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ABSTRACT 

 

 

Moisture Diffusion in Asphalt Binders and Fine Aggregate Mixtures. 

(May 2010) 

Kamilla Lima Vasconcelos, B.E., Universidade Federal do Ceará, (Fortaleza, Brazil); 

M.Sc., Universidade Federal do Ceará (Fortaleza, Brazil) 

Chair of Advisory Committee: Dr. Dallas N. Little  
 

 

Moisture damage in asphalt mixtures is a complex phenomenon that involves mechanical, 

chemical, physical and thermodynamic processes. This damage contributes significantly to the 

premature deterioration of asphalt pavements, which leads to extra cost in highway maintenance 

and vehicle operations.  One key mechanism of how moisture reaches the asphalt-aggregate 

interface is by its permeation or diffusion through the asphalt binder or mastic. Different 

techniques are available for diffusion coefficient measurement of a wide variety of polymer-

solvent systems. For the asphalt-water system studied, the focus is on two techniques: (i) Fourier 

Transform Infrared (FTIR) – Attenuated Total Reflectance (ATR) spectrometry and (ii) 

Gravimetric Sorption Measurements. In the FTIR-ATR experiments, asphalt binders are under 

investigation. Water shows strong absorption in the infrared region and the FTIR-ATR technique 

has the ability to monitor both the kinetics of moisture ingress as well as any chemical changes 

occurring during the test. The changes in concentration can be directly related to change in the 

absorbance measured during the experiment. The hysteresis of water diffusion in asphalt binders 

is also monitored through this technique. In the gravimetric sorption experiments, cylindrical 

Fine Aggregate Mixtures (FAM) were investigated. The gravimetric techniques, which directly 

follow mass change with time, are among the most used techniques probably because of their 

simplicity. In this experiment, the Saturated Surface-Dry (SSD) weight of FAM samples at room 

temperature and at 100°F is monitored until it reaches the equilibrium. The measurements of: (i) 

water uptake and (ii) the diffusion coefficient were made at both temperatures. A dual mode 

diffusion model was shown to better represent the diffusion of water through asphalt binders. 

The rate of moisture diffusion in asphalt binders was proved to be dependent on the history of 
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exposure of the asphalt binder to the moisture.  Moisture uptake and diffusivity of water through 

FAM is dependent on the type of aggregate and asphalt binder used to prepare the FAM.   
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1 . INTRODUCTION 

 

1.1 OVERVIEW 

Many forms of distress observed in asphalt pavements are caused or exacerbated by the presence 

of moisture.  The moisture damage phenomenon is complex and involves thermodynamic, 

chemical, physical and mechanical process. Caro et al. (2008) reported that the moisture damage 

mechanism is comprised of two phases: (i) moisture transport, and (ii) response of the system. 

There are three main mechanisms of  moisture transport into and within  asphalt pavement 

(moisture transport) (Masad et al. 2007): (i) infiltration of surface water, (ii) permeation or 

diffusion of water vapor, and (iii) capillary rise of subsurface water. In addition to these 

processes the probability exists that residual moisture is present with the aggregate particles. The 

absorbed moisture may be the result of inadequate or incomplete drying in the mix plant. The 

problem remains a somewhat unresolved issue particularly since warm mix asphalt technology is 

of such interest in today’s environment.  

With the understanding that in the mix design process, volumetrics and the air void 

structure controls permeation of moisture at the ‘macro-scale’, the focus of the dissertation is  

moisture diffusion at a smaller scale: in the  fine aggregate matrix (FAM) and (ultimately) in the 

asphalt binder. 

Diffusion is the process by which matter is transported from one part of a system to 

another as a result of random molecular movements; result from a concentration gradient. 

Moisture transport in asphalt binders is similar to moisture transport in polymers. When 

polymers are exposed to humid environments, they absorb significant amounts of water, which 

adversely affects their physical and mechanical properties. Asphalt binders demonstrate similar 

behavior. Relative pressure, temperature, physical state of the water, and structure of the 

polymer are examples of the factors that influence the moisture diffusion through this type of 

material. Some of the documented effects caused by water diffusion are plasticization, change of 

physical properties, hygrothermal degradation, and swelling stress. 

 

 

 

____________ 

This dissertation follows the style of Journal of Materials in Civil Engineering, ASCE. 
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Strong localized interactions can occur between the water molecule and suitable polar 

groups of the polymer.  Barrie (1968) have proposed that water is comprised of two species: the 

species that forms  molecular solution and the species that are confined into areas of abnormally 

large free volume. The sorptive capacity of a polymer depends not only on the nature of the 

groups presented, but also on their position on the polymer chain. In general, a higher number of 

polar groups in the polymer matrix results in higher sorptive affinity with water. However, the 

accessibility of these groups, the degree of crystallinity of the matrix and the relative strengths of 

water-water and water-polymer bonds are important factors in deciding the total water 

absorption.  

Fick’s law is generally used for the mathematical model of the diffusion process. It 

assumes constant pressure and temperature throughout the sample and no long-range 

electrostatic interactions. Assuming that Fick’s law is relevant to modeling diffusion, the 

diffusion coefficient may be treated in different ways, such as (Karlsson and Isacsson 2003a): 

• a single diffusion coefficient; 

• a concentration-dependent diffusion coefficient; and 

• a diffusion coefficient distributed by a probability function. 

Fickian diffusion of a single solute in a polymer film can be described by the one-

dimensional continuity equation: 

2

2

z
C

D
t
C

∂
∂

=
∂
∂

                     (1-1) 

where, C  is the penetrant concentration, t  is the time, and D  is the diffusion coefficient. The 

analytical solution to the Equation (1-1) will depend on the initial and boundary conditions. For 

more complex systems this equation can be modified to incorporate diffusion constants that 

depend on concentration, inhomogeneity of the media, and a host of boundary conditions which 

can take many forms.  

 There are also some cases where the diffusion behavior departs from the Fickian criteria. 

The following anomalous sorption behaviors have been reported (Frisch 1980): 

• pseudo-Fickian behavior in which the sorption curve plotted versus t½ shows an 

anomalous small initial linear region, but departs from film thickness scaling; 

• sigmoidal behavior of the sorption curve that is encountered when Mt/M∞ is plotted 

against t½; 
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• two-stage sorption: after an initial rapid uptake, the sorption curve as a function of t½ 

approaches a quasi-equilibrium, followed by a slow approach to a final true equilibrium; 

and 

• time dependent surface concentration. 

 Different techniques are available for diffusion coefficient measurement of a wide 

variety of polymer-solvent systems. Some of them are found in the literature: conventional 

gravimetric sorption (Artamendi and Khalid 2006; Doumenc et al. 2005; Gonzalez et al. 2007; 

Hong et al. 1997; Larobina et al. 2007), FTIR-ATR spectroscopy (Doppers et al. 2006; Hong et 

al. 1997; Karlsson and Isacsson 2003a; Karlsson and Isacsson 2003b; Larobina et al. 2007; 

McKnight and Gillespie Jr. 1997), magnetic suspension balance (Schabel et al. 2007), quartz 

crystal microbalance/heat conduction calorimeter (Smith et al. 2006), laser interferometer (Tong 

et al. 1989), capillary column inverse gas chromatography (Pawlisch et al. 1987), nuclear 

magnetic resonance (NMR) spectroscopy (Korsmeyer et al. 1986), soaking test (Kassem et al. 

2006) and dynamic shear rheometer (Karlsson and Isacsson 2003b). Two of these techniques 

will be addressed in this dissertation: (i) FTIR-ATR spectroscopy, and (ii) gravimetric sorption. 

 

1.2 PROBLEM STATEMENT AND RESEARCH OBJECTIVES 

The highway system connects people with a wide range of opportunities available across the 

country and also provides a vital link to a country's economic development. In the USA, 

approximately 85% of the pavements are flexible. Moisture damage contributes significantly to 

the premature deterioration of asphalt pavements, which results in substantial costs to maintain, 

repair and rehabilitate the highway infrastructure system. Among the mechanisms of moisture 

transport within the asphalt pavements is the process of diffusion.  It is the process by which 

moisture reaches the asphalt-aggregate interface, and is the focus of this research. The main 

objectives of this study are:  

• determine the water diffusion coefficient of asphalt binders using the FTIR-ATR 

technique;  

• determine the water diffusion coefficient in fine aggregate mixtures using 

gravimetric sorption measurements at different temperatures; and 

• determine the history dependence of water diffusion in asphalt binders using the 

FTIR-ATR technique.  
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1.3 DISSERTATION OUTLINE 

This dissertation combines three papers, presented according to the style and format of the 

Journal of Materials in Civil Engineering, ASCE, as well as the guidelines provided in the 

Texas A&M University Thesis Manual. The dissertation is organized in five sections as 

subsequently described.  

Section 1 presents an introduction that includes overview, problem statement and 

research objectives, and the dissertation outline. A relevant literature review is included in the 

appropriate section of each paper according to the corresponding topic treated in the paper. 

Section 2 presents a paper related to the measurement of water diffusion in asphalt 

binders using the FTIR-ATR technique. This paper was accepted for presentation at the 

Transportation Research Board Meeting in Washington, DC, 2010. The revised paper is being 

reviewed for possible publication in the Journal of the Transportation Research Board.  The 

authors of this paper are Kamilla L. Vasconcelos, Amit Bhasin and Dallas N. Little. 

 Section 3 presents a paper related to the measurement of water diffusion in fine 

aggregate mixture using gravimetric sorption. This paper was submitted for publication in the 

Journal of Materials in Civil Engineering (ASCE), and the authors are Kamilla L. Vasconcelos, 

Amit Bhasin, Dallas N. Little and Robert L. Lytton. 

 Section 4 presents a paper that addresses the history dependence of water diffusion in 

asphalt binders. This paper will be submitted for publication in the International Journal of 

Pavement Engineering and the authors are Kamilla L. Vasconcelos, Amit Bhasin and Dallas N. 

Little.  

 Section 5 presents the conclusions and recommendations of the dissertation. In addition, 

topics for further research are suggested in this section. 

 Appendix A has the detailed development of the FTIR-ATR diffusion model, originally 

proposed by Fieldson and Barbari (1993). 

 Appendix B has the detailed procedure used for the diffusion measurements using the 

FTIR-ATR. Focus was established in: sample preparation using the spin coater, film thickness 

and refractive index measurement by the ellipsometer; and the test procedure used in the FTIR-

ATR. 

Appendix C has the literature review and some preliminary results obtained in the 

comparison between water diffusion in the liquid state with the moisture (or vapor) state, both at 
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room temperature. This section is part of an ongoing research conducted by Kamilla L. 

Vasconcelos, Amit Bhasin, Dallas N. Little and Charles Glover. 
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2 . MEASUREMENT OF WATER DIFFUSION IN ASPHALT BINDERS USING 

THE FTIR-ATR TECHNIQUE* 

 

2.1 OVERVIEW 

The presence of moisture in asphalt mixtures deteriorates its structural integrity.  Moisture also 

acts as a catalyst to promote other forms of pavement distresses.  Two critical factors influence 

the rate and intensity of moisture induced damage: the speed of moisture transport within the 

asphalt mixture and binder, and the influence of moisture on the cohesive and adhesive 

properties of the constituent materials.  Quantifying these two factors is essential in order to 

understand, model, and mitigate moisture-induced damage in asphalt mixtures.  This paper 

presents the experimental and analytical procedures used to measure water diffusivity in asphalt 

binders.   Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy 

was used to monitor the diffusion of water into thin films of asphalt binder. The diffusion 

process was characterized by changes in the portions of the spectra that correspond to the 

presence of water. Two models were used to fit the data obtained: (i) a diffusion model that 

follows Fick’s second law, and (ii) a dual mode diffusion model with two diffusion coefficients 

(D1 and D2) and weighting factor X1. Four asphalt binders were evaluated (AAB, AAD, AAF, 

and ABD), and the diffusion characteristics of all four were better represented by the dual mode 

diffusion model. The diffusivity of asphalt binders AAB, AAD and AAF were statistically 

similar, while the diffusivity of asphalt binder ABD was different from all other three. 

 

2.2 MOTIVATION AND BACKGROUND 

Several damage mechanisms in asphalt pavements are caused by or their severity increased due 

to the presence of moisture.  The moisture damage phenomenon is complex and involves 

chemical, physical, thermodynamic, and mechanical processes.  These processes can be grouped 

into two broad categories that dictate the rate and intensity of moisture-induced in mixtures.  

First is the speed with which moisture migrates to the interior of the mixture.  Second is the 

influence of moisture on the adhesive and cohesive properties of the constituent materials in the 

mixture.  Both these factors are equally important when quantifying and seeking to mitigate 

                                                      
* Accepted for presentation “Measurement of Water Diffusion in Asphalt Binders using the FTIR-ATR 
Technique” by Kamilla L. Vasconcelos, Amit Bhasin, and Dallas N. Little. Transportation Research 
Board Meeting, 2010, Washington, DC. 
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moisture-induced damage in asphalt mixtures.  Ideally for a mix to be resistant to moisture-

induced damage it is desirable that its constituent materials are inherently resistant to the 

influence of moisture.  Further, it is also desirable to produce a mixture with material 

constituents and a microstructure that is resistant to damage from moisture. Despite inherent 

moisture sensitivity of the materials used in asphalt mixtures, the mixture may demonstrate 

reasonable resistance to moisture-induced damage provided that the diffusivities of moisture 

through the mixture and binder are very low.   

 Few references were found reporting the water diffusion coefficient of asphalt binders. 

The results vary significantly depending on the experimental method, plate substrate, and 

equipment used.  Nguyen et al. (2005) measured the apparent diffusion coefficient on thin 

asphalt binder films on siliceous ATR plates using the FTIR-ATR technique. The results 

reported were in the range from 1.4x10-14 to 3.3x10-14 m2/s. Wei (2009) measured the water 

diffusion coefficient in asphalt binders using the Electrochemical Impedance Spectroscopy 

(EIS). He used thin films of asphalt on aluminum plate substrate and the results ranged from 

1.5x10-17 to 4.2x10-17 m2/s. 

The focus of this study was to use spectroscopic techniques to determine the diffusivity 

of water through thin films of asphalt binder.  This paper summarizes the findings from this 

study.  Measurements for four different binders are reported.  A simplified example to 

demonstrate the importance of combining diffusivity with material properties to assess moisture 

sensitivity is also presented.   

 

2.2.1 Kinetics of Diffusion 

Fick’s second law is generally used to model diffusion driven by concentration gradients in 

different materials.  It assumes constant pressure and temperature throughout the sample and the 

absence of any long-range electrostatic interactions. The Fickian diffusion of a single solute in a 

polymer film can be described by the one-dimensional continuity equation: 

2

2

z
C

D
t
C

∂
∂

=
∂
∂

         (2-1) 

where, C  is the penetrant concentration, t  is the time, and D  is the diffusion coefficient. The 

analytical solution to the Equation (2-1) depends on the initial and boundary conditions. For 

more complex systems, this equation can be modified to incorporate diffusion constants that 
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depend on concentration, inhomogeneous media, and a host of boundary conditions which can 

take many forms. 

Schlotter and Furlan (1992) presented a concise explanation of three different cases of 

solvent diffusion in polymers.  While asphalt binders are chemically different from polymers, 

these three cases provide useful insight into understanding the characteristics of moisture 

diffusion. 

• Case I – Fickian diffusion occurs when the rate of diffusion is much less than the relaxation 

rate of the polymer. This is based on a simple diffusion model in which the Fickian solution 

shows a linear mass sorption increase relative to 2
1
t  (where t is time). 

• Case II – diffusion is very rapid compared to the polymer relaxation process. Frequently a 

sharp solvent front, which propagates into the polymer at a constant velocity, is associated 

with Case II diffusion. Thomas and Windle (1982) mention that Case II is characteristic of 

systems in which the permeating substance substantially swells the polymer. 

• Case III – non-Fickian or anomalous diffusion occurs when the diffusion and relaxation 

process rates are similar. 

 

2.2.2 Fourier Transform Infrared Spectroscopy – Attenuated Total Reflectance (FTIR-

ATR) 

Fourier Transform Infrared (FTIR) – Attenuated Total Reflectance (ATR) spectroscopy is a 

robust and accurate noninvasive in-situ method that can provide short-time data identifying the 

various functional groups present in the material. This technique has also been used to examine 

diffusion in polymers, with investigations covering a diverse range of applications. Elabd and 

coworkers (2003) provide an extensive literature review on different applications of the FTIR-

ATR, especially on the technique’s ability to identify unique chemical species arising from 

molecular interaction.  Harrick (1965) presents a detailed description of the quantitative aspects 

of internal reflection spectroscopy, particularly when infrared absorbing species are uniformly 

distributed in either a thin film or an infinitely thick sample. A series of papers and reports were 

also published by Nguyen and coworkers about the use of this technique to address water at the 

interface between different organic coatings, including asphalt binder, and substrates (Nguyen et 

al. 1994; Nguyen et al. 1995a; Nguyen et al. 1995b; Nguyen et al. 1996a; Nguyen et al. 1996b; 

Nguyen et al. 2005; Nguyen et al. 1991a; Nguyen et al. 1991b). 
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ATR spectroscopy differs from normal transmission spectroscopy in the nature of the 

incident light path. When total reflection of a light beam or electromagnetic field occurs at the 

boundary between the internal reflection element (IRE) surface (ATR cell) and a rarer medium 

(e.g., a polymer or asphalt binder film), penetration of the electromagnetic field into the rarer 

medium occurs (Figure 2-1). This electromagnetic field forms an evanescent wave caused by the 

interference of the incident and reflected waves. The magnitude of the evanescent wave can be 

expressed as follows (Griffiths and de Haseth 2007): 

ZeEE γ−= 0                              (2-2) 

where, E  is the strength of the electric field, 0E  is the field strength at the interface, γ  








 =
pd

1γ  and z  are the decay coefficient and the distance from the reflecting surface of the 

evanescent wave, respectively.  

In FTIR-ATR, the depth of penetration of the infrared ( )pd , illustrated in Figure 2-1, is 

defined as the distance from the IRE surface, over which the magnitude of the penetrating 

electric field diminishes by a factor of e
1  and is given by the following expression (Griffiths 

and de Haseth 2007): 

2
1

1

22
2 sin2 


















−

=

n
n

n

d p

θπ

λ
                                        (2-3) 

where, λ  is the wavelength of the radiation in vacuum, θ  is the angle of incidence, and 1n  and 

2n  are the refractive indices of the IRE and the sample respectively.  

 



 10

 

Figure 2-1. Scheme of an ATR Cell and the Depth of Penetration 
 

Although the probing depth can be up to three times of dp (Mirabella Jr. 1990), because 

of the rapid decay of the evanescent wave, more than 85% of the total absorption intensity 

corresponds to the material within dp (Iwamoto and Ohta 1984). The use of a thinner prism, a 

longer prism, a smaller angle of incidence, or a combination of these factors would increase the 

ability to detect of water at the coating/substrate interface by the FTIR-ATR technique. 

The advantage of using the FTIR-ATR technique is that it has the ability to monitor both 

the kinetics of moisture ingress as well as any chemical changes that occur during the test. The 

changes in concentration can be directly related to change in absorbance measured during the 

experiment. The physics of FTIR-ATR can be incorporated with a suitable diffusion model to 

evaluate the kinetics of the diffusion process.  Some of the challenges associated with the use of 

this technique are that the FTIR spectra can be affected by (a) gel formation; (b) swelling of the 

material; and (c) rapid exchange of protons between the solvent and the material.  However, 

according to Doppers et al. (2006), the exchange of protons is probably too slow to have a very 

significant effect.  Further, Elabd et al. (2003) mentioned that spectroscopically, water is 

considered to be one of the most difficult molecules to interpret with a broad OH stretching 

vibration between 3,800 and 3,000 cm-1, revealing a distribution of self-associated clusters that 

are sometimes difficult to de-convolute.  
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2.3 MATERIALS AND METHODS 

In this study, four asphalt binders were selected from the Strategic Highway Research Program 

(SHRP) Materials Reference Library (MRL): AAB is a PG 58-22 grade binder from Wyoming, 

AAD is a PG 58-22 grade California Coastal, AAF is a PG 64-10 from W Texas, and ABD is a 

PG 58-10 California Valley (Jones IV 1993). The procedure used to determine the diffusivity of 

water through these binders is described in the following subsections.  

 The following subsection details the procedure that was used to prepare the sample for 

testing.  

 

2.3.1 Sample Preparation 

Stock solutions for different asphalt binders were prepared using 1.5 g of asphalt dissolved in 11 

mL of HPLC grade toluene to facilitate the production of thin films. Previous studies conducted 

at the Western Research Institute (WRI) indicate that asphalt binder in a toluene solution does 

not compromise the physio-chemical characteristics of the binder after the toluene is removed.   

These previous studies also indicate that bitumen molecules in a toluene solution have similar 

kinetics to those of molecules in liquid bitumen at elevated temperatures (WRI 2001).  

 The asphalt solutions were prepared approximately 12h before use to guarantee that the 

solvent had dissolved all the asphalt in the container. A spin coater (Laurell WS-650S) was used 

to produce thin and homogeneous films of asphalt. The equipment supports rotation speed from 

100 to 8000 rpm, with a repeatability of ± 0.5 rpm. The processor is equipped with a 44 mm 

vacuum chuck for substrates with diameters ranging from 50 to100 mm. The MultiBounce ATR 

ZnSe (Zinc Selenide) flat plate was used as the substrate, and the spin coater was adjusted to 

rotate at 1000 rpm for 10 s. The substrate was spin coated two times to ensure complete coverage 

of the ATR plate by the asphalt solution.  The rotation speed, time, and number of layers were 

obtained after conducting several trials to obtain an optimal film thickness.    

After spin coating, the sample was placed in a chamber connected to a dry nitrogen 

purge for 2 h to eliminate the solvent (toluene) that was used to prepare the film. Afterwards, to 

eliminate possible micro capillaries in the asphalt film that might have been created due to the 

vaporization of toluene under nitrogen purge, the sample was annealed for 1 h at 50°C. A 

chamber was designed to be attached to the ATR cell and contain the water over the thin film 

during the test (Figure 2-2). 
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Figure 2-2. Chamber Designed to Hold the Water during the Test 
 

The target film thickness was an important consideration while preparing specimens.  

There are two possible cases for the specimen film thickness.  The first case is when the film 

thickness is much greater than the effective depth of penetration, dp.  In this case when a constant 

boundary condition (100% saturation) is achieved by adding water to the top of the film, water 

diffusion starts from the upper surface of the film that is beyond the detection range of the FTIR 

spectra.  Therefore, one would have to wait for an undefined and perhaps experimentally 

unreasonable amount of time until moisture diffuses to within the effective depth of penetration 

and is detected in the spectra.  Change in concentration of water within the film over time is 

quantified by correcting for the time of arrival of moisture and film thickness.  The second case 

is when the film thickness is less than the effective depth of penetration, dp.  In this case when 

water is added to the top of the film, a portion of the water over the film as well as the entire film 

is immediately detected in the spectra.  Change in concentration of water within the film over 

time is quantified by subtracting the initial spectra at time t = 0 s from the spectra detected at a 
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specific point in time.  In this study, both approaches were used for trial experiments but the later 

was preferred due to practical considerations.   

Another important consideration was not to have a very thin and homogeneous film.  

Other research studies have shown that the diffusivity of liquids through very thin polymer films 

is not representative of diffusivity through the bulk (Vogt et al. 2004).  However, the limit at 

which diffusivity changes as a function of film thickness was in the order of tens of nanometers.  

This study ensured that all films were in the one micron range.  Once the thin film samples were 

prepared, the next important step was to accurately measure the thickness of the thin film.  The 

following section details the procedure that was used to measure the thin film thickness.  

 

2.3.2 Film Thickness and Refractive Index Measurement 

Film thickness and refractive index of the material are inputs required to calculate diffusivity of 

water through thin films of asphalt binder.  In this study an ellipsometer was used to determine 

the thickness and optical properties of the film. Upon reflection from a plane surface, linearly 

polarized radiation generally becomes elliptically polarized. Its polarization state can be 

described by two ellipsometric parameters: amplitude ratio (tanψ) and phase shift difference (∆) 

of two mutually orthogonal polarized components of the reflected wave (rs and rp) (Hinrichs et 

al. 2005). The complex reflectance ratio ρ is defined as: 

∆Ψ== i
sp eRR tan/ρ                              (2-4) 

where, pR  and sR are the complex reflection coefficients of light polarized parallel and 

perpendicular, respectively, to the plane of incidence.  In this study, the Nanofilm EP3-SE model 

ellipsometer was used to measure values of amplitude ratio (tanψ) and phase shift difference (∆) 

for the film.  The ellipsometric data was evaluated modeling the sample as a layered structure: 

air / asphalt film / substrate.  The data were used with three-parameter Cauchy function using 

built-in software to determine the thickness and refractive index of the film.   

The ATR cell is transparent and therefore could not be used with the ellipsometer as a 

substrate to measure the thickness of the asphalt film.  Instead, the same procedure was used to 

cast thin films on silica wafers as substrates.  The Si wafer substrate produces more accurate 

results because of its reflectivity and known optical properties. The roughness of Si wafer and 

ZnSe crystal and differences in the thickness of the film casted on both surfaces were unlikely to 

be significant.     
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Each time a thin film specimen was prepared by spin coating the ATR cell, the same 

asphalt solution was subjected to exactly the same procedure to immediately spin coat a Si 

wafer. The thickness of the film as well as optical properties were measured using the 

ellipsometer.  The film thickness and refractive index of specimens varied from 0.66 micron to 

1.3 microns, and 1.22 to 1.65, respectively.  This variation does not affect the final results since 

the model for diffusion incorporates these parameters.  

After preparing the sample and establishing the film thickness, the next step was to 

measure the diffusion of water through the thin films of asphalt binder using the FTIR.  The 

following two sections discuss the test procedure that was followed to collect the relevant data 

and the concomitant analysis to determine diffusivity of water through the asphalt binder.  

 

2.3.3 Measurement of Water Diffusion Using FTIR-ATR 

The Thermo Scientific Nicolet 6700 FTIR was used to collect the IR spectra. All spectra were 

the result of 32 scans and were collected at a 4 cm-1 resolution in the 900-4000 cm-1 range. 

Unpolarized light at an incident angle of 45° was used and all spectra plotted in the absorbance 

(A) mode. Data were collected at periodic intervals for at least 15 days, with the final spectrum 

serving as a reference for the final saturation values (Aeq) of the absorption band.    

The FTIR-ATR technique does not directly measure mass of the diffusant at a given 

depth, but provides absorbance at any time t (At).  The absorbance is proportional to the total 

instantaneous mass of the diffusant (Mt) within the film. When a polymer film of thickness 2l on 

an ATR plate is exposed to an infinite reservoir, assuming weak absorption and constant 

polymer refractive index, the following equation can be derived in terms of absorbance (Fieldson 

and Barbari 1993): 
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where, γ  is the evanescent field decay coefficient (inverse of the depth of penetration and 

previously described in Equation 2-3), A0 is the absorbance at time zero, and D is the diffusivity. 

Equation 2-5 is similar to the mass uptake equation used in gravimetric sorption experiments, 

with the main difference being that the Fickian concentration profile is convoluted with the 

FTIR-ATR absorption equation before it is integrated (Fieldson and Barbari 1993).  
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As mentioned before, in this study thin films were used so that the electric field did not 

decay completely inside the asphalt sample (Figure 2-3). The same concept was reported by 

Pereira and Yarwood (1996a), and in order to obtain the ATR spectrum of water absorbed by 

thin films it is necessary to subtract the spectra of pure liquid water from the spectra of the film-

water composite. However, the OH stretching band for pure liquid water is more intense than the 

OH band intensity for the film-water system, because the film is an absorbing material and 

works as a barrier. Therefore, the subtraction would produce negative bands. In order to avoid 

this problem, we subtracted the spectra of the film-water composite for the first hydration time 

from the spectra of the film-water composite at subsequent times. Figure 2-4 illustrates the blank 

spectrum of liquid water at room temperature. 

 

Asphalt + Water (t = 15 days)

Asphalt + Water (t = 0 days)

Asphalt

 

Figure 2-3. Spectra of Thin Asphalt Film under Water 
 

 

Figure 2-4. Blank Spectrum of Liquid Water 
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2.4 RESULTS AND DISCUSSION 

Quantitative analyses were performed using the Fickian diffusion model described by Equation 

2-5, referred to as Analysis 1, and a dual mode diffusion model, referred to as Analysis 2. 

 

2.4.1 Analysis 1 – Fickian Diffusion Model 

For the Fickian diffusion model, quantitative analyses were performed using: (i) the peak height 

at 3400 cm-1, (ii) the area between 3000-3800 cm-1, ad (iii) using an internal benchmark, where 

the area of the OH stretching was divided by the area of the CH stretching (2750-3000 cm-1), 

illustrated in Figure 2-5. The third method was included because for some samples there was a 

shift on the CH stretching area during the course of the test. The results obtained with all three 

methods were very similar and only the results from the second method are presented in this 

paper.  

 

Peak Height
at 3400cm-1

 
(i) 

Figure 2-5. Illustration of Quantitative Analysis 
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Area
OH Stretching

 
(ii) 

Area
OH Stretching

Area CH
Stretching

 
(iii) 

Figure 2-5. Continued 
 

2.4.2 Analysis 2 – Dual Mode Diffusion Model 

Localized interactions can occur between the water molecule and suitable polar groups of the 

asphalt binder. Several authors have proposed that diffused water can be categorized into two 

species: those forming a molecular solution and those confined into areas of abnormally large 

free volume. Barrie (1968) also mentioned two forms of sorbed water, the first represents water 

that is initially absorbed with little perturbation of the matrix and appears to be attached firmly to 

specific sites. The second is water that usually promotes swelling of the matrix.   

 This analysis considers that the cumulative diffusion of water through thin films of 

asphalt binder does not follow Fick’s law.  Instead, water diffuses following a dual sorption 

mode, where each mode of sorption individually follows Fick’s law. In this model it is assumed 
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that a fraction of the water molecules (x1) is partially mobile (rapid absorption onto the surface 

sites), and the other fraction (1 - x1) is completely mobile and can diffuse into the asphalt matrix 

freely (subsequent diffusion into the bulk materials). Thus the expression for describing this 

model contains two diffusion coefficients (Pereira and Yarwood 1996b): 
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where, D1 and D2 are the diffusivities (or diffusion coefficients) components of the dual mode 

diffusion model. After rearranging Equations 2-6 and 2-7 as a function of A1 and A2, they can be 

added to produce the total absorbance at time t (A1 + A2  = At). The values of x1 and x2 are 

related to the proportion of the partially and totally mobile molecules (x1 + x2 = 1). The value of 

x1 and two separate diffusion coefficients (D1 and D2) are then derived from the absorbance data. 

Figures 2-6, 2-7, 2-8 and 2-9 present examples of the fitting obtained by Analyses 1 and 2 for 

asphalt binder AAB, AAD, AAF and ABD, respectively. 
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Figure 2-6. Result Obtained by (a) Analysis 1 (Fickian Diffusion Model) and (b) Analysis 2 
(Dual Mode Diffusion Model) for Asphalt AAB 
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Figure 2-7. Result Obtained by (a) Analysis 1 (Fickian Diffusion Model) and (b) Analysis 2 
(Dual Mode Diffusion Model) for Asphalt AAD 
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Figure 2-8. Result Obtained by (a) Analysis 1 (Fickian Diffusion Model) and (b) Analysis 2 
(Dual Mode Diffusion Model) for Asphalt AAF 
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Figure 2-9. Result Obtained by (a) Analysis 1 (Fickian Diffusion Model) and (b) Analysis 2 
(Dual Mode Diffusion Model) for Asphalt ABD 
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2.4.3 Statistical Analysis 

Table 2-1 shows the average of the results obtained by Analysis 1 and Analysis 2, with the 

coefficient of variation (CV) for both methods and the four asphalts. Results from the dual mode 

diffusion model presented a better fit for all the samples. A level of significance of 0.05 was 

used in the analysis of variance (ANOVA) for the dual mode diffusion model values. According 

to the statistical analysis, asphalts AAB, AAD and AAF have the same Deff  value, while the 

other three asphalt combinations (AAB-ABD, AAD-ABD and AAF-ABD) presented statistically 

different values using the same level of significance.  

 

Table 2-1. Summary of the Diffusivity Values 

Asphalt 
Number  

of 
Replicates 

Analysis 1 Analysis 2 

Average 
D(nm2/s) 

[CV] 

R2(fitting 
with the 
model) 

D1(nm2/s) D2(nm2/s) x1 

Average 
Deff 

(nm2/s) 
[CV] 

R2 
(fitting 
with 
the 

model) 

AAB 6 3.76 
[71%] 0.826 23.02 0.79 0.51 12.17 

[49%] 0.989 

AAD 4 9.39 
[36%] 0.921 38.26 1.75 0.57 16.79 

[37%] 0.978 

AAF 3 0.96 
[6.3%] 0.928 36.29 0.67 0.25 9.69 

[17.5%] 0.995 

ABD 6 6.99 
[168%] 0.722 75.07 0.40 0.53 39.82 

[45%] 0.969 

 

2.4.4 Simplified Example to Demonstrate Implications 

The rate at which water diffuses through the bulk of the asphalt binder as well as the inherent 

sensitivity of the binder and the binder-aggregate interface to the presence of moisture dictates 

the rate and intensity of moisture-induced damage.  Rigorous computational or analytical models 

are available that combine binder and mixture diffusivity with their propensity for cohesive or 

adhesive damage (Caro et al. 2009; Kringos and Scarpas 2005).  Although detailed modeling of 

moisture damage is beyond the scope of this paper, a simplified example is presented here to 

demonstrate the implication of binder diffusivity on adhesive damage.   

Bhasin et al. (2007) demonstrate the use of an energy parameter based on the surface 

free energy to differentiate the moisture susceptibility of adhesive bonds between binders and 

aggregates.  However, the energy parameter can only be used to compare the moisture 

susceptibility of different binder-aggregate interfaces at the same level of saturation.  For 
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different levels of saturation, it can be hypothesized that the product of percent saturation 

(governed by the diffusivity of water through the binder) and the energy parameter reflects the 

susceptibility of the adhesive bond to moisture damage.  For this simplified example, Table 2-2 

and Figure 2-10 present three different combinations of asphalt binders AAD and ABD with the 

same basalt aggregate.  In each case the aggregate is coated with a binder film and a boundary 

condition with 100% saturation is applied to the surface of the binder.  The percent saturation at 

the interface shown in the Table was computed using the values and dual mode diffusion model 

described in this paper.  The Table clearly illustrates the influence of material property, coating 

thickness and diffusivity on the moisture susceptibility of the interface. 

 

Table 2-2. Simplified Example of Susceptibility of Adhesive Failure 

Binder – 
Aggregate 

combination 

Thickness 
of binder 

coating the 
aggregate 

Energy 
parameter 

for the 
interface 

(A)* 

% 
Saturation 
@interface 

after 24 
hours (B) 

(A)×(B) 

Rank order (from 
most to least 
susceptible to 

adhesive failure after 
24 hours)** 

AAD-basalt 5 µm 1 6 6 2 
ABD-basalt 5 µm 0.8 17 13.6 1 
ABD-basalt 7 µm 0.8 5 4 3 

 * From Bhasin et al.(2007); reciprocal of the energy parameter is used such that lower values 
indicate more moisture susceptibility 
** Moisture susceptibility of the mix must also include influence of moisture on deterioration of 
the binder or cohesive failure 
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Figure 2-10. Illustration of the Example shown in Table 2-2 
 

2.5 SUMMARY AND RECOMMENDATIONS 

Moisture transport through an asphalt mixture is an integral part of the moisture damage 

mechanism.  Moisture damage in an asphalt mixture is a complex process that represents the 

cumulative effect of moisture transport processes (e.g. diffusion through binder) and moisture 

deterioration processes (e.g. loss in mechanical properties of the binder due to the presence of 

moisture).  In this study a procedure was developed and used to measure the diffusivity of water 

through thin films of asphalt binder using the FTIR-ATR.  The technique was largely based on 

similar approaches used in the field of polymer technology.  The major conclusions of this study 

are: 

• The diffusivity of water through asphalt was significantly higher for (at least) one asphalt 

binder than it was in the other three binders (from the set of four tested) indicating that 

diffusivity may be an important material variable that influences the rate of moisture 

damage. 
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• A dual mode diffusion model was shown to better represent the diffusion of water through 

asphalt binders.  This model suggests that water molecules may be diffusing at two different 

rates within the asphalt binder with the slower rate being associated with interaction between 

water molecules and polar functional groups within the material.  The implication of this 

mode of diffusion through asphalt binders in terms of performance and asphalt chemistry 

requires further investigation.  However, these results do suggest that future efforts related to 

modeling of moisture damage should consider the use of a dual mode diffusion model rather 

than simple diffusion based on Fick’s second law.   

• The values of diffusivity reported in this study are much smaller than the values reported by 

Arambula et al. (2009) and Kassem et al. (2006).  However, the values reported in this paper 

pertain to the diffusion of liquid water through thin films of asphalt binder which is different 

from diffusion of moisture through mixtures or mastics.  The latter is dictated by 

macroscopic properties including interconnected air voids that allow moisture to travel much 

faster through the bulk.  In contrast, the results shown in this study are relevant to the 

diffusion of moisture through the binder as in the case of microstructural entities that 

interconnect voids to the binder-aggregate interface.  The impact of this could be that binders 

that develop a tenacious bond with aggregate surfaces and also resist moisture diffusion to 

the binder-aggregate interface may be more resistant to moisture damage. Further study is 

under investigation to evaluate the difference in diffusivity values when water is under liquid 

or vapor form. 

• The results obtained in this study are in the same order of magnitude of the results presented 

by Wei (2009) using the Electrochemical Impedance Spectroscopy (EIS). Wei used thin 

binder film on aluminum plate substrate. 

 

Researchers are currently conducting further studies using the FTIR-ATR technique to 

address different issues related to the diffusivity in asphalt binders including: (i) rates of 

diffusion at the binder-substrate interface in addition to the rates of diffusion through thin films 

of asphalt binder as presented in this paper, (ii) diffusivity of polymer modified binders 

(including considerations such as casting of thin homogenous films), and (iii) differences 

between the diffusion of liquid water versus water vapor. 
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3 . EXPERIMENTAL MEASUREMENT OF WATER DIFFUSION THROUGH 

FINE AGGREGATE MIXTURES 

 

3.1 INTRODUCTION 

Approximately 85% of the pavements in the United States are flexible with a hot mix asphalt 

(HMA) surface. In the late 1970s and early 1980s, a significant number of pavements in the 

United States began to experience distress associated with moisture sensitivity of HMA (Epps 

2000).  

Moisture damage in asphalt mixtures or HMA can be defined as the loss of strength and 

durability due to the influence of moisture. HMA is a composite material comprised of asphalt 

binder, aggregates and air voids.  Consequently moisture damage in this type of material is a 

complex phenomenon that involves chemical, physical, thermodynamic, and mechanical 

processes. The moisture damage mechanism can be divided into two stages (Caro 2008): (i) the 

transport of moisture into the mixture, and (ii) the interaction of moisture with the mixture 

constituents. The four main modes of moisture transport are: (i.1) infiltration of surface water, 

(i.2) capillary rise of subsurface water (i.3) water diffusion due to relative humidity gradients, 

and (i.4) migration of residual moisture from within the bulk of the aggregate particle to the 

surface. The interaction of moisture results in three main types of degradation: (ii.1) loss of 

cohesion of the asphalt binder/mastic, (ii.2) adhesive failure at the asphalt and aggregate 

interface, and possibly (ii.3) degradation of individual aggregate particles when subjected to 

freezing. 
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The transport of small molecules through a material such as polymer, asphalt cement or 

asphalt mastic (asphalt cement and mineral filler smaller than 0.075 mm)  is a very complex 

process that is influenced by factors such as, temperature, chemistry of the diffusing molecules, 

physical properties of the mineral filler or modifier (normally a polymer), interaction of the 

solvent molecules with the polymer, external mechanical deformation, and complex internal 

structure of the polymer (De Kee et al. 2005). No single model provides a complete explanation 

of the transport process for polymeric composites due to their complex internal structure.  

Different modes of moisture transport have been used to characterize or quantify the 

sensitivity of asphalt mixtures to moisture damage. Some examples are permeability (Al-Omari 

et al. 2002; Huang et al. 1999; Masad et al. 2004; Mohammad et al. 2003), hydraulic 

conductivity (Kutay 2005), capillary rise (Masad et al. 2007), and diffusivity (Kassem et al. 

2006; Sasaki et al. 2006). Kringos and Scarpas (2008) considered two different phenomena in 

the simulation of water infiltration into an asphalt mixture. The first phenomenon they 

considered was infiltration of moisture into the ‘macro-pores’, which is primarily dependent on 

hydraulic suction and flow velocity. The second phenomenon is a follow-on to the first where, 

after moisture has already entered the macro-pores, it continues to infiltrate within the bulk of 

the aggregate-binder matrix. This infiltration is, in contrast to the first phenomenon (pressure 

driven), a molecular diffusion process which is driven by a moisture concentration gradient 

within the material. A few studies were also conducted for the measurement of water/moisture 

diffusion in fine aggregate mixtures (FAM). Table 3-1, updated from (Arambula et al. 2009), 

shows the results of the measurements and the details of the experimental setup and specimen 

configuration for three studies.  
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Table 3-1. Diffusion Coefficients for FAM with Different Characteristics 

Reference Blend Proportions Average Diffusion 
Coefficients (m2/s) 

Specimens Characteristics and 
Experimental Conditions 

(Kassem et al. 2006) 

Aggregate: 
52.4% sandstone 
35.0% igneous 

screening 
4.6% hydrated lime 

Asphalt: 
8.0% PG 76-22 

1.03x10-11 

- Cylindrical specimens with 
50mm diameter and 50mm 
height sitting in a shallow 
water bath at 25°C while 
measuring the change in the 
logarithm of total suction 
using a psychrometer 
embedded in the middle of 
the specimen and placed 
5mm above the bottom end 
of the specimen.  

- Aggregate size passing sieve 
No 16. 

- Air voids not specified. 

Aggregate: 
66.2% natural sand 

25.8% limestone sand 
Asphalt: 

8.0% PG 64-22 

9.72x10-12 

Aggregate: 
46% natural sand 

46% limestone sand 
Asphalt: 

8.0% PG 64-28 

2.43x10-11 

(Kringos et al. 2008b) 

Aggregate: 
50% crushed sand 

25% lime 
Asphalt: 

25% Pen 70/100 

1.31x10-13 

- Gravimetric sorption method 
on 30mm x 30mm and 1mm 
thick specimens placed 
inside an 85% relative 
humidity chamber at 25°C.  

- Aggregate size not specified. 
- Air voids not specified. 

Aggregate: 
50% crushed sand 
25% hydrated lime 

Asphalt: 
25% Pen 70/100 

3.08x10-13 

Aggregate: 
50% crushed sand 
25% hydrated lime 

Asphalt: 
25% Cariphalte XS 

3.64x10-13 

Aggregate: 
50% crushed sand 
25% hydrated lime 

Asphalt: 
25% Sealoflex 5-

50(PA) 

3.17x10-13 

(Arambula et al. 2009) 

Aggregate: 
51.7% Diabase 

46.5% Sand 
1.8% Dust 
Asphalt: 

8.5% PG 70-22 

2.54x10-10 

- Gravimetric method on 
cylindrical ensembles 
containing 70mm diameter 
and 4mm – 5mm thick 
specimens, where the 
ensembles were placed in a 
chamber with 15% relative 
humidity at 35°C.  

- Aggregate size passing sieve 
No 4. 

- Air voids between 11-13% 
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The objective of this study was to experimentally determine the diffusion of water in 

different FAMs using simple gravimetric sorption measurements. In this study FAM is defined 

as a blend of aggregate fractions smaller than sieve No 16 (1.18mm) with asphalt binders.  The 

air void distribution in FAM specimens is considered to be more uniform than the air void 

distribution in hot mix asphalt (HMA) (Kim et al. 2006; Masad et al. 2006). In this study, the 

FAM is regarded as a homogenous representative volume of the HMA for the purposes of 

measuring diffusivity of water. This assumption is considered as reasonable and relevant because 

analytical or computational models of the performance of full asphalt mixtures typically treat the 

full mix as a composite of coarse aggregate, air and FAM (Caro et al. 2010).  Because of 

practical limitations in defining microstructural details, asphalt binder and fine aggregates are 

not considered separately. Consequently, the mechanical and material properties of the FAM 

phase, such as the diffusivity of water, form the critical inputs for such modeling.   

 

3.2 BACKGROUND ON KINETICS OF DIFFUSION 

Fick’s law expresses the proportionality of solute flux with respect to concentration gradient. 

Similar relations are Darcy’s law for fluid flow in porous media, Ohm’s law for electric flux and 

Fourier’s law for heat transfer. The mathematical theory of diffusion in isotropic substances is 

based on the hypothesis that the steady state rate of transfer of a diffusing substance through a 

unit area cross section is proportional to the concentration gradient measured normal to the 

section (Fick’s first law): 

z
C

DF
∂
∂

−=          (3-1) 

where, F is the rate of transfer per unit area of section (flux), C  is the concentration of the 

penetrant, and D  is the diffusion coefficient, or diffusivity.  

Fick’s second law is generally used to model diffusion driven by concentration gradients 

in different materials.  It assumes constant pressure and temperature throughout the sample and 

the absence of any long-range electrostatic interactions. The Fickian diffusion of a single 

substance in another substance can be described by the one-dimensional continuity equation: 
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                                (3-2) 

where, t  is the time. The analytical solution to the Equation 3-2 will depend on the geometry, 

initial and boundary conditions. For more complex systems, this equation can be modified to 
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incorporate diffusion constants that depend on concentration, inhomogeneous media, and a 

diversity of boundary conditions which can take many forms. 

 

3.3 EXPERIMENTAL DESIGN 

This section presents the experiment design for this study, which includes materials and 

specimen fabrication, test method, and the background on analysis. 

 

3.3.1 Materials and Specimens Fabrication 

Three asphalt binders and two aggregates selected from the Strategic Highway Research 

Program (SHRP) Materials Reference Library (MRL) were evaluated.  The three asphalt binders 

include AAB, which is a PG 58-22 grade binder from Wyoming; AAD, which is a PG 58-28 

grade California Coastal asphalt; and ABD, which is a PG 58-10 California Valley asphalt 

(Jones IV 1993). The experiment design includes two aggregates: RK is a basalt and RA is a 

granite (Robl et al. 1991). 

The fine aggregate mixture (FAM) design was the same as that used by Zollinger 

(2005), and the specimen fabrication followed the same procedure as that used by Zollinger to 

fabricate cylindrical specimens prepared for the Dynamic Mechanical Analysis (DMA). The four 

main steps of this procedure are briefly described below. 

• The gradation for the FAM followed the gradation of the fine aggregate portion of 

the full asphalt mixture (Figure 3-1). 

• FAM samples 150 mm in diameter and 70 mm in height were compacted using the 

Superpave Gyratory Compactor (SGC) (Figure 3-2a). The standard procedure 

described in AASHTO T 316 was used as a reference.  The criterion of termination 

was the percent of air voids specified for the design. 

• The upper and lower part of the cylindrical sample was sawed to obtain a new 

cylinder with the same diameter (150 mm) but with 50 mm in height (Figure 3-2b). 

Finally, cylindrical specimens of 50 mm height and 12 mm diameter were obtained 

(Figure 3-2c) by coring the larger specimen. 

• The volumetric properties of each small cylindrical sample were obtained following 

procedures similar to those used for full asphalt mixtures. 
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Figure 3-1. HMA and the Corresponding FAM Gradation 
 

50mm

(a) (b) (c) 

Figure 3-2. (a) 150 mm (6 inches) Diameter Sample, (b) Sawing and (c) Coring Process 
 

3.3.2 Test Method 

The test method for gravimetric sorption measurements is simple and inexpensive and the only 

equipment required is a sensitive mass balance. The dry weight of each FAM specimen was 

recorded.  Following this the specimens were placed in a distilled water bath of 100mL with 

approximately 5mm of water above the surface of the sample to ensure that the diffusion was 

mostly concentration driven. Subsequently, the weight of each specimen at saturated surface-dry 

(SSD) condition was measured (as in AASHTO T 166) at periodic intervals. The specimens 

were placed back in the water bath immediately after recording the weight of the specimen.  The 

time intervals varied along the test, since the rate of water absorption was not constant. In the 

first three days of the test, the SSD weight of the samples was measured three to six times per 

day. By the end of the test, the measurements were made only once every two weeks. Two 

groups of samples were evaluated, one at room temperature, and another at 100ºF.  
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The main objective of the test method was to measure the amount of water that was 

absorbed by the sample as a function of time required to reach equilibrium. Figure 3-3 illustrates 

four possible locations of water inside the FAM sample during the test: (i) in the ‘Macro’ voids, 

(ii) absorbed by the asphalt binder, (iii) at the binder-aggregate interface, and (iv) within the 

aggregates.  One disadvantage of the gravimetric method is that it is difficult to separate the 

amount of water sorbed by contribution due to these four mechanisms, since they probably 

happen simultaneously.  Accordingly, the recorded measurements and deduced values 

correspond to an average or homogenized material comprised of these four mechanisms. 

 

Absorbed by
asphalt binder

Binder-Aggregate
interface

‘Macro’ voidsWithin the
aggregates

 

Figure 3-3. Scheme of Possible Locations where the Water can be During the Gravimetric 
Sorption Test 

 

3.3.3 Background on Analysis 

This subsection presents a brief background regarding the analytical solution that was used to 

back calculate the diffusivity of the FAM.  General solutions to the diffusion equation can be 

obtained for a variety of initial and boundary conditions provided the diffusion coefficient is 

constant. As stated by Crank (1975), such a solution usually has one of two standard forms. 

Either it is comprised of a series of error functions or related integrals (both are most suitable for 

numerical evaluation at small times), or it is in the form of a trigonometric series that converges 

more satisfactorily for large values of time. For diffusion in samples with cylindrical geometries 

the trigonometric series is replaced by a series of Bessel functions. 

The FAM samples were considered as long circular cylinders in which radial diffusion 

was predominant. Thus, concentration in the specimen (C) can be described as a function of 

radius and time only. The diffusion equation then becomes: 
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For the case presented in this paper, the boundary condition relates to the rate of transfer 

of water (the diffusing substance) across the surface of the FAM specimen, with the sample 

initially in a dry condition. A simple and reasonable assumption is that the rate of exchange is 

directly proportional to the difference between the actual concentration CS just within the 

cylinder at any time and the concentration C0 which would be the one required to maintain 

equilibrium with the surrounding atmosphere. Mathematically this means that the condition at 

the surface is: 
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If the cylinder is initially at a uniform concentration C2, the required solution is: 
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where, the βn  is the nth root of 

( ) ( ) 001 =− βββ LJJ                                              (3-6) 

and 
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is a dimensionless parameter, with a being the radius of the sample. 

  The total amount of diffusing substance Mt entering or leaving the cylinder, depending 

on whether C0 is greater or smaller than C2, is expressed as a fraction of ∞M , the corresponding 

quantity after infinite time (or equilibrium), by 
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 In a previous study, Pereira and Yarwood (1996b) considered a cumulative diffusion of 

water through thin films of asphalt binder that does not follow Fick’s law.  Instead, water 

diffuses following a dual sorption mode, where each mode of sorption individually follows 

Fick’s law. In this model it is assumed that a fraction of the water molecules (x1) is partially 
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mobile (rapid absorption onto the surface sites), and the other fraction (x2 = 1 - x1) is completely 

mobile and can diffuse into the asphalt matrix freely (subsequent diffusion into the bulk 

materials).  

 The concept of the dual mode diffusion proposed by Pereira and Yarwood (1996b) was 

investigated for the FAM cylindrical samples. Although the FAM samples have three 

components (asphalt binder, aggregates, and air voids), without considering the interface 

between asphalt binder and aggregate, the dual mode is an attempt to represent the diffusion 

process only by two stages that occur in parallel (simultaneously): (i) in the first one, the water 

molecules are completely mobile (roughly representing the free volume), and (ii) in the second 

one, the water molecules are partially mobile. Equation 3-8 is then represented as follows: 
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After rearranging Equations 3-9 and 3-10 as a function of M1 and M2, they can be added 

to produce the total water absorbed at time t (Mt), Equation 3-11. The values of x1 and x2 are 

related to the proportion of the partially and totally mobile molecules. The value of x1 and two 

separate diffusion coefficients (D1 and D2) are then derived from the gravimetric data. 
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 A similar approach was used by Cheng et al. (2003) to divide the sorption of water into 

asphalt or mastic in two stages. In the first stage, both adsorption at the asphalt surface and 

absorption within the asphalt occur simultaneously. In the second stage, adsorption on the 

surface of the asphalt comes to equilibrium, but absorption (considered a diffusion process) 

continues and eventually becomes constant.  However, the approach used by Cheng et al. (2003) 

was to differentiate between absorption and adsorption in asphalt binders unlike the approach by 
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Pereira and Yarwood, which was to differentiate between different rates of absorption or 

diffusion. 

 

3.4 RESULTS AND DISCUSSION 

All combinations of asphalt binders and aggregates contain 8.9% (by weight) of asphalt binder 

and air voids varying from 7% to 11%, determined by the standard method AASHTO T 166. 

Their internal structure is, however, unknown. Resolution limitations of the X-ray CT prevent us 

from capturing the air voids in the size they happen in the FAM specimens. 

 

3.4.1 Water Uptake 

The capacity of sand-asphalt or FAM specimens to absorb water in its internal structure is an 

important factor for the moisture damage. One of the parameters used in computing diffusivity 

using Equation 3-11 is M∞, which is the amount of moisture absorbed by the specimen at 

saturation.  In a gravimetric test, saturation is evident when there is no further change in mass of 

the specimen with time.  In this study FAM specimens were immersed in water at room 

temperature (75ºF) and 100ºF for 21 months and 14 months respectively.  Figure 3-4 illustrates 

typical mass absorption data for specimens at 75ºF and 100ºF.  This figure indicates that mass 

absorption has clearly not reached an asymptote representative of a saturated specimen for the 

specimens at 100ºF, whereas the specimens at room temperature appear to be closer to 

saturation.  In any case, since M∞ was not clearly established for these test specimens, this 

parameter was also treated as an unknown in Equation 3-11. A similar approach was used by 

Pereira and Yarwood (1996b)  to analyze results from water diffusion in sulfonated poly(ether 

sulfone) membranes.  
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Figure 3-4. Water Uptake by Original Mass of the FAM Samples 
 

 From the data presented in Figure 3-4 one can observe that some samples were still far 

from reaching an asymptote. Therefore, a considerable error exists when trying to predict M∞. 

The room temperature data offer a better estimate of M∞ compared with the samples at 100ºF 

since they are closer to saturation, reaching an asymptote. These data do, however, clearly 

establish that water uptake is greater and continues longer at higher temperatures.  

Figure 3-5 illustrates the difference of the water uptake considering both conditions: (i) 

the last water uptake measurement as M∞, and (ii) the estimated value using the dual mode 
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diffusion model. For a given binder type, FAM mixes with RK aggregate absorbed more water 

than mixes with RA aggregate.  Aggregate RK and RA are both siliceous aggregates.  However, 

RK has a much higher SSA compared to RA (Little et al. 2005), and this is an indirect evidence 

that water is being adsorbed at the binder aggregate interface causing stripping as it diffuses into 

the FAM specimen. Aggregate RK has a much higher SSA and therefore will adsorb more water 

at the binder-aggregate interface compared to RA. From the data presented in Figure 3-5 it is 

clear that the difference between estimated and measured levels of moisture uptake is greater for 

100°F than for room temperature. 

 

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

RK AAB RK AAD RK ABD RA AAB RA AAD RA ABD

RT (Measured) RT (Estimated) 100F (Measured) 100F (Estimated)

W
at

er
 U

pt
ak

e

 

Figure 3-5. Water Uptake Measured for the Last Collected Reading and Estimated using 
the Dual Mode Diffusion Model 

 

3.4.2 Diffusivity 

The diffusivity, or diffusion coefficient, values were obtained using Equation 3-11. Table 3-2 

presents the results of Deff for all 24 samples evaluated (2 aggregates x 3 asphalt binders x 2 

temperatures x 2 replicates). The effective diffusivities (Deff) were obtained by the following 

equation, and the average values illustrated in Figure 3-6: 

( ) ( )[ ]1211 1 xDxDDeff −×+×=         (3-12) 
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Table 3-2. Summary of Diffusion Coefficient Values 

 Agg. Asphalt Sample 
Deff      

(10-12 m2/s) 

R2 

(%) 

Deff  average 

(m2/s) 

R
oo

m
 T

em
pe

ra
tu

re
 (7

5°
F)

 RK  

AAB 
1 2.00 99.7 

1.85E-12 
2 1.70 99.7 

AAD 
1 2.20 99.8 

2.23E-12 
2 2.26 99.8 

ABD 
1 1.82 99.9 

2.04E-12 
2 2.26 99.9 

RA 

AAB 
1 0.785 99.6 

7.83E-13 
2 0.781 99.6 

AAD 
1 1.36 99.8 

1.34E-12 
2 1.33 99.8 

ABD 
1 1.15 99.8 

1.22E-12 
2 1.29 99.9 

10
0°

F 

RK 

AAB 
1 4.76 99.5 

4.90E-12 
2 5.04 99.7 

AAD 
1 4.81 99.4 

4.46E-12 
2 4.11 99.1 

ABD 
1 3.50 99.6 

3.20E-12 
2 2.91 99.9 

RA 

AAB 
1 3.46 98.7 

2.75E-12 
2 2.05 99.2 

AAD 
1 2.83 98.8 

3.10E-12 
2 3.37 99.0 

ABD 
1 2.12 98.6 

2.21E-12 
2 2.31 99.0 
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Figure 3-6. Diffusivity Results Obtained for the Samples Tested at Room Temperature and 
at 100°F using the Dual Mode Diffusion Model 

  

 From Table 3-2 it is important to mention the influence of the predicted M∞ on the 

diffusivities results. If the predicted M∞ were underestimated, the effective diffusivity values can 

perhaps be conservative. 

 

3.4.3 The Effect of Temperature on the Diffusivity of Water 

The temperature dependence of the diffusion coefficient can be described with the activation 

energy (Ea) such that: 








−

= RT
E

eff

a

DTD exp)( 0         (3-13) 

where, Do is the diffusion coefficient when the temperature goes to infinity (m2/s), Ea is the 

activation energy (J/mol), R the universal gas constant (8.314J/mol-K) and T is the absolute 

temperature (K). 

The temperature dependence of the hydration rate has been quantitatively described, in 

terms of the sample diffusivities by the Arrhenius law. Plots of the diffusivity of water into the 

FAM samples at two test temperatures were used to calculate the activation energy. Two 

samples of each asphalt-aggregate combination were tested at each temperature.  Extension of 

the temperature range towards higher temperatures was limited by the stability of the asphalt 

binder. 
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 The term activation energy means the energy that a system must acquire before a process 

can occur. The molecular interactions in a complex molecular system such as asphalt are 

extensive, and at any given temperature, these interactions will tend to control the molecular 

motions of the constituents in asphalt (Netzel 2006). The concept of activation energy has been 

applied for different properties and parameters of asphaltic materials, such as viscosity (Salomon 

and Zhai), oxidation/aging (Ait-Kadi et al. 1996; Liu et al. 1996), and crack growth process 

(Jacobs et al. 1996). It was also previously used to rank the relative compaction effort of asphalt 

mixtures in the field (Salomon and Zhai 2009).  

Artamendi and Khalid (2006) studied the absorption/diffusion of bitumen from different 

sources and grades into waste truck and car-tire rubber by weight gain experiments. The 

temperature dependence of the diffusion coefficient has been observed to follow the Arrhenius 

relationship characteristic of an activation energy process. Karlsson et al. (2007) reported that by 

their experience, most bitumens show close to log-linear relationships between diffusion 

coefficients and temperatures for the range as used in their study (60-100ºC). The use of the 

activation energy was also applied for water diffusion in mineral materials. Simonyan et al. 

(2009) evaluated the H2O → D2O exchange process in porous feldspar in the temperature range 

from 11ºC to 44ºC. The activation energy ranged from 7.8 to 18.8 kJ/mol, and the authors 

concluded that the effective diffusivity of water was mainly controlled by physical properties of 

the feldspar (i.e. porosity, pore connectivity, pore geometry and distribution). 

Figure 3-7 illustrates the Ea results obtained in this study for water diffusion in FAM 

samples. They varied from 0.36 to 0.98 kJ/mol. Different asphalt binders and aggregates resulted 

in different activation energies for diffusion. A higher Ea value indicates greater temperature 

sensitivity of the diffusion coefficient. Comparing the results of activation energy with the water 

uptake illustrated in Figure 3-5, one can observe that both parameters are inversely proportional.  
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Figure 3-7. Activation Energy Obtained by the Arrhenius Law 
 

3.5 SUMMARY AND CONCLUSIONS 

Moisture transport through an asphalt mixture is an integral part of the moisture damage 

mechanism.  Moisture damage in an asphalt mixture is a complex process that represents the 

cumulative effect of the moisture transport and the deterioration processes.  In this study the 

water uptake and the diffusivity of water in FAM was determined using a simple gravimetric 

sorption technique.  The major conclusions of this study are: 

• Diffusivity of several different FAMs was measured using a simple gravimetric 

approach.  Results indicate that the diffusivity of water through FAM is in the order of 

10-12 m2/s.  These results are in the same order of magnitude as those reported by 

Kringos et al. (2008a).   

• Moisture uptake and diffusivity of water through FAM is dependent on the type of 

aggregate and asphalt binder.  For any given asphalt binder, FAM specimens with 

aggregates having a significantly higher specific surface area such as RK had higher 

moisture uptake and higher diffusivity when compared to FAM specimens with 

aggregates having a significantly lower specific surface area.  Since both aggregates are 

siliceous with low porosity, this indicates that a portion of the diffused water is probably 

trapped at the binder-aggregate interface. 

• At room temperature, the rank order of diffusivity and moisture uptake for the three 

binders was the same irrespective of the type of aggregate.  However, this rank order 
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changed at higher temperatures suggesting that at elevated temperatures different binders 

may be undergoing a different level of change in the free volume. 
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4 . HISTORY DEPENDENCE OF WATER DIFFUSION IN ASPHALT BINDERS 

 

4.1 INTRODUCTION AND BACKGROUND 

Moisture transport through an asphalt mixture is an integral part of the moisture damage 

mechanism. Material properties and system configuration control the modes of moisture 

transport into the bulk of the mixture and the response of the system. The water has the ability to 

weaken the mastic and displaces the asphalt binder from the aggregate. The moisture diffusion 

through the asphalt binder, or through the mastic, is presented as one of the moisture damage 

mechanisms. Previous studies (Vasconcelos et al. 2010; Wei 2009) have measured the diffusivity 

of moisture through asphalt binders to be of the order of 10-17 m2/s.  Based on these numbers, a 

10 micron thick binder film continuously exposed to 100% relative humidity or water at one end 

would have 50% saturation on the other end of the film after a period of 15 months. In field 

conditions, it is not very likely that such boundary condition would exist over such sustained 

periods of time.  The main objective of this study was to investigate the effect of cycling 

moisture boundary conditions on the diffusivity of moisture through asphalt binders.  In other 

words, the objective of this research was to quantify the influence of hysteresis on diffusivity of 

moisture through asphalt binders.  

 Hysteresis of a physical property is observed in many fields of science. Examples 

include magnetic hysteresis, ferroelectric hysteresis, mechanical hysteresis, superconducting 

hysteresis, adsorption hysteresis, optical hysteresis, and electron beam hysteresis (Mayergoyz 

1991).  It is a phenomenon in which the response of a physical system to an external influence 

depends not only on the present magnitude of that influence but also on the previous history of 

the system. Bertotti and Mayergoyz (2006) defined it in modern science as ‘the collective name 

for a class of strongly nonlinear physical phenomena’.  

Despite the importance of hysteresis (or any type of history dependence) of water 

diffusion in polymeric materials, there is only limited literature available on this subject.  Frisch 

(1964) suggested that a polymer below its glass transition temperature (Tg) must possess history-

dependent diffusion coefficients and experience time-dependent changes in surface 

concentrations in order to maintain sorption-equilibrium at its boundaries. These time 

dependencies are intrinsically related to the relaxation times for molecular rearrangement in the 

polymers. Naumov et al. (2007) used the pulse gradient NMR method to study molecular 

diffusion of adsorbate molecules in mesoporous materials with different pore morphologies. The 
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experimental results revealed that in line with the adsorption hysteresis, the measured 

diffusivities exhibited a history-dependent behavior, and diffusivities on the adsorption branch 

did not follow those measured on the desorption branch. The authors also found that the porous 

structure strongly influences the resultant patterns of the experimentally obtained diffusivities. 

Apicella and coworkers (1981) evaluated the water uptakes in sorption experiments made on thin 

sheets of an epoxy resin. The authors used a quartz microbalance placed in a temperature and 

humidity controlled cell. The sorption behaviors, under the same temperature and humidity 

conditions, have been successively compared for samples with different hygrothermal histories. 

Equilibrium moisture sorptions have been found to be dependent upon the humidity history to 

which the system had been previously subjected. 

 In this paper, the history dependence of water diffusion in asphalt binders was monitored 

using the FTIR-ATR technique with each sample passing through three hydration cycles, and 

two dehydration cycles. This paper validates the existence of hysteresis of moisture diffusivity in 

asphalt binders.  The authors believe that the history dependence of this property is an important 

factor in characterizing asphalt binders especially in the modeling of moisture damage with 

fluctuating boundary conditions. 

 

4.2 EXPERIMENTAL DESIGN 

In this study, three asphalt binders were selected from the Strategic Highway Research Program 

(SHRP) Materials Reference Library (MRL): AAB, which is a PG 58-22 grade binder from 

Wyoming; AAD, which is a PG 58-22 grade California Coastal; and ABD, which is a PG 58-10 

California Valley (Jones IV 1993). The procedure used to determine the history dependence of 

water diffusion in the asphalt binders is described in the following subsections.  

 

4.2.1 Sample Preparation and Test Method 

The detailed procedure for the sample preparation followed the same described in a previous 

publication (Vasconcelos et al. 2010). Asphalt binder solutions were prepared with toluene in the 

concentration of 1.5g of asphalt to 11mL of solvent (WRI 2001). The solution was spin coated in 

the ZnSe (Zinc Selenide) ATR crystal, followed by: (i) 2h under dry nitrogen purge to eliminate 

residual solvent presented in the film, and (ii) 1h period at 50ºC in order to anneal micro cavities 

that might have been created due to solvent vaporization. Spin coating of the asphalt film was 

carried out such that the film thickness was less than the effective depth of penetration of the 
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infrared, dp (Figure 4-1).  In this case when water is added to the top of the film, a portion of the 

water over the film as well as the entire film is immediately within the effective detection range 

of the spectra.  Change in concentration of water within the film over time is quantified by 

subtracting the initial spectra at time t = 0 s from the spectra detected at any subsequent point in 

time. 

 

dp

Water
Asphalt Film

ATR Cell

 

Figure 4-1. System Configuration and Infrared Depth of Penetration 
 

The detailed test procedure to determine the rate of moisture absorption in asphalt 

binders is presented by Vasconcelos et al. (2010). However, in this study instead of only one 

cycle, the samples passed through three cycles of hydration (HC) followed by dehydration (DC). 

The duration of each HC was fixed at 15 days. The key steps of this procedure are briefly 

described below: 

• A thin film of asphalt binder is prepared on a ZnSe ATR crystal using spin coating. 

The specially designed chamber is attached to the ZnSe crystal in order to deposit 

any liquid or allow passage of vapors over the film. 

• The FTIR spectra of the asphalt binder are collected. 

• 10mL of distilled water is added into the chamber (Figure 4-2) to initiate the first 

hydration cycle HC1. The chamber is sealed during the HC1 to avoid loss of water. 

Readings of asphalt/water spectrum are collected for 15 days using the FTIR. 

• Water is removed from the chamber with a syringe at the end of HC1, and the film is 

allowed to come to equilibrium with the ambient atmosphere without disturbing of 

the system (no vacuum applied).  An important observation here was that after 24 

hours of dehydration, the FTIR spectra for the asphalt binder was very similar to the 

spectra obtained before the addition of water.  This indicates that the 24 hour period 

was adequate to significantly complete the dehydration process.  This was the first 

dehydration cycle or DC1. The relative humidity of the room was monitored during 

the DC and was found to be 40-45%. 
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• After DC1, the second hydration cycle or HC2 was initiated following the same 

procedure described for HC1. 

• Three hydration cycles and two dehydration cycles comprised the complete 

procedure. 

 

CHAMBER

ATR CELL

(a) (b) 
Figure 4-2. (a) Chamber (to Hold the Water above the Asphalt Film) Attached to the ATR 

cell, (b) Chamber Top View (Cover Removed) 
 

4.2.2 Analysis 

The FTIR-ATR technique does not directly measure mass of the diffusant at a given depth, but 

provides total absorbance in the entire film at any time t (At).  The absorbance is proportional to 

the total instantaneous mass of the diffusant (Mt) within the film. When a polymer film of 

thickness 2l on an ATR plate is exposed to an infinite reservoir, assuming weak absorption and 

constant polymer refractive index, the following equation can be derived in terms of absorbance 

(Fieldson and Barbari 1993): 
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where, γ  is the evanescent field decay coefficient (inverse of the depth of penetration), A0 is the 

absorbance at time zero, D is the diffusivity, and Aeq is the absorbance value at saturation.  In the 

FTIR-ATR test, saturation is evident when there is no further change in absorbance of the 

specimen with time. Since Aeq was not clearly established in all the specimens and all the 
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hydration cycles, this parameter was also treated as an unknown in Equation 4-1. A similar 

approach was used by Pereira and Yarwood (1996b)  to analyze results from water diffusion in 

sulfonated poly(ether sulfone) membranes. 

 Equation 4-1 is similar to the mass uptake equation used in gravimetric sorption 

experiments, with the main difference being that the Fickian concentration profile is convoluted 

with the FTIR-ATR absorption equation before it is integrated (Fieldson and Barbari 1993). The 

quantitative analyses were performed using the corrected area between 3000 and 3800 cm-1, as 

illustrated in Figure 4-3. The increase of the area with time was used to quantify the increase in 

water concentration into the asphalt binder. 

 

Area at t1

 
(i) 

Figure 4-3. Region of Analysis used to Quantify Change of Water Concentration into the 
Asphalt Binders with Time 
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Area at t2

 
(ii) 

 
(iii) 

Figure 4-3 Continued 
 

 As reported by Vasconcelos et al (2010), the water diffusion in thin (less than 1µm) 

films of asphalt binders did not follow the simple Fick’s second law.  Instead, water diffuses 

following a dual sorption mode, where each mode of sorption individually follows Fick’s law. In 

this model it is assumed that a fraction of the water molecules is partially mobile, and the other 

fraction is completely mobile and can diffuse into the asphalt matrix freely. Thus the expression 

for describing this model contains two diffusion coefficients (Pereira and Yarwood 1996b): 
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where, D1 and D2 are the diffusivities (or diffusion coefficients) components of the dual mode 

diffusion model. After rearranging Equations 4-2 and 4-3 as a function of A1 and A2, they can be 

added to produce the total absorbance at time t (A1 + A2  = At). The values of x1 and x2 are 

related to the proportion of the partially and totally mobile molecules (x1 + x2 = 1). The value of 

x1 and two separate diffusion coefficients (D1 and D2) are then derived from the absorbance data. 

The same analysis procedure was used for the three hydration cycles, and the Deff of each cycle 

were compared. 

 

4.3 RESULTS AND DISCUSSION 

Quantitative analyses were performed using the Dual Mode diffusion model for the three 

hydration cycles, in each asphalt binder.  Recall that the moisture content in the asphalt binder 

prior to the start of each hydration cycle was verified to be the same as that of the original binder 

prior to the start of the test sequence.  Four replicates of each asphalt were evaluated and the 

average results are presented in Table 4-1. 
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Table 4-1. Average Results Obtained for Diffusivity Values 

Asphalt Cycle D1(nm2/s) D2(nm2/s) x1 

Average Deff 

(nm2/s) 

[CV] 

R2 (fitting 

with the 

model) 

AAB 

1 29.0 1.2 0.50 
15.0 

[29.8%] 
0.992 

2 167.9 2.2 0.46 
80.8 

[47.3%] 
0.984 

3 194.7 2.8 0.47 
92.1 

[20.5%] 
0.984 

AAD 

1 41.7 1.8 0.41 
16.2 

[40.6%] 
0.988 

2 59.9 1.0 0.48 
28.2 

[33.5%] 
0.991 

3 103.0 1.5 0.43 
41.3 

[34.2%] 
0.992 

ABD 

1 102.7 0.5 0.55 
52.0 

[34.6%] 
0.974 

2 371.8 1.4 0.62 
178.3 

[50.3%] 
0.906 

3 571.5 2.3 0.44 
244.4 

[21.6%] 
0.946 

 

The difference in the diffusivity after each hydration cycle under the same 

environmental conditions may be attributed to a progressive change in microstructure.  For 

example, a previous study attributed the history dependence of moisture damage in epoxy resins 

to a microcavitational damage in the form of localized solvent crazing (Apicella et al. 1981). 

This damage process has been associated with the presence of network inhomogeneities, which, 

on sorption, may favor localized crazing by differential swelling stresses. The authors concluded 

that the moisture by itself was not effective in producing the microcavitation in the resin but the 

synergistic effect of moisture and temperature was effective in the damaging process  In general, 

the diffusivity of moisture through the asphalt binder significantly increased after the first 
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hydration cycle. Figure 4-4 illustrates the concentration profile for asphalt AAB for hydration 

cycles 1, 2 and 3. 
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(b) 

Figure 4-4. Concentration Profile for Asphalt AAB in: (a) HC 1, (b) HC 2, and (c) HC3 
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(c) 

Figure 4-4 Continued 
 

4.3.1 Statistical Analysis 

Table 4-1 shows the average of the results obtained using the Dual Mode diffusion model, with 

the coefficient of variation (CV) for all three hydration cycles and asphalt binders. Two types of 

statistical analyses were carried out, (i) comparison of the same hydration cycle for different 

asphalts, and (ii) comparison of the different hydration cycles for the same asphalt. The analyses 

were conducted using the SPSS Statistics 17.0 software and included all the replicates for each 

cycle and each asphalt binder. 

The null hypothesis of equal diffusivity values was assessed by applying Analysis of 

Variance (ANOVA) at a significance level of 0.05. Corresponding results showed that: (i) the 

moisture diffusivity for all three asphalt binders was statistically different, and (ii) for any given 

asphalt binder the moisture diffusivity was statistically different from one cycle to another. 

Tukey’s HSD (honestly significant difference), and Bonferroni t test were used for identification 

of significant different means. Both methods presented the same classification for the different 

asphalts and hydration cycles.  Table 4-2 presents the results obtained by the Tukey’s HSD test. 
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Table 4-2.  Statistical Analysis* 

 Part (i)  Part (ii) 

 ANOVA Multiple Comparisons 

 (Sig.)   (Sig.) 

HC1 0.002 

AAB AAD 0.987 

AAB ABD 0.003 

AAD ABD 0.004 

HC2 0.013 

AAB AAD 0.422 

AAB ABD 0.086 

AAD ABD 0.011 

HC3 0.000 

AAB AAD 0.133 

AAB ABD 0.000 

AAD ABD 0.000 
 

 ANOVA Multiple Comparisons 

 (Sig.)   (Sig.) 

AAB 0.003 

HC1 HC2 0.011 

HC1 HC3 0.004 

HC2 HC3 0.797 

AAD 0.025 

HC1 HC2 0.289 

HC1 HC3 0.020 

HC2 HC3 0.236 

ABD 0.005 

HC1 HC2 0.040 

HC1 HC3 0.004 

HC2 HC3 0.321 
 

* The results in bold were considered statistically different 

 

The difference in the diffusivity values for different hydration cycle may be attributed to 

the following causes: 

i) Dissolution and loss of asphalt binder in water that was removed using a syringe, 

ii) Change in the microstructure of the asphalt binder due to hydration/dehydration 

cycles, and 

iii) Residual water within the asphalt binder between the hydration cycles. 

 

Additional tests and analysis were conducted to further evaluate the contribution of the 

above mentioned causes on the history dependence of water diffusion in asphalt binders. The 

following subsections discuss the findings from these tests. 

 

4.3.2 Dissolution and Loss of Asphalt Binder in Water 

All forms of spectroscopy give spectra that may be described in terms of frequency, intensity, 

and shape of spectral lines and bands. Nuclear Magnetic Resonance (NMR) is a spectroscopy 

technique that relies on the magnetic properties of the atomic nucleus. When placed in a strong 

magnetic field, certain nuclei resonate at a characteristic frequency in the radio frequency range 

of the electromagnetic spectrum. Slight variations in this resonant frequency give us detailed 
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information about the molecular structure in which the atom resides.  A detailed description of 

NMR spectroscopy is beyond the scope of this paper. 

In this study NMR spectroscopy was used to detect traces of bitumen that may have 

dissolved while the water was in contact with the bitumen. Two samples of asphalt AAD were 

prepared following the same procedure described for the FTIR-ATR test and submerged under a 

thin layer of water. The water remained in contact with the asphalt binder for 30 days, when it 

was removed for testing with the NMR.  Results indicated that only signals characteristic of 

water molecules were observed, 2.5 to 3.0 ppm, with no signal of organic compounds 

pronounced in both samples analyzed. Based on this information, one can eliminate the 

possibility of cause i) presented above. 

 

4.3.3 Change in Microstructure of Asphalt Binder 

New techniques are being developed to evaluate the microstructure of asphalt binders. Among 

these are microscopic techniques such as the atomic force microscopy (AFM). The AFM, 

introduced by Binnig et al. (1986), provides insight into the surface topography with a powerful 

three-dimensional spatial resolution in the angstrom range. This technique was previously used 

to quantify the relative stiffness of different phases in asphalt binders (Jäger et al. 2004), to test 

asphalts at low temperatures (Masson et al. 2007), to evaluate the influence of aging of modified 

binders (Wu et al. 2008), and also to quantify its surface energy (Pauli et al. 2003).  

The AFM was applied in this study to investigate potential influence of water on the 

microstructure or surface morphology of thin films of asphalt binder. The implicit assumption in 

this approach is that surface morphology also reflects changes within the bulk of the binder. The 

same substrate (ZnSe crystal), and procedure for sample preparation (spin coating and annealing) 

used for the FTIR-ATR measurements were also used for the AFM imaging (Vasconcelos et al. 

2010). The specimens were scanned by a cantilever with a small tip placed near its free end, with 

the deflection of the cantilever describing the interaction between the AFM tip and the sample 

surface. The non-contact mode (NCM) was used to scan the surface topography of the asphalt 

binder without disturbing the specimen due to contact with the cantilever. The detailed test 

procedure can be found in other publications (Pauli 1999; Pauli et al. 2001). 

 Asphalt AAD was selected as result of its poor performance in the presence of water 

reported in previous publication (Bhasin et al. 2007). Figure 4-5 and 4-6 display the AFM 

images (topography and amplitude) of asphalt binder AAD before, and after 4 days of exposure 
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to water, respectively. Figure 4-5 clearly shows the ‘bee’ structure previously observed in 

different asphalt binders (Dourado and Simao 2009; Loeber et al. 1996; Pauli 1999; Pauli et al. 

2001), and reported as being related to the asphaltenes or waxes in asphalt binders.  

After subjecting the binder to water and dehydration, Figure 4-6 did not show the same 

surface morphology as seen in Figure 4-5. Based on these preliminary results it is very likely that 

water in contact with thin films of asphalt AAD altered its surface morphology. Therefore, a 

change in the microstructure of the asphalt binder could be a plausible explanation for the history 

dependence of moisture diffusivity in asphalt binders. However, further investigation may be 

required to quantify this effect and possibly correlate it with the chemical constituents of asphalt 

binder. 

 

  

(i) 

  

(ii) 
Figure 4-5. AFM Images from Asphalt AAD, (i) 25µm2 and (ii) 5µm2 
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(i) 

 

(ii) 

Figure 4-6. AFM Images of Asphalt AAD after 4 Days of Water Exposure, (i) 25µm2 and 
(ii) 5µm2 

 

4.3.4 Residual Moisture within the Asphalt Binder 

As described in the test method section, the dehydration cycles followed a 24h period after the 

liquid water was removed from the chamber. It was observed that at the end of the dehydration 

cycles, some interference fringes appeared in the region from 3600-4000cm-1 of the spectra 

(Figure 4-7). This is the fingerprint for water in the vapor or molecular form, as reported by 

Ewing et al. (2003). In the mentioned publication the authors show the different absorption 

spectra of water as (i) vapor at 25ºC, (ii) liquid at 25ºC, and (iii) ice at 190K.  
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From Figure 4-7 one can observe an increase in the appearance of the interference 

fringes in the region from 3600-4000cm-1 from cycle 1 to cycle 3. The region of manifestation of 

water vapor (or molecular water) is not as simple to quantify as the region of liquid water (that 

has a broad peak area from 3000-3800 cm-1). However, a tentative quantification was done by 

measuring the peak height at 3853cm-1, once it was observed that this point in the spectra had a 

constant increase over time. Figure 4-8 presents the results of this quantification for the three 

hydration cycles of one specimen of asphalt AAB.  

Although the liquid water had been removed from the chamber during the dehydration 

cycles, it seems that there is still some residual water in the vapor state trapped into the asphalt 

binder film. The consequence of the residual moisture in the history dependence of diffusivity, 

and ultimately to the debonding of asphalt binder from aggregate is still unknown. Further 

analyses and tests are still necessary to arrive in conclusive data. The topic is still under 

investigation by this research group. 

 

 

Figure 4-7. Illustration of Dehydration Cycles (Asphalt AAB) 
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Figure 4-8. Quantification of the Presence of Water Vapor in the Asphalt Film (Peak 
Height at 3853cm-1 for Asphalt AAB) 

 

4.4 CONCLUSIONS 

Despite the importance of hysteresis of water diffusion in polymeric materials, there is only 

limited literature available on this subject. The FTIR-ATR spectroscopy technique was used to 

investigate the effect of cycling moisture boundary conditions on the diffusivity of moisture 

through three asphalt binders (SHRP reference library). The samples passed through three cycles 

of hydration (HC) followed by dehydration (DC) and the major conclusions of this study 

follows: 

• The rate of moisture diffusion in asphalt binders was proved to be dependent on the 

history of exposure of the asphalt binder to the moisture. The phenomenon was 

observed in the three asphalt binders investigated. 

• In most cases, the diffusivity of moisture increased with every subsequent cycle of 

exposure to moisture.  The increase in diffusivity was most significant after the first 

cycle, and the change in diffusivity was dependent on the type of asphalt binder. 

• The NMR spectroscopy technique was used to analyze the water exposed to the 

bitumen film for a 30 days period.  No signal of organic compounds was observed in 

the samples analyzed, reducing the possibility of dissolution or loss of asphalt binder 

in water. 

• The increase in moisture diffusivity was attributed mostly to the change in 

microstructure of the asphalt binder after being exposed to the moisture.  This was 
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supported by AFM images of asphalt binder before and after being exposed to water. 

Further investigation is still necessary to quantify this effect and possibly correlate it 

with the chemical constituents of asphalt binder.   

• There was some evidence of increase in moisture trapped in the form of vapor even 

after dehydration that could also contribute to the increase in diffusivity. The 

consequence of the residual moisture in the history dependence of diffusivity, and 

ultimately to the debonding of asphalt binder from aggregate is still unknown. 

Further analyses and tests are still necessary to arrive in conclusive data. The topic is 

still under investigation by this research group. 
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5 . CONCLUSIONS, RECOMMENDATIONS, AND FUTURE WORK 

 

5.1 DETAILED CONCLUSIONS AND RECOMENDATIONS 

This section summarizes the main findings of this research study and corresponding 

recommendations to the measurement of water diffusion is asphalt materials, and related topics 

to further improve the aspects treated in this study. The following subsections have the detailed 

conclusions and recommendations obtained in each section of this manuscript. 

 

5.1.1 Water Diffusion in Asphalt Binders 

The detailed procedure for the measurement of water diffusion in asphalt binder films was 

presented. Figure 5-1 illustrates the three main steps in the procedure: sample preparation using 

stock asphalt solution and spin coating; film thickness and refractive index measurement by the 

ellipsometer, and the test method used in the FTIR-ATR. The homogeneity of the asphalt film 

was carefully evaluated, since the thickness is an important parameter in the analytical model 

used. Following are the main findings of this study: 

• The diffusivity of water through asphalt was significantly higher for (at least) one asphalt 

binder than it was in the other three binders (from the set of four tested) indicating that 

diffusivity may be an important material variable that influences the rate of moisture 

damage. 

• A dual mode diffusion model was shown to better represent the diffusion of water through 

asphalt binders.  This model suggests that water molecules may be diffusing at two different 

rates within the asphalt binder with the slower rate being associated with interaction between 

water molecules and polar functional groups within the material.  The implication of this 

mode of diffusion through asphalt binders in terms of performance and asphalt chemistry 

requires further investigation.  However, these results do suggest that future efforts related to 

modeling of moisture damage should consider the use of a dual mode diffusion model rather 

than simple diffusion based on Fick’s second law.   

• The values of diffusivity reported in this study are smaller than the values reported by 

Arambula et al. (2009) and Kassem et al. (2006).  The values reported in this paper pertain to 

the diffusion of liquid water through thin films of asphalt binder which is different from 

diffusion of moisture through mixtures or mastics.  The latter is dictated by macroscopic 

properties including interconnected air voids that allow moisture to travel much faster 
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through the bulk.  In contrast, the results shown in this study are relevant to the diffusion of 

moisture through the binder as in the case of microstructural entities that interconnect voids 

to the binder-aggregate interface.  The impact of this could be that binders that develop a 

tenacious bond with aggregate surfaces and also resist moisture diffusion to the binder-

aggregate interface may be more resistant to moisture damage.  

• The results obtained in this study are in the same order of magnitude of the results presented 

by Wei (2009) using the Electrochemical Impedance Spectroscopy (EIS). Wei used thin 

binder film on aluminum plate substrate. 

 

 

Figure 5-1. Overall Test Procedure used for the Measurement of Water Diffusion in 
Asphalt Binder Films 

 

5.1.2 Water Diffusion in Fine Aggregate Mixtures 

A simple gravimetric sorption procedure for the measurement of water diffusion in fine 

aggregate mixtures was presented. Figure 5-2 illustrates the two main steps in the procedure: 

specimen fabrication, and the test method. The specimens were comprised of fine aggregates 

(passing sieve No 16), asphalt binder and air voids. Three asphalt binders and two aggregates 

were combined and tested at two different temperatures. Following are the main findings of this 

study: 
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• Diffusivity of several different FAMs was measured using a simple gravimetric approach.  

Results indicate that the diffusivity of water through FAM is in the order of 10-12 m2/s.  

These results are in the same order of magnitude as those reported by Kringos et al. (2008a).   

• Moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate 

and asphalt binder.  For any given asphalt binder, FAM specimens with aggregates having a 

significantly higher specific surface area such as RK had higher moisture uptake and higher 

diffusivity when compared to FAM specimens with aggregates having a significantly lower 

specific surface area.  Since both aggregates are siliceous with low porosity, this indicates 

that a portion of the diffused water is probably trapped at the binder-aggregate interface. 

• At room temperature, the rank order of diffusivity and moisture uptake for the three binders 

was the same irrespective of the type of aggregate.  However, this rank order changed at 

higher temperatures suggesting that at elevated temperatures different binders may be 

undergoing a different level of change in the free volume.   

 

 

Figure 5-2. Overall Test Procedure used for the Measurement of Water Diffusion in Fine 
Aggregate Mixtures 

 

5.1.3 History Dependence of Water Diffusion in Asphalt Binders 

In this study, the history dependence of water diffusion in asphalt binders was monitored using 

the FTIR-ATR technique with each sample passing through three hydration cycles, and two 
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dehydration cycles. The paper validates the existence of hysteresis of water diffusivity in asphalt 

binders.  The authors believe that the history dependence of this property is an important factor 

in characterizing asphalt binders especially in the modeling of moisture damage with fluctuating 

boundary conditions. The major conclusions of this study follow: 

• The rate of moisture diffusion in asphalt binders was proved to be dependent on the history 

of exposure of the asphalt binder to the moisture. The phenomenon was observed in the three 

asphalt binders investigated. 

• In most cases, the diffusivity of moisture increased with every subsequent cycle of exposure 

to moisture.  The increase in diffusivity was most significant after the first cycle, and the 

change in diffusivity was dependent on the type of asphalt binder. 

• NMR spectroscopy was used to analyze the water exposed to the bitumen film for a 30 day 

period.  No signal of organic compounds was observed in the samples analyzed, reducing the 

possibility of dissolution or loss of asphalt binder in water. 

• The increase in moisture diffusivity was attributed mostly to the change in microstructure of 

the asphalt binder after being exposed to the moisture.  This was supported by AFM images 

of asphalt binder before and after being exposed to water. Further investigation is still 

necessary to quantify this effect and possibly correlate it with the chemical constituents of 

asphalt binder.   

• There was some evidence of increase in moisture trapped in the form of vapors even after 

dehydration that could also contribute to the increase in diffusivity. The consequence of the 

residual moisture in the history dependence of diffusivity, and ultimately to the debonding of 

asphalt binder from aggregate is still unknown. Further analyses and tests are still necessary 

to arrive in conclusive data. The topic is still under investigation by this research group. 
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5.1.4 The Physical State of Water and the Diffusion in Asphalt Binders 

It is known that the water molecule has distinct arrangement patterns as the physical state change 

from ice to water to vapor. The FTIR-ATR technique has the ability to differentiate water in 

different physical states, and this technique is being used to quantify molecular water movement 

into asphalt films. Based on the partial results obtained until now, one can observe that the 

detection of water vapor by the FTIR occurred before the detection of liquid water. These 

preliminary results give an insight about the influence of the physical state of water in rate of 

diffusion into the asphalt films. The study is still under investigation by this research group. 

 

5.2 FUTURE WORK 

The analysis conducted allowed identification of the aspects subsequently discussed, not 

included in this study, that require additional study to further investigate the process of moisture 

diffusion in asphalt materials.  

• Further investigation of the differences between the diffusion of liquid water versus water 

vapor is recommended. A simple and not expensive way to have the relative humidity (RH) 

controlled at high levels (above 95%) is through the use of saturated salt solutions. In 

previous studies (Carotenuto and Dell'Isola 1996; Martin 1962; O'Brien 1948) one can find a 

list of different salts and the equilibrium relative humidity values for each salt at different 

temperatures. The same FTIR-ATR technique previously described can be used. A chamber 

was designed for this investigation (Figure 5-3). In case different results are observed for the 

diffusivity of liquid water and water vapor in asphalt binders, the consequences of this 

difference should also be addressed. 
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Figure 5-3. Humidity Chamber Designed to Keep the Specimens at a Controlled Relative 
Humidity 

 

• Use of the FTIR-ATR to quantify water and moisture diffusivity through polymer modified 

binders, and also mastic (asphalt binder and material passing sieve No 200). Considerations 

such as casting of thin homogenous films are important when using this technique. 

• Determine the rate of diffusion at the binder-substrate interface in addition to the rates of 

diffusion through thin films of asphalt binder. The kinetics of debonding, or rate of 

debonding, at the binder-aggregate is mostly influenced by the thermodynamic potential for 

water to cause debonding (determined using the surface free energy components) and micro 

texture of the aggregate surface. 
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• The gravimetric sorption setup can also be applied for measurements at different scales and 

also to different samples and test configurations. Sample geometry, test temperature, 

aggregate sizes, and different specimen air voids are some examples of potential topics for 

further investigation. 
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APPENDIX A 

 

DEVELOPMENT OF THE FTIR-ATR DIFFUSION MODEL 

 

The diffusion of many liquids is described by Fick’s second law, and are termed one-

dimensional in situations where the thickness of the sample is much smaller that its width or 

length. Equation (A-1) is a solution for a ‘thin film’ under uniform initial distribution and equal 

surface concentrations, as stated in the boundaries conditions below (Crank 1979): 

 

t = 0 ,  -L < z < L  ,  C = C0 (uniform)  

t > 0  ,  @ film surface  ,  C = C1 (constant), 
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where, 

∞C = equilibrium concentration of penetrant in the film; and 

D = concentration-independent diffusivity. 

 

To obtain quantitative information from the ATR spectroscopy experiment, the evanescent wave 

field equation should be combined with the Beer-Lambert law for transmission spectroscopy 

( CIdzdI ε−= ). In doing so, it is necessary to assume that only week absorption occurs. Then, 
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dAIdI 0−=                                     (A-3) 

 

Substitution of equation (A-3) into the differential form of the Beer-Lambert law and subsequent 

integration yields: 
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where, 

ε = molar extinction coefficient; 

I = intensity; and 

C = concentration of the absorbing species. 

 

The limits of the integration are reflective of the diffusion of the penetrant through one side of 

the film. Since intensity 2)( EI = , where E  is the electric field strength of the evanescent 

wave, the equation (A-4) can be rewritten  for multiple reflection N, as: 
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Equation (A-5) is the expression analogous to the Beer-Lambert law for ATR spectroscopy. It 

directly relates changes in concentration to those in the absorbance spectrum during the 

experiment. To utilize this technique for evaluating the kinetics of a diffusion process, the 

physics of spectroscopy theory must be incorporated with a diffusion model. 

 

In order to derive a single expression relating IR absorbance to diffusivity, the term W  is 

defined: 

 

∞

=
A
A

W t                            (A-6) 

 

where, 

tA = absorbance at time t; and 

∞A = absorbance at infinite time. 
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Substituting (A-5) in (A-6): 
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where, 
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Developing J  gives, 
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Substituting equation (A-8) into equation (A-7): 
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The physics of diffusion is incorporated by substituting the concentration term (C) from equation 

(A-1) into the equation (A-9). 
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Equation (A-10) can be simplified to: 
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where, 
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Placing the independent parameters outside the integral, yields the following: 
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Recalling the law of summation of integrals, equation (A-12) may be rewritten as: 
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Isolating in equation (A-13) only the terms dependent on z  and calling themV : 
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Equation (A-13) becomes: 
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Integrating V  by parts: 
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Evaluating the second term of equation (A-16) using once again the integral by parts: 
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Substituting equation (A-17) into equation (A-16): 
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The remaining integral in equation (A-18) is the same as the one that define V  in equation (A-

14). Simplifying yields: 
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For n=odd, 0)cos( =fL and for n=even 0)cos( =fL . So the term )cos( fL can be replaced by 

zero in equation (A-20). For the sine term, 
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For n=odd, 1)sin( −=fL and for n=even 1)sin( +=fL . So the term )sin( fL can be replaced by 

( )n1−  in equation (A-20).  

 

After the substitutions on sine and cosine in equation (A-20): 
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Substituting W , 'J and V  in equation (A-15): 

 

[ ]
[ ]

∑
∞

=∞ ++
−+−

−−
−=

0
22 )4)(12(

)2exp(2)1()exp(
)2exp(1

8
1

n

n
t

fn
Lfg

LA
A

γ
γγ

γπ
γ

  (A-24) 

 

Substituting f and g  in equation (A-24) give us the final equation, as described by Fieldson 

and Barbari (Fieldson and Barbari 1993): 
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APPENDIX B 

 

COMPUTING WATER DIFFUSIVITY IN ASPHALT BINDERS USING THE FOURIER 

TRANSFORM INFRARED – ATTENUATED TOTAL REFLECTANCE (FTIR-ATR) 

TECHNIQUE 

 

Asphalt Film Preparation 

The target film thickness ia an important consideration while preparing specimens. There are two 

possible cases for the specimen film thickness (Figure B-1).  The first case is when the film 

thickness is much greater than the effective depth of penetration, dp.  In this case when a constant 

boundary condition (100% saturation) is achieved by adding water to the top of the film, water 

diffusion starts from the upper surface of the film that is beyond the detection range of the FTIR 

spectra.  Therefore, one would have to wait for an undefined and perhaps experimentally 

unreasonable amount of time until moisture diffuses to within the effective depth of penetration 

and is detected in the spectra.  Change in concentration of water within the film over time is 

quantified by correcting for the time of arrival of moisture and film thickness.  The second case 

is when the film thickness is less than the effective depth of penetration, dp.  In this case when 

water is added to the top of the film, a portion of the water over the film as well as the entire film 

is immediately detected in the spectra.  Change in concentration of water within the film over 

time is quantified by subtracting the initial spectra at time t = 0 s from the spectra detected at a 

specific point in time.  In this study, both approaches were used for trial experiments but the later 

was preferred due to practical considerations.   
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Figure B-1. Two Possible Configurations for the Film Thickness on the Top of the ATR 
Cell 

 

Another important consideration was not to have a very thin and homogeneous film.  

Other research studies have shown that the diffusivity of liquids through very thin polymer films 

is not representative of diffusivity through the bulk (Vogt et al. 2004).  However, the limit at 

which diffusivity changes as a function of film thickness was in the order of tens of nanometers.  

This study ensured that all films were in the one micron range.  Once the thin film samples were 

prepared, the next important step was to accurately measure the thickness of the thin film.   

  

Asphalt Stock Solution Preparation 

• Dissolve 1.5g of asphalt in 11mL of HPLC grade toluene approximately 12h before use 

to guarantee that the solvent had dissolved all the asphalt in the container. 

 

Spin Coating of Asphalt Stock Solution in the ATR plate 

• A spin processor Laurell WS-650S (8.5inch bowel) was used (Figure B-2(a)). The spin 

processor should be equipped with a vacuum chuck for substrates with the dimensions 

and weight similar to the ATR plate.  Sufficient vacuum to hold the substrate is required 

to start the motor, and to prevent leakage of chemicals into the vacuum path. 
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• Cover the stationary seal of the spin coater and prepare a cylinder made of aluminum 

foil for cleaning purpose (Figure B-2 (b)). Make sure that the aluminum foil does not 

touch the rotating seal.  

 

  
(a) (b) 

Figure B-2. (a) Spin Processor, and (b) Covered Stationary Seal 
 

• Attach a glass slide in the bottom part of the Multibounce ATR flat plate to allow the 

application of vacuum (a regular tape can be used), and place the glass slide and ATR 

plate on the top of the vacuum chuck (Figure B-3 (a)). Make sure the glass slide is large 

enough to cover the O-ring completely (Figure B-3 (b)). 

 

 
(a) 

Figure B-3. Configuration of (a) the Glass Slide Attached to the ATR Plate on the Top of 
the Vacuum Chuck, and (b) the Glass Slide Covering the O-ring 
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(b) 

Figure B-3 Continued 
  

• Adjust the spin coater to rotate at 1000rpm for 10s, as shown in the display in Figure B-

4. The substrate should be spin coated two times to ensure complete coverage of the 

ATR plate by the asphalt solution.  

 

 

Figure B-4. Spin Coater Display with the Set Speed and Time 
 

• Remove the glass slide from  the ATR plate. 

• Attach the chamber to the coated ATR plate (Figure B-5). Make sure the film covers not 

only the ATR crystal, but the whole plate. There should be no spot without asphalt 

inside the chamber to avoid water transport through the interface asphalt/ATR plate. 

• Seal the chamber. 
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ATR plate

Chamber

Asphalt film

 

Figure B-5. Chamber Attached to the ATR Plate 
 

Final Preparation of the Asphalt Film 

• Connect the ATR plate and chamber to a dry nitrogen purge for 2h to eliminate residual 

solvent that was used to prepare the film. (Figure B-6). 

• Anneal the sample for 1h at 50ºC, to eliminate possible micro capillaries in the asphalt 

film that might have been created due to the vaporization of toluene under nitrogen 

purge (Figure B-6). 

 

DRY N2 (IN)
N2+ SOLVENT (OUT)

HEATER (50°°°°C)

 

Figure B-6. Illustration of the Dry Nitrogen Purge and Annealing at 50ºC 
 

Thickness and Refractive Index of Asphalt Films 

The film thickness and the refractive index are input parameters necessary to the analytical 

model used for determining the water diffusivity in asphalt binders. The ellipsometer was the 

equipment selected because of its high precision. The Nanofilm EP3-SE was the model utilized 

(Figure B-7). It is an auto-nulling spectroscopic imaging ellipsometer in the PCSA configuration. 
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Following is a short description of the sample preparation, test procedure and analysis method 

used for the ellipsometer. 

 

Sample Preparation 

The ATR crystal is transparent and therefore could not be used with the ellipsometer as a 

substrate to measure the thickness of the asphalt film.  Instead, the same procedure was used to 

cast thin films on silica wafers as substrates.  The Si wafer substrate produces more accurate 

results because of its reflectivity and known optical properties. The roughness of Si wafer and 

ZnSe crystal and differences in the thickness of the film casted on both surfaces were unlikely to 

be significant.     

• Use the same asphalt solution described in ‘Asphalt Stock Solution Preparation’. 

• Repeat the spin coating procedure, however instead of using the ATR plate, use 3” Si 

wafers as substrate (Figure B-7). 

 

 

Figure B-7. Nanofilm EP3-SE and the Si Substrate Coated with Asphalt 
 

Test Method 

• Turn on the computer, bottom electronics box and monitor. 

• Start the EP3 View software. The software begins to initialize the instrument and all 

motors are reset. 

• After initialization the default windows will be displayed. There are the ‘Control and 

Live Images’ and the ‘Script tree’ window (Figure B-8). The ‘Control and Live Images’ 

window contains the real-time view of the sample and the control buttons for the 
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instrument that can be changed (wavelength selection, AoI, shutter, polarizer, etc). The 

‘Script tree’ contains function tree with all the available measurement options. 

 

 

Figure B-8. Default Ellipsometer Window with the ‘Control and Live Images’ and the 
‘Script Tree’ 

 

• Check that the correct objective is chosen under the ‘objective’ menu. Place the sample 

(Si substrate coated with thin film of asphalt) on the stage and make sure that the red 

laser light from the alignment laser is on the sample. 

• Click on ‘Align’. By opening the align window the camera automatically switches to the 

align camera directly over the sample in the middle of the goniometer (Figure B-9 (i)). 

• For dark-colored samples (like the asphalt), you may not be able to see an optical image 

with the default laser (532nm). In this case, click the text field in the ‘Control and Live 

Image’ window containing the wavelength and scroll down to select ‘white’. The white 

laser will help you focus your sample in the proceeding steps. When finished, make sure 

to set the laser wavelength back to 523nm (Figure B-9 (ii)). 

• Check the gain and then click the auto align button. This is the initial plane alignment. 

Close the align window. 

• Open the shutter and adjust the laser power to 2%. 
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• Select 54º for the angle of incidence (AoI) (goniometer angle), and 50º, 45º and 30º for 

the polarizer, compensator and analyzer angles, respectively (Figure B-9 (iii)). 

• Move the sample stage up and down using the Z-control in order to get the laser spot 

centered in the live window, and the real time RoI (region of interest) signal maximized. 

• At this point you should see your sample, though the image probably will be sharp. 

• Check the alignment again and click on the auto-gain bottom to avoid saturation. 

• Open the focus/calibration window and use the lower slider to move the objective until 

your sample is focused. 

• Check that 532nm (green) laser reflection is hitting center of objective. If not, realign z 

until it is. 

• At this point the equipment is ready to start the data collection. 

• Select at least three RoIs over the areas you want to measure. It is important to check the 

thickness variations in the sample. 

• Select ‘Coarse Adjust’ from the function tree (Figure B-9 (iv)). This will adjust the 

analyzer/polarizer angles to a position where the intensity of the reflected polarizer light 

is minimized in the CCD (charge-coupled-device) camera. This will find the minima of 

all RoIs. 

• Select the ‘Lambda Variation’ as the measurement script in the function tree. Click on + 

sign in front of it to expand the three. Click on + sign in front of the nulling four zone to 

display the parameters. Use the 0-44 steps (359-1050nm), illustrated in Figure B-9 (iv). 

• Double click on the script to start measurement. 
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(i) 

 
(ii) 

 
(iii) 

Figure B-9. Some Steps for the Ellipsometric Measurement 
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(iv) 

Figure B-9 Continued 
 

Analyzing and Modeling the Ellipsometer Data 

• To analyze the data you need to set up an optical model and fit the measured data to that 

model. For asphalt samples, and Cauchy function is recommended. 

• Mark all the delta and psi results by clicking on the upper left cell, then keep the shift 

button down and click on the bottom right cell. Make sure before you make the selection 

you have erased all the lines that have ‘NaN’ as result. 

• Go to ‘Tools – Selection to Model’ to transfer the results to the model window. 

• Open the model window from the EP3 View page. 

• Open the ‘Materials’ tab in the model window (Figure B-10(i)). 

• Select Si from the list of predefined materials, add a name for the sample you are 

evaluating (‘asphalt X’, for example), and select the Cauchy model to represent the 

asphalt sample (Figure B-10(i)). 

• Move to the ‘Layers’ tab and choose air as the ambient, ‘asphalt X’ as the material, and 

Si as the substrate (Figure B-10(ii)). 

• Left click on ‘asphalt X’ in the selected list and type the estimated range of thickness in 

the ‘thickness’ control. 

• Go to the ‘Fit’ tab and in the fit parameters box, click on the line you want to edit, press 

‘edit’ and define the thickness range of your fit (Figure B-10(iii)). 
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• Press the fit button in the middle of the window and the results will appear in the lower 

spreadsheet. 

 

 
(i) 

Figure B-10. Some Steps of the Fitting Process for the Ellipsometric Measurement 
 



 92

 
(ii) 

 
(iii) 

Figure B-10 Continued 
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FTIR-ATR Test Procedure 

• Before start the experiment, check the Setup with the parameters illustrated in Figure B-

11.  

 

 
(i) 

 
(ii) 

Figure B-11. FTIR-ATR – ‘Experiment Setup’ Window 
 

• The IR spectrum is displayed in Absorbance unit. It represents how much of the original 

IR intensity passes through the sample.  In order to calculate this, we first need to know 

the IR intensity with no sample, so we run a background, illustrated in Figure B-12. 
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Make sure the background was collected before start the procedure described in ‘Asphalt 

Film Preparation’. 

• Save the background to use as reference in the following sample collections. 

 

 

Figure B-12. FTIR-ATR - Illustration of Background Collection 
 

• After the background was collected and saved, you proceed to the asphalt film 

preparation as previously described. 

• Collect the spectra of the asphalt film before add water into the chamber. This spectrum 

will be subtracted from the following spectra after the water is added to the system. 

• With the ATR plate placed on the FTIR machine and ready to sample collection, add 

10mL of HPLC water into the chamber. It will create a layer of water of approximately 

15mm above the asphalt film. 

• Collect the sample spectra right away. This will be considered the t=0. 

• For the first hour, collect the spectra every 2-10min, then for the next 10h space the 

collections to every 30min-1h. After 12h of test, the rate of increase in the water peak 

(described in the next section) decrease considerably, and the spectra collection can be 

done just once or twice per day. This is valid for film thickness in the order of 1µm. 

Figure B-13 illustrates a series of sample collections. 
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Figure B-13. FTIR-ATR - Illustration of Sample Collection with Time 
 

• Subtract the asphalt spectrum from all the spectra that followed the water adition into the 

chamber, as illustrated in Figure B-14. 

 

 

Figure B-14. Spectra after Subtraction of Asphalt without Water 
 

Analysis Approach 

The water absorption bands are related to molecular vibrations involving different combinations 

of the three fundamental vibration transitions: (i) ν1 (symmetric stretch mode at 3277cm-1), (ii) 

ν2 (bending mode at 1645cm-1), and (iii) ν3 (asymmetric stretch mode at 3490cm-1). The 

quantitative analysis is performed using the corrected area between 3000 and 3800 cm-1, as 
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illustrated in Figure B-15. The increase of the area with time was used to quantify the increase in 

water concentration into the asphalt binder. 

 

Area at t1

 
(i) 

Area at t2

 
(ii) 

 
(iii) 

Figure B-15. Region of Analysis used to Quantify Change of Water Concentration into the 
Asphalt Binder with Time 
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• Calculate the areas illustrated in Figure B-15 and plot the results versus time (data 

illustrated in Figure B-16). 

• Fit the data using the Dual Mode Diffusion Model*. 

• Repeat the procedure for at least three replicates per asphalt. 
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Figure B-16. Data and the Dual Mode Diffusion Model 
 

* Fieldson and Barbari (1993) initially proposed a model correlating the absorbance data obtained 

by the FTIR-ATR with the total instantaneous mass of the diffusant within the film. Pereira and 

Yarwood (1996b) adapted this model to the so called ‘Dual Mode Diffusion Model’. The 

analysis considers that the cumulative diffusion of water through thin films of asphalt binder 

does not follow Fick’s law.  Instead, water diffuses following a dual sorption mode, where each 

mode of sorption individually follows Fick’s law. In this model it is assumed that a fraction of 

the water molecules (x1) is partially mobile (rapid absorption onto the surface sites), and the 

other fraction (1 - x1) is completely mobile and can diffuse into the asphalt matrix freely 

(subsequent diffusion into the bulk materials). Thus the expression for describing this model 

contains two diffusion coefficients: 
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where, D1 and D2 are the diffusivities (or diffusion coefficients) components of the dual mode 

diffusion model. After rearranging Equations B-1 and B-2 as a function of A1 and A2, they can 

be added to produce the total absorbance at time t (A1 + A2 = At). The values of x1 and x2 are 

related to the proportion of the partially and totally mobile molecules (x1 + x2 = 1). The value of 

x1 and two separate diffusion coefficients (D1 and D2) are then derived from the absorbance data. 
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APPENDIX C 

 

INFLUENCE OF THE PHYSICAL STATE OF WATER IN THE DIFFUSION IN 

ASPHALT BINDERS 

 

Introduction and Background 

There are three potential ways by which moisture can reach the asphalt-aggregate interface: (i) 

defect on asphalt coating, (ii) residual moisture present into the aggregates, and (iii) diffusion 

through the asphalt/mastic (Figure C-1). The diffusion coefficient is dependent on the rate of 

moisture infiltration towards the asphalt-aggregate interface, and is an indicator of the time scale 

over which the moisture damage occurs.  

 

 

   

(i) (ii) (iii) 

Figure C-1. Potential Forms by which the Moisture can Reach the Asphalt/Aggregate 
Interface: (i) Defect on Asphalt Coating, (ii) Wet Aggregates, and (iii) Diffusion through 

the Asphalt/Mastic 
 

Different experimental setups have been used to measure moisture diffusion or 

permeation in asphalt materials.  However, the influence of the physical state of water in the 

diffusion measurements has yet to be analyzed in more detail. Some studies have considered 

water in the liquid state (Cheng et al. 2003; Kassem et al. 2006; Nguyen et al. 2005; Wei 2009); 

others controlled the relative humidity of the environment in contact with the sample to simulate 

water in the vapor or molecular form (Arambula et al. 2009; Kringos et al. 2008a; Sasaki et al. 

2006).  

The three diagrams below (Figure C-2) illustrate the distinct arrangement patterns of 

water molecules as they change their physical state from ice to water to gas. Frozen water 

molecules arrange themselves in a particular highly organized rigid geometric pattern that causes 

the mass of water to expand and to decrease in density. In the liquid phase, water molecules 
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arrange themselves into small groups of joined particles. The fact that these arrangements are 

small allows liquid water to move and flow. Water molecules in the form of a gas are highly 

energized. This high energy state sets the molecules in continuous movement reducing the 

likelihood of the formation of bonds between individual molecules. 

 

   

(a) (b) (c) 

Figure C-2. Arrangement Patterns of Water Molecules at Different Physical States: (a) Ice, 
(b) Liquid, (c) Vapor 

 

The literature describes water diffusion in several types of polymeric materials. Previous 

research proved that for liquids in polymeric materials, sorbed volumes can be 10 to 20% or 

even higher, compared to gas-polymer systems where sorbed volumes are vanishingly small in 

most cases (Wolf 1991). According to Wolf, liquids open up the structure, with the result that the 

absolute flux rates through a membrane can be 2 to 3 orders of magnitude higher for a liquid 

than for a non-condensable gas. The water molecule has the ability to form hydrogen bonds with 

other water molecules and/or polar groups in the polymer. The diffusion coefficient may increase 

with increasing concentration, for hydrophilic polymers, or vary inversely for hydrophobic 

polymers. 

However the authors have not been able to find studies referenced in the literature that 

compare the diffusion coefficient for the same material, using the same experiment setup, but 

varying the physical state of water only. We do know that water spectrum has very different 

configuration in the ice, liquid and vapor states, and this produces completely different spectra 

when subjected to molecular vibration (Ewing et al. 2003). The objective of this paper is to use 

the Fourier Transform Infrared – Attenuated Total Reflectance (FTIR-ATR) technique to 

evaluate water (under liquid and vapor form) diffusion in asphalt binders. The technique allows 

the differentiation between both modes of moisture transport. 
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FTIR-ATR Spectra of Water in Liquid and Vapor Form 

FTIR-ATR spectroscopy has been used with increasing frequency to examine diffusion in 

polymers, with investigations covering a diverse array of applications. It is a technique that sets 

itself apart from other techniques with its ability to sensitively distinguish between different 

chemical species by providing molecular-level contrast between solutes and polymers based on 

absorbing light at different wavelengths or vibrational bond energies. 

 The water absorption bands are related to molecular vibrations involving different 

combinations of the three fundamental vibration transitions: (i) ν1 (symmetric stretch mode at 

3277cm-1), (ii) ν2 (bending mode at 1645cm-1), and (iii) ν3 (asymmetric stretch mode at 3490cm-

1), all illustrated in Figure C-3. The dipole moments change in the direction of the movement of 

the oxygen atoms as shown by the arrows.  

 

ν1
 

ν2

 
ν3

 

(i) (ii) (iii) 

Figure C-3. Fundamental Vibration Transitions: (i) Symmetric Stretching, (ii) Bending, 
and (iii) Asymmetric Stretching 

 

The water molecule has a very small moment of inertia on rotation which gives rise to 

rich combined vibrational-rotational spectra in the vapor containing many spectral lines. In the 

liquid, rotations tend to be restricted by hydrogen bonds, giving the librations (vibrations before 

coming to a total rest). Also, spectral lines are broader causing overlapping of many absorption 

peaks. Figure C-4 illustrates the water spectra in the vapor and liquid form at different 

temperatures. Ewing et al. (2003) presented the spectra for water and vapor at 25°C, Figure C-5, 

and the results were similar to the results presented in Figure C-4. Increased strength of 

hydrogen bonding, observed from the vapor to the liquid state, typically shifts the stretch 

vibration (represented in the region around 3400cm-1) to lower frequencies with greatly increase 

intensity in the absorbance results (Figure C-5).  
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Liquid H2O – Room Temperature

Vapor H2O – 65°°°°C

 

Figure C-4. Comparison of Water Spectra in Vapor and Liquid Form (Source: Termo 
Fischer Scientific) 
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Figure C-5. Illustration of Water Spectra in Different Physical States, Adapted from Ewing 
et al. (2003) 

 

 Hydrogen bonds in liquid water have a broad, smooth, single-peaked distribution of 

strengths which gradually shifts with temperature. An increase in temperature causes a gradual 

shift in the direction of the vapor frequency (Figure C-5). At one end of the distributions are 

hydrogen bonds having strengths comparable with those of hydrogen bonds in ice (Bertie et al. 

1969). At the other end are very weak hydrogen bonds, which correspond to the small but 

appreciable absorption at frequencies approaching those of non-hydrogen-bonded (or free) OH. 
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These extremes according to Falk and Ford (1966) do not correspond to distinct molecular 

species. 

The frequency of OH stretching vibrations is known to decrease in a regular manner 

with the strength of hydrogen bonding, while frequencies of bending vibrations increase upon 

hydrogen bonding but the shifts are much smaller (Falk and Ford 1966). Du et al. (1993) used an 

infrared technique to obtain the OH stretch vibrational spectra of water at the vapor/water 

interface. The results presented indicate that more than 20% of surface water molecules have a 

non-hydrogen-bonded OH (free OH bond) pointing out of the liquid and the other OH, hydrogen 

bond, pointing into the bulk liquid. The surface vibrational spectra generally exhibit a set of 

characteristic features indicating that the water molecules form a hydrogen-bonding network 

which is more well ordered than the bulk. This is more or less expected based on the measured 

values of the surface tension of water (Shen and Ostroverkhov 2006). Benjamin (1994) also 

supported the existence of free OH bonds at the surface and showed that the broad  peak near 

3400cm-1, which corresponds to the OH stretching mode in bulk water, is split into two peaks 

for water at the surface. The new peak at 3700cm-1 corresponds to free OH bonds. At the 

vapor/liquid interface, the molecules face an environment on the vapor side with no neighboring 

molecules to complete the hydrogen bonded to. No matter how a water molecule orients itself at 

the interface, one hydrogen bond with neighboring molecules is necessarily broken. Du et al. 

(1993) also studied the temperature dependence of the vapor/water interface spectrum, and based 

on the data presented, there is no significant change over the temperature range from 10 to 80ºC. 

  

Experimental Design 

This section presents the experimental design used in this study as well as a description of the 

materials used, the specimen fabrication processes and the testing and analysis methodology.  

 

Materials and Specimens Fabrication 

Three asphalt binders were selected from the Strategic Highway Research Program (SHRP) 

Materials Reference Library (MRL): AAD is a PG 58-22 grade California Coastal, AAF is a PG 

64-10 from W Texas, and ABD is a PG 58-10 California Valley (Jones IV 1993).  

 Two specimens’ configurations are under evaluation: (i) the infrared depth of 

penetration that exceeds the thickness of the asphalt film, and (ii) the infrared depth of 

penetration within the asphalt film, or that does not exceed the thickness of the asphalt film 
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(Figure C-6). Up to this point of the investigation, only liquid water has been considered. Figure 

2-2, Section 2, demonstrates the chamber that holds the substrate, the asphalt film and the water. 

These configurations were used to investigate the rate of diffusion of semi-ordered water 

molecules (representing the liquid water) and the random water molecules (representing the 

water vapor at ambient temperature) through the asphalt film.  

   

 
(i) 

 
(ii) 

Figure C-6. Film Thickness Configurations used in the Experiments 
 

In the configuration presented in Figure C-6(i), the film thickness has approximately 

1µm. The samples were prepared using stock asphalt solutions and the spin coater, according to 

the procedure described by Vasconcelos et al. (2010). In the second configuration, Figure C-

6(ii), neat asphalt binders were heated up to 100°C and pored above the ATR plate (the chamber 

to hold the water was already attached to the plate). The film thickness could not be measured 

using the Ellipsometer as the films produced according to configuration (i). Ellipsometer 

represents a powerful optical tool for studies of organic layers. Given its high precision, this tool 

can only lead to reliable measurements for films with a maximum of approximately 1µm. For 

this reason, the film thickness in configuration (ii) was estimated based on the gasket thickness, 

which has approximately 1mm. In both configurations, the test temperature was kept constant at 

approximately 24°C. The procedure to determine the diffusivity of water through these binders is 

described in the following subsections.   
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Test Method and Analysis Approach 

As previously described, the FTIR-ATR has the capacity to differentiate water molecules in 

different physical states. The detailed test method can be found in a previous publication 

(Vasconcelos et al. 2010). The region of sample collection should cover at least the frequencies 

where both physical states of water can be observed, between 3000 and 4000cm-1 (wavenumber). 

In order to also monitor possible changes in the asphalt binder composition due to the contact 

with water, the spectra are collected from 900 to 4000cm-1. 

According to the diffusivity results obtained using configuration (i) (Vasconcelos et al. 

2010), several months will be required before the liquid water signal can be quantified if 1mm 

film thickness is used. The intention in use thicker films is in quantify the water vapor diffusion 

(maintaining room temperature along the test). The authors believe that the water molecules in 

the vapor state will diffuse faster than the liquid water.  Two regions are being evaluated based 

on the FTIR-ATR spectra acquired: (i) the region representing the liquid water, 3100-3700cm-1, 

and (ii) the region representing the water vapor, 3800-4000cm-1.  Figure C-7 illustrates how the 

infrared depth of penetration varies with the wavenumber (determined using Equation 2-3 in 

Section 2). In order to determine the diffusivity of liquid water and water vapor in asphalt 

binders, this difference in infrared depth of penetration should be considered in the Dual Mode 

diffusion model. 

In the analysis procedure, the initial spectrum of the asphalt binder films (without water) 

was not subtracted from the subsequent spectra after water was added into the chamber. 

According to Weis and Ewing (1998), large absorption anomalies can be found in the subtraction 

of the spectra containing strong absorption lines, that is the case for the water in the vapor (or 

molecular) form. One cause of this anomaly is the part-per-million errors in the wavenumber of 

the reference laser, which can introduce large errors in subtraction spectra by introducing error 

into the wavenumber scale of the spectra (Weis and Ewing 1998). This phenomenon is more 

pronounced when evaluating the region of moisture (or water vapor) manifestation.  
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Region of liquid
water manifestation

Region of water 
vapor manifestation

 

Figure C-7. Difference in the Depth of Penetration in Both Regions Evaluated (ZnSe 
Crystal with θθθθ=45°°°°, and Refractive Index of Asphalt Assumed 1.5) 

 

Partial Results 

Figure C-8 illustrates the first and the last spectra obtained using both configurations. The 

sample in configuration (ii) is still being monitored, since the pronounced peak characteristic of 

liquid water has not yet been observed, and the water vapor characteristic absorbance, is still 

changing with time. Figures C-9 and C-10 present data of absorbance versus time for 

configuration conditions (i) and (ii), respectively. Side (a) of the respective figures presents data 

for liquid water and side (b) presents data for water vapor, in both Figures. These are still 

preliminary results for one replicate of only one asphalt binder. The objective is to quantify the 

diffusivity for both water physical states, using the FTIR-ATR technique, for three asphalt 

binders (already in test). 
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Configuration (i) - 1µµµµm film

t = 0

t = 15 days

 
(i) 

Configuration (ii) - 1mm film

t = 0

t = 7 months

 
(ii) 

Figure C-8. Partial Results Obtained for Film Thickness in Both Configurations Presented 
in Figure C-6 
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(a) (b) 

Figure C-9. Partial Results of Absorbance with Time for Asphalt AAD – Configuration (i), 
(a) Liquid Water Region, and (b) Water Vapor Region 
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(a) (b) 

Figure C-10. Partial Results of Absorbance with Time for Asphalt AAD – Configuration 
(ii), (a) Liquid Water Region, and (b) Water Vapor Region 
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