=16gal, 25.0=22.4gal) 

c 

c *** Windows *** 

c 

c           Vx     Vy     Vz    A1x   A1y  A1z  A2x  A2y   A2z  A3x  A3y  A3z 

3806  box  740.0  790.0  83.0  150.0  0.0  0.0  0.0  90.0  0.0  0.0  0.0  68.0  $ outer window wall 

3807  box  741.0  791.0  84.0  148.0  0.0  0.0  0.0  88.0  0.0  0.0  0.0  66.0  $ inner window wall 

c 

c *** Tires *** 

c 

c            Vx     Vy    Vz    Hx   Hy   Hz    R 

3808  rcc  740.0  761.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right front 

3809  rcc  741.0  761.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right front 

c 

3810  rcc  890.0  761.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left front 

3811  rcc  889.0  761.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left front 

c 

3812  rcc  740.0  909.0  29.0  18.0  0.0  0.0  29.0  $ outer tire wall, right back 

3813  rcc  741.0  909.0  29.0  16.0  0.0  0.0  28.0  $ inner tire wall, right back 

c 

3814  rcc  890.0  909.0  29.0 -18.0  0.0  0.0  29.0  $ outer tire wall, left back 

3815  rcc  889.0  909.0  29.0 -16.0  0.0  0.0  28.0  $ inner tire wall, left back 

c 

3816  pz    15.0  $ bottom of vehicle 

c 

c ------------ UNIVERSE ------------ 

c 

c *** Universe *** 

c 

9000   pz      0.0  $ floor 

9999   s  485.0  485.0  0.0  800.0  $ universe sphere 

 

c 

c ---------------------------------------------------------------- 

c                            MATERIAL CARDS 

c ---------------------------------------------------------------- 

c 

c *** Material 1 -- Helium-3 (density @ 4 atm = -5.00E-04 g/cm3) *** 

c 

m1     2003.60c     1.00 

c 

c *** Material 2 -- Polyethylene (density = -0.96 g/cm3) *** 

c 

m2     1001.60c     0.666 

       6000.60c     0.333 

mt2    poly.60t 

c 

c *** Material 3 -- Plastic Scintillator (density = -1.032 g/cm3) *** 

c 

m3     1001.60c    -0.524 

       6000.60c    -0.476  

mt3    poly.60t 

c 

c *** Material 4 -- Stainless Steel SS304 (density = -7.92 g/cm3, 25% den = -1.98 g/cm3) *** 

c 

m4    26056.60c     0.05936  

      24052.60c     0.01743   

      28058.60c     0.00772   

      25055.60c     0.00174   

c 

c *** Material 5 -- Carbon Steel (density = -7.84 g/cm3) *** 

c 

m5    25055.60c     0.70 

       6000.60c     0.12 

      15031.60c     0.08 

      16000.60c     0.10    

c 

c *** Material 6 -- Aluminum (density = -2.7 g/cm3) *** 

c 

m6    13027.60c     1.00 

c 

c *** Material 7 -- Gasoline (density = -0.70 g/cm3) *** 

c 

m7     6000.60c     0.308 

       1001.60c     0.692 

c 
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c *** Material 8 -- Glass (density = -2.52 g/cm3) *** 

c 

m8    14000.60c    -0.090 

      11023.60c    -0.253 

       8016.60c    -0.601 

      20000.60c    -0.056 

c 

c *** Material 9 -- Concrete (density = -2.35 g/cm3) *** 

c 

m9     1001.60c    -0.006 

       8016.60c    -0.508 

      11023.60c    -0.002 

      13027.60c    -0.049 

      14000.60c    -0.320 

      19000.60c    -0.019 

      20000.60c    -0.084 

      26000.60c    -0.012       

c 

c *** Material 10 -- Dry Air (density = -1.204E-03 g/cm3) *** 

c 

m10    7014.60c     0.7845 

       8016.60c     0.2155   

c 

c *** Material 11 -- Polyurethane Foam (density = -0.02 g/cm3, 50% den = -0.01 g/cm3) ***    

c 

m11    1001.60c     42.0       

       6012.60c     25.0 

       8016.60c      6.0 

       7014.66c      2.0 

mt11   poly.60t 

c 

c *** Material 12 -- Rubber (density = -1.50 g/cm3) ***    

c 

m12    1001.60c      8.0       

       6012.60c      5.0 

mt12   poly.60t 

c 

c ---------------------------------------------------------------- 

c                             SOURCE CARDS 

c ---------------------------------------------------------------- 

c  

mode  n 

c 

nps   500000000 

c 

c *** Source located in passenger compartment of vehicle (1,1) *** 

c 

sdef  pos=162.5 142.5 52.5  erg=0.0235E-06   

c 

c sp1   -3  1.025  2.926 

c 

c Note: Constants for Cf-252 spontaneous fission: a=1.025, b=2.926 

c       Watt's Fission Spectrum: f(E) = C exp(-E/a) sinh(bE)^1/2 

c 

c ---------------------------------------------------------------- 

c                             TALLY CARDS 

c ---------------------------------------------------------------- 

c 

c *** Reaction rate in portal monitor: 1 left *** 

c 

f4:n  (107 108 109 110 111 112)        $ track length tally in He-3 tubes 

c fm4  -1  1  103                        $ reaction rate per unit volume 

sd4   1.0                              $ volume in He-3 set to 1.0 

c                                        tally units [counts/sec-source particle] 

c  

c *** Reaction rate in portal monitor: 1 right *** 

c 

f14:n  (207 208 209 210 211 212)       $ track length tally in He-3 tubes 

c fm14  -1  1  103                       $ reaction rate per unit volume 

sd14   1.0                             $ volume in He-3 set to 1.0 

c                                       tally units [counts/sec-source particle] 

c 

c *** Reaction rate in portal monitor: 2 left *** 

c 

f24:n  (132 133 134 135 136 137)       $ track length tally in He-3 tubes 

c fm24  -1  1  103                       $ reaction rate per unit volume 

sd24   1.0                             $ volume in He-3 set to 1.0 
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c                                       tally units [counts/sec-source particle] 

c 

c *** Reaction rate in portal monitor: 2 right *** 

c 

f34:n  (232 233 234 235 236 237)       $ track length tally in He-3 tubes 

c fm34  -1  1  103                       $ reaction rate per unit volume 

sd34   1.0                             $ volume in He-3 set to 1.0 

c                                       tally units [counts/sec-source particle] 

c 

c *** Reaction rate in portal monitor: 3 left *** 

c 

f44:n  (157 158 159 160 161 162)       $ track length tally in He-3 tubes 

c fm44  -1  1  103                       $ reaction rate per unit volume 

sd44   1.0                             $ volume in He-3 set to 1.0 

c                                       tally units [counts/sec-source particle] 

c 

c *** Reaction rate in portal monitor: 3 right *** 

c 

f54:n  (257 258 259 260 261 262)       $ track length tally in He-3 tubes 

c fm54  -1  1  103                       $ reaction rate per unit volume 

sd54   1.0                             $ volume in He-3 set to 1.0 

c                                       tally units [counts/sec-source particle] 



 175 

APPENDIX D  

INVERSE CODE 

 

!********************************************************************************* 

! 

! AUTHOR: KAREN MILLER 

! 

! LANGUAGE: FORTRAN 90 

! 

! DESCRIPTION: Solves a 3-dimensional inverse transport problem. The system 

!              size and number of cells are defined by the user in the source code. 

!              The code requires an input file named "input.txt", which contains  

!              the cross section data. All of the scattering cross sections are  

!              read first. They should be entered in x-y planes, starting at the  

!              bottom z plane up to the top z plane as follows:               

! 

!  

!       sigma-s(1,jmax,1)   ...     sigma-s(imax,jmax,1)       *** bottom z plane *** 

!          ...              ...       ... 

!       sigma-s(1,2,1)      ...     sigma-s(imax,2,1) 

!       sigma-s(1,1,1)      ...     sigma-s(imax,1,1) 

! 

! 

!       sigma-s(1,jmax,2)   ...     sigma-s(imax,jmax,2)       *** second z plane *** 

!          ...              ...       ... 

!       sigma-s(1,2,2)      ...     sigma-s(imax,2,2) 

!       sigma-s(1,1,2)      ...     sigma-s(imax,1,2) 

! 

!              .             .         . 

!              .             .         .                       *** top z plane *** 

! 

!    then do the same for the total cross section: 

! 

!       sigma-t(1,jmax,1)   ...     sigma-t(imax,jmax,1)       *** bottom z plane *** 

!          ...              ...        ... 

!       sigma-t(1,2,1)      ...     sigma-t(imax,2,1) 

!       sigma-t(1,1,1)      ...     sigma-t(imax,1,1) 

! 

! 

!********************************************************************************* 

 

!******************************************************************************* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!*$  -----------------------------------------------------------------------  $* 

!*$                                                                           $* 

!*$                            V A R I A B L E S                              $* 

!*$                                                                           $* 

!*$  -----------------------------------------------------------------------  $* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!******************************************************************************* 

 

module variables 

implicit none 

 

! parameters 

integer, parameter :: maxiter = 1000                     ! max number of source iterations 

integer, parameter :: inpfile1 = 15                      ! input file number 

integer, parameter :: inpfile2 = 16                      ! input file number 

integer, parameter :: outfile = 17                       ! output file number 

integer, parameter :: outermax = 5                       ! max number of outer iterations 

real, parameter :: phitol = 1.0e-4                       ! tolerance on scalar flux 

real, parameter :: invtolsys = 0.5                       ! tolerance on minimization 

 

! variables 

integer :: i, j, k                                       ! x, y,and z cell positions 

integer :: imax, jmax, kmax                              ! total number cells 

real    :: dx, dy, dz                                    ! length of each cell 

real    :: xlength, ylength, zlength                     ! system length in x, y, and z directions 

integer :: i0, j0, k0                                    ! guess for source position 
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real, allocatable, dimension(:,:,:) :: S               ! source strength 

real    :: S0                                            ! initial guess for source strength 

 

integer :: th                                            ! angle variable 

integer :: theta                                         ! total number of angles 

real, allocatable, dimension(:) :: w                     ! quadrature weights 

real, allocatable, dimension(:) :: mu, eta, xi           ! angle cosines for quadrature set 

real :: c1, c2, c3                                       ! angle cosine values 

real :: w1, w2                                           ! angle weight values 

 

real, allocatable, dimension(:,:,:) :: sigt              ! total cross section 

real, allocatable, dimension(:,:,:) :: sigs              ! scattering cross section  

real :: sigair, sigfloor, sigpoly, sigdet                ! sigt of air/cement 

 

integer, dimension(9) :: zonexstart, zonexend            ! zone parameters 

integer, dimension(9) :: zoneystart, zoneyend            ! zone parameters 

integer, dimension(9) :: xx, yy                          ! initial guess locations 

integer, allocatable, dimension(:,:) :: ztest            ! test parameter for zones 

integer :: zone 

 

real :: resmin                                           ! minimum residual 

integer :: xmin, ymin, zmin                              ! location of min residual 

 

integer :: iter                                          ! source iteration index 

integer :: istart, iend, iincr                           ! start/end/increment of i for sweep 

integer :: jstart, jend, jincr                           ! start/end/increment of j for sweep 

integer :: kstart, kend, kincr                           ! start/end/increment of k for sweep 

 

real, allocatable, dimension(:,:,:,:) :: den             ! denominator of discrete transport equation 

real, allocatable, dimension(:,:,:,:) :: tx, ty,tz       ! coefficients for transport equation 

 

real, allocatable, dimension(:,:,:,:) :: psi             ! cell-centered angular flux 

real, allocatable, dimension(:,:,:,:) :: psih            ! angular flux on horizontal faces 

real, allocatable, dimension(:,:,:,:) :: psiv            ! angular flux on vertical faces 

real, allocatable, dimension(:,:,:,:) :: psit            ! angular flux on top and bottom faces 

real, allocatable, dimension(:,:,:,:) :: xinc            ! incident angular flux in x direction (on 

vert. face) 

real, allocatable, dimension(:,:,:,:) :: yinc            ! incident angular flux in y direction (on 

horz. face) 

real, allocatable, dimension(:,:,:,:) :: zinc            ! incident angular flux in y direction (on 

top face) 

real, allocatable, dimension(:,:,:)   :: phi             ! scalar flux 

real, allocatable, dimension(:,:,:)   :: oldphi          ! scalar flux at previous iteration step& 

 

integer :: n                                             ! detector index 

integer :: nmax                                          ! number of detectors 

integer, allocatable, dimension(:) :: idetstart, idetend ! detector span in i direction 

integer, allocatable, dimension(:) :: jdetstart, jdetend ! detector span in j direction 

integer, allocatable, dimension(:) :: kdetstart, kdetend ! detector span in k direction 

real, allocatable, dimension(:) :: M, Mnorm, Mest        ! measurements and uncertainties 

real :: Mmax                                             ! largest measurement 

real :: invtolrand                                       ! tolerance on minimization 

real :: invtol                                           ! tolerance on minimization 

 

integer :: outer, inner                                  ! index for outer iterations 

real :: residual                                         ! total residual of least squares 

real, allocatable, dimension(:) :: res                   ! residual of least squares 

integer :: rescheck                                      ! check residual - yes or no? 

 

real :: gradx, grady, gradz                              ! gradient 

 

integer :: allocstatus                                   ! test variable for allocating arrays 

integer :: ierror                                        ! test variable for opening files& 

 

end module 

 

!******************************************************************************* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!*$  -----------------------------------------------------------------------  $* 

!*$                                                                           $* 

!*$                          M A I N   P R O G R A M                          $* 

!*$                                                                           $* 

!*$  -----------------------------------------------------------------------  $* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!******************************************************************************* 
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program inverse3d 

use variables 

implicit none 

 

nmax = 6 

allocate (M(nmax), stat=allocstatus) 

 

open(unit=outfile,file='output_d1_11_neg.txt',status='unknown',action='write',iostat=ierror) 

 

! vehicle 1,1 

 

M(1) = 3.400E+02 

M(2) = 5.016E+02 

M(3) = 6.189E+01 

M(4) = 4.873E+00 

M(5) = 5.571E-01 

M(6) = 1.037E-01 

 

invtolrand = 0.5 

invtol = invtolsys + invtolrand 

 

! ------------------------------------------- 

! SYSTEM SETUP 

! -------------------------------------------      

call system_setup 

 

! ------------------------------------------- 

! INITIAL GUESS 

! -------------------------------------------      

call initial_guess 

 

! ------------------------------------------- 

! FORWARD SOLVER 

! -------------------------------------------      

call forward_source 

call forward_solver 

call convergence 

 

! ------------------------------------------- 

! INVERSE SOLVER 

! -------------------------------------------      

inverse: do zone = 1, 9 

 

  if (ztest(xx(zone),yy(zone))==1) then 

    write(outfile,408) xmin, ymin, zmin 

    408 format(/ "Inverse code did not converge." / "Best guess = (", & 

               & i2, ",", i2, ",", i2, ")") 

    stop 

  end if 

   

  i0 = xx(zone) 

  j0 = yy(zone) 

  k0 = 3 

 

  minimize: do outer = 1, outermax 

      

    call adjoint_source 

    call forward_solver 

    call gradient_x 

    call line_search_x 

   

    call adjoint_source 

    call forward_solver 

    call gradient_y 

    call line_search_y 

          

    call adjoint_source 

    call forward_solver 

    call gradient_z 

    call line_search_z 

     

    write(outfile,410) outer, i0, j0, k0 

    410 format ("Iteration: ", i3, ", (", i3, ",", i3, ",", i3, ")")   

   

  end do minimize 

   

end do inverse 



 178 

 

! ------------------------------------------- 

! WRITE OUTPUT 

! -------------------------------------------      

write(outfile,411) outer, i0, j0, k0 

411 format (/ "Converged at iteration ", i3 // "SOURCE POSITION: (", & 

            & i3, ",", i3, ",", i3, ")") 

 

end program 

 

 

!******************************************************************************* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!*$  -----------------------------------------------------------------------  $* 

!*$                                                                           $* 

!*$                            S U B R O U T I N E S                          $* 

!*$                                                                           $* 

!*$  -----------------------------------------------------------------------  $* 

!*$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$* 

!******************************************************************************* 

 

!------------------------------------------------------------------------------- 

! +--------------------------------------------------------------------------+ | 

! |                                                                          | | 

! |                                                                          | | 

! |                               system setup                               | | 

! |                                                                          | | 

! |                                                                          | | 

! +--------------------------------------------------------------------------+ | 

!------------------------------------------------------------------------------- 

 

subroutine system_setup 

use variables 

implicit none 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! INPUT GEOMETRY AND DETECTOR INFORMATION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

! ------------------------------------------- 

! SYSTEM LENGTH IN X, Y, AND Z DIRECTIONS 

! -------------------------------------------                           

xlength = 960.0 

ylength = 930.0 

zlength = 240.0 

! ------------------------------------------- 

! NUMBER OF CELLS IN X, Y, AND Z DIRECTIONS 

! -------------------------------------------                           

imax = 64 

jmax = 31 

kmax = 4 

! ------------------------------------------- 

! CALCULATE MESH SIZE 

! ------------------------------------------- 

dx = xlength / real(imax) 

dy = ylength / real(jmax) 

dz = zlength / real(kmax) 

! ------------------------------------------- 

! NUMBER OF ANGLES IN 3D S(6) QUADRATURE SET 

! -------------------------------------------                           

theta = 48 

! ------------------------------------------- 

! TOTAL CROSS SECTIONS OF AIR, THE FLOOR,  

! POLY, AND THE DETECTOR MATERIAL 

! ------------------------------------------- 

sigair = 5.009E-04 

sigfloor = 2.305E-01 

sigpoly = 1.680E-01 

sigdet = 1.931E+00 

! ------------------------------------------- 

! GUESS A SOURCE STRENGTH 

! ------------------------------------------- 

S0 = 15000.0 

 

! ------------------------------------------- 
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! NUMBER OF DETECTORS 

! ------------------------------------------- 

nmax = 6 

 

allocate (idetstart(nmax), stat=allocstatus) 

allocate (jdetstart(nmax), stat=allocstatus) 

allocate (kdetstart(nmax), stat=allocstatus) 

allocate (idetend(nmax), stat=allocstatus) 

allocate (jdetend(nmax), stat=allocstatus) 

allocate (kdetend(nmax), stat=allocstatus) 

allocate (ztest(imax,jmax), stat=allocstatus) 

 

! ------------------------------------------- 

! INPUT DETECTOR POSITIONS   

! ------------------------------------------- 

idetstart(1) = 1 

idetend(1) = 2 

jdetstart(1) = 1 

jdetend(1) = 4 

kdetstart(1) = 3 

kdetend(1) = 4 

 

idetstart(2) = 19 

idetend(2) = 20 

jdetstart(2) = 1 

jdetend(2) = 4 

kdetstart(2) = 3 

kdetend(2) = 4 

 

idetstart(3) = 23 

idetend(3) = 24 

jdetstart(3) = 1 

jdetend(3) = 4 

kdetstart(3) = 3 

kdetend(3) = 4 

 

idetstart(4) = 41 

idetend(4) = 42 

jdetstart(4) = 1 

jdetend(4) = 4 

kdetstart(4) = 3 

kdetend(4) = 4 

 

idetstart(5) = 45 

idetend(5) = 46 

jdetstart(5) = 1 

jdetend(5) = 4 

kdetstart(5) = 3 

kdetend(5) = 4 

 

idetstart(6) = 63 

idetend(6) = 64 

jdetstart(6) = 1 

jdetend(6) = 4 

kdetstart(6) = 3 

kdetend(6) = 4 

 

! ------------------------------------------- 

! INPUT ZONE START AND END POINTS   

! ------------------------------------------- 

zonexstart(1) = 1 

zonexend(1) = 21 

zoneystart(1) = 1 

zoneyend(1) = 10 

 

zonexstart(2) = 22 

zonexend(2) = 43 

zoneystart(2) = 1 

zoneyend(2) = 10 

 

zonexstart(3) = 44 

zonexend(3) = 64 

zoneystart(3) = 1 

zoneyend(3) = 10 

 

zonexstart(4) = 1 

zonexend(4) = 21 
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zoneystart(4) = 11 

zoneyend(4) = 21 

 

zonexstart(5) = 22 

zonexend(5) = 43 

zoneystart(5) = 11 

zoneyend(5) = 21 

 

zonexstart(6) = 44 

zonexend(6) = 64 

zoneystart(6) = 11 

zoneyend(6) = 21 

 

zonexstart(7) = 1 

zonexend(7) = 21 

zoneystart(7) = 22 

zoneyend(7) = 31 

 

zonexstart(8) = 22 

zonexend(8) = 43 

zoneystart(8) = 22 

zoneyend(8) = 31 

 

zonexstart(9) = 44 

zonexend(9) = 64 

zoneystart(9) = 22 

zoneyend(9) = 31 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! ALLOCATE ARRAYS 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

allocate (w(theta), stat=allocstatus)                        

allocate (mu(theta), stat=allocstatus)                       

allocate (eta(theta), stat=allocstatus)                      

allocate (xi(theta), stat=allocstatus)   

allocate (den(imax,jmax,kmax,theta), stat=allocstatus) 

allocate (psi(imax,jmax,kmax,theta), stat=allocstatus) 

allocate (psih(imax,jmax+1,kmax,theta), stat=allocstatus) 

allocate (psiv(imax+1,jmax,kmax,theta), stat=allocstatus) 

allocate (psit(imax,jmax,kmax+1,theta), stat=allocstatus) 

allocate (xinc(imax,jmax+1,kmax,theta), stat=allocstatus) 

allocate (yinc(imax+1,jmax,kmax,theta), stat=allocstatus) 

allocate (zinc(imax,jmax,kmax+1,theta), stat=allocstatus) 

allocate (phi(imax,jmax,kmax), stat=allocstatus) 

allocate (oldphi(imax,jmax,kmax), stat=allocstatus) 

allocate (tx(imax,jmax,kmax,theta), stat=allocstatus) 

allocate (ty(imax,jmax,kmax,theta), stat=allocstatus) 

allocate (tz(imax,jmax,kmax,theta), stat=allocstatus) 

allocate (sigt(imax,jmax,kmax), stat=allocstatus) 

allocate (sigs(imax,jmax,kmax), stat=allocstatus) 

allocate (S(imax,jmax,kmax), stat=allocstatus) 

allocate (Mnorm(nmax), stat=allocstatus) 

allocate (Mest(nmax), stat=allocstatus) 

allocate (res(nmax), stat=allocstatus) 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! ECHO SYSTEM INFORMATION TO OUTPUT FILE 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

! ------------------------------------------- 

! WRITE SYSTEM INFORMATION TO OUTPUT FILE 

! ------------------------------------------- 

write(outfile,100)  

100 format("3D SOURCE LOCATION CODE" // "------------- SYSTEM DATA -------------" /) 

write(outfile,130) xlength,ylength,zlength,imax,jmax,kmax,dx,dy,dz  

130 format("XLENGTH = ", f8.3 / & 

         & "YLENGTH = ", f8.3 / & 

   & "ZLENGTH = ", f8.3 / & 

      & "IMAX = ", i5  / & 

   & "JMAX = ", i5  / & 

      & "KMAX = ", i5  / & 

   & "DX = ", f8.2 / & 
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   & "DY = ", f8.2 / & 

   & "DZ = ", f8.2 /) 

write(outfile,140)  

140 format("------------- MEASUREMENTS -------------" /) 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! READ CROSS SECTIONS FROM INPUT FILE 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

! ------------------------------------------- 

! OPEN INPUT FILE   

! ------------------------------------------- 

open(unit=inpfile1,file='xs.txt',status='old',action='read',iostat=ierror) 

 

! ------------------------------------------- 

! READ CROSS SECTIONS 

! ------------------------------------------- 

do k = 1, kmax 

  do j = jmax, 1, -1 

    read(inpfile1,*) (sigs(i,j,k),i=1,imax) 

  end do 

end do 

 

do k = 1, kmax 

  do j = jmax, 1, -1 

    read(inpfile1,*) (sigt(i,j,k),i=1,imax) 

  end do 

end do 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! SET QUADRATURES WEIGHTS AND COSINES 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

! ------------------------------------------- 

! ANGLE COSINES FOR S(6) 

! ------------------------------------------- 

c1 = 0.2666355 

c2 = 0.6815076 

c3 = 0.9261808 

! ------------------------------------------- 

! WEIGHTS FOR S(6) 

! ------------------------------------------- 

w1 = 0.1761263 

w2 = 0.1572071 

! ------------------------------------------- 

! SET COSINE FOR POLAR ANGLES (MU) 

! ------------------------------------------- 

do th = 1, theta 

  if ((th==3).or.(th==10).or.(th==14).or.(th==19).or.(th==21) & 

    & .or.(th==24).or.(th==27).or.(th==34).or.(th==38).or.(th==43) & 

    & .or.(th==45).or.(th==48)) then 

      mu(th) = c1 

  elseif ((th==4).or.(th==9).or.(th==15).or.(th==18).or.(th==22) & 

    & .or.(th==23).or.(th==28).or.(th==33).or.(th==39).or.(th==42) & 

    & .or.(th==46).or.(th==47)) then 

      mu(th) = -c1 

  elseif ((th==2).or.(th==11).or.(th==13).or.(th==20).or.(th==26) & 

    & .or.(th==35).or.(th==37).or.(th==44)) then 

      mu(th) = c2 

  elseif ((th==5).or.(th==8).or.(th==16).or.(th==17).or.(th==29) & 

    & .or.(th==32).or.(th==40).or.(th==41)) then 

   mu(th) = -c2   

  elseif ((th==1).or.(th==12).or.(th==25).or.(th==36)) then 

      mu(th) = c3 

  else 

      mu(th) = -c3 

  end if 

! ------------------------------------------- 

! SET SINE FOR POLAR ANGLES (ETA) 

! ------------------------------------------- 

  if ((th==1).or.(th==6).or.(th==13).or.(th==16).or.(th==21) & 

    & .or.(th==22).or.(th==25).or.(th==30).or.(th==37).or.(th==40) & 

 & .or.(th==45).or.(th==46)) then 
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   eta(th) = c1 

  elseif ((th==7).or.(th==12).or.(th==17).or.(th==20).or.(th==23) & 

    & .or.(th==24).or.(th==31).or.(th==36).or.(th==41).or.(th==44) & 

 &  .or.(th==47).or.(th==48)) then 

   eta(th) = -c1 

  elseif ((th==2).or.(th==5).or.(th==14).or.(th==15).or.(th==26) & 

    & .or.(th==29).or.(th==38).or.(th==39)) then 

   eta(th) = c2 

  elseif ((th==8).or.(th==11).or.(th==18).or.(th==19).or.(th==32) & 

    & .or.(th==35).or.(th==42).or.(th==43)) then 

   eta(th) = -c2 

  elseif ((th==3).or.(th==4).or.(th==27).or.(th==28)) then 

      eta(th) = c3 

  else 

      eta(th) = -c3  

  end if 

! ------------------------------------------- 

! SET COSINE FOR AZIMUTHAL ANGLES (XI) 

! ------------------------------------------- 

  if (th < 13) then 

    xi(th) = c1 

  elseif ((th > 24) .and. (th < 37)) then 

    xi(th) = -c1 

  elseif ((th > 12) .and. (th < 21)) then 

    xi(th) = c2 

  elseif ((th > 36) .and. (th < 45)) then 

    xi(th) = -c2 

  elseif ((th > 20) .and. (th < 25)) then 

    xi(th) = c3 

  else 

    xi(th) = -c3 

  end if 

end do 

! ------------------------------------------- 

! SET S(6) QUADRATURE WEIGHTS  

! ------------------------------------------- 

do th = 1, theta 

  if ((th==2).or.(th==5).or.(th==8).or.(th==11).or.(th==26).or. & 

    & (th==29).or.(th==32).or.(th==35)) then 

      w(th) = w2 

  elseif ((th > 12) .and. (th < 21)) then 

      w(th) = w2 

  elseif ((th > 36) .and. (th < 45)) then 

      w(th) = w2 

  else 

      w(th) = w1 

  end if 

end do 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE COEFFICIENTS FOR THE TRANSPORT EQUATION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

do th = 1, theta 

  do i = 1, imax 

    do j = 1, jmax 

      do k = 1, kmax  

  tx(i,j,k,th) = abs(mu(th))/sigt(i,j,k)/dx 

        ty(i,j,k,th) = abs(eta(th))/sigt(i,j,k)/dy 

 tz(i,j,k,th) = abs(xi(th))/sigt(i,j,k)/dz 

        den(i,j,k,th) = 1.0 / (1.0+tx(i,j,k,th)+ty(i,j,k,th) & 

               & +tz(i,j,k,th))   

      end do 

    end do 

  end do 

end do 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! INITIALIZE FORWARD SOLVER ARRAYS 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

do i = 1, imax 

  do j = 1, jmax 
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    do k = 1, kmax 

      phi(i,j,k) = 0.0 

      oldphi(i,j,k) = 0.0 

    end do 

  end do 

end do 

 

do th = 1, theta 

  do i = 1, imax 

    do j = 1, jmax 

      do k = 1, kmax 

        psi(i,j,k,th) = 0.0 

      end do 

    end do 

  end do 

end do 

 

do th = 1, theta 

  do i = 1, imax+1 

    do j = 1, jmax 

      do k = 1, kmax 

        psiv(i,j,k,th) = 0.0 

      end do 

    end do 

  end do 

end do 

 

do th = 1, theta 

  do i = 1, imax 

    do j = 1, jmax+1 

      do k = 1, kmax 

        psih(i,j,k,th) = 0.0 

      end do 

    end do 

  end do 

end do 

 

do th = 1, theta 

  do i = 1, imax 

    do j = 1, jmax 

      do k = 1, kmax+1 

        psit(i,j,k,th) = 0.0 

      end do 

    end do 

  end do 

end do 

 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! NORMALIZE MEASUREMENTS 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

! ------------------------------------------- 

! DETERMINE THE LARGEST MEASUREMENT 

! ------------------------------------------- 

Mmax = M(1) 

do n = 2, nmax  

  if (M(n) > Mmax) then 

    Mmax = M(n) 

  end if    

end do 

 

! ------------------------------------------- 

! NORMALIZE MEASUREMENTS  

! ------------------------------------------- 

do n = 1, nmax 

  Mnorm(n) = M(n) / Mmax 

end do 

 

! ------------------------------------------- 

! WRITE MEASUREMENTS TO OUTPUT FILE 

! ------------------------------------------- 

do n = 1, nmax 

  write(outfile,400) n, Mnorm(n) 

  400 format ("M (", i1, ") = ", es10.3) 
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end do 

write(outfile,405) invtol 

405 format ( / "RESIDUAL TOLERANCE = ", es10.3) 

write(outfile,401)  

401 format (/ "--------------- RESULTS ---------------" /) 

 

end subroutine 

 

!------------------------------------------------------------------------------- 

! +--------------------------------------------------------------------------+ | 

! |                                                                          | | 

! |                                                                          | | 

! |                              initial guess                               | | 

! |                                                                          | | 

! |                                                                          | | 

! +--------------------------------------------------------------------------+ | 

!------------------------------------------------------------------------------- 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE INITIAL GUESS FOR SOURCE POSITION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine initial_guess 

use variables 

implicit none 

 

! ------------------------------------------- 

! LOCAL VARIABLES 

! -------------------------------------------       

integer :: igstart, igincr, igend    ! coarse mesh, x-direction 

integer :: jgstart, jgincr, jgend    ! coarse mesh, y-direction 

integer :: z, zz                     ! counting variable 

real :: igmin                        ! minimum residual 

real, dimension(9) :: igres          ! residual  

real :: a1                           ! dummy variable 

integer :: a2, a3, a4, a5, a6, a7    ! dummy variables 

 

! ------------------------------------------- 

! ASSIGN POSITIONS TO CHECK 

! ------------------------------------------- 

igstart = ceiling(real(imax)/6.0) 

igincr = ceiling(real(imax)/3.0) 

igend = igstart+igincr+igincr 

 

jgstart = ceiling(real(jmax)/6.0)-1 

jgincr = ceiling(real(jmax)/3.0)+1 

jgend = jgstart+jgincr+jgincr 

 

k0 = 3 

 

! ------------------------------------------- 

! CALCULATE RESIDUAL IN EACH ZONE 

! ------------------------------------------- 

rescheck = 0 

z = 1 

do j0 = jgstart, jgend, jgincr 

  do i0 = igstart, igend, igincr    

    call forward_source 

    call forward_solver 

    call convergence 

    igres(z) = residual 

    xx(z) = i0 

    yy(z) = j0     

    z = z+1 

  end do 

end do 

rescheck = 1 

 

! ------------------------------------------- 

! PUT RESIDUALS IN ASCENDING ORDER 

! ------------------------------------------- 

do z = 2, 9 

  a1 = igres(z) 

  a2 = xx(z) 

  a3 = yy(z) 
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  a4 = zonexstart(z) 

  a5 = zonexend(z) 

  a6 = zoneystart(z) 

  a7 = zoneyend(z) 

   

  do zz = z-1, 1, -1 

    if (igres(zz) <= a1) then 

      exit 

    else 

      igres(zz+1) = igres(zz) 

      xx(zz+1) = xx(zz) 

      yy(zz+1) = yy(zz) 

      zonexstart(zz+1) = zonexstart(zz) 

      zonexend(zz+1) = zonexend(zz) 

      zoneystart(zz+1) = zoneystart(zz) 

      zoneyend(zz+1) = zoneyend(zz) 

    end if 

  end do 

   

  igres(zz+1) = a1 

  xx(zz+1) = a2 

  yy(zz+1) = a3 

  zonexstart(zz+1) = a4 

  zonexend(zz+1) = a5 

  zoneystart(zz+1) = a6 

  zoneyend(zz+1) = a7   

end do 

 

! ------------------------------------------- 

! DEFINE NO-GO ZONES WITH LARGE RESDIUALS 

! ------------------------------------------- 

do i = 1, imax 

  do j = 1, jmax 

    ztest(i,j) = 0 

  end do 

end do 

 

do z = 2, 9 

  if (igres(z) > 5.0*igres(1)) then 

   

  write(*,*) "skip zone: ", "(", xx(z), yy(z), ")" 

  write(outfile,*) "skip zone: ", z, "(", xx(z), yy(z), ")" 

   

    do i = zonexstart(z), zonexend(z) 

      do j = zoneystart(z), zoneyend(z) 

        ztest(i,j) = 1 

      end do 

    end do 

  end if 

end do 

 

! ------------------------------------------- 

! SET INITAL GUESS WITH SMALLEST RESIDUAL 

! ------------------------------------------- 

i0 = xx(1) 

j0 = yy(1) 

 

! ------------------------------------------- 

! INITIALIZE GLOBAL MINIMUM 

! ------------------------------------------- 

resmin = igres(1) 

xmin = i0 

ymin = j0 

zmin = k0 

 

! ------------------------------------------- 

! WRITE INITIAL GUESS 

! -------------------------------------------           

write(outfile,403) i0, j0, k0 

403 format (/ "INITIAL GUESS = (", i3, ",", i3, ",", i3, ")" /) 

 

end subroutine 

 

 

!------------------------------------------------------------------------------- 

! +--------------------------------------------------------------------------+ | 

! |                                                                          | | 
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! |                                                                          | | 

! |                              forward solver                              | | 

! |                                                                          | | 

! |                                                                          | | 

! +--------------------------------------------------------------------------+ | 

!------------------------------------------------------------------------------- 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! ASSIGN THE SOURCE STRENGTH ARRAY FOR THE FORWARD SOLVER 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine forward_source 

use variables 

implicit none 

 

do i = 1, imax 

  do j = 1, jmax 

    do k = 1, kmax 

      if ((i==i0).and.(j==j0).and.(k==k0)) then 

        S(i,j,k) = S0 

      else 

        S(i,j,k) = 0.0 

      end if 

    end do 

  end do 

end do 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE THE SCALAR FLUX USING SOURCE ITERATION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine forward_solver 

use variables 

implicit none 

 

fwdsolver: do iter = 1, maxiter 

! ------------------------------------------- 

! RESET PHI AND OLDPHI 

! -------------------------------------------     

  do i = 1, imax 

    do j = 1, jmax 

      do k = 1, kmax 

        oldphi(i,j,k) = phi(i,j,k) 

        phi(i,j,k) = 0.0 

      end do 

    end do 

  end do 

! ------------------------------------------- 

! SET TRANSPORT SWEEP DIRECTION, START,  

! AND END POINTS 

! -------------------------------------------       

  do th = 1, theta 

    if (mu(th) > 0.0) then 

      istart = 1 

      iend = imax 

      iincr = 1 

    else 

      istart = imax 

      iend = 1 

      iincr = -1 

    end if 

    if (eta(th) > 0.0) then 

      jstart = 1 

      jend = jmax 

      jincr = 1 

    else 

      jstart = jmax 

      jend = 1 

      jincr = -1 

    end if 

    if (xi(th) > 0.0) then 
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      kstart = 1 

      kend = kmax 

      kincr = 1 

    else 

      kstart = kmax 

      kend = 1 

      kincr = -1 

    end if 

! ------------------------------------------- 

! BEGIN TRANSPORT SWEEP 

! -------------------------------------------     

    do i = istart, iend, iincr 

      do j = jstart, jend, jincr 

        do k = kstart, kend, kincr 

! ------------------------------------------- 

! CALCULATE THE INCIDENT ANGULAR FLUX 

! -------------------------------------------       

   xinc(i,j,k,th) = psiv(i-(iincr-1)/2,j,k,th) 

   yinc(i,j,k,th) = psih(i,j-(jincr-1)/2,k,th) 

   zinc(i,j,k,th) = psit(i,j,k-(kincr-1)/2,th) 

! ------------------------------------------- 

! CALCULATE THE CELL-CENTERED ANGULAR FLUX       

! -------------------------------------------       

   psi(i,j,k,th) = (xinc(i,j,k,th)*tx(i,j,k,th) + & 

     & yinc(i,j,k,th)*ty(i,j,k,th) + & 

     & zinc(i,j,k,th)*tz(i,j,k,th) + & 

     & (S(i,j,k)+sigs(i,j,k)*oldphi(i,j,k))/sigt(i,j,k)) &   

     & * den(i,j,k,th) 

! ------------------------------------------- 

! CALCULATE THE EXITING ANGULAR FLUX  

! -------------------------------------------       

          psiv(i+(iincr+1)/2,j,k,th) = psi(i,j,k,th)  

          psih(i,j+(jincr+1)/2,k,th) = psi(i,j,k,th) 

          psit(i,j,k+(kincr+1)/2,th) = psi(i,j,k,th) 

! ------------------------------------------- 

! CALCULATE THE CELL-CENTERED SCALAR FLUX 

! -------------------------------------------     

          phi(i,j,k) = phi(i,j,k) + w(th)*psi(i,j,k,th) 

        end do 

      end do   

    end do   

  end do 

! ------------------------------------------- 

! TEST FOR CONVERGENCE OF PHI 

! -------------------------------------------    

  do i = 1, imax 

    do j = 1, jmax 

      do k = 1, kmax 

        if ( abs(phi(i,j,k)-oldphi(i,j,k)) > phitol*abs(phi(i,j,k)) ) then 

          if (iter == maxiter) then 

            write(outfile,*) "Transport solver did not converge!" 

            stop 

          end if 

          cycle fwdsolver 

        end if 

      end do 

    end do  

  end do 

! ------------------------------------------- 

! EXIT SOURCE ITERATION LOOP IF CONVERGED 

! -------------------------------------------      

  exit fwdsolver  

end do fwdsolver 

 

! ------------------------------------------- 

! NORMALIZE CALCULATED MEASUREMENTS 

! ------------------------------------------- 

do n = 1, nmax 

  Mest(n) = 0.0 

end do 

 

do n = 1, nmax  

  do i = idetstart(n), idetend(n) 

    do j = jdetstart(n), jdetend(n) 

      do k = kdetstart(n), kdetend(n) 

        Mest(n) = Mest(n) + phi(i,j,k) 

      end do 
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    end do 

  end do 

end do 

 

Mmax = Mest(1) 

do n = 2, nmax  

  if (Mest(n) > Mmax) then 

    Mmax = Mest(n) 

  end if    

end do 

 

do n = 1, nmax 

  Mest(n) = Mest(n) / Mmax 

end do 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CHECK TO SEE IF MEASUREMENTS HAVE CONVERGED 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

subroutine convergence 

use variables 

implicit none 

 

! ------------------------------------------- 

! CALCULATE RESIDUAL  

! ------------------------------------------- 

do n = 1, nmax 

  res(n) = 0.0 

end do 

 

residual = 0.0 

do n = 1, nmax 

  if (Mnorm(n) > 0.0001) then 

    res(n) = (Mest(n) - Mnorm(n)) / Mnorm(n) 

    residual = residual + abs(res(n)) 

  end if 

end do 

 

! ------------------------------------------- 

! TEST FOR CONVERGENCE - SMALL RESIDUAL 

! ------------------------------------------- 

if (rescheck == 1) then 

  if (residual < invtol) then 

    write(outfile,200) i0, j0, k0, residual, invtol 

    200 format (/ "Converged. Source position: (", i3, ",", i3, ",", i3, ")" / & 

               & "Residual: ", es10.3 / "Tolerance:", es10.3) 

    stop 

  end if 

end if 

 

end subroutine 

 

!------------------------------------------------------------------------------- 

! +--------------------------------------------------------------------------+ | 

! |                                                                          | | 

! |                                                                          | | 

! |                              inverse solver                              | | 

! |                                                                          | | 

! |                                                                          | | 

! +--------------------------------------------------------------------------+ | 

!------------------------------------------------------------------------------- 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! ASSIGN THE SOURCE STRENGTH ARRAY FOR THE ADJOINT SOLVER 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine adjoint_source 

use variables 

implicit none 

 

do i = 1, imax 

  do j = 1, jmax 
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    do k = 1, kmax 

      if ((i==i0).and.(j==j0).and.(k==k0)) then 

        S(i,j,k) = residual 

      else 

        S(i,j,k) = 0.0 

      end if 

    end do 

  end do 

end do 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE THE GRADIENT IN THE X-DIRECTION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine gradient_x 

use variables 

implicit none 

 

if ((i0 /= 1).and.(i0 /= imax)) then 

  gradx = - (phi(i0+1,j0,k0)-phi(i0-1,j0,k0)) / (2.0*dx) 

elseif (i0 == imax) then 

  gradx = - (phi(i0,j0,k0)-phi(i0-1,j0,k0)) / dx 

elseif (i0 == 1) then 

  gradx = - (phi(i0+1,j0,k0)-phi(i0,j0,k0)) / dx 

end if 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE THE GRADIENT IN THE Y-DIRECTION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine gradient_y 

use variables 

implicit none 

 

if ((j0 /= 1).and.(j0 /= jmax)) then 

  grady = - (phi(i0,j0+1,k0)-phi(i0,j0-1,k0)) / (2.0*dy) 

elseif (j0 == jmax) then 

  grady = - (phi(i0,j0,k0)-phi(i0,j0-1,k0)) / dy 

elseif (j0 == 1) then 

  grady = - (phi(i0,j0+1,k0)-phi(i0,j0,k0)) / dy 

end if 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! CALCULATE THE GRADIENT IN THE Z-DIRECTION 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine gradient_z 

use variables 

implicit none 

 

if ((k0 /= 1).and.(k0 /= kmax)) then 

  gradz = - (phi(i0,j0,k0+1)-phi(i0,j0,k0-1)) / (2.0*dz) 

elseif (k0 == kmax) then 

  gradz = - (phi(i0,j0,k0)-phi(i0,j0,k0-1)) / dz 

elseif (k0 == 1) then 

  gradz = - (phi(i0,j0,k0+1)-phi(i0,j0,k0)) / dz 

end if 

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! LINE SEARCH ALONG THE DIRECTION OF THE X-GRADIENT 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
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subroutine line_search_x 

use variables 

implicit none 

 

! ------------------------------------------- 

! LOCAL VARIABLES 

! ------------------------------------------- 

integer :: xstart, xend, xincr               ! start/end point for line search 

integer :: ipred                             ! position holder 

integer :: ii                                ! dummy index  

real :: imin                                 ! minimum residual value 

real, allocatable, dimension(:) :: ires      ! residual dummy 

 

! ------------------------------------------- 

! ALLOCATE ARRAY 

! ------------------------------------------- 

allocate (ires(imax), stat=allocstatus) 

 

! ------------------------------------------- 

! SET START AND END POINTS FOR LINE SEARCH 

! ------------------------------------------- 

ipred = i0 

 

if (gradx > 0.0) then 

  xstart = i0+1 

  xend = imax 

  xincr = 1 

elseif (gradx < 0.0) then 

  xstart = i0-1 

  xend = 1 

  xincr = -1 

elseif (gradx==0.0) then 

  xstart = i0-1 

  xend = i0+1 

  xincr = 1 

end if 

 

! ------------------------------------------- 

! CACLULATE THE CURRENT POSITION'S RESIDUAL  

! AND SET TO THE MINIMIMUM  

! -------------------------------------------  

ii = 1 

ires(ii) = residual 

imin = ires(ii) 

 

! ------------------------------------------- 

! FIND MINIMUM RESIDUAL ALONG THE GRADIENT 

! ------------------------------------------- 

do i0 = xstart, xend, xincr 

 

! ------------------------------------------- 

! CALCULATE RESIDUAL IF NOT AIR SPACE 

! -------------------------------------------    

  if ((sigt(i0,j0,k0)==sigair).or.(sigt(i0,j0,k0)==sigfloor).or. & 

    & (sigt(i0,j0,k0)==sigpoly).or.(sigt(i0,j0,k0)==sigdet).or. & 

    & (ztest(i0,j0)==1)) then        

    cycle    

  else 

    call forward_source 

    call forward_solver 

    call convergence 

  end if 

 

! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO LOCAL MINIMUM 

! ------------------------------------------- 

  ii = ii+1 

  ires(ii) = residual 

  if (ires(ii) < imin) then 

    imin = ires(ii) 

    ipred = i0 

  end if 

end do 

 

i0 = ipred 
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! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO GLOBAL MINIMUM 

! ------------------------------------------- 

if (imin < resmin) then 

  resmin = imin 

  xmin = i0 

  ymin = j0 

  zmin = k0 

end if  

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! LINE SEARCH ALONG THE DIRECTION OF THE Y-GRADIENT 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine line_search_y 

use variables 

implicit none 

 

! ------------------------------------------- 

! LOCAL VARIABLES 

! ------------------------------------------- 

integer :: ystart, yend, yincr               ! start/end point for line search 

integer :: jpred                             ! position holder 

integer :: jj                                ! dummy index  

real :: jmin                                 ! minimum residual value 

real, allocatable, dimension(:) :: jres      ! residual dummy 

 

! ------------------------------------------- 

! ALLOCATE ARRAY 

! ------------------------------------------- 

allocate (jres(jmax), stat=allocstatus) 

 

! ------------------------------------------- 

! SET START AND END POINTS FOR LINE SEARCH 

! ------------------------------------------- 

jpred = j0 

 

if (grady > 0.0) then 

  ystart = j0+1 

  yend = jmax 

  yincr = 1 

elseif (grady < 0.0) then 

  ystart = j0-1 

  yend = 1 

  yincr = -1 

elseif (grady==0.0) then 

  ystart = j0-1 

  yend = j0+1 

  yincr = 1 

end if 

 

! ------------------------------------------- 

! CACLULATE THE CURRENT POSITION'S RESIDUAL  

! AND SET TO THE MINIMIMUM  

! -------------------------------------------  

jj = 1 

jres(jj) = residual 

jmin = jres(jj) 

 

! ------------------------------------------- 

! FIND MINIMUM RESIDUAL ALONG THE GRADIENT 

! ------------------------------------------- 

do j0 = ystart, yend, yincr 

 

! ------------------------------------------- 

! CALCULATE RESIDUAL IF NOT AIR SPACE 

! -------------------------------------------    

  if ((sigt(i0,j0,k0)==sigair).or.(sigt(i0,j0,k0)==sigfloor).or. & 

    & (sigt(i0,j0,k0)==sigpoly).or.(sigt(i0,j0,k0)==sigdet).or. & 

    & (ztest(i0,j0)==1)) then 

    cycle 

  else 

    call forward_source 
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    call forward_solver 

    call convergence 

  end if 

 

! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO LOCAL MINIMUM 

! ------------------------------------------- 

  jj = jj+1 

  jres(jj) = residual 

  if (jres(jj) < jmin) then 

    jmin = jres(jj) 

    jpred = j0 

  end if 

end do 

 

j0 = jpred 

 

! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO GLOBAL MINIMUM 

! ------------------------------------------- 

if (jmin < resmin) then 

  resmin = jmin 

  xmin = i0 

  ymin = j0 

  zmin = k0 

end if  

 

end subroutine 

 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

! 

! LINE SEARCH ALONG THE DIRECTION OF THE Z-GRADIENT 

! 

!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 

 

subroutine line_search_z 

use variables 

implicit none 

 

! ------------------------------------------- 

! LOCAL VARIABLES 

! ------------------------------------------- 

integer :: zstart, zend, zincr               ! start/end point for line search 

integer :: kpred                             ! position holder 

integer :: kk                                ! dummy index  

real :: kmin                                 ! minimum residual value 

real, allocatable, dimension(:) :: kres      ! residual dummy 

 

! ------------------------------------------- 

! ALLOCATE ARRAY 

! ------------------------------------------- 

allocate (kres(kmax), stat=allocstatus) 

 

! ------------------------------------------- 

! SET START AND END POINTS FOR LINE SEARCH 

! ------------------------------------------- 

kpred = k0 

 

if (gradz > 0.0) then 

  zstart = k0+1 

  zend = kmax 

  zincr = 1 

elseif (gradz < 0.0) then 

  zstart = k0-1 

  zend = 1 

  zincr = -1 

elseif (gradz==0.0) then 

  zstart = k0-1 

  zend = k0+1 

  zincr = 1 

end if 

 

! ------------------------------------------- 

! CACLULATE THE CURRENT POSITION'S RESIDUAL  

! AND SET TO THE MINIMIMUM  

! -------------------------------------------  

kk = 1 
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kres(kk) = residual 

kmin = kres(kk) 

 

! ------------------------------------------- 

! FIND MINIMUM RESIDUAL ALONG THE GRADIENT 

! ------------------------------------------- 

do k0 = zstart, zend, zincr 

 

! ------------------------------------------- 

! CALCULATE RESIDUAL IF NOT AIR SPACE 

! -------------------------------------------    

  if ((sigt(i0,j0,k0)==sigair).or.(sigt(i0,j0,k0)==sigfloor).or. & 

    & (sigt(i0,j0,k0)==sigpoly).or.(sigt(i0,j0,k0)==sigdet).or. & 

    & (ztest(i0,j0)==1)) then    

    cycle 

  else  

    call forward_source 

    call forward_solver 

    call convergence 

  end if 

 

! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO LOCAL MINIMUM 

! ------------------------------------------- 

  kk = kk+1 

  kres(kk) = residual 

  if (kres(kk) < kmin) then 

    kmin = kres(kk) 

    kpred = k0 

  end if 

end do 

 

k0 = kpred 

 

! ------------------------------------------- 

! COMPARE NEW RESIDUAL TO GLOBAL MINIMUM 

! ------------------------------------------- 

if (kmin < resmin) then 

  resmin = kmin 

  xmin = i0 

  ymin = j0 

  zmin = k0 

end if  

 

end subroutine 
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