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ABSTRACT

Relay Network Design in Logistics and Telecommunications:

Models and Solution Approaches. (May 2010)

Panitan Kewcharoenwong,

B.Eng., Sirindhorn International Institute of Technology, Patumthani;

M.A., Chulalongkorn University, Bangkok

Chair of Advisory Committee: Dr. Halit Üster

Strategic network design has significant impacts on the operational performance

of transportation and telecommunications industries. The corresponding networks

are typically characterized by a multicommodity flow structure where a commodity

is defined by a unique origin-destination pair and an associated amount of flow. In

turn, multicommodity network design and hub location models are commonly em-

ployed when designing strategic networks in transportation and telecommunications

applications.

In this dissertation, these two modeling approaches are integrated and generalized

to address important requirements in network design for truckload transportation and

long-distance telecommunications networks. To this end, we first introduce a cost-

effective relay network design model and then extend this base model to address the

specific characteristics of these applications. The base model determines relay point

(RP) locations where the commodities are relayed from their origins to destinations.

In doing this, we explicitly consider distance constraints for the RP-RP and nonRP-

RP linkages.

In truckload transportation, a relay network (RP-network) can be utilized to

decrease drivers’ driving distances and keep them within their domiciles. This can
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potentially help alleviate the high driver turnover problem. In this case, the percent-

age circuitry, load-imbalance, and link-imbalance constraints are incorporated into

the base model to control related performance metrics that are affected by the dis-

tance constraints. When compared to the networks from other modeling approaches,

the RP-network is more effective in controlling drivers’ tour lengths and capable of

controlling the empty mileage to low levels without adding a large amount of addi-

tional travel distance. In telecommunications, an RP-network can be beneficial in

long-distance data transfers where the signals’ fidelity must be improved/regenerated

at RPs along their travel paths. For this setting, we extend the base model to include

fixed link setup costs and capacities. From our computational results, our models

provide better network configuration that is cost effective and facilitates a better

service quality (shorter delays and better connectivity).

Concerning methodology, we develop efficient exact solution algorithms based

on Benders decomposition, Lagrangean decomposition, and Lagrangean relaxation.

The performance of the typical solution frameworks are enhanced via numerous ac-

celerating techniques to allow the solution of large-sized instances in reduced solution

times. The accelerating techniques and solution approaches are transferable to other

network design problem settings with similar characteristics.
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CHAPTER I

INTRODUCTION

The service industry today accounts for almost 55 percent of the total economic

activity in the U.S. (U.S. Census Bureau, 2006). Excluding the retail and wholesale

areas, the U.S. Census Bureau has categorized the service industry into nine sectors.

Among them, two important sectors are 1) information and 2) transportation and

warehousing. These two sectors constituted a total of 984.2 billion dollars or 7.4

percent of the total GDP in 2006 (Bureau of Economic Analysis, 2006). In order to

emphasize the significance of these sectors, Table 1 summarizes the results from the

Service Annual Survey conducted by the U.S. Census Bureau from 2004 to 2006.

Table 1: Revenues and expenses of service industry (U.S. Census Bureau, 2006)

Revenue/Expense (billions $) % Change

Service Type 2006 2005 2004 06/05 05/04 04/03

Information 1048/863 1004/813 995/787 4.4/2.8 5.2/3.2 -/-

Telecom 467/390 446/383 429/372 4.7/1.8 3.9/2.9 -/-

Internet Service 98/81 89/73 82/71 10.2/10.6 7.7/1.9 -/-

Broadcasting 95/72 89/67 83/63 6.7/7.4 6.5/6.4 -/-

Truck Transportation 220/201 207/188 186/170 6.3/7.2 11.1/10.7 10.4/-

Long Distance (LD) 122/113 117/107 105/96 4.3/6.3 11.2/10.8 10.7/-

LD-TL 89/83 85/78 76/70 5.1/6.3 11.5/11.5 10.9/-

In Table 1, the first three columns present the total output in terms of total

revenue generated and total expense incurred in each type of service industry. The

last three columns present the percentages of change between two consecutive years.

In the information sector, telecommunications (TC) accounts for almost half of the

total output, while internet service and broadcasting account for another twenty

This dissertation follows the style and format of Operations Research.
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percent.

In the transportation and warehousing sector, only data corresponding to truck

transportation are provided. Although truck transportation does not directly con-

tribute to the U.S. economy as much as the information service sector, the trucking

industry is very important to the U.S. economy. In fact, it accounted for 70.69% of the

total freight shipment value in 2007 (U.S. Census, 2008). In terms of weight, 60.76%

in 2007 (U.S. Deparment of Transportation, 2008) and 68.8% in 2008 (American

Trucking Association, 2009) of total freight was shipped by truck. The significance of

the trucking industry is expected to continue and the tonnage is estimated to reach

70.9% in 2020 (American Trucking Association, 2009). General purpose trucking can

be divided into two main categories: local freight and long distance freight (LD)

trucking. LD trucking is composed of 1) the full truckload (TL) trucking industry,

and 2) the less-than-truckload (LTL) trucking industry. After viewing Table 1, it is

clear that the majority of LD trucking consists of the TL trucking industry. The TL

industry has a significant overall impact, as it is the major transportation mode be-

tween the manufacturing, retail and wholesale trades. Moreover, TL trucking plays an

important role in the transportation of full truckloads between consolidation centers

in LTL trucking.

In Table 1, both total revenue and total expense are shown to increase annually

due to growing demand and expansion of markets. Growth in total revenue reflects

the opportunities for capturing more demand and achieving more profit. At the

same time, growth in total expenses indicates an increasing burden on the firms. In

fact, total expenses are growing at a faster rate than total revenue in many cases.

Therefore, many firms must undergo cost saving programs and initiate more careful

management.
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I.1. Background

I.1.1. Full Truckload Transportation

Examining the difference between total revenue and total expenses of the TL industry

in Table 1, one notes that the profit margins in 2004, 2005, and 2006 were 8.56, 8.56,

and 7.33 percent, respectively. This decrease calls for an immediate response to

prevent the net margin from further declining. Since the growth of total expenses

between 2005-2006 surpasses the growth of total revenue, a plausible response is the

reduction of unnecessary expenses. A very high driver turnover rate is one cause of

excessive spending in the TL industry.

The turnover problem is costly and influential in the overall performance of TL

providers. In addition to driver replacement expenses, other potential impacts include

driver shortage, usage of inexperienced drivers, accidents, late deliveries, and customer

dissatisfaction. In terms of expenses, driver replacement cost alone is estimated to

be around $3000 per driver (Truckload Carriers Association, 2004). More accurate

estimation of the turnover cost – which includes the consideration of indirect factors

such as 1) entry and exit administration (e.g., training), 2) fixed asset costs due to idle

equipment, 3) profit lost due to idle equipment, and 4) insurance and maintenance

– is estimated to range from $2000 to $21000 with an average of $8234 (Rodriguez

et al., 2000). The overall turnover annual cost is estimated to be around $2.8 billion

(for 340000 drivers) in Rodriguez et al. (2000) and $3 billion in Keller and Ozment

(1999). Clearly, the total cost of driver turnover constitutes a considerable portion

of total industry expenses; reducing driver turnover could yield significant savings.

Min and Emam (2003) report different strategies (including monetary approaches

such as increased pay, bonus programs, and longevity rewards) of various trucking

firms designed to alleviate driver turnover problems. However, none of them has been
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verified as an effective approach in the long run.

In TL trucking, a truckload is shipped directly from its origin to its destination

by a single driver using a point-to-point (PtP) dispatching approach. After delivering

a load to its destination, finding another load for the back haul is generally difficult

and an empty direct trip back to the home-base is normally unacceptable. In order

to avoid an empty back haul and minimize the empty travel distance, a truck driver

is normally assigned to multiple consecutive shipments where the distances between

drop-off and pick-up locations are short. However, due to the difficulty of finding a

load with its destination near the driver’s home-base, the PtP approach usually causes

a long tour that keeps the truck driver on the road for an extended period of time

and leads to less driver home time. The amount of home time is very important in

retaining and recruiting drivers (Min and Lambert, 2002), since 70% of truck drivers

quit their jobs because of long tour length (Taylor et al., 1999). Coupled with the

poor quality of life on the road, long tour length is the major cause of high truck

driver turnover that has occurred over the past several decades.

The TL turnover rate is more than three times the U.S. employment turnover

rate of 25.3% in 2007 (Bureau of Labor Statistics, 2007). A driver turnover rate of

85-110% is reported in Mele (1989a,b), 110-120% in Richardson (1994), and remains

above 100% (above 80% for smaller TL providers), as shown in Table 2. Although the

turnover rate is currently dropping, Schneider Logistics Inc. (2009) reports that the

drop has followed the current U.S. economic downturn and holds that it is temporary.

In fact, the problem could become even more severe in the next 3-5 years as drivers

born in the baby-boomer period (1946-1964) begin to retire (Schneider Logistics Inc.,

2009).

The turnover rate is significantly lower in LTL trucking. LTL turnover rate

is 10-14.5% in Mele (1989a,b), 14% in 2006-Q3 (American Trucking Association,
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Table 2: TL driver turnover rate (%) (Transportation Topics, 2007, 2008)

2006 2007 2008

Size (annual revenue) Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1

Large TL (≥ 30 million) 116 110 121 121 127 116 113 112 103

Small TL (< 30 million) 111 100 114 112 102 90 87 82 80

2006; American Trucking Association, 2007), and 10% in 2006-Q4 (American Truck-

ing Association, 2007). In general, LTL load size is smaller than a truck’s capacity,

whereby multiple loads can be consolidated at break bulk terminals (hubs) and trans-

ported together for part of their trips to achieve economy-of-scale. To do so, LTL

providers utilize two types of truck drivers to operate on the hub-and-spoke net-

works. In these hub-and-spoke networks, local drivers pick up/deliver loads between

origins/destinations and hubs, and lane drivers transfer the loads between any two

hubs. This systematic network operation provides truck drivers with more normalized

driving schedules, allows them to go home on a regular basis, and eventually leads to

a lower driver turnover rate. As a result, the low LTL driver turnover rate validates

the use of hub networks to shorten tour length, a practice that could help alleviate

the high TL driver turnover. Keller (2002) also strongly suggests truck providers

use relay stations and different driver teams to improve drivers’ home time and help

retain truck drivers.

When applied to the TL industry, a hub does not work as a consolidation center

but rather as a switching point that allows truck drivers to relay truckloads before

returning to their base stations. Due to the different role of hubs in the TL industry,

we represent a hub by the term “Relay Point” and represent a network obtained from

locating relay points by the term “Relay Network” throughout this dissertation. In

the TL context, the term relay points can be used interchangeably with the terms
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transhipment terminals, drop yards, swap points, and hubs. In order to control

driving distances, local and lane drivers are permitted to travel no longer than “local

and lane tour lengths” from their home base relay points, respectively.

In addition to facilitating regular get-home rates for drivers and helping to alle-

viate the high turnover problem, operations on the relay network can present other

benefits as discussed in Taylor et al. (2001). Among them are 1) an improved truck

utilization and, consequently, higher driver utilization, which leads to better compen-

sation for drivers (since drivers are primarily paid based on mileage); 2) the generation

of efficient trip schedules and planning facilitated by the assignment of drivers and

other workers (maintenance, repair, etc.) to home-base relay points; and 3) the reduc-

tion in accidents, training costs and insurance rates due to more experienced drivers

with job continuity. The use of relay points can also reduce delivery time by allowing

a truckload to continue on its route, with a new driver taking over at a relay point

while the previous driver rests before returning with another TL back to his/her

home-base. Moreover, reducing the need for on-the-route overnight parking spaces is

important, reported in Schneider Logistics Inc. (2009), as truck drivers must travel

out-of-route to find legal parking spaces (at a high cost). Such a problem can also be

alleviated by having relay points provide additional on-the-route truck stops.

I.1.2. Telecommunications

Relay networks also have numerous applications in the telecommunications and other

related industries. Unlike truckload transportation, where the relay network is a

potential solution to an existing industry problem, telecommunications have physical

limitations in which relay networks are required for their operations.

Long-distance telecommunications involve transmitting signals over a large geo-

graphical area where signals normally fade with distance. In order to boost the signal
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strength, repeaters or relay points are located to regenerate the signal between the

origin and the destination. In wireless applications, the signal sent can travel over

only a limited distance and relay points are used to enable long distance connections.

Service quality is another important issue to consider in the telecommunication in-

dustry. By strengthening the signal at the relay points, there is less opportunity for

interrupting noise to enter the signal, hence allowing higher quality service. Relay

points can be used to provide alternative communication channels, reduce the traffic

on a communication network, and improve network performance. In addition to re-

generating/amplifying purposes, in a large telecommunication network, relay points

can be switches that must be installed to connect wires with different transmission

capacities. Moreover, the relay point can also integrate networks with different tech-

nologies (e.g., connect wireless network to optical network).

The design and construction of efficient relay networks are critical for telecom-

munications operators. According to Deloitte Touche Tohmatsu (2009), the telecom-

munications industry is currently facing infrastructure competition, both to provide

high quality service and to extend the reach to customers. With growing demand,

many firms have not only extended their coverage, but also have upgraded their ex-

isting copper networks to cable/broadband networks. However, due to the current

economic downturn and illiquidity, competing firms are very cautious about exten-

sions and upgrades. Thus, the design of the relay network has become even more

crucial for achieving the best possible service with restricted investment.

I.1.3. Motivation and Scope of the Dissertation

This dissertation focuses on applying relay networks to promote better performance

of the two industries discussed above, the truckload and the telecommunications

industries. Upon observing the current state of these two industries, the motivation
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for this research can be summarized as follows:

1. Although full truckload trucking is very important to the U.S. economy, the

truck drivers, the essential component of this industry, are not satisfied with

their jobs. Monetary incentives may alleviate the problem in the short run;

however, without a long term solution, the turnover problem will continue to

exist and, very likely, will worsen.

2. With cautious consumer spending, very intense competition, and potentially

shrinking profit margins, truckload providers are forced to improve their per-

formance and service quality. Prompt pick-ups, on-time deliveries, shortened

shipment time, and reduced number of late shipments will be the keys to cus-

tomer satisfaction. Because the PtP dispatching randomly assigns drivers over

the road, truck providers are in need of a systematic approach to better manage

their truck drivers and serve their customers.

3. Demand growth and frequent technology changes require telecommunications

firms to continuously adapt and extend their physical networks and operations.

Under scarce financial resources, every change in the network is consequential

and requires cautious considerations in order to obtain optimal returns on in-

vestment.

4. Because multiple telecommunications networks compete across the globe, the

infrastructure competition and will continue and require firms to expand their

coverage and improve existing networks. Delay, noise interruption, and discon-

nection are factors affecting the competitiveness of each firm. Thus, the design

of the telecommunication network must also take into account the customers’

perspective, to not only minimize network construction costs but to also focus
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on providing quality services (e.g., high signal quality and minimized delays).

Based on these observations, we believe that these two industries are in need of more

efficiently designed physical relay networks. For this purpose, this dissertation aims

to capture the important requirements and characteristics of each industry, explic-

itly address them in effective mathematical models, and develop efficient solution

algorithms.

In the next section, we provide a detailed description of the base relay network

and its variants, customized to match the different requirements of the truckload and

telecommunications industries.

I.2. Relay Network Description

I.2.1. The Base Relay Network Design Problem (RNDP)

We refer to a large geographical service area of a truckload provider or telecommu-

nications operator by a general network G = (N ,A). A set of nodes N is used to

represent the customer and potential relay point locations. In Figure 1, these nodes

are represented by circles; some of them have relay points located on them and are

represented by squares. Associated with each relay point is the fixed locating cost

incurred when a relay point is located, regardless of its utilization level. A set of links

A is used to represent the existence of a connection channel between any two nodes.

Associated with each link is the variable link utilization cost that is charged for each

unit of demand (truckload or signal) flows on the link.

To represent the demand between node pairs, we let Q be a set of commodities

where each commodity is defined by an origin-destination node pair [i, j], i, j ∈ N

with a known demand wij to be transferred from i to j. The located relay points

form a relay point-induced network that every commodity must utilize. We make an
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assumption that a direct transfer between any two non-relay points without utilizing

the relay points network is prohibited. Consequently, there is at least one relay point

in the path from a commodity’s origin to destination and only the first and the last

nodes can be non-relay points (e.g., Figure 1, commodity [i, j] is relayed through RP1,

RP2, RP3, and RP4).

Figure 1: A Schematic View of a Relay Network
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There is no special topology requirement of the relay network; however, each

non-relay point can only connect to relay points within its ∆1 distance. Likewise,

a connection between any two relay points is allowed only if they are within a ∆2

distance from each other. A feasible relay network is a connected network of relay

and non-relay points formed under the distance requirements that are referred to

throughout this dissertation as “distance or tour length constraints”.

In order to utilize the relay network, we assume that each non-relay point must

be assigned to one unique relay point. This “single assignment” requirement of nodes
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forces all of the incoming flow to and the outgoing flow from a non-relay point to pass

through the relay point to which it is assigned. ∆1 can be used to define a coverage

area of a relay point, whereas the single assignment requirement is for defining the

service region. Specifically, the service region of a relay point is defined by the farthest

node(s) that is assigned to the relay point. We also note that a node can be covered by

multiple relay points, however, it can be served by only one of them. Thus, the service

regions of different relay points are not necessarily the same, in terms of either shape

or size. In Figure 1, a solid grey circle represents the coverage area of the associated

relay point located at the center. A dashed circle represents a service region of a relay

point. Nodes a, b, c, and d are assigned to the relay point RP3 and nodes e, f , and g

are assigned to the relay point RP5. Node g is covered by two relay points but it is

assigned to the relay point RP3.

In summary, the base “Relay Network Design Problem (RNDP)” considers a

given network G = (N ,A), a set of commodities Q, and the restricted distances ∆1

and ∆2 to determine:

1. The location of the relay points,

2. The assignment of nodes to relay points, and

3. The actual transfer routes for each commodity

in such a way that the total cost of the relay point location and the cost associated

with commodity transfer is minimized.

I.2.2. Relay Network Design in TL Transportation

As mentioned before, the high driver turnover rate in the TL industry is mainly caused

by the very long tour lengths that most drivers must endure. In order to address this



12

tour length issue and potentially alleviate the turnover problem in the TL industry,

the use of relay networks can substitute long distance direct shipments with a series

of shipments connected at relay points using two types of drivers performing different

tasks.

Between non-relay points and relay points, local drivers pick up the shipments

from commodities’ origins and deliver them to the associated relay points. Then, lane

drivers transfer the shipments between relay points over the relay network. Once the

shipments arrive at the relay points of the commodities’ destinations, another local

driver delivers the shipment to the destinations. This systematic framework is similar

to operations in the LTL industry. Shorter and more regularized driving routines,

along with potentially higher go-home rates, can be achieved, which, in turn, can

lead to an improved quality of life for truck drivers. Upon devising the relay network,

we would expect a lowered TL turnover rate since TL truck drivers would have similar

work descriptions as LTL truck drivers.

To efficiently implement the idea presented above, we extend the base relay

network design model to explicitly include three other factors (i.e., load-imbalance,

link-imbalance, and link capacity) affecting the operational performance of the relay

network.

I.2.2.1. Model 1: RNDP with Load-Imbalance and Percentage Circuitry

Constraints

As opposed to the direct shipments in PtP dispatching, the implementation of a

relay network trades shortened driving tour lengths with potentially increased empty

mileage and additional travel distances.

Empty mileage occurs when the drivers cannot find a load on the first dispatch

(forward direction) and on the back haul (backward direction) between the relay
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and non-relay points, as well as between any two relay points. In PtP dispatching,

only the first dispatch mileage (between a destination and an origin) is empty, since

empty back hauls are usually avoided by sacrificing drivers’ home times. Due to the

difficulty of quantifying the level of empty mileage, there is no evidence verifying that

the relay network performs worse than PtP dispatching in terms of empty mileage.

However, being able to decrease empty mileage is certainly beneficial to TL providers.

In this case, Model 1 considers the control of “load-imbalance”, which is defined as

the difference between the total incoming and outgoing loads at every service region

(Taha and Taylor, 1994; Taylor et al., 1995, 2001; Üster and Maheshwari, 2007).

Constructing the service regions (equivalent to assigning nodes to relay points) in such

a way that each region has a low level of load imbalance facilitates the opportunity

to find loads for back hauls and helps reduce the first dispatch empty miles.

In PtP dispatching, the travel distance is minimized when a shipment is trans-

ferred directly from the origin to the destination. On the other hand, shipments in a

relay network visit multiple relay points along a possibly more circuitous path. These

additional distances are sacrificed in order to better control drivers’ distances from

their home bases. Since the extra travel distances are related to shipment times,

one factor affecting operational performance, Model 1 also considers the control of

“percentage-circuitry”, or the percentage of additional travel distances, to some ac-

ceptable preset upper bounds. Moreover, introducing the percentage circuitry into

consideration, can also indirectly help control additional times from connections made

at relay points (less connection are made).

I.2.2.2. Model 2: RNDP with Link-Imbalance and Capacity Constraints

The load-imbalance in Model 1 is defined for each relay point and is directly related to

the pick-up and delivery operations performed by local drivers. In Model 2, the load-
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imbalance is redefined for each pair of relay points and represented by the term “link-

imbalance”. Specifically, the link-imbalance is the percentage difference between the

flow in the forward and backward directions on a link. Contrary to the load-imbalance,

the link-imbalance corresponds to the inter-relay point transfer performed by the lane

truck drivers. Although the load-imbalance can also be alternately defined (on relay

points) to address lane truck drivers’ activities (Üster and Maheshwari, 2007), link-

imbalance provides a better control of flow balancing since low link-imbalance implies

low load-imbalance, but the opposite is not always true. Under the assumption that

the drivers always return to their home base relay points after making each delivery,

the link-imbalance can directly control empty travel distance. If such an assumption

is not made and more complex driving schedules are permitted, then the lane drivers

can visit other relay points prior to their return to home base, which allows the TL

provider to further reduce the empty travel distance beyond the requirements under

the above assumption.

In addition, “link capacity” is another factor that Model 2 explicitly addresses.

Capacity is common in most network design problems and, in the TL context, capacity

can be in the form of traffic or available workforce. Link capacity is defined as the

acceptable upper bound on the total flow in both directions of a link connecting a

pair of relay points.

I.2.3. Relay Network Design in Telecommunications

In the telecommunications context, decisions concerning the physical relay network

are composed of relay points and links connecting the located relay points. Unlike

the previous two models in TL transportation, where the relay points are located on

the existing road network, the next two models design the relay network under the

assumption that links must be established in advance of permitting the flow between
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any two relay points. Moreover, in some cases, the fixed charges must be paid without

the physical linkages being built; these cases can also be handled using our models.

Specifically, our models have applications in wired (with physical links and fixed

charges) and wireless (with only fixed charges) telecommunications.

Although our relay network design problem aims to construct the whole network,

with some adjustments in data settings, it can also be used for the purpose of ex-

panding and upgrading existing networks. For example, by fixing the value of decision

variables corresponding to the existing relay points and links, the model would return

the same relay network with additional relay points and links if their inclusions are

beneficial. Moreover, the network links and relay points with high utilization levels

are good candidates for upgrades, and those with low utilization levels may possibly

be removed.

I.2.3.1. Model 3: RNDP with Fixed Link Construction Cost

In this model, the base RNDP is extended to address the situation when the signal is

transmitted through physical linkages established to allow the connections between

nodes. We note that the links can be used by the flow in both directions, and their

capacity, once established, is abundant (e.g., fiber cables have almost limitless band-

width (Deloitte Touche Tohmatsu, 2009)). In practice, physical linkages are required

for a connection between a non-relay point (an origin or a destination of a commod-

ity) and a relay point, as well as between any two relay points. However, Model

3 only considers the fixed cost associated with the latter case. If links connecting

relay and non-relay points must also be established, the associated fixed cost can be

embedded into the cost term of the node assignment. Once a node is assigned to a

relay point, all the commodities to and from that node must be transmitted through

the associated relay point (under the single assignment assumption) and the total
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transmission cost (between the non-relay and relay point) now behaves like a fixed

charge; thus, the fixed link set-up cost can be included.

I.2.3.2. Model 4: RNDP with Fixed Link Construction Cost and Link

Capacity

Model 4 shares many similarities with Model 3 except that the established links now

have capacity limitations on the total amount of signal flow through them. This is

usually the case in wired and wireless networks where limited bandwidth is shared

by multiple commodities. Similar to the previous model, fixed link set-up costs are

charged when the links connecting relay points are established. Likewise, link capacity

also exists only on the connection between relay points.

In addition, Model 4 can handle the cases where capacity also exists on links

connecting relay and non-relay points. Under the single assignment assumption, each

non-relay point is connected to a single relay point via a unique link; hence, the

link capacity is dedicated only to the commodities that originate from or have the

destination at the non-relay point. Consequently, the total capacity requirement of

the non-relay point can be predetermined, and the assignment of the non-relay point

is restricted only to the links with enough capacity. We note that multiple non-relay

points assigned to the same relay point access the relay network through different

links that are independent of each other. As a result, they do not share link capacity.

Link capacity can also facilitate traffic management. Bottlenecks occur in high

traffic areas, which can consequently lead to signal delay and disconnection. In this

case, relay networks with vast connectivity are required in order to ensure high quality

service. Such a network can be obtained by using Model 4 with a tight capacity

setting. The resulting relay network would contain multiple alternative transmission

routes for intensively utilized links; however, they come with additional construction
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costs.

I.3. Computational Study

In this dissertation, we present relay network design models customized to match the

requirements in the full truckload trucking and telecommunications industries. All

models have distinct mathematical formulations that are highly constrained and very

large in size, and their unique underlying characteristics make them applicable to

different solution approaches. From this observation, we exploit the structure of each

model and develop efficient solution algorithms based on Benders decomposition,

Lagrangean decomposition, and Lagrangean relaxation frameworks. A variety of

computational experiments are conducted to extensively evaluate the performance of

our algorithms. Additionally, our computational experiments allow us to examine the

influence of problem parameters on the algorithmic performance and characteristics

of the resulting relay networks.

All experiments are conducted on Pentium D 3.2GHz workstations with 2GB

RAM. Every algorithm is implemented using C++ with STL (Standard Template Li-

brary) and Concert Technology (ILOG, Inc.). Whenever the branch-and-cut approach

is required, we use CPLEX 9.1 with default settings for cut generation, preprocessing,

and upper bound heuristics.

I.3.1. Generation of Test Instances

To serve the objectives discussed above, we generate our test instances in such a way

that a wide range of input data and problem parameters is considered. We represent

a geographical service area of a TL provider or telecommunications operator using

a rectangle with dimensions 150×100 (width × height). We use a set of nodes N
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to represent the commodity origins, destinations, and the candidate relay point loca-

tions, where |N | ranges from 20 to 80 nodes. These nodes are uniformly distributed

over the 150×100 region. For the cases when the customer locations are concen-

trated in clusters, we generate the clustered instances by locating 80 nodes over the

150×100 region that is divided into 24 25×25 rectangles. Six of the 24 regions are

randomly selected; within each of these regions, 10 nodes are uniformly distributed.

The remaining 20 nodes are uniformly distributed over the 150×100 region to provide

additional connectivity for these clusters. Note that although we initially assume an

interconnected node network, arcs connecting node pairs can be removed if their con-

nections are prohibited; thus, our models do not require the complete node network.

Moreover, the connections between node pairs that are too far apart will be addressed

by the distance constraints.

In order to generate a set of commodities Q, we first calculate the Euclidean

distance between a node to every other node and randomly assign the demand wij to

each node pair using a uniform distribution U[10,20]. The node pairs are then sorted

in descending order of their Euclidean distance and divided into three equal sets of

long, medium, and short (L-M-S) range demand. We assume that only D percent of

the node pairs have demand between them in which the value of D ranges from 20-80

percent. That is, the total number of commodities |Q| is |N |2 D/100 in which 0.6|Q|,

0.2|Q|, and 0.2|Q| distinct commodities (excluding the node pairs with the same origin

and destination locations) are randomly selected from the sets of long, medium, and

short range demands. This combination of demands is represented by the 60-20-20

combination. In some experiment settings, we also consider the 20-60-20, 20-20-60,

and 40-30-30 combinations. Various data settings considered in our computational

studies allow the generation of numerous test instances with many combinations of

|N | and D, as well as the alternative node and demand distributions. We categorized
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Table 3: Summary of test instance classes

Node Demand D

Distribution |N | Distribution 20 40 60 80

Uniform

20

60-20-20

Ua1 Ua2 Ua3 Ua4

25 Ub1 Ub2 Ub3 Ub4

30 Uc1 Uc2 Uc3 Uc4

40 Ud1 Ud2 Ud3 Ud4

60 Ue1 Ue2 Ue3 Ue4

80 Uf1 Uf2 Uf3 Uf4

80 20-60-20 Ug3

80 20-20-60 Uh3

80 40-30-30 Ui1 Ui2 Ui3

Clusterized

80 60-20-20 Cf1 Cf2 Cf3

80 20-60-20 Cg3

80 20-20-60 Ch3

80 40-30-30 Ci1 Ci2 Ci3

the generated instances into different problem classes, as summarized in Table 3.

Note that all the problem classes with uniform and clustered node distribution have

problem class names start with “U” or “C”, respectively. For further illustration,

the number and the distribution of demands for each instance class are presented in

Table 4.

In terms of the cost-based parameters, the fixed cost of locating a relay point is

assumed to be 5000 for instance classes with 20, 25 and 30 nodes. Instances with 40,

60, and 80 nodes assume costs of 7500, 10000 and 12500, respectively. Since the num-

ber of commodities increases dramatically with increased |N |, we consider increasing

the associated fixed cost as |N | increases to reflect more expensive facilities capable

of serving more commodities. On the other hand, the fixed link set-up cost, if it ex-

ists, is assumed to be 500 per link. For the variable cost of truckload transportation

or signal transmission, we assume a unit transportation/transmission cost. For the
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Table 4: The distribution of demands in each problem class

Problem L-M-S Demand Number of commodities

class |N | D distribution long medium short |Q|

Ua1

20

20 60 - 20 - 20 48 16 16 80

Ua2 40 60 - 20 - 20 96 32 32 160

Ua3 60 60 - 20 - 20 126 48 48 222

Ua4 80 60 - 20 - 20 126 64 64 254

Ub1

25

20 60 - 20 - 20 75 25 25 125

Ub2 40 60 - 20 - 20 150 50 50 250

Ub3 60 60 - 20 - 20 200 75 75 350

Ub4 80 60 - 20 - 20 200 100 100 400

Uc1

30

20 60 - 20 - 20 108 36 36 180

Uc2 40 60 - 20 - 20 216 72 72 360

Uc3 60 60 - 20 - 20 290 108 108 506

Uc4 80 60 - 20 - 20 290 144 144 578

Ud1

40

20 60 - 20 - 20 192 64 64 320

Ud2 40 60 - 20 - 20 384 128 128 640

Ud3 60 60 - 20 - 20 520 192 192 904

Ud4 80 60 - 20 - 20 520 256 256 1032

Ue1

60

20 60 - 20 - 20 432 144 144 720

Ue2 40 60 - 20 - 20 864 288 288 1440

Ue3 60 60 - 20 - 20 1180 432 432 2044

Ue4 80 60 - 20 - 20 1180 576 576 2332

Uf1

80

20 60 - 20 - 20 768 256 256 1280

Uf2 40 60 - 20 - 20 1536 512 512 2560

Uf3 60 60 - 20 - 20 2106 768 768 3642

Uf4 80 60 - 20 - 20 2106 1024 1024 4154

Ug3 60 20 - 60 - 20 768 2106 768 3642

Uh3 60 20 - 20 - 60 768 768 2106 3642

Ui1 20 40 - 30 - 30 512 384 384 1280

Ui2 40 40 - 30 - 30 1024 768 768 2560

Ui3 60 40 - 30 - 30 1536 1152 1152 3840

Cf1

80

20 60 - 20 - 20 768 256 256 1280

Cf2 40 60 - 20 - 20 1536 512 512 2560

Cf3 60 60 - 20 - 20 2106 1024 1024 4154

Cg3 60 20 - 60 - 20 768 2106 768 3642

Ch3 60 20 - 20 - 60 768 768 2106 3642

Ci1 20 40 - 30 - 30 512 384 384 1280

Ci2 40 40 - 30 - 30 1024 768 768 2560

Ci3 60 40 - 30 - 30 1536 1152 1152 3840
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distance constraint parameters that occur in all four models, we consider the local

and lane tour lengths combinations (∆1-∆2) of 20-40, 20-50, 30-50, and 30-60. The

discussion of the other parameters will be provided in later chapters along with their

corresponding models.

I.4. Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter II, we introduce the

notation that will be used throughout this dissertation. The mathematical formula-

tion of the base RNDP is also presented in this chapter. In Chapter III, we provide a

literature review on the hub location problems, the multicommodity network design

problems, and applications of relay networks in the full truckload and telecommuni-

cations contexts. In Chapters IV and V, we present the mathematical formulations

for applications in TL trucking (Models 1 and 2) and telecommunications (Models

3 and 4), respectively. The detailed discussions on the development of the solution

algorithm for each model and the extensive computational studies illustrating the al-

gorithmic efficiency are also presented in these chapters. Finally, concluding remarks,

the contributions of this research, and future research directions are summarized in

Chapter VI.
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CHAPTER II

RNDP: THE BASE FORMULATION

In this chapter, we summarize the mathematical notation (decision variables and pa-

rameters) for the development of a cost-effective mixed integer programming formula-

tion of the base relay network design model presented in Section I.2.1. To abbreviate

the term relay point and relay network, which will be used extensively in this disser-

tation, “RP” and “RP-network” are used, respectively. Similarly, the term “nonRP”

nodes refers to the nodes that do not have relay points located on them.

II.1. Model Parameters

N Set of nodes, i, j, k, l ∈ N .

Q Set of commodities; a commodity is defined by an origin node i

and a destination node j with a demand between them, [i, j] ∈ Q.

wij Demand for commodity [i, j] ∈ Q.

dkl Distance between node k and node l, k, l ∈ N .

ckl Capacity of RP-RP link (k, l), k, l ∈ N .

T1 Variable cost between RPs and nonRP nodes per unit demand per unit distance.

T2 Variable cost between two RPs per unit demand per unit distance.

Fk Fixed cost of locating an RP at node k ∈ N .

Fkl Fixed cost of setting up RP-RP link (k, l), k, l ∈ N .

∆1 Permissible distance between a nonRP node and an RP.

∆2 Permissible distance between two RP nodes.

Ψ Permissible level of load-imbalance.

Ω Permissible level of percentage circuitry.

Θ Permissible level of link-imbalance.
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II.2. Decision Variables

xik 1 if node i is assigned to an RP at node k ∈ N , 0 otherwise.

zkl 1 if an RP-RP arc (k, l), k < l, k, l ∈ N is used in the RP-network, 0 otherwise.

yij
kl Fraction of demand for a commodity [i,j] on an RP-RP arc (k, l). (0 ≤ yij

kl ≤ 1).

The base model and its four variants can be formulated using these decision

variables. Moreover, we note that when xii is equal to 1, node i is assigned to itself

and, therefore, node i is an RP.

II.3. Mathematical Formulation

Min
∑

i

∑

k

T1 dik

∑

j

(wij+wji) xik+
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl+

∑

k

Fk xkk (2.1)

subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (2.2)

dkl y
ij
kl ≤ ∆2 ∀ [i, j] ∈ Q, ∀ k, l ∈ N (2.3)

∑

m

yij
mk −

∑

m

yij
km = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (2.4)

∑

k

xik = 1 ∀ i ∈ N (2.5)

xik ≤ xkk ∀ i, k ∈ N (2.6)

yij
kl ≤ xkk ∀ [i, j] ∈ Q, ∀ k, l ∈ N (2.7)

yij
kl ≤ xll ∀ [i, j] ∈ Q, ∀ k, l ∈ N (2.8)

xik,∈ {0, 1}, 0 ≤ yij
kl ≤ 1 ∀ i, j, k, l ∈ N (2.9)

The objective function includes all the expenses associated with the implementa-

tion of RP-networks, which can be categorized into three main components. The first
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component represents the cost of local transportation/transmissions between com-

modities’ origins (and destinations) and RPs. This cost component occurs whenever

a nonRP node is assigned to an RP and all the incoming and outgoing flows – from

and to the nonRP node – must first travel to the associated RP. For the case that

considers the fixed setup cost of links between nonRP nodes and RPs, such cost can

be embedded into this local cost component. The second component of the objective

function represents the total cost associated with flows transferred between RPs. The

combination of the first two components accounts for the annual operation costs from

utilizing the RP-network. The last component of the objective function represents

the total fixed cost of locating RPs. This cost can be annualized to include the fixed

payments during the setup or the construction of RPs, such as the cost of land ac-

quisition, facilities construction, insurance, equipment and tools, and utilities. Fixed

costs may be in the form of annual rental fees if firms rent their facilities.

In the constraint set, constraints (2.2) and (2.3) are the distance constraints that

restrict the connection between nodes that are farther than ∆1 and ∆2 distances,

respectively. We note that during the development of our solution approaches, con-

straints (2.2) and (2.3) will be removed in order to reduce the formulation size. Con-

straints (2.2) can be removed by setting the value of xik with the distance dik greater

than ∆1. Similarly, constraints (2.3) can also be removed by setting the value of

yij
kl with the distance dkl greater than ∆2. However, for the Benders decomposition

algorithms, we alternatively remove constraints (2.3) by assigning an arbitrarily large

value to dkl if dkl is greater than ∆2. Constraints (2.4) are the flow conservation

constraints defined at each node for each commodity. These constraints define the

transfer path – from the commodity’s origin, through a set of RPs, to its destination

– in which only the origin and destination can be nonRP nodes. If both the origin

and destination are assigned to the same RP, then there is only one RP in the transfer
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route and thus all y’s are 0. Constraints (2.5) are the single assignment constraints.

Each node must be assigned to one unique RP and for nodes that have RPs on their

location, they are assigned to themselves. Constraints (2.6), (2.7), and (2.8) provide

the structural requirements of the RP-network. Finally, constraints (2.9) state that

x variables are binary while y variables are real numbers from 0 to 1.

We note that this base formulation is modified from the model presented in

Üster and Maheshwari (2007), developed for applications in TL transportation (the

differences between these models will be discussed in Chapter IV). We emphasize

that this MIP model captures only the general requirement of the base RP-network

implementation. In Chapters IV and V, where we concentrate on applications in the

TL transportation and telecommunications contexts, we will extend this base model

to include the application-specific constraints and modify the base model to match

the requirements in each problem accordingly.

Even for the base model without the additional constraints, the formulation’s

size grows very rapidly with increased |N | and |Q|. Due to this rapid growth and the

corresponding memory requirement, directly solving the base model’s formulation

with the branch-and-cut approach is very inefficient and limited to small problem

instances. Based on this observation, we carefully examine the structure of the base

model and four extensions to develop decomposition-based algorithms that allow us to

solve significantly smaller problems in an iterative fashion. Specifically, in Chapter IV,

we use Benders decomposition and Lagrangean decomposition frameworks to design

solution algorithms for applications of RP-networks in TL transportation. Later,

in Chapter V, we focus on applications in telecommunications and develop different

algorithms based on Benders decomposition and Lagrangean relaxation frameworks.
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CHAPTER III

LITERATURE REVIEW

The relay network design problem involves the construction of a relay network and,

at the same time, the determination of actual transportation/transmission routes be-

tween demands’ origins-destinations, in such a way that the total cost is minimized.

Considering a modeling approach, our problem is closely related to the “hub loca-

tion problem” and the “multicommodity network design problem”. Therefore, in this

chapter, we provide a literature review for both problems, and discuss their rela-

tionship to our relay network design problem. Among multiple applications of relay

networks, we have chosen to design a relay network for applications in full truckload

trucking and telecommunications. Thus, we also review studies related to the use of

relay networks in these two areas.

III.1. Hub Location Problem

The hub location problem considers the location of hubs on candidate locations

(nodes) and the assignment of non-hub nodes to the located hubs in such a way that

the total cost of the hub locations and transportation is minimized. The important

assumptions in the hub location problem are:

1. Every commodity must utilize the hub network.

2. The hub-induced subgraph is a complete network.

3. There is a discount on the transportation cost between any two hubs to reflect

the economy of scale.

Following the above assumptions, the demand for a commodity from node i must be

routed over the hub network before arriving at node j. Due to the complete hub-
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induced subgraph and the discount on hub-hub transportation cost, there are at most

two hubs on an optimal route from a commodity’s origin to its destination. Extensive

reviews of the hub location problem can be found in Campbell (1994); O’Kelly and

Miller (1994); Campbell et al. (2002); Alumur and Kara (2008).

In the current literature, there are many variants of the hub location problem,

each of them posing special characteristics and suitability for different applications.

The problem can be capacitated or uncapacitated depending on the available capacity

of the hubs. Assuming a very large or unlimited hub capacity, the uncapacitated

problem is a special case of the capacitated one. The problem can be either single or

multiple allocation depending on whether or not a non-hub node is allowed to access

the hub network only through a unique hub. Other variations can be a pre-specified

number of hubs to locate with or without the associated fixed charge of locating hubs.

A classification of the hub location problem and detailed discussion can be found in

O’Kelly and Miller (1994).

In Table 5, we summarize some studies of the hub location problem, categorize

them based on the type of capacity and assignment, and note the associated solution

methodology developed in each study. Note that the uncapacitated and capacitated

variations are represented by “U” and “C”, whereas the single and multiple assign-

ment are denoted using “SA” and “MA”. Moreover, we refer to the Branch-and-Bound

approach as “BB” and Branch-and-Cut approach as “BC”.

Among the numerous variations of the hub location problem, the capacitated

single assignment version is perhaps the most general model and the most complex

to solve. Therefore, in order to illustrate the mathematical models of hub location

problems, we provide below the formulation of the capacitated single assignment hub

location problem (CSHLP), as presented in Ernst and Krishnamoorthy (1999).
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Table 5: Literature for the hub location problem

Paper Problem Remark/Methodology

Ernst and Krishnamoorthy (1996) U-SA p-hubs; LP-based BB with

Simulated annealing heuristics.

Klincewicz (1996) U-MA Dual ascent and dual adjustment

in BB framework.

Pirkul and Schilling (1998) U-SA p-hubs; Lagrangean relaxation

with surrogate constraints;

Upper bound heuristics.

Abdinnour-Helm and Venkataramanan (1998) U-SA Hybrid heuristic between Genetic

algorithm and Tabu search

Ernst and Krishnamoorthy (1999) C-SA LP-based BB; Simulated

annealing and random descent

Ebery et al. (2000) C-MA LP-based BB;

Shortest path based-heuristics

Mayer and Wagner (2002) U-MA Dual ascent BB; Upper bounds

from complementary slackness

and improved heuristics

Marin (2005) C-MA LP-based BB;

Re-allocation heuristic.

Wagner (2007) U-SA Locate one hub in each cluster;

Constraint programming.

De Camargo et al. (2008) U-MA Benders decomposition with

multiple cuts and ε-opt framework

Yoon and Current (2008) U-MA Fixed arc cost; Dual-based heuristic

Rodŕıguez-Mart́ın and Salazar-González (2008) C-MA BC based on Benders and double

decomposition; LP-based heuristic

with local search algorithms.

Randall (2008) C-SA Ant colony heuristics

Silva and B. (2009) U-SA Multi-start Tabu search and

Two-stage Tabu search.

Contreras et al. (2008) C-SA Lagrangean relaxation;

Local search heuristics.
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Parameters

N Set of nodes, i, j, k, l ∈ N .

dij Distance between node i and j, i, j ∈ N .

χ Unit transportation cost between node and hub.

δ Unit transportation cost between hub and node.

α Discounted transportation cost between any two hubs.

wij Flow between node i and j, i, j ∈ N .

Oi

∑

j wij, i ∈ N .

Di

∑

j wji, i ∈ N .

Γk Capacity of hub k, k ∈ N .

Fk Fixed cost of locating hub at node k ∈ N .

Decision variables

xik 1 if node i is allocated to hub at node k, i, k ∈ N , 0 otherwise.

(xkk = 1 implies hub at node i)

yi
kl Total flow of commodities from i that is routed between hubs k and l, i, k, l ∈ N .

Model formulation

Min
∑

i

∑

k

dik xik(χ Oi + δ Di) +
∑

i

∑

k

∑

l

α dkl y
i
kl +

∑

k

Fk xkk (3.1)

subject to

∑

k

xik = 1 ∀ i ∈ N (3.2)

xik ≤ xkk ∀ i, k ∈ N (3.3)

∑

i

Oi xik ≤ Γk xkk ∀ k ∈ N (3.4)

∑

l

yi
kl −

∑

l

yi
lk = Oi xik −

∑

j

wij xjk ∀ i, k ∈ N (3.5)

xik ∈ {0, 1}, yi
kl ≥ 0 ∀ i, k, l ∈ N (3.6)
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In the objective function (3.1), the first two terms correspond to the total

transportation cost. The first term represents the transportation between non-hub

nodes and hubs, calculated using the non-discounted transportation cost. The sec-

ond term represents the inter-hub transportation where the unit transportation cost

is discounted (α ≤ χ and δ) due to the economy of scale. The last term in the

objective function accounts for the fixed cost associated with the hub locations.

Constraints (3.2) enforce the single assignment of non-hub nodes to hubs. Con-

straints (3.3) ensure that nodes can be assigned only to hubs. Constraints (3.4)

impose the capacity limitation on hubs. Constraints (3.5) are flow conservation con-

straints. Finally, constraints (3.6) state that xik are binary and yi
kl are nonnegative

real numbers. Ernst and Krishnamoorthy (1999) also provide a tighter alternative

formulation that utilizes four indices of decision variables. However, due to its com-

pact formulation size that requires significantly smaller memory, the three indices

formulation (3.1)-(3.6) is preferable and is utilized in later studies. In addition, we

note that for the uncapacitated problem, constraints (3.4) are removed.

The hub location problem is widely acknowledged among researchers; however,

its complete hub-induced subgraph assumption can be impractical for some situa-

tions. Upon observing this, Campbell et al. (2005a,b) introduced new models, “hub

arc location problems”, to address the hub-related problem without the complete

subgraph assumption. Specifically, the hub arc location problem considers locating

a fixed number of hub arcs on which the unit transportation cost is discounted and

both of the arcs’ ends imply hubs. Four special cases are discussed, whereby an

enumeration based algorithm is developed for each case.

Other interesting variations of the hub location problem are the “hub covering

problem” and “p-hub center problem”. Both problems are based on the same problem

settings as the typical hub location problem such that 1) there exists the discount for
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hub-hub transfer from economy of scale and 2) all the origin and destination nodes

must be assigned to hubs. Specifically, the hub covering problem considers minimizing

the number of hubs required to cover all the nodes in such a way that the distance

constraints are satisfied. The distance constraints can be alternatively defined for 1)

the paths connecting origin-destination pairs (though the hub network), 2) the links

connecting the origins or destinations to the hubs to which they are assigned, or 3)

the links connecting a pair of hubs.

On the other hand, the p-hub center problem involves locating p hubs in such a

way that the maximum distance between the origins or the destinations to the hubs

is minimized. The objective can be altered to include the maximum distance between

hub-hub connections or to consider minimizing the maximum distance between origin-

destination pairs. The node assignment can be either single or multiple allocation,

similar to the typical hub location problem. The formulation of the single and multiple

allocation hub covering problem can be found in Wagner (2008) and of the p-hub

center problem in Ernst et al. (2009).

III.1.1. Relationship with Our Models

Although our base model is closely related to the uncapacitated single assignment

hub location problem (USHLP), they differ significantly in many aspects. Most im-

portantly, the complete hub-induced subgraph assumption, which limits the solution

space to containing only the paths with at most two hubs, is removed due to the inclu-

sion of distance constraints. In fact, these distance constraints permit transportation

to take place only between two locations that are not too far apart (transportation

routes can consist of multiple transfer locations), which can be more practical in the

context of freight transportation and telecommunications. In addition to the distance

constraints, all of our models impose special requirements that further complicate the
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base model, making it further differ from the hub location problem. If the node assign-

ments are given, the transportation route in USHLP is readily known because of the

complete subgraph assumption, whereas the subsequent problems of determining the

transportation route in our models (including the base model) are still complicated

and require further calculations.

We also note that the base model is a generalization of USHLP; both problems are

similar if the distance constraints are removed. The flow conservation constraints (3.5)

are defined in aggregated form for all the commodities that originate from a node i,

i ∈ N . On the other hand, our flow conservation constraints (2.4) are defined for

each commodity. Moreover, constraints (3.7) given below can be included in the base

model in order to address the hub capacity as CSHLP.

(

∑

i

(wij + wji) xik +
∑

i

∑

j

∑

k

∑

l

wij yij
kl

)

≤ Γk xkk ∀ k ∈ N (3.7)

Constraints (3.7) are the capacity constraints defined on every node where the LHS

represents the total flow allowed to transfer through node k, only if an RP is located

there. After including constraints (3.7) and relaxing the distance constraints, as

discussed above, the base model will serve the same objective as CSHLP. However,

we note that testing this variation of the base model is beyond the scope of our study,

and we leave it for future study.

Additionally, our four models are related to the hub covering and p-hub center

problems due to the distance constraints and the local and lane tour lengths. The

local tour length (∆1) controls the distances between the origin and destination nodes

to relay points, while the lane tour length (∆2) controls the distances between any

two relay points. Moreover, Model 1 includes the percentage circuitry that controls

the distance between the origin and destination node pairs. If the total transporta-
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tion/transmission cost term in the objective function of our models is removed, our

problems are similar to the hub covering problem, and the resulting problems would

try to minimize the number of relay points located. On the contrary, if the number

of relay points to locate is given, then our problems are similar to the p-hub center

problem as the problem would then minimize the transportation/transmission costs,

hence minimizing the total distances (origins-relay points, between relay points, and

relay points-destinations).

III.2. Multicommodity Network Design Problem

The multicommodity network design problem (MND) considers two decisions: 1)

network construction decisions and 2) commodity routing decisions. In order to con-

struct a network, a set of arcs must be established so that there exists a path from

the commodities’ origins to destinations. Note that transportation between any two

locations is allowed only if the arc connecting them has been established in advance.

The objective is to minimize the total cost of the network construction and the rout-

ing. Particularly, MND directly addresses the trade off between the additional cost

from setting up more arcs and the savings in routing cost resulting from increased

numbers of potential origin-destination paths.

There are two main variations of this problem, capacitated and uncapacitated

MND. The main difference lies in the existence of the arc capacity limitation of the

total flow and the problem is capacitated if such a limitation exists; otherwise, the

problem is uncapacitated. An extensive review of the capacitated MND literature

can be found in Balakrishnan et al. (1997). Later, Costa (2005) provides a review on

both the capacitated and uncapacitated MND; however, the review is limited to only

those applied to Benders decomposition. Both problems provide interesting research
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areas and have received considerable attention from research communities. Numerous

solution approaches have been customized to solve MND problems, either exactly or

heuristically. For illustration purposes, Table 6 provides a short summary of studies

in the MND area. In Table 6, the entries “U” and “C” in the second column indicate

whether the problem is uncapacitated or capacitated, respectively.

Clearly, we can see in Table 6 that current attention is being directed to the ca-

pacitated version of the problem. Due to the capacity limitation, capacitated MND

poses a complicated and challenging problem structure for the development of solution

algorithms. Moreover, it also provides an excellent test bed for the comparison be-

tween different methodologies, especially for heuristic algorithms. For later discussion

regarding the relationship to our problem, we provide a mathematical formulation of

the capacitated MND below. This formulation is presented in Gendron et al. (1998).

Gendron et al. (1998) define the commodity set using K = {1, . . . , k}, however, for

consistency in notation, we represent the commodity set using Q where [i, j] ∈ Q

is the origin-destination node pair with demand wij between them. The other pa-

rameters and decision variables are redefined using the same or similar notation as

provided in Chapter II.
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Table 6: Literature for the multicommodity network design problem

Paper Setting Remark

Magnanti et al. (1986) U Benders decomposition with strong/pareto cuts.

Balakrishnan et al. (1989) U Dual-ascent with add-drop dual-based heuristics.

Holmberg and Hellstrand (1998) U Lagrangean heuristics in BB

Gendron et al. (1998) C Compare different Lagrangean relaxations;

Resource-decomposition heuristics.

Holmberg and Yuan (2000) C Lagrangean heuristics in BB;

Develop new cutting criteria.

Crainic et al. (2000) C Path-based formulation;

Tabu the flow variables in simplex pivot.

Crainic et al. (2001) C Compare different Lagrangean relaxations;

Subgradient and Bundle-based optimization.

Crainic and Gendreau (2002) C Parallel Tabu search sharing data

to and from the pool of solutions.

Ghamlouche et al. (2003) C Cycle-based neighborhood in Tabu search.

Ghamlouche et al. (2004) C Ghamlouche et al. (2003) with Path-relinking.

Crainic et al. (2004) C Apply Lagrangean perturbation and

long term memory in Slope scaling heuristics.

Alvarez et al. (2005b) C Different Scatter searches.

Alvarez et al. (2005a) C Alvarez et al. (2005b) with GRASP.

Crainic et al. (2006) C Parallel cycle-based Tabu search

sharing data across consecutive levels;

Level is the number of tabu arcs.

Belotti et al. (2007) C Step function for node fixed cost;

BB with two valid inequalities.
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Parameters

N Set of nodes, i, j, k, l ∈ N .

A Set of arcs, (k, l) ∈ A.

Q Set of commodity, [i, j] ∈ Q.

wij Demand for commodity [i, j] ∈ Q.

T ij
kl Unit transportation cost for commodity [i, j] on arc (k, l).

Fkl Design cost for arc (k, l).

ckl Capacity of arc (k, l).

bij
kl = min{wij, ckl}.

Decision variables

zkl 1 if arc (k, l) is designed, (k, l) ∈ A, 0 otherwise.

yij
kl Flow of commodity [i, j] on arc (k, l), [i, j] ∈ Q, (k, l) ∈ A.

Model formulation

Min
∑

[i,j]∈Q

∑

(k,l)∈A

T ij
kl yij

kl +
∑

(k,l)∈A

Fkl zkl (3.8)

subject to

∑

l∈N/{k}

yij
kl −

∑

l∈N/{k}

yij
lk =























wij, k = i

−wij, k = j

0, o.w.

∀[i, j] ∈ Q (3.9)

∑

[i,j]∈A

yij
kl ≤ ukl zkl ∀(k, l) ∈ A (3.10)

yij
kl ≤ bij

kl zkl ∀(k, l) ∈ A, [i, j] ∈ Q (3.11)

yij
kl ≥ 0 ∀(k, l) ∈ A, [i, j] ∈ Q (3.12)

zkl ∈ {0, 1} ∀(k, l) ∈ A (3.13)

In the objective function (3.8), the first term represents the total routing cost of
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every commodity and the second term represents the network construction (arc selec-

tion) cost. Constraints (3.9) are the flow conservation constraints. Constraints (3.10)

ensure that the total flow on any arc does not exceed the arc capacity. Constraints (3.11),

although redundant, are included in many studies (Gendron et al., 1998; Holmberg

and Yuan, 2000; Crainic et al., 2000) to improve the lower bounds’ quality. Finally,

constraints (3.12) state that yij
kl are positive real numbers and constraints (3.13) im-

pose the binary requirement of zkl.

For an uncapacitated problem, constraints (3.10) and (3.11) can be replaced by

constraints (3.14), however wij is now 1 for every commodity and T ij
kl are the cost of

transporting the whole demand of commodity [i, j] on arc (k, l). This uncapacitated

formulation is presented in Holmberg and Hellstrand (1998).

yij
kl ≤ zkl ∀(k, l) ∈ A, [i, j] ∈ Q (3.14)

The arc-based formulation has been widely used; however, another stream of

research focuses on path-based alternative formulation, especially for the case when

a commodity must be routed only on a single path. Both formulations are equally

good for the capacitated problem in terms of LP lower bound strength; however, for

the uncapacitated case, the arc-based formulation has tighter LP bounds (Rardin and

Choe, 1979), as cited in Gendron et al. (1998).

III.2.1. Relationship with Our models

Comparing our problem to the MND problems, we found that Model 3 and Model 4

(presented in Chapter V) have close relationships with the uncapacitated and capac-

itated MND, respectively. The differences between Model 3 and the uncapacitated

MND (and also between Model 4 and capacitated MND) are the existence of distance

constraints, the location of RPs, and the single assignment of nodes. For given RP
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locations and node assignments, our problems reduce to MND with distance con-

straints. More specifically, if the distance constraints are relaxed and the fixed cost

of locating RPs is set to zero, then all nodes imply RPs (as it is free to locate RPs)

and every node is assigned to itself; thus, Models 3 and 4 are the same as the un-

capacitated and capacitated MND. Following this observation, we can conclude that

Models 3 and 4 are generalizations of MND problems where the single assignment

and the distance constraints (and also the location of RPs) provide special topological

requirements that further complicate the problem. We note that, with only minor

adjustments, our solution algorithms can be directly applied to solve both types of

MND.

It is also interesting that, although Models 1 and 2 do not consider arc set-up,

their application-specific constraints (namely, load-imbalance and link-imbalance con-

straints) are similar to some studies in the area of capacitated MND. Pedersen et al.

(2009) introduce “asset-balance constraints” that are incorporated into the capaci-

tated MND. These constraints require the balanced location of arcs in such a way

that the number of arcs (without considering flow on them) entering (in-degree) and

leaving (out-degree) a node must be equal. Likewise, the load-imbalance constraints

in Model 3 require a balanced flow of loads entering and leaving a relay point, while

the link-imbalance constraints in Model 4 consider a balanced flow between a pair

of RPs in forward and backward directions. We also note that the link-imbalance

constraints in Model 4 have not been considered before.

III.3. Truckload Applications (TL)

The use of relay points (called hubs in early studies) to shorten tour lengths and help

alleviate the high driver turnover problem in the full truckload trucking industry has
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been extensively examined in various simulation studies.

Taha and Taylor (1994) develop a rule-based simulation to determine the number,

location, and service area of the hubs, and to suggest when to perform a direct

shipment. The results show that, through the use of hubs, the TL provider can

trade off the reduction in tour length with extra travel distances (circuitry) and the

first dispatch empty miles. Also with simulation tools, Taylor et al. (1995) examine

network scenarios with different hub locating methodologies, number of hubs, and a

driver’s permissible number of hubs from home base. The operations of truck drivers

follows those of the less-than-truckload trucking. Specifically, local drivers pick up

and deliver truckloads between hubs and non-hub locations, lane drivers transfer

truckloads between any two hubs, and non-network drivers perform direct shipments.

The results suggest the construction of a service area with a low “load-imbalance”

level – the difference between the total incoming and outgoing load – to achieve good

network performance.

Taylor et al. (1999) simulate a variety of dispatching methods that utilize a zone

model, a key hub, a key lane, and point-to point (PtP) dispatching. The results show

that the zone model performs best in terms of empty miles, miles per driver per day,

and percentage of late loads, but it may cause a high level of circuitry. Taylor and

Meinert (2000) conduct extensive simulation experiments for a special case including

two rectangular adjacent zones. The results show that the number of hubs and the

radius of the zone (tour length) significantly impact the performance of the model

and it is observed that the use of hubs compares favorably to PtP dispatching in

reducing tour lengths and flow times (through relaying opportunities at hubs). Taylor

et al. (2001) introduce a variety of zone models with different number of hubs, zones,

interior points, and different levels of permissible circuitry and load-imbalance. An

assumption is made that a TL can be relayed only once on its trip. The results show
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that when zones are created in such a way that the load imbalance level is low, the

minimum tour length can be achieved with only a small increase in the total flow

time.

All of the simulation studies discussed above provide supportive evidence for the

use of hub-networks in reducing truck drivers’ tour lengths. Clearly, the tour length

allowances and the load-imbalance level should be carefully controlled in order to

obtain a good network. The only drawback is the extra travel distance (circuitry) that

must be taken into consideration, from an operational cost effectiveness perspective.

These simulation studies differ from our models in a number of ways. While all

these studies compare the performance of pre-determined network configurations (the

numbers and locations of hubs), our models seek the best configuration endogenously

(in Chapter IV, we conduct an experiment to compare the performance of networks

obtained using their hub location strategies with that from our Model 1). The hub

location strategies in these simulations are either based on the volume of freight or the

level of load imbalance; our models locate RPs on the candidate locations only if the

tradeoffs between the fixed RP locating costs and the transportation cost savings are

profitable. Most importantly, the candidate networks in the above simulation studies

are evaluated using performance indices such as driver tour lengths, empty mileage,

extra travel distance, percentage of late loads, and flow time. Our models explicitly

control driver tour lengths and extra travel distance to satisfactory levels and consider

minimizing the total cost of locating RPs and transportation. Moreover, since the

total travel distance and flow time are directly proportional to the transportation

cost, they are implicitly minimized in our models.

Besides the simulation studies discussed earlier, there are other studies that uti-

lize relay points in reducing tour length. Under the same assumptions that 1) there

is no fixed cost associated with locating RPs and 2) RPs can be located anywhere
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on the network, Hunt (1998) and Ali et al. (2002) develop different algorithms to

locate RPs on the U.S. highway system. The algorithm developed by Hunt (1998)

constructs the RP-network in three steps. First, the algorithm solves the shortest

path problem for each commodity. Then, in the second step, RPs are located along

the shortest path by the “spring algorithm” or, alternatively, by a greedy algorithm.

Finally, the commodities are re-routed on the constructed RP-network to obtain their

actual transportation paths. The results show that both the tour length and the flow

time can be greatly reduced; however, some commodities may have a high level of

circuitry, in which case, a direct shipment is suggested.

On the other hand, Ali et al. (2002) develop three iterative approaches to locate

a minimum number of RPs on a network, while satisfying a distance constraint. The

first approach iteratively locates RPs along the shortest path between the origin and

the destination of each commodity, and loads are restricted to travel on this path.

The second approach allows the load to exit from the shortest path route at some

intersection to utilize the previously located RPs. The load must then return to the

same intersection before continuing to travel on the shortest path. The third approach

permits the transportation of load on any path that has an additional distance within

some permissible value. The results show that a minimum number of RPs is required

if the commodities are routed in ascending order of their shortest path lengths in

the first approach, which is the same number in the second approach. For the third

approach, the number of RPs depends on the permissible additional distance. We

note that neither of the two provides a mathematical formulation to benchmark their

algorithms.

Recently, Üster and Maheshwari (2007) have derived a mathematical model for

the construction of RP-networks that consider the tour length, load-imbalance, and

percentage circuitry constraints. The objective function is to minimize the total cost
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associated with locating RPs and transportation. Note that Model 1 is based on this

model and we provide a comparison between these two models in Chapter IV. They

analyze the impact of the parameters and provide an efficient tabu search heuristic uti-

lizing exchange, add, and drop neighborhoods. The results show the inter-relationship

between the parameters that lowered load-imbalance level can be obtained by increas-

ing the local and lane tour length, while improved percentage circuitry level can be

achieved by increasing the lane tour length and decreasing the local tour length.

III.4. Telecommunications Applications

Relay networks have also been applied to applications in telecommunications and re-

lated industries (e.g., internet and broadcasting). The most notable study related to

our problem is by Cabral et al. (2007). In a telecommunications tree network (single

origin-multiple destinations), repeaters (RPs) must be located to amplify signal qual-

ity with respect to a distance constraint. The construction of the RP-network includes

the location of RPs and the set up of transmission links, with the objective being to

minimize the total RP-network construction cost. Four heuristic algorithms are de-

veloped and benchmarked with a lower bound obtained from solving a path-based

formulation with column generation. Due to several similarities between this model

and our Model 3, we make the comparison between the two models in Chapter V.

Based on their previous work, Cabral et al. (2008) have developed a two-step

method for the design of a wide area broadband internet network in Alberta. The

first step employs the algorithms in Cabral et al. (2007) to determine the network

structure that consists of shelter (RP) locations and links. The second step uses

tabu search heuristics to determine the type of optical fiber to install on each link

and the location of repeaters and switches (for connecting links with different tech-



43

nologies/types) on the located shelters. The objective is to minimize the total cost

of technology installation and location of repeaters and switches in such away that

the total delay (induced from repeaters and switches) for each commodity does not

exceed a permissible level.

In the context of an internet broadband wireless network, So and Liang (2006)

construct the RP-network on a complete graph to connect a base station to end users

who are scattered in a large service region. The objective is to minimize the number of

RPs and the penalty of unmet demand in such a way that the total flows between the

end users and RPs do not violate the RP capacity. Benders decomposition algorithm

is used to solve this model, and the results show that fewer RPs are required with in-

creased RP capacity. However, a minimum number of RPs cannot be further reduced.

This problem is significantly different from our models in many ways. While their

model only concerns the minimum number of RPs, our models consider the trade-off

between the total cost of RP locations and the transmission cost savings that arise

from locating more RPs. Moreover, our models do not consider the complete graph

assumption due to the distance constraints and our models involve multicommodity

flow instead of one-to-many demand.

Kashyap et al. (2006) consider minimizing the congestion of an existing wireless

backbone network by creating alternative bypass channels formed by a series of RPs.

In this model, each node has a limitation on the number of channels it can connect,

and if the bypass distance is beyond a single transmission range, then a sequence of

RPs is required. To do this, the additional edges (formed by using RPs) are located

on an existing network using three rule-based greedy algorithms. Additionally, to im-

prove the quality of solutions, a “rollout” algorithm is applied to modify the solutions

based on their future expectations. Finally, maximum congestion is obtained by solv-

ing the network flow problem on the new networks. The results show that maximum
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congestion can be reduced when locating the first RP and the reduction gradually

decreases as more RPs are located. The results also demonstrate the capability of

the rollout algorithm to improve the solutions from all greedy algorithms.

III.5. Positioning in the Current Literature

Having reviewed the literature in the areas discussed above, we observe that this

dissertation research can be positioned in many different research areas:

1. Hub Location Problem Literature: Models 1-4 are closely related to the un-

capacitated single allocation hub location problem (USHLP) without the com-

plete hub-induced subgraph assumption. Our problems also integrate the key

characteristics of the hub center problem into the USHLP by having the dis-

tance constraints control the maximum distances between non-relay and relay

points, and between relay point pairs, within some permissible levels. In ad-

dition, Model 1 also contains the percentage circuitry constraints that help

control the total distance of the paths between the origin-destination pairs. In

summary, our problems are not only related to numerous variations of the hub

location problems, but can be considered as integrating these variations with

more flexibility in modeling real problems. Additionally, the application spe-

cific constraints (i.e., load-imbalance, link-imbalance, and capacity constraints)

further complicate our problems.

2. Multicommodity Network Design Problem Literature: Compared to

the multicommodity network design problem (MND), Model 3 and Model 4

are related to the uncapacitated and capacitated MND, respectively. In both

cases, our models are more constrained due to the location of RPs, distance

constraints, and single assignment constraints.
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Considering two areas discussed above (items 1 and 2), our Model 3 (and Model

4) integrates the key characteristics of both USHLP (location of RPs and single

assignment) and MND (arc selection) into one general model that is more flexible in

capturing different requirements in some applications.

3. Solution Methodology: We develop efficient solution algorithms based on

Benders decomposition, Lagrangean relaxation, and Lagrangean decomposition.

For Benders decomposition, we successfully enhance their performance through

the use of strong Benders cuts, cut disaggregation schemes, ε-Optimal, and

surrogate constraints. A new method for obtaining the strengthened Benders

cuts is also introduced. For Lagrangean decomposition, we duplicate decision

variables in aggregated forms, which facilitates the reduction of formulation size

and the decomposition of the relaxed problem. For Lagrangean relaxation, we

derive surrogate constraints for improving Lagrangean relaxation lower bounds.

In all cases, we develop improvement heuristics and apply the heuristic solution

to enhance the algorithmic performance.

4. Applications in Truckload Logistics: For the TL applications, we introduce

a framework that can potentially alleviate the high driver turnover problem. By

resembling the operation in less-than-truckload (LTL) trucking, we propose that

truck providers relay their shipments, as in the LTL industry, instead of making

long direct shipments. By doing this, we expect a reduction in turnover rate

since TL truck drivers now perform very similar tasks to LTL drivers (LTL

trucking has a very low turnover rate). Thus, the RP-network is our proposed

potential solution to the existing industry problem. In addition, we also provide

mathematical models for the design of a cost effective relay network as opposed

to comparing specific scenarios using simulations. The mathematical models, in
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turn, allow us to incorporate important operational efficiency constraints, such

as tour length, circuitry, load-imbalance, and link-imbalance constraints, then

control them within permissible levels.

5. Applications in Telecommunications: In the telecommunications area, we

introduce a new general model that includes RP locations, arc selection, and

routing decisions under capacitated and uncapacitated arc settings. The ap-

plications are found in both wireless and wired telecommunications. Moreover,

our models are applicable to the hybrid wired-wireless telecommunications net-

works, which have been receiving increasing attention (Sarkar et al., 2009). An

example of this hybrid network can be found in Sarkar et al. (2009), where the

model considers an optical fiber network, where each end user has a wireless

connection to only a single optical unit. Models 3 and 4 can be directly used

for the construction of such networks. More specifically, the optical network

can be represented by RP-network and RP-RP links, while the single wireless

connection to end users can be represented by a single assignment of nodes.
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CHAPTER IV

RELAY NETWORK DESIGN FOR TRUCKLOAD TRANSPORTATION

In this chapter, the base relay network design model is extended to match the require-

ments in truckload (TL) transportation. The construction of a strategic relay network

(RP-network) takes into account the operational issues in the TL transportation con-

text, such as empty mileage, percentage circuitry (additional travel distance), and ca-

pacity limitation. For the empty mileage, the load-imbalance and the link-imbalance

constraints are designed to balance the flow of truckloads and help control the empty

travel distance. On the other hand, percentage circuitry and capacity limitation can

be expressed in mathematical form and are controlled using the percentage circuitry

and capacity constraints, respectively. Although it is possible to incorporate all these

constraints into one model, it would be extremely difficult to generate test instances

that are feasible with respect to all these constraints at the same time. Therefore, we

handle these constraints using two models, each with two types of constraints. How-

ever, if all four constraints must be considered at the same time, we can incorporate

the other two constraints into the objective function so that the violation of these

constraints is penalized in the form of additional cost. After making this modifica-

tion, the modified model (two constraints in the constraint set and two constraints

in the objective function) can be solved using the solution algorithms for the model

with the two types of constraints developed in this chapter.

Closely examining the requirement of each type of constraint, we observe that the

load-imbalance constraints should be addressed at the same time as the percentage

circuitry constraints. To achieve a small level of load-imbalance, many non-relay

points may be assigned to a relay point. As a result, many commodities must then

travel on circuitous paths, which would lead to increased transportation cost and
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time. Therefore, including the percentage circuitry constraints would be beneficial

in preventing such incidents. Moreover, we also observe that the capacity and the

link-imbalance should be addressed in the same model. While trying to balance the

flow in both directions, the link-imbalance constraints could potentially send a large

amount of flow on some links, which may lead to network congestion. Thus, the

incorporation of capacity constraints would help control the total amount of flow.

Based on the above observations, we consider addressing these constraint sets

separately, using two mathematical models. In Section IV.1, Model 1 considers the

load-imbalance and the percentage circuitry constraints in addition to the general

requirements of the relay network design. In Section IV.2, the link-imbalance and the

capacity constraints are incorporated into Model 2.

IV.1. Model 1: RNDP with Load-Imbalance and Percentage Circuitry

Constraints

The operational characteristics of the RP-network in Model 1 are similar to those in

the base model. We consider a large geographical service area of a TL provider rep-

resented by an underlying road network in which a set of locations/nodes N – which

can be the commodities’ origins or destinations, as well as potential RP locations –

are connected by roads that are represented by a set of directed arcs A. Utilizing this

network G = (N ,A), the construction of an RP-network in Model 1 involves the de-

termination of 1) RP locations, 2) nonRP nodes assignment, and 3) the actual route

for each commodity, in such a way that the total RP location cost and the total com-

modity transportation cost are minimized. Moreover, these decisions are made under

the tour length/distance constraints in order to allow the local and lane truck drivers

to relay shipments without traveling farther than ∆1 and ∆2 away from their home
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base RPs. In addition to the tour length constraints, two other requirements are the

load-imbalance and the percentage circuitry constraints. These two constraints help

control the empty mileage and additional travel distance.

As illustrated in Figure 2, the RP and nonRP nodes are represented by squares

and circles, respectively. Associated with each RP is the dashed contour line, whereby

every nonRP node inside this contour is at most ∆1 from and is assigned to the

associated RP at the center. Moreover, the RP-induced network forms a connected

network with respect to the distance ∆2. In Figure 2, one example commodity [i, j]

is routed through RP1, RP2, RP3, and RP4. To comply with the percentage circuitry

constraints, the total distance from i to j must not be more than Ω percent greater

than the direct distance between i and j, dij. For the load-imbalance constraints that

are defined for every located RP, we use RP5 in Figure 3 to provide the illustration

of this requirement.

Figure 2: A Schematic View of Model 1
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In Figure 3, the solid arrow represents the commodities with both origin and

destination in the same region. In this intra-region case, local drivers pick up and

deliver the shipments; the pick-up is color coded black, whereas the delivery is grey.

For the inter-region flow, the black dashed arrow represents the outgoing commodities

that originate within the region of RP5, but with a destination in another region. In

contrast, the dashed grey arrow represents incoming commodities with a destination

inside RP5’s region, but that originated elsewhere. The local drivers only pick up

shipments in the former case and only deliver shipments in the latter case.

Figure 3: Load-Imbalance Constraints

The rest of the network
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Clearly, a large difference between the pick-ups and deliveries in a region, as

caused by inter-region flows (intra-region flows do not provoke the load-imbalance

level as drivers perform both pick-ups and deliveries), implies a high load-imbalance

level, which directly leads to high level of empty mileage. In this case, we consider

keeping the load-imbalance to a low level even though it does not ensure low empty
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mileage. In doing this, the resulting RP-network will be composed of regions with a

balanced number of pick-ups and deliveries that, if coupled with an efficient local rout-

ing procedure, can potentially help with empty mileage management. However, local

routing decisions should be made at the operations level and are beyond the scope of

our research, which focuses more on the strategic network-design level. Finally, we

note that the load-imbalance and the percentage circuitry constraints are developed

by Üster and Maheshwari (2007), who provide detailed derivation and discussion of

them.

IV.1.1. Model Formulation

Utilizing the notation presented in Section II.1, the load-imbalance constraints and

the percentage circuitry constraints can be stated as follows:

∑

i

∑

j

wij xik −
∑

i

∑

j

wij xjk ≤ Ψ
∑

i

∑

j

wij xik ∀ k ∈ N (4.1)

∑

i

∑

j

wij xjk −
∑

i

∑

j

wij xik ≤ Ψ
∑

i

∑

j

wij xjk ∀ k ∈ N (4.2)

(

∑

k

dik xik +
∑

k

∑

l

dkl y
ij
kl +

∑

k

djk xjk

)

− dij ≤ Ω dij ∀ [i, j] ∈ Q (4.3)

In constraints (4.1) and (4.2), the terms
∑

i

∑

j wij xik and
∑

i

∑

j wij xjk cor-

respond to the local drivers’ pick-ups and deliveries. According to these two con-

straints, the difference between the pick-ups and deliveries cannot exceed Ψ percent

of the the larger one. In constraints (4.3), the left hand side represents the additional

travel distance of a commodity where the term in parentheses is the total distance

when the commodity is routed through the RP-network. Similar to the previous two

constraints, the additional distance cannot exceed Ω percent of the direct shipment

distance, dij.
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By incorporating constraints (4.1), (4.2), and (4.3) into the base model’s formu-

lation (2.1)-(2.9), the complete formulation of Model 1 is as follows:

Min Z =
∑

i

∑

k

T1dik

∑

j

(wij + wji)xik +
∑

i

∑

j

∑

k

∑

l

T2dkl wij yij
kl +

∑

k

Fk xkk

(4.4)

subject to

dik xik ≤ ∆1 ∀i, k ∈ N (4.5)

dkl y
ij
kl ≤ ∆2 ∀[i, j] ∈ Q, ∀k, l ∈ N (4.6)

∑

m

yij
mk −

∑

m

yij
km = xjk − xik ∀[i, j] ∈ Q, ∀k ∈ N (4.7)

∑

i

∑

j

wij xik −
∑

i

∑

j

wij xjk ≤ Ψ
∑

i

∑

j

wij xik ∀k ∈ N (4.8)

∑

i

∑

j

wij xjk −
∑

i

∑

j

wij xik ≤ Ψ
∑

i

∑

j

wij xjk ∀k ∈ N (4.9)

∑

k

dikxik +
∑

k

∑

l

dkly
ij
kl +

∑

k

djkxjk − dij ≤ Ωdij ∀[i, j] ∈ Q (4.10)

∑

k

xik = 1 ∀i ∈ N (4.11)

xik ≤ xkk ∀i, k ∈ N (4.12)

yij
kl ≤ xkk ∀[i, j] ∈ Q, ∀k, l ∈ N (4.13)

yij
kl ≤ xll ∀[i, j] ∈ Q, ∀k, l ∈ N (4.14)

xik,∈ {0, 1}, 0 ≤ yij
kl ≤ 1 ∀ i, j, k, l ∈ N (4.15)

We first note that this mathematical formulation is based on the model given

by Üster and Maheshwari (2007); however, our model includes constraints (4.11) and
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eliminates the following three constraints which are now redundant,

∑

k

∑

l

yij
ik ≥ 1, yij

kk ≤ xik, yij
kk ≤ xjk ∀ [i, j] ∈ Q, ∀ k ∈ N . (4.16)

Constraints (4.16), along with the first term of the objective function, ensure that

all of the commodities utilize the RP-network, whereas constraints (4.11) handle this

requirement more directly. In addition, based on our computational studies, the

formulation with (4.11) provides tighter bounds when a Branch-and-cut (e.g., using

CPLEX) method is used. We also note that the inclusion of the redundant constraints

(4.16) provides no additional computational benefits.

IV.1.2. Benders Decomposition Framework

According to our early discussion, solving the entire formulation of Model 1 with

commercial Branch-and-cut software is not an effective approach because of the rapid

growth of problem size. However, when the values of x variables are given, the

reduced problem that contains only y variables is a linear program (LP) and can be

further decomposed for each commodity. Such LP and decomposable structures make

Model 1 and the base model (and also Model 3 presented in Chapter V) amenable to

solution by Benders decomposition (BD).

To develop a BD based algorithm for Model 1, we observe that if the x values

are fixed to satisfy constraints (4.5), (4.8), (4.9), (4.11), and (4.12), then the resulting

problem over y variables (second term in (4.4) along with constraints (4.7) and (4.14))

is an uncapacitated multicommodity network flow problem with a side constraint

(4.6). Constraints (4.6) can be eliminated by assigning an arbitrarily large distance

to each arc (u, v) with a duv value greater than ∆2. This allows us to always obtain a

solution to the resulting problem whose infeasibility, if it exists, is simply marked by

an unrealistically large objective value. Moreover, the resulting problem is separable
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into |Q| problems and it can be shown that each such problem is in fact a shortest

path problem on the RP-network.

Based on these observations, in what follows, we first consider our problem with-

out the circuitry constraints (4.10) and present a base BD algorithm, along with

details on algorithmic enhancement that include generation of strengthened (Ben-

ders) cuts, cut disaggregation schemes, feasibility seeking (ε-optimal) framework,

and the use of a local search heuristic for improving the upper bounds. Later, in

Section IV.1.4, we generalize our ε-optimal BD algorithm so as to effectively handle

the circuitry constraints.

IV.1.2.1. Base BD Framework

The BD technique involves decomposing an overall formulation into a master problem

and a subproblem, and then solving them iteratively by utilizing the solution of the

one in the other (Benders, 1962). The “subproblem” includes continuous variables and

associated constraints and the “master problem” contains integer variables and one

additional (auxiliary) continuous variable that relates the subproblem to the master

problem. An optimum solution to the master problem gives a set of values for the

integer variables, as well as a valid lower bound for the overall objective value. Using

the fixed integer variable values as input, the solution to the “dual subproblem” is

used to calculate an upper bound and to construct a Benders cut. This Benders

cut is added to the master problem in the next iteration and the iterative process

continues in this fashion by solving the master problem and the dual subproblem

until it is terminated upon a predetermined small optimality gap between the upper

bound and the lower bound. The addition of a Benders cut to the master problem

tightens the lower bound, which monotonically increases in the course of iterations; it

is well-known that an optimal solution is reached if enough iterations are completed.
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IV.1.2.2. Benders Subproblem and its Dual

For given x̂ variables, we can state a subproblem SP(y|x̂) for our formulation as

follows:

Min ZSP =
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl (4.17)

subject to

∑

m

yij
mk −

∑

m

yij
km = x̂jk − x̂ik ∀ k ∈ N , ∀ [i, j] ∈ Q (4.18)

yij
kl ≤ x̂kk ∀ k, l ∈ N , ∀ [i, j] ∈ Q (4.19)

yij
kl ≤ x̂ll ∀ k, l ∈ N , ∀ [i, j] ∈ Q (4.20)

yij
kl ≥ 0 ∀ k, l ∈ N , ∀ [i, j] ∈ Q (4.21)

It is clear that the subproblem SP(y|x̂) can be separated into |Q| problems SPij(y|x̂),

∀ [i, j] ∈ Q. Then, defining αij
k , σij

kl and τ ij
kl as the dual variables associated with (4.18),

(4.19) and (4.20), respectively, the dual subproblem DSPij(α, σ, τ |x̂) for [i, j] ∈ Q

is obtained as

Max ZDSPij
=

∑

k

(x̂jk − x̂ik) αij
k +

∑

k

∑

l

(x̂kk σij
kl + x̂ll τ

ij
kl ) (4.22)

subject to

αij
l − αij

k + σij
kl + τ ij

kl ≤ T2 dkl wij ∀ k, l ∈ N , k 6= l (4.23)

σij
kl, τ ij

kl ≤ 0, αij
k unrestricted ∀ k, l ∈ N , k 6= l (4.24)

After solving the dual subproblem, the Benders cut can be generated using the values

of dual variables α̂, σ̂, τ̂ , and an auxiliary continuous variable B as follows:

B ≥
∑

i

∑

j

(

∑

k

(xjk − xik) α̂ij
k +

∑

k

∑

l

(xkk σ̂ij
kl + xll τ̂

ij
kl )

)

(4.25)
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Note that, if the network G is connected, the subproblem always has a feasible solution

and its dual is bounded.

IV.1.2.3. Benders Master Problem

Given the values of the dual variables α̂, σ̂, and τ̂ , which are used to form Benders

cuts, the master problem MP(x|α̂, σ̂, τ̂ ) for our problem becomes

Min ZMP =
∑

i

∑

k

T1 dik

∑

j

(

wij + wji

)

xik +
∑

k

Fk xkk + SumBvars (4.26)

subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (4.27)

∑

i

∑

j

wij xik −
∑

i

∑

j

wij xjk ≤ Ψ
∑

i

∑

j

wij xik ∀ k ∈ N (4.28)

∑

i

∑

j

wij xjk −
∑

i

∑

j

wij xik ≤ Ψ
∑

i

∑

j

wij xjk ∀ k ∈ N (4.29)

∑

k

xik = 1 ∀ i ∈ N (4.30)

xik ≤ xkk ∀ i, k ∈ N (4.31)

(constraints for the set of BCuts) (4.32)

xik ∈ {0, 1}, Bvars ≥ 0 ∀ i, k ∈ N (4.33)

As discussed in detail in Section IV.1.3.2, we consider different types of Benders cuts

obtained via disaggregation of (4.25). Thus, in (4.32), we represent the generated

Benders cuts generically by BCuts. Moreover, we use Bvars to refer to the auxiliary

continuous variables associated with Bcuts, and SumBvars to refer to the sum of

Bvars. For a typical Benders algorithm, constraints (4.32) are the same as constraints

(4.25) and both terms Bvars and SumBvars are equal to B.
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Algorithm 1 Base BD Algorithm for Model 1

1: Initialize UB = ∞, Bvars = 0, α̂ = σ̂ = τ̂ = 0 and Iter = 0; MaxIter;

2: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP and x̂. Set LB = ZMP ;

3: while Iter ≤ MaxIter do

4: Solve DSP(α, σ, τ |x̂) for ZDSP, α̂, σ̂, and τ̂ ;

5: Iter = Iter + 1;

6: if ZMP − SumBvars + ZDSP < UB then

7: UB = ZMP − SumBvars + ZDSP; x̄ = x̂;

8: end if

9: if (UB - LB)/ LB ≤ ε then

10: break;

11: end if

12: Generate BCuts with α̂, σ̂, and τ̂ and incorporate them into MP(x|α̂, σ̂, τ̂ );

13: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP, x̂, and Bvars. Set LB = ZMP ;

14: if (UB - LB)/ LB ≤ ε then

15: break;

16: end if

17: end while

18: Solve SP(y|x̄) to obtain ȳ;

19: (x̄, ȳ) is the best solution upon termination.

We present the base BD algorithm in Algorithm 1, in which UB, LB, and (x̄, ȳ)

denote the best upper bound, the best lower bound, and the best feasible solution,

respectively. The parameters Iter and MaxIter are specified to count the number

of times that the master problem is solved and maximum allowed count value, re-

spectively. The algorithm terminates either when Iter is greater than MaxIter or

when the optimality gap, ((UB - LB)/ LB), is no greater than ε ≥ 0. In each it-

eration, the optimality gap is checked twice; once after solving the dual subproblem

and once after solving the master problem, so that the algorithm is terminated as

soon as the incumbent solution (corresponding to UB) is within ε from the optimal

solution. Also note that, in line 4, the dual subproblem is solved after it is separated
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for each [i, j] ∈ Q to problems DSPij(α, σ, τ |x̂), and ZDSP denotes the sum of these

individual optimum objective function values.

IV.1.3. Approaches for Accelerating the Base Algorithm

The base BD algorithm, as given above, is not a satisfactorily efficient approach for

our problem. Thus, we explore various techniques that can potentially help accelerate

the algorithm to provide solutions with low optimality gaps in shorter runtimes.

IV.1.3.1. Strengthening the Benders Cuts

The subproblems SP(y|x̂) and SPij(y|x̂), after separation for each [i, j] ∈ Q, are net-

work flow problems which commonly possess degeneracy. This causes the dual sub-

problem to have multiple optimal solutions, each of which defines a different Benders

cut. Thus, it is important to determine an optimal solution to the DSPij(α, σ, τ |x̂)

that provides a stronger Benders cut (in lines 4 and 12 of the BD algorithm in Al-

gorithm 1). Magnanti and Wong (1981) define the strongness of a Benders cut for

an optimization problem Miny∈Y, z∈R{z : z ≥ f(u) + y g(u), ∀ u ∈ U} as follows: The

cut z ≥ f(u1) + y g(u1) dominates or is stronger than the cut z ≥ f(u) + y g(u) if

f(u1)+y g(u1) ≥ f(u)+y g(u), ∀ y ∈ Y with a strict inequality for at least one y ∈ Y .

As stated earlier, subproblem SPij(y|x̂) specified for a commodity [i, j] ∈ Q is

essentially a shortest path problem. This can be seen as follows. Once a solution to

the MP(·) is obtained, we readily know the locations of the RPs and the assignment

of the nonRP nodes to these RPs. Then, utilizing the set of RP nodes, NRP only, we

can generate an RP-induced complete network, GRP, in which the arcs with distance

longer than ∆2 have arbitrarily large arc distances as mentioned before. For a given

commodity [i, j], letting r(j) be the RP to which the destination node j is assigned

and r(i) be the RP to which the origin node i is assigned, SPij(y|x̂) poses the problem
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of finding its least cost route from r(i) to r(j), i.e., the shortest path on the GRP with

arc lengths calculated as (T2 dkl wij), ∀ k, l ∈ NRP. Then, SPij(y|x̂) can alternatively

be stated as

Min ZASPij
=

∑

k

∑

l

T2 dkl wij yij
kl

subject to

∑

m

yij
mk −

∑

m

yij
km =



























1 if k = r(j)

0 if k 6= r(i), r(j)

−1 if k = r(i)

∀ k ∈ NRP (4.34)

yij
kl ≥ 0 ∀ k, l ∈ NRP (4.35)

By defining α̃ij
k as the dual variables corresponding to constraints (4.34), the dual

subproblem DASPij(α|x̂) is obtained as

Max ZDASPij
= α̃ij

r(j) − α̃ij
r(i)

subject to

α̃ij
l − α̃ij

k ≤ T2 dkl wij ∀ k, l ∈ NRP (4.36)

α̃ij
k unrestricted ∀ k ∈ NRP (4.37)

The above shortest path problem SPij(y|x̂) can easily be solved using Dijkstra’s

algorithm. Letting the optimal shortest path distance from r(i) to r(j) be Lij, it is

clear that an optimal solution α̃∗ to DASPij(α̃|x̂) has α̃ij∗

r(j) and α̃ij∗

r(i) values as Lij

and 0, respectively. Moreover, an optimal solution (α∗, σ∗, τ ∗) to DSPij(α, σ, τ |x̂)

is given by (α̃∗, 0 , 0). Letting Ai be the set of nodes that are within ∆1 distance of

node i, i.e., Ai = {k ∈ N : dik ≤ ∆1}, we observe, in the first sum of the objective
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function of DSPij(α, σ, τ |x̂), that a term for a node k is not ensured to be nullified

only if either k ∈ Ai or k ∈ Aj. Then, solving the following linear program provides

stronger Benders cuts in the sense of strongness defined above.

Max
∑

k∈Aj

αij
k −

∑

k∈Ai

αij
k +

∑

k

∑

l

(σij
kl + τ ij

kl ) (4.38)

subject to

αij
r(j) = Lij, αij

r(i) = 0 (4.39)

∑

k

(x̂jk − x̂ik)α
ij
k +

∑

k

∑

l

(x̂kk σij
kl + x̂ll τ

ij
kl ) = Lij (4.40)

αij
l − αij

k + σij
kl + τ ij

kl ≤ T2 dkl wij ∀ k, l ∈ N , k 6= l (4.41)

σij
kl, τ ij

kl ≤ 0, αij
k unrestricted ∀ k, l ∈ N , k 6= l (4.42)

Constraints (4.38) fix only the values of two variables in an optimal solution to dual

subproblem DSPij(α, σ, τ |x̂). Constraints (4.39), (4.40), and (4.41) ensure that the

solution to the above problem is feasible for the DSPij(α, σ, τ |x̂) and the implied

Benders cut is valid.

IV.1.3.2. Cut Disaggregation Schemes

Since the subproblem is separable into |Q| independent shortest path problems, one

for each commodity, this enables us to generate different types of Benders cuts. Specif-

ically, we consider four alternative Benders cuts as follows:

Type A1 The first type of cut is the typical aggregate Benders cut. In each iteration,

a single cut is included in the master problem. Then, we have Bvars = B,
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SumBvars = B, and the cut is

B ≥
∑

i

∑

j

(

∑

k

(xjk − xik) α̂ij
k +

∑

k

∑

l

(xkk σ̂ij
kl + xll τ̂

ij
kl )

)

Type D2 We disaggregate the Benders cut so that one cut is added for each node

i ∈ N in which at least one commodity originates. Then, Bvars = Bi, ∀ i ∈ N ,

SumBvars =
∑

i Bi, and the cuts are

Bi ≥
∑

j

(

∑

k

(xjk − xik)α̂
ij
k +

∑

k

∑

l

(xkkσ̂
ij
kl + xllτ̂

ij
kl )

)

∀ i ∈ N

Type D3 We disaggregate the Benders cut so that one cut is added for each j ∈ N

to which at least one commodity is destined. Then, Bvars = Bj, ∀ j ∈ N ,

SumBvars =
∑

j Bj, and the cuts are

Bj ≥
∑

i

(

∑

k

(xjk − xik)α̂
ij
k +

∑

k

∑

l

(xkkσ̂
ij
kl + xllτ̂

ij
kl )

)

∀ j ∈ N

Type D4 We disaggregate the Benders cuts so that one cut is added for each com-

modity [i, j] ∈ Q. Therefore, we have |Q| cuts and Bvars = Bij, ∀ [i, j] ∈ Q,

SumBvars =
∑

ij Bij, and the cuts are given by

Bij ≥
∑

k

(xjk − xik)α̂
ij
k +

∑

k

∑

l

(xkkσ̂
ij
kl + xllτ̂

ij
kl ) ∀ [i, j] ∈ Q

In most cases, the use of multiple cuts can provide a tighter bound (Birge and

Louveaux., 1998; Üster et al., 2007); however, the size and solution time of the master

problem can increase dramatically depending on the type of Benders cuts employed.

Typically, we expect an increasing runtime as we move from Type A1 to Type D4

cuts as given above.
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IV.1.3.3. ε-Optimal Approach

Another approach to decreasing the excessive MP(·) runtime, whether multiple cuts

are employed or not, is through the utilization of the ε-optimal approach introduced

in Geoffrion and Graves (1974). In this approach, the MP(·) includes one additional

constraint, given as

∑

i

∑

k

T1 dik

∑

j

(

wij + wji

)

xik +
∑

k

Fk xkk + SumBvars ≤ UB(1 − ε) (4.43)

where ε denotes the acceptable optimality gap. In an iteration, instead of solving the

MP(·) to optimality, it is only verified that there exists a feasible solution with an

objective function value less than or equal to UB(1 − ε). This is simply achieved by

stopping the Branch-and-cut as soon as a feasible solution is obtained. The values of

the x variables given by this feasible solution are then used to solve the subproblem

and generate valid Benders cuts. A considerable amount of runtime can be saved

since the MP(·) is not optimized; however, the feasible solution obtained is no longer

a valid lower bound. Thus, in the ε-Optimal BD algorithm given in Algorithm 2,

the optimality tests, on lines 9-11 and 14-16 of the base BD algorithm, are removed,

and the algorithm terminates when the MP(·) cannot find a feasible solution, which

verifies that the best incumbent solution is within ε from optimality.
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Algorithm 2 ε-Optimal BD Algorithm

1: Initialize UB = ∞, Bvars = 0, α̂ = σ̂ = τ̂ = 0 and Iter = 0;

2: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP and x̂;

3: while MP(x|α̂, σ̂, τ̂ ) has a feasible solution do

4: Solve DSP(α, σ, τ |x̂) for ZDSP, α̂, σ̂, and τ̂ ;

5: Iter = Iter + 1;

6: if ZMP − SumBvars + ZDSP < UB then

7: UB = ZMP − SumBvars + ZDSP; x̄ = x̂;

8: Update the incumbent value UB in constraint (4.43);

9: end if

10: Generate BCuts with α̂, σ̂, and τ̂ and incorporate them into MP(x|α̂, σ̂, τ̂ );

11: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP, x̂, and Bvars;

12: end while

13: Solve SP(y|x̄) to obtain ȳ;

14: (x̄, ȳ) is the best solution upon termination.

IV.1.3.4. A Heuristic Algorithm to Enhance the Upper Bound

In both the Base and the ε-optimal BD algorithms, upper bounds can be improved

using heuristics so that improved optimality gaps and, thus, a faster convergence, are

achieved. For example, in the ε-optimal approach, it is clear that the constraint (4.43)

becomes stronger as the value of UB decreases. In fact, this constraint is relatively

weak in early iterations since the value of UB is usually large.

Our heuristic local search algorithm is aimed at quickly conducting a neighbor-

hood search for an improved UB, and it employs the most recent MP(·) solution x̂

obtained as its initial solution. In particular, we represent a solution in the heuristic

algorithm by a set of opened RPs S ⊆ N , which is given by the nodes i ∈ N whose

x̂ii value is one in the MP(·) solution. The assignments of nonRP nodes (N \ S)

to the RPs are initially given again by the solution x̂. Observe that x̂ satisfies the

imbalance constraints (4.8) and (4.9), which are included in the MP(·). Given the RP
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locations, i.e., a solution S, and a feasible assignment of nonRP nodes to RPs (with

respect to imbalance constraints), a complete solution can be obtained by determin-

ing the actual shortest path for each commodity on the RP-network. The goodness

of a neighboring solution S, Z(S), can then be evaluated using the objective function

(4.4).

In the heuristic algorithm, outlined in Algorithm 3, we employ three types of

neighborhood functions, represented by the sets Add, Drop, and Swap. Add is the set

of nodes that are currently nonRP, thus, they are candidates for being added as RPs.

Drop includes the current RP nodes (i.e., the nodes in S) which can be made nonRP.

Swap involves the node-pairs (u, v) where u is an RP and v is a nonRP, thus, their

roles can be swapped. In each iteration, neighboring solutions of the current solution

S are generated and examined using each of the neighborhoods.

More specifically, first, in examining the Add neighborhood (lines 5-11), we ran-

domly pick a node u from Add, form Snhbd and update Add. Then, we reassign the

new RP to itself and unassign it from the RP to which it was previously assigned as a

nonRP. For simplicity and runtime considerations, we do not reroute the TLs through

the new set of RPs from scratch. Thus, the reassignment affects the imbalance con-

straint (which we recalculate) only at the latter node since the new node used to be

in its region. Notice that the imbalance constraints only include x variables and the

new RP automatically satisfies the imbalance constraint. Snhbd is recorded as Stemp if

it is feasible and has an improved objective value.

Second, we examine the Drop neighborhood (lines 12-18) similarly by randomly

picking an RP v from Drop. However, when an RP is excluded from S, it is possible

that the RP-induced network is now disconnected, leading to an infeasibility. On the

other hand, the nodes in RP v’s region need to be re-assigned to the RPs that are

in Snhbd so that the imbalance constraints are satisfied. For this, we randomly select
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now-unassigned nodes one at a time and assign them to the existing RPs greedily in

such a way that, at each step, the implied new value of load-imbalance in the network

is minimized. Again, Snhbd is recorded as Stemp if it provides a feasible solution with

improved value.

Thirdly, we consider the Swap neighborhood (lines 19-25) again by randomly

picking pairs of RP and nonRP nodes. In this case, we first add the nonRP node

u (as in the Add neighborhood above but without checking for imbalance) and then

proceed with dropping the node v exactly as in the Drop neighborhood above. Finally,

if the newly obtained Snhbd has an improved objective value and is feasible we record

it as Stemp. The search of three neighborhoods (lines 4-26) continues until the best

solution of the three (recorded as Stemp) improves the incumbent or the sets Add,

Drop, and Swap are non-empty. The overall procedure (while loop) is continued until

no improving solution is found.
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Algorithm 3 Heuristic Algorithm for improving the Upper Bound

1: Stemp = S

2: while S = Stemp do

3: Add = N\S Drop = S; Swap = {(u, v) : u ∈ N\S, v ∈ S}

4: repeat

5: if Add is non-empty then

6: Randomly pick a node u ∈ Add

7: Snhbd = S ∪ {u} Add = Add \ {u}

8: if Snhbd is feasible and Z(Snhbd) < Z(Stemp) then

9: Stemp = Snhbd

10: end if

11: end if

12: if Drop is non-empty then

13: Randomly pick a node v ∈ Drop

14: Snhbd = S \ {v} Drop = Drop \ {v}

15: if Snhbd is feasible and Z(Snhbd) < Z(Stemp) then

16: Stemp = Snhbd

17: end if

18: end if

19: if Swap is non-empty then

20: Randomly pick a node pair (u, v) ∈ Swap

21: Snhbd = S ∪ {u} \ {v} Swap = Swap \ {(u, v)}

22: if Snhbd is feasible and Z(Snhbd) < Z(Stemp) then

23: Stemp = Snhbd

24: end if

25: end if

26: until Stemp 6= S or Add = Drop = Swap = ∅

27: if Z(Stemp) < Z(S) then

28: S = Stemp

29: else

30: break;

31: end if

32: end while

To obtain heuristic enhanced Base and ε-Optimal BD algorithms, we modify the

pseudocodes in Algorithms 1 and 2 in the same way. Let ZHeur and x̂Heur denote the

objective value and the values of the x after the heuristic is applied. Then, specifically,
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we include an additional step just after line 5 to state “Apply the Heuristic Algorithm

initiated with x̂,” and also modify lines 6 and 7 as “ if ZHeur ≤ UB then” and “UB

= ZHeur; x̄ = x̂Heur,” respectively. Notice that, once the DSP(·) is solved on line 4 of

this algorithm, the objective value of the initial solution of the heuristic is obtained.

Thus, the heuristic should provide an upper bound (ZHeur) that is no worse than the

initial solution, which was used as an upper bound before the heuristic was employed.

IV.1.4. Including the Percentage Circuitry Constraints

We incorporate the percentage circuitry constraints (4.10) into the formulation and

the Benders algorithm. Since these constraints contain y variables, they are included

in the subproblem (4.17) - (4.21). By defining ηij as associated dual variables, the

dual subproblem DSPij(α, σ, τ , η|x̂) for [i, j] ∈ Q becomes

Max ZDSPij
=

∑

k

(x̂jk − x̂ik) αij
k +

∑

k

∑

l

(x̂kk σij
kl + x̂ll τ

ij
kl )

+
(

(Ω + 1)dij −
∑

k

dik x̂ik −
∑

k

djk x̂jk

)

ηij (4.44)

subject to

αij
l − αij

k + σij
kl + τ ij

kl + dkl η
ij ≤ T2 dkl wij ∀ k, l ∈ N , k 6= l (4.45)

σij
kl, τ ij

kl , ηij ≤ 0, αij
k unrestricted ∀ k, l ∈ N , k 6= l (4.46)

For a commodity [i, j] ∈ Q, if the SPij(y|x̂) is infeasible, which can only be due to

circuitry constraints, then the solution to the DSPij(α, σ, τ , η|x̂) is unbounded. In

this case, we add the following Benders cut (4.47) which is based on the extreme ray
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to the MP(·).

∑

k

(xjk−xik)α̂
ij
k +

∑

k

∑

l

(xkkσ̂
ij
kl+xllτ̂

ij
kl )+

(

(Ω+1)dij−
∑

k

dikxik−
∑

k

djkxjk

)

η̂ij ≤ 0

(4.47)

The infeasibility can easily be checked by verifying the validity of the inequality

Lij ≤ T2 wij

(

(Ω + 1)dij − dir(i) − djr(j)

)

, [i, j] ∈ Q. If this inequality holds, i.e., the

SPij(y|x̂) is feasible, then the circuitry constraint can be discarded (or set ηij to

zero) and a strengthened Benders cut is generated exactly as before by solving the

problem (4.38)-(4.42) given in Section IV.1.3.1. Although these cuts, one for each

commodity [i, j] ∈ Q, can be aggregated as with the different cut types presented in

Section IV.1.5, we employ the Type D4 cuts in our computational studies. We also

note that, in the presence of circuitry constraints, when the local search heuristic is

used to improve the UB as described above, we calculate the shortest path Lij on the

RP-network implied by a neighboring solution Snhbd and discard the solution if it is

infeasible.

IV.1.4.1. Derivation of Surrogate Constraints

The convergence rate of the ε-Optimal BD algorithm with circuitry constraints in-

cluded can be slow if the master problem provides an underlying network that does

not encourage feasibility for the subproblem, which leads to the addition of Benders

cuts mostly in the form of extreme rays. In our computational studies, we observed

that this indeed is the case and the infeasibility (with respect to circuitry constraints)

is primarily caused by the expression
(

(Ω + 1)dij −
∑

k dikx̂ik −
∑

k djkx̂jk

)

having a

negative value for a number of commodities. This kind of infeasibility can be reduced
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by including the following surrogate constraints (4.48) into the MP(·).

(Ω + 1)dij −
∑

k

dik xik −
∑

k

djk xjk ≥ 0 ∀ [i, j] ∈ Q. (4.48)

However, a tighter surrogate constraint set can be derived from the percentage cir-

cuitry constraints. For this purpose, we first rewrite the constraints (4.10) as

(Ω + 1)dij −
∑

k

dik xik −
∑

k

djk xjk ≥
∑

k

∑

l

dkl y
ij
kl ∀ [i, j] ∈ Q. (4.49)

In the optimal solution to the overall problem, the values of the terms Bij and
∑

k

∑

l T2 dkl wij yij
kl must be equal in the MP(·) for each commodity [i, j] ∈ Q (recall

that the subproblem is separable). Then, the right-hand side of the (4.49) can be

replaced accordingly and the following surrogate constraints are then included in the

MP(·).

(

(Ω + 1)dij −
∑

k

dik xik −
∑

k

djk xjk

)

≥ Bij/(T2 wij) ∀ [i, j] ∈ Q. (4.50)

Although not a guarantee, adding the constraints (4.50) to the MP(·) encourages

MP(·) to provide a solution x̂ that facilitates feasibility in the subproblems.

IV.1.5. Computational Experiments

We conduct computational experiments to evaluate and compare the performance of

our BD algorithms. The comparisons illustrate the benefit of utilizing strengthened

Benders cuts, cut disaggregation schemes, a heuristic to enhance upper bounds, ε-

optimal framework, and the surrogate constraints which are employed when circuitry

constraints are included. In addition, our computational study also helps us to ex-

amine the influence of problem parameters on the performance of the algorithms. We

also note that, in order to solve the master problem, the dual subproblem, and the

original problem with a Branch-and-cut approach, we use CPLEX 9.1 with default
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settings for cut generation, preprocessing, and upper bound heuristics. As discussed

earlier, all the experiments are conducted using C++ with STL (Standard Template

Library) whenever possible and Concert Technology (ILOG, Inc.).

In the first experiment, we examine the performance of a Branch-and-cut

approach (as implemented in CPLEX) and a variety of Benders decomposition algo-

rithms. In Table 7, we present the average runtimes for solving four problem classes,

Ua1-Ud1 where each class consists of 10 random instances with varying |N | values as

shown and a D value of 20. As observed in the third and fourth columns, the inclu-

sion of the constraints (4.11) promotes faster solution times; however, for instances

with more than 40 nodes (corresponding to 320 commodities in this case), the mem-

ory requirements grow prohibitively large; thus, no solutions could be obtained. The

fifth column includes the average runtime for the base BD algorithm, as presented in

Section IV.1.2.1, which appears highly inefficient. The average runtime for C1 is only

over four instances which are solved in a preset time limit of 5000 seconds (due to

excessive runtimes with very high optimality gaps) and none of the other instances

could be solved in that time frame.

As illustrated in the last two columns (with stopping criteria of 0.0% and 2.0%

optimality gaps, respectively), the runtime of the BD algorithm can be significantly

reduced by employing stronger cuts. This also enables us to solve larger instances that

CPLEX or the base BD algorithm cannot solve in reasonable time frames; however,

it is clear that a considerable runtime is required to close the last 2.0% optimality

gap. Therefore, in the following experiments, we employ the base BD algorithm with

strong cuts and set the stopping criterion to 2.0% optimality gap, including the ε in

the ε-optimal BD approach.

In the second experiment, we compare the performance with varying cut dis-

aggregation schemes in the context of both the Base and ε-optimal BD algorithms.
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Table 7: Average runtimes (secs.) for BC and BD approaches

Problem Branch-and-Cut Base BD BD–strengthened cuts A1

Class |N |–D without (4.11) with (4.11) Cut A1 Optimal 2.0% gap

Ua1 20–20 102.3 3.8 976.78 6.7 5.5

Ub1 25–20 1320.0 26.4 >5000 24.7 16.0

Uc1 30–20 2350.0 99.7 >5000 121.8 45.6

Ud1 40–20 n/s n/s >5000 1417.7 213.7

We employ six larger problem classes (Ud1-2, Ue1-2, and Uf1-2), each with 10 in-

stances, and the average runtime results in Table 8 clearly indicate that the use of

disaggregated cuts, especially the Type D4 cut, provides significantly better perfor-

mance compared to the use of a single Benders cut (Type A1). Thus, in our following

experiments, we employ Type D4 cuts in the BD algorithms building on Base and

ε-optimal approaches.

Table 8: Average runtimes (secs.) with alternative Benders cuts

Base BD algorithm

Class |N |–D A1 D2 D3 D4

Ud1 40–20 209 55 51 43

Ud2 40–40 289 84 75 59

Ue1 60–20 2442 414 371 297

Ue2 60–40 1586 555 449 346

Uf1 80–20 10540 2053 1408 1441

Uf2 80–40 7696 2098 1942 1382

ε-optimal BD algorithm

Class |N |–D A1 D2 D3 D4

Ud1 40–20 263 56 56 38

Ud2 40–40 277 99 84 65

Ue1 60–20 2671 456 430 297

Ue2 60–40 1548 594 465 349

Uf1 80–20 10939 1841 1529 983

Uf2 80–40 7280 2059 1926 1347
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In the third experiment, we examine the impact of using the heuristic algo-

rithm (Section IV.1.3.4) to improve the UB in the Base and ε-optimal BD approaches.

For this experiment, we utilized the problem class Uf1 with different settings of ∆1–

∆2 with 10 instances in each setting. The results are given in Table 9 in which the

last column indicates the percentage decrease in average runtime when the heuristic

algorithm is employed to improve the upper bounds.

Table 9: Results for BD approaches with and without upper bound heuristics

Base BD Algorithm

No upper bound heuristic Heuristic enhanced Time

Ave Ave Ave time/iter. Ave Ave Ave time/iter. red.

∆1–∆2 Time Iter MP SP Time Iter MP SP (%)

20–40 1441 4.7 111.5 192.0 1076 4.2 56.9 190.2 25.3

20–50 534 3.0 4.8 173.5 480 2.6 4.8 175.9 10.2

30–50 1011 3.6 67.3 210.2 883 3.5 38.2 211.6 12.5

30–60 612 3.0 12.4 192.2 598 2.9 10.9 193.0 2.4

ε-optimal BD Algorithm

No upper bound heuristic Heuristic enhanced Time

Ave Ave Ave time/iter. Ave Ave Ave time/iter. red.

∆1–∆2 Time Iter MP SP Time Iter MP SP (%)

20–40 983 4.6 20.6 190.3 876 4.1 16.3 189.9 10.9

20–50 559 3.2 1.9 172.1 486 2.7 1.2 174.4 13.2

30–50 1015 4.5 16.0 208.4 853 3.8 18.5 202.7 16.0

30–60 611 3.1 3.3 192.8 570 3.0 4.0 183.3 6.7

Notably, in the case of ε-optimal BD approach, the improved upper bound is

utilized in constraint (4.43), which is added to the master problem, whereas in the

base BD approach, the heuristic solution only affects the optimality gap calculations.

Thus, the percent reduction in runtimes is more pronounced in the ε-optimal ap-

proach, although it is still quite significant in the base BD algorithm. In addition, the

number of iterations decreases in both cases, but more significantly in the ε-optimal

approach. Interestingly, since the subproblem solutions that generate stronger cuts
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consume more computational time, any reductions in the number of iterations essen-

tially improves overall runtime due to the reduced number of subproblems solved.

Having observed its benefits, in the following experiments, we also incorporate the

heuristic algorithm into both Base and ε-optimal BD approaches.

In the fourth experiment (see Table 10), we compare the performance of

the Base algorithm and ε-optimal approaches: in both algorithms, we employ upper

bound heuristic and the strengthened cuts of Type D4. We utilize the problem classes

Uf1 and Uf2 (|N | = 80, D = 20 and 40) with different settings of ∆1–∆2 (20–40, 20–

50, 30–50, and 30–60), and Ψ (1.0 and 0.2) – again with 10 instances for each setting.

Table 10: Results for BD approaches with varying ∆1, ∆2 and Ψ values

Ψ = 1.0 Ψ = 0.2

Ave Time Ave Ave Ave Time Ave Ave

Class ∆1–∆2 Algorithm Time red. % Iter MP time Time red. % Iter MP time

Uf1

20–40
Base 1091 4.3 255 1242 4.1 426

ε-opt 867 20.5 4.1 65 927 25.1 4.5 65

20–50
Base 480 2.6 13 505 2.8 7

ε-opt 478 0.5 2.7 4 492 2.5 2.8 5

30–50
Base 888 3.5 133 1270 3.8 450

ε-opt 856 3.6 3.9 61 950 25.2 4.2 84

30–60
Base 598 2.9 31 648 3.0 57

ε-opt 561 6.1 2.9 12 660 -2.0 3.5 13

Uf2

20–40
Base 1315 3.1 48 1398 3.2 113

ε-opt 1267 3.6 3.1 8 1294 7.4 3.2 11

20–50
Base 817 2.1 8 881 2.3 14

ε-opt 809 0.9 2.1 3 951 -8.0 2.5 5

30–50
Base 1778 3.1 362 2256 3.1 858

ε-opt 1374 22.7 3.1 9 1663 26.3 3.2 252

30–60
Base 1384 2.7 234 1970 2.8 791

ε-opt 1134 18.1 2.7 18 1589 19.4 3.1 332

Inspecting columns 5 and 9, the results largely show that, with a few exceptions,

employing the ε-optimality framework is beneficial to improving the solution times
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over the base BD approach, even though it does not significantly decrease the number

of iterations. When the value of Ψ reduces from 1.0 to 0.2, the problem becomes more

difficult, especially for the master problem (which includes the imbalance constraint

and is solved using Branch-and-cut). In turn, the solution times are longer - observed

by comparing columns 4 and 8. In terms of tour lengths, recall that an increase in

∆2 value provides an underlying network with higher connectivity, i.e., more arcs

without artificially large arc lengths become available in the subproblem. This, in

turn, helps to find better upper bounds and decrease the number of iterations, which

lead to reduced runtimes for both master and subproblems, and, thus, a reduced

total runtime. This can easily be observed by inspecting corresponding values for

changing ∆1–∆2 settings, i.e., 20-40 vs. 20–50 and 30–50 vs. 30–60, in both problem

classes. Moreover, increasing the value of ∆1 enlarges the solution space of the master

problem. This reduces the lower bound quality provided by the master problem, which

provides lower objective values with increased ∆1. Specifically, comparing the results

for ∆1–∆2 values with 20–50 vs. 30–50 in each class, we observe that the number

of iterations and the master problem runtimes increase – leading to increased total

runtimes.

In the fifth experiment, we introduce the percentage circuitry into considera-

tion (Section IV.1.4). We solve the instances in classes Uf1 and Uf2 under three Ψ–Ω

combinations including 1.0–3.0, 1.0–2.0, and 0.3–3.0. The first two combinations cor-

respond to having only the circuitry constraints effective and the last one effectively

forces both imbalance and circuitry constraints. The results are reported in Table 11.



75

Table 11: Results for the ε-optimal BD approach with varying ∆1–∆2

and Ψ–Ω values

Ψ–Ω

1.0–2.0 1.0–3.0 0.3–3.0

Class ∆1–∆2 Ave Time Ψ̄M Ω̄M Ave Time Ψ̄M Ω̄M Ave Time Ψ̄M Ω̄M

Uf1

20-40 1880 0.41 1.94 955 0.37 2.87 21994 0.26 2.84

20-50 1569 0.40 1.91 629 0.33 2.79 670 0.27 2.73

30-50 81711 0.34 1.96 25183 0.31 2.93 1653 0.25 2.86

30-60 2294 0.33 1.96 1119 0.35 2.88 1090 0.26 2.83

Uf2

20-40 1991 0.34 1.94 1390 0.31 2.96 1423 5 0.26 2.89

20-50 2313 0.34 1.98 1174 0.34 2.87 1148 5 0.26 2.94

30-50 4019 0.31 1.99 2897 0.30 2.95 3290 0.26 2.99

30-60 47682 0.28 1.99 2689 0.34 2.92 3044 0.23 2.98
1 The average of 9 instances without the outlier is 3916 seconds.
2 The average of 9 instances without the outlier is 2982 seconds.
3 The average of 9 instances without the outlier is 1627 seconds.
4 The average of 9 instances without the outlier is 1063 seconds.
5 Ψ is set to 0.35.

In Table 11, the entries in bold indicate the existence of outlier instances in

terms of solution time. Specifically, a bold Ave Time value represents the average of

solution times over all 10 instances – including the outlier instance. Furthermore, the

entries in italics indicate that one of the instances is infeasible when the value of Ψ

is 0.3. To solve this particular instance, we use a slightly increased Ψ value of 0.35

(instead of 0.30).

Ψ̄M and Ω̄M columns represent the maximum level of the load-imbalance and the

percentage circuitry over all 10 instances in a ∆1–∆2 setting. These values were cal-

culated after solving the instances with corresponding Ψ and Ω values. Interestingly,

when the Ψ value is set to 1.0, which effectively eliminates the imbalance require-

ments, the Ψ̄M ranges between 0.28 and 0.41, largely within the [0.30, 0.40] interval

in the final solution. Thus, for active imbalance constraints, we consider a Ψ value

of 0.3 corresponding to the last three columns in Table 11. On the other hand, we

observe that the circuitry constraints are largely much tighter in the final solutions.
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In general, the circuitry constraints are more difficult to satisfy when the value

of Ω decreases. We observe in Table 11 that the solution times with Ψ–Ω values

of 1.0–2.0 are greater than the ones with 1.0–3.0. As mentioned in Section IV.1.4.1,

circuitry constraints with a lower Ω value, especially, may easily lead to infeasibility in

solving subproblem on the RP-network provided by the master problem. That is, the

RP-network may not contain any shortest paths satisfying the percentage circuitry

constraints for some commodities. We note that, in these cases with infeasibility, it

is also more difficult to find feasible solutions in the heuristic algorithm, and, in turn,

to obtain good upper bounds to strengthen the cuts (4.43) in the ε-optimal approach.

Furthermore, comparing the average runtimes with Ψ–Ω values of 1.0–3.0 versus 0.3–

3.0, we observe that lower allowable load-imbalance levels generally increase total

runtimes. However, as discussed above, the increase in the total runtime in this case

is largely attributed to the increases in MP runtime, since the imbalance constraints

are included in the MP.

In the sixth experiment, we examine the impact from different commodity

distributions and the configuration of demand points. Two additional problem classes,

Ui1 and Ui2, each with 10 instances, are generated. Classes Ui1 and Ui2 have |N |

value of 80 with D values of 20 and 40, respectively. Their commodities consist of

40% long distance, 30% medium distance, and 30% short distance demand. Recall

that classes Uf1 and Uf2 have the same characteristics as Ui1 and Ui2, respectively,

except that the demands are for 60% long distance, 20% medium distance, and 20%

short distance for Uf1 and Uf2. To examine a clustered configuration of demand

origin/destination points in the region, we also generate problem classes Cf1, Cf2,

Ci1, and Ci2 (each with 10 instances). Recall that the classes Cf1/Ci1 and Cf2/Ci2

have the same characteristics (number of nodes and commodities) as classes Uf1/Ui1

and Uf2/Ui2, except the, in Class “C”, the nodes are clustered. The generation of
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clustered instances is discussed in Section I.3.1.

We solve these instances without the circuitry restriction and display the results

in Table 12. For differences in commodity distance distribution, we compare classes

Uf1-2 to Ui1-2 and observe that Uf1 and Uf2 require slightly longer solution times than

classes Ui1 and Ui2; in most cases, however, the differences are not significant. On

the other hand, the distribution of origin/destination points can potentially affect the

algorithmic performance. In particular, clustering of nodes restricts the connectivity

of the underlying network, which in turn, reduces the number of feasible solutions.

Thus, good feasible solutions are more difficult to find (indicated by the increased

number of iterations - columns 4 vs 9) and constraint (4.43) can be weakened. As a

result, the clustered instances take longer to solve (column 3 vs column 8). In terms

of the percentage circuitry, fewer RPs are located in the clustered instances and,

consequently, higher circuitry levels are reported. An increasing number of shorter

distance commodities (Ui1 vs Uf1 and Ui2 vs Uf2) can also increase the circuitry

level. The short (and sometimes medium) distance commodities are usually in the

same region. These commodities can experience high circuitry levels if both the origin

and destination are not RPs; they appear as good candidates for direct shipments to

be determined at an operational level.

One instance – in class Cf1 with ∆1-∆2-Ψ values of 20-40-0.2 – requires a signif-

icantly longer solution time than the other instances. This is due to the difficulty of

finding a good feasible solution, and the master problem taking a very long time to

verify infeasibility in the last iteration. Thus, the results reported for this particular

class and setting are the average of 9 instances (solution time is listed in italics).
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Table 12: Results for non-clustered and clustered instances

∆1-∆2-Ψ Class

Non-clustered instances

Class

Clustered instances

Ave Ave
Ω̄M Ω̄A Ave Ave

Ω̄M Ω̄A LA d̄/LA

Time Iter Time Iter

20-40-1

Uf1

867 4.1 10.1 0.19

Cf1

1663 6.3 15.8 0.24 3.8 22

20-50-1 477 2.7 9.4 0.18 712 3.6 14.4 0.22 3.4 24

30-50-1 856 3.9 12.5 0.22 1259 5.2 19.7 0.25 3.3 24

30-60-1 561 2.9 12.4 0.23 727 3.6 17.7 0.25 3.2 26

20-40-0.2 927 4.5 12.5 0.21 1567
1 6.2 13.9 0.25 3.8 22

20-50-0.2 492 2.8 11.8 0.20 789 4.0 13.1 0.22 3.3 24

30-50-0.2 949 4.2 13.0 0.23 1613 6.2 22.0 0.26 3.3 25

30-60-0.2 660 3.5 10.4 0.24 830 4.0 19.8 0.25 3.2 26

20-40-1

Uf2

1266 3.1 9.8 0.13

Cf2

1643 3.8 16.2 0.19 3.8 21

20-50-1 809 2.1 11.3 0.12 1155 2.9 14.5 0.17 3.4 24

30-50-1 1374 3.1 15.0 0.16 1642 3.6 17.1 0.18 3.3 24

30-60-1 1134 2.7 15.4 0.16 1197 2.9 16.7 0.18 3.1 25

20-40-0.2 1293 3.2 12.5 0.14 1862 4.3 19.1 0.20 3.8 21

20-50-0.2 950 2.5 12.3 0.14 1315 3.3 11.6 0.18 3.4 24

30-50-0.2 1662 3.2 14.5 0.17 2071 4.4 18.3 0.19 3.3 23

30-60-0.2 1588 3.1 16.3 0.17 1396 3.4 20.0 0.19 3.1 25

20-40-1

Ui1

869 4.3 19.1 0.24

Ci1

1127 5.2 17.6 0.30 4.1 21

20-50-1 466 2.7 16.2 0.24 661 3.6 17.1 0.29 3.7 23

30-50-1 829 4.0 21.5 0.30 912 4.4 26.9 0.34 3.6 23

30-60-1 522 2.8 24.0 0.30 640 3.5 27.0 0.35 3.3 24

20-40-0.2 1457 5.2 17.2 0.27 1867 6.8 22.5 0.34 4.1 21

20-50-0.2 537 3.1 16.7 0.27 895 4.6 19.1 0.31 3.7 23

30-50-0.2 1070 4.4 22.4 0.30 1030 4.6 28.4 0.37 3.6 24

30-60-0.2 597 3.2 19.3 0.30 731 3.6 30.8 0.36 3.3 24

20-40-1

Ui2

1129 2.9 14.6 0.16

Ci2

1321 3.3 20.0 0.24 4.2 20

20-50-1 718 2.0 14.7 0.16 1106 3.0 22.4 0.22 3.6 22

30-50-1 1258 3.0 18.4 0.19 1440 3.5 20.4 0.24 3.6 22

30-60-1 813 2.1 18.0 0.18 1180 3.0 21.2 0.23 3.4 23

20-40-0.2 1211 3.1 14.8 0.17 1526 3.8 20.3 0.25 4.2 20

20-50-0.2 755 2.1 13.2 0.18 1167 3.2 22.2 0.23 3.6 22

30-50-0.2 1315 3.1 17.6 0.20 1381 3.4 24.3 0.26 3.7 22

30-60-0.2 970 2.5 17.9 0.19 1193 3.0 23.5 0.25 3.3 23
1 The average of 9 instances without the outlier.

To present a comparison between the driving distances for the RP-network and

PtP dispatching cases, we also record the average number of legs (LA) and the av-

erage distance per leg (d̄/LA) from the results of the clustered instances (since they

pose higher circuitry levels) in the last two columns of Table 12. In general, the
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commodities are relayed by 3-4 legs on average and the average distance per leg is

between 20-26. The results also show that, as ∆1 and ∆2 increase, the number of legs

decreases, while the distance per leg increases. For these instances, the average direct

shipment distance (calculated conservatively as Euclidean distance) for the commodi-

ties are 79.13, 79.23, 66.77 and 66.76 for classes Cf1-2 and Ci1-2, respectively. Since a

driver, while handling a leg in an RP-network case, handles a commodity (from origin

to destination) in the PtP-dispatching case, using an RP-network can shorten driver

tour lengths by more than 50%, as observed when the direct shipment distances and

d̄A values are compared. This comes at the expense of an average 19-37% circuitry.

The reduction in tour lengths can be even more pronounced when the assignment of

drivers to consecutive direct shipments in PtP-dispatching is considered.

We also note that, although large Ω̄M values are reported, the majority of com-

modities have relatively low circuitry levels as indicated by very low Ω̄A values. Large

additional distance and a high circuitry level normally occur when both the origin

and destination of a very short distance commodity are not RPs so that the com-

modity would visit at least one RP on its trip. These high circuitry commodities are

good candidates for the direct shipments; thus, they can be taken out and handled

separately after a solution is obtained. Moreover, to facilitate better control of this

large circuitry issue, we can include the circuitry constraints and resolve the problem

as in the previous experiment.

In the seventh experiment, we compare the RP-networks of Model 1 to the

networks of the uncapacitated single assignment hub location problem (SAHLP). To

do this, we generate 10 instances of class Ue1, solve Model 1 to 2% optimality, and

report the results of both models in Table 13; the values of Ψ and Ω are set to 0.3

and 3.0, and ∆1–∆2 are fixed at 20–40.

Due to the lack of distance constraints and the complete graph assumption



80

in SAHLP, truck drivers are allowed to travel directly between commodities’ ori-

gins/destinations and hubs. Thus, only a few hubs are required, and SAHLP net-

work construction cost (CostRP ) is smaller than in Model 1; the numbers of RPs are

represented by #RP. Coupled with the total transportation cost (CostT ) being ap-

proximately the same in both models, the Total Cost (CostRP +CostT ) of SAHLP is

lower than that of our Model 1. In addition, more flows enter and leave hubs, which

consequently lowers the maximum and average load-imbalance levels (Ψ̄M and Ψ̄A).

Table 13: Comparison between SAHLP and Model 1

Model Total Cost CostRP CostT #RP dA

SAHLP 1062724 68889 993835 7 81
Model 1 1181180 190000 991180 19

Model Ψ̄M Ψ̄A Ω̄M Ω̄A d̄/LM d̄/LA

SAHLP 0.18 0.09 12.17 0.31 75.4 34.3

Model 1 0.26 0.14 2.78 0.20 38.8 23.0

However, Model 1 is more favorable than the SAHLP in terms of the maximum

and average mileage per leg (d̄/LM and d̄/LA), and the maximum and average per-

centage circuitry (Ω̄M and Ω̄A). With fewer hubs in the intermediate locations and

the direct transportation between origins/destinations and hubs, drivers must travel

long distances before returning to home base and SAHLP provides inferior distance

per leg. By comparing dA to d̄/LA, we observe that SAHLP reduces the average tour

length per leg (dA) by 58% (over the direct shipment approach), while Model 1 reduces

the tour length per leg by as much as 72%. Moreover, if neither of the commodities’

origins and destinations are hubs, then drivers must travel on very circuitous paths

as indicated by large circuitry levels.

Given the longer additional distances but smaller reduction in tour length per
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leg, the SAHLP is less effective than Model 1, in terms of controlling drivers’ tour

lengths. In addition, Model 1 provides significant improvements in controlling both

the average percentage circuitry and tour length per leg while only slightly increases

the total cost (about 11% in this experiment).

In the eighth experiment, we compare the performance of Model 1’s RP-

networks and the networks obtained from the “Zone model,” as presented in Taylor

et al. (2001), using one instance of class Ue1. In this case, Model 1 is solved with

different combinations of ∆1, ∆2, Ψ, and Ω. For the Zone model, we first note that

Taylor et al. (2001) divide the entire service region into 5 zones based on the sales

regions of J.B. Hunt Transport Inc. Due to the lack of such information, we partition

the entire 150x100 service region into K = 2, 3, 4, 5, or 6 zones, as illustrated

in Figure 4. We also note that two 4-zone models (K = 4) are considered in this

experiment; one of them has 4 identical zones, and the other has zones of different

sizes and shapes.

In Figure 4, each dot represents a node (a commodity’s origin or destination, or

the potential RP location), and is equipped with the location number. The zones’

border lines are represented by black solid lines and all nodes inside the 20 miles bands

(represented by dashed lines) along the zones’ border lines have an RP located on

them. Non-RP nodes in the interior of each zone have fixed membership in the zone

in which they are located. On the other hand, the assignment of each RP to zones

that share borders must be determined in order to obtain the actual zone’s border

(defined by the furthest RP locations). For illustration purposes, the RP locations

and the possible assignments of each Zone model are summarized in Table 14.
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Figure 4: Different Zone Models
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Table 14: Candidate zones of each RP in Zone models

Zone model Candidate zones RPs

2 1,2 8 , 10 , 18 , 23 , 27 , 30 , 36 , 38 , 48 , 51 , 58

3

1,2 0 , 1 , 17 , 19 , 20 , 21 , 36 , 39 , 46 , 52
1,3 2 , 43 , 47 , 56
2,3 13 , 26 , 45 , 54

1,2,3 11 , 12

4

1,2 18 , 23 , 38 , 48 , 51 , 58
1,3 0 , 1 , 17 , 19 , 20 , 36 , 39 , 46 , 52
2,4 11 , 12 , 21 , 31 , 32 , 59
3,4 8 , 10 , 27 , 30

4 B

1,2 18 , 38 , 48 , 51 , 58
1,3 19 , 20 , 24 , 35 , 46
2,4 7 , 11 , 12 , 14 , 16 , 32 , 41
3,4 8 , 10 , 27 , 30

1,2,3 23
2,3,4 36

5

1,2 15
1,4 0 , 1 , 19 , 20 , 39 , 52
2,3 2 , 43 , 47 , 56
2,4 29 , 40 ,
2,5 13 , 26 , 45 , 54
3,5 31 , 32 , 59

1,2,4 17 , 46
2,3,5 11 , 12

6

1,2 15
1,4 0 , 1 , 19 , 20 , 39 , 52
2,3 2 , 43 , 47 , 56
2,4 21 , 36
3,6 31 , 32 , 59
4,5 29 , 40
5,6 13 , 26 , 45 , 54

1,2,4,5 17 , 46
2,3,5,6 11 , 12
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The Zone model constructs RP-networks in such a way that the load imbalances

between zones are small. To do this, the assignment of each RP is determined by

solving the following formulation, where ZPk and ZNk are the decision variables

corresponding to the positive and negative load-imbalance levels of zone k:

Min
∑

k

ZPk −
∑

k

ZNk (4.51)

subject to

∑

i

(

∑

j

(wji − wij)
)

xik + ZPk − ZNk = 0 ∀ k ∈ {1, . . . , K} (4.52)

∑

k

xik = 1 ∀ i ∈ N (4.53)

xik ∈ {0, 1}, ZPk ≥ 0, ZNk ≤ 0 ∀ i ∈ N , k ∈ {1, . . . , K} (4.54)

The objective function (4.51) minimizes the total load-imbalance level over zones.

Constraints (4.52) determine the level of the load-imbalance for the zone. Constraints

(4.53) ensure that every RP is assigned to only one zone. Constraints (4.54) state

the binary requirement of x variables, and that ZPk (ZNk) is a non-negative (non-

positive) real number. After solving the formulation (4.51)-(4.54) to obtain the as-

signment of RPs to zones, every commodity is routed from the origin – through one of

the RPs in the zone to which the origin is assigned – directly to the destination. We

note that the zone model does not consider the single assignment of nodes to RPs;

therefore, loads originating from the same origin can be routed through different RPs.

The results and solution statistics of the Zone model and Model 1 are reported in

Table 15.

In Table 15, the results show that, for this particular instance, every setting of

Model 1 performs better than the Zone models in terms of total cost. This is largely
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Table 15: Comparison between Model 1 and Zone models

Model 1

∆1-∆2-Ψ-Ω Total Cost CostRP CostT #RP dA

30-50-0.3-x 1155160 140000 1015160 14

83.60

30-50-0.3-3 1159120 150000 1009120 15

30-50-1-x 1149430 140000 1009430 14

30-50-1-0.3 1152400 150000 1002400 15

30-60-0.3-x 1136800 120000 1016800 12

30-60-0.3-3 1145480 140000 1005480 14

30-60-1-x 1132720 120000 1012720 12

30-60-1-3 1144400 140000 1004400 14

Zone Total Cost CostRP CostT #RP dA

2 1165010 110000 1055010 11

83.60

Zone 3 1163770 200000 963770 20

Models 4 1181730 250000 931727 25

4B 1244630 230000 1014630 23

5 1198650 240000 958651 24

6 1209170 260000 949166 26

Model 1

∆1-∆2-Ψ-Ω Ψ̄M Ψ̄A Ω̄M Ω̄A d̄/LM d̄/LA

30-50-0.3-x 0.30 0.13 9.6 0.24 49.0 26.9

30-50-0.3-3 0.29 0.13 3.0 0.20 49.0 26.3

30-50-1-x 0.34 0.14 10.4 0.23 49.0 27.0

30-50-1-0.3 0.47 0.15 3.0 0.18 48.0 25.7

30-60-0.3-x 0.27 0.12 8.3 0.24 59.0 29.3

30-60-0.3-3 0.25 0.12 3.0 0.19 55.5 27.5

30-60-1-x 0.34 0.13 10.4 0.24 59.0 29.0

30-60-1-3 0.34 0.13 3.0 0.19 59.0 27.5

Zone Ψ̄M Ψ̄A Ω̄M Ω̄A d̄/LM d̄/LA

2 0.97 0.56 39.0 0.52 84.5 48.8

Zone 3 0.96 0.65 12.1 0.19 82.5 44.7

Models 4 1.00 0.72 3.3 0.08 83.0 43.3

4B 1.00 0.75 56.0 0.31 93.5 47.0

5 1.00 0.67 10.6 0.16 92.5 44.5

6 1.00 0.79 7.3 0.10 82.5 44.0
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due to a larger number of RPs being located in the Zone model, which leads to a

very high network construction cost (CostRP ). However, in the 2-zone model, where

only 11 RPs are located, the transportation cost (CostT ) becomes quite large and the

total cost remains high. Not only can too many RPs be located, a network with poor

configuration (RP locations) can be obtained by manually selecting RP locations; this

is illustrated by the 4B-zone model. Although a large number of RPs (23) are located

in the 4B-zone model, and once the commodities arrive at the RPs, they can travel

directly to their destinations, the transportation cost is still higher than most settings

of Model 1. Thus, it is clear that, for the Zone model to perform well in terms of

total cost, one must carefully balance network construction cost and transportation

cost, a process that is automatically handled in Model 1.

For operational efficiency, we observe that Model 1 has smaller maximum and

average load-imbalance levels (Ψ̄M and Ψ̄A) than in the Zone model. Although the

zones’ load-imbalance levels are minimized in the zone model, the RPs’ load-imbalance

levels are not minimized, creating a greater difference between the entering and leaving

loads at every RP. This is mainly due to RPs only being used by outgoing commodities

in the inter-zone transportation; incoming loads do not visit the zone’s RPs before

arriving at destinations. Such an imbalance would lead to local drivers having a high

level of empty mileage. We also observe that Model 1 provides a better control of

the percentage circuitry level, especially when the percentage circuitry constraints are

used (if the percentage circuitry constraints are not used, then it is indicated by “x”);

the maximum and average percentage circuity levels (Ω̄M and Ω̄A) of the Zone model

fluctuate highly. In terms of tour length reduction, Model 1 reduces average tour

length (distance per leg) by approximately 65-69% (compare dA with d̄/LA), whereas

the Zone model reduces it by only 42-48%. Moreover, the maximum and average

local drivers’ tour lengths, d̄/LM and d̄/LA of the Zone model are almost twice those
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from Model 1. In fact, when ∆2 is set to 50, the maximum tour lengths of Model 1

are only slightly larger than the average tour lengths of the Zone model.

Based on these results, we observe that Model 1 provides better control of the

load-imbalance (empty mileage), percentage circuitry (additional distance), and dis-

tance per leg (tour length) over the Zone model. At the same time, it is capable of

generating a more cost efficient RP-network.

IV.1.6. Concluding Remarks

To minimize the sum of transportation and fixed relay points location costs, while

satisfying tour length, load-imbalance, and percentage circuitry constraints, Model

1 determines 1) the relay point locations, 2) the assignment of nodes to the relay

points, and 3) the routes of the TLs from their origins to their destinations. We

observe, in an MIP formulation of Model 1, that for given relay locations and node

assignments to relays, the remaining problem can be posed as a linear program. This

facilitates a solution approach based on Benders decomposition. Due to inefficiencies

in solving our problem via a typical implementation of Benders decomposition, we

explore several avenues for algorithmic improvement in a systematic fashion.

Specifically, we develop an approach for deriving strengthened Benders cuts to

accelerate the algorithm convergence and reduce the total runtime. In addition, we en-

hance the performance of the algorithm through the use of cut disaggregation schemes

and surrogate constraints which promote a tighter lower bound and can help reduce

the number of iterations. Observing the rapid growth in master problem runtimes

with the use of disaggregated cuts, we also employ the ε-optimal framework which

helps to improve the computational effort in solving the master problem. Further-

more, for the purpose of strengthening the upper bound, we design a local search

heuristic with effective neighborhood functions that provide improved feasible solu-
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tions (upper bounds). Our computational results illustrate significant improvement

using our solution algorithms as opposed to the typical Benders decomposition and

the Branch-and-cut approach. In testing our algorithms, we conduct experiments to

observe the effect of input parameters on the solution algorithms. Furthermore, we

also compare RP-networks obtained from Model 1 to the networks from other related

models in the literature to illustrate Model 1’s efficacy in controlling the tour lengths

and other performance metrics.

IV.2. Model 2: RNDP with Link-Imbalance and Link-Capacity Con-

straints

In this section, we extend the base model to include both the link-imbalance and the

link capacity considerations. Contrary to the load imbalance constraints that aim to

control local drivers’ empty mileage, “link-imbalance constraints” focus more on lane

truck drivers. Recall that the load-imbalance requirement in Model 1 provides the

RP-network with a balanced number (small difference) of local pick-ups and deliveries

to facilitate control of local drivers’ empty mileage. However, there is no guarantee

that the local empty mileage in such a network will be small. On the other hand,

link-balance constraints control lane drivers’ empty mileage more directly by keeping

the difference between the forward and backward flow to a low level. For illustration

purposes, we use Figure 5 to show the connection between the link-imbalance and

lane drivers’ empty mileage discussed herein.

Between the RP1 and RP2 in Figure 5, Ff represents forward flow from RP1 to

RP2 whereas Fb represents backward flow. The link-imbalance constraints require the

percentage difference between Ff and Fb to be within the permissible link-imbalance

level Θ. That is, if Ff > Fb, then Ff − Fb must not be greater than Θ × Ff . If
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Figure 5: Link-Imbalance and Capacity Constraints
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we assume that truck drivers must travel back to the RP from which the drivers are

dispatched, then Ff −Fb is the number of empty back hauls and the total number of

trips is 2×Ff . In this case, controlling the link-imbalance to be within Θ,
Ff−Fb

Ff
≤ Θ

directly implies that empty mileage does not exceed Θ
2

as
Ff−Fb

2×Ff
≤ Θ

2
. According to

Erlbaum and Holgúın-Veras (2006), the empty truck miles of the trip are typically

between 24-33% with an average value of 27.47%. Therefore, setting Θ value to 60%

(for round trip) or 0.6 ensures that, in the worst case, the empty mileage from the

RP-network is comparable to current industry averages (Θ value of 0.6 is equivalent

to 30% empty mileage which is only slightly above 27.47%). In addition to the link-

imbalance constraints, Model 2 also considers the “link capacity constraints” that

limit the total flow between every pair of RPs. In Figure 5, the total of Ff and Fb

cannot exceed link capacity c.

In summary, Model 2 determines 1) RP locations, 2) nonRP nodes assignment,

and 3) the actual route for each commodity to minimize the total RP location cost

and total commodity transportation cost, and satisfies tour length, link-imbalance,

and link capacity constraints. The general characteristics of Model 2 are the same as

in the base model and Model 1. However, due to limited link capacity, a commodity



90

Figure 6: A Schematic View of Model 2
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may not travel the shortest possible path between the RP of the origin and the RP

of the destination. As illustrated in Figure 6, fractions of the commodity [i, j] may

be routed through RP3-RP4-RP5-RP6 and RP3-RP4-RP5-RP7-RP6 if the capacity

between the RP4-RP5 link is exhausted.

IV.2.1. The Model

Following the above discussion, we utilize the notation presented in Chapter III to

define the link-imbalance as:

∣

∣

∣

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk

∣

∣

∣
≤ Θ max

{

∑

i

∑

j

wij yij
kl,

∑

i

∑

j

wij yij
lk

}

∀ k, l ∈ N

(4.55)

In constraints (4.55), the terms
∑

i

∑

j wij yij
kl and

∑

i

∑

j wij yij
lk correspond to the

total forward and backward flows on a pair of RPs (k, l). The flow difference must

be within Θ percent of the larger of the two flows. Note that constraints (4.55) are
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non-linear and can be stated in a linear form as:

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk ≤ Θ

∑

i

∑

j

wij yij
kl ∀ k, l ∈ N (4.56)

∑

i

∑

j

wij yij
lk −

∑

i

∑

j

wij yij
kl ≤ Θ

∑

i

∑

j

wij yij
lk ∀ k, l ∈ N (4.57)

However, it is clear that some constraints in (4.56) and (4.57) are the same (e.g.,

constraint (4.56) for link (1, 2) is the same as constraint (4.57) for link (2, 1)). Thus,

stating the link-imbalance constraints as in (4.58) and (4.59) can reduce the number

of constraints in the formulation.

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk ≤ Θ

∑

i

∑

j

wij yij
kl ∀ k, l ∈ N , k < l (4.58)

∑

i

∑

j

wij yij
lk −

∑

i

∑

j

wij yij
kl ≤ Θ

∑

i

∑

j

wij yij
lk ∀ k, l ∈ N , k < l (4.59)

In addition, the capacity constraints of Model 4 are stated as follows:

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ ckl ∀ k, l ∈ N , k < l (4.60)

In constraints (4.60), the total flow in both directions must not exceed the link ca-

pacity ckl.

By incorporating constraints (4.58), (4.59), and (4.60) into the base model, the

complete formulation of Model 2 is as follows:
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Min Z =
∑

i

∑

k

T1 dik

∑

j

(wij + wji) xik +
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl +

∑

k

Fk xkk

(4.61)

subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (4.62)

dkl zkl ≤ ∆2 ∀ k, l ∈ N , k < l (4.63)

∑

m

yij
mk −

∑

m

yij
km = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (4.64)

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk ≤ Θ

∑

i

∑

j

wij yij
kl ∀ k, l ∈ N , k < l (4.65)

∑

i

∑

j

wij yij
lk −

∑

i

∑

j

wij yij
kl ≤ Θ

∑

i

∑

j

wij yij
lk ∀ k, l ∈ N , k < l (4.66)

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ ckl ∀ k, l ∈ N , k < l (4.67)

∑

k

xik = 1 ∀ i ∈ N (4.68)

xik ≤ xkk ∀ i, k ∈ N (4.69)

zkl ≤ xkk ∀ k, l ∈ N , k < l (4.70)

zkl ≤ xll ∀ k, l ∈ N , k < l (4.71)

yij
kl ≤ zkl ∀ [i, j] ∈ Q, ∀ k, l ∈ N , k < l

(4.72)

yij
lk ≤ zkl ∀ [i, j] ∈ Q, ∀ k, l ∈ N , k < l

(4.73)

xik, zkl ∈ {0, 1}, 0 ≤ yij
kl ≤ 1 ∀ i, j, k ∈ N (4.74)
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Without the link-imbalance constraints (4.65) and (4.66) and the link capacity

constraints (4.67), Model 2 is actually the same as the base model. The objective func-

tion (4.61), the tour length constraints (4.62), the flow conservation constraints (4.64),

the single assignment constraints (4.68), and the construction constraints (4.69) are

identical to those of the base model and Model 1. The only differences are the use

of binary z variables in the lane tour length constraints (4.63) and in the constraints

defining the structural requirements of RP-networks (4.13)-(4.15). Specifically, con-

straints (4.70)-(4.73) serve the same objective as constraints (2.7)-(2.8) in the base

model and constraints (4.13)-(4.15) in Model 1.

IV.2.2. Lagrangean Decomposition Framework

Although Benders decomposition is applicable to Model 2, its performance is not

as promising as when it was applied to Model 1 in Section IV.1. Even with given

x variables, the link-imbalance and the link capacity constraints prevent us from

decomposing the y subproblem for each commodity. In addition, since y variables

account for the majority portion of Model 2, solving the y subproblem in its non-

decomposed form is inefficient. All these disadvantages restrict us from solving Model

2 with Benders decomposition.

After a close examination of the underlying structure of Model 2, we observe

that if the connection between x and y variables is removed or relaxed, then the

subproblem containing only y variables can regain its decomposable property. Such

relaxation in Model 2 can be achieved using a Lagrangean decomposition (LD) frame-

work. Model 2 is also amenable to solution by the Lagrangean relaxation (LR) frame-

work, as presented in Section V.2.2. However, due to the large number of constraints

that must be relaxed in order to decompose the relaxed problem (which will lead to

weak lower bounds), we develop the solution algorithms for Model 2 based on the LD
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framework. Thus, in this section, we provide a detailed discussion of the development

of our LD based algorithms.

As invented in Guignard and Kim (1987), Lagrangean decomposition is a relax-

ation technique that utilizes Lagrangean multipliers to decompose a large mathemati-

cal model into two relatively smaller and less computationally intensive subproblems.

In LD, a number of original decision variables are replaced by a set of duplicated

variables linked together by the “copy constraints”. This forces the original and du-

plicated variables to have equal values. The relaxation of the copy constraints enables

the decomposition of the model. Guignard and Kim (1987) applied the LD framework

to scheduling problems and reported its ability to provide very tight lower bounds.

Prior to applying the LD framework, we first observe that constraints (4.62) can

be removed after assigning zero values to the xik variables whose distance on the arc

(i, k) is greater than ∆1. Likewise, constraints (4.63) can also be removed after assign-

ing zero values to the zkl and yij
kl variables whose distance on the arc (k, l) is greater

than ∆2. We refer to this preprocessed formulation without constraints (4.62)-(4.63)

as “RPNDxyz”. We also note that the z variables, which prevent lane drivers from

traveling further than ∆2, can be removed from the formulation if constraints (4.70)-

(4.73) are replaced by constraints (4.75)-(4.76).

yij
kl ≤ xkk ∀ [i, j] ∈ Q, ∀ k, l ∈ N (4.75)

yij
kl ≤ xll ∀ [i, j] ∈ Q, ∀ k, l ∈ N (4.76)

We now refer to the RPNDxyz model with constraints (4.75)-(4.76) and without con-

straints (4.70)-(4.73) as “RPNDxy”.
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IV.2.2.1. Copy Constraints and Modified Model

Based on the RPNDxy formulation given above, we define our copy constraints as

follows:

uij
k =

∑

l

yij
kl ∀ [i, j] ∈ Q, ∀ k ∈ N (4.77)

vij
k =

∑

l

yij
lk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.78)

0 ≤ uij
k , vij

k ≤ 1 ∀ i, j, k ∈ N (4.79)

Due to the large size of the model and the interrelation between x and y variables,

defining the copy constraints in this aggregated form not only facilitates the decompo-

sition of RPNDxy but also helps control the formulation size. In order to decompose

RPNDxy, we observe that the flow conservation constraints (4.64) can be restated

using u and v variables as

vij
k − uij

k = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (4.80)

Moreover, constraints (4.75) and (4.76) can also be aggregated as:

∑

l

yij
kl ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.81)

∑

l

yij
lk ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.82)

Since uij
k =

∑

l y
ij
kl and vij

k =
∑

l y
ij
lk, then we can substitute the RHS of con-

straints (4.81) and (4.82) with uij
k and vij

k in order to separate x variables from y
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variables as follows:

uij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.83)

vij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.84)

Finally, our modified “RPNDxyuv” formulation can be stated as:

Min ZRPND =
∑

i

∑

k

T1 dik

∑

j

(wij+wji) xik+
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl+

∑

k

Fk xkk

(4.85)

subject to

vij
k − uij

k = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (4.86)

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk ≤ Θ

∑

i

∑

j

wij yij
kl ∀ k ∈ N , k < l (4.87)

∑

i

∑

j

wij yij
lk −

∑

i

∑

j

wij yij
kl ≤ Θ

∑

i

∑

j

wij yij
lk ∀ k ∈ N , k < l (4.88)

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ ckl ∀ k, l ∈ N , k < l (4.89)

∑

k

xik = 1 ∀ i ∈ N (4.90)

xik ≤ xkk ∀ i, k ∈ N (4.91)

uij
k =

∑

l

yij
kl ∀ [i, j] ∈ Q, ∀ k ∈ N (4.92)

vij
k =

∑

l

yij
kl ∀ [i, j] ∈ Q, ∀ k ∈ N (4.93)

uij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.94)

vij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.95)

xik ∈ {0, 1}, 0 ≤ yij
kl, u

ij
k , vij

k ≤ 1 ∀ i, j, k ∈ N (4.96)
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IV.2.2.2. Decomposed Subproblems

There are several alternative relaxation approaches for the RPNDxyuv model; however,

based on the LD framework, we relax the copy constraints (4.92)-(4.93). To do so,

we define τ ij
k and σij

k as the Lagrangean multipliers associated with constraints (4.92)

and (4.93), respectively. Thus, by removing the copy constraints and incorporating

them into the objective function (4.85), the objective function can be restated as:

Min ZRRND =
∑

i

∑

k

T1 dik

∑

j

(wij+wji) xik+
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl+

∑

k

Fk xkk

+
∑

i

∑

j

∑

k

τ ij
k (

∑

l

yij
kl − uij

k ) +
∑

i

∑

j

∑

k

σij
k (

∑

l

yij
lk − vij

k ) (4.97)

The relaxed model, with the objective function (4.97) and constraints (4.86)-(4.91)

and (4.94)-(4.96), is now referred to as “RRND”. Solving the RRND model with

any value of τ and σ provides a lower bound to the original problem where the

last two terms of (4.95) can be viewed as the penalty arising from the violation

of constraints (4.92) and (4.93). In this case, whenever the relaxed constraints are

satisfied, then there is no penalty and the optimal solution to the RPNDxyuv model

is obtained.

Clearly, the RRND model can be decomposed into two subproblems, one with

x, u, and v variables and one with only y variables. The subproblem “RRNDxuv”

associated with the decision variables x, u, and v is as follows:

Min Zxuv =
∑

i

∑

k

T1 dik

∑

j

(wij + wji) xik +
∑

k

Fk xkk

−
∑

i

∑

j

∑

k

τ ij
k uij

k −
∑

i

∑

j

∑

k

σij
k vij

k (4.98)
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subject to

vij
k − uij

k = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (4.99)

∑

k

xik = 1 ∀ i ∈ N (4.100)

xik ≤ xkk ∀ i, k ∈ N (4.101)

uij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.102)

vij
k ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N (4.103)

xik ∈ {0, 1}, 0 ≤ vij
k , uij

h ≤ 1 ∀ i, j, k ∈ N (4.104)

The second subproblem, “RRNDy”, associated with the y variables is as follows:

Min Zy =
∑

i

∑

j

∑

k

∑

l

(T2 dkl wij + τ ij
k + σij

l ) yij
kl (4.105)

subject to

∑

i

∑

j

wij yij
kl −

∑

i

∑

j

wij yij
lk ≤ Θ

∑

i

∑

j

wij yij
kl ∀ k, l ∈ N , k < l (4.106)

∑

i

∑

j

wij yij
lk −

∑

i

∑

j

wij yij
kl ≤ Θ

∑

i

∑

j

wij yij
lk ∀ k, l ∈ N , k < l (4.107)

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ ckl ∀ k, l ∈ N , k < l (4.108)

0 ≤ yij
kl ≤ 1 ∀ i, j, k ∈ N (4.109)

As aforementioned, the subproblem RRNDy can be further decomposed for each

RP-RP link (k, l), k < l, k, l ∈ N . The decomposed subproblem is referred to as

“RRNDkl
y ” with the associated objective function value Zkl

y where
∑

k

∑

l Z
kl
y = Zy

and Zy + Zxuv = ZRRND ≤ ZRPND.
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IV.2.2.3. Solving the Subproblems

The subproblem RRNDxuv is significantly smaller than the RPNDxyuv problem since

y variables are not included, hence, solving RRNDxuv problem with the Branch-and-

cut approach (CPLEX) now provides satisfactory performance. On the other hand,

it is more computationally intensive to solve the RRNDy problem, which is essen-

tially a continuous knapsack problem with side constraints (4.106)-(4.107). When

constraints (4.106)-(4.107) are relaxed, the RRNDkl
y subproblem can be solved using

the greedy algorithm presented in Algorithm 4.

Algorithm 4 Solving problem RRNDkl
y without the link-imbalance constraints

1: Set Zkl
y = 0, Ckl = ckl, y

ij
kl = y

ij
lk = 0,∀ [i, j] ∈ Q;

2: Let B
ij
kl =

T2 dkl wij+τ ij
k

+σij
l

wij
and B

ij
lk =

T2 dlk wij+τ ij
l

+σij
k

wij
;

3: Sort B
ij
kl and B

ij
lk in ascending order;

4: while Ckl > 0 do
5: B̂

ij
kl = min {Bij

kl, B
ij
lk};

6: if B̂
ij
kl ≥ 0 then

7: stop;

8: else
9: Let (̂i, ĵ, k̂, l̂) be the indices associate with B̂

ij
kl;

10: Zkl
y = Zkl

y + min {B̂ij
kl, (B̂

ij
kl ∗

Ckl

w
îĵ

)};

11: Ckl = Ckl − min {Ckl, wîĵ};

12: y
îĵ

k̂l̂
= y

îĵ

k̂l̂
+ min {1, Ckl

w
îĵ
}

13: Remove B̂
ij
kl from the list;

14: end if

15: end while

Algorithm 4 tries to fill the available capacity of the link (k, l) with the commodity

[i, j] that has the largest negative objective function coefficient. For simplicity, we

refer to the coefficient of the y variable as Bij
kl. In this case, the commodity with the

smallest Bij
kl is augmented, one at a time, and the link capacity is adjusted accordingly.
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If enough capacity Ckl is available, the associated y variable has the value of one;

otherwise, only fractions of the demand are augmented and the associated y takes a

value between 0 and 1. The augmentation process terminates when the link capacity is

exhausted or when the smallest Bij
kl is non-negative. We denote the solution obtained

from this knapsack problem as ŷkl.

The link-imbalance constraints (4.106)-(4.107), which are relaxed in the greedy

algorithm, may be violated If constraints (4.106)-(4.107) are satisfied, then ŷkl is also

the optimal solution for the RRNDkl
y subproblem. However, if that is not the case,

then further modification is required to fix the obtained infeasible solution.

In order to fix an infeasible ŷkl, we first observe that only one direction of con-

straints (4.106)-(4.107) can be violated at a time; This is equivalent to having too

many flows sent in the violated direction. Based on this observation, Algorithm 5

is developed for converting the infeasible ŷkl into the optimal ykl. Without loss of

generality, we assume that constraint (4.106), corresponding to direction (k, l), is

violated. Thus,
∑

i

∑

j wij ŷij
kl >

∑

i

∑

j wij ŷij
lk and

∑

i

∑

j wij ŷij
kl −

∑

i

∑

j wij ŷij
lk >

Θ(
∑

i

∑

j wij ŷij
kl). We also note that, in Algorithm 5, if constraint (4.107) is violated,

then every (k, l) must be changed to (l, k), and every (l, k) must be changed to (k, l).
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Algorithm 5 Fixing infeasible ŷkl for RRNDkl
y

1: Ẑkl
y =

∑

i

∑

j

∑

k

∑

l(T2 dkl wij + τ
ij
k + σ

ij
l ) ŷ

ij
kl;

2: Ĉkl = ckl −
∑

i

∑

j wij ŷ
ij
kl +

∑

i

∑

j wij ŷ
ij
lk;

3: Let B
ij
kl =

T2 dkl wij+τ ij
k

+σij
l

wij
and B

ij
lk =

T2 dlk wij+τ ij
l

+σij
k

wij
;

4: Remove TLs in the direction (k, l) until constraint (4.106) is satisfied with
equality

5: while
∑

i

∑

j wij ŷ
ij
kl −

∑

i

∑

j wij ŷ
ij
lk > Θ(

∑

i

∑

j wij ŷ
ij
lk) do

6: Let Bmn
kl = max{Bij

kl : ŷ
ij
kl > 0};

7: Let W = (1 − Θ)
∑

i

∑

j wij ŷ
ij
kl −

∑

i

∑

j wij ŷ
ij
lk;

8: if W > wmnŷmn
kl then

9: Ẑkl
y = Ẑkl

y − Bmn
kl wmnŷmn

kl ; Ĉkl = Ĉkl + wmnŷmn
kl ; ŷmn

kl = 0;

10: else
11: Ẑkl

y = Ẑkl
y − Bmn

kl

(

wmn−W
wmn

)

; Ĉkl = Ĉkl + wmn − W ; ŷmn
kl = W

wmn
;

12: end if
13: end while

14: Send TLs in such a way that constraints (4.106) is satisfied with equality

15: while Ĉkl > 0 do
16: Let Bmn

kl = min{Bij
kl : ŷ

ij
kl < 1} and B

op
lk = min{Bij

lk : ŷ
ij
lk < 1};

17: while (Bmn
kl + (1 − Θ)Bop

lk ) < 0 do

18: Set fkl = wmn(1 − ŷmn
kl );

19: if fkl >
wop(1−ŷop

lk
)

(1−Θ) then

20: fkl =
wop(1−ŷop

lk
)

(1−Θ) ;

21: end if

22: if (2 − Θ)fkl > Ĉkl then

23: fkl = Ĉkl

(2−Θ) ;

24: end if

25: f lk = (1 − Θ)fkl;

26: Ẑkl
y = Ẑkl

y + Bmn
kl fkl + B

op
kl f lk; Ĉkl = Ĉkl − wmn fkl − wop f lk;

27: ŷmn
kl + = fkl

wmn
and ŷ

op
lk + = f lk

wop
;

28: end while
29: end while

In Algorithm 5, Ẑkl
y is the objective function value from Algorithm 4. Ĉkl is the

leftover capacity of the link (k, l) and Bij
kl is the associated coefficient of yij

kl. In steps 5-
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13, the algorithm removes flows in the direction (k, l) in descending order of B ij
kl until

constraint (4.106) is satisfied with equality; Ĉkl and yij
kl are adjusted accordingly. The

implied link-imbalance level Θ̄ is then equal to
∑

i

∑

j wij yij
kl
−

∑

i

∑

j wij yij
lk

∑

i

∑

j wij yij
kl

= Θ. Steps

15-30 improve Ẑkl
y by re-sending flows in such a way that Θ̄ is maintained at Θ, and

(1−Θ) units of flow are sent in the (l, k) direction whenever a unit of flow is sent in the

(k, l) direction. For this, the algorithm first matches the best commodity, [m, n] and

[o, p], in direction (k, l) and (l, k). If they satisfy the condition (Bmn
kl +(1−Θ)Bop

lk ) < 0,

then augmenting these commodities can improve Ẑkl
y .

The flows of the commodity [m, n] are represented by fkl. Initially, fkl is equal

to the whole demand wmn if ŷmn
kl = 0 or equal to the leftover demand wmn(1− ŷmn

kl ) if

ŷmn
kl > 0. In the opposite direction, (1 − Θ)fkl of the commodity [o, p] must be sent.

However, if there is not enough leftover demand (f kl >
wop(1−ŷop

lk
)

(1−Θ)
), then fkl is adjusted

to
wop(1−ŷop

lk
)

(1−Θ)
. With respect to link capacity, these additional TLs must not exceed the

available capacity Ĉkl. If fkl +(1−Θ)fkl = (2−Θ)fkl > Ĉkl, then fkl is re-adjusted to

Ĉkl

(2−Θ)
. Finally, after fkl is determined, flk is readily set to (1−Θ)fkl and Ẑkl

y , ŷkl, and

Ĉkl are adjusted according to the additional flows, fkl and flk. The algorithm repeats

these steps until the leftover capacity is used up or the augmentation condition,

(Bmn
kl + (1 − Θ)Bop

lk ) < 0, is not satisfied, i.e., additional flows only increase Ẑkl
y .

To show that Algorithm 5 can construct an optimal solution to RRNDkl
y , we first

note that Algorithm 5 provides the best ykl that has Θ̄ = Θ. Thus, we only have

to prove that there exists an optimal solution with Θ̄ = Θ. To do so, we define the

following notation:

• Let ŷkl be the solution of Algorithm 4. The flows in directions (k, l) and (l, k)

are a =
∑

i

∑

j wij ŷij
kl and b =

∑

i

∑

j wij ŷij
lk, respectively (a−b

a
> Θ).

• Let ỹkl be the solution of Algorithm 5. The flows in directions (k, l) and (l, k)
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are c =
∑

i

∑

j wij ỹij
kl and e =

∑

i

∑

j wij ỹij
kl.

c−d
c

= Θ. Zcd
kl is their associated

objective function value.

• Let ȳkl be the optimal solution. The optimal flows in direction (k, l) and (l, k)

are e and f , respectively. Clearly, f ≥ b, and Zef
kl is the optimal objective

function value where Zef
kl < Zcd

kl .

Clearly, e cannot be greater than a. If Algorithm 4 terminates because of exhausted

capacity, then the level of e greater than a violates the capacity constraint. Alterna-

tively, if f can be reduced below b to create extra space for e to increase beyond a,

then the link-imbalance constraint will be violated. On the other hand, if the algo-

rithm terminates when it cannot find negative Bmn
kl , then additional flows beyond a

can only worsen the objective function value. Based on these observations, we can

show that Algorithm 5 provides an optimal solution to RRNDkl
y .

Proposition 1. There exists an optimal solution with Θ̄ = c−d
c

= Θ and the objective

function value of Zcd
kl .

Proof. There are four possible cases to be considered.

1. e < c and f < d: we can find two commodities [m,n] and [o,p] such that

(Bmn
kl + (1 − Θ)Bop

lk ) < 0 and their augmentations can improve Zef
kl .

2. e > c and f < d: e−f
e

> c−d
c

= Θ, this contradicts the assumption that the

optimal flows in direction (k, l) and (l, k) are e and f .

3. e < c and f > d: we let R be the set of augmented commodities in the

(k, l) direction of ỹij
kl but not in the optimal solution where r1, r2, . . . , rR ∈ R

and Br1

kl ≤ Br2

kl ≤ . . . ≤ BrR

kl . Similarly, we let S be the set of augmented

commodities the (l, k) direction of the optimal solution but not in ỹij
lk where
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s1, s2, . . . , sS ∈ S and Bs1

lk ≤ Bs2

lk ≤ . . . ≤ BsS

lk . Clearly, BrR

kl ≤ 0, BrR

kl ≤ BsS

lk ,

and Zef
kl − Zcd

kl = (Bs1

lk ws1
ȳs1

lk + Bs2

lk ws2
ȳs2

lk + . . . + BsS

lk wsS
ȳsS

lk ) − (Br1

kl wr1
ỹr1

kl +

Br2

kl wr2
ỹr2

kl + . . . + BrR

kl wrR
ỹrR

kl ).

3.1) if f − d ≥ c− e, then (wr1
ỹr1

kl +wr2
ỹr2

kl + . . .+wrR
ỹrR

kl ) ≥ (ws1
ȳs1

lk +ws2
ȳs2

lk +

. . . + wsS
ȳsS

lk ), and Zfg
kl − Zcd

kl ≥ 0.

3.2) If f−d < c−e, then the algorithm terminates because (BR1

kl +(1−Θ)BS1

lk ) ≥

0 and Bs1

lk ≥ 0. Therefore, Zef
kl − Zcd

kl ≥ 0.

4. e > c and f > d: then
(

(e−c)−(f−d)
(e−c)

)

cannot be greater than Θ in order to satisfy

constraint (4.106). Thus, (1−Θ)(e−c) is less than or equal to (f−d). We define

S as in case 3 but redefine R as the set of augmented commodities in the (k, l)

direction of the optimal solution but not in ỹij
kl. The other properties of R remain

the same. In this case, the algorithm terminates because (Br1

kl +(1−Θ)Bs1

lk ) ≥ 0

and Bs1

lk ≥ 0. Therefore, Zfg
kl −Zde

kl = (Br1

kl wr1
ȳr1

kl +. . .+BrR

kl wrR
ȳrR

kl +Bs1

lk ws1
ȳs1

lk +

. . . + BsS

lk wsS
ȳsS

lk ) ≥ Br1

kl (e− c) + Bs1

lk (f − d) ≥ Br1

kl (e− c) + (1−Θ)Bs1

lk (e− c) ≥

(Br1

kl + (1 − Θ)Bs1

lk )(e − c) = 0.

All four cases contradict the assumption that Zef
kl < Zcd

kl ; therefore, the solution

obtained from Algorithm 5 is an optimal solution of RRNDkl
y .�

To better illustrate Algorithm 4 and Algorithm 5, we use Example 1 presented

below for demonstration purposes.

Example 1. Consider the link (1, 2) where c12 = 10 and θ = 0.5. Bij
12, Bij

21, and wij

are provided in Table 16.

1. Algorithm 4 provides y12
12 = y34

12 = y56
12 = y42

21 = 1 and y61
21 = 0.5 where

(w12 y12
12+w34 y34

12+w56 y56
12−w42 y42

21−w61 y61
21)

(w12 y12
12+w34 y34

12+w56 y56
12)

= 0.75 > 0.5, Ĉ12 = 0, and Z = −76.
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Table 16: Example for Algorithm 5

[i, j] B
ij
12 wij [i, j] B

ij
21 wij

[1, 2] -10 3 [4, 2] -5 1

[3, 4] -9 3 [6, 1] -4 2

[5, 6] -6 2 [5, 7] -1 1

[7, 8] -3 2 [7, 9] -1 2

2. Therefore Algorithm 5 must be utilized to correct this solution.

3. At step 13, the solution now becomes y12
12 = 1, y34

12 = 0.33, y42
21 = 1, and y61

21 = 0.5

where
(w12 y12

12+w34 y34
12−w42 y42

21−w61 y61
21)

(w12 y12
12+w34 y34

12)
= 0.5, Ĉ12 = 4 and Z = −46. Algorithm 5

then tries to improve the solution.

4. Since (B34
12 + (1 − 0.5)B61

21) = −11 < 0, then Z can be improved by sending

greater flow of commodities [3, 4] and [6, 1].

5. f 34 = 3 × (1 − 0.33) = 2 and f 61 = (1 − 0.5) × f 34 = 1. Now the solution

becomes y12
12 = y34

12 = y42
21 = y61

21 = 1 where
(w12 y12

12+w34 y34
12−w42 y42

21−w61 y61
21)

(w12 y12
12+w34 y34

12)
= 0.5,

Ĉ12 = 1 and Z = −70.

6. Since (B56
12 + (1 − 0.5)B57

21) = −6.5 < 0, then Z can be improved by sending

greater flow of commodities [5, 6] and [5, 7].

7. f 56 = 2 × (1 − 0) = 2. However (2 − Θ)f 56 > Ĉ12, therefore f 56 = Ĉ21

(2−Θ)
= 0.67

and f 57 = (1 − 0.5) × f 56 = 0.33. Now the solution becomes y12
12 = y34

12 = y42
21 =

y61
21 = 1, y56

12 = y57
21 = 0.33 where

(w12 y12
12+w34 y34

12+w56 y56
12−w42 y42

21−w61 y61
21−w57 y57

21)

(w12 y12
12+w34 y34

12+w56 y56
12)

= 0.5,

Ĉ12 = 0 and Z = −74.33.�

8. Stop because Ĉ12 = 0.
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IV.2.3. Upper Bound Heuristic

The objective for our upper bound heuristic is to utilize solutions from RRND and

quickly convert them into good feasible solutions. Note that the optimal solution is

obtained if the lower bound solution is feasible. However, This is not usually the case

since the flow conservation constraints are not included in RRNDy and y variables

typically do not define a path. Thus, commodities must be re-routed in order to

obtain their transmission paths.

The upper bound heuristic interprets from the x variables 1) the location of RPs

and 2) the assignment of nonRP nodes, then utilizes this information to construct

a distance matrix used in the commodity re-routing process. The re-routing process

involves solving for the shortest path of each commodity. Each time after the shortest

path is obtained, the flow is sent through the shortest path, and the leftover capacity

of each link (along the shortest path) is updated accordingly. To avoid violating the

capacity constraints, the transmission costs in both directions of a link (entries in

the distance matrix) are set to a large number whenever the total flows on the link

reach the capacity limitation; this makes the transmission over the exhausted links

unfavorable.

For the link-imbalance requirement, the heuristic tries to maintain a “balanced”

flow on every transmission link by increasing the transmission cost on the direction

with more flow, and reducing the cost on the other side. In addition, if the flow

amount leads to a link-imbalance violation on some links, the process then decreases

the flow amount in order to reduce the violation and allow the cost adjustment to

potentially find a feasible alternative path. With this dynamic cost/flow adjustment,

every commodity is re-routed to facilitate finding a feasible solution and a valid upper

bound. The re-routing process cannot guarantee the construction of feasible solutions.
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Therefore, if an infeasible solution is found, the upper bound heuristic adjusts the

distance matrix by 1) increasing the transmission cost on the direction of the link that

induces the link-imbalance infeasibility, 2) reducing the cost on the other direction,

and 3) decreasing the cost in both directions of feasible links. It then repeats the

re-routing process in another attempt to find feasible solutions.

To illustrate the idea discussed above, we provide pseudo-codes for both the

upper bound heuristic and the re-routing process in Algorithm 6 and Algorithm 7,

respectively. For simplicity, we refer to the upper bound heuristic as Algorithm 6 and

the re-routing process as Algorithm 7. Moreover, we define distance matrix D1 with

each entry D1
kl = dkl, k, l ∈ N if dkl ≤ ∆2 and D1

kl = M2 otherwise (M2 is a large

number).

Algorithm 6 Upper bound heuristic for Model 2

1: Set ZUB = M , Gkl = 0, D2
kl = D1

kl, k, l ∈ N ;

2: for i < n do
3: Use algorithm in Algorithm 7 to obtain Z i and yi;

4: if Z i < ZUB then
5: ZUB = Zi and y = yi;

6: end if
7: if yi is a feasible solution then
8: STOP;

9: else
10: for ∀(k, l), k, l ∈ RP, k < l that Gkl + Glk > 0 do

11: if Gkl−Glk

Gkl
> Θ then

12: D2
kl = D2

kl ∗ β1 and D2
lk = D2

lk ∗ α1;

13: end if
14: if Glk−Gkl

Glk
> Θ then

15: D2
kl = D2

kl ∗ α1 and D2
lk = D2

lk ∗ β1;

16: end if
17: if Gkl−Glk

Gkl
≤ Θ and Glk−Gkl

Glk
≤ Θ then

18: D2
kl = D2

kl ∗ α1 and D2
lk = D2

lk ∗ α1;

19: end if
20: end for
21: Set Gkl = 0;

22: end if
23: end for
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Algorithm 6 utilizes Algorithm 7 to construct a solution and the associated upper

bound (step 3). If a feasible solution is returned, then Algorithm 6 terminates with

a valid upper bound (steps 7-8). Otherwise, if the infeasible solution (marked by an

unrealistically large value) is constructed, then Algorithm 6 adjusts and re-inputs D2

to Algorithm 7 for another attempt at constructing a feasible solution. D2 is adjusted

based on the level of usage and the link-imbalance level. To do this, we define Gkl

as the number of TLs transported between RP k and l, and modify D2
kl that has

Gkl + Glk > 0 using the following rules:

1. If the implied link-imbalance is greater than the permissible link-imbalance,

Θ̄ = max{Gkl−Glk

Gkl
, Glk−Gkl

Glk
} > Θ, then the distance of the direction that defines

the link-imbalance is multiplied by α1 (0 ≤ α1 ≤ 1) and the opposite direction

is multiplied by β1 (β1 ≥ 1) (steps 11-16).

2. If Θ̄ ≤ Θ, then both D2
kl and D2

lk are multiplied by α1 (steps 17-19).

The purpose of α1 is to make one direction more favorable, while β1 makes one

direction less favorable. After the adjustment process, D2 is re-input to Algorithm 7.

Algorithm 6 repeats steps 3-22 for n iterations and reports the best infeasible solution

(or a feasible solution, if found).

The order of commodities to be re-routed in Algorithm 7 is determined by the

length of the shortest path using the following procedure. For commodity [i, j], we

let r(i) be the RP to which the origin i is assigned and r(j) be the RP to which the

destination j is assigned. Next, we calculate, for every commodity, the shortest path

length from r(i) to r(j) over the distance matrix D2 and represent their values using

Lij. Finally, Lij are sorted in descending order and used as a re-routing order in steps

2-3 of Algorithm 7.

In the re-routing process, Algorithm 7 finds the shortest path – of the commodity
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[̂i, ĵ] over a distance matrix D3 – through which some flow Fij (number of TLs) will

be sent (step 6). Initially, Fij is the minimum between the leftover demand Wîĵ and

the leftover capacity of the links along the shortest path. However, if 1) there is a

link (k, l) that is not previously used (Gkl + Glk = 0), or 2) there are already too

many flows on direction (k, l) (Gkl−Glk

Gkl
> Θ), then only small fractions of demand,

0 ≤ ε ≤ 1, are sent (steps 10-15). In addition, if direction (k, l) currently has

Θ = Gkl−Glk

Gkl
≤ Θ, then Fij of at most Glk

1−Θ
−Gkl are sent (steps 16-18). The objective

of this partial augmentation is to avoid constructing a solution that violates the

link-imbalance constraints by allowing the algorithm to adjust matrix D3 and find

alternative shortest paths. After obtaining Fij, Zi, Wîĵ, Gkl,y, and Ckl are adjusted

accordingly (steps 21, 23, and 25).

After each augmentation, the distance matrix D3 is updated (steps 24-41). When-

ever the link capacity Ckl is used up, the associated entries D3
kl and D3

lk are set to

a large number M2 so as to prevent more flow (step 27). While there is still some

leftover capacity, Algorithm 7 adjusts D3
kl according to the current level of Θ̄. If

Gkl = Glk, then Θ̄ = 0 and we reset the associated D3
kl and D3

lk to D2
kl and D2

lk,

respectively (steps 29-31). When Gkl > Glk and Θ̂ = Gkl−Glk

Gkl
≥ Θ, there are too

many TLs on direction (k, l) and, therefore, D3
kl is set to D2

kl ∗ β2 (β2 ≥ 1) to make it

less favorable and D3
lk is set to D2

lk ∗ α2 (α2 ≤ 1) to encourage more flow in this (l, k)

direction (steps 33-34). If Θ̂ < Θ, then the algorithm sets D3
lk = D2

lk ∗ (1 − Θ̂) and

leaves D3
kl with its current value (step 36). When Gkl < Glk and Θ̂ = Glk−Gkl

Glk
≥ Θ,

similar processes are applied with the exception that directions (k, l) and (l, k) must

be reversed.
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Algorithm 7 Re-routing process for Model 2

1: Set Zi = 0 and Ckl = ckl, k, l ∈ N , k < l; Set Gkl = 0, D3
kl

= D2
kl

, k, l ∈ N ;

2: Sort Lij in descending order and let [̂i, ĵ] be the sorted commodity indices;

3: for each sorted commodity [̂i, ĵ] do

4: Let W
îĵ

= w
îĵ

;

5: while W
îĵ

> 0 do

6: Solve the shortest path from r(̂i) to r(ĵ) using the distance matrix D3;

7: Let Ā be the set of edges in the shortest path and D̄
îĵ

=
∑

k

∑

l Dkl, (k, l) ∈ Ā;

8: F
îĵ

= min{W
îĵ

, min{Ckl, (k, l) ∈ Ā s.t. D1
kl

< M, Ckl > 0}};

9: for (k, l) ∈ Ā do

10: if Gkl + Glk = 0 and F
îĵ

> ε then

11: F
îĵ

= ε;

12: else

13: if
Gkl−Glk

Gkl
> Θ and F

îĵ
> ε then

14: F
îĵ

= ε ;

15: end if

16: if
Gkl−Glk

Gkl
≤ Θ and F

îĵ
> Glk

1−Θ
− Gkl then

17: F
îĵ

= Glk

1−Θ
− Gkl;

18: end if

19: end if

20: end for

21: Zi+ = (T2 × D̄
îĵ

× F
îĵ

); W
îĵ

= W
îĵ

− F
îĵ

;

22: for (k, l) ∈ Ā do

23: Gkl+ = F
îĵ

; yîĵ
kl

+ =
F

îĵ

w
îĵ

;

24: if Dkl < M2 then

25: Ckl = Ckl − F
îĵ

(assume k < l, otherwise use Clk = Clk − F
îĵ

);

26: if Ckl = 0 then

27: Set D3
kl

= D3
lk

= M2;

28: else

29: if Gkl = Glk then

30: Set D3
kl

= D2
kl

and D3
lk

= D2
lk

;

31: else

32: if Gkl > Glk (for Gkl < Glk, change every (k, l) to (l, k) and (l, k) to (k, l)) then

33: if Θ̂ = Gkl−Glk

Gkl
≥ Θ then

34: D3
kl

= D2
kl

∗ β2 and D3
lk

= D2
lk

∗ α2;

35: else

36: D3
lk

= D2
lk

∗ (1 − Θ̂);

37: end if

38: end if

39: end if

40: end if

41: end if

42: end for

43: end while

44: end for

45: yi = yîĵ
kl

, k, l ∈ N ;

46: if yi violate the capacity or link-imbalance constraints then

47: Zi = Zi× 10;

48: end if
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Algorithm 7 repeats the re-routing process in steps 9-46 for every commodity

and returns y variables with the associated objective function value and the matrix

G to Algorithm 6.

In our preliminary experiments, we calibrate the algorithms’ parameters in order

to obtain good algorithmic performance and observe that the combination of α1 =

0.01, β1 = 1, and n = 10 (in Algorithm 6), and α2 = 0.1 and β2 = 5 (in Algorithm 7)

usually provide good results.

IV.2.4. Overall Framework

The overall framework of our LD algorithm is presented in Algorithm 8. Initially, the

best lower bound, LBbest, is set to 0 and the best upper bound, UBbest, is set to a large

number M3. The number of iterations Iter and the number of consecutive iterations

that the best lower bound is not improved tni are also initialized to 0. Since the set

of Lagrangean multipliers is updated using UBbest in the subgradient optimization

(presented in Section IV.2.2.2), we consider initializing M3 to a realistic value. To do

so, we assume that every node is an RP and use the upper bound heuristic to obtain

the initial upper bound. We found that this procedure usually provides a feasible

solution and a meaningful M3.
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Algorithm 8 Pseudo-code for Lagrangean Decomposition

1: Set LBbest = 0, UBbest = M3, Iter= tni = 0;

2: while f t > εf do
3: Iter = Iter+1; tni = tni + 1;

4: Solve the lower bound problem for Z t
LB ;

5: if Zt
LB > LBbest then

6: LBbest = Zt
LB

7: tni = 0

8: end if
9: if tni = ni then

10: f t = f t × mf ;

11: tni = 0

12: end if

13: Solve the upper bound problem for Z t
UB;

14: if Zt
UB < UBbest then

15: UBbest = Zt
UB

16: end if
17: if (UBbest−LBbest

UBbest
≤ εopt) then

18: Stop;

19: end if

20: Update the lagrangean multipliers using the subgradient optimization;

21: end while

The algorithm first solves the RRND problem and obtains a valid lower bound

Zt
LB. Then, LBbest is replaced with Z t

LB if Zt
LB > LBbest and tni is reset to 0 (steps

4-7). Note that if LBbest is not improved for ni consecutive iterations, then the factor

f t in the subgradient optimization is multiplied by mf (step 10). Next, the algorithm

utilizes the upper bound heuristic to construct an upper bound Z t
UB. Similarly, UBbest

is replaced by Z t
UB if Zt

UB < UBbest (steps 13-15). Afterwards, the optimality gap

UBbest−LBbest

UBbest
is calculated (steps 17-18) and if it is larger than the desired optimality

gap εopt, the algorithm continue to update the Lagrangean multipliers using the sub-

gradient optimization (step 20). The algorithm repeats the overall process until the

optimality gap is small enough or when the the factor f t is smaller than εf . In our
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compensational experiments, we found that the combination of ft = 1.6, mf = 0.4,

εf = 0.0001, and ni = 20 generally leads to a good algorithmic performance.

IV.2.5. Subgradient Method

The values of σ and τ have significant impacts on the convergence rate of our LD

algorithm. In this section, we discuss how to utilize the subgradient optimization to

obtain good candidates for σ and τ . In each iteration, after the optimality gap fails

to terminate the algorithm, the following procedure is applied.

1. Let x, y, u, and v be the solutions from RRND in the current iteration, then

the SSE =
∑

i

∑

j

∑

k(
∑

l y
ij
kl − uij

k )2 +
∑

i

∑

j

∑

k(
∑

l y
ij
lk − vij

k )2.

2. Let t represent the iteration number, and let step size st = f t (UBbest−Zt
LB

)

SSE
.

3. Finally, we set σ
(t+1)ij
k = σtij

k +st(
∑

l y
ij
kl−uij

k ) and τ
(t+1)ij
k = τ tij

k +st(
∑

l y
ij
lk−vij

k ).

The above procedure is applied for updating σ and τ in each iteration. However,

for the initial σ and τ in the first iteration, we found that the following procedure

provides a good starting point and helps with the convergence rate. First, the all-pair

shortest paths, from one node to every other node, are solved and gi
k is defined as the

length of the shortest path from node i to node k. Then, for a commodity [i, j], we

set σ0ij
k to

wij(gi
k
−gj

k
)

2
and set τ 0ij

k to
wij(g

j
k
−gi

k
)

2
.

IV.2.6. Computational Experiments

The objective of our computational experiments is to illustrate the efficiency of our

LD algorithm and also to examine the influence of various parameters on both the

algorithmic performance and the solutions characteristics. To solve the RPNDxyz,

RPNDxy, and RRNDxuv problems with the Branch-and-cut approach, we use CPLEX
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9.1 with default settings for cut generation, preprocessing, and upper bound heuris-

tics.

In the first experiment, we compare the performance of our LD algorithm to

the Branch-and-cut (BC) approach as implemented in CPLEX. The first column in

Table 17 contains the problem classes Ua3-4, Ub3-4, Uc3-4, and Ud3-4 with various

combinations of |N | and D where |N | ranges from 20 to 40 nodes and D is both 60

and 80 percent. The ∆1-∆2 value is fixed at 20-40 and the link capacity ckl is assumed

to have equal capacity c which is predetermined and set as presented in Table 17.

Table 17: Results of the BC and LD approaches (averages of 10 instances)

Problem class B & C LD (Iter = 300) LD (3%)

(|N |-D-c) Timez Timexy GapLD Gaplb Gapub TimeLD Gap LD Gaplb Gapub TimeLD

Ua3 (20-60-1300) 23 26 1.28 0.27 1.03 98 2.81 1.72 1.12 19

Ua4 (20-80-1300) 19 25 1.27 0.17 1.11 106 2.771 1.762 1.193 284

Ub3 (25-60-1500) 150 178 1.13 0.16 0.98 165 2.89 1.75 1.17 41

Ub4 (25-80-1500) 190 262 1.13 0.17 0.97 181 2.82 1.70 1.15 35

Uc3 (30-60-1700) 706 739 0.87 0.09 0.78 257 2.85 1.82 1.06 38

Uc4 (30-80-1700) 503 520 0.92 0.07 0.86 292 2.80 1.82 1.01 36

Ud3 (40-60-2000) n/s n/s 1.23 n/s n/s 675 2.82 n/s n/s 209

Ud4 (40-80-2000) n/s n/s 1.25 n/s n/s 768 2.73 n/s n/s 170
1 The average of 9 instances without the outlier is 2.71%.
2 The average of 9 instances without the outlier is 1.61%.
3 The average of 9 instances without the outlier is 0.89%.
3 The average of 9 instances without the outlier is 18 seconds.

In Table 17, Timez and Timexy are the runtimes that CPLEX takes to solve the

formulations RPNDxyz and RPNDxy to optimality. It is clear that the BC approach

is very effective in solving small instances and, due to the more compact and tighter

formulation, RPNDxyz is solved in slightly shorter runtimes. However, the runtimes

and memory requirements for both formulations increase very rapidly with the in-

creasing |D| and |Q|. Eventually, the memory requirement grows prohibitively large

and no solution can be obtained for classes Ud3 and Ud4.

Unlike the BC approach that employs a large amount of memory to exploit the
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branch-and-bound tree, our LD approach requires significantly less memory by decom-

posing the problem and solving the parts separately. To illustrate the performance of

our LD approach, we apply the LD algorithm to these problem classes and allow it

to run for 300 iterations. The solution statistics are summarized in columns 4-7. We

use GapLD and TimeLD to represent the LD optimality gap between the best lower

and upper bounds at termination and the associated runtimes, respectively. Gaplb is

the percentage difference between the LD best lower bound, LBbest, and the optimal

solution obtained from CPLEX. Likewise, Gapub is the percentage difference between

the LD best upper bound, UBbest, and the optimal solution.

Clearly, the LD algorithm can efficiently solve all instances for the average opti-

mality gap below 1.3% and, most importantly, classes Ud3 and Ud4, which the BC

approach cannot solve, are now solved in less than 13 minutes. On average, the best

lower bounds are less than 0.3% from optimality while the best upper bounds are ap-

proximately 1% greater than the optimal solution. In terms of runtimes, even though

the LD algorithm takes longer to solve the small instances (Ua3-4), the runtimes grow

at a slower rate when compared to the BC approach.

Although the number of iterations in the first experiment is set to 300, the

best upper bound solutions are normally found in earlier iterations. For illustration

purposes, we set the optimality gap εopt to 3%, re-solve the instances, and report the

solution statistics in columns 8-11. In this setting, the LD approach can find good

solutions verifiably within 3% optimal and which terminate at the early stages; the

runtimes are relatively smaller than the 300 iterations criteria. Specifically, the best

upper bounds are below 1.3% on average and the best lower bounds are below 2%.

This indicates that the majority of the runtimes after the 3% gap is reached are spent

improving the lower bounds as there is only a slight improvement in terms of the

upper bound solutions.
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Upon observing this tail-off effect, we decide to use 1) 300 LD iterations and 2)

3% optimality gap as the termination criteria for the rest of this experimentation.

We also note that there is one instance in problem class C2 that the LD algorithm

cannot solve to 3% optimality in 300 iterations. The lower bound gap is reported as

small as 0.24% but the upper bound gap is 3.12%. In this case, the average gaps and

runtimes without the outlier instance are reported.

In the second experiment, we solve the problem class Ud3-4, Ue3-4, and Uf3-

4, each with 10 instances, using different settings of ∆1, ∆2, and c. The averages over

10 instances are reported in Table 18 where Iter is the number of LD iterations, Tlb

and Tub are the total time spent for solving for lower and upper bounds, #RP and

#Link are the number of RPs and utilized links in the best upper bound solutions,

c̄A and c̄M are the average and the maximum capacity usages, and Θ̄A and Θ̄M are

the average and the maximum level of the implied link-imbalance. In all settings, the

capacity and link-imbalance constraints are effective and we observe the tight values

of c̄M and Θ̄M that are very close or equal to c and Θ. We note that, even though Θ̄M

is 0.41-0.54 (corresponding to 20.5-27% lane drivers’ empty travel mileage), the value

of Θ̄A is only 0.8-1.5 (4-7.5% empty miles). Clearly, the use of an RP-network can

help control the empty back haul to a low level. Moreover, further improvement can

be obtained if more flexible routing routines between multiple RPs are allowed (e.g.,

drivers can visit more than one RP in one trip – route RP1-RP2-RP3-RP1 becomes

available in addition to RP1-RP2-RP1).

To observe the impacts of modeling parameters, we abbreviate each ∆1-∆2-c

combination with a letter “a”-“g” as shown in column 2. With different ∆1-∆2-c,

the underlying structure of the RP-network is altered and different impacts on the

algorithmic performance and solution characteristics can be observed. We examine

the case with a different ∆1 by comparing setting “c” to “e”. When ∆1 increases,
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Table 18: Results of the LD approach with varying ∆1-∆2-c values

Class Ave value

(|N |-D) ∆1-∆2-c Gap Iter Time Tlb Tub #RP #Link c̄A c̄M Θ̄A Θ̄M

20-40-2000 (a) 2.89 50 103 66 29 21 59 620 1841 0.11 0.46

Ud3 20-50-1000 (b) 2.95 89 196 134 44 20 72 422 1000 0.13 0.51

(40-60) 20-50-1500 (c) 2.92 46 96 68 18 20 67 450 1414 0.12 0.49

20-50-2000 (d) 2.84 54 112 80 20 19 64 471 1749 0.12 0.49

30-50-1500 (e) 2.93 66 148 112 22 16 55 499 1469 0.13 0.47

30-60-1000 (f) 2.78 76 187 138 29 16 63 397 978 0.14 0.54

30-60-1500 (g) 2.90 64 150 114 19 15 55 446 1450 0.13 0.52

20-40-2000 (a) 2.74 42 103 69 26 22 62 637 1882 0.11 0.46

Ud4 20-50-1000 (b) 2.87 69 186 128 41 22 85 400 1000 0.13 0.54

(40-80) 20-50-1500 (c) 2.76 58 145 105 26 21 78 436 1394 0.13 0.49

20-50-2000 (d) 2.80 66 167 124 28 21 78 434 1522 0.13 0.53

30-50-1500 (e) 2.93 50 135 103 20 17 62 492 1469 0.13 0.52

30-60-1000 (f) 2.95 64 193 144 30 18 82 346 997 0.14 0.53

30-60-1500 (g) 2.81 82 238 181 32 17 73 376 1371 0.15 0.54

20-40-4000 (a) 2.93 35 298 221 43 26 89 948 3808 0.10 0.45

Ue3 20-50-2000 (b) 2.92 47 478 353 54 24 107 678 2000 0.11 0.49

(60-60) 20-50-2500 (c) 2.96 38 385 285 42 24 101 706 2450 0.11 0.51

20-50-4000 (d) 2.87 79 780 576 78 24 100 716 3194 0.11 0.50

30-50-2500 (e) 2.92 51 611 481 49 21 93 735 2477 0.12 0.50

30-60-2000 (f) 2.89 56 749 585 54 20 101 595 2000 0.13 0.53

30-60-2500 (g) 2.92 50 638 491 48 19 94 628 2291 0.12 0.51

20-40-4000 (a) 2.76 57 573 439 69 27 97 951 3852 0.09 0.42

Ue4 20-50-2000 (b) 2.90 51 633 482 62 26 122 654 2000 0.11 0.48

(60-80) 20-50-2500 (c) 2.87 55 686 522 64 25 119 661 2474 0.11 0.51

20-50-4000 (d) 2.92 58 698 530 65 26 125 642 3227 0.10 0.51

30-50-2500 (e) 2.85 64 903 716 72 23 105 719 2442 0.10 0.47

30-60-2000 (f) 2.84 56 913 721 64 21 116 569 1977 0.11 0.53

30-60-2500 (g) 2.85 86 1304 1014 99 22 118 572 2262 0.12 0.53

20-40-5000 (a) 2.94 51 1246 879 151 32 125 1271 4984 0.09 0.49

Uf3 20-50-3000 (b) 2.90 51 1543 1094 143 29 150 876 3000 0.10 0.47

(80-60) 20-50-3500 (c) 2.96 44 1335 937 132 29 149 882 3362 0.10 0.50

20-50-5000 (d) 2.95 40 1201 825 132 29 148 881 4007 0.10 0.52

30-50-3500 (e) 2.95 50 1871 1442 123 27 141 894 3447 0.09 0.51

30-60-3000 (f) 2.95 50 2075 1575 120 25 156 731 2827 0.10 0.49

30-60-3500 (g) 2.94 46 1813 1340 124 23 130 846 3304 0.10 0.47

20-40-5000 (a) 2.95 31 926 661 113 34 148 1186 4863 0.08 0.41

Uf4 20-50-3000 (b) 2.94 43 1609 1173 140 33 190 771 3000 0.10 0.52

(80-80) 20-50-3500 (c) 2.93 41 1505 1078 149 32 183 804 3440 0.09 0.49

20-50-5000 (d) 2.92 46 1692 1201 175 31 167 885 4227 0.09 0.48

30-50-3500 (e) 2.95 41 1733 1340 114 30 173 837 3487 0.09 0.47

30-60-3000 (f) 2.88 45 2172 1649 133 26 164 759 2969 0.10 0.51

30-60-3500 (g) 2.92 45 2159 1609 158 25 156 807 3413 0.10 0.53
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the nonRP nodes can be assigned to an RP that is further away, thus fewer RPs are

located and fewer links are available. As a result of fewer links, usages increase on

the RP-RP links, as indicated by c̄M and Θ̄M .

On the other hand, comparing “a” to “d” and “e” to “g” illustrates the case when

∆2 is increased. With a larger ∆2, more RP-RP links satisfy the distance constraints,

since truck drivers can now travel further in the RP-network. In this case, even though

fewer RPs are located, the increased number of links is reported. These additional

links improve network connectivity, provide alternative routes for heavily used links,

and consequently promote a better distribution of link usages (lowered link capacity

utilization). In addition, the alternative path (from the increased ∆2) can help reduce

the link-imbalance and, consequently, reduce the empty travel distance. To observe

the impact of c, we compare the settings “b”-“d” and “f”-“g.” When c increases, more

flows are permitted between an RP-RP pair and higher link utilization is reported.

This, in turn, leads to a reduced number of links being used in the RP-network.

In terms of algorithmic performance, increased ∆1 and ∆2 enlarge the solution

space, thus the LD algorithm requires more iterations and runtimes. We note that

the majority (around 74%) of the runtimes contribute to solving the lower bound

problems while the other 12% are for solving the upper bound problem; the leftover

14% computational effort is spent on miscellaneous calculations (e.g., Lagrangean

multipliers update). Although the Tub increases as the problem class moves from Ud3

to Uf4, its percentage of the total runtimes decreases. In particular, the upper bound

heuristics take less than 3 minutes to efficiently construct near optimal solutions (less

than 3%) in all cases. Finally, we also note that the impact of c on the LD algorithm

is not clearly illustrated in this experiment.

In the third experiment, we examine the influence of the node and com-

modity distributions. In this case, we generate the classes Uf3, Ug3, Uh3, and Ui3
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and their clustered counterparts Cf3, Cg3, Ch3, and Ci3, each with 10 instances.

Note that all these classes have |N | = 80 and D = 20. Different distributions of

nodes and commodities can significantly affect both the network configurations and

the commodities’ routes, especially in terms of link capacity requirements. To bet-

ter illustrate their effects, we solve the uncapacitated setting (without the capacity

constraints) and summarize the solution statistics in Table 19. We note that, in this

experiment, the ∆1-∆2 is kept constant at 20-40.

Table 19: Results from the uncapacitated model

Class D-dist c̄M cM c

Uf3 60-20-20 5017 7622 4000

Ug3 20-60-20 3562 4813 2500

Uh3 20-20-60 2566 3073 1500

Ui3 40-30-30 4189 6502 3000

Cf3 60-20-20 11846 22979 10000

Cg3 20-60-20 7134 12015 6000

Ch3 20-20-60 5961 11283 4500

Ci3 40-30-30 8314 18843 8000

In Table 19, c̄M is the average of the maximum link utilization over 10 instances,

whereas cM is the maximum of the link utilization level in all 10 instances. We can ob-

serve that c̄M and cM drop rapidly with the increased number of shorter commodities.

In short (and some medium) range commodities, the origins and the destinations are

usually located in the same cluster/region or in two nearby clusters/regions. Thus,

fewer commodities travel between regions, which leads to a lowered link utilization.

On the other hand, c̄M and cM increase more than twice when the nodes are located

in clusters instead of uniformly distributed. A limited number of paths is available

for transportation between clusters and, consequently, their RP-RP links are used
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very intensively. Upon observing the link utilization in the uncapacitated model, we

set c values in the capacitated setting in such a way that they activate the capacity

constraints as summarized in the fifth column (c ≤ c̄M ≤ cM).

In the fourth experiment (see Tables 20 and 21), we solve the capacitated

setting with c values fixed as in Table 19, and ∆1-∆2 fixed at 20-40. As indicated

in Table 20, all instances can be solved to 3% optimality with the average runtimes

below 6000 seconds except for two instances, one in the Ch3 setting and the other in

the Ci3 setting. Both instances take approximately 13000 seconds to obtain the 3%

optimality gap. This is due to very tight capacity constraints, as both of them are the

two instances that pose the maximum uncapacitated cM values of 11283 and 18843.

Since the capacity limitations for c are set to 4500 and 8000, good feasible solutions

are very difficult to find for these two instances. Thus, the average runtimes for these

two settings are the average of 9 instances (without the outliers) and are indicated

using italic numbers.

Table 20: Results from different node and commodity dis-

tributions

Uniform Node Distribution (Uf3-Ui3)

Class D-dist Time RP Link c̄A c̄M Θ̄A Θ̄M

Uf3 60-20-20 1286 33 139 1127 3781 0.08 0.43

Ug3 20-60-20 1553 33 150 886 2469 0.07 0.41

Uh3 20-20-60 4502 38 193 596 1500 0.08 0.37

Ui3 40-30-30 1565 34 154 962 3000 0.08 0.40

Clustered Node Distribution (Cf3-Ci3)

Class D-dist Time RP Link c̄A c̄M Θ̄A Θ̄M

Cf3 60-20-20 2007 26 101 1567 8785 0.09 0.49

Cg3 20-60-20 2240 26 96 1269 5534 0.08 0.42

Ch3 20-20-60 5334 1 29 121 909 4079 0.08 0.35

Ci3 40-30-30 1947 1 27 110 1359 7229 0.09 0.46
1 The average of 9 instances.

With a greater number of shorter range commodities, excessive transportation
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cost can be avoided by locating additional RPs. This consequently provides the RP-

network with more connectivity and allows the shipments to travel on their best

possible paths without having to strive for limited capacity on links that are shared

by many commodities. As a result, link utilizations are distributed more evenly and

both the capacity usage and link-imbalance levels are reduced.

Table 21: Comparing RP-network with direct shipments

Uniform Node Distribution (Uf3-Ui3)

Class D-dist LA LM d̄A d̄M dA Ω̄A Ω̄M

Uf3 60-20-20 4.0 8.6 87 186 81 0.13 11.57

Ug3 20-60-20 3.5 8.4 72 193 66 0.14 10.22

Uh3 20-20-60 3.1 9.0 60 191 53 0.19 14.41

Ui3 40-30-30 3.7 9.0 77 190 71 0.15 10.01

Clustered Node Distribution (Cf3-Ci3)

Class D-dist LA LM d̄A d̄M dA Ω̄A Ω̄M

Cf3 60-20-20 4.1 8.4 82 172 75 0.17 13.5

Cg3 20-60-20 3.5 8.3 67 178 59 0.21 16.3

Ch3 20-20-60 3.2 8.9 55 182 48 0.26 17.5

Ci3 40-30-30 3.8 8.8 73 181 65 0.22 18.4

In Table 21, LA and LM are the average and maximum number of legs per ship-

ment. d̄A and d̄M are the average and maximum shipment distances from utilizing the

RP-network. By assuming Dij as the actual shipment distance of the commodity [i, j]

over the RP-network, we obtain the percentage of additional distance or percentage

circuitry Ωij =
Dij−dij

dij
where dij is the Euclidean distance between nodes i and j.

Likewise, dA is the average Euclidean distance of all the commodities. The average

and the maximum percentage circuitry levels, calculated from Ωij, are also reported

in Table 21 as Ω̄A and Ω̄M , respectively.

The distances between the origins and destinations are shorter in short and

medium range commodities, and they are relayed fewer times when compared to
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the longer range ones (indicated by LA and LM). d̄A

L̄A is the average distance per leg

and its values are around 20 in all cases. On the other hand, dA can be used as the

average distance per trip in PtP dispatching, if drivers are assumed to return to the

RP from which they are dispatched after making direct shipments. Comparing d̄A

L̄A

with dA, we observe that the RP-network can reduce tour length significantly, from

48-81 miles/trip to as low as 22 miles/trip or less. This reduction of tour length (per

trip) may be even more pronounced as actual trip distances in PtP can be much

longer than dA when multiple shipments are assigned to truck drivers; recall that dA

is simply a lower bound of the PtP tour length, since it is the distance of a single

direct shipment. We note that this comes with only 13-26% of additional distance on

average (indicated by Ω̄A). In terms of percentage circuity, it is interesting to see that

Ω̄A and Ω̄M increase when moving from classes Uf3 to Ui3 and Cf3 to Ci3. This is due

to the increased number of shorter range commodities for which the same amount of

additional travel distance is reflected as a larger percentage of circuitry.

Comparing the uniform and clustered node distributions, we observe that fewer

RPs are required in clustered instances in order to cover all the nodes in entire service

regions and, hence, fewer RP-RP links are available and utilized. This, in turn,

causes capacity usage to increase dramatically, especially for those used in inter-

region transportation. For the other statistics, there is no significant difference other

than a slight increase in the link-imbalance and percentage circuitry, and a slight

decrease in the actual route and Euclidean distances.

IV.2.7. Concluding Remarks

In this chapter, we considered the design of relay networks that explicitly address

drivers’ tour lengths and, at the same time, facilitate the control of empty back haul

and capacity limitations. These requirements are incorporated into Model 2 in the
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form of distance constraints (to control tour lengths), link-imbalance constraints (to

facilitate the chance of finding a load on the back haul), and capacity constraints.

Specifically, we determine 1) the relay point locations, 2) the assignment of nodes,

and 3) the actual transportation routes for each commodity, in such a way that the

stated requirements are satisfied.

Similar to Model 1, the MIP formulation of Model 2 is also highly constrained

and very large in size. Hence, solving the formulation (and also the preprocessed for-

mulation) with typical Branch-and-cut approaches appears very ineffective. In order

to solve this model efficiently, we systematically devise the Lagrangean decomposition

framework (for obtaining tight lower bounds) and upper bound heuristics to design a

solution algorithm that can effectively solve large instances. Our algorithm can solve

all instances to a small optimality gap within a reasonable period of time, as illus-

trated in the computational studies. In addition, our computational studies allow us

to examine the impact of various problem and model parameters on the algorithmic

performance and solution characteristics.
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CHAPTER V

RELAY NETWORK DESIGN FOR TELECOMMUNICATIONS

As discussed in Chapter I, telecommunications firms operate on physical networks to

transmit signals and to connect end users who are scattered over a large service region.

In long distance transmission, signals fade with distance and must be regenerated or

strengthened by repeaters (relay points or RPs) in order to prevent the loss of signal

and to reduce noise. In advance of transmitting signals and allowing communication

between any two locations, a link connecting these locations must be established.

However, due to the restriction of construction budgets, setting up links connecting

all pairs of locations is not an option. Therefore, multiple users must share facilities

(RPs and RP-RP links) in order to achieve cost effectiveness. For this purpose, a

backbone network (RP-network) of RPs and RP-RP links must be constructed, with

end users connecting to only a few, or even a single facility, within a proximity range.

Employing this backbone RP-network, users connect to each other via communication

channels formed by sequences of RPs connected by RP-RP links.

In order to design the RP-network for the telecommunications application dis-

cussed above, Model 3 in Section V.1 extends the base model to consider the case

when links connecting RP pairs must also be established beforehand and the associ-

ated fixed link set-up cost must be charged prior to permitting signal transmission

between RPs. Next, in Section V.2, we present Model 4 that further generalizes Model

3 by including a capacity limitation of total transmissions on the established RP-RP

links. Particularly, Model 3 is a special case of Model 4 when the link capacity is

unlimited.
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V.1. Model 3: RNDP with Fixed Link Set-up Cost

In this section, we consider the variant of the base RNDP model where the set-up of

links connecting RPs is required prior to their usage. Besides the link set-up and the

associated fixed cost, the operational characteristics of the RP-network in Model 3

are identical to the base model.

Figure 7: A Schematic View of Model 3

PSfrag replacements
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i2

j2

RP1

RP2
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In Figure 7, each node represents an end user location and a potential location

of an RP. Nodes are represented by solid-line circles in which some RPs are located

(represented by squares). Signals can be transmitted in both directions between RPs

k and l, k, l ∈ N , only after the RP-RP link (k, l) is established and the associated

fixed cost Fkl is paid (e.g., commodities [i1, j1] and [i2, j2] utilized the established link

(RP3,RP4) in different directions). Due to the limited transmission range, we assume

that signals can travel at most ∆2 between RPs, and at most ∆1 between nonRP

nodes and RPs, without losing the connection. This directly implies that the RP-
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RP links can be at most ∆2 and the nonRP nodes can access the RP-network only

through the RPs that are within ∆1 distance. We also assume a single assignment

stating that each nonRP node must be connected to only one RP. Note that links

between nonRP nodes and RPs are not required prior to their assignment. This is

because, under the single assignment assumption, the associated fixed link (node RP-

RP) set-up cost, if considered, can be directly incorporated into the node assignment

cost terms.

V.1.1. Model

Based on the parameters and the decision variables defined in Sections II.1 and II.2,

Model 3 be formulated as follows:

Min Z =
∑

i

∑

k

T1 dik

∑

j

(

wij + wji

)

xik +
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl

+
∑

k

Fk xkk +
∑

k

∑

l

Fkl zkl (5.1)
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subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (5.2)

dkl zkl ≤ ∆2 ∀ i, k ∈ N (5.3)

∑

m

yij
mk −

∑

m

yij
km = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (5.4)

∑

k

xik = 1 ∀ i ∈ N (5.5)

xik ≤ xkk ∀ i, k ∈ N (5.6)

zkl ≤ xkk ∀ k, l ∈ N , k < l (5.7)

zkl ≤ xll ∀ k, l ∈ N , k < l (5.8)

yij
kl ≤ zkl ∀ [i, j] ∈ Q, ∀ k, l ∈ N , k < l (5.9)

yij
lk ≤ zkl ∀ [i, j] ∈ Q, ∀ k, l ∈ N , k < l (5.10)

xik, zkl ∈ {0, 1}, yij
kl ≥ 0 ∀ i, j, k, l ∈ N (5.11)

In the above formulation, the objective function comprises two main components,

the total signal transmission cost and the RP-network construction cost. The first

two terms in (5.1) correspond to the costs that arise when signals are routed between

nonRP nodes and RPs, and between any two RPs. The last two terms in (5.1) are the

RP location and the RP-RP link set-up cost, respectively. Constraints (5.2) and (5.3)

are the distance constraints defined by signal transmission ranges. Constraints (5.2)

allow nonRP nodes to access the RP-network only through the RP that is within

∆1 range, whereas constraints (5.3) restrict the setting up of the link if it is longer

than ∆2. Constraints (5.4) are the flow conservation constraints that define the

transmission path on the backbone RP-network for each commodity. Constraints (5.5)

enforce the single assignment to every node. Non-RP nodes can access the RP-
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network through one unique RP. On the other hand, whenever a node is selected as

an RP location, it becomes part of the backbone network and is assigned to itself.

Hence, all signals originating at this location can be transmitted directly through

RP-RP links. Constraints (5.6)-(5.10) specify the structural requirements of the RP-

network. Constraints (5.6) prohibit the direct transmission between a nonRP origin-

destination pair without utilizing the RP-network. Moreover, these constraints also

state that a node must access the RP-network only though an RP, and relaying

signals between a nonRP node pair is not allowed. Constraints (5.7)-(5.8) locate

RPs on both ends of a link, once it is established. Constraints (5.9)-(5.10) prevent

the transmission between any two RPs unless they are connected by RP-RP links.

Finally, constraints (5.11) state that x and z are binary while y variables are real

numbers. Although y variables are not binary, Model 3 has the integrality property

when the values of x and z are given. Because of constraints (5.9)-(5.10) and the

uncapacitated structure of the RP-network (uncapacitated RPs and links), signals

are generally transmitted through the shortest possible channel in the RP-network.

This, in turn, causes y variables to have values of either zero or one.

Model 3 is identical to the base model if the last term in the objective function

is disregarded. Moreover, the structural defining constraints (5.7)-(5.10) are actually

the same as constraints (4.70)-(4.73) in Model 2; however, they are utilized under

different objectives. The z variables in Model 3 indicate the existence of physical RP-

RP links while z variables in Model 2 are utilized to obtain a compact formulation,

thus constraints (4.70)-(4.73) can be restated with y variables (instead of z).

V.1.2. Benders Decomposition Framework

Because the formulation of Model 3 is closely related to those of the base model and

Model 1, solving it with the branch-and-cut approach also appears inefficient because
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of the rapid growth rate of the problem size. Unlike the branch-and-cut approach that

utilizes a large amount of memory to exploit the branch-and-bound tree of a large

MIP model, Benders decomposition (BD) devises an indirect approach that facilitates

better management of the memory requirement. By transforming the formulation into

a master problem and a subproblem, Benders cuts are generated from the subproblem

and auxiliary variables, as needed, to tighten the master problem. This BD framework

has shown promising results in the base model (in our preliminary studies) and Model

1 (Section IV.1), especially when the subproblem is decomposable into smaller LP

problems which can further minimize memory usage. Additionally, upon applying the

BD framework to Model 3, many accelerating techniques are applicable to enhance

the algorithmic performance of the BD framework.

In order to develop the BD-base algorithm for Model 3, we follow closely the same

methodological exposition of the algorithmic development presented in Section IV.1.

Whenever the values of the network construction variables (x and z) are given, the

formulation reduces to an LP subproblem that involves only y variables. The y sub-

problem is essentially an uncapacitated multicommodity network flow problem, which

can be further decomposed and simply solved as a series of shortest path problems,

one for each commodity on a given RP-network. The decomposable property of the

subproblem permits the generation of Benders cuts in many forms in which the most

promising results can be achieved via cut Type D4 – the Benders cuts defined for

each commodity – as shown in Chapter IV.1.5. Due to its capability of providing

fast convergence, the BD-based algorithms for Model 3 are based on the assumption

that Benders cuts Type D4 are generated and incorporated into the master prob-

lem. Along with the disaggregation of Benders cuts, other accelerating techniques in

Section IV.1 are applied and tested in order to evaluate their algorithmic benefit.
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V.1.2.1. Benders Subproblem and its Dual

For given x̂ and ẑ variables, we state a subproblem SPij(y|x̂, ẑ) for each commodity

[i, j] ∈ Q as follows:

Min ZSPij
=

∑

k

∑

l

T2 dkl wij yij
kl (5.12)

subject to

∑

m

yij
mk −

∑

m

yij
km = x̂jk − x̂ik ∀ k ∈ N , ∀ [i, j] ∈ Q (5.13)

yij
kl ≤ ẑkl ∀ k, l ∈ N , k < l (5.14)

yij
lk ≤ ẑkl ∀ k, l ∈ N , k < l (5.15)

yij
kl ≥ 0 ∀ k, l ∈ N , ∀ [i, j] ∈ Q (5.16)

Then, by defining αij
k , σij

kl and τ ij
kl as the dual variables associated with (5.13),

(5.14) and (5.15), the dual subproblem DSPij(α, σ, τ |x̂, ẑ) for [i, j] ∈ Q can be

stated as follows:

Max ZDSPij
=

∑

k

(x̂jk − x̂ik) αij
k +

∑

k

∑

l

ẑkl(σ
ij
kl + τ ij

lk ) (5.17)

subject to

αij
l − αij

k + σij
kl ≤ T2 dkl wij ∀ k, l ∈ N , k ≤ l (5.18)

αij
l − αij

k + τ ij
kl ≤ T2 dkl wij ∀ k, l ∈ N , k ≥ l (5.19)

σij
kl, τ ij

kl ≤ 0, αij
k unrestricted ∀ k, l ∈ N , k 6= l (5.20)

Since the disaggregated cut Type D4 is assumed, each time after the dual sub-

problem is solved, the Benders cut defined for each commodity [i, j] ∈ Q can be

generated using the values of dual variables α̂ij, σ̂ij, τ̂ ij, and an auxiliary continu-
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ous variable Bij as follows:

Bij ≥
(

∑

k

(xjk − xik) α̂ij
k

∑

k

∑

l

ẑkl(σ̂
ij
kl + τ̂ ij

lk )
)

(5.21)

In order to generate valid Benders cuts, the subproblem SPij(y|x̂, ẑ) must be

feasible. That is, the RP-network from the master problem (the given x̂ and ẑ vari-

ables) must contain a feasible shortest path with special characteristics specified by

the subproblem SPij(y|x̂, ẑ). In the base model, such feasibility is ensured by 1)

assigning a large distance to each arc (k, l) that is longer than ∆2, and 2) removing

the distance constraints (4.6). As a result, the RP-network from the master problem

is always feasible and the infeasibility in the RP-network (violation of distance con-

straints (4.6)), if it exists, is identified by the shortest path with unrealistically long

distance. A similar approach is applied to Model 1; however, when the percentage

circuitry is considered, the infeasibility in the subproblem arising from violating the

percentage circuitry constraints (4.10) cannot be controlled.

In this section, the construction of a feasible RP-network also involves the set-up

of links connecting RP pairs. Unless the given x̂ and ẑ variables form a connected

network of RPs and RP-RP links, this additional requirement leads to infeasibility

issues and the Benders cuts based on the extreme ray must be generated. However,

even though the infeasible RP-network is given, not all commodities are infeasible.

This is another benefit of the cut disaggregation scheme (Section IV.1.3.2) that per-

mits the generation of Benders cuts as long as the infeasible RP-network contains a

valid shortest path for such a commodity.

For a commodity [i, j] ∈ Q that SPij(y|x̂, ẑ) is infeasible and DSPij(α, σ, τ |x̂, ẑ)

is unbounded, we generate the Benders cut (5.22) that is based on the extreme ray.

(

∑

k

(xjk − xik) α̂ij
k

∑

kl

∑

l

ẑkl(σ̂
ij
kl + τ̂ ij

lk )
)

≤ 0 (5.22)
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V.1.2.2. Benders Master Problem

Utilizing the dual variables α̂, σ̂, and τ̂ from the subproblems, the master problem

MP(x|α̂, σ̂, τ̂ ) of Model 3 can be stated as follows:

Min ZMP =
∑

i

∑

k

T1 dik

∑

j

(

wij + wji

)

xik +
∑

k

Fk xkk +
∑

k

∑

l

Fklzkl +
∑

i

∑

j

Bij

(5.23)

subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (5.24)

∑

k

xik = 1 ∀ i ∈ N (5.25)

xik ≤ xkk ∀ i, k ∈ N (5.26)

zkl ≤ xkk ∀ k, l ∈ N , k < l (5.27)

zkl ≤ xll ∀ k, l ∈ N , k < l (5.28)

(constraints for the set of BCuts) (5.29)

xik, zkl ∈ {0, 1} ∀ i, k, l ∈ N (5.30)

Since the disaggregate cut Type D4 is earlier assumed for the development of the

BD-algorithm for Model 3, the term BCuts represents the Benders cuts generated for

each commodity, either in the form of (5.21) or (5.22). Bij in the objective function are

the auxiliary continuous variables that relate the subproblem to the master problem.

Thus, the term
∑

i

∑

j Bij contributes to the total signal transmission cost. We

present the base BD algorithm for Model 3 in Algorithm 9, which is very similar to

Algorithm 1 in Section IV.1.2.3, except for the terms Bvars and SumBvars, which are

replaced by Bij and
∑

i

∑

j Bij, respectively.
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Algorithm 9 Base BD Algorithm for Model 3

1: Initialize UB = ∞, Bij = 0, α̂ = σ̂ = τ̂ = 0 and Iter = 0; MaxIter;

2: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP and x̂. Set LB = ZMP ;

3: while Iter ≤ MaxIter do

4: Solve DSP(α, σ, τ |x̂) for ZDSP, α̂, σ̂, and τ̂ ;

5: Iter = Iter + 1;

6: if ZMP −
∑

i

∑

j Bij + ZDSP < UB then

7: UB = ZMP −
∑

i

∑

j Bij + ZDSP; x̄ = x̂;

8: end if

9: if (UB - LB)/ LB ≤ ε then

10: break;

11: end if

12: Generate BCuts with α̂, σ̂, and τ̂ and incorporate them into MP(x|α̂, σ̂, τ̂ );

13: Solve MP(x|α̂, σ̂, τ̂ ) for ZMP, x̂, and Bvars. Set LB = ZMP ;

14: if (UB - LB)/ LB ≤ ε then

15: break;

16: end if

17: end while

18: Solve SP(y|x̄) to obtain ȳ;

19: (x̄, ȳ) is the best solution upon termination.

Note that when the ε-optimal approach is applied to the base-BD algorithm, con-

straint (5.31) is incorporated into the master problem and the BD-algorithm follows

the same adjustments applied in Section IV.1.3.3 (Algorithm 2).

∑

i

∑

k

T1 dik

∑

j

(

wij +wji

)

xik +
∑

k

Fk xkk +
∑

k

∑

l

Fklzkl+
∑

i

∑

j

Bij ≤ UB(1−ε)

(5.31)

V.1.3. Approaches for Accelerating the Base Algorithm

Models 1 and 3 share several similarities and, except for some differences in the master

and subproblem formulations, they are solved following the same BD framework.

Thus, the accelerating techniques applied to Model 1 are applicable to Model 3.
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In the following sections, we discuss how these techniques are customized for best

practices in solving Model 3.

V.1.3.1. Strengthening the Benders Cuts

Each time the master problem is solved, we can interpret the set of RP nodes (NRP)

and the assignment of the nonRP nodes from the value of x̂ variables, and the con-

struction of RP-RP links from the value of ẑ variables. Utilizing this information, we

can generate the complete RP-induced network, GRP, where the arc lengths are set to

(T2 dkl wij), ∀ k, l ∈ NRP if the arc (k, l) has the corresponding ẑkl equal to 1; other-

wise, they are set to an arbitrarily large value. For each commodity [i, j], by defining

r(i) and r(j) as the RPs to which the origin and the destination are assigned, the

subproblem SPij(y|x̂, ẑ) is then reduced to finding the shortest path problem from

r(i) to r(j) over the network GRP. By letting Lij be the length of the shortest path

from r(i) to r(j), the strong Benders cuts can be obtained by solving the following

linear program.

Max
∑

k∈Aj

αij
k −

∑

k∈Ai

αij
k +

∑

k

∑

l

(σij
kl + τ ij

kl ) (5.32)

subject to

αij
r(j) = Lij, αij

r(i) = 0 (5.33)

∑

k

(x̂jk − x̂ik)α
ij
k +

∑

k

∑

l

ẑkl(σ
ij
kl + τ ij

kl ) = Lij (5.34)

αij
l − αij

k + σij
kl ≤ T2 dkl wij ∀ k, l ∈ N , k < l (5.35)

αij
l − αij

k + τ ij
kl ≤ T2 dkl wij ∀ k, l ∈ N , k > l (5.36)

σij
kl, τ ij

kl ≤ 0, αij
k unrestricted ∀ k, l ∈ N (5.37)
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In the objective function (5.32), Ai and Aj are the set of nodes that are within

∆1 distance of nodes i and j, respectively. Similar to the strong Benders cut in

Section IV.1.3.1, constraints (5.33) set two variables equal to their optimal values

in DSPij(α, σ, τ |x̂, ẑ). Constraints (5.34), (5.35), (5.36), and (5.37) validate the

generated Benders cuts with respect to the DSPij(α, σ, τ |x̂, ẑ).

V.1.3.2. Derivation of Surrogate Constraints

We observe that the master problem’s runtimes grow with the increased number of

Benders cuts accumulated in the master problem. In this case, we develop a set of

surrogate constraints for the purpose of speeding up the master problem’s runtimes

and reducing the number of iterations.

xkl + xlk + zkl ≤ 1 ∀ k, l ∈ N , k < l (5.38)

∑

l<k

zlk +
∑

l>k

zlk ≥ xkk ∀ k, l ∈ N (5.39)

∑

k

∑

l

zkl ≥
∑

i

xii − 1 ∀ i, k, l ∈ N , k < l (5.40)

Constraints (5.38) state that when node k is assigned to node l, then node l

cannot be assigned to node k and the link (k, l) cannot be established. Constraints

(5.39) ensure that every RP in a connected RP-network must be connected with at

least one RP-RP link. Constraints (5.40) are based on the fundamental network

property stating that a tree on n nodes contains exactly n-1 arcs (Ahuja et al., 1993).

Since circles are allowed in the construction of a connected RP-network, the number

of links established must be at least one less than the number of RPs located.



136

V.1.3.3. A Heuristic Algorithm to Enhance the Upper Bound

It was shown in the third experiment of Section IV.1.5 that the upper bound heuristic

can improve the convergence of the BD-algorithm, both with the base and the ε-

optimal BD algorithms. This observation motivates the use of heuristic algorithm in

Model 3, especially when the infeasibility of the master problem’s solution becomes

an issue. Note that, whenever an infeasible x̂ and ẑ are input to the subproblem, the

associated upper bound UB is unrealistically large. In addition, some of the Benders

cuts must be derived from extreme rays. Thus, applying the upper bound heuristic

facilitates finding an improved UB and generating extreme point-based Benders cuts

that can be strengthened.

Prior to developing our upper bound heuristic, we define an “opened link” as

a link (k, l) s.t. dkl ≤ ∆2, xkk = xll = 1, and ẑkl = 1. A “closed link” is similar

to the opened link except that its corresponding ẑkl = 0. By devising the most

recent MP solution, x̂ and ẑ in the current iteration, we define a distance matrix

D where the entry Dkl is equal to T2 × dkl × wij if ẑkl = 1, and M if ẑkl = 0.

Note that matrix D is defined following the same procedure as in Section V.1.3.1.

Therefore, the transmission cost of a commodity [i, j] over the RP-network is equal

to the the shortest path length Lij, calculated using the distance matrix D from

r(i) to r(j). In this case, the objective function value ZUB of the MP solution is

ZMP −
∑

i

∑

j Bij +
∑

i

∑

j Lij. Moreover, while solving for the shortest path, the

utilization frequency of the closed links are recorded in a link-utilization matrix U .

Finally, the algorithm removes the fixed link established cost from ZUB if the link is

opened but is not used. The procedure of obtaining the associated upper bound from

the set of opened links discussed herein is summarized in Algorithm 10.
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Algorithm 10 Upper bound procedure for Model 3: UB(·)

1: Set ZUB = ZMP −
∑

i

∑

j Bij, Ukl = 0, k, l ∈ N , k < l;

2: for each commodity [i, j] do
3: Solve the shortest path from r(i) to r(j) wrt distance matrix Dkl;

4: Let Ā be the set of arcs in the shortest path and Lij =
∑

k

∑

l Dkl, (k, l) ∈ Ā;

5: ZUB = ZUB + Lij ;

6: for (k, l) ∈ Ā s.t. dkl ≤ ∆2 do
7: if k < l and zkl = 0 then
8: Ukl = Ukl + 1;

9: end if
10: if k > l and zlk = 0 then
11: Ulk = Ulk + 1

12: end if
13: end for
14: end for
15: ZUB = ZUB −

∑

k

∑

l(Fkl × max{0, zkl − Ukl});

As illustrated in Algorithm 11, the upper bound procedure in Algorithm 10

is utilized in the development of our upper bound heuristic. We let UB(·) be the

associated upper bound obtained by applying the upper bound procedure to a set of

opened links. By letting So and Sc be the set of opened and closed links from the MP

solution, we attempt to find improved solutions by opening some of the closed links

based on their popularity. Such popularity is dictated by the matrix U that records

the frequency of each closed link when it appears in the upper bound solution.

To determine which links to open, the closed links Sc are sorted in descending

order of Ukl (step 5) and q most popular links are selected from Sc (step 6); q takes

a random value between 5 and 10. However, if q is greater than |Sc|, then all the

links in Sc are opened. The new set of opened links, So ∪ Sq, are evaluated using the

upper bound procedure in Algorithm 10. If the new set of opened links improves the

upper bound, then So, Sc, and U are updated based on the solution from the upper

bound procedure (step 9). However, if the new set of opened links fails to improve

the upper bound, then they are removed from consideration (step 11) and the new
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set of q closed links are opened. The heuristic continues the process of finding the

improved set of opened links until it terminates when all closed links are tried and

an improved solution cannot be found. The objective function value of the heuristic

solution is represented by ZLS. We note that, in the worst case, the heuristic fails to

improve the MP solution; ZLS = ZMP −
∑

i

∑

j Bij + ZDSP (equivalent to the upper

bound from solving the dual subproblem) is reported.

Algorithm 11 Upper bound heuristic for Model 3: UBH

1: Let So and Sc be the set of the opened and closed link obtained from MP;

2: Let UB(So) be the upper bound associated with So;

3: Let S̄c = Sc;

4: while S̄c 6= ∅ do
5: Sort S̄c in descending order of Ukl;

6: q = min{|S̄c|, R}, R is a random number between 5-10;

7: Let Sq be the first q closed links in the sorted closed links S̄c;

8: if UB(So ∪ Sq) < UB(So) then
9: Update So, Sc, and Ukl;

10: else
11: S̄c = S̄c \ Sq;

12: end if
13: end while
14: ZLS = UB(So);

The only objective of the upper bound heuristic in Section IV.1.3.4 is to improve

the best upper bound UB. However, in Model 3, we also generate Benders cuts

based on the heuristic solution, and include them in MP in addition to the regular

Benders cuts. This practice is motivated by the infeasible MP solution that forces the

subproblem to generate numerous unstrengthened Benders cuts derived from extreme

rays, especially in early iterations. Thus, by applying an improved feasible solution

from the upper bound heuristic to the subproblem, Benders cuts derived only from

extreme points can be achieved.
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V.1.4. Computational Experiments

The objective of our computational experiment is to compare the performance of our

BD algorithm as opposed to the Branch-and-cut approach, and to evaluate the bene-

fit of each accelerating technique developed in the previous section. Additionally, we

also examine the algorithmic performance under various parameter settings in order

to illustrate their efficiency. Recall that the strong Benders cuts and the disaggre-

gated cut Type D4 are assumed throughout the computational studies. CPLEX 9.1

with default settings is used whenever we solve the master problem and the dual

subproblem, as well as when solving the formulation of Model 3 for benchmarking.

In the first experiment, we compare the performance of the Branch-and-cut

(BC) approach with the base and the ε-optimal BD Algorithms and summarize their

results in Table 22. Problem classes Ua1, Ub1, Uc1, and Ud1, each with 10 instances,

are generated and solved to optimality in this experiment. Upon applying the BC

approach to the generated instances, we observe a rapid growth of runtimes with

increasing N . Specifically, when we move to Ue1 (N = 60), the BC approach runs

out of memory and instances in this class cannot be solved. On the other hand,

applying the base and the ε-optimal BD algorithms provides satisfactory results in

providing runtimes comparable to those of the BC approach. In fact, for the class

Ud1, the BD-based algorithms provide significantly better runtimes that grow at a

much slower rate than those in the BC case. Comparing columns 4-6 to 7-9 illustrates

the significance of the surrogate constraints derived in Section V.1.3.2. Note that the

number of iterations and the MP runtimes can be reduced in all cases, and around

21-47% of the runtimes can be saved through the use of these constraints. Due to

this beneficial reduction of runtimes and number of iterations, we incorporate the

surrogate constraints in MP for the rest of this experimentation.
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Table 22: Comparing base and ε-optimal BD algorithms with BC approaches

Base BD Algorithm

BC without(5.18)-(5.20) with (5.18)-(5.20) Time

Problem Ave Ave Ave Ave Ave Ave Ave red.

Class |N |–D Time Time MP Time Iter Time MP Time Iter (%)

Ua1 20-20 1.0 4.3 1.2 10.9 3.0 0.8 7.3 30.29

Ub1 25-20 4.4 13.2 3.6 14.1 8.9 2.6 8.9 32.18

Uc1 30-20 35.5 48.4 21.9 16.9 32.2 13.4 11.4 33.53

Ud1 40-20 491.3 239.2 127.3 19.0 126.7 73.6 9.8 47.03

ε-optimal BD Algorithm

BC without(5.18)-(5.20) with (5.18)-(5.20) Time

Problem Ave Ave Ave Ave Ave Ave Ave red.

Class |N |–D Time Time MP Time Iter Time MP Time Iter (%)

Ua1 20-20 1.0 4.6 1.1 13.0 3.7 0.6 8.8 21.23

Ub1 25-20 4.4 13.7 2.4 16.6 9.9 1.8 10.9 27.87

Uc1 30-20 35.5 39.1 10.0 18.8 28.7 8.0 13.4 26.73

Ud1 40-20 491.3 275.6 125.0 25.2 153.0 69.5 15.2 44.47

In the second experiment, we illustrate the benefits of employing the upper

bound heuristic in enhancing the performance of the Base and ε-optimal BD algo-

rithms. In the previous experiment, we already observed good performance from

utilizing the strong Benders cuts, disaggregate cut D4, and surrogate constraints.

Thus, when the heuristic is also considered, larger problem classes Ud1-2, Ue1-2, and

Uf1-2 (N = 40, 60, and80, D = 20 and 40) are generated and solved to 2% optimality

(to avoid tail-off effect). The results are summarized in Table 23. Columns 2 and 8

indicate different practices of the heuristic in the BD-algorithms: “x” represents the

case when the heuristic is not utilized; “1” implies the use of the heuristic only to

improve the UB; and “2” indicates the BD-algorithm that devises both the improved

UB and the Benders cuts generated from the heuristic solution.
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Table 23: BD and ε-optimal algorithms with different local searches

Base BD Algorithm ε-optimal BD Algorithm

Ave Ave MP MP SP Ave Ave MP MP SP

Class LS Time red. % Time Iter Iter LS Time red. % Time Iter Iter

Ud1

x 53 17.2 5.6 6.2 x 73 10.5 10.3 10.3

1 49 8.1 14.3 5.2 5.7 1 62 15.0 8.4 8.5 8.5

2 53 -9.2 8.6 2.9 7.7 2 48 22.1 2.4 4.2 8.4

Ud2

x 187 109.3 6.1 6.8 x 111 16.6 8.4 8.4

1 113 39.9 38.0 5.4 6.1 1 91 18.1 13.3 6.4 6.4

2 91 19.5 25.0 2.4 5.8 2 88 3.5 6.3 3.7 7.4

Ue1

x 1500 1163.9 7.6 8.2 x 733 128.5 13.2 13.2

1 751 50.0 436.4 6.6 7.4 1 575 21.5 92.6 10.0 10.0

2 505 32.7 257.6 2.8 7.2 2 359 37.6 56.4 4.1 8.1

Ue2

x 2444 1911.0 5.7 6.7 x 1271 319.7 11.9 11.9

1 1214 50.3 710.7 5.2 5.8 1 1046 17.7 358.7 7.5 7.5

2 907 25.3 461.2 2.2 6.0 2 507 51.6 19.0 3.5 7.0

Uf1

x 116951 10753.1 5.8 6.6 x 6227 3783.9 14.2 14.2

1 101112 13.5 9193.6 5.4 6.2 1 2181 65.0 946.9 7.8 7.8

2 4717 53.3 3881.8 2.6 6.0 2 1541 29.3 380.5 4.0 8.0

Uf2

x 126343 11104.8 4.5 5.5 x 3650 785.0 9.5 9.5

1 109884 13.0 9132.4 4.5 5.5 1 2920 20.0 793.8 6.5 6.5

2 41435 62.3 2428.1 2.0 6.0 2 1963 32.8 94.7 3.3 6.6
1 The average of 5 instances.
2 The average of 9 instances.
3 The average of 2 instances.
4 The average of 6 instances.
5 The average of 7 instances.

In all cases, the improved UB helps reduce the total runtimes and the number

of iterations. Runtime reduction ranges from 8.1-50.3% for the base BD algorithm

and ranges from 15-65% for the ε-optimal BD algorithm. Even more pronounced

performance improvement can be achieved when the good feasible solutions from

the heuristic are not only used to improve UB, but also to generate Benders cuts.

Up to 62.3% and 51.6% of additional runtime reductions are realizable through this

practice. Although a negative percentage is reported for the class Ud1, we note

that the additional Benders cuts are still successful in reducing the MP time and

MP iterations. Since the improved UB alone already provides promising results for
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these relatively small instances (compare to Ue1-2 and Uf1-2), the additional MP

time saving is not significant enough to compromise the amount of time required to

generate the additional Benders cuts. Thus, this leads to increased runtimes.

Based on results of the base BD algorithm, some instances in classes Uf1 and

Uf2 are not solved within the 20000 second time limit. The majority of the huge

runtimes contribute to solving the MP to optimality, which can be alleviated to a

certain degree using the additional Benders cuts from the heuristic. However, the

ε-optimal BD algorithm handles these larger instances more efficiently and, in most

cases, more than 50% of runtimes can be reduced. Clearly, this significant savings

is achieved as the MP is not optimized. Another important observation is that the

heuristic can efficiently find improved solutions. Such improvement can be detected

by comparing the last two columns in Table 23. The number of subproblem iterations

being twice the number of the master problem iterations indicates that in almost all

iterations, the heuristic can supply improved solutions to the subproblem.

In the third experiment, we examine the performance of the ε-optimal BD

algorithm when applied to classes Uf1 and Uf2 under different ∆1−∆2 combinations.

The algorithm can efficiently solve all instances to 2% optimality within 40 minutes

as dictated in Table 24. It can be observed that the algorithm takes longer when

the value of ∆1 increases and takes less time with increased ∆2. With increased ∆2

(compare 20–40 and 30–50 with 20–50 and 30–60), signals can reach further RPs

in the RP-network, thus setting up more RP-RP links that would be beneficial in

allowing signals to transmit along their shortest possible path. As a result, improved

UB can be achieved, which leads to shorter runtimes. On the other hand, fewer

RPs (interpreted from MP solutions) are required to cover all nonRP nodes as ∆1

increases. This, in turn, reduces the number of RP-RP links that can be established,

and hence, worsens the upper bound solution (both from the dual subproblem and
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from the heuristic). The smaller LB from a more relaxed MP, along with the inferior

UB, leads to longer runtimes as illustrated when comparing setting 20–50 with 30–

50. Finally, we emphasize that the upper bound heuristic can find improved feasible

solutions in all settings of ∆1–∆2 as dictated by the number of master problem and

subproblem iterations.

Table 24: ε-optimal BD algorithm under different ∆1–∆2 settings

Ave Ave Ave MP Ave SP Ave MP

Class ∆1–∆2 Time MP Time Iter Iter Time/iter. #RP #Link

Uf1

20–40 1541.2 380.5 4.0 8.0 107.3 20 50

20–50 1144.8 59.6 3.5 7.0 15.9 19 63

30–50 2177.4 859.5 4.1 8.2 213.3 14 43

30–60 1320.0 206.8 3.5 7.0 86.9 14 51

Uf2

20–40 1963.1 94.7 3.3 6.6 28.7 25 82

20–50 1858.5 247.8 2.8 5.6 110.0 24 100

30–50 2242.1 92.9 3.2 6.4 26.6 19 77

30–60 2009.3 84.9 2.9 5.8 28.1 19 89

In the fourth experiment, we compare the RP-network from Model 3 with the

network obtained from the “network design problem with relays” (MNDR) presented

in Cabral et al. (2007). MNDR considers locating both the RPs and links in such a

way that 1) the network construction cost (corresponding to locating RPs and links)

is minimized, and 2) for each commodity, there exists a path linking the origin and

destination in which the distance between the origin and the first RP, the last RP and

the destination, and any two RPs are within the preset upper bound ∆2. Cabral et al.

(2007) develop 4 heuristic algorithms for solving this MNDR model and compare the

solutions with lower bounds obtained from the path based formulation with a column

generation approach. However, in this experiment, we formulate the MNDR using an

arc based formulation and solve the formulation using the BC approach.
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The objective function (5.41) is the total network construction cost in which

the first term represents the total link set-up cost and the second term represents

total RP location cost. Constraints (5.42) ensure that the path connecting a com-

modity’s origin and destination satisfies the distance constraints. Constraints (5.43)

are the flow conservation constraints. Constraints (5.44) permit the flow only on the

established links. Constraints (5.45)-(5.46) locate RPs on the intermediate locations

along the path connecting origins and destinations. Constraints (5.47) are the binary

requirement of x and z variables and state that y are non-negative real variables.

Min
∑

k

∑

l

Fkl zkl +
∑

k

Fk xkk (5.41)

subject to

dkl y
ij
kl ≤ ∆2 ∀ [i, j] ∈ Q, ∀ k, l ∈ N (5.42)

∑

l

yij
kl −

∑

l

yij
lk =























1, k = i

−1, k = j

0, o.w.

∀ [i, j] ∈ Q, ∀ k, l ∈ N (5.43)

yij
kl + yij

lk ≤ zkl ∀ [i, j] ∈ Q, ∀ k, l ∈ N (5.44)

∑

l

yij
kl ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N , k 6= i, j (5.45)

∑

l

yij
lk ≤ xkk ∀ [i, j] ∈ Q, ∀ k ∈ N , k 6= i, j (5.46)

xkk, zkl ∈ {0, 1}, yij
kl ≥ 0 ∀ i, j, k, l ∈ N (5.47)

In this experiment, we generate the instance classes Ua1, Ub1, and Uc1, each with

10 instances. The results from solving the formulation (5.41)-(5.46) to a 3% optimality

gap using CPLEX9.0 and the results from Model 3 are provided in Table 25; the

values of ∆1 and ∆2 are fixed at 40. We note that MNDR allows the connections
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between origins and destinations without locating RPs on the intermediate locations

if the distances between them are shorter than ∆2. Although formulation (5.41)-

(5.46) does not consider the opportunity of making direct connections, we indirectly

handle this issue by removing the commodities with distances between origins and

destinations shorter than or equal to ∆2 from the problem instances. Hence, all

leftover commodities now require the intermediate RP locations, and the solutions

of the MNDR and the formulation (5.41)-(5.46) are now the same. Based on this

observation, we refer to the formulation (5.41)-(5.46) as MNDR.

Table 25: Comparison between different models

Class (|N |-|Q|) Model Total Cost Costxz Costy #RP #Link c̄M c̄A

Ua1 (20-67)
MNDR 174805 37500 137305 5.6 19.0 775 232

Model 3 144670 39800 104870 5.9 6.5 572 320

Ub1 (25-105)
MNDR 283708 42000 241708 6.0 24.0 1216 329

Model 3 217184 48250 168934 7.1 7.6 794 471

Uc1 (30-154)
MNDR 478804 48000 430804 6.7 29.0 1924 485

Model 3 309220 61000 248220 9.2 13.0 851 430

Class (|N |-|Q|) Model dA Ω̄M Ω̄A d̄M d̄A LM LA

Ua1 (20-67)
MNDR 86.1 2.5 0.67 206.3 137.70 6.9 4.43

Model 3 1.2 0.25 166.1 104.95 5.6 3.54

Ub1 (25-105)
MNDR 88.3 3.3 0.87 262.6 155.21 8.9 5.07

Model 3 1.4 0.25 174.1 107.76 5.6 3.74

Uc1 (30-154)
MNDR 90.2 4.9 1.24 322.5 186.67 11.0 6.10

Model 3 1.4 0.21 175.6 107.62 6.1 3.90

In Table 25, Total Cost represents the total cost of implementing the MNDR

and Model 3, which is the summation of the network construction cost (Costxz) and

the total transmission cost (Costy). For the MNDR model, Costxz is the value of the

objective function (5.41) and Costy is calculated from the value of y variables. For
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Model 3, the total transmission cost is also obtained from the value of y. However, for

a fair comparison, the network construction cost of Model 3 now includes the link set-

up cost for the connection between origins/destinations and RPs (originally, Model 3

only considers the fixed cost between RP-RP links). This cost is calculated from the

value of x variables, which is equal to
∑

i

∑

k Fik xik i, k ∈ N , i 6= k. Moreover, the

number of RPs and Links are represented by #RP and #Link, respectively.

We observe that the total cost of Model 3 is significantly less than that of the

MNDR model. Recall that, MNDR only considers minimizing network construction

costs. This, in turn, leads to a tree-shape (#Link = |N |-1) RP-network with minimal

Costxz; thus, large distances between leaf nodes can be expected. On the other hand,

Model 3 considers both the network construction and the total transmission cost.

Therefore the resulting RP-networks have more connectivity (more RPs and RP-RP

links), which allows commodities to transmit on more direct, less circuitous, paths.

By partially having the total transmission cost in the objective function, the

total transmission distances are also partially minimized; a low level of maximum and

average transmission distances (d̄M and d̄A), and maximum and average percentage

circuitry levels (Ω̄M and Ω̄A) can be expected. The additional connectivity also allows

a more even utilization of the established links, as indicated by the lower values of

maximum and average capacity usages, c̄M and c̄A. Furthermore, transmission delays

can occur while signals are passing through RPs (Cabral et al., 2008). In Table 25,

LM and LA are the maximum and average numbers of transmission legs (number of

times that signals are regenerated). Therefore, the maximum and average numbers

of intermediate RPs is equal to LM -1 and LA-1, respectively. Thus, the transmission

paths from Model 3 can potentially provide a better quality signal with less delay as

there is a smaller number of RPs in the intermediate locations than in the MNDR.

Based on these observations, we conclude that Model 3 provides better RP-
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networks that are not only cheaper but also facilitate better performance in terms of

quality (shorter origin-destination distances and less intermediate RPs) and reliability

(more connectivity).

V.1.5. Concluding Remarks

Model 3 considers the situation when a physical link must be established at a fixed

charge prior to permitting the connection between any two relay points (common in

telecommunications networks). In comparison to the other model in the literature,

Model 3 provides better RP-networks that can facilitate better performance both in

terms of quality and connectivity.

Exploiting the MIP formulation of Model 3, we observe that for a given network

structure (relay locations, node assignments, and links established), the subproblem

is a decomposable linear program. Similar characteristics are observed in Model 1

for which a variety of algorithms based on a Benders decomposition framework have

shown promising performance. Thus, the same framework is also applied to the

development of solution algorithms for Model 3.

While the cut disaggregation schemes and the ε-optimal framework can be di-

rectly applied to Model 3, the strong Benders cuts and the upper bound heuristic

require refinements to address the different formulation of Model 3. In addition to

the acceleration techniques applied to Model 1, we present a set of surrogate con-

straints that can reduce both the runtimes and number of iterations in a Benders

framework. Moreover, we also enhance the algorithms using Benders cuts that are

derived from improved heuristic solutions to handle the infeasibility from the mas-

ter problem solution (in addition to extreme rays). The beneficial impacts of the

accelerating techniques are illustrated in our extensive experimentations. Thus, the

improved performance allows us to study the impact of modeling parameters on large
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instances.

V.2. Model 4: RNDP with Fixed Link Set-up Cost and Capacity Con-

straints

Figure 8: A Schematic View of Model 4
PSfrag replacements
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Unlimited link capacity is an important assumption of Model 3. This assumption

allows the signal to always transmit on its shortest path (sequence of RP-RP links)

between the RPs to which the origin and destination are assigned. Thus, the RP-

network under this assumption normally contains only one or a few alternative paths

for each commodity, and many of them are shared by multiple commodities. In

fact, too much traffic or signal flow in some areas (e.g., on links, between RPs, or

along paths) can cause network congestion. This, in turn, induces transmission delay

and, under extreme circumstances, can potentially lead to disconnection or network
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failure (Vacca, 2001). Therefore, to avoid this situation and construct an effective RP-

network, we include the capacity limitation on the established RP-RP links in order to

control the total flow amounts and avoid traffic congestion. Hence, the resulting RP-

network should have high connectivity and contain adequate transmission channels for

commodities to share. With the inclusion of link capacity, Model 4 is a generalization

of Model 3 and Model 4 reduces to Model 3 if the capacity limitation requirement on

RP-RP links is removed.

The difference between Model 3 and Model 4 can be illustrated using Figure 8.

The capacity of the RP-RP link (RP3,RP4) is shared by two commodities [i1, j1] and

[i2, j2]. If the capacity of this (RP3,RP4) link is not enough for both commodities, then

fractions of one commodity must transmit through other channels. In this example,

signals of commodity [i1, j1] are transmitted using two paths, RP1-RP2-RP3-RP4 and

RP1-RP2-RP5-RP4, because of the exhausted link (RP3,RP4).

V.2.1. The Model

To include the capacity limitation on the established RP-RP links, we incorporate

the following constraints (5.48) into Model 3 and remove constraints (5.9) and (5.10),

which are now redundant.

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ cklzkl ∀ k, l ∈ N , k < l (5.48)

Note that a capacity limitation is also considered in Model 2 (Section IV.2.1), where

it is stated using constraints (4.67), (4.72), and (4.73). Although both of them

have identical effects, only N 2−N
2

constraints are required for constraints (5.48) while

(2Q + 1)(N
2−N
2

) are required for constraints (4.67), (4.72), and (4.73). Thus, us-

ing constraints (5.48) facilitates a better control of problem size because of the sig-

nificantly smaller number of constraints. However, using constraints (5.48) or con-
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straints (4.67), (4.72), and (4.73) would not affect the development of our Lagrangean

decomposition algorithms as, after z variables are removed, constraints (5.48) would

be reduced to constraints (4.67) and both alternatives still require constraints (4.72)

and (4.73).

Incorporating constraints (5.48) into Model 3 and following the adjustment dis-

cussed above, the complete formulation of Model 4 is as follows:

Min Z =
∑

i

∑

k

T1 dik

∑

j

(

wij + wji

)

xik +
∑

i

∑

j

∑

k

∑

l

T2 dkl wij yij
kl

+
∑

k

Fk xkk +
∑

k

∑

l

Fkl zkl (5.49)

subject to

dik xik ≤ ∆1 ∀ i, k ∈ N (5.50)

dkl zkl ≤ ∆2 ∀ k, l ∈ N (5.51)

∑

m

yij
mk −

∑

m

yij
km = xjk − xik ∀ [i, j] ∈ Q, ∀ k ∈ N (5.52)

∑

k

xik = 1 ∀ i ∈ N (5.53)

xik ≤ xkk ∀ i, k ∈ N (5.54)

zkl ≤ xkk ∀ k, l ∈ N , k < l (5.55)

zkl ≤ xll ∀ k, l ∈ N , k < l (5.56)

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ cklzkl ∀ k, l ∈ N , k < l (5.57)

xik, zkl ∈ {0, 1}, yij
kl ≥ 0 ∀ i, j, k, l ∈ N (5.58)

As it also occurs in Model 2, the existence of link capacity destructs the decomposable

structure of the y subproblem. Thus, applying Benders decomposition would require
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the indecomposable subproblem to be solved in an aggregated form, and would be

inefficient. Upon observing this characteristic of Model 4, we employ a different type

of decomposition framework, Lagrangean relaxation, in the development of solution

algorithms for Model 4. In our preliminary experiments, we also applied the La-

grangean decomposition framework (with the same copy constraints as in Model 2)

to Model 4, however, we observe that the Lagragean relaxation algorithms provide

better performance.

V.2.2. Lagrangean Relaxation Framework

Lagrangean relaxation (LR) has been extensively applied to complex MIP problems,

especially in the context of uncapacitated (Holmberg and Hellstrand, 1998) and ca-

pacitated (Gendron and Crainic, 1994; Holmberg and Yuan, 2000) multicommodity

network design problems (MND) (note that if Fkk = 0, ∀k ∈ N , Model 4 is very

similar to the capacitated MND). The basic framework of the LR approach involves

relaxing a set of complicated constraints by 1) removing them from the constraint set,

2) multiplying the constraints with Lagrangean multipliers, and 3) incorporating the

product of the constraints and the multipliers to the objective function. The attached

term, corresponding to the relaxed constraints, to the objective function behaves as

a penalty that arises whenever the relaxed constraints are violated. With part of the

constraint set being removed, optimizing the relaxed formulation provides a lower

bound to the original formulation.

The Lagrangean relaxation and upper bound procedures for Model 4 follow the

same framework for solving the capacitated MND presented in Holmberg and Yuan

(2000). However, the overall algorithms are different in many ways. Holmberg and

Yuan (2000) incorporate the Lagrangean relaxation and upper bound procedures in

a Branch-and-bound (BB) algorithm where the link variables (z) are fixed to 0 or
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1 in each BB node. Each time the BB algorithm attempts to construct the upper

bound, the upper bound procedure is utilized only once, whether or not a feasible

solution is found. In our algorithm, we emphasize more on trying to quickly find

good feasible solutions. Instead of fixing the link variables, we develop a heuristic

algorithm to adjust the link configurations whenever the upper bound procedure fails

to find a feasible solution. With multiple settings of RP-network being input to the

upper bound procedure, good feasible solutions can be expected even in the very

early stages of our algorithm. Additionally, we incorporate various acceleration tech-

niques to enhance the performance of our Lagrangean relaxation algorithm, especially

when solving large problems. All these distinctions make our algorithms significantly

different from the algorithm provided in Holmberg and Yuan (2000).

In the following sections, we provide a detailed discussion on the development of

our LR algorithms based on the framework of Lagrangean relaxation.

V.2.2.1. Relaxed Formulation

In order to reduce the formulation size, we apply the preprocessing steps to the

formulation (5.49)-(5.58). To do so, constraints (5.50)-(5.51) are now removed after

setting xik = 0 if dik > ∆1, ∀i, k ∈ N and zkl = 0 if dkl > ∆2, ∀k, l ∈ N . Additionally,

we set yij
kl = 0 if dkl > ∆2, ∀[i, j] ∈ Q, ∀k, l ∈ N .

Exploiting the preprocessed formulation, we observe that multiple relaxation

alternatives are applicable to Model 4. However, due to the large formulation size

and the interrelationships between x, y, and z, we are interested in relaxing only one

constraint set that would allow further problem decomposition. Relaxing multiple sets

of constraints is another alternative that would, very likely, lead to decomposable

and easy-to-solve resulting formulation. Unfortunately, their benefits are usually

compromised with the inferior lower bound strength as a large number of constraints
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are removed. Therefore, in order to comply with our objective, the flow conservation

constraints (5.52) is relaxed.

By letting λij
k be the Lagrangean multiplier associated with constraints (5.52),

the objective function is as follows:

Min Z =
∑

i

∑

k

T1dik

∑

j

(

wij + wji

)

xik +
∑

i

∑

j

∑

k

∑

l

T2 dkl wijy
ij
kl

+
∑

k

Fkxkk +
∑

k

∑

l

Fklzkl +
∑

i

∑

j

∑

k

λij
k

(

xjk − xik +
∑

l

yij
kl +

∑

l

yij
lk

)

(5.59)

which is equivalent to

Min Z =
∑

i

∑

k

(

T1dik

∑

j

(wij + wji) +
∑

j

(λji
k − λij

k )
)

xik +
∑

k

Fkxkk

+
∑

k

∑

l

Fklzkl +
∑

i

∑

j

∑

k

∑

l

(

T2 dkl wij + λij
k − λij

l

)

yij
kl (5.60)

We let Aik and Bij
kl represent the terms

(

T1dik

∑

j(wij + wji) +
∑

j(λ
ji
k − λij

k )
)

and
(

T2 dkl wij + λij
k − λij

l

)

, respectively. As a result, the relaxed formulation of Model 4

can be stated as follows:

Min Z =
∑

i

∑

k

Aik xik +
∑

k

Fk xkk +
∑

k

∑

l

Fkl zkl +
∑

i

∑

j

∑

k

∑

l

Bij
kl y

ij
kl (5.61)

subject to
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∑

k

xik = 1 ∀ i ∈ N (5.62)

xik ≤ xkk ∀ i, k ∈ N (5.63)

zkl ≤ xkk ∀ k, l ∈ N (5.64)

zkl ≤ xll ∀ k, l ∈ N (5.65)

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ cklzkl ∀ k, l ∈ N (5.66)

xik, zkl ∈ {0, 1}, 0 ≤ yij
kl ≤ 1 ∀ i, j, k, l ∈ N (5.67)

The relaxation of constraints (5.52) can break the tie between x and y, and leave

y variables to depend solely on z variables. This allows us to avoid solving for the y

variable in an aggregated form, as presented in the next section.

V.2.2.2. Solving the Relaxed Problems

For a fixed value of zkl, k, l ∈ N , k < l, the optimal yij
kl, [i, j] ∈ Q can be obtained by

solving the following subproblem:

Min Ekl =
∑

i

∑

j

Bij
kl y

ij
kl (5.68)

subject to

∑

i

∑

j

wij (yij
kl + yij

lk) ≤ ckl zkl (5.69)

0 ≤ yij
kl ≤ 1 ∀ i, j ∈ N (5.70)

If zkl is 0, the RHS of constraint (5.69) becomes 0, and all yij
kl and yij

lk, [i, j] ∈ Q

take the value of 0. On the other hand, if zkl is 1, then the problem (5.68)-(5.70) is
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essentially a 0-1 continuous knapsack problem, which can be solved efficiently using

Algorithm 12.

Algorithm 12 Solving the subproblem (a 0-1 continuous knapsack problem)

1: For each (k, l), k < l, set Ekl = 0, Ckl = ckl, y
ij
kl = y

ij
lk = 0,∀ [i, j] ∈ Q;

2: while Ckl > 0 do
3: B̂

ij
kl = min {Bij

kl, B
ij
lk};

4: if B̂
ij
kl > 0 then

5: stop;

6: else
7: Let (̂i, ĵ, k̂, l̂) be the indices associate with B̂

ij
kl;

8: Ek̂l̂ = Ek̂l̂ + min {B̂ij
kl, (B̂

ij
kl ∗

Ckl

w
îĵ

)};

9: Ckl = Ckl − min {Ckl, wîĵ};

10: y
îĵ

k̂l̂
= y

îĵ

k̂l̂
+ min {1, Ckl

w
îĵ
}

11: Remove B̂
ij
kl from the consideration;

12: end if

13: end while

In Algorithm 12, Ekl is the objective function of problem (5.68)-(5.70) defined on

the link (k, l), k, l ∈ N , k < l. Considering the leftover link capacity of Ckl = ckl, the

algorithm tries to fill the knapsack (link capacity) with a commodity [̂i, ĵ] in directions

(k̂, l̂) or (l̂, k̂) that has the largest negative coefficient Bij
kl (step 3). After determining

the directions and the commodities for the knapsack, the objective function value Ekl,

the leftover capacity Ckl, and the associated y variable are adjusted according to the

flow amount which is the greater of the demand amount wîĵ or the leftover capacity

Ckl (steps 7-10). Afterwards, the algorithm continues to find the next best commodity

until the leftover capacity is exhausted and terminates (step 2). The algorithm also

terminates when failing to find a commodity with negative coefficient B ij
kl (step 4).

We note that, apart from the difference in Bij
kl expression, Algorithm 12 is the same

as Algorithm 4 (Section IV.2.2.3).
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After y is determined, the associated cost Ekl can be incorporated into the ob-

jective function of the relaxed problem to represent the contribution of y in the total

cost. In doing this, constraints (5.66) can be removed from the formulation and the

relaxed problem can now be re-stated as follows:

Min ZLBP =
∑

i

∑

k

Aik xik +
∑

k

Fk xkk +
∑

k

∑

l

(Fkl + Ekl) zkl (5.71)

subject to

∑

k

xik = 1 ∀ i ∈ N (5.72)

xik ≤ xkk ∀ i, k ∈ N (5.73)

zkl ≤ xkk ∀ k, l ∈ N (5.74)

zkl ≤ xll ∀ k, l ∈ N (5.75)

xik, zkl ∈ {0, 1} ∀ i, k, l ∈ N (5.76)

Clearly, the problem (5.71)-(5.76) is significantly smaller than the original prob-

lem (5.49)-(5.58), as the portion of the formulation corresponding to y is embedded

in the coefficient of z. Solving this formulation provides a valid lower bound to the

original problem; hence, it will be referred to hereafter as the “lower bound problem”

or “LBP .” Moreover, due to its reduced size, the Branch-and-cut approach (CPLEX

9.1) can now effectively solve the LBP .

V.2.2.3. Accelerating the Relaxed Problems

Although LBP has been reduced to a manageable size that is solvable by the Branch-

and-cut approach, the runtime is still growing at a considerably fast rate. In this case,

the surrogate constraints (5.38) introduced in Section V.1.3.2 can help speed up LBP .

Constraints (5.39) and (5.40) were also tested in our preliminary experiment; however,
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their algorithmic enhancements were not observed.

In addition to the surrogate constraints, we also consider applying the “early

stopping criteria” to accelerate the solution time of LBP . Detailed discussion of this

technique in Benders decomposition can be found in Üster et al. (2007). Without

completing the optimization process, this technique involves solving the problem to a

small optimality gap, thus a range that contains the optimal solution can be acquired.

Specifically, for Model 4, LBP is stopped whenever the optimality gap reaches 1.5%.

Then, a lower bound of the lower bound problem (ZLB) can be achieved from the

Branch-and-cut approach and used in the rest of our algorithm in place of ZLB. The

purpose of solving LBP is to obtain the lower bound of Model 4, therefore ZLB ,

the lower bound of LBP , is also a valid lower bound of Z. Moreover, the partial

optimization can help avoid the tail-off effect; it takes a considerable amount of time

to close the final few percentage points of the optimality gap.

V.2.3. Upper Bound Heuristic

With the flow conservation constraints (5.52) being relaxed, the solution from LBP is

not generally composed of y variables that define valid transmission paths. Therefore,

the commodities must be re-transmitted during the re-construction of the RP-induced

network given from LBP . Note that the configuration of the RP-network is implied by

the value of x (RP locations and node assignments) and z (RP-RP links established)

variables.

Due to the similar structural characteristics between Model 3 and Model 4, we

devise the upper bound heuristic (UBH), Algorithm 11 in Section V.1.3.3, to re-

construct the RP-network, thus generating feasible solutions from LBP solutions

and obtaining valid upper bounds. However, the upper bound procedures UB(·)

between Model 3 and 4 are not the same due to the link capacity. In this section, we
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will discuss the development of Algorithm 13, the upper bound procedure UB(·), for

utilization as part of the upper bound heuristic UBH.

Algorithm 13 Upper bound procedure for Model 4: UB(·)

1: Set ZUB = 0, Ukl = 0 and Ckl = ckl, k, l ∈ N , k < l;

2: Sort all commodities in descending order of λ
ij
r(j) − λ

ij
r(i),∀[i, j] ∈ Q;

3: for each sorted commodity [i, j] do
4: Let Wij = wij

5: while Wij > 0 do
6: Solve the shortest path from r(i) to r(j) using the distance matrix D;

7: Let Ā be the set of arcs in the shortest path and Lij =
∑

k

∑

l Dkl, (k, l) ∈ Ā;

8: fij = min{Wij , min{Ckl : (k, l) ∈ Ā, Dkl < M}};

9: ZUB = ZUB + (T2 × Lij × fij);

10: Wij = Wij − fij;

11: for (k, l) ∈ Ā do
12: if k < l and Dkl < M then
13: Ckl = Ckl − fij;

14: end if
15: if k > l and Dkl < M then
16: Clk = Clk − fij;

17: end if
18: if Ckl = 0 then
19: Set Dkl = Dlk = M ;

20: end if

21: Ukl = Ukl + 1;

22: end for
23: end while
24: end for
25: ZUB = ZUB+

∑

i

∑

k T1dik
∑

j

(

wij+wji

)

xik+
∑

k Fkxkk+
∑

k

∑

l(Fkl×min{zkl, Ukl});

In order to construct an upper bound, Algorithm 13 selects one commodity at a

time and solves for the shortest path to send flows. However, the order in which the

commodities are selected can affect the upper bound quality. In Model 3, such an

order is not a significant issue due to unlimited link capacity. However, this is not the

case in Model 4, and we observe that good upper bound quality can be achieved if
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the commodities are sorted in descending order of λij
r(j) − λij

r(i), using the most recent

λ value (step 2). Recall that r(k) are the RPs to which node k is assigned, and D

represents the distance matrix in which the entry Dkl equal to dkl if Zkl = 1 and M

if Zkl = 0. For each sorted commodity [i, j], the shortest path from r(i) to r(j) is

calculated using the distance matrix D. The length of the shortest path is denoted

by Lij and the set of arcs in the shortest path is denoted by Ā. The amount of flows

fij sent along this shortest path is equal to the lesser of the leftover capacity Wij or

the minimum leftover link capacity along the shortest path (excluding the artificial

links and the exhausted links). fij and Lij are then used to adjust the total cost

ZUB (step 9), the leftover demand Wij (step 10), and the leftover capacity Ckl (steps

12-20). Whenever the capacity of a link is exhausted, the associated distance Dkl

in D matrix is set to M (step 19). Moreover, the link utilization matrix U is also

maintained (step 21) as it is devised in the UBH (see Section V.1.3.3). The procedure

continues until all the commodities are re-transmitted and it terminates. Finally, the

cost of the RP locations, links set-up (only if used), and transmission between nonRP

nodes and RPs are included in ZUB (step 25).

V.2.4. Subgradient Method

Lagrangean multipliers play an important role in our LR algorithm. Note that, if

the optimal λ is given, then the values of x, y, and z obtained from LBP would

also be the optimal solution. However, since their optimal values are not known, we

search for a good candidate of the Lagrangean multipliers iteratively. In the following

discussion, we describe the subgradient optimization (see for example Fisher, 1981)

used in Model 4 to update λ based on the solutions of LBP and UBH.

At the end of each iteration (after solving LBP and applying UBH), if the

optimality gap between the best lower and upper bounds is not small enough, then
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λ is updated as follows:

1. Let xt and yt be the solutions from LBP in iteration t and let the search

direction vtij
k be

(

x̄t
jk − x̄t

ik +
∑

l ȳ
tij
kl +

∑

l ȳ
tij
lk

)

.

2. Let Zt
LB be the lower bound obtained in iteration t, LBbest and UBbest be

the best lower and upper bounds found until iteration t. Then the step size

st = f t ×
UBbest−Zt

LB
∑

i

∑

j

∑

k vtij
k

2 where f t is the step size factor in iteration t,

3. Finally, we set λ
(t+1)ij
k = λtij

k + (sst × vtij
k ).

Initially f 0 is set to 1.8, and is multiplied by 0.4 whenever UBbest is not updated

for 40 consecutive iterations. Note that the above procedure is for updating λ at the

end of each iteration. For the first iteration, one possible alternative is to set λ to 0.

However, from our preliminary experiment, we found that the convergence of the LR

algorithm can be improved by setting the initial λ as follows:

1. Assume that xkk = 1, ∀k ∈ N and define a distance matrix D with entry

Dkl = dkl if dkl ≤ ∆2 and Dkl = M otherwise.

2. Solve the all pair shortest paths problem over the distance matrix D (by Dijk-

stra’s algorithm) and let Lkl be the length of the shortest path between node k

and node l.

3. Then, the initial Lagrangean multiplier is set to λ0ij
k = wij × Lik.

We observe that setting the initial λ as discussed above not only provides a good

starting optimality gap (through improved initial lower bound) but also helps reduce

the number of LR iterations (via good starting λ).
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V.2.4.1. Initial Upper Bound

Generally, UBbest is weak in the first (initially set to a large number) and early

iterations (after only a few updates) of the LR algorithm. As UBbest is employed

in the subgradient optimization, its unrealistically large value can be misleading and

cause the subgradient to provide inferior λ. This leads to a poor performance of the

overall algorithm. On the other hand, a good starting UBbest would not only help

with the optimality gap, but also help the subgradient optimization in adjusting the

the value of λ.

In order to obtain a good initial upper bound, we consider using the UB(·) from

Section V.2.3 to construct an initial heuristic algorithm for the finding of good initial

solutions. To do this, we first define O as a set of opened RPs and let SO be the set of

opened links corresponding to O. In SO the link (k, l) is opened if xkk = xll = 1 and

dkl ≤ ∆2. Moreover, let de
kl be the Euclidean distance between nodes k and l. Based

on these representations, the initial heuristic, Algorithm 14, is presented below.

Algorithm 14 Initial heuristic algorithm for Model 4

1: Set O = Ō = N ;

2: Let SŌ be the set of opened links associated with Ō;

3: Calculate UB(SŌ) and set UBbest = SO;

4: while |O| > 0 do
5: for o ∈ O do
6: Find SŌ\o and reassign the nodes that are previously assigned to o;

7: if All nonRP nodes can be reassigned AND UB(SŌ\o) < UBbest then

8: UBbest = UB(SŌ\o);

9: O = Ō = Ō \ o;

10: else
11: O = O \ o;

12: end if
13: end for
14: end while
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Algorithm 14 first assumes that all nodes imply RPs and it initializes the set of

located RPs O and Ō (step 1). By utilizing SŌ, the set of opened links corresponds to

Ō, and UBbest is set equal to UB(SŌ) (step 3). In the search for an improved solution,

the algorithm closes one of the opened RP o, and obtains a new set of opened links

SŌ\o. Whenever an RP is closed, the nodes previously assigned to the RP (including

itself) must be reassigned to another RP within ∆2 distance. In this case, we choose to

reassign nonRP node i to RP k s.t. k = argmin
{

∑

j

(

(wij +wji)×(dik +de
kj)

)

: xkk =

1 and dik ≤ γ1

}

. This type of assignment permits the majority of commodities to

and from node i to transmit in the most direct fashion. We illustrate this assignment

using Figure 9, where it is better if node i1 is assigned to RP1 rather than RP2.

If there is no RP within a ∆1 reach from any nonRP node, then the new set of

opened RPs is infeasible and the algorithm re-opens o and closes another RP. If the

assignment process is complete, then the algorithm calculates UB(SŌ\o) (step 7). If

the new solution (set of opened RPs and established links) improves UBbest, then

UBbest is replaced with UB(SŌ\o) and the set of opened RPs are updated (steps 8-9).

Otherwise, the RP o is removed from consideration (step 11) and another opened RP

is closed. The algorithm continues in this fashion and terminates when all the opened

RPs are tried and the set O is empty.

Figure 9: Assignment of Nodes to RPs
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V.2.5. Overall Framework

The overall procedure of our LR algorithm is presented in Algorithm 15. We note

that the LR algorithm in this section is based on the same framework as the LD

algorithm in Section IV.2.4.

Algorithm 15 Lagrangean relaxation algorithm for Model 4: LR1

1: Set LBbest = 0, UBbest = M , Iter= tni = 0;

2: while f t > εf do
3: Iter = Iter+1; tni = tni + 1;

4: Solve LBP for Z t
LB;

5: if Zt
LB > LBbest then

6: LBbest = Zt
LB

7: tni = 0

8: end if
9: if tni = ni then

10: f t = f t × mf ;

11: tni = 0

12: end if

13: Apply the upper bound heuristic to obtain Z t
UB;

14: if Zt
UB < UBbest then

15: UBbest = Zt
UB

16: end if
17: if (UBbest−LBbest

UBbest
≤ εopt) then

18: Stop;

19: end if

20: Update the λ using the subgradient optimization;

21: end while

The algorithm starts by setting LBbest to 0 and UBbest to a large number M

(step 1). Then the algorithm solves LBP for Z t
LB (step 4) and inputs x and z to

UBH for the construction of Z t
UB (step 13). If Z t

LB > LBbest, then LBbest is updated

with Zt
LB (steps 5-6). Likewise, if Z t

UB < UBbest, then UBbest is replaced by Z t
UB

(steps 14-15). Each time, after solving for the upper bound Z t
UB, the optimality gap
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(

UBbest−LBbest

UBbest

)

is calculated and the algorithm terminates if the gap is smaller than

εopt (steps 17-18). Otherwise, if the gap still larger than εopt, then the subgradient

optimization is devised to update the Lagrangean multipliers (step 20) and repeat the

overall process. Note that the step size factor f t, which is utilized in the subgradient

optimization, is multiplied by mf (0.4) if the LBbest is not improved for ni (40)

consecutive iterations (steps 9-10). Hence, as f t becomes very small, the differences

between λ in two successive iterations are insignificant, thus leading the same lower

bound solution being generated repeatedly. Therefore, the algorithm also terminates

when f t ≥ εf (step 2).

We refer to the algorithm just described as “LR1.” When the initial heuristic

(Section V.2.4.1) is incorporated in step 1 of Algorithm 15, the algorithm is then

referred to as “LR2.” According to the early discussion, LBP experiences a tail-

off effect when solving large instances, especially with increased |N |. Therefore,

the surrogate constraints (5.38) and the early stopping criteria are utilized to help

accelerate the solution time of LBP . Thus, “LR3” is used for representing LR2 with

the surrogate constraints (5.38). Finally, if the early stopping criteria is applied to

LR3, then the algorithm is denoted using “LR4.”

V.2.6. Computational Experiments

In this section, we provide a detailed experiment to evaluate the algorithmic perfor-

mance of the LR algorithm and to identify the beneficial impact of the accelerating

techniques for Model 4. Unless stated otherwise, our algorithms (LR1-4) and the

Branch-and-cut (BC) approach are assigned a preset time limit of 2 hours (7200

seconds).

In the first experiment, we benchmark our LR algorithm with the results

obtained from solving problem classes Ua1, Ub1, Uc1, and Ud1 with the BC approach.
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The same 10 instances from the first experiment in Section V.1.4 are solved with ∆1–

∆2 set to 20–40. For the link capacity ckl, we set ckl, k, l ∈ N – based on the implied

link utilization level c̄kl calculated from the values of y in Section V.1.4 – in such a way

that the capacity constraints (5.57) are forced active. Specifically, ckl is equal to 600,

700, 900, and 1100 for the classes Ua1, Ub1, Uc1, and Ud1, respectively. However,

due to the inflexible capacity requirement and limited connectivity, especially in small

instances, only 6, 8, and 9 instances remain feasible in the classes Ua1, Ub1, and Uc1

under the tight capacity setting.

Table 26: Comparing LR3 with BC approaches

Ave Time Ave Gap

Class |N | |Q| ckl BC0% BC2% LR3 LR3 Gaplb
0% Gapub

0% Gaplb
2% Gapub

2%

Ua1 20 80 600 5 4 35 1.951 1.73 0.23 1.41 0.23

Ub1 25 125 700 46 24 86 1.922 1.49 0.44 1.19 0.31

Uc1 30 180 900 95 46 19 1.92 1.58 0.34 1.24 0.18

Ud1 40 320 1100 2043 749 178 1.941 1.14 0.81 0.68 0.69
1 One instance terminates as εf become very small.
2 Two instances terminate as εf become very small.

In Table 26, columns 5 and 6 are the BC runtimes for solving the formulation

of Model 4 (after constraints (5.50)-(5.51) are preprocessed) to optimality and to 2%

optimal. We observe that the runtimes grow extremely fast with increasing |N |, even

when they are optimized to only 2% optimal. Although instances with more than

40 nodes (i.e., class Ue1 and larger) are not solvable with the BC approach, their

runtimes are expected to be very large following the rapid growth we observed. On

the other hand, the runtimes of the LR algorithm (LR3) grow at a much slower rate.

Aiming at a 2% optimality gap (set εopt to 2%), LR3 takes less than 3 minutes on

average to solve these instances (see column 7 for runtimes and column 8 for implied

optimality gap). However, there are some instances that LR3 algorithm terminates

as εf become very small prior to reaching 2% optimality.
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Columns 9-10 and 11-12 measure the quality of the LBbest and UBbest with respect

to the optimal and the 2% optimal solutions from the BC approach. Clearly, the

heuristic algorithm in LR3 can provide near optimal solutions that are between 0.22-

0.82% from optimality and only between 0.18-0.69% from the BC 2% upper bounds.

In terms of lower bound strength, LBbest is slightly inferior to UBbest since its gaps are

around 1.14-1.73% from optimality and 0.68-1.41% from the BC 2% lower bounds.

In the second experiment (see Table 27), we compare the performance of

different LR algorithms, LR1-LR4, in solving instances of classes Ud1-2, Ue1-2, and

Uf1-2. In each class, 10 instances (the same instances from Section V.1.4) are gen-

erated and solved with ∆1–∆2 fixed at 20–40. With increasing number of nodes in

larger instances, the underlying networks are more connective with respect to ∆1

and ∆2. As a result, instances are more flexible in terms of a capacity requirement,

and are now solvable even under a tight capacity setting (capacity ckl is reported in

column 4).

Table 27: Comparing different LR algorithms

LR1 LR2 LR3 LR4

Class |N | |Q| ckl Gap Time Gap Time Gap Time Gap Time

Ud1 40 320 1100 11.935 471 1.931 187 1.941 178 1.981 115

Ud2 40 640 1100 12.215 508 2.182 447 2.191 363 2.213 382

Ue1 60 720 2000 7.125 4169 1.90 899 1.93 310 1.93 353

Ue2 60 1440 2000 12.255 1960 1.90 978 1.95 680 1.96 807

Uf1 80 1280 3000 6.555 7738 3.185 7635 2.002 4471 1.952 3700

Uf2 80 2560 3000 9.325 7355 2.284 6949 1.971 3058 1.89 3487
1 One instance terminates with optimality gap greater than 2%.
2 Two instances terminate with optimality gap greater than 2%.
3 Three instances terminate with optimality gap greater than 2%.
4 Eight instances terminate with optimality gap greater than 2%.
5 Every instance terminates with optimality gap greater than 2%.

In the early stages of the LR algorithm, the lower bound solutions generally

imply infeasible RP-networks from which the upper bound heuristic cannot construct
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good feasible solutions (and upper bounds). With the absence of realistic UBbest,

the subgradient cannot justify the Lagrangean multipliers effectively, thus leading to

poor algorithmic performance. In this case, providing good UBbest to the subgradient

optimization is essential, as illustrated by comparing the results of LR1 with LR2.

The gaps of LR1 range between 6.55–12.25% as opposed to between 1.90–3.18% for

LR2. Clearly, the initial heuristic can significantly help reduce both the average gap

and the associated runtimes.

The performance of LR2 is still inadequate as the optimality gap remains above

2% (3.18% for Uf1 and 2.28% for Uf2) and very large runtimes are reported. The

majority of the runtimes are spent solving LBP , which, in most cases, experience

tail-off effects. To this end, the surrogate constraints (5.38) become beneficial as

illustrated by comparing columns 7 with 9. Although there is no significant difference

in terms of gap for Ud1-2 and Ue1-2, the runtimes can be reduced by considerable

amounts. In fact, the gap for large problem classes Uf1 and Uf2 are now below 2%,

and almost half of the runtimes can be saved. Finally, comparing LR3 and LR4

illustrates the benefit of the early stopping criteria in further reducing the optimality

gap for large instances, classes Uf1 and Uf2. Note that the runtimes of LR4 are higher

than those of LR3 for 4 out of 6 problem classes, however, the runtime for problem

class Uf1 (this class requires the longest runtime) can be reduced by about 20%.

Due to their algorithmic enhancement, we assume the use of the initial heuristic,

surrogate constraints, and early stopping criteria in the next experimentation.

In the third experiment, we examine the performance of LR4 and the solution

characteristics under different ∆1–∆2 settings. The results are reported in Table 28.

Note that Tlb and Tub represent the total time spent on solving the LBP and UBH,

#RP and #Link represent the number RPs and RP-RP links located by Model 4,

respectively.
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With ckl fixed at 3000, LR4 is capable of solving most instances to below 2%

optimality in all settings. For the instances that LR4 terminates before 2% optimality,

the average gap is as low as 2.15% with the maximum gap being 2.33%. Although the

runtimes range between 2600-6000 seconds, UBH takes only around 200-1000 seconds

(with an average of 411 seconds) to provide very good feasible solutions (referencing

our observation in the first experiment, the true quality of the upper bounds are

usually much smaller than the optimality gap).

Table 28: LR4 under different ∆1–∆2 settings

Class ∆1 − ∆2 Gap Time Tlb Tub #RP #Link c̄A c̄M

Uf1

20–40 1.951 3700 2998 332 20 54 898 2786

20–50 1.96 3327 2729 216 19 63 629 2321

30–50 2.092 5466 4775 245 14 43 820 2447

30–60 2.022 5925 5058 272 13 46 678 2408

Uf2

20–40 1.89 3487 1903 913 28 107 954 3000

20–50 1.93 2617 1585 429 25 111 750 2832

30–50 1.96 2855 1759 425 19 82 927 3000

30–60 1.96 3306 2054 453 19 93 734 2667
1 Two instance terminates with optimality gap greater than 2%.
2 Five instances terminate with optimality gap greater than 2%.

In terms of solution characteristics, fewer RPs are required to cover all the nodes

in the service region when the value of ∆1 increases. In consequence, fewer RP-

RP links can be established, and the resulting RP-network now has increased link

utilization levels c̄A and c̄M . On the other hand, increasing ∆2 leads to lowered c̄A

and c̄M . With increased ∆2, signals can travel further in the RP-network and provide

the RP-network with additional available links (even with fewer RP locations). Due

to the increased connectivity, it is now beneficial to set up more RP-RP links and

allow commodities to travel in their shortest possible routes.
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V.2.7. Concluding Remarks

Model 4 further extends the base model to include the capacity limitation on an

established link (in addition to the fixed link set-up cost). By assuming unlimited or

very large link capacity, Model 3 is a special case of Model 4 where efficient algorithms

based on Benders decomposition have already been developed. However, the existence

of capacity destroys the decomposable structure of the subproblem, thus applying a

Benders decomposition framework to Model 4 now appears ineffective. A similar

situation is also observed in Model 2, where we apply the Lagrangean decomposition

framework for the development of efficient solution algorithms.

We observe that applying Lagrangean relaxation to only one set of constraints

(the flow conservation constraints) can facilitate the decomposition of the relaxed

problem and, at the same time, maintain the majority portion of the structural re-

quirements; hence, tight lower bounds can be obtained. In order to construct good

feasible solutions, the upper bound procedure and heuristics are applied to the lower

bound solutions. Coupled with the initial upper bound heuristic and one set of con-

straints from Model 3, we developed solution algorithms capable of systematically

solving large instances of Model 4 under tight capacity and various parameter set-

tings to small optimality gaps within reasonable runtimes.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

Service industries make up a major component of the U.S. economy. Among them,

the full truckload trucking and telecommunications industries have very important

roles in their industry sectors.

In the full truckload trucking industry, most truck providers have suffered the

problem of very high driver turnover that has continuously occurred for many decades.

Numerous approaches have attempted to alleviate this turnover problem, but failed to

provide long term solutions, as the cause of the problem is the very nature of the work

itself. Under the typical dispatching method (PtP method), most truck drivers are

assigned a long tour length journey that keeps them on the road for an extended period

of time, which eventually leads drivers to quit their jobs. Having observed a very low

turnover rate in the less-than-truckload (LTL) industry, we propose relay network

and relaying operations that closely resemble the dispatching methods applied in

LTL trucking, in order to improve drivers’ job satisfaction and help truck providers

retain their drivers. We expect a reduced driver turnover from utilizing the relay

network as it would provide truck drivers with more regularized driving routines,

similar to those of LTL drivers.

To this end, we develop two models that not only facilitate the reduction of

tour length, but also take into account factors affecting performance such as, load-

imbalance, link-imbalance, percentage-circuitry, and capacity limitation. Load-imbalance

and link-imbalance serve the objective of controlling empty mileage, while percentage-

circuitry provides the control of extra travel distance (from relaying shipments over

the network). Finally, capacity limitation helps with the planning of workforce, re-

source (equipment), and traffic. We model the construction of relay networks with
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these requirements using two mathematical formulations. Load-imbalance and per-

centage circuitry are included in Model 1, whereas link-imbalance and capacity lim-

itation are included in Model 2. The formulations of both models are extremely

large in size, hence solving them with the typical Branch-and-cut approach appears

ineffective. Therefore, to obtain solutions for these two models, we develop solution

algorithms based on Benders decomposition (BD) for Model 1, and Lagrangean de-

composition (LD) for Model 2. To enhance the performance of the BD algorithm, we

employ the strengthened Benders cuts, cut disaggregation schemes, ε-optimal frame-

work, and heuristics algorithm. For the LD algorithm, we define the copy constraints

in aggregate form for better control of formulation size and the decomposition of the

relaxed problem. For both models, we also develop heuristics algorithms to potentially

convert the lower bound solutions into good feasible solutions providing tight upper

bounds. All techniques provide algorithms that can solve relatively large instances

to small optimality gaps within a reasonable period of time. The efficacy of our al-

gorithms is illustrated through extensive experimentation. From our experimental

results, we also observe the impacts of problem parameters on both the algorithmic

performance and solution characteristics.

On the other hand, the motivation to apply relay network to the telecommu-

nications industry is from the physical limitation of signal. Because signal fades

with distance, repeaters must be located over a large service region to amplify signal

strength whenever it is transmitted beyond its transmission range. Additionally, other

equipment may be required so as to reduce noise or to connect different frequency

cables. The location of this equipment is based on proximity, which makes this type

of transmission network coincide with our concept of relay network. To better capture

the structural requirement of the telecommunications network, we incorporate into

our Model 3 the links selection with fixed cost (cable installation) and into Model 4
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the link capacity (limited bandwidth). Considering the location of relay points and

links, the single assignment, and the routing decisions, Models 3 and 4 integrate the

key characteristics of the uncapacitated single assignment hub location problem and

the uncapacitated and capacitated multicommodity network design problem. The in-

tegrated products (Models 3 and 4) are very general models that are difficult to solve.

Due to their similar uncapacitated network structures, the BD algorithms that show

promising performance in solving Model 1 are applied to solve Model 3. To handle

the infeasibility from the master problem, the BD algorithms are further enhanced by

surrogate constraints and the Benders cut derived from the improved heuristics solu-

tions. For Model 4, the capacitated version of Model 3, Lagrangean relaxation (LR)

based algorithms are developed. The surrogate constraints and heuristics algorithms

developed for Model 3 are also utilized in Model 4 in order to achieve algorithmic

improvements. Again, the BD and LR algorithms for Models 3 and 4 are efficient and

their performance, along with the beneficial impacts of each accelerating technique,

are indicated in our computational studies.

In conclusion, we have developed, in total, four mathematical models for the de-

sign of different relay networks customized to meet the requirements for full truckload

transportation and telecommunicatons applications. For each of the models, we have

developed solution algorithms to reflect these distinct characteristics, thus improving

their performance to make them capable of effectively solving large instances.

VI.1. Contributions

The significance of service industries has grown continuously, especially in the telecom-

munications and full truckload industries. Due to increased competition and growing

demand, every service provider must improve its performance and efficiently con-
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trol its cost effectiveness. For this purpose, we have studied the effective design of

relay networks for service providers. The contributions of this dissertation can be

summarized as follows.

1. The application of relay networks in the full truckload trucking industry aims

to address an existing industry problem: high driver turnover. Utilizing a relay

network is potentially a long term solution to this problem as it can provide a

more regularized driving routine and increase the go-home rate for truck drivers.

In fact, the operation of truck drivers will then be altered and more similar to

those in the less than truckload industry, in which very low turnover rates are

reported. However, the reduced turnover rate from implementing the relay net-

work may be compromised by the empty mileage and extra travel distances,

an additional burden to truck providers. Thus, our models also control them

to low levels.1 This research provides mathematical models and solution ap-

proaches for the design of a cost effective relay network that could achieve these

objectives.

2. The applications for telecommunications and related industries provide more

realistic mathematical models for designing transmission networks. We capture

the physical limitations (e.g., restricted transmission range and capacity) and

other general requirements (e.g., repeaters and cable installation) in long dis-

tance telecommunication using models that combine key characteristics of the

hub location problem and multicommodity network design problem, to better

1The levels of load-imbalance and link-imbalance of 60% and under (Ψ and Θ ≤ 0.6) ensure that,
in the worst case, the empty mileage from RP-network compares favorably (or better if Ψ and Θ
are below 0.6) with industry averages. The percentage circuitry levels (Ω, Ω̄A, and Ω̄M ) throughout
this study are calculated very conservatively based on Euclidean distances. Thus, the actual levels
would be lower if the shortest path distances are used (since we consider incomplete networks).
The percentage circuitry levels can be further lowered if we consider direct shipment for the short
distance commodities with large percentage circuitry levels.
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represent real problems. Note that although the main objective is to construct

the transmission network, our models can also be used for the purpose of up-

grading and extending an existing network.

3. The solution algorithms developed for solving our four models can be applied

to problems of a similar nature, ones that consider constructing networks and

routing commodities simultaneously, such as hub location problems and mul-

ticommodity network design problems. An alternative approach to strengthen

cuts is introduced; strengthened cuts are also applicable to different types of

cuts. The ε-optimal framework is enhanced by the use of a local search. The

copy constraints are defined in aggregated format. Different heuristics algo-

rithms are developed for each applications.

VI.2. Foundation for Future Research

Future extensions of the models and solution algorithms developed in this disserta-

tion will consider additional complexities and/or generalizations of the problems, as

summarized below:

1. Multiple assignment of nodes: Throughout this study, the assumption of

single assignment is made and every node can access the relay network only via

a single relay point. Relaxing this assumption will generalize the model and

permit multiple assignment of nodes. Thus, nodes can now access the relay

network through multiple relay points and commodities will be transferred in

the most direct direction. As a result, the total transportation distance, cost,

and time could be reduced. Moreover, additional accessibility also improves

network performance, especially in terms of reliability and survivability.

2. Capacity on relay points: In our study, capacity is defined between a



175

pair of relay points. In fact, capacity can also be explicitly defined on the relay

points themselves (e.g., number of drivers at the relay points), as it is defined on

hubs for capacitated hub location problems. The problem would become more

constrained, and at the same time, be more generalized, as it could be shown

that the arc-capacity can be transformed into node-capacity. Moreover, capacity

limitation can be in the form of total flows or total number of connections.

3. Unsplittable demand: In all four models, demand could be split and trans-

ferred using multiple routes. However, demand can be unsplittable and require

a single flow path (Barnhart et al., 2000), even under tight capacity limitation

(e.g., teleconferencing). In this case, our Benders decomposition algorithms (as

in Model 3) can effectively handle this requirement if the flow subproblem has

integrality properties and decomposable structure. Otherwise, the model must

be transformed or else, a different approach (Lagrangean approach as in Model

4 or other appoaches) may be more applicable.

4. Different technology: From the experimental results, we have observed

that, in many case, link utilization can be very unevenly distributed. Since

capacity requirement in different regions can vary significantly, having different

link technologies with different capacities and fixed costs would help control

construction budgets and make the problem more realistic. However, the solu-

tion space could be greatly enlarged and solving such a problem may require

major modification. Moreover, exploring a step cost function for relay points

and links with different capacity levels would also be an interesting research

direction.

5. Applying solution approaches to the other problem domains: The

relay network design problem is closely related to the hub location problems
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and multicommodity network design problems. According to our earlier dis-

cussion, under some parameter settings, Models 1 and 2 are the same as the

uncapacitated single assignment hub location problem, and Models 3 and 4 are

essentially the uncapacitated and capacitated multicommodity network design

problems. Additionally, our problem could be transformed into a single source

facility location problem. Therefore, it would be interesting to observe the per-

formance of our solution algorithms developed in this dissertation when applied

to solving these classes of problems.
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