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ABSTRACT 

 

Bi-directional Current-fed Medium Frequency Transformer Isolated AC-DC Converter. 

(May 2010) 

Somasundaram Essakiappan, B.E., College of Engineering, Guindy, Anna University 

Chair of Advisory Committee: Dr. Prasad Enjeti 

 

The use of high power converters has increased tremendously. Increased demand for 

transportation, housing and industrial needs means that more number of power 

converters interact with the utility power grid. These converters are non-linear and they 

draw harmonic currents, significantly affecting power quality. To reduce harmonics, 

filters, power factor correction circuits and capacitor banks are required. And the 

development of hybrid technologies and renewable energy power stations trigger a 

demand for power converters with bi-directional capabilities. The objective of this thesis 

is to develop a high power quality, bi-directional AC-DC power converter that is a 

solution to the aforementioned problems.  

This thesis studies an existing topology for a high power AC-DC power conversion with 

transformer isolation. The topology consists of an uncontrolled rectifier followed by a 

DC-DC converter to produce a set voltage output. A design example of the topology is 

simulated using the PSIM software package (version 6). Critical performance 

characteristics such as power factor and total harmonic distortion are analyzed.  
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Following that study a new topology is proposed, which is an improvement over the 

older design, with reduced power conversion stages. The new topology has a fully 

controlled current source Pulse Width Modulation (PWM) rectifier at the front end to 

replace the uncontrolled rectifier and DC-DC combination. This topology has multi-

quadrant operational capabilities and the controller employs Selective Harmonic 

Elimination techniques to produce the programmed PWM switching functions for the 

rectifier. A design example of the converter and the digital controller are simulated in 

PSIM environment. The converter input current THD (Total Harmonic Distortion) and 

input power factor are within IEEE 519 and DoE standards. The converter is simulated 

in both first and fourth quadrant operations.  

A side-by-side comparison of the two topologies is done with respect to design and 

performance features such as power factor, THD, filter size, etc. The new topology 

converter provides performance superior to that of the older topology. Finally the thesis 

explores possible applications for the converter in power supplies, renewable energy and 

hybrid technologies.  
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CHAPTER I 

INTRODUCTION 

Power converters are ubiquitous. They condition the available power to be usable to any 

load. And with increasing consumption of electrical energy, high quality power 

converters are more important than ever.  

1.1 Definition of power quality 

Quality power in a very broad sense can be defined as electrical power supplied to a load 

as required by it – which could be a specified DC voltage or current, AC voltage or 

current at a particular frequency, a mix of both – within acceptable tolerances. Power 

quality measures quantify the deviation of supplied power from the ideal requirement. 

Some examples of power quality measures are power factor, total harmonic distortion, 

voltage sag, voltage flicker, voltage imbalance and frequency deviation. The definitions 

of these measures shall be discussed later.  

1.2 Need for high power quality, multi-quadrant converters 

The increasing use of high power converters, development of new kinds of applications 

and their interaction with the power utility grid pose design and operational challenges. 

These challenges need to be given a closer look to set design goals. 

______________ 

This thesis follows the style and format of IEEE Transactions on Industry Applications. 
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1.3 Problems arising from poor power quality 

The performance of electrical and electronic applications can be very sensitive to power 

quality measures. The applications themselves play a very important role in power 

quality issues. Poorly designed systems as well as non-linear devices starting from 

simple diodes introduce harmonics into the supply. Harmonics are sinusoidal currents or 

voltages at frequencies that are integral multiples of the design frequency of the 

system.
[1]

 They affect the system in a number of ways including the following. 
[2]

 

 Harmonics affect other sensitive loads connected to the point of common 

coupling, viz., the same voltage or current source 

 They may excite series or parallel resonances leading to high voltages or high 

currents 

 They overload the circuitry thereby reducing efficiency and life time 

 They reduce actual available power by two-thirds and also increase losses in 

switches 

 High neutral-earth voltages affect digital equipment and Local Area Networks 

The presence of harmonics decreases the power factor of the system. Low power factor 

reduces the real power available to the load and customers who draw power at power 

factor lower than 0.95 lagging stand to pay hefty penalties to the regulatory authority. 
[3]

 

These factors make high power quality a necessity. These converters should draw power 

at high power factors, introduce minimum amount of harmonics into the supply, provide 

minimum distortion power to the load and are better in efficiency.  
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1.4 Growth of renewable energy sources 

In addition to conventional energy sources like fossil fuels and nuclear power, renewable 

sources like wind and solar power plants feed into the utility grid. The renewable energy 

sector has been consistently clocking double-digit growth. 
[4]

 

Wind turbines and photovoltaic cells provide power at very little operational costs. 

Figure 1 discusses the different ways in which these renewable energy sources can be 

integrated with the electrical utility grid. The wind turbines are either connected to the 

generator through a gearbox, or it is directly connected to the generator and the AC 

output is processed by power conditioning converter circuits to produce useable power. 

Photovoltaic arrays on the other hand, produce a DC current which is processed by an 

inverter to produce AC voltage to synchronize with the utility grid.  

 

Figure 1: Power flow paths in wind and solar power generation 
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With increasing solar and wind energy input to the grid, even small percentages of 

harmonics could start making significant contributions to poor system performance. The 

solution to the integration problem of these sources to the grid is getting more complex 

because of the intermittent nature of their availability, geographic remoteness and the 

development of new grid systems like HVDC transmission lines.  

The new solution proposed needs to incorporate methods for the renewable sources to 

receive power for monitoring and control, during periods of zero production. This calls 

for a power converter with bi-directional capabilities.  

1.5 Dynamic loads and other special applications 

Electric hybrid vehicles have achieved tremendous technological development and 

immense popularity in recent years. These vehicles operate with dual power houses, an 

Internal Combustion Engine (ICE) and an electric motor with a battery for voltage input.  

During acceleration and normal cruising, the powers from the battery powered electric 

motor and the ICE are used to drive the vehicle. During deceleration, the braking power 

is regenerated and the energy is transferred to the battery. The power converter 

supplying power to the motor should be highly efficient and should have bi-directional 

capabilities for this to be possible. Besides hybrid electric vehicles, other applications 

like flywheel energy storage and regenerative braking systems employ similar 

techniques for power transfer in both directions.  
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Certain other applications are being developed which directly transfer power in both 

directions between an electric vehicle and the utility grid itself. Such vehicles are called 

Vehicle-to-Grid (V2G) cars, developed by the University of Delaware. 
[5]

 These are 

electric or plug-in electric hybrid cars but they are different in that they can also transfer 

power from the batteries in the car to the utility during times of peak power demand, as 

discussed in Figure 2. 

 

Figure 2: Flow of power in Vehicle-to-Grid cars 

 

These cars thus help to fill the power demand - supply gap in power and average out the 

daily demand curve. This means the converters on-board have to produce high quality 

AC power which can be synchronized to the grid.   
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1.6 Objective of the thesis 

The objective of this thesis is to propose a new topology and control methodology for 

high power AC-DC conversion. The thesis will first study existing topologies for AC-

DC power conversion and weigh the pros and cons of those circuits. A design example 

of one of the topologies will be simulated and the performance measures will be 

analyzed.  

The new topology proposed will provide a high power quality design under a range of 

operating conditions. It will also have bi-directional capabilities enabling the flow of 

power from the load side of the design to the source side. The proposed control 

methodology will eliminate significant amount of harmonics in the AC input current to 

the converter. The design will have multiple control variables for flexible control. The 

converter topology and the controller will be simulated for a design example and the 

performance measures will be compared with those of the previously existing topology. 

Potential applications for the new topology will also be explored.  

1.7 Literature survey 

The application notes from Magna-Power Electronics provide a description of the design 

and operation of a high power AC-DC converter. 
[6]

 Ned Mohan, Tore M. Undeland and 

William P. Robbins 
[2]

 study the different kinds of AC-DC conversion designs available, 

and also the IEEE standards for power quality measures like Total Harmonic Distortion 

(THD). Selective Harmonic Elimination (SHE) techniques to attenuate significant 
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harmonics are evaluated by Enjeti et al. 
[7]

 The design of input filters for PWM rectifiers 

is discussed by Zargari et al. 
[8]

 

1.8 Thesis outline 

Chapter I introduces the importance of power quality and the impact of modern 

applications on the power supply grid. It also speaks about the need for high power 

quality bi-directional converters for modern applications and the advantages those 

converters bring with them.  

Chapter II deals with a study of existing topologies for high power AC-DC conversion. 

It also discusses the regenerating capabilities and multi-quadrant operational capabilities 

of those designs.  

In Chapter III, an existing topology for high power DC power supplies with transformer 

isolation is analyzed, simulated and its performance is studied, specifically with respect 

to measures such as THD and power factor.  

In Chapter IV, the new topology for the power converter is described; its operation in 

both first and fourth quadrants is studied. This chapter also introduces the control 

techniques and switching algorithms used in the converter.  

Chapter V deals with a design example and simulation results for the first and fourth 

quadrant operations, along with a comparison with the older topology.  
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Chapter VI concludes the thesis with a summary and also by discussing potential 

applications for this topology. 
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CHAPTER II 

HIGH POWER AC-DC CONVERSION TOPOLOGIES 

Since alternating current is the form in which electrical power is universally supplied, a 

rectifier also is a universally used power converter circuit. 

2.1 Rectifiers introduction 

Rectification converts AC power, usually supplied at 50/60 Hz, into a DC voltage 

specified by the load, as represented in Figure 3.  

 

 

Figure 3: Rectifier function 

 

The ideal rectifier produces a totally ripple free DC output and introduces no harmonics 

into the AC supply system. The practical systems accomplish these functionalities –

within tolerances – by using various control techniques, input and output filters. 
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2.2 Multi-quadrant operation 

The objective of this thesis is to develop a rectifier with bi-directional capabilities. It 

means that the converter should be able to operate in more than one quadrant in the V-I 

plot. In this thesis, the quadrants are named as in Figure 4.  

 

Figure 4: Four quadrants of operation in the V-I domain 

 

There are three main types of rectifiers to provide a controlled DC voltage from an AC 

voltage source, based on the devices and control techniques used. They are 

 Line frequency uncontrolled rectifier, followed by a DC-DC converter 

 Line frequency phase controlled rectifier 

 PWM rectifier 

These rectifier types are to be studied with respect to power quality, hardware 

requirements (switches, output filters and EMI filters) and multi-quadrant capabilities.  
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2.3 Line frequency uncontrolled rectifier 

Line frequency uncontrolled rectifiers are inexpensive diode rectifiers which convert the 

input AC into DC in an uncontrolled way. The properties of the p-n junction diode are 

the only elements dictating the operation of the uncontrolled rectifier. There are two 

different types of uncontrolled rectifiers. They are  

 Half-bridge diode rectifier 

 Full-bridge diode rectifier 

A half-bridge diode rectifier, shown in Figure 5, uses just one diode for each phase of 

operation.  

 

 

Figure 5: Single-phase (a) and three-phase (b) half-bridge rectifiers 
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In the single-phase rectifier, only one half of the AC wave is rectified and the three-

phase rectifier output has a considerable ripple as shown in Figure 6.  

 

 

Figure 6: Input AC and output DC waveforms of a single-phase (a) half-bridge rectifier 

and a three-phase (b) half-bridge rectifier 

 

The biggest problem with half-bridge rectification is that it draws an average DC current 

from the AC supply voltage. This would drive any input transformer into saturation. 

This, combined with underutilization (only one half rectified) makes half-bridge 

rectifiers unsuitable for high quality power conversion.  

A full-bridge diode rectifier, however, rectifies both half cycles of the AC wave, 

providing a DC voltage that has a higher average value and lower ripple than the half-
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bridge configuration. The construction of single-phase and three-phase full-bridge 

rectifiers are given in Figure 7. 

 

Figure 7: Single-phase (a) and three-phase (b) full-bridge rectifiers 

 

The full-bridge converters do not suffer from the problem of drawing a DC average 

current. Nevertheless, they still have poor input current harmonics. This means they 

require heavy filters or special harmonic mitigation circuits 
[9]

 to reduce harmonic levels. 

Harmonics may also be reduced if diode rectifiers are used in special configurations like 

12 pulse and 18 pulse rectifiers. 
[10]

 

Diode rectifiers are not capable of multi-quadrant operation. They cannot reverse the 

direction of flow of current or the polarity of voltage and so they only operate in the first 

quadrant.  
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2.4 Line frequency phase controlled rectifier 

Line frequency phase controlled rectifiers employ thyristors for switches, as shown in 

Figure 8. Thyristors are line commutated devices which start conducting when a positive 

voltage is applied across it and an impulse is applied to the gate. They stop conducting 

current when the voltage across them becomes negative. They cannot be force 

commutated, which means they cannot be turned on and off at will.  

Phase controlled rectifiers control the output DC voltage by changing the phase angle at 

which impulses are applied to the gates of the thyristors. With increasing phase angle 

values, the DC voltage decreases. The DC voltage follows the relation 

𝑉𝑑𝑐 = 1.35 𝑉𝐿𝐿 cos ∝ 

 

Figure 8: Single-phase (a) and three-phase (b) line frequency phase controlled rectifiers 
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When the phase angle α increases beyond 90° the converter moves from rectifier to 

inverter mode with the output voltage reversing its polarity. But reversal of current is not 

possible because thyristors do not allow reverse flow of current. Thus the converter can 

operate in the first and the second quadrants.  

The displacement power factor of the converter is dependent on the phase angle. With 

increasing α, the symmetry of the input current waveform gets poorer and so does the 

power factor. Thyristor based rectifiers also suffer from commutation failure problems.  

2.5 PWM rectifiers 

PWM rectifiers are constructed using fully controllable switches that are gated using 

PWM signals. The PWM switching accomplishes mitigation of significant lower order 

harmonics. There are two types of PWM rectifiers 

 Voltage source PWM rectifier 

 Current source PWM rectifier 

A voltage source PWM rectifier, illustrated in Figure 9, offers resistor emulation 
[11]

 by 

controlling the switches and producing a converter input current has a near sinusoidal 

pulse-by-pulse average. The output of this converter is greater than the peak value of the 

input line voltage. The output voltage cannot be less than 2 times the input peak value. 

For this reason, this converter is also called a PWM boost rectifier.  
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Figure 9: Voltage source PWM rectifier 

 

In a current source PWM rectifier, shown in Figure 10, since IGBT‟s do not have reverse 

blocking capabilities the diodes are used to block the reverse voltage that appears at the 

output of the rectifier. The PWM signals applied maintain a constant current at the 

output, making the converter input current, pulses of a constant magnitude. Since the 

input current is a PWM signal, the lower order input current harmonics are eliminated. 

In this converter the output voltage is less than the input peak voltage so it is also called 

a PWM buck rectifier.  

Since these converters mitigate lower order harmonics, they require smaller filters and 

have better input power factor than uncontrolled rectifiers and phase controlled 

rectifiers.  
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Figure 10: Current source PWM rectifier 

 

PWM rectifiers can be made to operate as PWM inverters as well. They can be made to 

operate in all four quadrants by suitably adding reverse blocking switches.  

2.6 Chapter conclusion 

After the study of the different types of rectifiers, their performance characteristics, 

particularly the controllability of output voltage, distortion factor, displacement power 

factor and multi-quadrant capabilities are compared in Table 1. 
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Table 1: Comparison of different types of rectifiers 

 

 

Line frequency 

uncontrolled 

Line frequency 

phase controlled 

PWM rectifier 

Output voltage Uncontrollable Controllable Controllable 

Distortion factor High High Low 

Displacement power 

factor 

Low Dependent on α Low 

Multi-quadrant 

operation 

No 

Yes, 1
st
 and 2

nd
 

quadrants 

Yes, 1
st
, 2

nd
, 3

rd
 and 

4
th
 quadrants 

 

The PWM rectifier offers great flexibility and most degrees of freedom. The filtering 

requirements for the PWM rectifier are the least and they are capable of multi-quadrant 

operation. This makes the PWM rectifier a suitable candidate for the new topology being 

proposed.  
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CHAPTER III 

STUDY OF AN EXISTING TOPOLOGY FOR AC-DC POWER 

CONVERSION 

As discussed in the previous chapter, one of the converter types used for AC-DC power 

conversion is a line frequency uncontrolled rectifier. The system taken up for study is 

based on a line frequency uncontrolled rectifier. The circuit constitutes a diode rectifier 

followed by a DC-DC converter which creates a current source and a full-bridge 

converter to produce the voltage level demanded by the load, as illustrated in Figure 11.  

 

Figure 11: Block representation of an existing topology for AC-DC power conversion 

 

The full-bridge transformer isolation converter used is a current-fed converter. The 

advantages to using transformer isolation and current source are to be discussed.  
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3.1 Transformer isolation in converters 

The introduction of transformers into DC-DC converters is helpful in the following 

ways: 
[12]

 

 Transformers can serve as stages of voltage step-up / step-down, where very high 

ratios of stepping are needed. High ratios cannot be efficiently obtained only by 

duty ratio control  

 Transformers are a handy solution when complete electrical isolation between 

input and output is needed. Instead of using a bulky 60 Hz / 50 Hz transformer at 

the AC side, smaller high frequency transformers can be used in the converter 

stage 

 Multiple winding transformers are used in multi-output DC-DC converters 

Whenever power transformers are employed, the average of the voltage across the 

transformer must be zero. If there is a non-zero DC component in the voltage, the 

unidirectional magnetic field will saturate the transformer core, which will ultimately 

result in short-circuiting the source. The solution to this problem is current-fed 

converters. Transformers in current-fed converters are driven by ampere-turns rather 

than volt-seconds. This makes saturation of the transformer core, a distant possibility. 
[6]
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3.2 Current-fed full-bridge converters 

 

 

Figure 12: A current-fed full-bridge DC-DC converter 

 

The full-bridge DC-DC converter shown in Figure 12 has a current source for the input 

and the transformer has a voltage ration of 1: n. The secondary side of the transformer 

has a diode H-bridge and the load side has an output capacitor. The output of the 

converter shown above is controlled by changing the ON time of the switches S11 

through S14. The resulting current pulses are stepped up or down in magnitude, 

depending on the ratio n. The pulses are rectified by the diode bridge and averaged to 

produce an output current, as demanded by the load. It must be made sure that S11 & S13 

or S12 & S14 are not open simultaneously since it will result in the current source getting 

open circuited. The preferred dead time of a current-fed converter is short circuit. Dead 
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time, if needed, is provided by shorting either one or both of the arms of the primary side 

bridge. 

3.3 Existing topology for current-fed transformer isolated AC-DC conversion 

The current source in the current-fed converter has to be created from a voltage source, 

since current sources are not commonly available. This can be done by employing 

choppers or buck converters. The overall system consists of three components, as 

illustrated in Figure 13: 

• A three-phase diode rectifier 

• A poly-phase chopper to produce the current source 

• A current source full-bridge DC-DC converter 

 

 

Figure 13: Current-fed full-bridge AC-DC converter with three-phase AC supply 
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The poly-phase (three-phase in this example) chopper produces a constant current from 

the constant voltage output of the uncontrolled rectifier, the maximum value of current 

being limited by the transformer and switch ratings. Using an m-section poly-phase 

chopper reduces the actual switching frequency m-fold from the required switching 

frequency. The switching pulses of the switches are displaced by 
360

𝑚
 degrees. This also 

reduces the input filter requirements of the chopper.  

PWM gating pulses are applied to the switches S11 through S14 to produce current pulses, 

the average value of which is dictated by the output voltage demanded by the load. The 

inverter frequency is transparent to the output terminals. The control emphasis of the 

converter can be placed both on the DC-DC converter and the PWM control of the full-

bridge.  

For purposes of analysis, the full-bridge converter can be imagined to be a simple buck 

converter, as given below in Figure 14. 

 

 

Figure 14: Full-bridge converter modeled as a buck converter for analysis purposes 
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For the buck converter modeled above, duty cycle is defined as the on time ratio of the 

switch D. 

Output voltage of the converter when the duty cycle is 1 = Idc R 

Output voltage of the converter when the duty cycle is D = Idc D R 

If the duty cycle is expressed in terms of the phase angle φ, for which duration the 

switch is on during a positive or negative half cycle, 

𝐷 =  
𝜑

𝜋
 

𝑉𝑜𝑢𝑡 =  
𝜑

𝜋
𝐼𝑑𝑐𝑅 

The gating pulses for the switches S11 through S14 are as given below in Figure 15. The 

example shown is for a duty cycle of 33%. For one-third of the switching cycle, the 

switches are operated to supply the input current to the transformer. For the remaining 

two-thirds, the first arm of the H-bridge containing the switches S11 and S13 is short 

circuited and the current flow is uninterrupted. In other words, this period is called dead-

time, the duration of which is dependent on the output voltage as demanded by the load.  
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Figure 15: Gating pulses of full-bridge inverter switches 

3.4 Design example 

A design example for the topology will be discussed with the following specifications.   

            Vinput  = 1400 V, line-line rms, three-phase, 60 Hz 

           Output power = 900 kW max. 

                      Output voltage  = 5 kV max. 

Inverter switching frequency  = 800 Hz 

Number of phases in multiphase chopper = m = 3 

Thus, in the per unit system, Pbase = 900 kW; Vbase = 1400/3; Zbase = 2.18Ω; fbase = 60 Hz 

The DC link current ripple is set at 3 A at full load and DC output voltage ripple, at 3%. 
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The chopper frequency is set at 2400 Hz, three times the inverter frequency. This means 

each of the three-phase chopper switches has to operate at 800 Hz. The minimum duty 

cycle of inverter switches is set at 33% to reduce the size of the DC link inductor.  

To design the output filter components for the uncontrolled rectifier, the minimum value 

of inductor required to maintain continuous conduction and the capacitor required to 

filter out the 360 Hz component of the DC output are to be calculated.  

𝐿𝑚𝑖𝑛 =
0.0129 𝑉𝐿𝐿

𝜔𝐼𝑑,𝑎𝑣
 

𝐶 =
𝐼𝑑,6

6𝜔𝑉𝑑 . 𝑅𝐹
 

The DC output voltage from an uncontrolled rectifier is given by the expression 

𝑉𝑑 = 1.35 𝑉𝐿𝐿 

           = 1890 V  

Assuming 60 A to be the lower limit of DC link current, the duty cycle of the chopper 

turns out to be 0.776. From these values, the inductance and capacitance are calculated 

to be  

     Lmin =1028.9 μH = 0.1779 p.u. 

         C =701.75 μF = 1.73p.u. 

The DC link inductor is designed to give a ripple current of 3 A, when the duty cycle of 

the inverter is 33%.  
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𝐿𝑑𝑐

𝑑𝑖

𝑑𝑡
= 𝑉𝑑 = 1890 

That gives an Ldc value of 262.5 mH.  

     Ldc = 0.2625 H 

         Lchopper = Ldc  
1

𝑚
 

          = 87.5 mH = 15.13 p.u. 

The output capacitor is designed to provide a voltage ripple of 3%.  

                 Load voltage  = 5 kV 

Load current at full load  = 900 k / 4690.98 

= 180 A 

                  Voltage ripple  = 3% of 5 kV 

                                             𝐶
𝑑𝑣

𝑑𝑡
= 𝑖 

             C = 500 μF = 2.434 p.u 

The input current to the converter has harmonics starting from the 5
th

 harmonic (300Hz). 

So the input low pass LC filter and the RC damper are made to resonate at 150 Hz.  

𝑓𝑟 =
1

2𝜋 𝐿𝑓𝐶𝑓

 

𝑓𝑑 =  
1

2𝜋𝑅𝑑𝐶𝑑
 

Lf  = 3.25 mH  = 0.56 p.u.  

Cf   = 346.4 μF  = 3.51 p.u. 
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Cd   = 173.2 μF  = 7.02 p.u.  

Rd   = 6.13 Ω  = 2.81 p.u 

3.5 Simulation and results 

The designed converter is constructed in PSIM and the circuit is digitally simulated with 

a step-size of 10 μs. Besides the converter‟s performance in delivering the specified 

output voltage, the input current harmonic profile and the input power factor are also 

studied.  

The simulated waveforms for the DC link current and the DC output voltage at the full 

load conditions are given in Figure 16.    

 

 

 

Figure 16: DC link current and converter DC output voltage with 3% ripple, at full load  
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The input current to the converter is analyzed in the frequency domain in Figure 17. The 

Total Harmonic Distortion (%THD) is calculated to be 73.5% for the unfiltered input 

current.  

 

 

 

Figure 17: Converter AC input current in the frequency domain, filtered and unfiltered 

currents 

 

To perform a Fourier analysis, the line current drawn from the mains can be expressed as 

𝑖𝑠 =   2 𝐼𝑠𝑓  𝑠𝑖𝑛(𝜔𝑓  𝑡 – 𝜑𝑓) +    2

ℎ≠1

 𝐼𝑠ℎ 𝑠𝑖𝑛(𝜔ℎ  𝑡 – 𝜑ℎ) 
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where 𝐼𝑠𝑓  is the rms of the fundamental component of the current and 𝐼𝑠ℎ is the rms of 

the h-harmonic component.  

Harmonic distortion current (rms) is given by the expression 

                                        𝐼𝑑𝑖𝑠 =    𝐼𝑠ℎ
2

ℎ≠1   

The percentage total harmonic distortion of current can be expressed as  

% THD = 
𝐼𝑑𝑖𝑠

𝐼𝑠𝑓
∗ 100 % 

The power factor is then calculated as 

pf = 
1

  1+𝑇𝐻𝐷2 
𝑐𝑜𝑠𝜑 

where cos φ is the displacement power factor of the input line current. 

Table 2 in the following page, gives the significant harmonic components of the 

converter input current normalized with respect to the fundamental component, for 

different load levels. The total harmonic distortion of the input current of the converter 

and hence the power factor are also calculated. The lowest order harmonic is the 5
th

 

harmonic and the triplen harmonics are absent.  
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Table 2: Table of converter input current harmonics, normalized with respect to the 

fundamental component 

DC link 

current 
Converter input AC current harmonics, normalized to the fundamental 

Load 

level 

(p.u) 

Fundamental 

(60) 

5th 

(300) 

7th 

(420) 

11th 

(660) 

13th 

(780) 

17th 

(1020) 

19th 

(1140) 

23rd 

(1380) 

25th 

(1500) 

29th 

(1740) 

1 
1 0.30 0.41 0.43 0.29 0.02 0.08 0.05 0.04 0.000 

0.73 
0.850 0.29 0.37 0.46 0.31 0.03 0.08 0.04 0.02 0.000 

0.51 
0.588 0.30 0.34 0.34 0.22 0.07 0.08 0.03 0.02 0.011 

0.375 
0.433 0.32 0.32 0.26 0.17 0.09 0.07 0.02 0.01 0.012 

0.28 
0.331 0.30 0.28 0.20 0.16 0.09 0.06 0.02 0.01 0.015 

0.225 
0.263 0.24 0.22 0.16 0.13 0.08 0.05 0.02 0.01 0.012 

0.18 
0.210 0.20 0.18 0.13 0.11 0.06 0.04 0.02 0.01 0.009 

0.17 
0.199 0.18 0.17 0.13 0.11 0.06 0.04 0.02 0.01 0.010 

0.14 
0.162 0.15 0.14 0.11 0.09 0.05 0.04 0.01 0.01 0.007 

0.125 
0.139 0.13 0.12 0.09 0.08 0.05 0.03 0.01 0.01 0.006 

 

 

Figure 18 gives the THD of the unfiltered converter input current and the distortion 

factor, for different load levels. The displacement power factor for an uncontrolled 

rectifier is high, above 0.99 for all ranges of load. So the distortion factor reflects the 

overall power factor also, since power factor is only the product of distortion factor and 

displacement power factor. From the figure, we observe that the minimum THD 

achieved is 73.5% and the power factor is 0.806 at full load.  
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Figure 18: THD and distortion factor of the unfiltered converter input current for 

existing topology 

3.6 Chapter conclusion 

The topology studied in this chapter is a line frequency uncontrolled rectifier followed 

by a current-fed full-bridge DC-DC converter. The design example is simulated using 

PSIM and the performance characteristics such as input power factor and total harmonic 

distortion are observed. The converter draws a high amount of lower order harmonics 

and as a result the input power factor is low. Power factor correction could require heavy 

filters or additional power factor correction circuits. Any alternative topology proposed 

should include solutions to these problems.  
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CHAPTER IV 

PROPOSED TOPOLOGY FOR HIGH POWER AC-DC 

CONVERSION 

The line frequency, uncontrolled rectifier discussed in the previous chapter was proven 

to be of low power quality, as a result poor efficiency and as being overloading the 

circuitry. To address these problems and also to make the topology operational in all the 

four quadrants of the V-I plane, the following improvements are proposed.  

1. The line frequency uncontrolled rectifier has three power conversion stages. The 

new topology will have a reduced number of power conversion stages by 

combining the front end uncontrolled rectifier and the DC-DC converter forming 

a controlled rectifier thereby improving efficiency 

2. The controlled rectifier is to be switched at a high frequency, leading to 

mitigation of lower order harmonics. This calls for a PWM rectifier with IGBT‟s 

3. The IGBT switches are to be accompanied by reverse blocking switches enabling 

the reversal of voltage and current thereby making four quadrant operation 

possible 

The proposed converter will feature an AC input LC filter to attenuate the higher order 

harmonics stemming from the switching of PWM rectifier.  
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4.1 Description of proposed topology 

The proposed topology, shown in Figure 19, consists of an IGBT based fully controlled 

rectifier forming a DC link which supplies a medium frequency transformer isolation 

full-bridge DC-DC converter.  

 

 

 

Figure 19: Proposed topology for multi-quadrant high power AC-DC converter 

 

The switches in the fully controlled rectifier are operated to produce a constant DC 

current in the DC link inductor. This generates the current source needed to feed the 

current-fed full-bridge converter, which in turn produces the DC output voltage at the 
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output capacitor. The rectifier has a front end LC filter with an RC damper to attenuate 

the harmonics.  

4.2 Multi-quadrant capabilities 

The circuit is fully capable of operating in all four quadrants of the V-I plane. During 

forward operation, the fully controlled rectifier is supplied with PWM gating signals by 

the controller to produce a constant DC link current. This current is fed to the 

transformer through the full-bridge, whose switches are controlled to provide a constant 

DC voltage at the load. The switches connected in opposite fashion only serve to block 

the reverse voltage during forward operation and they are either switched on or switched 

off continuously depending on their orientation.  

During regenerative operation, the oppositely connected switches are controlled. The 

full-bridge converter operates the same way in the reverse direction, controlling the DC 

link current. The fully controlled rectifier produces PWM voltages which when passed 

through the filter, produce sinusoidal voltages.  

4.3 Control algorithm: Selective Harmonic Elimination and programmed PWM 

In calculating the switching angles for the PWM rectifier/inverter, two methods may be 

used. They are (a) Carrier modulated sine wave PWM and (b) Programmed PWM. Of 

these, the programmed PWM method employs Selective Harmonic Elimination (SHE) to 
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selectively eliminate lower order harmonics to zero. The programmed PWM method has 

the following advantages over carrier modulated sine wave PWM.
 [7]

  

 Reduction in switching frequency for the same performance, thereby reducing 

switching losses  

 High voltage gain through overmodulation 

 Precalculation of switching angles gives a lookup table, eliminating the need for 

online computations. This also eliminates the need for high speed 

microprocessors.  

In the programmed PWM technique, the harmonic elements in the Fourier series are 

mathematically eliminated to derive solutions for switching functions. Among the many 

programmed PWM techniques, the TLL technique aims to optimize line-line waveforms 

whereas the TLN techniques optimize line-neutral waveforms. There are two TLN 

techniques: TLN1 has switching angles spread over 90° and TLN2, over 60°. TLN2 

technique is used because, with folding symmetry, the switching angles are spread over 

120°, the duration for which each switch conducts in a three-phase rectifier or inverter. 

The TLN2 technique also has a high voltage gain among all the techniques available.  

The TLN2 technique used in the proposed converter has a PWM switching function with 

20 switching angles. The switching function is illustrated in Figure 20. The leading edge 

of the first PWM pulse coincides with 30° of the phase voltage and the trailing edge of 

the twentieth pulse coincides with 150° of the phase voltage.  
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Figure 20: Programmed PWM switching function with N = 20 

 

The Fourier coefficients of the TLN2 switching pattern are given by  

𝑎𝑛 =  
4

𝑛𝜋
  1 + 2  (−1)𝑘  cos(𝑛 𝛼𝑘)

𝑁

𝑘=1

  

                                                     𝑏𝑛 = 0  

The switching angles α1 through α20 are found out after equating all 𝑎𝑛  = 0, thereby 

equating all harmonic elements to zero. 

 
−2 cos 𝛼1 ⋯ 2(−1)𝑁 cos 𝛼𝑁

⋮ ⋱ ⋮
−2 cos(𝑥2)𝛼1 ⋯ −2 (−1)𝑁cos(𝑥2)𝛼𝑁

 =   

𝜋𝑎1

4
+ 1

…
−1

  

N = 20; x2 = 3N – 1 = 59 
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Solving these non linear equations
 [13],[14]

 for all values of 𝑎1 between 0 and 1, sets of 

switching angles can be derived for each 𝑎1. The switching angles α1 through α20 are 

nonlinear functions of 𝑎1, let it be called the variable v. 

𝛼1 = 𝑓1(𝑣) 

  … 

  … 

𝛼20 = 𝑓20(𝑣) 

The solution trajectories for switching angles α1 through α20 for varying v are given in 

Figure 21. The nonlinearities appear towards the very end, near v = 1. Neglecting the 

nonlinearities, a lookup table for each switching angle α1 through α20 can be generated 

for each value of v.  

 

Figure 21: Switching angles as functions of variable 'v' 
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The switching angles α1 through α20 are mirrored on 90° of the phase voltage to produce 

the angles α21 through α40. 

The switching frequency of this technique is given by  

𝑓𝑠 =  2𝑁 + 1 𝑓 

where N = 20, f = 60 Hz; giving a switching frequency of 2460 Hz.  

4.4 First quadrant operation 

In the first quadrant of the V-I plane, the converter transfers power from the source port 

to the load port. The front end fully controlled converter acts as a rectifier providing a 

DC link current. In this mode, there are two control variables and emphasis can be 

placed on either or both variables: 

 The variable „v‟ as discussed before, determines the PWM switching function for 

the rectifier 

 The duty cycle of the full-bridge DC-DC converter 

Figure 22 describes the controller of the converter in the first quadrant operation. The 

switching angles for each switch are individually generated after calculating the 60 ms 

block average (per AC cycle) of the DC link current. The switching angles are converted 

into switching time instances. The controller then keeps track of time and it turns on or 

off the switch at these switching time instances.  
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4.5 First quadrant controller 

 

Figure 22: Block diagram of controller for first quadrant operation of converter   

 

The proposed converter has two loops, a voltage loop and a current loop. The voltage 

loop compares the output voltage of the converter with the reference voltage and based 

on the error, generates the current reference. The duty cycle of the full-bridge converter 

is also determined by this loop. The voltage loop uses a simple proportional feedback 

system. This is also the faster of the two loops, enabling quicker settling times.  

The inner current loop generates the switching functions for the rectifier switches to 

track the current reference, as generated by the voltage loop. The current loop uses a 

variable step-size control to incrementally change the variable „v‟ depending on the DC 

link current. The algorithm is described in Figure 23 in the following page. 
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No Yes No 

No Yes 

Yes 

Generate gating 

signals for switches S1 

to S6 

Calculate switching angles 

α1to α40 and convert them 

into switching time instances  

Reduce ‘v’ by 1% Reduce ‘v’ by 0.01% 
Increase ‘v’ by 1% Increase ‘v’ by 0.01% 

idc > iref by 

more than 

20% of iref 

idc <  iref by 

more than 

20% of iref 

Calculate idc 

average over 

one cycle 

Compare 

with iref 

idc > iref 

Read 

instantaneous 

idc 

Figure 23: Algorithm to generate PWM switching functions for rectifier 
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When the PWM switching functions are generated and the gating signals are applied to 

the switches, there are instances when all the switching functions have zero value. These 

states are called zero states. But we have a DC link inductor acting as a current source 

which cannot be open circuited. To prevent that, we turn on one leg of the fully 

controlled rectifier which provides a freewheeling path for the inductor current. A 

particular leg is turned on only when the phase connected to that leg is not one of the 

two phases carrying the line current. The freewheeling paths are chosen in the following 

fashion, depicted in Figures 24, 25 and 26. The switching instances for this additional 

switching are generated by digital logic circuits.  

 

 

Figure 24: Choice of freewheeling path, angles with respect to phase „a‟: 0° to 30°,      

150° to 210°, 330° to 360° 
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Figure 25: Choice of freewheeling path, angles with respect to phase „a‟: 90° to 150°, 

270° to 330° 

 

 

 

Figure 26: Choice of freewheeling path, angles with respect to phase „a‟: 30° to 90°, 

210° to 270° 
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4.6 Boosting action in full-bridge converter in the first quadrant  

As discussed before, the switches in the primary side of the full-bridge converter are 

controlled (duty cycle = D) to produce a constant DC voltage. The dead states in the 

inverter are provided by shorting one of the legs of the bridge since it is a current-fed 

inverter as against opening all switches in the case of a voltage fed inverter. The inverter 

circuit can be redrawn as below in Figure 27 for purposes of analysis.  

 

 

Figure 27: Full-bridge converter drawn as a boost converter 

 

From the circuit it can be seen that the inductor and capacitor, in combination with the 

primary side switches and secondary side diodes, form a boost converter.  The inductor 

charges during the dead states (D‟) and discharges during the power transfer state (D). 

This boosts the output voltage by a factor of  
1

1−𝐷 ′
. Alternatively, the DC link current is 

boosted since the energy transfer to the inductor happens for a duration D‟.  
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𝑉𝑜𝐼𝑜 =  𝑉𝑖𝑛 𝐼𝑖𝑛  

     𝑉𝑜 =
𝑉𝑖𝑛

1 − 𝐷′
 

             𝐼𝑜 =
𝑉𝑖𝑛

 1 − 𝐷′ 𝑅
 

⟹        𝐼𝑖𝑛 =
𝑉𝑖𝑛

 1 − 𝐷′ 2𝑅
 

The DC link current varies non-linearly against duty cycle D, for a constant v.  

4.7 DC link inductor modes of operation 

The switches in the rectifier and inverter operate independently to produce constant DC 

link current and DC output voltages. This gives rise to four modes of operation of the 

inductor, as illustrated in Figure 28.  

When both the source and the load are connected to the DC link inductor as in Figure 

28(a) it is the “Direct power transfer mode” wherein power from the source is directly 

transferred to the load.  

When the source is connected to the inductor and the load side is shorted as in Figure 

28(b) the inductor current rises, increasing the energy in the inductor. This is the 

“Inductor charging mode”. 
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Figure 28: DC link inductor modes of operation 

 

When the source is disconnected from the inductor and the load is supplied by the 

inductor as in Figure 28(c) it is called “Inductor discharging mode”. 

When both the source and the load are disconnected from the inductor as shown in 

Figure 28(d), the inductor current freewheels through the rectifier and inverter switches. 

This is called the “Inductor freewheeling mode”.  

4.8 Fourth quadrant operation 

To operate in the fourth quadrant of the V-I plane, the converter reverses the direction of 

current but the direction of voltage remains the same as the first quadrant. In place of the 
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load, there is a DC voltage source in the form of a battery, a dynamic load or a 

renewable energy source such as fuel cell.  

The switches in operation are the same as in the first quadrant, in the full-bridge rectifier. 

The IGBTs on the secondary side of the full-bridge converter are switched to produce a 

constant DC link current. The IGBTs on the primary side are not gate grounded and their 

body diodes rectify the square wave form at the primary side of the transformer.  

The top switches in the front end fully controlled rectifier, shown before in Figure 19, 

which served the purpose of reverse blocking in the first quadrant operation, are now 

supplied with the programmed PWM switching function.  

The duty cycle of the full-bridge converter is the only available control variable in fourth 

quadrant operation and the front end programmed PWM inverter is operated supply the 

maximum average voltage at the AC side, meaning that the variable v is always set at 1. 

The AC side filter eliminates the higher order harmonics to provide a cleaner 

fundamental frequency wave.  

In case of synchronization applications with the utility grid, the converter starts 

transferring power as soon as the instantaneous phase voltage at the AC side of the 

converter exceeds the instantaneous phase voltage of the three-phase supply. The AC 

filter now operates with the source impedance of the utility grid as the load.  
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4.9 Fourth quadrant controller 

The controller block diagram of the converter for fourth quadrant operation is given 

below in Figure 29.  

 

 

Figure 29: Controller block diagram for fourth quadrant operation 

 

The controller has only one feedback loop, the current loop. The current reference 

generator calculates the DC link current with is then fed to the inverter gating signal 

generator which compares it with the feedback DC link current and the error is used to 

calculate the duty cycle of the full-bridge converter. The programmed PWM generator 

produces PWM switching functions to maximize the AC voltage at the output. 
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The switches in the front end fully controlled inverter that are directed to drive current 

from the DC link current to the AC side are operated by the programmed PWM 

switching functions generated by the controller. The TLN2 programmed PWM 

waveform with 20 pulses per cycle is given again in Figure 30 below for reference. 

  

 

Figure 30: Programmed PWM switching function, reproduced 

 

When the programmed PWM switching function for one of the phases is in the +1 (high) 

state, the top switch of the corresponding bridge is turned on. When the gating signal is 

in the -1 (low) state, the bottom switch is turned on. The description of switches selected 

is given in Figure 31 in the following page. 
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Figure 31: Programmed PWM switching functions in the inverter switches, fourth 

quadrant operation   

 

As in the first quadrant operation, the switches in the front end converter are also used in 

freewheeling mode to allow the DC link current to flow continuously during dead states. 

The switches are chosen based on the phase A reference angle. During any instance, the 

one bridge which does not carry the line current is chosen as the freewheeling path.  
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4.10 Full-bridge converter operation in fourth quadrant 

As discussed before, the gates of the switches on the full-bridge primary side S11 through 

S14 are grounded and the body diodes produce the DC link current I, shown in Figure 32.  

 

 

 

Figure 32: Full-bridge converter with direction of current I in the fourth quadrant 

 

The duty cycle of switches S21 through S24 is calculated by the controller to produce a 

constant DC link current. The algorithm used to calculate the duty cycle of the switches 

is given in Figure 33, in the following page.  
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Generate gating pulses for 

S21 through S24 for the duty 

cycle calculated 

 

Bound the duty cycle 

calculated with the limits d 

= 0.01 and d = 0.99 

Reduce duty by 0.5% Reduce duty by 0.01% 
Increase duty by 0.5% Increase duty by 0.01% 

idc > iref by 

more than 

20% of iref 

idc <  iref by 

more than 

20% of iref 

No Yes No Yes 

No Yes 

Calculate idc average 

over one cycle (1.25 

ms block average) 

Compare 

with iref 

idc > iref 

Read 

instantaneous 

idc 

 

Figure 33: Algorithm to generate gating pulses for the full-bridge converter in fourth 

quadrant operation 
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But the switches S21 through S24 also require additional switching in order to keep the 

DC link inductor current freewheel through the body diodes of S11 through S14 without 

interruption, during the dead states. This is accomplished by grounding the two bottom 

switches, S22 and S24. The logic circuit used is a NOR circuit, which produces a “TRUE” 

state when both the positive half cycle switches and the negative half cycle switches tend 

to be off. The logic circuit is given in Figure 34.  

 

 

 

Figure 34: Logic circuit for full-bridge converter gating signals 

 

 

4.11 Chapter conclusion 

The construction, operation and control of the multi-quadrant high power quality AC-

DC converter were discussed in this chapter. The algorithms used to generate the 

switching signals were also explained. In the following chapter, a design problem is 

discussed, simulated and the results will be examined.  
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CHAPTER V 

DESIGN EXAMPLE AND SIMULATION RESULTS 

In this chapter the design of the multi-quadrant high power quality AC-DC converter and 

the controller discussed previously are tested using a design example. 

5.1 Design example 

The following specifications are selected as the design parameters. 

Three-phase supply Vinput = 1400 V, line-line rms at 60 Hz 

Output power         = 900 kW  

Output voltage        = 4.5 kV 

Inverter switching frequency = 800 Hz 

Minimum duty cycle of current-fed converter = 33% 

In the per unit system, Pbase = 900 kW; Vbase = 1400/3; Zbase = 2.18Ω; fbase = 60 Hz 

Performance specifications at full load:  

 DC link current ripple = 3 A 

 DC output voltage ripple = 3% 

 Total Harmonic Distortion < 5% (IEEE 519 standards) 

 Input power factor > 0.95 lagging (DoE standards) 

The DC link inductor, DC output capacitor and the AC side low pass filter are the 

components to be designed and the converter is to be simulated in both the first and the 

fourth quadrants.  
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5.2 DC link inductor design 

From the Fourier analysis of the programmed PWM switching function applied to the 

fully controlled rectifier, the rectified output voltage has a DC component and higher 

order harmonics with the first significant component being the 61
st
 harmonic. At the 

other side of the inductor, the inverter switches operate at 800 Hz square wave, 

reflecting on the inductor as 1600 Hz. To calculate the average voltage across the 

inductor as applied from the source, the average of the uncontrolled rectified wave is 

impressed against the programmed PWM function as illustrated in Figure 35. 

 

 

 

Figure 35: Calculation of average voltage across DC link inductor   
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From the diagram, the average voltage is calculated to be 

𝑉𝑎𝑣𝑒 =
3

𝜋
 𝑠𝑖𝑛 𝜔𝑡  𝑑 𝜔𝑡  .

2

(𝜋 3 )
  2 . (1400)

2𝜋
3

𝜋
3

𝜋
2

𝜋
6

𝑠𝑖𝑛 𝜔𝑡  𝑑 𝜔𝑡  

                              =  
3 3

2𝜋
.

3

𝜋
.  2 . (1400)  

        Vave   = 1563.65 V 

When the full-bridge converter switches are shorted to provide dead states in the current-

fed converter, the inductor current increases because of energy transfer from the rectified 

DC output. The minimum duty cycle of the full-bridge converter is set at 33% as before. 

So the inductor is applied to the load for a minimum of 33% duty cycle of 1600 Hz. This 

means the inductor gets charged for a maximum of 66% duty cycle of 1600 Hz. 

                         𝐿
𝑑𝑖

𝑑𝑡
=  𝑉𝑎𝑣𝑒  

                               𝐿 = 1563.65 
2

3
 .

1

1600
.
1

3
 

      L = 217.2 mH = 37.56 p.u. 
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5.3 Output capacitor design 

The full-bridge converter also acts to boost the DC voltage providing a maximum boost 

ratio of 3. This results in a theoretical maximum DC output voltage of 3*1563.65, i.e. 

4690.98 V. 

Load voltage    = 4690.98 V 

Full load    = 900 kW 

Load current at full load  = 900 k / 4690.98 

= 191.86 A 

Voltage ripple              = 3% of 4690.98 V 

                                            𝐶
𝑑𝑣

𝑑𝑡
= 𝑖 

                                                  𝐶 = 191.86 
2

3
 .

1

1600
 .

1

0.03 ∗ 4690.98
 

            C = 568.2 μF = 2.14 p.u. 

5.4 AC side filter design 

The AC side low pass filtering is accomplished by an LC filter with an RC damper to 

attenuate resonance oscillations. Since the first significant harmonic at the AC side, 

according to the Fourier analysis, is the 61
st
 (3660 Hz) the input LC filter is made to 

resonate at 1800 Hz, the 30
th

 harmonic. The RC damper parallel to the filter capacitor 

also resonates at 1800 Hz. The designed components are listed in the following page. 
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𝑓𝑟 =
1

2𝜋 𝐿𝑓𝐶𝑓

 

𝑓𝑑 =  
1

2𝜋𝑅𝑑𝐶𝑑
 

 

Lf  = 0.65 mH  = 0.112 p.u.  

Cf   = 12.4 μF  = 98.13 p.u. 

Cd   = 124 μF  = 9.813 p.u.  

Rd   = 0.725 Ω  = 0.333 p.u 

5.5 Simulation tools and digital implementation 

The design example would be simulated digitally on a PSIM 6.0 platform integrated 

with a C++ compiler. The designed components and other circuits would be constructed 

in PSIM and the controller would be digitally coded in the C++ compiler. The compiler 

generates a DLL file which handshakes with the PSIM to simulate the circuit at the 

specified time step size, as illustrated in Figure 36.  

 

 

Figure 36: Simulation environment and elements 

 



   59 

 

5.6 Simulation results for first quadrant operation 

The converter is simulated in the first quadrant for different load conditions. In addition 

to testing the operation of the converter for various reference voltages and current, the 

profiles of various input current harmonics and input power factor are also studied. The 

time waveforms of currents and voltages at full load condition are produced here.  

Figure 37 gives the DC link current at full load condition. This happens when the duty 

cycle of the full-bridge converter is set at the minimum value of 33%.  

 

 

 

 

 

Figure 37: Full load DC link current when inverter duty cycle = 33% 
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Figure 38 shows the DC link current profile much closer; describing the DC current 

ripple performance which satisfies the design condition of 3 A. Figure 39 verifies the DC 

output voltage at the output capacitor to be having a voltage ripple of 3%. 

 

 
Figure 38: DC link inductor current ripple = 3 A at full load 

 

 

Figure 39: DC output voltage with voltage ripple = 3% 
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The variation of the DC link current is found to be linearly varying with respect to v for 

different duty cycles of the full-bridge converter and the different operating points of the 

converter lie within the two lines in Figure 40. The current ripple performances across 

the board for different v are also analyzed in Figure 41 below.  

 

 
Figure 40: DC link current with respect to v 

 

 

 

Figure 41: Current ripple with respect to v 
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The purpose of this converter is to deliver high power quality. The controller generates 

the switching functions as given in Figure 42 and the input phase current is illustrated. 

The AC side input current both unfiltered and filtered are given in Figure 43. The 

unfiltered programmed PWM current pulses have a THD of 60.7% and the filtered AC 

current has a THD of 2.0%. 

 

 

Figure 42: Switch S1 gating function, switch S4 gating function and input phase A 

current 
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Figure 43: AC input current filtered (THD = 2.0%) imposed against programmed PWM 

current pulses (THD = 60.7%) at full load with v = 1 

 

The values of the first few significant harmonics starting with the 53
rd

 are given in Table 

3. The 61
st
 is the first significant harmonic at full load and lower orders get more 

prominent at lower loads. The profiles of the harmonics with respect to v are also given 

below in Figure 44. The harmonics are expressed as a percentage of the fundamental 

component.  
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Table 3: AC input current harmonics for different v 

 

v Fundamental 53
rd

 55
th
 59

th
 61

st
 65

th
 67

th
 

%THD 

(unfiltered) 

%THD 

(filtered) 

0.99 1 0 0 0.05 0.1 0.36 0.26 60.7 2.0 

0.9 
0.83 0 0 0.15 0.07 0.37 0.18 

73.7 4.0 

0.8 
0.67 0.04 0.05 0.21 0.06 0.33 0.13 

85.8 5.8 

0.7 
0.51 0.06 0.07 0.24 0.08 0.27 0.07 

99.5 7.9 

0.6 
0.37 0.04 0.07 0.23 0.09 0.19 0.03 

114.4 8.4 

0.5 
0.26 0.03 0.05 0.20 0.09 0.12 

0 134.0 11.4 

0.4 
0.17 0.02 0.05 0.15 0.08 0.06 

0 156.1 11.0 

 

 

 
Figure 44: Profile of significant harmonics against v 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0.4 0.5 0.6 0.7 0.8 0.9 0.99

H
ar

m
o

n
ic

s 
n

o
rm

al
iz

e
d

 t
o

 f
u

n
d

am
e

n
ta

l

Fundamental

53rd

55th

59th

61st

65th

67th



   65 

 

 
 

Figure 45: Input power factor of the converter for different v 

 

 

 

 

 

Figure 46: %THD of the input filtered current to the converter 
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As evident from Figure 45 giving the input power factor and Figure 46 giving the 

%THD of input current, the most favorable input power factor values occur above v = 

0.6 and the most favorable %THD values occur at v = 0.8 and above.  

5.7 Simulation results for fourth quadrant operation 

 

The converter is operated in the fourth quadrant using the respective control algorithm. 

The converter feeds AC current into the utility grid by means of programmed PWM 

currents filtered by the AC side filter. The source impedance of the utility grid is 

included into the simulation. The load is replaced by a constant full load DC voltage.  

The AC side phase current waveform at the converter end in the unfiltered form is 

produced in Figure 47. The unfiltered current has a THD of 136.4%. The fundamental 

component of the waveform is superimposed on the programmed PWM waveform.  
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Figure 47: Unfiltered AC phase current in fourth quadrant operation, fundamental 

superimposed 

The filtered phase current waveform is given in Figure 48. The current has a THD value 

of 11%. The frequency spectra of the unfiltered and filtered waveforms are given in 

Figure 49. While the programmed PWM controller selectively eliminates the lower order 

harmonics, the AC side input filter attenuates the higher order harmonics.  
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Figure 48: Filtered AC side phase current 

 

 

 

Figure 49: Frequency spectra of unfiltered and filtered AC side currents 
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Figure 50: Line voltage at source end - unfiltered (THD = 28.9%) and  

filtered (THD = 1.9%) 

Figure 50 gives the converter side line voltage and also the filtered line voltage. The 

input current THD values and input power factor for different values of DC link current 

are given in Table 4. 

 

Table 4: % THD and power factor of the converter in fourth quadrant operation 

DC link 

inductor 

current (p.u) 

Filtered 

current 

%THD 

Displacement  

factor 

Distortion 

factor 

Power 

factor 

1 11.00 0.9762 0.994 0.9703 

0.92 10.18 0.9754 0.9949 0.9704 

0.83 9.35 0.9728 0.9957 0.9686 

0.75 9.46 0.9701 0.9956 0.9658 

0.67 9.89 0.9673 0.9951 0.9626 

0.58 11.18 0.9603 0.9938 0.9543 
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5.8 Comparisons between existing and proposed topologies 

After studying the design and performance of the existing topology and the proposed 

topology for high power AC-DC conversion, the proposed topology is determined to 

have better performance features than the existing one as described in Table 5: 

Table 5: Comparisons between existing topology and proposed topology 

 

Characteristic Existing topology Proposed topology 

Number of power conversion 

stages 
3 2 

Number of active switches in 

front end 
12 12 

Multi-quadrant? No Yes 

Converter input current THD at 

full load 
73.5% 60.7% 

First significant harmonic 5
th
 61

st
 

Input filter size Larger 
Smaller than the existing 

topology by 10 times 

Unity power factor No Yes 

 

5.9 Chapter conclusion 

The proposed topology was simulated using a design example and it was determined to 

have performance superior to that of the existing topology. The improvements were done 

without increasing the number of active switches thereby improving efficiency. The 

input current THD values are only around 15% better but since the lower order 

harmonics are selectively eliminated, low pass filter requirements are an order of 

magnitude lesser.  
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CHAPTER VI 

CONCLUSION 

The converter topology proposed has the capabilities to provide high power quality and 

to operate in all four quadrants. These properties make it suitable for a variety of 

applications.  

6.1 Applications profile of the proposed converter 

 The converter operating in the first quadrant is a suitable candidate DC power 

supplies with isolation requirements 

 The converter may also be employed in high power DC motor drives, electrolysis 

applications, battery chargers, UPS and solar array simulators 

 The ability of the converter to transient into a different quadrant in the V-I plane 

quickly could be applied to technologies such as regenerative braking 

 The converter in fourth quadrant operates as an inverter with transformer 

isolation 

 The converter operating in the fourth quadrant is a suitable candidate for solar 

power grid integration 

 The front end fully controlled rectifier could be mirrored on the other side of the 

DC link inductor to form a matrix converter, making it suitable for AC motor 

drives and transformer emulation topologies. 
[15]
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 6.2 Summary of the thesis 

The emphasis on high power quality has gone up, alongside the ever increasing demand 

for high power converters. The development of renewable energy sources and hybrid 

technologies meant that converters should be bi-directional. These requirements were 

outlined in this thesis in chapter I. Chapter II focused on the available topologies for 

high power AC-DC conversion. Operation and performance characteristics of 

uncontrolled rectifiers, line frequency controlled rectifiers and PWM rectifiers were 

discussed. In chapter III an existing topology for high power AC-DC conversion is 

examined. The converter is simulated in PSIM and the performance characteristics like 

input power factor and THD are studied. An improved topology with less number of 

power conversion stages is proposed in chapter IV. The operation of the controller in the 

first quadrant and the fourth quadrant is studied. In chapter V, a 900 kW rated system is 

designed and simulated using PSIM. The input power factor and THD performance of 

the proposed converter was found to match the regulatory requirements, with a full load 

THD of 2.0%.  

Finally it was concluded that the proposed topology has better performance 

characteristics than the existing topology in all criteria studied. 
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APPENDIX A 

DIGITAL CONTROLLER PROGRAM FOR FIRST QUADRANT 

OPERATION 

#include <math.h> 

#include <stdio.h> 

#include <conio.h> 

 

__declspec(dllexport) void one (t, delt, in, out) 

 

double t, delt; 

double *in, *out; 

 

{ 

double vdc, idc, sp1, sp2, sp3, delv, vref; 

static double vl1 = 0.5, vl2 = 0.5, vl3 = 0.5; 

static double psp1 = -1, psp2 = 0, psp3 = 0; 

static double sw1, sw2, sw3, sw4, sw5, sw6; 

static double time1, time2, time3, time4, time5, time6; 

double oal1, oal2, oal3, oal4, oal5, oal6, oal7, oal8, oal9, oal10, oal11, 

oal12, oal13, oal14, oal15, oal16, oal17, oal18, oal19, oal20, oal21, oal22, 

oal23, oal24, oal25, oal26, oal27, oal28, oal29, oal30, oal31, oal32, oal33, 

oal34, oal35, oal36, oal37, oal38, oal39, oal40, twal1, twal2, twal3, twal4, 

twal5, twal6, twal7, twal8, twal9, twal10, twal11, twal12, twal13, twal14, 

twal15, twal16, twal17, twal18, twal19, twal20, twal21, twal22, twal23, twal24, 

twal25, twal26, twal27, twal28, twal29, twal30, twal31, twal32, twal33, twal34, 

twal35, twal36, twal37, twal38, twal39, twal40; 

double thal1, thal2, thal3, thal4, thal5, thal6, thal7, thal8, thal9, thal10, 

thal11, thal12, thal13, thal14, thal15, thal16, thal17, thal18, thal19, thal20, 

thal21, thal22, thal23, thal24, thal25, thal26, thal27, thal28, thal29, thal30, 

thal31, thal32, thal33, thal34, thal35, thal36, thal37, thal38, thal39, thal40; 

static double o0 = 1, o1 = 1, o2 = 1, o3 = 1, o4 = 1, o5 = 1; 

static double iref = 0, idcc1 = 0, idcc2 = 0, idcc3 = 0, idcav1 = 0, idcav2 = 

0, idcav3 = 0, vdcc = 0, vdcav = 0, avetime = 0; 

vref = in[0]; 

idc = in[1]; 

sp1 = in[2]; 

sp2 = in[3]; 

sp3 = in[4]; 

vdc = in[5]; 

avetime = avetime + 1; 

vdcc = vdcc + vdc; 

 

if (avetime == 100.0) 

   { 

    vdcav = vdcc/100.0; 

    vdcc = 0; 

    avetime = 0; 

    iref = iref + 0.005*iref*((vref-vdcav)/vref); 

    } 

 

if (iref >= 600) 
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   {iref = 600; 

   } 

    

else if (iref <= 20) 

     {iref = 20; 

     } 

 

idcc1 = idcc1 + idc; 

idcc2 = idcc2 + idc; 

idcc3 = idcc3 + idc; 

    

if (psp1 == -1 && sp1 == 1) 

     { 

     idcav1 = idcc1*60.0*delt; 

     idcc1 = 0; 

          if(idcav1 > iref && idcav1-iref > 0.2*iref) 

          { 

            vl1 = vl1 - 0.01; 

          } 

          if(idcav1 > iref && idcav1-iref <= 0.2*iref) 

          { 

            vl1 = vl1 - 0.0001; 

          } 

          if(idcav1 < iref && iref-idcav1 > 0.2*iref) 

          { 

            vl1 = vl1 + 0.01; 

          } 

          if(idcav1 < iref && iref-idcav1 < 0.2*iref) 

          { 

            vl1 = vl1 + 0.0001; 

          } 

     } 

         

if (vl1 >= 0.99) 

   {vl1 = 0.99; 

   } 

    

else if (vl1 <= 0.05) 

     {vl1 = 0.05; 

     } 

 

 

if (psp2 == -1 && sp2 == 1) 

     { 

     idcav2 = idcc2*60.0*delt; 

     idcc2 = 0; 

          if(idcav2 > iref && idcav2-iref > 0.2*iref) 

          { 

            vl2 = vl2 - 0.01; 

          } 

          if(idcav2 > iref && idcav2-iref <= 0.2*iref) 

          { 

            vl2 = vl2 - 0.0001; 

          } 

          if(idcav2 < iref && iref-idcav2 > 0.2*iref) 

          { 

            vl2 = vl2 + 0.01; 

          } 

          if(idcav2 < iref && iref-idcav2 < 0.2*iref) 

          { 
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            vl2 = vl2 + 0.0001; 

          } 

     } 

         

if (vl2 >= 0.99) 

   {vl2 = 0.99; 

   } 

    

else if (vl2 <= 0.05) 

     {vl2 = 0.05; 

     } 

 

 

if (psp3 == -1 && sp3 == 1) 

     { 

     idcav3 = idcc3*60.0*delt; 

     idcc3 = 0; 

          if(idcav3 > iref && idcav3-iref > 0.2*iref) 

          { 

            vl3 = vl3 - 0.01; 

          } 

          if(idcav3 > iref && idcav3-iref <= 0.2*iref) 

          { 

            vl3 = vl3 - 0.0001; 

          } 

          if(idcav3 < iref && iref-idcav3 > 0.2*iref) 

          { 

            vl3 = vl3 + 0.01; 

          } 

          if(idcav3 < iref && iref-idcav3 < 0.2*iref) 

          { 

            vl3 = vl3 + 0.0001; 

          } 

     } 

         

if (vl3 >= 0.99) 

   {vl3 = 0.99; 

   } 

    

else if (vl3 <= 0.05) 

     {vl3 = 0.05; 

     } 

oal1 = 2.859*vl1; 

oal2 = -0.699*vl1+6; 

oal3 = 2.618*vl1+6; 

oal4 = -1.355*vl1+12; 

oal5 = 2.393*vl1+12; 

oal6 = -1.969*vl1+18; 

oal7 = 2.179*vl1+18; 

oal8 = -2.541*vl1+24; 

oal9 = 1.974*vl1+24; 

oal10 = -3.067*vl1+30; 

oal11 = 1.779*vl1+30; 

oal12 = -3.541*vl1+36; 

oal13 = 1.603*vl1+36; 

oal14 = -3.951*vl1+42; 

oal15 = 1.469*vl1+42; 

oal16 = -4.272*vl1+48; 

oal17 = 1.455*vl1+48; 

oal18 = -4.42*vl1+54; 
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oal19 = 1.956*vl1+54; 

oal20 = -3.996*vl1+60; 

oal21 = 120.0-oal20; 

oal22 = 120.0-oal19; 

oal23 = 120.0-oal18; 

oal24 = 120.0-oal17; 

oal25 = 120.0-oal16; 

oal26 = 120.0-oal15; 

oal27 = 120.0-oal14; 

oal28 = 120.0-oal13; 

oal29 = 120.0-oal12; 

oal30 = 120.0-oal11; 

oal31 = 120.0-oal10; 

oal32 = 120.0-oal9; 

oal33 = 120.0-oal8; 

oal34 = 120.0-oal7; 

oal35 = 120.0-oal6; 

oal36 = 120.0-oal5; 

oal37 = 120.0-oal4; 

oal38 = 120.0-oal3; 

oal39 = 120.0-oal2; 

oal40 = 120.0-oal1; 

 

 

oal1 = oal1/21600.0; 

oal2 = oal2/21600.0; 

oal3 = oal3/21600.0; 

oal4 = oal4/21600.0; 

oal5 = oal5/21600.0; 

oal6 = oal6/21600.0; 

oal7 = oal7/21600.0; 

oal8 = oal8/21600.0; 

oal9 = oal9/21600.0; 

oal10 = oal10/21600.0; 

oal11 = oal11/21600.0; 

oal12 = oal12/21600.0; 

oal13 = oal13/21600.0; 

oal14 = oal14/21600.0; 

oal15 = oal15/21600.0; 

oal16 = oal16/21600.0; 

oal17 = oal17/21600.0; 

oal18 = oal18/21600.0; 

oal19 = oal19/21600.0; 

oal20 = oal20/21600.0; 

oal21 = oal21/21600.0; 

oal22 = oal22/21600.0; 

oal23 = oal23/21600.0; 

oal24 = oal24/21600.0; 

oal25 = oal25/21600.0; 

oal26 = oal26/21600.0; 

oal27 = oal27/21600.0; 

oal28 = oal28/21600.0; 

oal29 = oal29/21600.0; 

oal30 = oal30/21600.0; 

oal31 = oal31/21600.0; 

oal32 = oal32/21600.0; 

oal33 = oal33/21600.0; 

oal34 = oal34/21600.0; 

oal35 = oal35/21600.0; 

oal36 = oal36/21600.0; 



   80 

 

oal37 = oal37/21600.0; 

oal38 = oal38/21600.0; 

oal39 = oal39/21600.0; 

oal40 = oal40/21600.0; 

 

twal1 = 2.859*vl2; 

twal2 = -0.699*vl2+6; 

twal3 = 2.618*vl2+6; 

twal4 = -1.355*vl2+12; 

twal5 = 2.393*vl2+12; 

twal6 = -1.969*vl2+18; 

twal7 = 2.179*vl2+18; 

twal8 = -2.541*vl2+24; 

twal9 = 1.974*vl2+24; 

twal10 = -3.067*vl2+30; 

twal11 = 1.779*vl2+30; 

twal12 = -3.541*vl2+36; 

twal13 = 1.603*vl2+36; 

twal14 = -3.951*vl2+42; 

twal15 = 1.469*vl2+42; 

twal16 = -4.272*vl2+48; 

twal17 = 1.455*vl2+48; 

twal18 = -4.42*vl2+54; 

twal19 = 1.956*vl2+54; 

twal20 = -3.996*vl2+60; 

twal21 = 120.0-twal20; 

twal22 = 120.0-twal19; 

twal23 = 120.0-twal18; 

twal24 = 120.0-twal17; 

twal25 = 120.0-twal16; 

twal26 = 120.0-twal15; 

twal27 = 120.0-twal14; 

twal28 = 120.0-twal13; 

twal29 = 120.0-twal12; 

twal30 = 120.0-twal11; 

twal31 = 120.0-twal10; 

twal32 = 120.0-twal9; 

twal33 = 120.0-twal8; 

twal34 = 120.0-twal7; 

twal35 = 120.0-twal6; 

twal36 = 120.0-twal5; 

twal37 = 120.0-twal4; 

twal38 = 120.0-twal3; 

twal39 = 120.0-twal2; 

twal40 = 120.0-twal1; 

 

 

twal1 = twal1/21600.0; 

twal2 = twal2/21600.0; 

twal3 = twal3/21600.0; 

twal4 = twal4/21600.0; 

twal5 = twal5/21600.0; 

twal6 = twal6/21600.0; 

twal7 = twal7/21600.0; 

twal8 = twal8/21600.0; 

twal9 = twal9/21600.0; 

twal10 = twal10/21600.0; 

twal11 = twal11/21600.0; 

twal12 = twal12/21600.0; 

twal13 = twal13/21600.0; 
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twal14 = twal14/21600.0; 

twal15 = twal15/21600.0; 

twal16 = twal16/21600.0; 

twal17 = twal17/21600.0; 

twal18 = twal18/21600.0; 

twal19 = twal19/21600.0; 

twal20 = twal20/21600.0; 

twal21 = twal21/21600.0; 

twal22 = twal22/21600.0; 

twal23 = twal23/21600.0; 

twal24 = twal24/21600.0; 

twal25 = twal25/21600.0; 

twal26 = twal26/21600.0; 

twal27 = twal27/21600.0; 

twal28 = twal28/21600.0; 

twal29 = twal29/21600.0; 

twal30 = twal30/21600.0; 

twal31 = twal31/21600.0; 

twal32 = twal32/21600.0; 

twal33 = twal33/21600.0; 

twal34 = twal34/21600.0; 

twal35 = twal35/21600.0; 

twal36 = twal36/21600.0; 

twal37 = twal37/21600.0; 

twal38 = twal38/21600.0; 

twal39 = twal39/21600.0; 

twal40 = twal40/21600.0; 

 

thal1 = 2.859*vl3; 

thal2 = -0.699*vl3+6; 

thal3 = 2.618*vl3+6; 

thal4 = -1.355*vl3+12; 

thal5 = 2.393*vl3+12; 

thal6 = -1.969*vl3+18; 

thal7 = 2.179*vl3+18; 

thal8 = -2.541*vl3+24; 

thal9 = 1.974*vl3+24; 

thal10 = -3.067*vl3+30; 

thal11 = 1.779*vl3+30; 

thal12 = -3.541*vl3+36; 

thal13 = 1.603*vl3+36; 

thal14 = -3.951*vl3+42; 

thal15 = 1.469*vl3+42; 

thal16 = -4.272*vl3+48; 

thal17 = 1.455*vl3+48; 

thal18 = -4.42*vl3+54; 

thal19 = 1.956*vl3+54; 

thal20 = -3.996*vl3+60; 

thal21 = 120.0-thal20; 

thal22 = 120.0-thal19; 

thal23 = 120.0-thal18; 

thal24 = 120.0-thal17; 

thal25 = 120.0-thal16; 

thal26 = 120.0-thal15; 

thal27 = 120.0-thal14; 

thal28 = 120.0-thal13; 

thal29 = 120.0-thal12; 

thal30 = 120.0-thal11; 

thal31 = 120.0-thal10; 

thal32 = 120.0-thal9; 
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thal33 = 120.0-thal8; 

thal34 = 120.0-thal7; 

thal35 = 120.0-thal6; 

thal36 = 120.0-thal5; 

thal37 = 120.0-thal4; 

thal38 = 120.0-thal3; 

thal39 = 120.0-thal2; 

thal40 = 120.0-thal1; 

 

 

thal1 = thal1/21600.0; 

thal2 = thal2/21600.0; 

thal3 = thal3/21600.0; 

thal4 = thal4/21600.0; 

thal5 = thal5/21600.0; 

thal6 = thal6/21600.0; 

thal7 = thal7/21600.0; 

thal8 = thal8/21600.0; 

thal9 = thal9/21600.0; 

thal10 = thal10/21600.0; 

thal11 = thal11/21600.0; 

thal12 = thal12/21600.0; 

thal13 = thal13/21600.0; 

thal14 = thal14/21600.0; 

thal15 = thal15/21600.0; 

thal16 = thal16/21600.0; 

thal17 = thal17/21600.0; 

thal18 = thal18/21600.0; 

thal19 = thal19/21600.0; 

thal20 = thal20/21600.0; 

thal21 = thal21/21600.0; 

thal22 = thal22/21600.0; 

thal23 = thal23/21600.0; 

thal24 = thal24/21600.0; 

thal25 = thal25/21600.0; 

thal26 = thal26/21600.0; 

thal27 = thal27/21600.0; 

thal28 = thal28/21600.0; 

thal29 = thal29/21600.0; 

thal30 = thal30/21600.0; 

thal31 = thal31/21600.0; 

thal32 = thal32/21600.0; 

thal33 = thal33/21600.0; 

thal34 = thal34/21600.0; 

thal35 = thal35/21600.0; 

thal36 = thal36/21600.0; 

thal37 = thal37/21600.0; 

thal38 = thal38/21600.0; 

thal39 = thal39/21600.0; 

thal40 = thal40/21600.0; 

 

if (psp1 == -1 && sp1 == 1) 

   { 

   sw1 = 1; 

   sw4 = 0; 

   time1 = t; 

} 

 

if (psp2 == -1 && sp2 == 1) 

   { 



   83 

 

   sw3 = 1; 

   sw6 = 0; 

   time3 = t; 

} 

 

if (psp3 == -1 && sp3 == 1) 

   { 

   sw5 = 1; 

   sw2 = 0; 

   time5 = t; 

} 

 

if (psp1 == 1 && sp1 == -1) 

   { 

   sw4 = 1; 

   sw1 = 0; 

   time4 = t; 

} 

 

if (psp2 == 1 && sp2 == -1) 

   { 

   sw6 = 1; 

   sw3 = 0; 

   time6 = t; 

} 

    

if (psp3 == 1 && sp3 == -1) 

   { 

   sw2 = 1; 

   sw5 = 0; 

   time2 = t; 

}    

 

 

if (sw1 == 1) 

   { 

        if ((t >= time1+30.0/21600.0-delt && t <= time1+30.0/21600.0) || (t >= 

time1+oal1+30.0/21600.0-delt && t <= time1+oal1+30.0/21600.0) || (t >= 

time1+oal2+30.0/21600.0-delt && t <= time1+oal2+30.0/21600.0) || (t >= 

time1+oal3+30.0/21600.0-delt && t <= time1+oal3+30.0/21600.0) || (t >= 

time1+oal4+30.0/21600.0-delt && t <= time1+oal4+30.0/21600.0) || (t >= 

time1+oal5+30.0/21600.0-delt && t <= time1+oal5+30.0/21600.0) || (t >= 

time1+oal6+30.0/21600.0-delt && t <= time1+oal6+30.0/21600.0) || (t >= 

time1+oal7+30.0/21600.0-delt && t <= time1+oal7+30.0/21600.0) || (t >= 

time1+oal8+30.0/21600.0-delt && t <= time1+oal8+30.0/21600.0) || (t >= 

time1+oal9+30.0/21600.0-delt && t <= time1+oal9+30.0/21600.0) || (t >= 

time1+oal10+30.0/21600.0-delt && t <= time1+oal10+30.0/21600.0) || (t >= 

time1+oal11+30.0/21600.0-delt && t <= time1+oal11+30.0/21600.0) || (t >= 

time1+oal12+30.0/21600.0-delt && t <= time1+oal12+30.0/21600.0) || (t >= 

time1+oal13+30.0/21600.0-delt && t <= time1+oal13+30.0/21600.0) || (t >= 

time1+oal14+30.0/21600.0-delt && t <= time1+oal14+30.0/21600.0) || (t >= 

time1+oal15+30.0/21600.0-delt && t <= time1+oal15+30.0/21600.0) || (t >= 

time1+oal16+30.0/21600.0-delt && t <= time1+oal16+30.0/21600.0) || (t >= 

time1+oal17+30.0/21600.0-delt && t <= time1+oal17+30.0/21600.0) || (t >= 

time1+oal18+30.0/21600.0-delt && t <= time1+oal18+30.0/21600.0) || (t >= 

time1+oal19+30.0/21600.0-delt && t <= time1+oal19+30.0/21600.0) || (t >= 

time1+oal20+30.0/21600.0-delt && t <= time1+oal20+30.0/21600.0) || (t >= 

time1+oal21+30.0/21600.0-delt && t <= time1+oal21+30.0/21600.0) || (t >= 

time1+oal22+30.0/21600.0-delt && t <= time1+oal22+30.0/21600.0) || (t >= 

time1+oal23+30.0/21600.0-delt && t <= time1+oal23+30.0/21600.0) || (t >= 
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time1+oal24+30.0/21600.0-delt && t <= time1+oal24+30.0/21600.0) || (t >= 

time1+oal25+30.0/21600.0-delt && t <= time1+oal25+30.0/21600.0) || (t >= 

time1+oal26+30.0/21600.0-delt && t <= time1+oal26+30.0/21600.0) || (t >= 

time1+oal27+30.0/21600.0-delt && t <= time1+oal27+30.0/21600.0) || (t >= 

time1+oal28+30.0/21600.0-delt && t <= time1+oal28+30.0/21600.0) || (t >= 

time1+oal29+30.0/21600.0-delt && t <= time1+oal29+30.0/21600.0) || (t >= 

time1+oal30+30.0/21600.0-delt && t <= time1+oal30+30.0/21600.0) || (t >= 

time1+oal31+30.0/21600.0-delt && t <= time1+oal31+30.0/21600.0) || (t >= 

time1+oal32+30.0/21600.0-delt && t <= time1+oal32+30.0/21600.0) || (t >= 

time1+oal33+30.0/21600.0-delt && t <= time1+oal33+30.0/21600.0) || (t >= 

time1+oal34+30.0/21600.0-delt && t <= time1+oal34+30.0/21600.0) || (t >= 

time1+oal35+30.0/21600.0-delt && t <= time1+oal35+30.0/21600.0) || (t >= 

time1+oal36+30.0/21600.0-delt && t <= time1+oal36+30.0/21600.0) || (t >= 

time1+oal37+30.0/21600.0-delt && t <= time1+oal37+30.0/21600.0) || (t >= 

time1+oal38+30.0/21600.0-delt && t <= time1+oal38+30.0/21600.0) || (t >= 

time1+oal39+30.0/21600.0-delt && t <= time1+oal39+30.0/21600.0) || (t >= 

time1+oal40+30.0/21600.0-delt && t <= time1+oal40+30.0/21600.0)) 

           { 

               if (o0 == 0) 

                  { out[0] = 1; 

                  } 

               else if (o0 == 1) 

                    { out[0] = 0; 

                    } 

           } 

        else if (t >= time1+150.0/21600.0-delt && t <= time1+150.0/21600.0) 

           { 

                 out[0] = 0; 

           } 

   } 

    

if (sw2 == 1) 

   { 

        if ((t >= time2+30.0/21600.0-delt && t <= time2+30.0/21600.0) || (t >= 

time2+thal1+30.0/21600.0-delt && t <= time2+thal1+30.0/21600.0) || (t >= 

time2+thal2+30.0/21600.0-delt && t <= time2+thal2+30.0/21600.0) || (t >= 

time2+thal3+30.0/21600.0-delt && t <= time2+thal3+30.0/21600.0) || (t >= 

time2+thal4+30.0/21600.0-delt && t <= time2+thal4+30.0/21600.0) || (t >= 

time2+thal5+30.0/21600.0-delt && t <= time2+thal5+30.0/21600.0) || (t >= 

time2+thal6+30.0/21600.0-delt && t <= time2+thal6+30.0/21600.0) || (t >= 

time2+thal7+30.0/21600.0-delt && t <= time2+thal7+30.0/21600.0) || (t >= 

time2+thal8+30.0/21600.0-delt && t <= time2+thal8+30.0/21600.0) || (t >= 

time2+thal9+30.0/21600.0-delt && t <= time2+thal9+30.0/21600.0) || (t >= 

time2+thal10+30.0/21600.0-delt && t <= time2+thal10+30.0/21600.0) || (t >= 

time2+thal11+30.0/21600.0-delt && t <= time2+thal11+30.0/21600.0) || (t >= 

time2+thal12+30.0/21600.0-delt && t <= time2+thal12+30.0/21600.0) || (t >= 

time2+thal13+30.0/21600.0-delt && t <= time2+thal13+30.0/21600.0) || (t >= 

time2+thal14+30.0/21600.0-delt && t <= time2+thal14+30.0/21600.0) || (t >= 

time2+thal15+30.0/21600.0-delt && t <= time2+thal15+30.0/21600.0) || (t >= 

time2+thal16+30.0/21600.0-delt && t <= time2+thal16+30.0/21600.0) || (t >= 

time2+thal17+30.0/21600.0-delt && t <= time2+thal17+30.0/21600.0) || (t >= 

time2+thal18+30.0/21600.0-delt && t <= time2+thal18+30.0/21600.0) || (t >= 

time2+thal19+30.0/21600.0-delt && t <= time2+thal19+30.0/21600.0) || (t >= 

time2+thal20+30.0/21600.0-delt && t <= time2+thal20+30.0/21600.0) || (t >= 

time2+thal21+30.0/21600.0-delt && t <= time2+thal21+30.0/21600.0) || (t >= 

time2+thal22+30.0/21600.0-delt && t <= time2+thal22+30.0/21600.0) || (t >= 

time2+thal23+30.0/21600.0-delt && t <= time2+thal23+30.0/21600.0) || (t >= 

time2+thal24+30.0/21600.0-delt && t <= time2+thal24+30.0/21600.0) || (t >= 

time2+thal25+30.0/21600.0-delt && t <= time2+thal25+30.0/21600.0) || (t >= 

time2+thal26+30.0/21600.0-delt && t <= time2+thal26+30.0/21600.0) || (t >= 



   85 

 

time2+thal27+30.0/21600.0-delt && t <= time2+thal27+30.0/21600.0) || (t >= 

time2+thal28+30.0/21600.0-delt && t <= time2+thal28+30.0/21600.0) || (t >= 

time2+thal29+30.0/21600.0-delt && t <= time2+thal29+30.0/21600.0) || (t >= 

time2+thal30+30.0/21600.0-delt && t <= time2+thal30+30.0/21600.0) || (t >= 

time2+thal31+30.0/21600.0-delt && t <= time2+thal31+30.0/21600.0) || (t >= 

time2+thal32+30.0/21600.0-delt && t <= time2+thal32+30.0/21600.0) || (t >= 

time2+thal33+30.0/21600.0-delt && t <= time2+thal33+30.0/21600.0) || (t >= 

time2+thal34+30.0/21600.0-delt && t <= time2+thal34+30.0/21600.0) || (t >= 

time2+thal35+30.0/21600.0-delt && t <= time2+thal35+30.0/21600.0) || (t >= 

time2+thal36+30.0/21600.0-delt && t <= time2+thal36+30.0/21600.0) || (t >= 

time2+thal37+30.0/21600.0-delt && t <= time2+thal37+30.0/21600.0) || (t >= 

time2+thal38+30.0/21600.0-delt && t <= time2+thal38+30.0/21600.0) || (t >= 

time2+thal39+30.0/21600.0-delt && t <= time2+thal39+30.0/21600.0) || (t >= 

time2+thal40+30.0/21600.0-delt && t <= time2+thal40+30.0/21600.0)) 

           { 

               if (o1 == 0) 

                  { out[1] = 1; 

                  } 

               else if (o1 == 1) 

                    { out[1] = 0; 

                    } 

           } 

        else if (t >= time2+150.0/21600.0-delt && t <= time2+150.0/21600.0) 

           { 

                 out[1] = 0; 

           } 

   }    

 

if (sw3 == 1) 

   { 

        if ((t >= time3+30.0/21600.0-delt && t <= time3+30.0/21600.0) || (t >= 

time3+twal1+30.0/21600.0-delt && t <= time3+twal1+30.0/21600.0) || (t >= 

time3+twal2+30.0/21600.0-delt && t <= time3+twal2+30.0/21600.0) || (t >= 

time3+twal3+30.0/21600.0-delt && t <= time3+twal3+30.0/21600.0) || (t >= 

time3+twal4+30.0/21600.0-delt && t <= time3+twal4+30.0/21600.0) || (t >= 

time3+twal5+30.0/21600.0-delt && t <= time3+twal5+30.0/21600.0) || (t >= 

time3+twal6+30.0/21600.0-delt && t <= time3+twal6+30.0/21600.0) || (t >= 

time3+twal7+30.0/21600.0-delt && t <= time3+twal7+30.0/21600.0) || (t >= 

time3+twal8+30.0/21600.0-delt && t <= time3+twal8+30.0/21600.0) || (t >= 

time3+twal9+30.0/21600.0-delt && t <= time3+twal9+30.0/21600.0) || (t >= 

time3+twal10+30.0/21600.0-delt && t <= time3+twal10+30.0/21600.0) || (t >= 

time3+twal11+30.0/21600.0-delt && t <= time3+twal11+30.0/21600.0) || (t >= 

time3+twal12+30.0/21600.0-delt && t <= time3+twal12+30.0/21600.0) || (t >= 

time3+twal13+30.0/21600.0-delt && t <= time3+twal13+30.0/21600.0) || (t >= 

time3+twal14+30.0/21600.0-delt && t <= time3+twal14+30.0/21600.0) || (t >= 

time3+twal15+30.0/21600.0-delt && t <= time3+twal15+30.0/21600.0) || (t >= 

time3+twal16+30.0/21600.0-delt && t <= time3+twal16+30.0/21600.0) || (t >= 

time3+twal17+30.0/21600.0-delt && t <= time3+twal17+30.0/21600.0) || (t >= 

time3+twal18+30.0/21600.0-delt && t <= time3+twal18+30.0/21600.0) || (t >= 

time3+twal19+30.0/21600.0-delt && t <= time3+twal19+30.0/21600.0) || (t >= 

time3+twal20+30.0/21600.0-delt && t <= time3+twal20+30.0/21600.0) || (t >= 

time3+twal21+30.0/21600.0-delt && t <= time3+twal21+30.0/21600.0) || (t >= 

time3+twal22+30.0/21600.0-delt && t <= time3+twal22+30.0/21600.0) || (t >= 

time3+twal23+30.0/21600.0-delt && t <= time3+twal23+30.0/21600.0) || (t >= 

time3+twal24+30.0/21600.0-delt && t <= time3+twal24+30.0/21600.0) || (t >= 

time3+twal25+30.0/21600.0-delt && t <= time3+twal25+30.0/21600.0) || (t >= 

time3+twal26+30.0/21600.0-delt && t <= time3+twal26+30.0/21600.0) || (t >= 

time3+twal27+30.0/21600.0-delt && t <= time3+twal27+30.0/21600.0) || (t >= 

time3+twal28+30.0/21600.0-delt && t <= time3+twal28+30.0/21600.0) || (t >= 

time3+twal29+30.0/21600.0-delt && t <= time3+twal29+30.0/21600.0) || (t >= 
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time3+twal30+30.0/21600.0-delt && t <= time3+twal30+30.0/21600.0) || (t >= 

time3+twal31+30.0/21600.0-delt && t <= time3+twal31+30.0/21600.0) || (t >= 

time3+twal32+30.0/21600.0-delt && t <= time3+twal32+30.0/21600.0) || (t >= 

time3+twal33+30.0/21600.0-delt && t <= time3+twal33+30.0/21600.0) || (t >= 

time3+twal34+30.0/21600.0-delt && t <= time3+twal34+30.0/21600.0) || (t >= 

time3+twal35+30.0/21600.0-delt && t <= time3+twal35+30.0/21600.0) || (t >= 

time3+twal36+30.0/21600.0-delt && t <= time3+twal36+30.0/21600.0) || (t >= 

time3+twal37+30.0/21600.0-delt && t <= time3+twal37+30.0/21600.0) || (t >= 

time3+twal38+30.0/21600.0-delt && t <= time3+twal38+30.0/21600.0) || (t >= 

time3+twal39+30.0/21600.0-delt && t <= time3+twal39+30.0/21600.0) || (t >= 

time3+twal40+30.0/21600.0-delt && t <= time3+twal40+30.0/21600.0)) 

           { 

               if (o2 == 0) 

                  { out[2] = 1; 

                  } 

               else if (o2 == 1) 

                    { out[2] = 0; 

                    } 

           } 

        else if (t >= time3+150.0/21600.0-delt && t <= time3+150.0/21600.0) 

           { 

                 out[2] = 0; 

           } 

   } 

 

if (sw4 == 1) 

   { 

        if ((t >= time4+30.0/21600.0-delt && t <= time4+30.0/21600.0) || (t >= 

time4+oal1+30.0/21600.0-delt && t <= time4+oal1+30.0/21600.0) || (t >= 

time4+oal2+30.0/21600.0-delt && t <= time4+oal2+30.0/21600.0) || (t >= 

time4+oal3+30.0/21600.0-delt && t <= time4+oal3+30.0/21600.0) || (t >= 

time4+oal4+30.0/21600.0-delt && t <= time4+oal4+30.0/21600.0) || (t >= 

time4+oal5+30.0/21600.0-delt && t <= time4+oal5+30.0/21600.0) || (t >= 

time4+oal6+30.0/21600.0-delt && t <= time4+oal6+30.0/21600.0) || (t >= 

time4+oal7+30.0/21600.0-delt && t <= time4+oal7+30.0/21600.0) || (t >= 

time4+oal8+30.0/21600.0-delt && t <= time4+oal8+30.0/21600.0) || (t >= 

time4+oal9+30.0/21600.0-delt && t <= time4+oal9+30.0/21600.0) || (t >= 

time4+oal10+30.0/21600.0-delt && t <= time4+oal10+30.0/21600.0) || (t >= 

time4+oal11+30.0/21600.0-delt && t <= time4+oal11+30.0/21600.0) || (t >= 

time4+oal12+30.0/21600.0-delt && t <= time4+oal12+30.0/21600.0) || (t >= 

time4+oal13+30.0/21600.0-delt && t <= time4+oal13+30.0/21600.0) || (t >= 

time4+oal14+30.0/21600.0-delt && t <= time4+oal14+30.0/21600.0) || (t >= 

time4+oal15+30.0/21600.0-delt && t <= time4+oal15+30.0/21600.0) || (t >= 

time4+oal16+30.0/21600.0-delt && t <= time4+oal16+30.0/21600.0) || (t >= 

time4+oal17+30.0/21600.0-delt && t <= time4+oal17+30.0/21600.0) || (t >= 

time4+oal18+30.0/21600.0-delt && t <= time4+oal18+30.0/21600.0) || (t >= 

time4+oal19+30.0/21600.0-delt && t <= time4+oal19+30.0/21600.0) || (t >= 

time4+oal20+30.0/21600.0-delt && t <= time4+oal20+30.0/21600.0) || (t >= 

time4+oal21+30.0/21600.0-delt && t <= time4+oal21+30.0/21600.0) || (t >= 

time4+oal22+30.0/21600.0-delt && t <= time4+oal22+30.0/21600.0) || (t >= 

time4+oal23+30.0/21600.0-delt && t <= time4+oal23+30.0/21600.0) || (t >= 

time4+oal24+30.0/21600.0-delt && t <= time4+oal24+30.0/21600.0) || (t >= 

time4+oal25+30.0/21600.0-delt && t <= time4+oal25+30.0/21600.0) || (t >= 

time4+oal26+30.0/21600.0-delt && t <= time4+oal26+30.0/21600.0) || (t >= 

time4+oal27+30.0/21600.0-delt && t <= time4+oal27+30.0/21600.0) || (t >= 

time4+oal28+30.0/21600.0-delt && t <= time4+oal28+30.0/21600.0) || (t >= 

time4+oal29+30.0/21600.0-delt && t <= time4+oal29+30.0/21600.0) || (t >= 

time4+oal30+30.0/21600.0-delt && t <= time4+oal30+30.0/21600.0) || (t >= 

time4+oal31+30.0/21600.0-delt && t <= time4+oal31+30.0/21600.0) || (t >= 

time4+oal32+30.0/21600.0-delt && t <= time4+oal32+30.0/21600.0) || (t >= 
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time4+oal33+30.0/21600.0-delt && t <= time4+oal33+30.0/21600.0) || (t >= 

time4+oal34+30.0/21600.0-delt && t <= time4+oal34+30.0/21600.0) || (t >= 

time4+oal35+30.0/21600.0-delt && t <= time4+oal35+30.0/21600.0) || (t >= 

time4+oal36+30.0/21600.0-delt && t <= time4+oal36+30.0/21600.0) || (t >= 

time4+oal37+30.0/21600.0-delt && t <= time4+oal37+30.0/21600.0) || (t >= 

time4+oal38+30.0/21600.0-delt && t <= time4+oal38+30.0/21600.0) || (t >= 

time4+oal39+30.0/21600.0-delt && t <= time4+oal39+30.0/21600.0) || (t >= 

time4+oal40+30.0/21600.0-delt && t <= time4+oal40+30.0/21600.0)) 

           { 

               if (o3 == 0) 

                  { out[3] = 1; 

                  } 

               else if (o3 == 1) 

                    { out[3] = 0; 

                    } 

           } 

        else if (t >= time4+150.0/21600.0-delt && t <= time4+150.0/21600.0) 

           { 

                 out[3] = 0; 

           } 

   } 

 

if (sw5 == 1) 

   { 

        if ((t >= time5+30.0/21600.0-delt && t <= time5+30.0/21600.0) || (t >= 

time5+thal1+30.0/21600.0-delt && t <= time5+thal1+30.0/21600.0) || (t >= 

time5+thal2+30.0/21600.0-delt && t <= time5+thal2+30.0/21600.0) || (t >= 

time5+thal3+30.0/21600.0-delt && t <= time5+thal3+30.0/21600.0) || (t >= 

time5+thal4+30.0/21600.0-delt && t <= time5+thal4+30.0/21600.0) || (t >= 

time5+thal5+30.0/21600.0-delt && t <= time5+thal5+30.0/21600.0) || (t >= 

time5+thal6+30.0/21600.0-delt && t <= time5+thal6+30.0/21600.0) || (t >= 

time5+thal7+30.0/21600.0-delt && t <= time5+thal7+30.0/21600.0) || (t >= 

time5+thal8+30.0/21600.0-delt && t <= time5+thal8+30.0/21600.0) || (t >= 

time5+thal9+30.0/21600.0-delt && t <= time5+thal9+30.0/21600.0) || (t >= 

time5+thal10+30.0/21600.0-delt && t <= time5+thal10+30.0/21600.0) || (t >= 

time5+thal11+30.0/21600.0-delt && t <= time5+thal11+30.0/21600.0) || (t >= 

time5+thal12+30.0/21600.0-delt && t <= time5+thal12+30.0/21600.0) || (t >= 

time5+thal13+30.0/21600.0-delt && t <= time5+thal13+30.0/21600.0) || (t >= 

time5+thal14+30.0/21600.0-delt && t <= time5+thal14+30.0/21600.0) || (t >= 

time5+thal15+30.0/21600.0-delt && t <= time5+thal15+30.0/21600.0) || (t >= 

time5+thal16+30.0/21600.0-delt && t <= time5+thal16+30.0/21600.0) || (t >= 

time5+thal17+30.0/21600.0-delt && t <= time5+thal17+30.0/21600.0) || (t >= 

time5+thal18+30.0/21600.0-delt && t <= time5+thal18+30.0/21600.0) || (t >= 

time5+thal19+30.0/21600.0-delt && t <= time5+thal19+30.0/21600.0) || (t >= 

time5+thal20+30.0/21600.0-delt && t <= time5+thal20+30.0/21600.0) || (t >= 

time5+thal21+30.0/21600.0-delt && t <= time5+thal21+30.0/21600.0) || (t >= 

time5+thal22+30.0/21600.0-delt && t <= time5+thal22+30.0/21600.0) || (t >= 

time5+thal23+30.0/21600.0-delt && t <= time5+thal23+30.0/21600.0) || (t >= 

time5+thal24+30.0/21600.0-delt && t <= time5+thal24+30.0/21600.0) || (t >= 

time5+thal25+30.0/21600.0-delt && t <= time5+thal25+30.0/21600.0) || (t >= 

time5+thal26+30.0/21600.0-delt && t <= time5+thal26+30.0/21600.0) || (t >= 

time5+thal27+30.0/21600.0-delt && t <= time5+thal27+30.0/21600.0) || (t >= 

time5+thal28+30.0/21600.0-delt && t <= time5+thal28+30.0/21600.0) || (t >= 

time5+thal29+30.0/21600.0-delt && t <= time5+thal29+30.0/21600.0) || (t >= 

time5+thal30+30.0/21600.0-delt && t <= time5+thal30+30.0/21600.0) || (t >= 

time5+thal31+30.0/21600.0-delt && t <= time5+thal31+30.0/21600.0) || (t >= 

time5+thal32+30.0/21600.0-delt && t <= time5+thal32+30.0/21600.0) || (t >= 

time5+thal33+30.0/21600.0-delt && t <= time5+thal33+30.0/21600.0) || (t >= 

time5+thal34+30.0/21600.0-delt && t <= time5+thal34+30.0/21600.0) || (t >= 

time5+thal35+30.0/21600.0-delt && t <= time5+thal35+30.0/21600.0) || (t >= 
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time5+thal36+30.0/21600.0-delt && t <= time5+thal36+30.0/21600.0) || (t >= 

time5+thal37+30.0/21600.0-delt && t <= time5+thal37+30.0/21600.0) || (t >= 

time5+thal38+30.0/21600.0-delt && t <= time5+thal38+30.0/21600.0) || (t >= 

time5+thal39+30.0/21600.0-delt && t <= time5+thal39+30.0/21600.0) || (t >= 

time5+thal40+30.0/21600.0-delt && t <= time5+thal40+30.0/21600.0)) 

           { 

               if (o4 == 0) 

                  { out[4] = 1; 

                  } 

               else if (o4 == 1) 

                    { out[4] = 0; 

                    } 

           } 

        else if (t >= time5+150.0/21600.0-delt && t <= time5+150.0/21600.0) 

           { 

                 out[4] = 0; 

           } 

   } 

 

if (sw6 == 1) 

   { 

        if ((t >= time6+30.0/21600.0-delt && t <= time6+30.0/21600.0) || (t >= 

time6+twal1+30.0/21600.0-delt && t <= time6+twal1+30.0/21600.0) || (t >= 

time6+twal2+30.0/21600.0-delt && t <= time6+twal2+30.0/21600.0) || (t >= 

time6+twal3+30.0/21600.0-delt && t <= time6+twal3+30.0/21600.0) || (t >= 

time6+twal4+30.0/21600.0-delt && t <= time6+twal4+30.0/21600.0) || (t >= 

time6+twal5+30.0/21600.0-delt && t <= time6+twal5+30.0/21600.0) || (t >= 

time6+twal6+30.0/21600.0-delt && t <= time6+twal6+30.0/21600.0) || (t >= 

time6+twal7+30.0/21600.0-delt && t <= time6+twal7+30.0/21600.0) || (t >= 

time6+twal8+30.0/21600.0-delt && t <= time6+twal8+30.0/21600.0) || (t >= 

time6+twal9+30.0/21600.0-delt && t <= time6+twal9+30.0/21600.0) || (t >= 

time6+twal10+30.0/21600.0-delt && t <= time6+twal10+30.0/21600.0) || (t >= 

time6+twal11+30.0/21600.0-delt && t <= time6+twal11+30.0/21600.0) || (t >= 

time6+twal12+30.0/21600.0-delt && t <= time6+twal12+30.0/21600.0) || (t >= 

time6+twal13+30.0/21600.0-delt && t <= time6+twal13+30.0/21600.0) || (t >= 

time6+twal14+30.0/21600.0-delt && t <= time6+twal14+30.0/21600.0) || (t >= 

time6+twal15+30.0/21600.0-delt && t <= time6+twal15+30.0/21600.0) || (t >= 

time6+twal16+30.0/21600.0-delt && t <= time6+twal16+30.0/21600.0) || (t >= 

time6+twal17+30.0/21600.0-delt && t <= time6+twal17+30.0/21600.0) || (t >= 

time6+twal18+30.0/21600.0-delt && t <= time6+twal18+30.0/21600.0) || (t >= 

time6+twal19+30.0/21600.0-delt && t <= time6+twal19+30.0/21600.0) || (t >= 

time6+twal20+30.0/21600.0-delt && t <= time6+twal20+30.0/21600.0) || (t >= 

time6+twal21+30.0/21600.0-delt && t <= time6+twal21+30.0/21600.0) || (t >= 

time6+twal22+30.0/21600.0-delt && t <= time6+twal22+30.0/21600.0) || (t >= 

time6+twal23+30.0/21600.0-delt && t <= time6+twal23+30.0/21600.0) || (t >= 

time6+twal24+30.0/21600.0-delt && t <= time6+twal24+30.0/21600.0) || (t >= 

time6+twal25+30.0/21600.0-delt && t <= time6+twal25+30.0/21600.0) || (t >= 

time6+twal26+30.0/21600.0-delt && t <= time6+twal26+30.0/21600.0) || (t >= 

time6+twal27+30.0/21600.0-delt && t <= time6+twal27+30.0/21600.0) || (t >= 

time6+twal28+30.0/21600.0-delt && t <= time6+twal28+30.0/21600.0) || (t >= 

time6+twal29+30.0/21600.0-delt && t <= time6+twal29+30.0/21600.0) || (t >= 

time6+twal30+30.0/21600.0-delt && t <= time6+twal30+30.0/21600.0) || (t >= 

time6+twal31+30.0/21600.0-delt && t <= time6+twal31+30.0/21600.0) || (t >= 

time6+twal32+30.0/21600.0-delt && t <= time6+twal32+30.0/21600.0) || (t >= 

time6+twal33+30.0/21600.0-delt && t <= time6+twal33+30.0/21600.0) || (t >= 

time6+twal34+30.0/21600.0-delt && t <= time6+twal34+30.0/21600.0) || (t >= 

time6+twal35+30.0/21600.0-delt && t <= time6+twal35+30.0/21600.0) || (t >= 

time6+twal36+30.0/21600.0-delt && t <= time6+twal36+30.0/21600.0) || (t >= 

time6+twal37+30.0/21600.0-delt && t <= time6+twal37+30.0/21600.0) || (t >= 

time6+twal38+30.0/21600.0-delt && t <= time6+twal38+30.0/21600.0) || (t >= 
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time6+twal39+30.0/21600.0-delt && t <= time6+twal39+30.0/21600.0) || (t >= 

time6+twal40+30.0/21600.0-delt && t <= time6+twal40+30.0/21600.0)) 

           { 

               if (o5 == 0) 

                  { out[5] = 1; 

                  } 

               else if (o5 == 1) 

                    { out[5] = 0; 

                    } 

           } 

        else if (t >= time6+150.0/21600.0-delt && t <= time6+150.0/21600.0) 

           { 

                 out[5] = 0; 

           } 

   } 

 

 

psp1 = sp1; 

psp2 = sp2; 

psp3 = sp3; 

o0 = out[0]; 

o1 = out[1]; 

o2 = out[2]; 

o3 = out[3]; 

o4 = out[4]; 

o5 = out[5]; 

 

} 
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APPENDIX B 

DIGITAL CONTROLLER PROGRAM FOR FOURTH QUADRANT 

OPERATION 

#include <math.h> 

#include <stdio.h> 

#include <conio.h> 

 

__declspec(dllexport) void one (t, delt, in, out) 

 

double t, delt; 

double *in, *out; 

 

{ 

double iref, idc, sp1, sp2, sp3, vl1, vl2, vl3; 

static double psp1 = -1, psp2 = 0, psp3 = 0; 

static double sw1, sw2, sw3, sw4, sw5, sw6; 

static double time1, time2, time3, time4, time5, time6; 

double oal1, oal2, oal3, oal4, oal5, oal6, oal7, oal8, oal9, oal10, oal11, 

oal12, oal13, oal14, oal15, oal16, oal17, oal18, oal19, oal20, oal21, oal22, 

oal23, oal24, oal25, oal26, oal27, oal28, oal29, oal30, oal31, oal32, oal33, 

oal34, oal35, oal36, oal37, oal38, oal39, oal40, twal1, twal2, twal3, twal4, 

twal5, twal6, twal7, twal8, twal9, twal10, twal11, twal12, twal13, twal14, 

twal15, twal16, twal17, twal18, twal19, twal20, twal21, twal22, twal23, twal24, 

twal25, twal26, twal27, twal28, twal29, twal30, twal31, twal32, twal33, twal34, 

twal35, twal36, twal37, twal38, twal39, twal40; 

double thal1, thal2, thal3, thal4, thal5, thal6, thal7, thal8, thal9, thal10, 

thal11, thal12, thal13, thal14, thal15, thal16, thal17, thal18, thal19, thal20, 

thal21, thal22, thal23, thal24, thal25, thal26, thal27, thal28, thal29, thal30, 

thal31, thal32, thal33, thal34, thal35, thal36, thal37, thal38, thal39, thal40; 

static double o0 = 1, o1 = 1, o2 = 1, o3 = 1, o4 = 1, o5 = 1, o6 = 1, o7 = 0; 

static double idcc = 0, idcav = 0, tstart = 0, duty = 0; 

iref = in[0]; 

idc = in[1]; 

sp1 = in[2]; 

sp2 = in[3]; 

sp3 = in[4]; 

 

idcc = idcc + idc; 

if (tstart > 1/800.0 && tstart <= (1/800.0)+delt) 

   { 

    tstart = 0; 

    } 

if (tstart == 0) 

   { 

    o6 = 1; 

    o7 = 0; 

    idcav = idcc * 800.0 * delt; 

    idcc = 0; 

          if(idcav > iref && idcav-iref > 0.2*iref) 

          { 

            duty = duty - 0.005; 
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          } 

          else if(idcav > iref && idcav-iref <= 0.2*iref) 

          { 

            duty = duty - 0.0001; 

          } 

          else if(idcav < iref && iref-idcav > 0.2*iref) 

          { 

            duty = duty + 0.005; 

          } 

          else if(idcav < iref && iref-idcav <= 0.2*iref) 

          { 

            duty = duty + 0.0001; 

          } 

    } 

 

if (duty > 0.99) 

   { 

    duty = 0.99; 

    } 

else if (duty < 0.01) 

     { 

     duty = 0.01; 

     } 

    

if (tstart > duty/1600.0 && tstart <= (duty/1600.0)+delt) 

     { 

      o6 = 0; 

     } 

if (tstart >= 1/1600.0 && tstart < (1/1600.0)+delt) 

     { 

      o7 = 1; 

     } 

if (tstart > (1+duty)/1600.0 && tstart <= ((1+duty)/1600.0)+delt) 

     { 

      o7 = 0; 

     } 

tstart = tstart + delt;      

 

vl1 = 0.99; 

vl2 = vl1; 

vl3 = vl1; 

 

oal1 = 2.859*vl1; 

oal2 = -0.699*vl1+6; 

oal3 = 2.618*vl1+6; 

oal4 = -1.355*vl1+12; 

oal5 = 2.393*vl1+12; 

oal6 = -1.969*vl1+18; 

oal7 = 2.179*vl1+18; 

oal8 = -2.541*vl1+24; 

oal9 = 1.974*vl1+24; 

oal10 = -3.067*vl1+30; 

oal11 = 1.779*vl1+30; 

oal12 = -3.541*vl1+36; 

oal13 = 1.603*vl1+36; 

oal14 = -3.951*vl1+42; 

oal15 = 1.469*vl1+42; 

oal16 = -4.272*vl1+48; 

oal17 = 1.455*vl1+48; 

oal18 = -4.42*vl1+54; 
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oal19 = 1.956*vl1+54; 

oal20 = -3.996*vl1+60; 

oal21 = 120.0-oal20; 

oal22 = 120.0-oal19; 

oal23 = 120.0-oal18; 

oal24 = 120.0-oal17; 

oal25 = 120.0-oal16; 

oal26 = 120.0-oal15; 

oal27 = 120.0-oal14; 

oal28 = 120.0-oal13; 

oal29 = 120.0-oal12; 

oal30 = 120.0-oal11; 

oal31 = 120.0-oal10; 

oal32 = 120.0-oal9; 

oal33 = 120.0-oal8; 

oal34 = 120.0-oal7; 

oal35 = 120.0-oal6; 

oal36 = 120.0-oal5; 

oal37 = 120.0-oal4; 

oal38 = 120.0-oal3; 

oal39 = 120.0-oal2; 

oal40 = 120.0-oal1; 

 

 

oal1 = oal1/21600.0; 

oal2 = oal2/21600.0; 

oal3 = oal3/21600.0; 

oal4 = oal4/21600.0; 

oal5 = oal5/21600.0; 

oal6 = oal6/21600.0; 

oal7 = oal7/21600.0; 

oal8 = oal8/21600.0; 

oal9 = oal9/21600.0; 

oal10 = oal10/21600.0; 

oal11 = oal11/21600.0; 

oal12 = oal12/21600.0; 

oal13 = oal13/21600.0; 

oal14 = oal14/21600.0; 

oal15 = oal15/21600.0; 

oal16 = oal16/21600.0; 

oal17 = oal17/21600.0; 

oal18 = oal18/21600.0; 

oal19 = oal19/21600.0; 

oal20 = oal20/21600.0; 

oal21 = oal21/21600.0; 

oal22 = oal22/21600.0; 

oal23 = oal23/21600.0; 

oal24 = oal24/21600.0; 

oal25 = oal25/21600.0; 

oal26 = oal26/21600.0; 

oal27 = oal27/21600.0; 

oal28 = oal28/21600.0; 

oal29 = oal29/21600.0; 

oal30 = oal30/21600.0; 

oal31 = oal31/21600.0; 

oal32 = oal32/21600.0; 

oal33 = oal33/21600.0; 

oal34 = oal34/21600.0; 

oal35 = oal35/21600.0; 

oal36 = oal36/21600.0; 
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oal37 = oal37/21600.0; 

oal38 = oal38/21600.0; 

oal39 = oal39/21600.0; 

oal40 = oal40/21600.0; 

 

twal1 = 2.859*vl2; 

twal2 = -0.699*vl2+6; 

twal3 = 2.618*vl2+6; 

twal4 = -1.355*vl2+12; 

twal5 = 2.393*vl2+12; 

twal6 = -1.969*vl2+18; 

twal7 = 2.179*vl2+18; 

twal8 = -2.541*vl2+24; 

twal9 = 1.974*vl2+24; 

twal10 = -3.067*vl2+30; 

twal11 = 1.779*vl2+30; 

twal12 = -3.541*vl2+36; 

twal13 = 1.603*vl2+36; 

twal14 = -3.951*vl2+42; 

twal15 = 1.469*vl2+42; 

twal16 = -4.272*vl2+48; 

twal17 = 1.455*vl2+48; 

twal18 = -4.42*vl2+54; 

twal19 = 1.956*vl2+54; 

twal20 = -3.996*vl2+60; 

twal21 = 120.0-twal20; 

twal22 = 120.0-twal19; 

twal23 = 120.0-twal18; 

twal24 = 120.0-twal17; 

twal25 = 120.0-twal16; 

twal26 = 120.0-twal15; 

twal27 = 120.0-twal14; 

twal28 = 120.0-twal13; 

twal29 = 120.0-twal12; 

twal30 = 120.0-twal11; 

twal31 = 120.0-twal10; 

twal32 = 120.0-twal9; 

twal33 = 120.0-twal8; 

twal34 = 120.0-twal7; 

twal35 = 120.0-twal6; 

twal36 = 120.0-twal5; 

twal37 = 120.0-twal4; 

twal38 = 120.0-twal3; 

twal39 = 120.0-twal2; 

twal40 = 120.0-twal1; 

 

 

twal1 = twal1/21600.0; 

twal2 = twal2/21600.0; 

twal3 = twal3/21600.0; 

twal4 = twal4/21600.0; 

twal5 = twal5/21600.0; 

twal6 = twal6/21600.0; 

twal7 = twal7/21600.0; 

twal8 = twal8/21600.0; 

twal9 = twal9/21600.0; 

twal10 = twal10/21600.0; 

twal11 = twal11/21600.0; 

twal12 = twal12/21600.0; 

twal13 = twal13/21600.0; 
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twal14 = twal14/21600.0; 

twal15 = twal15/21600.0; 

twal16 = twal16/21600.0; 

twal17 = twal17/21600.0; 

twal18 = twal18/21600.0; 

twal19 = twal19/21600.0; 

twal20 = twal20/21600.0; 

twal21 = twal21/21600.0; 

twal22 = twal22/21600.0; 

twal23 = twal23/21600.0; 

twal24 = twal24/21600.0; 

twal25 = twal25/21600.0; 

twal26 = twal26/21600.0; 

twal27 = twal27/21600.0; 

twal28 = twal28/21600.0; 

twal29 = twal29/21600.0; 

twal30 = twal30/21600.0; 

twal31 = twal31/21600.0; 

twal32 = twal32/21600.0; 

twal33 = twal33/21600.0; 

twal34 = twal34/21600.0; 

twal35 = twal35/21600.0; 

twal36 = twal36/21600.0; 

twal37 = twal37/21600.0; 

twal38 = twal38/21600.0; 

twal39 = twal39/21600.0; 

twal40 = twal40/21600.0; 

 

thal1 = 2.859*vl3; 

thal2 = -0.699*vl3+6; 

thal3 = 2.618*vl3+6; 

thal4 = -1.355*vl3+12; 

thal5 = 2.393*vl3+12; 

thal6 = -1.969*vl3+18; 

thal7 = 2.179*vl3+18; 

thal8 = -2.541*vl3+24; 

thal9 = 1.974*vl3+24; 

thal10 = -3.067*vl3+30; 

thal11 = 1.779*vl3+30; 

thal12 = -3.541*vl3+36; 

thal13 = 1.603*vl3+36; 

thal14 = -3.951*vl3+42; 

thal15 = 1.469*vl3+42; 

thal16 = -4.272*vl3+48; 

thal17 = 1.455*vl3+48; 

thal18 = -4.42*vl3+54; 

thal19 = 1.956*vl3+54; 

thal20 = -3.996*vl3+60; 

thal21 = 120.0-thal20; 

thal22 = 120.0-thal19; 

thal23 = 120.0-thal18; 

thal24 = 120.0-thal17; 

thal25 = 120.0-thal16; 

thal26 = 120.0-thal15; 

thal27 = 120.0-thal14; 

thal28 = 120.0-thal13; 

thal29 = 120.0-thal12; 

thal30 = 120.0-thal11; 

thal31 = 120.0-thal10; 

thal32 = 120.0-thal9; 



   95 

 

thal33 = 120.0-thal8; 

thal34 = 120.0-thal7; 

thal35 = 120.0-thal6; 

thal36 = 120.0-thal5; 

thal37 = 120.0-thal4; 

thal38 = 120.0-thal3; 

thal39 = 120.0-thal2; 

thal40 = 120.0-thal1; 

 

 

thal1 = thal1/21600.0; 

thal2 = thal2/21600.0; 

thal3 = thal3/21600.0; 

thal4 = thal4/21600.0; 

thal5 = thal5/21600.0; 

thal6 = thal6/21600.0; 

thal7 = thal7/21600.0; 

thal8 = thal8/21600.0; 

thal9 = thal9/21600.0; 

thal10 = thal10/21600.0; 

thal11 = thal11/21600.0; 

thal12 = thal12/21600.0; 

thal13 = thal13/21600.0; 

thal14 = thal14/21600.0; 

thal15 = thal15/21600.0; 

thal16 = thal16/21600.0; 

thal17 = thal17/21600.0; 

thal18 = thal18/21600.0; 

thal19 = thal19/21600.0; 

thal20 = thal20/21600.0; 

thal21 = thal21/21600.0; 

thal22 = thal22/21600.0; 

thal23 = thal23/21600.0; 

thal24 = thal24/21600.0; 

thal25 = thal25/21600.0; 

thal26 = thal26/21600.0; 

thal27 = thal27/21600.0; 

thal28 = thal28/21600.0; 

thal29 = thal29/21600.0; 

thal30 = thal30/21600.0; 

thal31 = thal31/21600.0; 

thal32 = thal32/21600.0; 

thal33 = thal33/21600.0; 

thal34 = thal34/21600.0; 

thal35 = thal35/21600.0; 

thal36 = thal36/21600.0; 

thal37 = thal37/21600.0; 

thal38 = thal38/21600.0; 

thal39 = thal39/21600.0; 

thal40 = thal40/21600.0; 

 

if (psp1 == -1 && sp1 == 1) 

   { 

   sw1 = 1; 

   sw4 = 0; 

   time1 = t; 

} 

 

if (psp2 == -1 && sp2 == 1) 

   { 
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   sw3 = 1; 

   sw6 = 0; 

   time3 = t; 

} 

 

if (psp3 == -1 && sp3 == 1) 

   { 

   sw5 = 1; 

   sw2 = 0; 

   time5 = t; 

} 

 

if (psp1 == 1 && sp1 == -1) 

   { 

   sw4 = 1; 

   sw1 = 0; 

   time4 = t; 

} 

 

if (psp2 == 1 && sp2 == -1) 

   { 

   sw6 = 1; 

   sw3 = 0; 

   time6 = t; 

} 

    

if (psp3 == 1 && sp3 == -1) 

   { 

   sw2 = 1; 

   sw5 = 0; 

   time2 = t; 

}    

 

 

if (sw1 == 1) 

   {    if (t >= time1+30.0/21600.0-delt && t < time1+30.0/21600.0) 

        { 

              out[0] = 1; 

              out[3] = 0; 

        } 

        else if ((t >= time1+oal1+30.0/21600.0-delt && t < 

time1+oal1+30.0/21600.0) || (t >= time1+oal2+30.0/21600.0-delt && t < 

time1+oal2+30.0/21600.0) || (t >= time1+oal3+30.0/21600.0-delt && t < 

time1+oal3+30.0/21600.0) || (t >= time1+oal4+30.0/21600.0-delt && t < 

time1+oal4+30.0/21600.0) || (t >= time1+oal5+30.0/21600.0-delt && t < 

time1+oal5+30.0/21600.0) || (t >= time1+oal6+30.0/21600.0-delt && t < 

time1+oal6+30.0/21600.0) || (t >= time1+oal7+30.0/21600.0-delt && t < 

time1+oal7+30.0/21600.0) || (t >= time1+oal8+30.0/21600.0-delt && t < 

time1+oal8+30.0/21600.0) || (t >= time1+oal9+30.0/21600.0-delt && t < 

time1+oal9+30.0/21600.0) || (t >= time1+oal10+30.0/21600.0-delt && t < 

time1+oal10+30.0/21600.0) || (t >= time1+oal11+30.0/21600.0-delt && t < 

time1+oal11+30.0/21600.0) || (t >= time1+oal12+30.0/21600.0-delt && t < 

time1+oal12+30.0/21600.0) || (t >= time1+oal13+30.0/21600.0-delt && t < 

time1+oal13+30.0/21600.0) || (t >= time1+oal14+30.0/21600.0-delt && t < 

time1+oal14+30.0/21600.0) || (t >= time1+oal15+30.0/21600.0-delt && t < 

time1+oal15+30.0/21600.0) || (t >= time1+oal16+30.0/21600.0-delt && t < 

time1+oal16+30.0/21600.0) || (t >= time1+oal17+30.0/21600.0-delt && t < 

time1+oal17+30.0/21600.0) || (t >= time1+oal18+30.0/21600.0-delt && t < 

time1+oal18+30.0/21600.0) || (t >= time1+oal19+30.0/21600.0-delt && t < 

time1+oal19+30.0/21600.0) || (t >= time1+oal20+30.0/21600.0-delt && t < 
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time1+oal20+30.0/21600.0) || (t >= time1+oal21+30.0/21600.0-delt && t < 

time1+oal21+30.0/21600.0) || (t >= time1+oal22+30.0/21600.0-delt && t < 

time1+oal22+30.0/21600.0) || (t >= time1+oal23+30.0/21600.0-delt && t < 

time1+oal23+30.0/21600.0) || (t >= time1+oal24+30.0/21600.0-delt && t < 

time1+oal24+30.0/21600.0) || (t >= time1+oal25+30.0/21600.0-delt && t < 

time1+oal25+30.0/21600.0) || (t >= time1+oal26+30.0/21600.0-delt && t < 

time1+oal26+30.0/21600.0) || (t >= time1+oal27+30.0/21600.0-delt && t < 

time1+oal27+30.0/21600.0) || (t >= time1+oal28+30.0/21600.0-delt && t < 

time1+oal28+30.0/21600.0) || (t >= time1+oal29+30.0/21600.0-delt && t < 

time1+oal29+30.0/21600.0) || (t >= time1+oal30+30.0/21600.0-delt && t < 

time1+oal30+30.0/21600.0) || (t >= time1+oal31+30.0/21600.0-delt && t < 

time1+oal31+30.0/21600.0) || (t >= time1+oal32+30.0/21600.0-delt && t < 

time1+oal32+30.0/21600.0) || (t >= time1+oal33+30.0/21600.0-delt && t < 

time1+oal33+30.0/21600.0) || (t >= time1+oal34+30.0/21600.0-delt && t < 

time1+oal34+30.0/21600.0) || (t >= time1+oal35+30.0/21600.0-delt && t < 

time1+oal35+30.0/21600.0) || (t >= time1+oal36+30.0/21600.0-delt && t < 

time1+oal36+30.0/21600.0) || (t >= time1+oal37+30.0/21600.0-delt && t < 

time1+oal37+30.0/21600.0) || (t >= time1+oal38+30.0/21600.0-delt && t < 

time1+oal38+30.0/21600.0) || (t >= time1+oal39+30.0/21600.0-delt && t < 

time1+oal39+30.0/21600.0) || (t >= time1+oal40+30.0/21600.0-delt && t < 

time1+oal40+30.0/21600.0)) 

           { 

               if (o0 == 0) 

                  { out[0] = 1; 

                  } 

               else if (o0 == 1) 

                    { out[0] = 0; 

                    } 

                if (o3 == 0) 

                  { out[3] = 1; 

                  } 

               else if (o3 == 1) 

                    { out[3] = 0; 

                    } 

           } 

        else if (t >= time1+150.0/21600.0-delt && t < time1+150.0/21600.0) 

           { 

                 out[0] = 0; 

                 out[3] = 0; 

           } 

   } 

    

if (sw2 == 1) 

   {    if (t >= time2+30.0/21600.0-delt && t < time2+30.0/21600.0) 

        { 

              out[1] = 1; 

              out[4] = 0; 

        } 

        else if ((t >= time2+thal1+30.0/21600.0-delt && t < 

time2+thal1+30.0/21600.0) || (t >= time2+thal2+30.0/21600.0-delt && t < 

time2+thal2+30.0/21600.0) || (t >= time2+thal3+30.0/21600.0-delt && t < 

time2+thal3+30.0/21600.0) || (t >= time2+thal4+30.0/21600.0-delt && t < 

time2+thal4+30.0/21600.0) || (t >= time2+thal5+30.0/21600.0-delt && t < 

time2+thal5+30.0/21600.0) || (t >= time2+thal6+30.0/21600.0-delt && t < 

time2+thal6+30.0/21600.0) || (t >= time2+thal7+30.0/21600.0-delt && t < 

time2+thal7+30.0/21600.0) || (t >= time2+thal8+30.0/21600.0-delt && t < 

time2+thal8+30.0/21600.0) || (t >= time2+thal9+30.0/21600.0-delt && t < 

time2+thal9+30.0/21600.0) || (t >= time2+thal10+30.0/21600.0-delt && t < 

time2+thal10+30.0/21600.0) || (t >= time2+thal11+30.0/21600.0-delt && t < 

time2+thal11+30.0/21600.0) || (t >= time2+thal12+30.0/21600.0-delt && t < 
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time2+thal12+30.0/21600.0) || (t >= time2+thal13+30.0/21600.0-delt && t < 

time2+thal13+30.0/21600.0) || (t >= time2+thal14+30.0/21600.0-delt && t < 

time2+thal14+30.0/21600.0) || (t >= time2+thal15+30.0/21600.0-delt && t < 

time2+thal15+30.0/21600.0) || (t >= time2+thal16+30.0/21600.0-delt && t < 

time2+thal16+30.0/21600.0) || (t >= time2+thal17+30.0/21600.0-delt && t < 

time2+thal17+30.0/21600.0) || (t >= time2+thal18+30.0/21600.0-delt && t < 

time2+thal18+30.0/21600.0) || (t >= time2+thal19+30.0/21600.0-delt && t < 

time2+thal19+30.0/21600.0) || (t >= time2+thal20+30.0/21600.0-delt && t < 

time2+thal20+30.0/21600.0) || (t >= time2+thal21+30.0/21600.0-delt && t < 

time2+thal21+30.0/21600.0) || (t >= time2+thal22+30.0/21600.0-delt && t < 

time2+thal22+30.0/21600.0) || (t >= time2+thal23+30.0/21600.0-delt && t < 

time2+thal23+30.0/21600.0) || (t >= time2+thal24+30.0/21600.0-delt && t < 

time2+thal24+30.0/21600.0) || (t >= time2+thal25+30.0/21600.0-delt && t < 

time2+thal25+30.0/21600.0) || (t >= time2+thal26+30.0/21600.0-delt && t < 

time2+thal26+30.0/21600.0) || (t >= time2+thal27+30.0/21600.0-delt && t < 

time2+thal27+30.0/21600.0) || (t >= time2+thal28+30.0/21600.0-delt && t < 

time2+thal28+30.0/21600.0) || (t >= time2+thal29+30.0/21600.0-delt && t < 

time2+thal29+30.0/21600.0) || (t >= time2+thal30+30.0/21600.0-delt && t < 

time2+thal30+30.0/21600.0) || (t >= time2+thal31+30.0/21600.0-delt && t < 

time2+thal31+30.0/21600.0) || (t >= time2+thal32+30.0/21600.0-delt && t < 

time2+thal32+30.0/21600.0) || (t >= time2+thal33+30.0/21600.0-delt && t < 

time2+thal33+30.0/21600.0) || (t >= time2+thal34+30.0/21600.0-delt && t < 

time2+thal34+30.0/21600.0) || (t >= time2+thal35+30.0/21600.0-delt && t < 

time2+thal35+30.0/21600.0) || (t >= time2+thal36+30.0/21600.0-delt && t < 

time2+thal36+30.0/21600.0) || (t >= time2+thal37+30.0/21600.0-delt && t < 

time2+thal37+30.0/21600.0) || (t >= time2+thal38+30.0/21600.0-delt && t < 

time2+thal38+30.0/21600.0) || (t >= time2+thal39+30.0/21600.0-delt && t < 

time2+thal39+30.0/21600.0) || (t >= time2+thal40+30.0/21600.0-delt && t < 

time2+thal40+30.0/21600.0)) 

           { 

               if (o1 == 0) 

                  { out[1] = 1; 

                  } 

               else if (o1 == 1) 

                    { out[1] = 0; 

                    } 

               if (o4 == 0) 

                  { out[4] = 1; 

                  } 

               else if (o4 == 1) 

                    { out[4] = 0; 

                    } 

           } 

        else if (t >= time2+150.0/21600.0-delt && t < time2+150.0/21600.0) 

           { 

                 out[1] = 0; 

                 out[4] = 0; 

                                 

           } 

   }    

 

if (sw3 == 1) 

   {    if (t >= time3+30.0/21600.0-delt && t < time3+30.0/21600.0) 

        { 

              out[2] = 1; 

              out[5] = 0; 

        }            

        else if ((t >= time3+twal1+30.0/21600.0-delt && t < 

time3+twal1+30.0/21600.0) || (t >= time3+twal2+30.0/21600.0-delt && t < 

time3+twal2+30.0/21600.0) || (t >= time3+twal3+30.0/21600.0-delt && t < 
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time3+twal3+30.0/21600.0) || (t >= time3+twal4+30.0/21600.0-delt && t < 

time3+twal4+30.0/21600.0) || (t >= time3+twal5+30.0/21600.0-delt && t < 

time3+twal5+30.0/21600.0) || (t >= time3+twal6+30.0/21600.0-delt && t < 

time3+twal6+30.0/21600.0) || (t >= time3+twal7+30.0/21600.0-delt && t < 

time3+twal7+30.0/21600.0) || (t >= time3+twal8+30.0/21600.0-delt && t < 

time3+twal8+30.0/21600.0) || (t >= time3+twal9+30.0/21600.0-delt && t < 

time3+twal9+30.0/21600.0) || (t >= time3+twal10+30.0/21600.0-delt && t < 

time3+twal10+30.0/21600.0) || (t >= time3+twal11+30.0/21600.0-delt && t < 

time3+twal11+30.0/21600.0) || (t >= time3+twal12+30.0/21600.0-delt && t < 

time3+twal12+30.0/21600.0) || (t >= time3+twal13+30.0/21600.0-delt && t < 

time3+twal13+30.0/21600.0) || (t >= time3+twal14+30.0/21600.0-delt && t < 

time3+twal14+30.0/21600.0) || (t >= time3+twal15+30.0/21600.0-delt && t < 

time3+twal15+30.0/21600.0) || (t >= time3+twal16+30.0/21600.0-delt && t < 

time3+twal16+30.0/21600.0) || (t >= time3+twal17+30.0/21600.0-delt && t < 

time3+twal17+30.0/21600.0) || (t >= time3+twal18+30.0/21600.0-delt && t < 

time3+twal18+30.0/21600.0) || (t >= time3+twal19+30.0/21600.0-delt && t < 

time3+twal19+30.0/21600.0) || (t >= time3+twal20+30.0/21600.0-delt && t < 

time3+twal20+30.0/21600.0) || (t >= time3+twal21+30.0/21600.0-delt && t < 

time3+twal21+30.0/21600.0) || (t >= time3+twal22+30.0/21600.0-delt && t < 

time3+twal22+30.0/21600.0) || (t >= time3+twal23+30.0/21600.0-delt && t < 

time3+twal23+30.0/21600.0) || (t >= time3+twal24+30.0/21600.0-delt && t < 

time3+twal24+30.0/21600.0) || (t >= time3+twal25+30.0/21600.0-delt && t < 

time3+twal25+30.0/21600.0) || (t >= time3+twal26+30.0/21600.0-delt && t < 

time3+twal26+30.0/21600.0) || (t >= time3+twal27+30.0/21600.0-delt && t < 

time3+twal27+30.0/21600.0) || (t >= time3+twal28+30.0/21600.0-delt && t < 

time3+twal28+30.0/21600.0) || (t >= time3+twal29+30.0/21600.0-delt && t < 

time3+twal29+30.0/21600.0) || (t >= time3+twal30+30.0/21600.0-delt && t < 

time3+twal30+30.0/21600.0) || (t >= time3+twal31+30.0/21600.0-delt && t < 

time3+twal31+30.0/21600.0) || (t >= time3+twal32+30.0/21600.0-delt && t < 

time3+twal32+30.0/21600.0) || (t >= time3+twal33+30.0/21600.0-delt && t < 

time3+twal33+30.0/21600.0) || (t >= time3+twal34+30.0/21600.0-delt && t < 

time3+twal34+30.0/21600.0) || (t >= time3+twal35+30.0/21600.0-delt && t < 

time3+twal35+30.0/21600.0) || (t >= time3+twal36+30.0/21600.0-delt && t < 

time3+twal36+30.0/21600.0) || (t >= time3+twal37+30.0/21600.0-delt && t < 

time3+twal37+30.0/21600.0) || (t >= time3+twal38+30.0/21600.0-delt && t < 

time3+twal38+30.0/21600.0) || (t >= time3+twal39+30.0/21600.0-delt && t < 

time3+twal39+30.0/21600.0) || (t >= time3+twal40+30.0/21600.0-delt && t < 

time3+twal40+30.0/21600.0)) 

           { 

               if (o2 == 0) 

                  { out[2] = 1; 

                  } 

               else if (o2 == 1) 

                    { out[2] = 0; 

                    } 

               if (o5 == 0) 

                  { out[5] = 1; 

                  } 

               else if (o5 == 1) 

                    { out[5] = 0; 

                    } 

           } 

        else if (t >= time3+150.0/21600.0-delt && t < time3+150.0/21600.0) 

           { 

                 out[2] = 0; 

                 out[5] = 0; 

                  

           } 

   } 
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if (sw4 == 1) 

   {    if (t >= time4+30.0/21600.0-delt && t < time4+30.0/21600.0) 

        { 

              out[3] = 1; 

              out[0] = 0; 

        } 

        else if ((t >= time4+30.0/21600.0-delt && t < time4+30.0/21600.0) || (t 

>= time4+oal1+30.0/21600.0-delt && t < time4+oal1+30.0/21600.0) || (t >= 

time4+oal2+30.0/21600.0-delt && t < time4+oal2+30.0/21600.0) || (t >= 

time4+oal3+30.0/21600.0-delt && t < time4+oal3+30.0/21600.0) || (t >= 

time4+oal4+30.0/21600.0-delt && t < time4+oal4+30.0/21600.0) || (t >= 

time4+oal5+30.0/21600.0-delt && t < time4+oal5+30.0/21600.0) || (t >= 

time4+oal6+30.0/21600.0-delt && t < time4+oal6+30.0/21600.0) || (t >= 

time4+oal7+30.0/21600.0-delt && t < time4+oal7+30.0/21600.0) || (t >= 

time4+oal8+30.0/21600.0-delt && t < time4+oal8+30.0/21600.0) || (t >= 

time4+oal9+30.0/21600.0-delt && t < time4+oal9+30.0/21600.0) || (t >= 

time4+oal10+30.0/21600.0-delt && t < time4+oal10+30.0/21600.0) || (t >= 

time4+oal11+30.0/21600.0-delt && t < time4+oal11+30.0/21600.0) || (t >= 

time4+oal12+30.0/21600.0-delt && t < time4+oal12+30.0/21600.0) || (t >= 

time4+oal13+30.0/21600.0-delt && t < time4+oal13+30.0/21600.0) || (t >= 

time4+oal14+30.0/21600.0-delt && t < time4+oal14+30.0/21600.0) || (t >= 

time4+oal15+30.0/21600.0-delt && t < time4+oal15+30.0/21600.0) || (t >= 

time4+oal16+30.0/21600.0-delt && t < time4+oal16+30.0/21600.0) || (t >= 

time4+oal17+30.0/21600.0-delt && t < time4+oal17+30.0/21600.0) || (t >= 

time4+oal18+30.0/21600.0-delt && t < time4+oal18+30.0/21600.0) || (t >= 

time4+oal19+30.0/21600.0-delt && t < time4+oal19+30.0/21600.0) || (t >= 

time4+oal20+30.0/21600.0-delt && t < time4+oal20+30.0/21600.0) || (t >= 

time4+oal21+30.0/21600.0-delt && t < time4+oal21+30.0/21600.0) || (t >= 

time4+oal22+30.0/21600.0-delt && t < time4+oal22+30.0/21600.0) || (t >= 

time4+oal23+30.0/21600.0-delt && t < time4+oal23+30.0/21600.0) || (t >= 

time4+oal24+30.0/21600.0-delt && t < time4+oal24+30.0/21600.0) || (t >= 

time4+oal25+30.0/21600.0-delt && t < time4+oal25+30.0/21600.0) || (t >= 

time4+oal26+30.0/21600.0-delt && t < time4+oal26+30.0/21600.0) || (t >= 

time4+oal27+30.0/21600.0-delt && t < time4+oal27+30.0/21600.0) || (t >= 

time4+oal28+30.0/21600.0-delt && t < time4+oal28+30.0/21600.0) || (t >= 

time4+oal29+30.0/21600.0-delt && t < time4+oal29+30.0/21600.0) || (t >= 

time4+oal30+30.0/21600.0-delt && t < time4+oal30+30.0/21600.0) || (t >= 

time4+oal31+30.0/21600.0-delt && t < time4+oal31+30.0/21600.0) || (t >= 

time4+oal32+30.0/21600.0-delt && t < time4+oal32+30.0/21600.0) || (t >= 

time4+oal33+30.0/21600.0-delt && t < time4+oal33+30.0/21600.0) || (t >= 

time4+oal34+30.0/21600.0-delt && t < time4+oal34+30.0/21600.0) || (t >= 

time4+oal35+30.0/21600.0-delt && t < time4+oal35+30.0/21600.0) || (t >= 

time4+oal36+30.0/21600.0-delt && t < time4+oal36+30.0/21600.0) || (t >= 

time4+oal37+30.0/21600.0-delt && t < time4+oal37+30.0/21600.0) || (t >= 

time4+oal38+30.0/21600.0-delt && t < time4+oal38+30.0/21600.0) || (t >= 

time4+oal39+30.0/21600.0-delt && t < time4+oal39+30.0/21600.0) || (t >= 

time4+oal40+30.0/21600.0-delt && t < time4+oal40+30.0/21600.0)) 

           { 

               if (o3 == 0) 

                  { out[3] = 1; 

                  } 

               else if (o3 == 1) 

                    { out[3] = 0; 

                    } 

               if (o0 == 0) 

                  { out[0] = 1; 

                  } 

               else if (o0 == 1) 

                    { out[0] = 0; 

                    } 
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           } 

        else if (t >= time4+150.0/21600.0-delt && t < time4+150.0/21600.0) 

           { 

                 out[3] = 0; 

                 out[0] = 0; 

                  

           } 

   } 

 

if (sw5 == 1) 

   {    if (t >= time5+30.0/21600.0-delt && t < time5+30.0/21600.0) 

        { 

              out[4] = 1; 

              out[1] = 0; 

        } 

        else if ((t >= time5+thal1+30.0/21600.0-delt && t < 

time5+thal1+30.0/21600.0) || (t >= time5+thal2+30.0/21600.0-delt && t < 

time5+thal2+30.0/21600.0) || (t >= time5+thal3+30.0/21600.0-delt && t < 

time5+thal3+30.0/21600.0) || (t >= time5+thal4+30.0/21600.0-delt && t < 

time5+thal4+30.0/21600.0) || (t >= time5+thal5+30.0/21600.0-delt && t < 

time5+thal5+30.0/21600.0) || (t >= time5+thal6+30.0/21600.0-delt && t < 

time5+thal6+30.0/21600.0) || (t >= time5+thal7+30.0/21600.0-delt && t < 

time5+thal7+30.0/21600.0) || (t >= time5+thal8+30.0/21600.0-delt && t < 

time5+thal8+30.0/21600.0) || (t >= time5+thal9+30.0/21600.0-delt && t < 

time5+thal9+30.0/21600.0) || (t >= time5+thal10+30.0/21600.0-delt && t < 

time5+thal10+30.0/21600.0) || (t >= time5+thal11+30.0/21600.0-delt && t < 

time5+thal11+30.0/21600.0) || (t >= time5+thal12+30.0/21600.0-delt && t < 

time5+thal12+30.0/21600.0) || (t >= time5+thal13+30.0/21600.0-delt && t < 

time5+thal13+30.0/21600.0) || (t >= time5+thal14+30.0/21600.0-delt && t < 

time5+thal14+30.0/21600.0) || (t >= time5+thal15+30.0/21600.0-delt && t < 

time5+thal15+30.0/21600.0) || (t >= time5+thal16+30.0/21600.0-delt && t < 

time5+thal16+30.0/21600.0) || (t >= time5+thal17+30.0/21600.0-delt && t < 

time5+thal17+30.0/21600.0) || (t >= time5+thal18+30.0/21600.0-delt && t < 

time5+thal18+30.0/21600.0) || (t >= time5+thal19+30.0/21600.0-delt && t < 

time5+thal19+30.0/21600.0) || (t >= time5+thal20+30.0/21600.0-delt && t < 

time5+thal20+30.0/21600.0) || (t >= time5+thal21+30.0/21600.0-delt && t < 

time5+thal21+30.0/21600.0) || (t >= time5+thal22+30.0/21600.0-delt && t < 

time5+thal22+30.0/21600.0) || (t >= time5+thal23+30.0/21600.0-delt && t < 

time5+thal23+30.0/21600.0) || (t >= time5+thal24+30.0/21600.0-delt && t < 

time5+thal24+30.0/21600.0) || (t >= time5+thal25+30.0/21600.0-delt && t < 

time5+thal25+30.0/21600.0) || (t >= time5+thal26+30.0/21600.0-delt && t < 

time5+thal26+30.0/21600.0) || (t >= time5+thal27+30.0/21600.0-delt && t < 

time5+thal27+30.0/21600.0) || (t >= time5+thal28+30.0/21600.0-delt && t < 

time5+thal28+30.0/21600.0) || (t >= time5+thal29+30.0/21600.0-delt && t < 

time5+thal29+30.0/21600.0) || (t >= time5+thal30+30.0/21600.0-delt && t < 

time5+thal30+30.0/21600.0) || (t >= time5+thal31+30.0/21600.0-delt && t < 

time5+thal31+30.0/21600.0) || (t >= time5+thal32+30.0/21600.0-delt && t < 

time5+thal32+30.0/21600.0) || (t >= time5+thal33+30.0/21600.0-delt && t < 

time5+thal33+30.0/21600.0) || (t >= time5+thal34+30.0/21600.0-delt && t < 

time5+thal34+30.0/21600.0) || (t >= time5+thal35+30.0/21600.0-delt && t < 

time5+thal35+30.0/21600.0) || (t >= time5+thal36+30.0/21600.0-delt && t < 

time5+thal36+30.0/21600.0) || (t >= time5+thal37+30.0/21600.0-delt && t < 

time5+thal37+30.0/21600.0) || (t >= time5+thal38+30.0/21600.0-delt && t < 

time5+thal38+30.0/21600.0) || (t >= time5+thal39+30.0/21600.0-delt && t < 

time5+thal39+30.0/21600.0) || (t >= time5+thal40+30.0/21600.0-delt && t < 

time5+thal40+30.0/21600.0)) 

           { 

               if (o4 == 0) 

                  { out[4] = 1; 

                  } 
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               else if (o4 == 1) 

                    { out[4] = 0; 

                    } 

               if (o1 == 0) 

                  { out[1] = 1; 

                  } 

               else if (o1 == 1) 

                    { out[1] = 0; 

                    } 

           } 

        else if (t >= time5+150.0/21600.0-delt && t < time5+150.0/21600.0) 

           { 

                 out[4] = 0; 

                 out[1] = 0; 

                  

           } 

   } 

 

if (sw6 == 1) 

   {    if (t >= time6+30.0/21600.0-delt && t < time6+30.0/21600.0) 

        { 

              out[5] = 1; 

              out[2] = 0; 

        } 

        if ((t >= time6+twal1+30.0/21600.0-delt && t < 

time6+twal1+30.0/21600.0) || (t >= time6+twal2+30.0/21600.0-delt && t < 

time6+twal2+30.0/21600.0) || (t >= time6+twal3+30.0/21600.0-delt && t < 

time6+twal3+30.0/21600.0) || (t >= time6+twal4+30.0/21600.0-delt && t < 

time6+twal4+30.0/21600.0) || (t >= time6+twal5+30.0/21600.0-delt && t < 

time6+twal5+30.0/21600.0) || (t >= time6+twal6+30.0/21600.0-delt && t < 

time6+twal6+30.0/21600.0) || (t >= time6+twal7+30.0/21600.0-delt && t < 

time6+twal7+30.0/21600.0) || (t >= time6+twal8+30.0/21600.0-delt && t < 

time6+twal8+30.0/21600.0) || (t >= time6+twal9+30.0/21600.0-delt && t < 

time6+twal9+30.0/21600.0) || (t >= time6+twal10+30.0/21600.0-delt && t < 

time6+twal10+30.0/21600.0) || (t >= time6+twal11+30.0/21600.0-delt && t < 

time6+twal11+30.0/21600.0) || (t >= time6+twal12+30.0/21600.0-delt && t < 

time6+twal12+30.0/21600.0) || (t >= time6+twal13+30.0/21600.0-delt && t < 

time6+twal13+30.0/21600.0) || (t >= time6+twal14+30.0/21600.0-delt && t < 

time6+twal14+30.0/21600.0) || (t >= time6+twal15+30.0/21600.0-delt && t < 

time6+twal15+30.0/21600.0) || (t >= time6+twal16+30.0/21600.0-delt && t < 

time6+twal16+30.0/21600.0) || (t >= time6+twal17+30.0/21600.0-delt && t < 

time6+twal17+30.0/21600.0) || (t >= time6+twal18+30.0/21600.0-delt && t < 

time6+twal18+30.0/21600.0) || (t >= time6+twal19+30.0/21600.0-delt && t < 

time6+twal19+30.0/21600.0) || (t >= time6+twal20+30.0/21600.0-delt && t < 

time6+twal20+30.0/21600.0) || (t >= time6+twal21+30.0/21600.0-delt && t < 

time6+twal21+30.0/21600.0) || (t >= time6+twal22+30.0/21600.0-delt && t < 

time6+twal22+30.0/21600.0) || (t >= time6+twal23+30.0/21600.0-delt && t < 

time6+twal23+30.0/21600.0) || (t >= time6+twal24+30.0/21600.0-delt && t < 

time6+twal24+30.0/21600.0) || (t >= time6+twal25+30.0/21600.0-delt && t < 

time6+twal25+30.0/21600.0) || (t >= time6+twal26+30.0/21600.0-delt && t < 

time6+twal26+30.0/21600.0) || (t >= time6+twal27+30.0/21600.0-delt && t < 

time6+twal27+30.0/21600.0) || (t >= time6+twal28+30.0/21600.0-delt && t < 

time6+twal28+30.0/21600.0) || (t >= time6+twal29+30.0/21600.0-delt && t < 

time6+twal29+30.0/21600.0) || (t >= time6+twal30+30.0/21600.0-delt && t < 

time6+twal30+30.0/21600.0) || (t >= time6+twal31+30.0/21600.0-delt && t < 

time6+twal31+30.0/21600.0) || (t >= time6+twal32+30.0/21600.0-delt && t < 

time6+twal32+30.0/21600.0) || (t >= time6+twal33+30.0/21600.0-delt && t < 

time6+twal33+30.0/21600.0) || (t >= time6+twal34+30.0/21600.0-delt && t < 

time6+twal34+30.0/21600.0) || (t >= time6+twal35+30.0/21600.0-delt && t < 

time6+twal35+30.0/21600.0) || (t >= time6+twal36+30.0/21600.0-delt && t < 
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time6+twal36+30.0/21600.0) || (t >= time6+twal37+30.0/21600.0-delt && t < 

time6+twal37+30.0/21600.0) || (t >= time6+twal38+30.0/21600.0-delt && t < 

time6+twal38+30.0/21600.0) || (t >= time6+twal39+30.0/21600.0-delt && t < 

time6+twal39+30.0/21600.0) || (t >= time6+twal40+30.0/21600.0-delt && t < 

time6+twal40+30.0/21600.0)) 

           { 

               if (o5 == 0) 

                  { out[5] = 1; 

                  } 

               else if (o5 == 1) 

                    { out[5] = 0; 

                    } 

               if (o2 == 0) 

                  { out[2] = 1; 

                  } 

               else if (o2 == 1) 

                    { out[2] = 0; 

                    } 

           } 

        else if (t >= time6+150.0/21600.0-delt && t < time6+150.0/21600.0) 

           { 

                 out[5] = 0; 

                 out[2] = 0; 

                  

           } 

   } 

 

 

psp1 = sp1; 

psp2 = sp2; 

psp3 = sp3; 

o0 = out[0]; 

o1 = out[1]; 

o2 = out[2]; 

o3 = out[3]; 

o4 = out[4]; 

o5 = out[5]; 

} 
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