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ABSTRACT 

A Partitioning Approach for Parallel Simulation of AC-Radial Shipboard Power 

Systems. (May 2010) 

Fabian Marcel Uriarte, B. S. Virginia Tech; 

M.S., Virginia Tech 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 

An approach to parallelize the simulation of AC-Radial Shipboard Power Systems 

(SPSs) using multicore computers is presented. Time domain simulations of SPSs are 

notoriously slow, due principally to the number of components, and the time-variance of 

the component models.  A common approach to reduce the simulation run-time of power 

systems is to formulate the electrical network equations using modified nodal analysis, 

use Bergeron’s travelling-wave transmission line model to create subsystems, and to 

parallelize the simulation using a distributed computer.  In this work, an SPS was 

formulated using loop analysis, defining the subsystems using  a diakoptics-based 

approach, and the simulation parallelized using a multicore computer. 

A program was developed in C# to conduct multithreaded parallel-sequential 

simulations of an SPS.  The program first represents an SPS as a graph, and then 

partitions the graph.  Each graph partition represents a SPS subsystem and is 

computationally balanced using iterative refinement heuristics.  Once balanced 

subsystems are obtained, each SPS subsystem’s electrical network equations are 
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formulated using loop analysis.  Each SPS subsystem is solved using a unique thread, 

and each thread is manually assigned to a core of a multicore computer.   

To validate the partitioning approach, performance metrics were created to assess 

the speed gain and accuracy of the partitioned SPS simulations.  The simulation 

parameters swept for the performance metrics were the number of partitions, the number 

of cores used, and the time step increment.  The results of the performance metrics 

showed  adequate speed gains with negligible error.   

An increasing simulation speed gain was observed when the number of partitions 

and cores were augmented, obtaining maximum speed gains of <30x when using a quad-

core computer.  Results show that the speed gain is more sensitive to the number 

partitions than is to the number of cores.  While multicore computers are suitable for 

parallel-sequential SPS simulations, increasing the number of cores does not contribute 

to the gain in speed as much as does partitioning.  

The simulation error increased with the simulation time step but did not influence 

the partitioned simulation results.  The number of operations caused by protective 

devices was used to determine whether the simulation error introduced by partitioning 

SPS simulations produced a inconsistent system behavior. It is shown, for the time step 

sizes uses, that protective devices did not operate inadvertently, which indicates that the 

errors did not alter RMS measurement and, hence, were non-influential. 
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CHAPTER I 

 

I�TRODUCTIO� 

I. INTRODUCTION 

1.1 INTRODUCTION 

Time domain computer simulations of Shipboard Power Systems (SPSs) are 

required to assess electric-service continuity under hostile conditions in advance of 

deployment [1].  Said simulations, however, are notoriously slow, limit the number of 

case studies that can be conducted in a day, and consume many machine hours.  Time 

domain simulations are slow principally due to: the order of full-order SPS models, the 

quantity and time-varying nature of the component models, and the single-matrix 

approach taken by simulation programs to perform the simulations. 

The purpose of this research is to reduce the run-time of AC-Radial SPS time 

domain simulation.  Time domain simulation is a comprehensive simulation scheme that 

can be used for the following types of studies: steady-state analysis, short-circuit 

analysis, power flow analysis, protective device coordination studies, preventive and 

predictive topology reconfiguration studies, among others.  To address the problem of 

slow SPS time domain simulations, the solution methodology presented in this work 

parallelizes the simulation of SPSs using multicore computers. 

 

_______________________ 

This dissertation follows the style of the IEEE Transactions on Power Systems. 
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Multicore computers are commercially available desktop computers containing a 

single processor with embedded (and independent) processing units called cores.  The 

advent of multicore computers has reduced parallel computing costs to an all-time low 

and has become an attractive low-cost parallel computing option. 

Presently, SPS simulation is conducted using either general purpose commercial 

power system simulation software or real-time simulators.  Commercial software 

simulators are typically used to simulate reduced order SPSs in favor of timely results.  

The simulation of reduced order SPSs returns fast simulation results at the expense of 

not knowing the entire system’s behavior.  Real-time simulators [2-4] are an integrated 

hardware-software solution used to interface power apparatus and simulations in real-

time, are extremely efficient, and are faster than commercial power system simulators.  

However, real-time simulators are also limited to power systems of small order.  

The present-day inability to obtain timely simulation results of full-order SPS 

simulations has motivated to reducing the run-time of SPS simulation using multicore 

computers.  The approach to parallelize the simulation of SPSs in this work is presented 

in three stages: discretization and formulation, partitioning, and simulation.  A brief 

description of each stage ensues. 

Discretization is the process of mathematically representing a system described in 

the time domain as a system modeled at discrete intervals of time.  To discretize the SPS 

model used in this work, each SPS component model was discretized by replacing the 

inductors and capacitors with equivalent discretized branches.  After each component 

model was discretized, the SPS was formulated in loop current as variables by 
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interconnecting all of the discretized component models together.  The resulting 

formulation is a system of equations solved at discrete intervals of time. 

The partitioning stage consists of tearing a SPS into subsystems to parallelize time 

domain simulations.  To determine where to tear the SPS, a weighted graph 

representative of an SPS was created.  Each graph vertex represents a discretized SPS 

component model and each graph edge represents an electrical junction where two or 

more component models interconnect.  The weight of each vertex is based on the 

estimated computational effort of solving the equations of the model a vertex represents.  

This stage begins by partitioning the representative graph using the mincut algorithm [1-

2],[3] to produce an initial segregation.  To balance the weighted graph partitions, 

balancing heuristics are used to move vertices across partitions.  The edge-cut resulting 

from the balancing heuristics corresponds to the points of disconnection on the SPS 

where tearing occurs. 

When the points of disconnection of the SPS have been determined, a partitioning 

approach motivated by diakoptics [4] is used to tear the SPS into subsystems.  The 

partitioning approach presented in this work uses capacitor loops as the points of 

disconnection.  By shorting two (out of three) capacitors on three-phase cables, a large 

portion of the network matrix’s off-diagonal region is depleted producing subsystem 

decoupling.  This rapid off-diagonal depletion is a direct result of the formulation 

approach taken, which concentrates loop currents at bus node capacitors where most of 

disconnection points are.  
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Finally, the simulation stage consists of using threads to simulate the SPS 

subsystems, and manually assigning the threads to the cores of a multicore computer.  A 

multithreaded program was developed in C# to solve SPS subsystems using the 

electromagnetic transients program (EMTP) solution approach [5], where each 

subsystem’s electrical network is solved before its control network.   After finding the 

loop currents in each subsystem, the branch currents and node voltages for all 

components are found.  Select instantaneous voltages and currents from the electrical 

network are passed to the control network as inputs to solve controller equations, 

determine diode commutation times, calculate the root-mean-squared (RMS) voltages 

and currents, and determine if protective devices should operate. 

To assess the performance and validity of the partitioning approach, the speed, 

accuracies, and time step variations are used as performance metrics.  Speed is assessed 

by taking the ratio between unpartitioned and partitioned simulation run-times.   

Accuracy is determined by comparing the unpartitioned and partitioned simulation 

results at each time step of the simulation.  The time step was varied to determine how 

the simulation error (if any) varies when using different time step sizes. 

The contributions of this work are in four areas.  The first lies in the formulation 

approach, where the loop currents are concentrated at bus node capacitor loops.  This 

formulation approach is advantageous because tearing only a few capacitors depletes the 

off-diagonal structure of the network matrix and permits block-diagonalizing the 

network matrix.   The second is related to the first in that after partitioning the 

representative graph using the mincut algorithm, the SPS subsystems are balanced with a 
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minimal (if any) edge-cut increase.  The edge-cut does not increase when vertices at bus 

nodes are moved to another partition adjacent at the same bus node.  The third resides in 

the tearing of only two out of three capacitors in a loop.  By tearing only two capacitors 

at each boundary, the number of constraint equations is two for each disconnection point 

regardless of how many graph edges are torn from the same boundary; having only a few 

constraint equations keeps the computation of the boundary condition low.  And the 

fourth consists in the empirical determination that sequential-parallel SPS simulations 

(i.e., many threads per core and even with load imbalance) on multicore computers are 

computationally more efficient than purely parallel simulations.  To note, the most 

important final result is that AC-Radial SPS simulation run-time is significantly reduced 

at bare cost since multicore computers are already (virtually) on every desktop if not all. 

1.2 ORGANIZATION 

This dissertation is organized into five chapters.  The second chapter introduces 

the difficulty of large-scale SPS simulation, justifies the work discussing recent efforts in 

computational burden reduction, and presents a differential-algebraic (DAE) formulation 

of a notional AC-Radial SPS.  The third chapter describes the solution methodology in 

three stages: discretization, partitioning, and simulation.  The fourth chapter assesses the 

solution methodology’s performance by evaluating three performance metrics.  The fifth 

chapter concludes  and examines future work. 
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CHAPTER II 

 

LITERATURE REVIEW A�D PROBLEM FORMULATIO� 

II. LITERATURE REVIEW AND PROBLEM FORMULATION 

2.1 INTRODUCTION 

This chapter reviews common commercial power system simulators, introduces 

AC-Radial SPSs, common solutions to partitioning power systems, and presents the 

differential-algebraic equation (DAE) formulation of a notional SPS.  Power system 

simulators are also introduced to discuss current simulation tools and simulation 

approaches.  Time domain simulations are introduced to explain how computer 

resources can be rapidly depleted.  A general description of AC-Radial SPSs is presented 

to introduce the topology and saliencies found on SPSs as the system that will be studied 

in this work.  Since the approaches to parallelize power system simulation is fairly 

commonplace and well documented elsewhere, only those approaches that frequently 

appear in the literature are reviewed.  The DAE formulation at the end of this chapter is 

used to assess the complexity of SPS time domain simulations and to estimate the order 

of a notional SPS.  

2.2 MOTIVATION OF THE WORK 

Power system simulators rely on analytical methods programmed into desktop 

computers (e.g., PCs) to simulate behavior of electrical power systems.  The drawback 

of simulators is the lengthy run-time in simulating large-scale electrical networks.  The 
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simulation of large-scale electrical networks imposes considerable computational 

burdens and can rapidly deplete available processing power and memory storage. 

The result of simulations depleting computing resources is a limitation in the 

system order that can be simulated in a reasonable amount of time.  The depletion of 

processing power and memory is especially true of time domain simulations, where the 

computational burden is pronounced and millions of data points are saved.  Simulation 

of full order SPSs can take valuable hours, days, or even weeks to complete depending 

on the case study, order, and simulation end time ( )endt .  Such time dedication of 

computational resources may be detrimental to research budgets and has motivated the 

reduction of run-time by parallelizing SPS simulations.  The considerations that 

motivated this work are summarized in Fig. 2.2.1, where the current problem is depicted 

on the left side and the aspects desired from a solution are shown on the right.  

   

Fig. 2.2.1. Motives and desired aspects of a solution 

In what follows of this chapter, the system order, complexity, and common 

characteristics found on SPSs are presented.  The following subsection introduces AC-
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Radial SPSs followed by a formulation that gives an ideal of the system order in the 

form of DAEs. 

2.2.1 AC-Radial Shipboard Power Systems 

This section presents a brief overview of AC-Radial SPSs.  More details on AC-

Radial SPSs are documented in [6-10].  The SPS examined here shares some 

characteristics of the U.S. CG 61 surface combatant [11].   

Generally, a combatant type ship consists of a three-generator system in a ring 

configuration; in typical operation, two generators are used, while the third serves as an 

emergency supply. Three-phase power is generated and distributed in an ungrounded 

delta fashion to ensure continued electrical supply despite single-phase to hull faults [9].  

An illustration of a notional AC-Radial SPS is given in Fig. 2.2.2. 

The voltage is generated at 450V at 60Hz and distributed to the system via 

switchboards.   Generator switchboards are composed of one of more switchgear units 

and are located close to their associated generators.  The switchboards, among 

themselves, are connected in ring topology so that loads can be fed from any generator.  

Bus tie circuits interconnect the generator switchboards, which allow for the transfer of 

power from one switchboard to another. 

From each switchboard emanate radial paths to supply loads directly or from load 

centers.  Load centers are distribution centers below the switchboard level and are used 

to supply power to load concentrations in various areas of the ship.  There are two types 

of loads, non-vital and vital.  The non-vital loads have only one supply path to a 

switchboard and are connected from the load centers.  Vital loads have two supply paths 
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(normal and alternate) and are connected to switchboards or load centers via automatic- 

or manual bus transfers (ABTs and MBTs, or XBTs to refer to either).   

The major types of protective devices utilized in the U.S. Navy ship electrical 

power systems are fuses, circuit breakers, and relays [10].  The purpose of protective 

devices is to mitigate damage to electrical equipment during abnormal conditions.   The 

fundamental characteristics of protective devices are to monitor system voltage and 

current levels, detect the presence of abnormalities, and to intelligently reconfigure the 

routing of power to maintain power continuity at loads vital to crew survival. 

The vessel’s load to generation ratio is high (i.e., stiffly-connected system); thus, 

there is not much of a reserve margin in case of severe faults or catastrophic conditions.  

The generation system is a finite inertia one, where, as opposed to terrestrial systems, 

generation has a limited capacity.  A consequence of finite-inertia systems is that during 

disturbances the system  is prone to pronounced under-frequencies, under-voltages, and 

inter-rotor oscillations. 

  A general description of AC-Radial systems was given in this subsection to 

highlight saliencies that distinguish SPSs from terrestrial power systems.  The next 

section introduces commercial power system simulators. 
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Fig. 2.2.2. General electrical layout of AC-Radial Shipboard Power Systems [12] 
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2.2.2 Power System Transient Simulators 

Available power systems simulators range from commercial ones to free ones [13].  

Some well-known commercial simulators are EMTDC/PSCAD [14],  ETAP [15], 

EMTP-RV [16], PLECS [17], SimPowerSystems [18], PowerFactory [19], and 

PowerWorld [20].  Some of free simulators include ATP [21], InterPSS [22], and VTB 

[23].   

Most simulators solve power systems by implementing the electromagnetic 

transients program (EMTP) solution approach [5],[24].  The EMTP approach discretizes 

power system branches (i.e., inductors and capacitors) and forms a large nodal 

conductance matrix, which corresponds to writing Kirchhoff’s current law (KCL) 

equations at each node.  The set of nodal equations have the form A∙x=b, where Α 

represents the nodal conductance matrix, x represents the vector of node voltages, and b 

represents the vector current injection at each node.  The solution of the node voltages 

takes place in incremental time steps (i.e., at 0, 1, 2, ...k k k= = = ) and rapidly becomes 

burdensome as the order of the system increases.  The aforementioned simulators all 

experience the problem of burdensome time domain simulations and depletion of 

computational resources which lead to the problems listed in Fig. 2.2.1.    

Albeit multicore technology in desktop computers, commercial power system 

simulators do not fully exploit their potential for parallelism.  For example, 

PSCAD/EMTDC uses two cores: one core for PSCAD [25] to render the graphical 

interface and run-time meters, and the other for the solver (EMTDC [26]).  Since the 
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solution produced by EMTDC is executed by only one core, the simulation is not a 

parallel one.  

Other simulators such as EMTP-RV [16] have not yet implemented any parallel 

strategies. At InterPSS [22], a distributed power system simulation approach has been 

developed.  Such approach uses grid-computing, where transient stability case studies 

for large-scale power systems can be ran simultaneously on different computers.  The 

solution of each case study, however, is not divided.  Each case study runs concurrently 

on a different machine.  A limitation of distributed grid-computing is the linear speed 

gain limit, where if M computers are used, the maximum speed gain would be M.  

Real-time simulators, such as RTDS® and Opal-RT®, can partition power systems 

only if Bergeron’s traveling-wave line model can be used.  That is, a transmission line of 

sufficient physical length must exist in order to partition power systems.  If said line 

does not exist in the power system being modeled, short-lines (stublines [27]) with one 

time step delay can be used instead.  The effects of inserting one time step delay 

stublines where none exist may introduce phase drifts and run longtime simulations 

unstable [28].    As of this writing, the largest system that can be simulated in real-time 

is by company Opal-RT®, which currently can solve 330 buses in real-time [29] using a 

cluster of quad-core computers ; however, hardware cost is significant and stublines 

would be required to partition the short cables on SPSs.  A summary of partitioning 

capabilities (if any) of today’s commercial power system simulators is reported in Table 

II.1. 
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TABLE II.1. SUMMARY OF COMMERCIAL POWER SYSTEM SIMULATOR PARTITIONING ABILITIES 

 

The concepts of time domain simulation and how computing resources are 

depleted are presented next.  After focusing on background information in time domain 

simulation, relevant solutions to ameliorate time domain simulations are described. 

2.2.2.1 Time Domain Simulation 

Time domain simulations are computer-based simulations of physical systems for 

an intended continuum of time (e.g., from 0sstartt =  to 20sendt = ).   Since computers 

actuate on clock pulses, computer simulations are inherently a discrete-time processes.  

To simulate physical systems for an intended continuum of time, said systems are 

discretized and solved at discrete instances with a time step increments of t∆  seconds.  

A time line illustrating the concept of time domain simulation is depicted in Fig. 

2.2.3.  The first time step (step, hereinafter) solved is 0k = , which represents 0st = .  

After the system is solved at 0k = , the step advances to 1k =  and the system is solved 

again using part of the previous solution from 0k = .  The integer increments of k  are 

continued throughout the intended simulation time.   As illustrated by Fig. 2.2.3, if 

Program Partitioning Ability

ATP Does not partition

EMTP-RV Does not partition

ETAP Does not partition

InterPSS Transient stability case studies possible on a distributed computer

PowerFactory Does not partition

PSCAD/EMTDC One thread renders graphics (PSCAD); one thread solves power system (EMTDC)

RSCAD Real-time simulation software power systems using Bergeron's travelling-wave model

RTLAB Real-time simulation software power systems using Bergeron's and/or stublines

SimPowerSystems Uses MATLAB's engine which is multicore capable; power systems are not partitioned

Virtual Test Bed Does not partition

*Information based on in-person conversations and emails with technical support
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50µst∆ = , a simulation of 20sendt = would require 20
50µs

400,000endt

end t
k ∆= = =  solutions 

of ⋅ =A x b , which can take hours, days, or even weeks depending on how long the 

solution at each k  takes. 

 

Fig. 2.2.3. Illustation of fixed time step time domain simulation 

2.2.2.2 Computational Burden 

Simulation run-time is directly related to the solution time at each k  as illustrated 

in Fig. 2.2.3.  If the solution at step k  takes 0.216s to complete, solving 400,000 steps 

would take 0.216 400,000 / 3,600 24× = hours.   Spending 24 hours on a single case-

study is impractical in terms of the number of cases studies that can be ran in one day; 

hence, a motivation to reduce the computational burden exists. 

A close-up of the solution process at each k  in Fig. 2.2.3 is given in Fig. 2.2.4.  In 

Fig. 2.2.4, a few sub-processes occur at each k  (details can be found in Fig. 12.23 in 

[30]).  The solution to ⋅ =A x b  at each k  constitutes ~90% percent of the solution  

time, particularly when the order of the system is ( )310O  .   
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Fig. 2.2.4 The simulation process at each time step (fixed ∆t assumed) 

Lengthy run-time often leads researchers into buying costly equipment to speed-up 

simulation, or modeling reduced equivalent power systems at the expense of not being 

able to observe system-wide dynamics.  An important argument may be made at this 

point: the main reason time domain simulation is slow is due to the solution of a large 

system of equations in the form ⋅ =A x b  at every time step.  If the solution to ⋅ =A x b  

can be sped up, run-time will be reduced dramatically. 

2.2.2.3 Memory Depletion 

Time domain simulations of power systems aim to capture node voltages and 

branch current in as many places as possible (i.e., preferably at every relay).  To save 

system-wide voltage and current information, 12 quantities may have to be saved: 3 

instantaneous voltages, 3 instantaneous currents, 3 RMS voltages, and 3 RMS currents.  

To store each of these 12 quantities in memory at each k , computer numbers of type 

double  are typically used. 

Other post-operations

Solve system of 

equations of the form

Dominates the solution 

time at each time step

( )
1

1

k

t k t

+

= + ∆

Current time-step

Current time

⋅ =A x b



 16 

 

Each double requires 8KB (64 bits) of memory (RAM) on desktop computers.  To 

illustrate how a computer’s memory can be depleted, consider saving 12 values per relay 

and at each k .  Supposing there are 100 relays in a system, and 20sendt = , the total 

memory that must be allocated is computed in (2.1), which is a considerable amount 

considering that desktop computers (as of this writing) typically sell with 4GB of RAM 

(expansion capability to 8-16GB is typical). 

 � � �
9

quantitiesrelays bytes no. steps

Memory
100 12 400,000 8 3.84 10 3.8GB

Storage
→ × × × = × ≈�����  (2.1) 

If more than 12 quantities were saved at each k , 4GB could be exceeded.  

Simulations requiring 4GB of memory are impractical and slow down user-interface 

response times. 

To avoid depleting computer memory, it may be possible to i) save numeric data 

using a different number type (e.g., floats instead of doubles), ii) save less data per relay 

(e.g., only instantaneous quantities), iii) reduce the number of relays, iv) simulated for 

less time, or v) move the data from memory to files on the hard-drive.  The former may 

result in loss of accuracy.  Reasons ii)-iv) hinder the ability to observe system-wide 

dynamic phenomena.  The latter solution increases simulation timeas writing data to the 

file system introduces a new bottleneck. 

This section presented the concept of time domain simulation and the main reasons 

they are slow.  The next section reviews common partitioning approaches to reduce 

simulation run-time.   
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2.3 EXISTING SOLUTIONS TO REDUCE SIMULATION RUN-TIME 

The tendency to reduce power system simulation run-time has been, and is, to 

parallelize power system simulations [31].  However, it is only recently that multicore 

computers have made this objective a closer and a low-cost possibility.  To parallelize 

power system simulations, the power system models must be partitioned first.  A review 

of power system partitioning methods is reported in this section, where a classification 

of said methods is shown in Fig. 2.3.1.   

 

Fig. 2.3.1. Classification of power system partitioning methods 

Direct methods divide power systems into subsystems, and solve each subsystem 

using factorization.  After the solution of each subsystem takes place, there is an 

exchange of boundary variables to accountfor the influence of neighbor subsystems.  

Power system partitioning

Direct methods Iterative methods

Forcing time step 

delays
Diakoptics

Bergeron’s 

travelling wave 

method

Using a shared-

memory computer
Using a distributed 

computer

Using a sequential 

computer
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Iterative [32-33] methods solve the subsystems by guessing their solution and then 

exchanging boundary information several times during the same time step until converge 

is reached.  The present work uses a direct partitioning approach; hence, iterative 

methods are not considered here.  The implementation of a partitioning method to 

parallelize a power system’s simulation can be on a combination of a distributed 

computer, shared-memory computer, or a sequential computer.   

A distributed computer is a group of computers networked together working 

towards a common goal [34].  Each computer in a distributed computer network is 

referred to as a computational node, which is a stand-alone computer having independent 

memory and processor.   The communication among computational nodes requires a 

physical communication network where messages among computational nodes are 

synchronized by the master computer.  The computational nodes may or may not be in 

physical proximity.   The main disadvantage of distributed computers is the 

communication network’s latency, and constitutes a bottleneck in parallel simulations 

when too many computers are used. 

A shared-memory computer is a computer having multiple processing units 

sharing on-board memory [35].  The processing units communicate by writing/reading 

to/from on-board shared-memory, which is fast and does not require an external 

communication network for the processing units to exchange data.  A modern day 

example of shared-memory computers are multicore computers, which have one 

processor with various internal independent processing units (cores) that can work 
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concurrently.  The main drawback of shared-memory computers is that the number of 

cores is fixed, and cannot be changed unless the computer is replaced.  

An alternative form of shared-memory computer is the graphical processing unit 

(GPU).  GPUs are graphical cards embedded in PCs (can be added after purchase) 

containing cores that also communicate with via shared-memory.  GPUs are designed to 

be extremely fast at processing large graphics data. However, GPU use for non-graphic 

operations such as scientific computation has drawn much attention in recent years [36].  

The main reasons to use GPUs are the performance/$ or benefit-cost ratio, increasing 

performance growth (i.e., at a faster rate than PCs), faster on-board memory bandwidth, 

and outstanding performance: GPUs can outperform PCs in floating-point arithmetic .  

In this work, GPUs are not considered, because of  the need for a user to own specialized 

hardware, low on-board memory [37], and the initial hardware investment requirement. 

Multicore computers remain an attractive option due to their larger on-board memory, 

ubiquity, and positioned market (in-place) infrastructure, which implies a zero-cost 

investment. 

A sequential computer is a computer with one processing unit.  Work carried out 

with single-processor computers is purely sequential and processing cannot be 

parallelized.  Sequential computers are no longer commonplace desktop computers as 

the advent, low-price, and performance of multicore computers outweigh sequential 

computers. 
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The work in this dissertation falls under the category of direct methods using a 

shared-memory (multicore) computer.  The next subsection reviews direct partitioning 

methods relevant to this work.  

2.3.1 Bergeron’s Travelling-Wave Model 

Long transmission lines naturally decouple power system areas due to wave 

propagation delays on transmission lines.   This natural decoupling has motivated 

simulating each power system area on a different processor.   The parallel simulation 

approach that exploits wave propagation delays is known as Bergeron’s model [38].   

Consider the one-line diagram of a transmission-line shown in Fig. 2.3.2.  Due to 

the line length, an event occurring in area k  (sending-end) will not be perceived by area 

m  (receiving-end) until τ  seconds later.  In this regard, Bergeron’s equations suggest 

the equivalent circuit in Fig. 2.3.3. 
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Fig. 2.3.2 . A long transmission-line representation 

In Fig. 2.3.3, the current sources are delayed by τ  seconds and inject current for 

events that occurred in the neighbor area τ  seconds ago (noted as t τ− ).  The equations 

describing Bergeron’s model are given in (2.2).  In (2.2), CZ  is the characteristic 

impedance of the line, d  is the line length, υ  is the propagation speed, and { }', 'L C  are 

the line’s per-unit length inductance and capacitance.   



 22 

 

 

Fig. 2.3.3. Bergeron’s equivalent circuit model for a long (lossless) transmission line 
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The advantage of Bergeron’s model is that power systems can be formulated in 

block-diagonal form [39] and simulations easily parallelized.  Bergeron’s method 

appears frequently in power system partitioning literature and is introduced first. 

J. A. Hollman and J. R. Marti [40] used a real-time PC-cluster to simulate 

terrestrial transmission systems. The inter-PC decoupling was based on Bergeron’s 

model, where each power subsystem was solved on a different computational node.  

When using two PCs, speed gains of 32.89% and 37.05% were reported [41].   Four 

years later, the same authors published a paper [40] showing results from a five-

computer PC-cluster as well as the expected results from a 19-computer cluster.  The 

gains achieved with five computers neared 4, while the gains expected with 19 
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computers neared 19, which are close to linear speed-ups.  It was shown that Bergeron’s 

model was suitable for PC-cluster implementations which resulted in higher speed gains 

than when simulating subsystems on a single computer. 

D. M. Falcao et al. [39] implemented Bergeron’s method on a Inmos Transputer 

T800 connected in a hypercube topology.  A speed gain of 4.92 was observed for a 

power system consisting of 1,026 nodes, 2,457 branches, and 146 lines, partitioned into 

77 subsystems.  

J. R. Marti and L. R. Linares [42] implemented Bergeron’s traveling wave model 

to simulate small power systems in real-time using an IBM RISC System/6000 Model 

560, also on a hypercube architecture.  When using two processors,  a 45% improvement 

of speed (gain of 2.22) was reported; 66% (gain 4.93) on four-processors, and gains of 

1≤ beyond four processors.  The loss of gain is attributed to the increasingly 

communication overhead from adding more processors (or when creating more 

subsystems). 

Bergeron’s model allows formulating power systems in block-diagonal form and is 

highly desirable in parallel simulations.  However, there is a fundamental limitation 

intrinsic to Bergeron’s model: the time step t∆  must be an integer fraction "  of the 

travel-time delay (i.e., must be smaller) τ [43] as given by (2.3).  

 
1 1 d

t
" "

τ
υ

∆ = =  (2.3) 

For example, for a line of d=10km,  the maximum time step ("=1) is restricted to 

∆t=50μs [40] (assuming a phase velocity of 6200 10υ = × m/s).  Application of 
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Bergeron’s model in SPSs would result in even a smaller time steps because the 

transmission lines on SPSs are cables of very short physical length.  For example, in a 

SPS cable of 100md =  (assuming 6200 10υ = ×  m/s), the time step would be restricted 

to 50nst∆ ≤  and would counter-act any speed gains obtained from parallelizing SPS 

simulations. 

2.3.2 The Use of Time Step Delays 

Discretization of differential equations results in difference equations with both 

present and previous time step terms.  One approach to parallelize simulations is via 

explicit integration algorithms (e.g., inductors become historical current sourcesand 

capacitors become historical voltages sources).  Discretization of (2.4) using the 

trapezoidal rule of integration yields (2.5), where appearance of ( )v t  on the LHS makes 

the integration implicit (i.e., the state-variable ( )i t  and input ( )v t  are solved 

simultaneously). 

 ( ) ( )d
v t L i t

dt
=  (2.4) 

 
( ) ( ) ( ) ( )( ) ( )implicit

2

v t v t t L
i t i t t

t

+ − ∆
= − − ∆

∆
 (2.5) 

T. Noda and S. Sasaki [44] simulated a power distribution network on a PC-cluster 

by partitioning the network using explicit integration to create decoupling.  The explicit 

integration presented in [44] is a modified version of the trapezoidal rule, which is given 

in (2.6).  The advantage of explicit integration is that state-variables can be expressed as 
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functions of previous time step (i.e., known) values.  For example, in (2.6) if ( )Li t  

represents an inductor’s current, an inductor branch can be modeled as a historical 

current source instead of in resistive-companion form [45].   

Explicit integration permits partitioning inductors by current source transportation 

[46], and shunt capacitances by voltage splitting.   In [44] the simulation speed gain 

resulting from explicit integration to partition distribution lines was the use of ∆t=85μs 

at a real-time simulation speeds. 

 ( ) ( ) ( ) ( )( ) ( )3 1
2 explicit

2 2

L
v t t v t t i t i t t

t
− ∆ − − ∆ = − − ∆

∆
 (2.6) 

Another method to parallelize simulations based on time step delays is the latency 

insertion method (LIM) [47-48].  The LIM algorithm takes advantage of the inherent 

latency in inductors and capacitors to generate a leapfrog algorithm, which first solves 

for an electrical network’s branch currents and then for the node voltages.  In the LIM, if 

branches do not contain inductors, or if nodes do not contain capacitors, inductors and 

capacitors are artificially added to force the latency exploited by the leapfrog algorithm.  

When using the LIM, all branches and nodes are treated as shown in Fig. 2.3.4.  The 

independent sources are non-zero only if they are physical present. 
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Fig. 2.3.4. Branch (left) and node (right) as modeled by the latency insertion method 

In the LIM, which uses the backward Euler discretization, the branch currents and 

node voltages in Fig. 2.3.4 are discretized and solved as (2.7) and (2.8), respectively. 

 ( )1 1
2 21

ij

k kk k kt
ij ij ij ij ij ijL
i i v R i E

+ ++ ∆= + − +  (2.7) 

 

1
2

1
2

k

i i

i

C v k

k i kt

i C

it

H i
v

G

−

+ ∆

∆

+ −
=

+
∑

 (2.8) 

At time step 1k + , the leapfrog algorithm first solves for all branch currents using 

(2.7).  Once all branch currents are known, and before advancing the time step to 2k + , 

all node voltages are solved using (2.8).  The notation 1
2

k +  in (2.8) indicates that the 

node voltages are found from a post-computation following the branch current solution 

at 1k + .  Once the time step is advanced to 2k + , the voltages found at 1
2

k +  are used 

to compute the branch currents at 2k +  by using (2.7) again.  The pattern of latency 

exploitation is clear as branch currents and node voltages are solved separately leaping 

back-and-forth between their solutions. 
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Watanabe et al. [49] used the LIM leapfrog method to parallelize the simulation of 

a power distribution network on a PC-cluster.  The speed gains reported were between 

20-100 times with an efficiency of 94% when using five computational nodes.  The 

approach used to parallelize the simulations was to divide a large power distribution 

network into subsystems, where each subsystem was assigned to a different 

computational node.  

At the subsystem boundaries there are a deliberate number of repeated (interface) 

branches and nodes considered the subsystem overlap.  The subsystem overlap 

simultaneously exists on all subsystems created from the same boundary.  At each time 

step of the simulation, each subsystem solves for its branch currents and node voltages 

using (2.7) and (2.8), respectively.  Before advancing the time step, the subsystems 

exchange their branch current by sending them across the communication network.  

After receiving the currents from the adjacency subsystems, the boundary node voltages 

are updated by injecting the received current.  

There are limitations in the LIM that prevent its application to SPSs.   The first 

limitation is that datum nodes in SPS do not exist because when SPSs are modeled as 

purely ungrounded.  Thus, the node model on the right of Fig. 2.3.4 cannot be formed.  If 

said node model does not exist, the leapfrog algorithm cannot be used.  Another 

limitation is the time step size requirement.  In the case a fictitious (virtual) datum node 

were created for SPSs, shunt capacitors would have to be added to every node.  Further, 

all branches containing capacitors would require inductors to be added to the same 

branches.  Adding inductors to all branches containing capacitors, and adding capacitors 
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to all nodes not containing capacitors, implies adding parasitic inductances and 

capacitances to the system.  Parasitic reactance introduces fast transients that may not be 

physically presented and require a very small ∆t to observe. 

Moreover, to maintain numerical stability after introducing parasite reactance, it is 

recommended that the t LC∆ ≤ , where L represents a branch inductance and C 

represents a node’s shunt capacitance.  In [49] time steps were in the order of ( )1210O − , 

which does not make t LC∆ ≤  a significant restriction.  However, in power system 

simulation the typical time step is 50µst∆ = .  Unless the time step is decreased, unstable 

simulations are possible.  If the time step is reduced to ( )910O − , run-time is significantly 

affected.  If  instead of using parasitic values for inductors and capacitors, larger values 

are were used instead, the physical significant of the results change.  Other uncertainties 

regarding the application of LIM to SPSs are the suitability to time-varying and 

ungrounded networks, which have not been reported. 

At Florida State University, a 9-rack RTDS® simulator [50] implements time step 

latency in two ways.  The first is to create SPS subsystems by using transmission lines 

with travel-times of ∆t [50-51].  It is noted that this line is not physically present on a 

SPS model; the line is intentionally placed in the SPS model to form subsystems from 

time step delays.  The idea of placing (where physically not present) a ∆t travel-time 

transmission line is to mimic Bergeron’s travelling-wave model explained earlier. 

The second method is to use a cross-rack transformer model to insert a latency and 

partition DC links.  When partitioning DC links, the latency comes about inserting an 
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inductor of specified value such that simulation stability is warranted.  Since partitioning 

by insertion of latencies is artificial, its impact on simulation results should be carefully 

studied [52] and, hence, is not considered in this work. 

2.3.3 Diakoptics-based Partitioning Approaches 

Diakoptics (from Greek kopto meaning to tear, and English dia interpreted as 

systems) is a term associated with the work developed by G. Kron on tensorial analysis 

[53], which gave rise to a piecewise solution of large networks [4].  Between June 7, 

1957 and February 22, 1959, G. Kron published a serial called “Diakoptics-The 

Piecewise Solution of Large-Scale Systems”  in the Electrical Journal, London 

(formerly the Electrician), which later became available under one cover [4].  Kron’s 

motivation was to obtain inter-area power flows knowing only intra-area power flows 

[54].  

G. Kron’s new partitioning theory was unique as it could solve large network 

problems using only the solutions of its component parts.  Diakoptics was introduced 

before the digital computer, and did not receive attention until only after the sparse 

matrix ordering techniques suggested by Tinney [55],  the discretization for computer 

simulation proposed by Dommel [5], and the modified nodal analysis formulation 

proposed by Ho [56], which became dominant and efficient digital computer methods.  

The introduction of Modified Nodal Analysis (MNA) by Ho and the reduction of 

computer size and cost led to believe that one computer alone was sufficient to solve 

power systems of moderate sizes during the 1970s.   
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Diakoptics is not taught in academia and is rarely found in electrical engineering 

textbooks.  Other approaches, asides from diakoptics, have become main stream in the 

recent decades and most of the literature on partitioning does not address diakoptics as a 

viable option; perhaps, for the same reason that it disappeared during its beginnings.  

Diakoptics lost popularity before it was well established, but those who used it did see 

and learnt from its efficient advantages [54],[57-59].   

G. Kron showed that an electrical network represented as (2.9) and solution (2.10), 

where 
origA  is the original network (coefficient) matrix, x  the vector of unknown 

variables, and b  is the input vector, could be torn in p subsystems and reformulated as 

(2.11).  Equation (2.11) leads to the parallelizable form in (2.12). 

 
orig =A x b

 (2.9) 
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   ( ) ( )1
1 1 1 T 1 T 1 .block block block block

−− − − − −= − +x A b A D S D A D D A b  (2.12) 

The power systems research group at the University of British Columbia (UBC) 

has a PC-based real-time simulator (OVNI [28],[60]) that uses a two-level partitioning 

approach.  The first level of partitioning uses Bergeron’s traveling wave model to form 

subsystems that can be solved on different PC-cluster computers.  The second level of 

partitioning is to use a diakoptics-based formulation (called MATE [61]), which tears 

resistive lines (inter-area links) to create subdivisions from the first-level subsystems. 

In [28],[60] J. R. Marti and L. R. Linares used diakoptics to tear the resistance of 

lumped lines as illustrated by Fig. 2.3.5-Fig. 2.3.6.  In Fig. 2.3.5 the areas joined by the 

line resistance were decoupled by replacing the line resistance by current sources of 

unknown value.  After replacing the resistance with current sources, from the principle 

of current source transportation [46], the current sources were torn as current sinks (left) 

and current sources (right) as shown in Fig. 2.3.6.   
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Fig. 2.3.5. Two areas joined by an inter-area link (lumped resistances) 

 

Fig. 2.3.6. Two areas decoupled by current source transportation [46] 

To solve the partitioned system shown in Fig. 2.3.6, the current source constraint 

equations are included in the system formulation (MATE).  The network matrix for the 

system in Fig. 2.3.6 is given in (2.13), where nodalAG  is the nodal conductance matrix of 

Area A, 0  is a zero matrix, and nodalAi  is the current injection vector for Area A.  The 

unknown current source values are included in the lower part of node voltage vector and 
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are part of the system’s solution (i.e., solved simultaneously with the node voltages).  

Equation (2.13) has the form of (2.11), which is a diakoptical formulation. 
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 (2.13) 

K. W. Chan et al. [62] implemented a PC-based real-time simulator connected in a 

4D-hypercube using diakoptics as the inter-processor partitioning scheme.  The solution 

for an 811-busbar power system was measured in terms of speed gain and efficiency. 

The speed gain is the ratio between unpartitioned and partitioned simulation times.  The 

efficiency is the ratio between speed gain and the number of processors used.  When 

using two processors, the speed gain and efficiency were 1.76 and 88.2%, respectively.  

When using 16 processors, the speed gain and efficiency were 4.77 and 29.79%.  The 

speed gains reported are sub-linear and show that inter-processor communication 

severely influences the overall performance of the parallel simulations.  Another 

influential aspect is the computational imbalance among subsystems.  The computation 

imbalance manifests itself as efficiency and is dominated by the processor finishing last 
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at each time step (i.e., ideally, all processors finish their solutions at the same time).  The 

major bottleneck of diakoptics is the communication overhead in unifying the subsystem 

solutions to obtain the overall solution. 

S. Jiwu et al. [63] implemented an eight-computer cluster using diakoptics as the 

inter-processor partitioning scheme for transient stability simulations.    The authors 

improved the coarse-grained algorithm used by K. W. Chan in [62] by proposing a 

multilevel partitioning scheme and a hierarchical form of the bordered-block diagonal 

form power network algorithm.  Cluster optimizations are also used to reduce the 

bottleneck of the partitioning scheme.  The three case studies presented by the authors 

reported sub-linear and super-linear speed gains for transient stability studies.  Speed-

gains of near ten were attained for eight processors, and efficiencies of 180% were 

attained for four processors, which improved the results in [62].   The work in [63] 

addresses transient stability simulations, which is not the main endeavor of this work.  

However, it should be  noticed that super-linear gains and good efficiencies are possible 

using diakoptics. 

A. Kalantari [64] and S. Esmaeili [65] used a diakoptical formulation for inter-area 

steady-state fault studies.  Ideal circuit breakers at the onset of subsystems were used to 

create boundaries of disconnection as shown in Fig. 2.3.7; if circuit breakers did not 

exist at the desired locations, they were inserted in place.  The inter-area constraint 

equations include the circuit breakers’ status (F=0 when open, and F=1 when closed).  

The diakoptical formulation used by A. Kalantari et al. is given in (2.14). 
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Fig. 2.3.7.  Two areas joined by ideal circuit breakers 

The network equations in [64] were parallelized by first solving the network with 

the circuit breakers open, and then with the breakers closed.  The fault study solution 

approach in [64] is computationally efficient because obtaining the new fault pre-

voltages does not require re-factoring the entire network matrix, only portions of each 

subsystem’s bus impedance matrices (also called the Woodbury’s method of inverting 

modified matrices [66-68]).  The work in [64] was presented for steady-state results; the 

work in [65] for transient stability studies, grounded networks, use nodal analysis, and 

their breaker models did not exhibit arcing characteristics.  

The main disadvantages of diakoptics are that branches must exist at the 

boundaries of disconnection for constraint equations to be written and that the 

computation of the patch term becomes computationally expensive as the number of 

partitions increases; more so in distributed computers having physical communication 

network delays.  The former disadvantage poses a limitation on the number of places 

where a network can be torn, and limits the maximum number of partitions possible.  
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The latter disadvantage is due to the sequential work required to compute the boundary 

conditions at each disconnection point.  The larger the number of partitions, the larger 

the sequential work involved in said boundary condition computation.  While the 

boundary conditions are computed, the solution to the subsystems is halted until the 

boundary conditions are known. 

2.4 DIFFERENTIAL-ALGEBRAIC FORMULATION OF A NOTIONAL 

SHIPBOARD POWER SYSTEM 

To assess the complexity and order of AC-Radial SPS time domain simulations, a 

notional SPS was formulated mathematically using differential-algebraic equations 

(DAEs).  The differential equation set contains the differential equations of all power 

apparatus and controllers.  The algebraic equation set contains the voltage and current 

constraints at the junctions (e.g., single-phase and three-phase nodes) where two or more 

power apparatus interconnect.  The list of the power apparatus used for the notional AC-

Radial SPS formulation is presented after introducing the component models in Table 

II.4.   The three-letter acronyms will be used frequently throughout this manuscript. 

To formulate the DAEs, a multi-terminal component (MTC) theory [69] approach 

was adopted.  In the following subsection MTC theory is introduced before presenting 

the DAE equation formulation.  

2.4.1 Multi-Terminal Component Theory 

Multi-terminal component theory is an abstraction that treats power apparatus as 

being enclosed by black-boxes called MTCs.  By creating MTCs, each power apparatus 
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can be mathematically described as a stand-alone component.  Each MTC is 

mathematically described using differential and/or algebraic equations to describe the 

internal behavior of the MTC.  After mathematically describing all MTCs, the MTCs are 

interconnected by writing voltage and current algebraic equations at all MTC terminals.  

After all MTCs are described and interconnected, a DAE formulation is obtained. 

An illustration of an arbitrary MTC is shown in Fig. 2.4.1.  The MTC in Fig. 2.4.1 

has three-phase terminals on its input and output sides.  Some MTCs may have only an 

input side (e.g., a motor), or may have mixed single-phase and three-phase terminals 

(e.g., a transformer).   

 

Fig. 2.4.1. A power apparatus enclosed inside a multi-terminal component (MTC) 

An illustration showing four MTCs is given in Fig. 2.4.2.  In Fig. 2.4.2, a 

synchronous generator (GEN1) is connected to an over-current relay monitoring a circuit 

breaker (BRK1) at three-phase node 1.  The circuit breaker is connected to two cables 

(CBL1 and CBL2) at three-phase node 2.   All MTCs were interconnected by writing 
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voltage and current equations as described in Fig. 2.4.2, which rendered the entire 

notional SPS DAE formulation.  An example of a bus connection is given at the end of 

section 2.4.3. 

  

Fig. 2.4.2. Radial connection of four MTCs 

2.4.2 Component Models 

The power apparatus models of the notional SPS are presented in more detail in 

this section.  Each power apparatus is described using differential equations, and with 

differential-algebraic equations if they enclose subcomponents (e.g., generators and 

induction motors enclose subcomponents).  None of the components presented next have 

a ground connection because SPSs are modeled as purely ungrounded in this work. 
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2.4.2.1 Synchronous Generator 

Three synchronous generators are modeled in the notional SPS used in this work.  

The generators have delta-connected stator windings, are rated at 450V, 2.5MW, 

3.125kVA, 900RPM (60Hz), 8-pole machine, and use the parameters presented in [70].    

Each generator comprises four subcomponents:  a rotor shaft (ROT), a prime-

mover and governor (PMG), a voltage regulator and exciter (VRE), and six windings 

(WND).  The generator’s rotor dynamics are based on the swing equation (eq. 7.82 in 

[71]).    The PMG model is based on the model presented in [70]  and the VRE model 

based on the IEEE Type II excitation system [72-73].    The stator windings are modeled 

as three delta-connected windings and the rotor windings as a field, d-axis damper, and 

q-axis damper windings; the stator and rotor windings are magnetically coupled with 

time-varying inductances. 

A representation of the generator model and its subcomponents is shown in Fig. 

2.4.3.  The generator subcomponents are ROT, PMG, VRE, and WND.  To interconnect 

the generator’s subcomponents, the state-variable relationships (indicated with arrows) 

in Fig. 2.4.3 are used.  Each of the generator’s subcomponent equations are introduced 

next. 
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Fig. 2.4.3. Electrical and mechanical subcomponents of a synchronous generator 

2.4.2.1.1 Machine Windings 

The equations of the six generator winding are given in (2.15), where the state-

variables are the winding currents and the inputs are the winding voltages.  Derivation of 

(2.15) is based on the synchronous generator modeling presented in [74-76].  In (2.15), 

W"Dλ  is the vector of winding flux-linkages, W"DL  is a coefficient matrix with time-

varying self- and mutual-inductances, W"DR  is a diagonal matrix with the winding 

resistances, elec

GE"θ  is the rotor’s electrical angle in radians with respect to phase ab ’s 

stationary magnetic axis, W"Dx  is the state-variable vector of winding currents, and W"Du  

is the input vector of impressed voltages on each winding.   
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The relationship between the rotor’s mechanical angle and the stator windings’ 

electrical angle (i.e., the stator frequency is different than the rotor frequency) is given in 

(2.16), where mech

ROTθ  is the rotor’s mechanical angle with respect to the machine’s top-

dead center, and 8GE"p =  is the total number of magnetic poles on the rotor. 

 
2

elec mechGE"
ROT ROT

p
θ θ=  (2.16) 

2.4.2.1.2 Prime-mover and Governor 

The state-variable equations for the PMG are given in (2.17) and are based on 

[70], where FTT  and FVT  are prime-mover time constants, 10F sW and 2GTC  are exogenous 

inputs, CT  and CK  are the governor’s time constant and gain, respectively; puref

PMGω  is the 

prime-mover’s reference speed in per-unit, pumech

ROTω  is the rotor’s instantaneous 

mechanical speed in per-unit.  The aforementioned variables are labeled in Fig. 2.4.3. 
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 (2.17) 

2.4.2.1.3 Rotor 

The rotor’s swing equations is given in (2.18), where 
ROTJ  is the rotor’s moment 

of inertia in kg-m2,, base 2
60

900 rad/smech

GE"
πω = ×  is the generator’s base mechanical speed, 

basemech

GE"T  is the generator’s base torque in N-m, pumech

ROTω  is the rotor’s instantaneous 

mechanical speed in per-unit, pumech

PMGT
 
is the PMG’s applied mechanical torque in per-

unit, and puelec

W"DT  is the windings’ electromagnetic counter-torque in per-unit. 
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JJ

θ θ
ω

ω

•

•

⋅ ⋅ ⋅    
     = + −−      ⋅  −        

 (2.18) 

2.4.2.1.4 Voltage Regulator and Exciter 

The VRE’s state-variable equations are given in (2.19) and the non-linear relations 

in (2.20), where FD

VREE is the exciter’s throughput voltage, { }1 2 3, ,VRE VRE VREV V V are the 

regulator state- variables, puref

VREv is the reference voltage in per unit, and puterm

VREv  is the 

stator’s terminal voltage in per-unit.  The VRE’s non-linearity is modeled by ( )4f t , 

which models the regulator’s limiter function, and ( )1f t ,  which models the exciter’s 
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saturation function.  The parameters { }, ,E A FK K K and  { }1 2, , ,F F A ET T T T  are VRE gains 

and time constants, respectively. 
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  (2.19) 
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18
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FD
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f V

f A e

π
⋅

 =
→ 

 = ⋅

 (2.20) 

2.4.2.2 Induction Motor 

The motor loads on the notional AC-Radial SPS are modeled as induction motors 

including the motor drives.  The motor ratings and parameters are listed in Table II.2 and 

Table II.3, respectively.   As seen from Table II.2, the induction motors are loaded with a 

constant mechanical load torque and operated below their rated values.  Similar to 

GENs, MOTs are comprised of several subcomponents.  The MOT’s subcomponents are 

an uncontrolled three-phase rectifier with DC-link bus capacitor, a sinusoidal pulse-

width modulated voltage-source inverter [77], the motor windings, and the rotor shaft. 
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TABLE II.2. INDUCTION MOTOR TYPES, RATINGS, AND OPERATING POINTS 

 

TABLE II.3. INDUCTION MOTOR PARAMETERS 

 

An illustration of the MOT model including subcomponents is shown in Fig. 2.4.4.  

The rectifier is modeled as a six-pulse line-commutated uncontrolled rectifier.  The 

inverter is modeled as a six-pulse pulse-width modulated voltage-source inverter, where 

the speed controller is modeled as a lag compensator.  The mechanical load is modeled 

as a constant mechanical torque. The rotor dynamics are modeled with the swing 

equation.   Details of the MOT’s subcomponent are presented next.    

Type of Induction 

Motor

Number 

of

Rated 

Horsepower 

(HP)

Rated 

Power 

Factor

Rated 

Power 

(W)

Rated 

Torque 

(N-m)

Slip at 

Rated 

Torque

Rated 

Speed 

(RPM)

Loaded 

Power 

(W)

Loaded 

Torque 

(N-m)

Slip 

when 

Loaded

Loaded 

Speed 

(RPM)

AC Compressor 1 258.2 0.90 192,617 2099.3 51.6% 3,600 156,872 437.1 4.8% 3,427

Anchor Windlass 4 53.22 0.87 39,702 535.4 62.2% 3,600 18,856 51.6 3.0% 3,492

Fire Pump 6 154.5 0.83 115,257 1357.3 29.0% 3,600 96,171 262.5 2.8% 3,499

HP Compressor 2 5.63 0.82 4,200 52.3 40.8% 3,600 3,504 9.6 3.3% 3,481

Steering Gear 4 105.2 0.86 78,479 550.1 31.2% 3,600 38,333 104.8 3.0% 3,492

Water Pump 2 63.81 0.86 47,602 897.4 27.1% 3,600 71,900 196.6 3.0% 3,492

Total no. motors 19

Rated Values Operating Values

Type of Induction 

Motor

Number 

of Poles 

(total)

Stator 

Resistance 

(Ω)

Stator 

Leakage 

Inductance 

(H)

Magnetizing 

Inductance 

(H)

Rotor 

Resistance 

(Ω)

Rotor 

Leakage 

Inductance 

(H)

Rotor 

Damping 

Coefficient 

(N-m-s)

Rotor 

Moment 

of Inertia 

(kg-m^2)

Rotor 

Time 

Constant 

(secs)

AC Compressor 2 53.9E-3 431.7E-6 20.6E-3 170.3E-3 431.7E-6 111.3E-3 521.2E-6 4.7E-3

Anchor Windlass 2 300.0E-9 2.0E-3 92.4E-3 935.4E-3 2.0E-3 28.4E-3 143.5E-6 5.1E-3

Fire Pump 2 7.3E-3 777.6E-6 23.1E-3 169.9E-3 777.6E-6 72.0E-3 385.9E-6 5.4E-3

HP Compressor 2 2.3E+0 17.1E-3 526.6E-3 5.3E+0 17.1E-3 2.8E-3 14.9E-6 5.4E-3

Steering Gear 2 300.0E-9 1.9E-3 70.1E-3 456.9E-3 1.9E-3 29.2E-3 149.2E-6 5.1E-3

Water Pump 2 300.0E-9 1.2E-3 42.5E-3 242.9E-3 1.2E-3 47.6E-3 648.7E-6 13.6E-3

Mechanical ParametersElectrical Parameters
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Fig. 2.4.4. Induction motor and drive 

2.4.2.2.1 Rectifier 

The rectifier and DC-link bus equations are given in (2.21).  The rectifier 

equations are updated every time a diode commutates according to: 

 

1V, diode turns on; 1m
Diode

1V, diode turns off; 1M
commutation

1V, no action;  does not change

D D

D D

D D

v R

v R

v R

> = Ω


→ < = Ω
 =  

The three-phase rectifier model is shown in Fig. 2.4.5. 
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Fig. 2.4.5. Motor drive’s line-commutated rectifier 
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 (2.21) 

2.4.2.2.2 Inverter 

The pulse-width modulated (PWM) voltage-source inverter is shown in Fig. 2.4.6, 

where the transistors are modeled as ideal switches (1mΩ  when closed, and 1MΩ  when 
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open).  The algebraic (mesh) equations of the inverter and given in (2.22) , and are time-

varying according to: 

 

th

th

1m , when the  transistor conducts

1M , when the  transistor blocks
Qi

i
R

i

= Ω
→ 

= Ω  

 

Fig. 2.4.6. Motor drive’s voltage-source inverter 

 

1 4 1 4 4

1 3
0

1 4 3 6 4 6 6

4 6
1

2 3 2

3 6 6 2 6
35 6

4
4 4 6 6 4 6 6

6 2 6 6 2 6

Q Q Q Q Q

Q Q

Q Q Q Q Q Q Q

Q Q

Q Q

Q Q Q Q Q

Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q Q

R R R R R

R R
iR R R R R R R

R R i

R R i
R R R R R

iR R

iR R R R R R R

R R R R R R

+ − − ⋅ − ⋅ 
 +   − − − − + −    + +  
 + 
 ⋅ − − − +  + +  
 

− + − + − 
 ⋅ − + − + 

⋅  
  ⋅   

   = ⋅
   

⋅   
   ⋅ 

 (2.22). 
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The inverter’s firing signals were generated by comparing three reference signals 

(one for each phase ab, bc, and ca) against a common carrier signal.  The signal-

generating functions for the reference and carrier signals are based [77] on and are given 

in (2.23), where 
refaf  is the reference signal for phase ab, 60Hzrf =  is the reference 

signals’ frequency, and 2000Hzcf =  is the carrier signal’s frequency. 

( )

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

1.1sin 2
Reference signals

1.1sin 2 120
sinusoidal

1.1sin 2 120

Carrier signal 2
0.9 arcsin 2 90

sawtooth

refa r

refb r

refc r

carr c

f t f t

f t f t

f t f t

f t f t

π

π

π

π
π

 =


→ = − °


= ⋅ + °

→ = + °


  (2.23) 

The following comparisons are made to determine whether 
QiR  is in conducting or 

blocking mode. 

 

( ) ( )( )
( ) ( )( )
( ) ( )( )

1 4

3 6

5 2

if  and 

Transistor
if  and 

firing signals
if  and 

refa carr Q on Q off

refb carr Q on Q off

refc carr Q on Q off

f t f t R R R R

f t f t R R R R

f t f t R R R R

 > = =


> = =


> = =  

2.4.2.2.3 Motor Windings 

The induction motor windings are modeled using delta-connected approximate 

per-phase equivalent circuits [78-80] as shown in Fig. 2.4.7.    In Fig. 2.4.7, MabL  is the 

magnetizing inductance of phase ab, srabR  is the sum of phase ab’s stator and rotor 

winding resistances, and srabL  is the sum of phase ab’s stator and rotor leakage 

inductances.  The resistance ( )1 /rabR s s−  is a time-varying resistance that models the 
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power transferred to the rotor by phase ab.  The slip s is computed with (2.24), where 

120elecω π= is the stator’s electrical frequency in rad/s, mech

MOTω  is the rotor’s mechanical 

speed in rad/s, and motp  is the total number of magnetic poles. 

 2

mechmot
elec MOT

elec

p

s
ω ω

ω

−
=  (2.24) 

 

Fig. 2.4.7. Induction motor stator and rotor windings 

2.4.2.2.4 Rotor 

The induction motor’s rotor dynamics are modeled with Newton’s law of 

rotational motion, given in state-variable form in (2.25), where elec
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electromagnetic torque (in N-m) applied to the rotor, mech

MOTT  is the mechanical (constant) 

load torque in N-m, 
MOTJ  is the rotor’s moment of inertia in 2kg-m , mech

MOTω  is the rotor’s 

mechanical speed in rad/s, and 
MOTD  is the damping coefficient in N-m-s. 

 ( )
1

1

mech mech
MOT elec mechMOT

MOT MOTMOT mech
mech MOT
MOT MOT MOT

T TD

J J

θ θ
ω

ω

•

•

⋅ ⋅     
      = + −−       ⋅  −          

 (2.25) 

The electromagnetic torque developed in each phase is found from (2.26), where 

srR is the sum of any phase’s stator and rotor resistance in Ohms (e.g., 

/srab stator rotorR R R s= + ), 2

srL  is the sum of any phase’s stator and rotor leakage 

inductances in Henries, and /rotorR s  is the representative rotor resistance.  Adding the 

torques developed by each phase results in elec

MOTT , which is used to the compute the rotor 

speed mech

MOTω  from (2.25).  Once mech

MOTω   and s  are known, the windings’ resistance 

term /rotorR s  are updated. 

 
( )

2

2 2 2

elec rotor s
phase

elec sr elec sr

R V
T

s R Lω ω
=

⋅ +
 (2.26) 

2.4.2.2.5 Speed Controller 

The speed controller regulates the reference signals’ frequency rf  in (2.23) for 

each phase.  The rotor’s mechanical speed is compared to a reference speed and the 

difference passed to the speed controller block shown in Fig. 2.4.8, where IMT  is the 

controller’s time constant in seconds. 
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Fig. 2.4.8. Speed controller for induction motor 

2.4.2.3 Single-Phase Cable 

Single-phase  cables distribute power to the single-phase side (120V) of the SPS.  

All single-phase cables are connected between transformer secondary sides and single-

phase loads.  The single-phase cable model is based on a nominal-pi line-segment as 

shown in Fig. 2.4.9, where the parallel conductors represent any two phases.  The single-

phase cable’s differential equations are given in (2.27).   

 

Fig. 2.4.9. Single-phase cable model (current-in, voltage-out) 
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2.4.2.4 Three-Phase Cable 

Three-phase cables distribute power to the three-phase side (450V) of the SPS and 

are used to interconnect all three-phase components together.   The three-phase cable 

model is based on a nominal-pi line-segment and shown in Fig. 2.4.10, where the three 

parallel conductors represent phases a, b, and c, respectively.  The three-phase cable’s 

differential equations are given in (2.28).   

 

Fig. 2.4.10. Three-phase model (current-in, voltage-out) 
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 (2.28) 

2.4.2.5 Single-Phase Static Load 

The single-phase loads on the SPS are rated at 120V and modeled as static 

(constant impedance) loads.  The single-phase loads are connected to the transformers 

via single-phase cables.  The single-phase load model is shown in Fig. 2.4.11 and 

described with the differential equation in (2.29). 
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Fig. 2.4.11. Single-phase load model (voltage-in, current-out) 
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= − +  (2.29) 

2.4.2.6 Three-Phase Static Load 

The three-phase loads are rated at 450V and are modeled as delta-connected static 

loads.  The three-phase load model is shown in Fig. 2.4.12, where the respective 

differential equations are given in (2.30).  
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Fig. 2.4.12. Three-phase load model (voltage-in, current-out) 
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 (2.30) 

2.4.2.7 Three-Phase Transformer 

The transformers on the SPS are delta-delta 450:120V step-down transformers, 

and supply power to the single-phase loads [81]. The primary sides of the transformers 

are connected to the three-phase side (450V) of the SPS and the secondary to the single-

phase side (120V).  The transformers are modeled as three T-model banks connected in 

delta on both the primary and secondary sides as shown in Fig. 2.4.13. 
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Fig. 2.4.13. Three-phase transformer model (450/120V step-down) 

The differential equations for the transformer are given in (2.32). 
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2.4.2.8 Protective Devices 

The protective devices modeled in this work are over-current relays, low-voltage 

relays (LVP), low-voltage relays with automatic re-closers (LVR), automatic bus 

transfers (ABTs), and manual bus transfers (MBTs).   The RMS voltages and currents of 

any phase and for any protective devices are computed using (2.33). 
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2.4.2.8.1 Over-current and Low-voltage Relays 

Over-current and low-voltage relays are modeled as three-phase switches that 

change positions when their protective logic dictates to do so.  The logic for over-current 

relays is based on instantaneous over-current and a fixed opening delay.  The relay logic 

for under-voltage relays is based on a comparing whether the line-to-line voltage has 

reduced to <405V.  If the under-voltage is controlling an LVP, human intervention is 

required to reclose the switching.  If the under-voltage relay is controlling and LVR, the 

switches reclose automatically when the voltage is restored. 

The over-current relay logic is depicted with  Fig. 2.4.14, where when any of the 

line currents { }, ,a b c

RMS RMS RMSI I I (in RMS Amps) exceeds pickup

RMSI  a timer is initiated.  When 

the relay timer elapses, the relay issues a signal to the circuit breaker to open the 

contacts.    The logic equations corresponding to Fig. 2.4.14 are given in (2.34), where 

nowt  represents the present simulation time in seconds, 
faultt  represents the time in 

seconds when fault was detected, and 
delayt  is the delay in seconds that the relay waits 

before opening the circuit breaker contacts. 
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Fig. 2.4.14. Over-current relay logic 
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The under-voltage relay logic for LVPs and LVRs is depicted in Fig. 2.4.15.  The 

line-to-line voltages (RMS) as used as inputs to determine whether to isolate a load.  If 

any of the line-to-line voltages of a load falls below 90% of the system’s nominal 

voltage, the relay issues a command to open the LVP or LVR’s contacts.  In the case of 

LVRs when the voltage level is restored, the LVR contacts re-close automatically.   The 

logic equations corresponding to Fig. 2.4.15 are given in (2.35). 
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Fig. 2.4.15. Under-voltage relay logic for low voltage protective devices (LVXs) 
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 (2.35) 

The electrical network model used for over-current and low-voltage relays is 

shown in Fig. 2.4.16.  The in-line voltage sources { }, ,a b c

BRK BRK BRKu u u are included to 

model arcing behavior when the contacts part according to Cassie’s model [82].  The 

equations for electrical network shown in Fig. 2.4.16 are given in (2.36).  
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Fig. 2.4.16. Over-current relay and low-voltage protective device model 
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 (2.36) 

The over-current relay states shown in Fig. 2.4.17 illustrate the transition stages 

from the closed to open positions.  If the protective device is an LVR, the contacts are 

re-closed when the voltage is restored; if the protective device is an over-current or low-

voltage relay, the contacts remain open.  
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Fig. 2.4.17. Over-current relay and low-voltage protection device states 

The arcing sources activate during the arcing stage and are modeled as square-

waves with amplitude arcV  as given by (2.38), where { }, ,a b ci i i  are the branch currents 

through phases a, b, and c, respectively.   
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2.4.2.8.2 Bus Transfer Devices 

Bus transfer devices serve loads from either of two paths: a normal path, or an 

alternate path.  All bus transfers all closed on their normal path by default.  There are 

two kinds of bus transfer devices (XBTs): automatic bus transfers (ABTs) and manual 

bus transfers (MBTs).  During low-voltage conditions, ABTs switch from the normal 

path to the alternate path.  When the voltage is restored on the normal path, ABTs 

automatically switch back to the normal path.  Manual bus transfers behave like ABTs 

except that human intervention is required to switch the MBT to normal path.   

An illustration of the XBT model is shown in Fig. 2.4.18.  Side 1 is the normal 

path, side 2 is where the load connects from, and side 3 is the alternate path and only 

used when the normal path’s voltage drops below 405V.  The inline voltage sources 

model the arcing behavior during the switching operation and follow the form of (2.38).   

The resistance values model the switch positions for sides 1, 2, and 3 and follow (2.37).    

The algebraic equations for XBTs are given in (2.39). 
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Fig. 2.4.18. Bus transfer model 
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When switching from side 1 to side 2, the inline voltage sources at side 1 arc 

before side 2 is closed.  The transition states when switching from side 1 to side 2 are 

shown in Fig. 2.4.19. 
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Fig. 2.4.19. Bus-transfer device states 

The relay logic for XBTs is similar to the relay logic for LVXs as shown in Fig. 

2.4.20.  When any of the three line-to-voltages on side 1 falls below 90%, the contacts 

move from side 1 to side 2 following the transition states in Fig. 2.4.19.  If the XBT is an 

ABT, the contacts will reposition themselves on side 1 when side 1’s voltage is restored 

(i.e., 90%≥ ).  Similar to LVXs, the XBT’s under-voltage relay logic is given in (2.40). 
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Fig. 2.4.20. Under-voltage relay logic for bus transfers (XBTs) 

 

( ) ( ) ( )( )
( )

( )
( )

if 0.9*450  or 0.9*450  or 0.9*450

if 

move contacts to side 2;

end

else
Under-voltage

if ABT
relay logic

if voltage is restored

move contacts to side 1;

else

; clear

ab bc ca

RMS RMS RMS

now fault delay

fault now

V V V

t t t

t t

< < <

− >

= ( ) fault time flag

end





















 (2.40) 

 

2.4.3 Interconnections 

The previous section introduced the SPS components as stand-alone MTCs with 

exogenous inputs.  To interconnect all MTCs and form a system of DAEs, voltage and 

ab

RMS
V bc

RMS
V ca

RMS
V

pickup

RMS
V

0.9< 0.9≥



 70 

 

current constraints at each node must be satisfied.  At each node where two or more 

MTCs connect the line-to-line voltages must be the same for all MTCs at said node.  

Additionally, the net sum of currents entering and leaving the same node must equal 

zero. 

MTC interconnections are illustrated via the connections shown in Fig. 2.4.21, 

where node 1 is reminiscent of a switchboard or load-center (bus node).  To connect the 

cable to the over-current relay monitoring a breaker, the voltage and current algebraic 

equations in (2.41) and (2.42) are used.  Equation (2.41) is Kirchhoff’s second law 

(KVL), and (2.42) is Kirchhoff’s first law (KCL). 
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Fig. 2.4.21 . Example connection of a cable and transformer 

The voltage and current algebraic constraints in (2.41) and (2.42) are repeated at 

each single-phase and three-phase node in the system.  After writing differential and/or 

algebraic equations for each MTC, and after all nodes have been visited and described 

with KVL and KCL equations, the system is algebraically connected and the DAE 

formulation is complete. 

2.4.4 System Equation Formulation 

The differential and/or algebraic equations for each MTC were given in section 

2.4.2, whereas the interconnection equations were given in section 2.4.3.  The set of all 

MTC and connection equations was used to formulate a notional AC-Radial SPS DAE 

model. 
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Shipboard power systems can be represented by the DAEs in (2.43).  In (2.43) xɺ is 

the system’s state-vector containing all SPS MTCs’ state-variables; uɺ is the input vector 

containing all SPS MTCs’ inputs; y is the vector of measurements of interest (i.e., node 

voltages and branch currents).  The functions ( ), ,f g h  may be linear, or non-linear 

depending on each component model.  The independent variable t  represents time. 

 

( )
( )
( )

, ,DAE

equation , ,

formulation , ,

f t

g t

h t

 =


→ =
 =

x x u

0 x u

y x u

ɺ

 (2.43) 

The equation ( ), ,f t=x x uɺ  represents the components’ differential equations, 

( ), ,g t=0 x u  represents components’ algebraic equations and the voltage and current 

constraints at each node.  Equation ( ), ,h t=y x u  specifies the variables of interest, 

which are the nodes’ line-to-line voltages and select branch currents.   The state vector 

x  is shown in block-vector form in (2.44), where each sub-vector represents the state-

variables of each group of components.  For example, the vector GE" ∈x x  in (2.45) 

contains the state-variables for three generators.  The first generators’ subvector 

1GE" GE"∈x x  in (2.46) contains the state-variables corresponding to generator 1’s 

windings (WND), prime-mover and governor (PMG), rotor (ROT), and voltage regulator 

and exciter (VRE) as introduced in section 2.4.2.1.  Similarly for three-phase cables 

(CBL), the  ith three-phase CBL equations are found in 1CBL CBL∈x x .  
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 � � � � � � �
T

transformersgenerators ind.mots. 1  cables 3  cables 1  loads 3  loads

GE" MOT Cbl CBL Lod LOD XFM

ϕ ϕ ϕ ϕ

 =   
x x x x x x x

x  (2.44) 

 [ ]T

1 2 3GE" GE" GE" GE"=x x x x  (2.45) 

 [ ]T

1 1 1 1 1GE" W"D PMG ROT VRE=x x x x x  (2.46) 

 [ ]T

1 2 114CBL CBL CBL CBL=x x x x⋯  (2.47) 

An illustration of a notional AC-Radial SPS is repeated in Fig. 2.4.22, where the 

description of the components and topology was given in section 2.2.1.  The component 

models used in this work are summarized and shown with their state-variable count in 

Table II.4.  The algebraic equation count is shown in .  From Table II.4 and Table II.5 it 

is seen that the order of a SPS DAE simulation is nearly 3,000 equations of which ~1600 

are state-variable equations, and ~1300 are algebraic equations. 
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Fig. 2.4.22. Illustration of a notional AC-Radial SPS (repeated from Fig. 2.2.2) 
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TABLE II.4. DAE FORMULATION’S STATE-VARIABLE COUNT  

 

TABLE II.5. DAE FORMULATION’S ALGEBRAIC EQUATION COUNT  

 

 

Acronym Component Description
Number 

of

No. State-

Variables
Total

GEN Synchronous generator 3 15 45

MOT Induction motor 19 9 171

Cbl Single-phase cable 33 4 132

CBL Three-phase cable 108 6 648

Lod Single-phase static load 33 1 33

LOD Three-phase static load 13 3 39

XFM Three-phase transformer 11 9 99

BRK Over-current relay 83 3 249

XBT* Bus transfer 28 3 84

LVX** Low-voltage relay 19 3 57

Totals 350 1,557   

*15 Automatic (ABTs); 13 manual (MBTs)

** 2 Automatic (LVRs); 17 manual (LVPs)

From To

Cbl Lod 2 33 66

CBL XFM 4 11 44

CBL LVX 4 11 44

CBL MOT's RCT 4 19 76

CBL LOD 4 32 128

CBL CBL 4 63 252

CBL IRR 4 83 332

CBL XBT 4 27 108

GEN PMG GEN ROT 2 3 6

GEN VRE GEN WND 2 3 6

GEN WND GEN ROT 2 3 6

GEN WND BRK 4 3 12

LVX MOT RCT 11 4 44

MOT PWM MOT WND 4 11 44

MOT RCT MOT PWM 2 11 22

MOT ROT MOT CTR 1 11 11

MOT WND MOT ROT 1 11 11

XFM Cbl 2 33 66

Total 1,278            

Component 

Interconnections
No. Algebraic 

Equations

No. Connection 

Occurences

Total Number 

of Algebraic 

Equations
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2.5 PROBLEM FORMULATION 

The problem that this work addresses is to obtain, in reasonable time, the 

instantaneous node voltages and branch currents defined in ( ), ,h t=y x u .  Henceforth, 

to produce fast time domain simulations of AC-Radial SPSs an approach to parallelize 

the solution of ( ), ,f t=x x uɺ , ( ), ,g t=0 x u  to obtain  y  using a multicore computer is 

sought . 

Parallelizing an SPS simulation requires domain decomposition a priori.  In this 

regard, an approach to partition SPSs as smaller sub-domains is required.  Prominent 

challenges associated with this requirement are the introduction of singularities, 

inaccuracies, numerical stability, overwhelming simulation times, and ill-conditioning, 

all of which should be overcome in the end. 

To partition a SPS, a formulation approach suitable for tearing should be 

developed first.  The suitability of a formulation approach implies that it must be 

decomposable into smaller formulations of the same kind.  With a suitable formulation 

approach, a partitioning approach to tear said formulation should be devised.   

For the partitioning approach to be valid, partitioned SPS simulation results must 

agree with unpartitioned simulation results, and be obtained in less time.  Multicore 

computers are suitable computers to parallelize the execution of tasks previously 

decomposed (i.e., partitioned).  Using a multiprocessor computer SPS subsystems are 

sought to be solved concurrently, which implies facing the aforementioned challenges.   

An issue that emerges as a result of parallelizing the simulation is the potential 

communication latency between subsystems.  Subsystem communication is needed to 
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exchange boundary voltages and current to other parts of a partitioned SPS.  Keeping the 

communication between subsystems minimal is likely to counter-act the speeds in gain 

as only a few partitions could exist.   

In summary, the problems this work addresses are obtaining a suitable formulation 

approach for which domain decomposition can be applied.  Once a SPS is decomposed 

the SPS subsystems ought to be solved faster and concurrently using a multicore 

computer, without incurring overhead nor affecting the accuracy of the simulation. 

2.6 CHAPTER SUMMARY 

This chapter introduced the concept of time domain simulations.  Useful books on 

the subject are [24],[45],[71],[83-84].  The reasons why time domain simulations 

demand vast computer resources were given, which led to stating the reasons that 

motivated this work.  Relevant work in this area was presented and a literature review on 

current approaches to reduce simulation run-time was given.   

This chapter also introduced and assessed the problem of large-scale SPS 

simulation.   To assess the complexity of large-scale SPS simulation, a differential-

algebraic equation formulation was presented.   The DAE equation count was 

summarized in Table II.2 and Table II.3, which gives an idea of the order of AC-Radial 

SPS models and the complexity of their time domain simulation.  The next chapter will 

present the solution methodology based on the same three stages previously listed: 

discretization, partitioning, and simulation.  
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CHAPTER III 

 

SOLUTIO� METHODOLOGY 

III. SOLUTION METHODOLOGY 

3.1 INTRODUCTION 

This chapter presents the new methodology devised to parallelize AC-Radial SPS 

time domain simulation in three stages: 

• Formulation of the system’s mathematical representation 

• Partition of the system and creation of its subsystems  

• Simulation of the subsystems using a multithreaded approach.  

The problem formulation stated that the solution of the set ( ), ,f t=x x uɺ , 

( ), ,g t=0 x u  is the mean to obtain ( ), ,h t=y x u , which is of interest to a user.  With the 

aim of producing fast time domain simulations and obtain ( ), ,h t=y x u , a mathematical 

system representation which can be parallelized is sought.  Said aim requires the 

reformulation in, preferably, less number of equations, and that the new formulation be 

decomposable with minimal subdomain inter-coupling. Discretization is the process of 

representing a system described in the time domain as a system described at discrete 

intervals of time, which is a necessary step for computer simulation.   

To ready SPSs models for computer simulation, all SPS component models were 

discretized by replacing their inductors and capacitors (if any) with equivalent 

discretized branches.  After each component model was discretized, the SPS system 

representation was mathematically re-formulated using discrete-time loop currents as 
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variables, which is an alternate (and of reduced order) formulation to the DAE 

formulation presented  in (2.43).  The resulting discrete-time formulation is a system of 

linear algebraic equations that can be solved at discrete intervals of time. 

The partitioning stage consists of tearing a SPS into subsystems to parallelize the 

simulations.  To determine where to tear the SPS, a weighted graph representative of an 

SPS was created, where each graph vertex represents a (discretized) SPS component 

model, and each graph edge represents a single-phase or three-phase node.  Weights 

were assigned to each vertex based on the estimated computational effort of solving the 

loop equations of each model.  The partitioning stage partitions the representative graph 

using the mincut algorithm [2],[3] to create an initial graph segregation.  To balance the 

graph partitions, balancing heuristics are used  to move vertices across partitions.  The 

final edge-cut resulting from the balancing heuristics corresponds to the points of 

disconnection on the SPS where tearing occurs. 

When the points of disconnection of the SPS have been determined, a partitioning 

approach motivated by diakoptics [4] is used to tear the SPS into subsystems.  The 

partitioning approach presented in this work uses capacitor loops as the points of 

disconnection.  By shorting two (out of three) capacitors on three-phase cables, a large 

portion of the network matrix’s off-diagonal region is depleted producing subsystem 

decoupling.  This rapid off-diagonal depletion is a direct result of the formulation 

approach taken, which concentrates loop currents at bus node capacitors where most of 

disconnection points are.  
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The simulation stage is started by invoking threads from the Windows thread pool, 

where each thread calls the solve routine on each subsystem object.  The loop current 

solution of each subsystem is used to find the boundary conditions of where the 

capacitor loops were torn.  Knowledge of the boundary condition variables allows to 

patch the solution of each subsystem, which are naturally incorrect since subsystems are 

solved independently.  

The following subsections present the details of the aforementioned stages.  

Details of programming implementation and techniques are given as references where 

they are thoroughly explained.  The multithreaded synchronization approach and some 

of the object-oriented techniques used in this work can be found in the appendices. 

3.2 MATHEMATICAL SYSTEM REPRESENTATION 

To solve for the voltages and currents defined in ( ), ,h t=y x u , a discretization and 

re-formulation approach is needed.  Discretization replaces the differential relationships 

of ( ), ,f t=x x uɺ
 with algebraic difference equations that can be solved in time intervals 

of ∆t (often referred to as the EMTP discretization approach [5],[24]).  Once a power 

system is discretized, a system of linear algebraic equations is formulated in the form of 

(3.1).  Several formulation approaches lead to the form in (3.1) which is why the general 

notation A∙x=b is used. 

 ⋅ =A x b  (3.1) 
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where:

network coefficient matrix

network variables

network excitation (input) vector.

=

=

=

A

x

b  

To discretize a SPS (and power systems in general), each component model’s 

inductors and capacitors are replaced with discretized equivalent circuits derived from 

difference equations.  After all component models are discretized the SPS becomes a 

purely resistive (algebraic) network and can be formulated as (3.1). 

The trapezoidal rule is a commonly used discretization algorithm and the one used 

here due to its low truncation error (high accuracy).  However, the trapezoidal rule 

suffers from a well-known drawback: numerical chatter is injected when inductive 

currents are interrupted (even at 0A crossings), among other reasons detailed [85-86].  

To avoid numerical chatter, a technique known as the critical damping adjustment 

(CDA) [86]is implemented in this work.  The CDA technique suggests the following 

actions during a switching discontinuity.  When a switching instant is encountered (e.g., 

protective device opening), the time step size is divided by two (i.e., / 2BE TRt t∆ = ∆ ), the 

integration algorithm changed from the trapezoidal rule to the backward Euler, and two 

forward steps taken.  Taking two forward steps at BEt∆  is equivalent to advancing one 

TRt∆ .   

The trapezoidal rule is the default integration algorithm and is recommended for 

electrical networks where voltage and currents are sinusoidal; backward Euler 

integration is recommended for networks that are piecewise linear, frequently switching 

[85-86], or when there are many power electronic devices in a system [83],[87].  Since 
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SPSs exhibit both sinusoidal and piecewise linear behaviors, an adjustable integration 

algorithm [71] is presented next, which permits changing integration algorithms during 

run-time . 

Considering the differential equation in (3.2), where ( )x t  is the state-variable, and 

( )u t  the forcing function, backward Euler and trapezoidal integration of  (3.2) result in 

(3.3) and (3.4), respectively.   In (3.3) and (3.4) the super-script 1k +  represents a value 

at the present time step, and k  a value from the previous time step.   

 ( ) ( )( ) ( ) 0, , 0x h x t u t x x
•

= =  (3.2) 

 ( ) ( )
1

1 1

0

backward
, , 0

Euler

k k
k kx x

h x u x x
t

+
+ +  −

= =  ∆  
 (3.3) 

 
( ) ( )

( )
1 11

0

, , trapezoidal
, 0

rule2

k k k kk k h x u h x ux x
x x

t

+ ++ +  −
= =  ∆  

 (3.4) 

The difference between (3.3) and (3.4) is an implicit right-hand side (RHS) 

coefficient.  To control said coefficient a parameter γ  is used to select between 

integration algorithms as given by (3.5). 

 ( ) ( ) ( )
1

1 1, 1 ,
k k

k k k kx x
h x u h x u

t
γ γ

+
+ +−

= ⋅ + −
∆

 (3.5) 

1
 for trapezoidal rule

where 2

1 for backward Euler

γ
=

→ 
=  
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Using the tunable integration in (3.5), the discretization of inductors, capacitors, 

state-variable equations, and RMS measurements are introduced next.  The discretized 

component models (with their inductors and capacitors replaced) are given in the 

Appendix.  

3.2.1 Discretization of an Inductor 

The inductor’s fundamental differential equation is discretized in (3.6).  In (3.6), 

1k

Lv +  is the voltage across an inductor in Volts, L  is the inductance in Henries, t∆  is the 

discretization time step in seconds, γ  is an adjustable parameter that determines the 

integration method [71] (i.e., 1
2

γ =  for trapezoidal rule, 1γ =  for backward Euler), 1k

Li
+  

is the current through the inductor in Amps, and 1histk

L

+  a voltage impression which is a 

function of the previous time step solution’s values.  The equivalent circuit for the 

discretized inductor equation is shown at the lower-left in Fig. 3.2.1. 

 ( ) ( )

1

1 1

hist

1

k
L

k k k k

L L L L L L

d L L
v t L i t v i v i

dt t t

γ
γ γ γ

+

+ +   −
= ⇒ = + −   ∆ ⋅ ∆ ⋅   ���������

(3.6) 
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3.2.2 Discretization of a Capacitor 

The capacitor’s fundamental differential equation is discretized in (3.7).  In (3.7), 

1k

Cv +  is the voltage across a capacitor in Volts, C  is the capacitance in Farads, t∆  is the 

discretization time step in seconds, 1k

Ci
+  is the current through the capacitor in Amps, and 

1histk

C

+  is a voltage impression term, which is a function of the previous time step 

solution’s values.  The equivalent circuit for the discretized capacitor equation is shown 

at the lower-right in Fig. 3.2.1. 

 ( ) ( ) ( )

1

1 1

hist

11
d

k
C

k k k k

C C C C C C

tt
v t i t t v i v i

C C C

γγ

+

+ + ∆ − ∆ ⋅ = ⇒ = + +  
   

∫
���������

 (3.7) 

The discretization of inductors and capacitors have been  introduced and 

discussed.  The next subsection introduces the discretization of differential equations in 

state-variable form, which, in this work, are used to represent machine controllers and 

rotor dynamic equations. 
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 Fig. 3.2.1. Equivalent circuits for discretized inductors and capacitors 

3.2.3 Discretization of Controllers and Relays 

Machine controllers and rotor dynamic equations were formulated using state-

variable equations in (2.17), (2.18), (2.19), and (2.25), respectively, and have the form of 

(3.8).  Discretization of (3.8) using tunable integration is given by (3.9)-(3.10) [88]. 

 ( ) ( )t t= ⋅ + ⋅x A x B u  (3.8) 

 ( ) ( )( ) ( )( )1 1 11 - 1 1k k k k k k

t
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=

Continuos

C( )Ci tL( )Li t

Continuos

LR 1histk

L

+
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+
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Solving for the state-variable vector 1k +
x : 

 

( ) ( )( ) � ( )( )11 11 1- 1 1k k k k

t t
γ γ γ γ

−+ +
∆ ∆= ⋅ + − ⋅ + ⋅ ⋅ + −

Q

�
M

x I A I A x Q B u u

������


�������������
 (3.10) 

 
( )( )
( )( )

1 1

1 1 1

1Discretized state-

variable equations 1

k k k k

k k k k

γ γ

γ γ

+ +

+ + +

 = ⋅ + ⋅ + −
→

= ⋅ + ⋅ + −

x M x � u u

y C x D u u
 (3.11) 

where: 

1

1

vector of state-variables at time step 1

vector of state-variables at time step 

input vector at time step 1

input vector at time step 

state-matrix; input matrix; identity matri

k

k

k

k

k

k

k

k

+

+

= +

=

= +

=

= = =

x

x

u

u

A B I x;

output-to-state matrix; output-to-input matrix

1
time step increment; =  for trapezoidal rule; 1 for backward Euler.

2
t γ γ

= =

∆ = =

C D

 

In the discretization of inductors, capacitors, and state-variable equations, the time 

step increment ∆t was assumed constant.  Though ∆t can be changed during run-time, in 

this work ∆t is fixed (∆t is also fixed in commercial power system simulators such as 

[14],[26]).  The reason to hold ∆t constant is due to the network matrix (matrix A in a 

system A∙x=b), where the coefficients of A depend on ∆t.   Referring to the equivalent 

circuits of inductors and capacitors in  Fig. 3.2.1, each resistance is a function of ∆t.  As 

resistance values are part of A, changing ∆t would require reforming and re-triangulating 
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A every time ∆t changes [86].  Since in power system simulation the matrix A is large, 

reforming and re-triangulating is time-consuming and would increase run-time.  Variable 

∆t solvers are better suited, perhaps, for the simulation of small circuits.  In the 

simulation of small circuits, in contrast with power systems, frequent calculations of a ∆t 

size [89] and changes of the network matrix are not as noticeable [90]. 

Relays constantly check their RMS measurements against pre-specified thresholds 

to determine whether they should signal a tripping signal.  The continuous-time RMS 

introduced in (2.33) is repeated in (3.12) for convenience. 

 

( ) ( )( )
0

2

0

1y

RMS y

T

X t x t dt
T

= ∫
 (3.12) 

( )
( ) ( )

0

where:

fundamental period in seconds

instantaneous measurement (voltage or current) of phase 

RMS value of 

y

y

RMS y

T

x t y

X t x t

=

=

=
 

The discretized RMS measurement of a continuous signal ( )yx t , sampled at every 

time step k (noted 
kx  ), is given in (3.13).  Use of (3.13) is computationally inefficient, 

for which a recursive RMS computation is derived instead.   

 ( ) ( )2

1

1
RMS

k
k k

k "

x x
" − +

= ∑  (3.13) 
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( )

1
60

where:

the number of samples in a running-window

the time step increment

16.67ms the fundamental sampling period

T
t

" ceil

t

T

∆= =

∆ =

= = =
 

Expanding (3.13) : 

 ( )
( )( ) ( )( ) ( ) ( )

2 2 2 21 2 1

RMS

k " k " k k

k
x x x x

x
" " " "

− + − + − 
 = + + + + 
 

⋯  (3.14) 

Squaring both sides: 

 ( )
( )( ) ( )( ) ( ) ( )

2 2 2 21 2 1

2RMS

k " k " k k

k
x x x x

x
" " " "

− + − + −

= + + + +⋯  (3.15) 

From (3.15), the next sample time at time step k+1 is: 

 ( )
( )( ) ( )( ) ( ) ( ) ( )

2 2 2 2 22 3 2 1 1

2 1RMS

k " k " k k k

k
x x x x x

x
" " " " "

− + − + − − +

+ = + + + + +⋯

 (3.16) 

Subtracting (3.15) from (3.16): 

 ( ) ( )
( )( ) ( )

2 21 1

2 1 2RMS RMS

k " k

k k
x x

x x
" "

− + +

+

 
 = − + 
 
 

 (3.17) 

Taking the square-root of both sides: 

 ( ) ( )
( )( ) ( )

2 21 1

1 2RMS RMS

k " k

k k
x x

x x
" "

− + +

+ = − +  (3.18) 
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( )
( )

1

2

1

where:

RMS the RMS value at the present time step 1

RMS the square of RMS value from the previous time step

the previous time step's sample

the present time step's sample

k

k

k

k

x k

x

x

x

+

+

= +

=

=

=
 

The notation used for an RMS current measurement (e.g., phase a) of protective 

device is illustrated with (3.19): 

 
( ) ( ) ( )2 2

1 1 1
2

1 0  
, where .

for ( 1)

k " k k "
a ak k a

aRMS aRMS

i i i
I I

" " k "

+ − + + −
+

−  =
= + +  

+ < 
 (3.19) 

3.2.4 Formulation of Loop Currents for Electrical and Control Networks 

The formulation approach in this work treats SPS models as purely ungrounded 

electrical networks; thus, datum nodes are not included despite implicit stray 

connections to the hull.  To form the network equations of the form A∙x=b, loop currents 

were chosen as variables.  The choice of loop currents is due to three reasons:  the first is 

that a formulation in loop currents as variables is suitable in the absence of datum nodes; 

the second is that there are generally less loop equations than node equations in power 

systems; and third, because the sparsity of loop resistance matrices when using meshes 

as the cycle basis is comparable to the nodal conductance matrix’s sparsity [91-92]. 

After the component models composing the electrical network are discretized, 

mesh current equations are used to obtain each model’s branch currents and terminal 

voltages.  The interconnection of all components’ mesh equations results in a large 

interconnected system represented with non-planar loop current equations.  The set of 
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system-wide loop current equations is arranged in A∙x=b form as given by (3.20), where 

1k

loop

+
R  is

 
the time-varying loop resistance matrix of the system, 

1k

loop

+
i  is the vector of all 

loop currents, and 
1k

loop

+
e is

 
the vector of loop electromotive forces (EMFs).   The EMFs 

are found as the contour sum of historical voltage sources in each loop.   

A word on the notations of (3.20)-(3.21) is imperative.  In (3.20), the vector 
1k

loop

+
e  

contains only terms from the previous time step (i.e., historical sources due to inductors 

and capacitors); the notation 
1k

loop

+
e  is used over loop

k
e because 

1

loop

k+
e represents the EMF 

impression at the present time step 1k + , and not the EMF impression that was used at 

the previous time step k .   Referring to (3.21), the coefficients in 
1k

loop

+
R  have upper-

scripts k+1 to indicate that their values are time-varying and are valid during the present 

time step’s solution.  The coefficients in 
1k

loop

+
R  may be different during the next time step 

if a switch’s state changes (e.g., faults are applied, protective devices operate, diodes 

commutate, and so on).  

 
1 1 1k k k

loop loop loop

+ + +=R i e  (3.20) 

 

1 1 1 1

11 12 1 1

1 1 1 1
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1 1 1

1 1

k k k k
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k k k

R R i e

R R i e

R i e

+ + + +

+ + + +

+ + +

× × ×

     
     
     =
     
     
          

ℓ ℓ

ℓ ℓ

ℓℓ ℓℓ ℓℓℓ ℓ ℓ ℓ

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋱ ⋯ ⋮ ⋮

⋮ ⋮ ⋮
 (3.21) 
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th

1

1

where:

total number of loop current equations

the  loop current

contour sum of resistances in 's path at time step 1

resistance common to  and  at time step 1

1 current si

k

ii

k

ij

i i

R i k

R i j k

k

+

+

=

=

= +

= +

+ =

ℓ

ℓ

ℓ

ℓ ℓ

1

mulation time step

contour voltage (EMF) sum in 's path.k

ie i+ =ℓ ℓ  

The non-zero structure of the symmetric positive-definite loop resistance matrix 

1k

loop

+
R

 
for a notional SPS model is shown in Fig. 3.2.2.  The structure plot shows 

comparable sparsity to nodal conductance matrix.   The dense square regions near the 

main diagonal are due to coupled loop currents at switchboard and load center capacitor 

loops (i.e., the right-side capacitor loop of the cable model shown in Fig. 2.4.10).   

These dense regions are analogous to the situation (rare, and typically non-

physical) of mutual inductances coupling dozens of branches in a nodal formulation 

[93].  The paths of the circulating currents were defined with this goal in mind.  This 

dense condition is exploited during the partitioning approach by shoring the capacitors 

where said loop currents intersect, which results in a rapid depletion of the non-zero 

structure of 
1k

loop

+
R .  

Rapid depletion of the non-zero structure of 
1k

loop

+
R  permits block-diagonalizing 

1k

loop

+
R

 
with minimal boundary equations.  Keeping the number of boundary equations 

small implies tearing the least number of capacitor loops possible as will be shown later.  
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In section 3.5, it is shown that the computational cost per time step is proportional to the 

square of the number of capacitors torn (noted as r2). 

 

Fig. 3.2.2. Loop resistance matrix structure for an unpartioned AC-Radial SPS 

After solving (3.21) at each time step all node voltages and branch currents can be 

found with (3.22) .  Equation (3.22) states that the system’s branch currents and node 

Regions caused by loop currents

intersecting at bus cable capacitor loops
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voltages are from the loop currents and the historical voltage sources.  The discretized 

component models listed in Appendix A include expressions to find their terminal 

voltages and line current, which are of the form of (3.22).  The solution of (3.22) using 

(3.23) is the same as the DAE output vector ( ), ,h t=y x u introduced in (2.43), but 

obtained using a discretized loop current formulation approach instead of a DAE 

continuous formulation approach.  A table summarizing the relation of the loop current 

solution to the DAE formulation’s solution is given in Table III.1. 

 ( )
1

1 1 1

1 ,

k

branchk k k

k loop loop

nodes

f

+
+ + +

+

 
= = 

  

i
y i e

v
 (3.22) 

 ( ) ( )1 1 1 1 1,k k k k k

branch loop nodes loop loopf f+ + + + += =i i v i e  (3.23) 

1

1

1

where :

measurements of interest at time step 1

vector of all branch currents at time step 1

vector of line-to-line voltages at every node at time step 1

vector function o

k

k

branch

k

nodes

k

k

k

+

+

+

= +

= +

= +

=

y

i

v

f f loop currents and historical sources.  

The DAE output vector ( ), ,h t=y x u  is obtained by solving ( ), ,f t=x x uɺ , 

( ), ,g t=0 x u .  The solution of ( )
1

1 1 1

1 ,

k

branchk k k

k loop loop

nodes

f

+
+ + +

+

 
= = 

  

i
y i e

v
, which is the same as 

( ), ,h t=y x u , is obtained by solving for the loop current vector 1k

loop

+i  in 1 1 1k k k

loopi loopi loopi

+ + +=R i e . 

 



 94 

 

TABLE III.1. RELATIONSHIP BETWEEN DAE AND LOOP CURRENT FORMULATIONS 

 

Power system discretization and the loop currents formulation was introduced in 

this section.  The discretized component models with their inductors and capacitors (if 

any) replaced by the discretized equivalent circuits. 

3.2.5 Electrical and Control Networks 

To simulate a discretized SPS, the EMTP approach [5] is followed in this work, 

where an electrical network (EN) and a control network (CN) are defined as shown in 

Fig. 3.2.3.  The EN is responsible for the solution of 1 1 1k k k

loopi loopi loopi

+ + +=R i e , whereas the 

control network is responsible for the solution of ( )
1

1 1 1

1 ,

k

branchk k k

k loop loop

nodes

f

+
+ + +

+

 
= = 

  

i
y i e

v
.   

The EN-CN solution is sequential, and is depictedin Fig. 3.2.4 [5].   The EN 

solution is found first and its results are passed to the CN.  The CN uses the results from 

the EN to compute the voltages and current everywhere, solves machine controller 

equations, updates the historical sources of inductors and capacitors, updates 
1k

loop

+
R (if 

necessary), and makes discrete RMS measurements.  The state of the protective devices 

DAE Formulation Loop Current Formulation

Equation Count ~3000 ~1000

Equation(s) to Solve

Output Variables

Domain Continous Time Discrete Time

( ), ,h t=y x u

( ), ,f t=x x uɺ

( ), ,g t=0 x u

1 1 1k k k

loopi loopi loopi

+ + +=R i e

( )
1

1 1 1

1 ,

k

branchk k k

k loop loop

nodes

f

+
+ + +

+

 
= = 

  

i
y i e

v
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are based on the discretize RMS measurements, which are used to determine whether 

protective devices should operate (logic equations were introduced in (2.34), (2.35), and 

(2.40)).  After the CN solution is complete, the simulation time is advanced and the EN 

solved again using the historical sources that were updated during the CN solution. 

 

Fig. 3.2.3. Overview of electrical and control network 
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System
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Network
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Fig. 3.2.4. Solution of electrical and control networks [24] 

 

A time-line illustration of Fig. 3.2.4 is given in Fig. 3.2.5.  Starting with step 1 in 

Fig. 3.2.5, the EN is solved by finding 
1k

loop

+
i in (3.20).  After the loop currents are found, 

the CN computes (3.22) and other aforementioned operations shown as step 2 before 

advancing the time step.  After the CN is solved the simulation time step is incremented 

in step 3 and the process is repeated throughout the entire simulation. 

( )
1

1 1 1

1 ,

k

branchk k k

k loop loop

nodes

f

+
+ + +

+

 
= = 

  

i
y i e

v

1k

loop

+
e

1k

loop

+
i
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Fig. 3.2.5. Time-line illustration of the electrical and control network interface [71] 

The previous subsections presented the discretization (and formulation approach) 

used in this work, which is the first (out of three) stages that conforms the solution 

methodology.  The following section presents the partitioning approach followed by the 

simulation approach, which is presented last. 

3.3 ELECTRICAL NETWORK PARTITIONING AND GRAPH BALANCING 

An approach based on diakoptics [4],[59],[94-95] is used to tear the electrical 

network of an AC-Radial SPS at selected capacitor loops.  To determine which 

capacitors to tear in a manner that the subsystems are computationally balanced, graph 

theory is used.  Using graph theory a representative SPS graph was created and 

partitioned first with mincut [3] algorithm.  The mincut algorithm produces an initial 

graph segregation which serves as the initial condition before the balancing heuristics 

begin.   

The heuristic balancing algorithm was developed to equally distribute the weights 

of the weighted vertices across the graph partitions.  The vertices were assigned weights 

2k = 3k =1k =0k =
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based on the computational effort [96] of the component they represent, which are used 

to determine if the graph partitions are balanced.  After balancing the graph partitions, 

the edges interfacing any two partitions indicate which capacitors should be torn. 

The partitioning approach in this work tears capacitor loops on three-phase cables 

to create SPS subsystems.  To determine which cables to tear (i.e., 100s of cables exist 

on SPSs), graph theory is used.  A representative graph of an SPS is used to partition and 

balance graph partitions.  The resulting graph edge cut corresponds to the capacitor 

loops to be torn.   

When the capacitor loops that are going to be torn are known, the cable models 

including said capacitor loops are replaced with a cable model that has said capacitors 

shorted; shorting out said capacitors permits obtaining a block-diagonal structure from 

the loop resistance matrix.  The block-diagonal form of the loop resistance matrix can be 

solved as subsystems on a multicore computer.   The remaining of this section is 

organized as follows: 

1. Diakoptics and Capacitor Tearing 

2. Graph Theory 

a. Weight assignment 

b. Graph creation 

c. Graph partitioning 

d. Partition balancing 

e. Capacitor Tearing 

3.3.1 Diakoptics Theory and Capacitor Tearing 

Diakoptics theory was introduced using general matrix notation A∙x=b in (2.9)-

(2.12) (section 2.3.3).  In this section, diakoptics is re-derived using the variables and 
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notation pertinent to this work.  It is noted that there are two types of diakoptics-based 

tearing: traversal tearing and longitudinal tearing [97].  Traversal tearing is used when 

systems are formulated in node voltages as variables.  Traversal tearing tears two 

radially attached networks by removing tie-lines (i.e., transmission lines interconnecting 

two geographical areas), solving each subsystem’s node voltages, and injecting the tie-

line currents back into each subsystem.  Longitudinal tearing is used when systems are 

formulated using loop currents as variables.  Longitudinal tearing tears two adjacently 

attached networks by shorting tie-lines, solving each subsystem’s loop currents, and 

impressing the tie-line voltages back into each subsystem.  The partitioning approach 

presented next makes use of longitudinal tearing, and is applied to cable capacitor loops. 

The unpartitioned network’s loop current equations, formerly introduced in (3.20), 

are repeated in (3.24). 

 
1 1 1k k k

loop loop loop

+ + +=R i e  (3.24) 

Removing the k+1 (redundant) notation for clarity: 

 loop loop loop=R i e  (3.25) 
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( )

where:

total number of loop currents

 loop resistance matrix (sparse, symmetric, positive-definite)

:the sum of resistances in loop 
,

:the resistance common to  and 

loop

ii

oop

ij i j

loo

R i
i j

R

=

= ×


→ 



R

R

i

ℓ

ℓ

ℓ ℓ

ℓ ℓ

1 vector of loop currents

1 vector of loop EMFs.

p

loop

= ×

= ×e

ℓ

ℓ
 

Decomposing (3.25) as the sum of two square matrices: 

 ( )subs off

loop loop loop loop+ =R R i e  (3.26) 

( )1

1

2

where:

 block-diagonal matrix of subsystem loop resistance matrices

=diag , ,

=

 matrix with the off-diagonals of , where 

subs

loop

loop loopp

loop

loop

loopp

off off

loop loop loopR

= ×

 
 
 
 
 
  

= ×

R

R R

R

R

R

R R

ℓ ℓ

⋯

⋱

ℓ ℓ ( ), 0 .ii i > ∀ℓ
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At switchboards and load centers (i.e., buses), source cables supply components 

connected to said bus.  As a result, many loop currents emanate from the same cable, a 

situation which is judiciously set up and exploited in this work.  If many loop currents 

are incident at the same cable, the loop currents can be defined to circulate through the 

same boundary capacitors abC  and bcC .  There is a deliberate intention in this approach; 

by defining all loop currents incidence at the same two capacitors, the loop resistance 

matrix exhibits dense areas due to the loop current couplings.  To illustrate this situation, 

a generalized capacitor loop (reminiscent of a bus capacitor loop) is shown in Fig. 3.3.1.  

Fig. 3.3.1 shows how various ab  and bc loop currents can be incident at the same two 

capacitors abC  and bcC , respectively.  This situation causes the dense regions in 
1k

loopi

+
R  

shown in Fig. 3.2.2, which off-diagonals are repeated values of the same discretized 

resistances for abC  and bcC , respectively. 

 



 

 

 

1
0
2
 

 

Fig. 3.3.1. Generalized cable capacitor loop (at switchboards and load centers) 
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The situation depicted in Fig. 3.3.1 suggests that the entries in 
off

loopR  consist 

(mainly) of the same bus capacitor discretized resistances.  It is noted, however, that not 

all values in 
off

loopR  pertain to bus capacitor loops.  Other values (lesser in number) pertain 

to loop current intersections elsewhere in the system.  Since 
off

loopR
 
has only a few unique 

entries, said entries can be arranged in a diagonal matrix 
CR  and expressed as the tensor 

transformation[53],[98] in (3.27): 

 
Toff

loop r C r× ×=R D R Dℓ ℓ  (3.27) 

( )

( )( )

where:

total number of loop currents in the electrical network

total number of boundary capacitors 

 diagonal matrix of boundary capacitor resistances ,

 transformation tens

off

C C loop

r r

r r R i i

r

=

=

= × ∈

= ×

R R

D

ℓ

≪ ℓ

ℓ

( )

th

th

th

th

th

or:

1, if the  loop current is in the same direction as 

the  capacitor's voltage drop

, 1, if the  loop current is opposite in direction to 

the  capacitor's voltage drop

0, if the  

i

j

i j i

j

i

=

→ = −

=

D

thloop current does not traverse the  capacitor.j











  

Substituting (3.27) in (3.26) results in: 

 ( )Tsubs

loop C loop loop+ ⋅ =R D R D i e  (3.28) 
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Tsubs

loop loop C loop loop+ ⋅ =R i D R D i e  (3.29) 

Referring to the discretized capacitor model in Fig. 3.2.1, the term 
T

C loopR D i  on 

the right of (3.29) corresponds to resistive voltage drops across { },Cab CbcR R  of all 

boundary capacitors { },ab bcC C .  The matrix CR  is a diagonal matrix of discretized 

boundary capacitor resistances, and the term 
T

loopD i  is the current (i.e., net loop current 

sum) through each capacitor.  Referring to  Fig. 3.2.1, the resistive voltage drop 

T

C loopR D i  can be expressed as the difference between the capacitors’ across voltage and 

historical source as given by (3.30).  Substitution of (3.30) into (3.29) results in (3.31). 

 
T

C loop C C= −R D i v hist  (3.30) 

 ( )subs

loop loop C C loop+ − =R i D v hist e  (3.31) 

where:

1 vector of boundary (torn) capacitor historical sources

1 vector of boundary (torn) capacitor across voltages.

C

C

r

r

= ×

= ×

hist

v

 

Solving for loopi  in (3.31): 

 ( ) ( ) ( )
1 1

subs subs

loop loop loop loop C C

− −
= − −i R e R D v hist  (3.32) 

Substituting (3.32) in (3.30): 

 ( ) ( ) ( )( )1 1
T subs subs

C loop loop loop C C C C

− −
− − = −R D R e R D v hist v hist  (3.33) 
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Solving for Cv
: 

 ( ) ( ) ( )
1 1

T Tsubs subs

C C C loop loop C loop C C

− −
− = − −v hist R D R e R D R D v hist  (3.34) 

 ( ) ( ) ( ) ( )1 1
T Tsubs subs

C C C loop C C C loop loop

− −
− + − =v hist R D R D v hist R D R e  (3.35) 

 ( )( )( ) ( )1 1
T Tsubs subs

C loop C C C loop loop

− −
+ − =I R D R D v hist R D R e  (3.36) 

 ( )( ) ( )( )
1

1 1
T Tsubs subs

C C loop C loop loop C

−− −
= + +v I R D R D R D R e hist  (3.37) 

The sequential solution of (3.32) and (3.37) (repeated as (3.38)) is the solution 

approach used in this work to solve the electrical network as subsystems.  In vector 

form, (3.38) is given by (3.39): 

 

( ) ( )

( )( ) ( )( )

1 1

1
1 1

T T

subs subs

loop loop loop loop C

subs subs

C r C loop C loop loop C

− −

−− −

 = − ⋅


 = + +
 α β

i R e R D v

v I R D R D R D R e hist
����������� ���������

 (3.38) 
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i R e R D

i R e R D
v

i R e R D

⋮ ⋮ ⋮

������� �������

 (3.39) 

Re-introducing k+1 notation for (3.38) and (3.39) results in (3.40) 
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( )

( )
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1 1 1 1 1
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

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


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

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




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  

 

 (3.40) 

The 2nd term on the RHS atop (3.40) is called the patch;  its computation becomes 

increasingly burdensome as p increases.  When p increases, computing 1k

C

+
v  governs the 

performance of the partitioning approach.  The capacitor tearing partitioning approach 

creates subsystems by removing off-diagonals from the loop resistance matrix, but 

mainly those off-diagonal resistance values intentionally defined to exist as off-diagonal 

values.  That is, the bus capacitor loop currents were intentionally defined to create 

dense couplings in the loop resistance matrix because it was known in advance that those 

resistance values would be removed (torn).  
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The three-phase cable model used in this work is shown in Fig. 3.3.2, which has 

capacitor loops on each side.  In this work, only the right side capacitor loops are torn 

because they are on the side of bus nodes (i.e., a bus node is always immediately to the 

right of a cable).  In physical terms, removing off-diagonals from 
1k

loop

+
R  is equivalent to 

replacing boundary capacitors { },ab bcC C with short-circuits.  Consider the discretization 

of a cable’s capacitor loop is shown in Fig. 3.3.3, where everything to the left-and-right 

is obfuscated.  Replacing { },ab bcC C with short circuits results in the new cable model 

shown in Fig. 3.3.4.-Fig. 3.3.5  Where two or more subsystems interface, the cable to the 

left of said interface is replaced with the cable in  Fig. 3.3.4.-Fig. 3.3.5.  By 

interconnecting the meshes of all components, except those meshes adjacent to boundary 

cables, makes the resulting loop resistance block-diagonal and is how 
subs

loopR  is obtained. 
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Fig. 3.3.2. Three-phase cable model 

 

Fig. 3.3.3. A discretized capacitor loop 

 

Fig. 3.3.4. Torn cable forms two subsystems 
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Fig. 3.3.5. Normal and torn cable model (replaced at boundaries) 
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This subsection presented the partitioning approach of tearing cable capacitor 

loops.  By tearing two of three capacitors in a capacitor loop, two subsystems are 

created: subsystem 1 to the left and subsystem 2 to the right of a capacitor loop.   To 

automate the process of tearing (i.e., to decide upon how many partitions and where to 

tear), graph theory is used.  Each component model is represented by a weighted vertex 

in a SPS representative a graph.  Each vertex is assigned a weight based on the estimated 

computational requirement of each component model.  The details of how each 

component model is assigned a weight is presented next. 

3.3.2 Flop Computations for Graph Vertices 

A common measure of computer work is the floating-point arithmetic operation 

(flop) [45],[99],[96], and is used here to estimate the computational effort imposed by 

each component model.  A flop is defined as a computer operation requiring floating-

point arithmetic, such as a sum, subtraction, multiplication, or a division.  The number of 

flops required to solve a component’s electrical and control network equations is used as 

the component’s weight when represented by a graph vertex.  In the next subsections, 

the algebraic operations that were used to determine the vertex weights are  presented.  

3.3.2.1 Flops for Updating Inductor and Capacitor Historical Terms 

Updating inductor and capacitor historical terms is the most frequently repeated 

operation. The historical terms for inductors and capacitors were presented in (3.6)-(3.7), 

and are repeated in (3.41)-(3.42) for convenience. 
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The number of flops to update 1hist k

L

+ is 7Lf =  flops, and to update 1hist k

C

+  is 

5Cf =  flops, which were obtained by counting the number of additions, subtractions, 

multiplications, and divisions as shown in (3.41)-(3.42). 

3.3.2.2 Flops for Matrix Algebra 

Consider the product of two rectangular matrices  and G D given in (3.43).  

 

11 12 13 1 11 12 13 1

21 22 23 2 21 22 23 2

31 32 33 3 31 32 33 3

1 2 3 1 2 3

n k

n k

m n n k n k

m m m mn n n n nkm n n k

g g g g d d d d

g g g g d d d d

g g g g d d d d

g g g g d d d d

× ×

× ×

   
   
   
   =
   
   
      

G D

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (3.43) 

The computational effort of the dot product between the first row of G and the 

first column of D  is given by (3.44), where the multiplications and summations require: 
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 11 11 12 21 13 31 1 1

 multiplications +

... 1 summations

2 1 flops

n n

n

g d g d g d g d n

n




+ + + + ← −
 = −

 (3.44) 

 Since D  has k columns, (3.44) is repeated k times for each of the m rows of G  

resulting in (3.45), where 
mult

rect rectf ⋅  is the number of flops required to multiply two full 

rectangular matrices. 

 ( )2 1mult

rect rectf m n k⋅ = −  (3.45) 

If G and D in (3.43) are both square matrices of dimension n, then m=n=k and 

(3.45) becomes (3.46), where 
mult

sq sqf ⋅  
is the number of flops required to multiply to full 

square matrices. 

 ( ) 3 22 1 2mult

sq sqf n n n n n⋅ = − = −  (3.46) 

If G  remains the same as defined in (3.43), and D  is a 1n×  vector, setting k=1 in 

(3.45) reduces to (3.47), where 
mult

rect vctf ⋅  is the number of flops required for a matrix-vector 

multiplication. 

 ( )2 1 2mult

rect vctf m n mn m⋅ = − = −  (3.47) 

The sum of two full m n×  rectangular matrices  and G D  requires 
sum

rect rectf +  flops as 

given by (3.48). 

 sum

rect rectf m n+ = ⋅  (3.48) 
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If  and G D are both vectors of dimensions 1n× , the vector sum operation has 

sum

vct vctf +  number of flops as given by (3.49). 

 sum

vct vctf n+ =  (3.49) 

3.3.2.3 Flops for Solving State-Variable Equations 

The discretization (and definition of terms) for a set of state-variable equations 

were given in (3.8)-(3.11) and were repeated in (3.50) for convenience.  The number of 

flops required to find 
1k+

x  and 
1k+

y  are derived in (3.51)-(3.52). 

 
( )1 1

1 1 1

k k k k

k k k

+ +

+ + +

 = ⋅ + +


= ⋅ + ⋅

x M x � u u

y C x D u
 (3.50) 

 ( )

2

2

1 1

1 1 1 1 where 

sum
vct vct

mult
rect vct

summult
vct vctrect vct

f n

f mn m

f nf mn m

k k k k

n m n n m n n n m n

+

⋅

+⋅

=

= −

== −

+ +
× × × × × ×= ⋅ + + =x M x � u u

������������


������
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����

 (3.51) 

 

2 2

1 1 1

1 1 1 where 

mult mult
rect vct rect vctf mn m f mn m

k k k

n m n n m n n m n

⋅ ⋅= − = −

+ + +
× × × × ×= + =y C x D u

����
 ����

 (3.52) 

The number of flops required to find 
1k+

x  is 2 2sum mult

vct vct rect vctf f+ ⋅+ , and the number of 

flops required to find  
1k+

y  is 2 mult

rect vctf ⋅ .   The combined number of flops required to find  

the state-variable vector 
1k+

x
 
and the output vector 

1k+
y  is given in (3.53), where n is the 

number of the state-variable equations. 
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3.3.2.4 Flops to obtain an RMS Measurement 

 ( ) ( )
( )( ) ( )

1 flop

1 flop

1 flop
2 flops

2 21 1

1 2RMS RMS

k " k

k k
x x

x x
" "

− + +

+

 
 = − + 
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 (3.54) 

( )
( )

1

1

where:

RMS the RMS measurement computed at the present time step 1

RMS the RMS measurement made at the previous time step 

the signal sample from  time steps ago

the signal sample at the

k

k

k

k

x k

x k

x "

x

+

+

= +

=

=

=  present time step

the number of samples per RMS measurement." =   

Equation (3.18) is a recursive (and effective) way to obtain an RMS value.  The 

first term under the square-root only requires one subtraction since the term subtracted 

from ( )2RMS kx  is already known.  The number of flops RMSf  required to (recursively) 

make an RMS measurement is given by (3.55). 

 
� � � � �

Number of Number of Number of Number of Number of
negations squared terms additions divisions by square-roots

1 3 2 2 1 9

"

RMSf = + + + + =  (3.55) 
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Table III.2 summarizes the flop-counts introduced in this section.  Using Table 

III.2, the vertex weights of the representative graph were determined, which play an 

important role in determining to what partition a components belongs to.   

TABLE III.2.  SUMMARY OF COMMON FLOP OPERATIONS 

 

 Table III.5 summarizes the weights for each component model based on the flop-

counts listed in Table III.2.  The number of flops required by each component is given as 

the sum of its electrical network (EN) and control network (CN) equations examined 

earlier. To illustrate how the component weights were determined, the weight calculation 

for a discretized three-phase cable is given in Table III.3. 

Description of Operations Numbers of Flops

Update inductor historical term

Update capacitor historical term

Multiplication of m x n  matrices

Multiplication of n x n  matrices

Multiplication of m x n  matrix & n x1 vector

Matrix sum of m x n  matrices

Sum of n x1 vectors

Solution of n th order state-variable equations

Computation of an RMS value

7Lf =
5Cf =

( )2 1mult

rect rectf m n k⋅ = −
3 22mult

sq sqf n n⋅ = −
2mult

rect vctf mn m⋅ = −
sum

rect rectf m n+ = ⋅
sum

vct vctf n+ =
28 2statespacef n n= −

9R M Sf =
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TABLE III.3. EXAMPLE OF WEIGHT CALCULATION FOR A THREE-PHASE CABLE 

 

 

Network Description of Operation(s) Arithmetic
Number of 

Flops

Inverse of mesh matrix times right-hand-side 

eloop vector fmult/rect.vect = 2n^2-n with n=8 120

Compute inductor La current iLa=i3 0

Compute inductor Lb current iLb=i4-i3 1

Compute inductor Lc current iLc=-i4 1

Compute inductor La voltage vLa=iLa*Ra+histLa 2

Compute inductor Lb voltage vLb=iLb*Rb+histLb 2

Compute inductor Lc voltage vLc=iLc*Rc+histLc 2

Compute capacitor Cab1 current iCab1=i0+i2-i3 2

Compute capacitor Cbc1 current iCbc1=i1+i2-i4 2

Compute capacitor Cca1 current iCca1=i2 0

Compute capacitor Cab1 voltage vCab1=iCab1*RCab1+histCab1 2

Compute capacitor Cbc1 voltage vCbc1=iCbc1*RCbc1+histCbc1 2

Compute capacitor Cca1 voltage vCca1=iCca1*RCca1+histCca1 2

Compute capacitor Cab2 current iCab2=i3+i5-i6 2

Compute capacitor Cbc2 current iCbc2=i4+i5-i7 2

Compute capacitor Cca2 current iCca2=i5 0

Compute capacitor Cab2 voltage vCab2=iCab2*RCab2+histCab2 2

Compute capacitor Cbc2 voltage vCbc2=iCbc2*RCbc2+histCbc2 2

Compute capacitor Cca2 voltage vCca2=iCca2*RCca2+histCca2 2

Subtotal 148

Network Description of Operation(s) Arithmetic
Number of 

Flops

Compute line-to-line voltages on side 1 3 * fRMS 27

Compute line-to-line voltages on side 2 3 * fRMS 27

Compute line currents entering side 1 3 * fRMS 27

Compute line currents entering side 2 3 * fRMS 27

Update inductor historical terms 3 * fL 21

Update capacitor historical terms 6 * fC 30

Stamp right-hand side vector due to i0 -histCab1 1

Stamp right-hand side vector due to i1 -histCbc1 1

Stamp right-hand side vector due to i2 -(histCab1+histCbc1+histCca1) 3

Stamp right-hand side vector due to i3 -(histLa+histCab2-histLb-histCab1) 4

Stamp right-hand side vector due to i4 -(histLb+histCbc2-histLc-histCbc1) 4

Stamp right-hand side vector due to i5 -(histCab2+histCbc2+histCca2) 3

Stamp right-hand side vector due to i6 histCab2 1

Stamp right-hand side vector due to i7 histCbc2 1

Subtotal 177

Total 325

Electrical 

Network 

(EN)

Control 

Network 

(CN)
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TABLE III.4. EXAMPLE OF WEIGHT CALCULATION FOR OVER-CURRENT RELAYS 

 

 

Network Description of Operation(s) Arithmetic
Number of 

Flops

Inverse of mesh matrix times right-hand-side 

eloop vector fmult/rect.vect = 2n^2-n with n=2 6

Compute phase a current ia1=i0 1

Compute phase b current ib1=i1-i0 2

Compute phase c current ic1=-i1 1

Subtotal 10

Network Description of Operation(s) Arithmetic
Number of 

Flops

Compute line-to-line voltages on side 1 not measured directly 0

Compute line currents entering side 1 not measured directly 0

Compute line-to-line voltages on side 2 not measured directly 0

Compute line currents leaving side 2 not measured directly 0

Check if arcing is needed IF (opening) 1

Update arcing source ua ua=Varc*sign(ia1) 2

Update arcing source ub ub=Varc*sign(ib1) 2

Update arcing source uc uc=Varc*sign(ic1) 2

Check for overcurrent in phase a IaRMS > Threshold current (x) 1

Check for overcurrent in phase b IbRMS > Threshold current (y) 1

Check for overcurrent in phase c IcRMS > Threshold current (z) 1

Check OR condition for IabcRMS currents x OR y OR z (w) 2

Check IF condition for 'w' IF (w) 1

Check if pickup time delay has elapsed Tdelay > (Tnow - Tfault) 2

Change resistance of phase a update Ra entries in mesh matrix 1

Change resistance of phase b update Rb entries in mesh matrix 4

Change resistance of phase c update Rc entries in mesh matrix 1

Stamp right-hand side vector due to i0 -ua+ub 2

Stamp right-hand side vector due to i1 -ub+uc 2

Subtotal 25

Total 35

Electrical 

Network 

(EN)

Control 

Network 

(CN)



118 

 

 

TABLE III.5. SUMMARY OF VERTEX WEIGHTS PER COMPONENT 

 

From Table III.5, the most expensive (heaviest vertex) component model is the 

induction motor with drive.  The motors have their effort concentrated in polling the 

diodes and transistors and determining whether their states should be toggled.  It is noted 

though that the vertex weights are fixed (do not change during a simulation) and are only 

estimations of the true amount of floating point arithmetic required at the computer 

hardware level.   

In the next subsection using the vertex weights summarized in Table III.5, the 

procedure of creating, balancing, and partitioning a graph is discussed.  The weighted 

graph’s vertices correspond to the SPSs component models.  Using the weight of each 

Acronym Component Description

Electrical 

Network 

Flops

Control 

Network 

Flops

Total 

Number of 

Flops

GEN Synchronous generator 23 320 343

PMG Prime-mover and governor 0 68

ROT Rotor swing equation 0 28

VRE Voltage regulator and exciter 0 129

W"D Windings circuit 23 95

MOT Induction motor and drive 182 428 610

CO" Speed controller 0 7

I"V Three-phase inverter 59 108

RCT Three-phase rectifier w/DC-link capacitor 92 168

ROT Rotor swing equation 0 28

W"D Windings circuit 31 117

Cbl 1-phase Cable 26 78 104

CBL 3-phase Cable 148 177 325

Lod 1-phase Static Load 3 26 29

LOD 3-phase Static Load 23 80 103

XFM Transformer 82 134 216

BRK Over-current relays 10 25 35

LVX
Low-votlage relays controlling LVP or LVR

10 25 35

XBT
Bus transfer device with undervoltage relay 

(ABT or MBT)
35 99 134
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vertex, the graph partitions are compared , and it is determined whether vertex migration 

is required to balance the partitions. 

3.3.3 Creation of a Representative Graph 

To automate the determination of where to partition the electrical network of an 

SPS model a representative weighed graph ( ),G V E  is used, where V  represents the set of 

graph vertices and E  represents the set of graph edges.  In G , each weighed vertex 

represents a discretized component model which weight is the computational effort (in 

flops) required to solve each model as listed by Table III.5.  Each graph edge (un-

weighted) represents a single-phase or three-phase node (i.e., the junction where 2 or 

more MTCs interconnect).   

To illustrate the mapping of an SPS electrical network to a representative graph, 

consider the components in Fig. 3.3.6.   The arrows next to each component represent 

the power flow direction and define each component’s input and output terminals.  The 

black cross bars represent the junctions between two or more components, and are 

normally referred to as three-phase nodes (the cross bars for single-phase nodes are 

represented in the same way) .  The representative graph for the network in Fig. 3.3.6 is 

shown in Fig. 3.3.7.   
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Fig. 3.3.6. A group of components to illustrate the representative graph 

 

Fig. 3.3.7. Representative graph of electrical network in Fig. 3.3.6  
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With a representative graph G of an SPS model, graph theoretic algorithms can be 

used to find (automatically) and determine the locations where to tear the system.  For 

example, if the graph in Fig. 3.3.7 was partitioned in  p=2 partitions by tearing the edges 

in front of CBL2 and CBL3, the resulting partitions would appear as shown in Fig. 3.3.8.  

The electrical network subsystems corresponding to the graph partitions are shown in 

Fig. 3.3.9.  Each removed edge from the graph corresponds to a disconnection point in 

the SPS model. 

 

Fig. 3.3.8. A graph divided into two partitions 
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Fig. 3.3.9. Subsystems corresponding to graph partitions 

To partition a large SPS model, the representative graph G  is first partitioned 

using the mincut algorithm [3].  The mincut algorithm produces graph partitions where 

each partition has approximately the same vertex count (not vertex weight), and where 

the number of removed edges is minimal.  Graph partitions with unequal weight 

correspond to SPSs of unequal computational effort.  To mitigate the computational 

imbalance, a heuristic approach was used to balance the graph partition weights.  

Starting from the initial segregation created with the mincut algorithm, the vertices are 

heuristically migrated across partitions as explained next. 

3.3.4 Graph Balancing Heuristics 

The graph balancing heuristics used in this work are based on Kernighan and Lin’s 

algorithm [100].  Kernighan and Lin’s algorithm balances a set of pre-existing graph 
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partitions by exchanging vertex pairs across partitions.  The choice of vertex pairs is 

based on the gain equation in (3.56), where k n<  is chosen to minimize the partial sum 

1

k

ig∑ , and where 
1

0
n

ig =∑  (i.e., some ig ’s are negative unless all are zero).  Each time 

the gain ig of a potential vertex pair removal is computed, the vertex pair is removed 

from the graph partitions and the procedure of computing the gains is repeated for the 

remaining vertex pairs.  Because Kernighan and Lin’s algorithm aims to minimize the 

external cost of the graph partitions with (3.56) (i.e., minimize edge cost 

, , 1,...,ijc i j n=∑ , where the edge ij  extends across partitions A and B), most of the 

vertex-pair exchanges occur at the boundary of A and B [101] 

 2 1,...,i a b abg D D c i n= + − =  (3.56) 

 

In this work, instead of assigning weights to edges extending across partitions, 

weights are assigned to vertices.  Instead of exchanging vertex pairs, single vertices are 

allowed to move to another partition.  The maximum weight imbalance max∆ for a 

partitioned graph is defined as the weight difference between the heaviest partition iG  

th

where:

the  vertex-pair exchange

the number of vertices in each partition

the gain of exchanging vertices  across partitions , respectively

the difference between the external and inter

i

a

i i

n

g a b A B

D

=

=

= ↔ ↔

= al costs of vertex 

the difference between the external and interal costs of vertex 

the edge weight between vertices  and 

b

ab

a

D b

c a b

=

=
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and the lightest partition jG  as ( ) ( )( )max max mini j i j≠∆ = −W W �  , where max∆  varies according 

to how many times a graph is partitioned.  

To reduce the graph imbalance the vertices are heuristically moved one-at-a-time 

across partitions, where after each move the graph partitions’ are weighed again.   To 

determine if the graph partitions are balanced after each move, the following metric 

should be satisfied: max τ∆ ≤ , where max

new∆  is the new imbalance factor after vertices are 

moved across partitions, and 0 20%τ≤ ≤  is a specified tolerance factor.  When there are 

more than two partitions, after max∆  is reduced for a pair of partitions{ },i j i j≠
G G , max∆ is re-

computed for a different pair of partitions { },x y x y≠
G G .  The process is repeated 

until { }max ,i j i j
τ

≠
∆ ≤ ∀ G G . In case max∆  cannot be reduced to max τ∆ ≤  for a given pair of 

graph partitions{ },i j i j≠
G G , partitions i  and j  are skipped and tried again after all other 

partitions pairs have been balanced.   The graph partitioning and balancing steps are 

summarized below. 
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• Partition graph into p partitions 
1

i

i

ρ

=

=∪G G  using mincut algorithm 

• Compute graph partition weights{ }1 2, , ..., ρW�W� W�  

• Balance partitions as follows: 

i. Compute ( ) ( ) ( )100
max max

max min
i

i j i j≠∆ = −
W

W W �  

ii. If max τ∆ ≤ ,  

1. balancing is complete (or not needed) 

2. exit 

iii. Else if  max τ∆ >  for any two { },
i j i j≠
G G , do: 

1. If i j>W�W�move heaviest boundary vertex jυ  from jG to iG  

such that ( )| |j i jw < −W�W�, where | |jw is the weight of jυ . 

2. Goto i)  

After moving as many boundary vertices as are necessary to satisfy max τ∆ ≤ , the 

graph partitions are considered balanced.  It is noted that due to the constraint that only 

boundary vertices can be migrated, the tolerance factor τ might have to be increased.  A 

larger τ means more imbalance, and is not desirable.  This is a limitation of the 

balancing heuristic method used in this work.  However, as will be shown in Chapter IV, 

computational imbalance in multicore computers is not as detrimental.  Even with 

unbalanced partitions, acceptable speed gains are possible.  Referring to the original 

work in [100], Table III.6 summarizes the differences between Kernighan and Lin’s 

algorithm and the algorithm used here. 
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TABLE III.6 . COMPARISON OF GRAPH BALANCING HEURISTICS 

 

Two software programs are used for the graph creation, partitioning, and balancing 

stage as shown in Fig. 3.3.10.  C# 3.0 is used to create the graph as an edge-list.  

Mathematica® [2] imports the edge-list, forms the graph G  as an object, and partitions 

the graph with Mathematica’s built-in mincut algorithm.  The mincut algorithm outputs 

maxp  sets of partitions, where maxp  is the maximum number of partitions desired (e.g., 

max 12p =  is used in Chapter IV).  Each partition set ip contains a subset of components, 

where the ith subset contains the components of subsystem i.  The component sets in the 

form of an output file are read back into C# where the balancing heuristics were 

programmed. 

  

Kernighan and Lin’s Algorithm As used in this Work

Assignment of a 

vertex weight

Sum of external and internal weights based 

on a vertex's degree

Weight based on computational 

effort or flops

Connectiviy 

matrix 

representation

Weighted edges represented as non-zero off-

diagonals; diagonals are 0s

Weighted vertices represented as 

non-zero diagonals; off-diagonals 

are 1s

Gain from vertex 

exchange(s)

Initial graph 

segration

Varios suggested, mainly based on 

multilevel partitioning

Uses the mincut algorithm as the 

starting graph segration

Migration of 

vertices By vertex pairs By stand-alone vertices

Vertices 

considered All vertex pairs Only vertices at the boundaries

2 1, ...,i a b abg D D c i n= + − = ( ) ( ) ( )100
max max

max min
i

i j i j≠∆ = −
W

W W �
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The mincut algorithm is run once per number of partition p desired.   For example, 

to partition a graph into p={1,2,3,4,5,6,7,8} (i.e., max 8p = ), the mincut algorithm is run 

eight times.  For each p, each graph partition’s weight is computed.  If an imbalance 

exists, vertices are moved across partitions.  A constraint of the aforementioned 

balancing approach is that when moving vertices across partitions, the vertices must be 

boundaries vertices as suggested by the activity diagram of Fig. 3.3.11.     

 

Fig. 3.3.10. Interaction between C# and Mathematica 
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Fig. 3.3.11. Activity diagram illustrating steps to balance graph 

A sample output file is provided in Fig. 3.3.12.  The output file in Fig. 3.3.12 

shows all components at the top for p=1.  The components listed under 

“<Partition3of4>” are the components belonging to subsystem 3 when a power system is 

partitioned into p=4 subsystems.  
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Fig. 3.3.12. Component sets output file from Mathematica 

Mathematica’s output is a segregation of stand-alone components residing in each 

graph partition, which is the equivalent of an electrical network having all its 

components disconnected or isolated from each other [96],[102].  The stand-alone 

vertices correspond to the components in each subsystem and need to be interconnected 

to form the respective subsystem’s loop resistance matrix.  After all components are 

assigned a subsystem number as shown with the listing in Fig. 3.3.12, the first step is 
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replace boundary three-phase cables with their torn equivalents as shown in Fig. 3.3.5.  

The second step is to form the ith subsystem’s loop resistance matrix 
1k

loopi

+
R  by equating 

the terminal meshes of adjacent components belong to the same partition.   

3.3.5 Summary 

Different software programs were used at the different stages of the program 

development.  The software programs used were: MATLAB/Simulink as the drawing 

canvas to create the one-line diagram and Mathematica [2] to create and partition the 

SPS representative graph.  A multithreaded simulation program was created in C# to 

balance the graph partitions, assign the subsystems to threads, and execute the threads on 

multicore computer.  The partitioning stage takes place once per power system.  Once a 

SPS is partitioned (i.e., subsystems are formed by interconnecting only those 

components in the same partition), the number of components in each subsystem 

remains constant and partitioning is not needed again.  Re-partitioning of a power 

system would only be needed if/when re-adjusting the vertex weights, adding or 

removing components from a power system, or when changing the balancing tolerance 

factor τ . 

3.4 SIMULATION AND MULTITHREADED SIMULATION 

This section discusses the implementation of the SPS simulation approach.  As 

introduced in section 2.5, an operating system thread is an independent path of code of 

execution commonly regarded as an asynchronous agent.  Threads are asynchronous 

because threads do not inherently abide to synchronization rules, and therefore execute 
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tasks regardless of what other threads are doing; as a result, data corruption, dead-locks, 

and contention for computer resources are common issues in multithreading 

programming [103-104]. 

Referring to Fig. 3.4.1, multiple subsystems can be created and each solved with a 

different thread.   As of this writing, the number of subsystems that can be created 

exceeds the number of cores available on a multicore computer; hence, many threads 

will be appointed to the same core creating sequential work; the simultaneous execution 

of the threads, however, is a parallel task.  

 

Fig. 3.4.1. Illustration of subsystem simulation on a multicore processor 
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Fig. 3.4.2. Examples of various subsystem/thread distributions on four cores 

The subsystems are distributed with the criteria that each core observes an equal, 

but minimal, number of subsystems.  For example, to solve 7 subsystems on 3 cores, the 

subsystems are distributed as shown in the second row of Fig. 3.4.2.  In the case of an 
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odd number of subsystems (e.g., 5 subsystems on 4 cores), the left-over subsystem 

creates an imbalance as shown on the third row of Fig. 3.4.2. 

Although it is possible to intentionally use fewer cores and leave computer 

resources for other applications thus under-utilizing a multicore processor, this  

deliberate option gives rise to inefficiency--computationally speaking.   For example, a 

power system partitioned in p=12 can be solved using 1 core.  However, with 3 unused 

cores a quad-core computer would not be fully exploited. 

A Microsoft Windows-based program was developed in C# 3.0 with .NET 3.5 to 

perform the multithreaded parallel-sequential simulations.  When the simulation starts, 

each thread solves the electrical and control networks of each subsystem as explained in 

section 3.2.5.    A swim-lane showing the thread interactions at each time step is shown 

in Fig. 3.4.3 and explained in detail next. 
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Fig. 3.4.3. Thread swim-lane diagram: 1 thread-per-core shown 

• Electrical Network Solution 

 

o Step 1: The threads (one per subsystem, though many per core are 

possible) solve the first term on the RHS of (3.57) using forward 

and backward substitutions.  When there are multiple threads per 

core, each core switches among threads using time-slicing. 
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 (3.57)

  

o Step 2: using the p solutions from Step 1, thread 1 computes the 

boundary conditions  1k +
u  with (3.58).  While thread 1 computes 

1k

C

+
v , the other threads await.  The synchronization constructs 

used in C# to synchronize the threads are AutoResetEvent 

handles [103] and are explained in Appendix B.  The term α is a 

constant coefficient matrix and does not change unless the 

network topology changes.  The term βk+1 changes at every time 

step of the simulation. 

 ( )( ) ( )

( )

1 1 1 1

1
T 1

1

1
1 T 1 1

1
from step 1

constant matrix

vector updated at

every time step

k k k

C C

p
k

r i loopi i

i

p
k k k

i loopi loopi

i

+ − + +

−+

=

−+ + +

=

 = +

 = +

  

=  
 



∑

∑

v α β hist

α I D R D

β D R e
�������

 (3.58) 

o Step 3: After thread 1 computes the boundary conditions, the 

threads patches their subsystems using the second term on the 

RHS of (3.57).  The term 1k

C

+
v  represents the capacitor voltages at 

the boundaries of disconnection.  The superposition form in (3.57) 

suggest that the capacitors impress a voltage at the boundaries of 

disconnection to counter-act the short-circuit currents of each 

subsystem.   After step 3, the control network (next step)  does not 

experience (i.e., it is oblivious to) a partitioned electrical network. 
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• Control Network Solution 

 

o Step 4: The control network solution begins.  Using the patched 

(corrected) loop currents of each subsystem, each thread computes 

the instantaneous voltages and currents for each component 

model.  Using the components’ terminal voltages and currents, all 

node RMS voltages and branch RMS currents are obtained.  This 

step gives the solution to (3.22).  

 

o Step 5: If a subsystem has machines, it uses the stator voltages 

computed in Step 4 to find the field voltageand winding currents.  

With the winding currents, the electromagnetic torque is 

computed and the mechanical speed obtained.   

 

o Step 6:  Using the RMS measurements from Step 4, each 

protective device determines if it needs to operate.  If so, a signal 

is sent to the master thread indicating that re-triangularization of 

the appropriate subsystem’s loop resistance matrix is needed.  

 

o Step 7: If there is a topology change (e.g., diode or transistor 

commutation, fault, or protective device), thread 1 re-triangulates 

the appropriate subsystem’s matrix, and updates the static term of 

the boundary conditions (i.e., matrix α ). 

 

o Step 8: After thread 1 completes re-triangulating any subsystem’s 

matrix (if any), all threads continue into the next time step. 

 

3.5 DETERMINING THE NUMBER OF PARTITIONS 

This subsection discusses how to determine in general a good number of partitions 

p to minimize simulation run-time.  A simulation’s run-time is proportional to two 

components: 
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• the total number of time steps in a simulation /tot endk t t= ∆ , where endt  is 

the user-specified simulation end-time in seconds and ∆t is the time step 

increment in seconds, and 

• the amount of time in seconds it takes to solve each time step k, which is 

proportional to the number of flops per time step 

To reduce the amount of time it takes to solve each time step, the number of flops 

per k should be reduced.  In terms of flops, the computational cost incurred at each time 

step is defined in (3.59), where 
stepC  is the total and 

stepiC  is the cost of only the ith step, 

which was defined earlier for the swim-lane diagram in  Fig. 3.4.3. 

 

Electrical Control
Network Network

1 2 3 4 5 6 7 8step step step step step step step step stepC C C C C C C C C= + + + + + + +
��������
 ��������������


 (3.59) 

Fig. 2.2.4 illustrated that the solution time is governed by the solution of A∙x=b, 

which in (3.59) corresponds to the EN solution.  The solution of the CN makes up for a 

smaller percentage of computational effort in each time step and is not used in 

determining the number of partitions p.  

Although multiplications take longer than summations [83],[105], for simplicity 

both operations are assumed to cost one flop each.  The cost of each of the terms 

1 2 3step step stepC C C+ +  is presented next. 
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3.5.1 Cost of Step 1 

Referring to (3.57), and assuming that the number of loop currents in subsystems 1 

through p are the same (i.e., 
1 2 ... p= = =ℓ ℓ ℓ ), the flop-cost of step 1 for the ith 

subsystem is given by (3.60) 

 ( )
2

1
1 1

1   .

mult
rect vctf mn m

k k

step loopi loopiC

⋅ = −

−+ += R e

������


 (3.60) 

Since 
1k

loopi

+
R  has dimensions i in n m n× ⇒ = , and 

1k

loopi

+
e  has dimensions 1in ×  

where i in = ℓ , (3.60) becomes 

 ( )2

1 2 . parallelstep i iC = −ℓ ℓ  (3.61) 

The cost 
1stepC  in (3.61) assumes subsystems 1 through p are solved in parallel, 

which is the best-case scenario.  In the worst-case scenario, subsystems 1-p are all 

solved sequentially, which changes (3.61)  to (3.62) [83] 

 ( )2

1

1

2 . sequential
i p

step i i

i

C
=

=

= −∑ ℓ ℓ  (3.62) 

3.5.2 Cost of Step 2 

Referring to (3.58), the cost of step 2 is broken down into the computation of 1k+
β  

and 1k

C

+
v , respectively (it is assumed that α  remains time-invariant) 
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 (3.64) 

In (3.63), p is the number of partitions and r is the total number of torn capacitors 

for the entire system.  The cost of step 2 is the sum of costs in (3.63) and (3.64).  This 

summation is given in (3.65).  Referring to Fig. 3.4.3, step 2 is the major bottleneck of 

diakoptics-based approaches and cannot not be parallelized [106] 

 ( )2

2. sequenti6 al2step r p r p rC − ⋅ + ⋅=  (3.65) 

3.5.3 Cost of Step 3 

Referring to (3.57), the cost of step 3 consists of a matrix-vector multiplication and 

a vector-vector summation as given in (3.66).  It is assumed that the negative sign in 

(3.66) can be treated as a pure addition instead of, first, a multiplication by -1 and, then, 

an addition. 
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In (3.66) the product ( ) 1
1k

loopi i

−+R D  is constant and does not need to be computed at 

each time step.  The dimensions of 1k

C

+
v  are 1r× , which when multiplied by 

( ) 1
1k

loopi i

−+R D , gives a 1i ×ℓ  vector which in turn acts as a patch for the solution in step 1.  

The patch term is the summation of two vectors: one obtained from step 1 and the other 

obtained from step 3, which is a vector summation of th

im = ℓ order.  

The cost in (3.66) assumes that subsystems 1 through p are solved in parallel, 

which is the best-case scenario.  In the worst-case scenario, subsystems 1-p are all 

solved sequentially, which changes (3.66)  into (3.62) 

 ( )3

1

2 . sequential
i p

step

i

iC r
=

=

⋅= ∑ ℓ  (3.67) 

3.5.4 Cost Function 

The cost of 
1 2 3step step stepC C C+ +  is given in (3.68), and represents the flop-cost at 

each time step k .  Minimization of (3.68) is expressed as a cost function of three 

variables in (3.69), and is considered an NP-complete problem.  The essence of the cost 
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function resides in reducing the objective function without violating the inequality 

constraints. 

In (3.69) the dominant variables are the subsystem’s order iℓ , and the number of 

torn capacitors r.  To minimize totC , both iℓ  and r should be reduced which is a 

conflicting requirement.  To decrease iℓ , p must increase; if p increases, so does r.  

There is an intrinsic (and intricate stochastic) relationship between p and r , which can 

reduce the cost function of (3.69) to be a function of two possible variables pair: iℓ and 

p, or iℓ  and r .  

 ( ) ( ) ( )
1 2 3

2 2

2 2

6 2 2

(6 ) 2 ( 1 2 ) 2

2

tot step step step

i i

i

i

i

C C C C

r p r p r r

p r p r r

− ⋅ + ⋅ ⋅

= − + ⋅ + − +

= + +

= −

+

+ + ℓ

ℓ ℓ

ℓ ℓ  (3.68) 

 { }2 2(min 6 ) 2 ( 1 2 ) 2it iot p r p r rC − + ⋅ + − + += ℓ ℓ  (3.69) 
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where:

the order of the unpartitioned system

the order of the  subsystem

the number of torn capacitors

the maximum number of capacitors that can be torn

the number of partitions

p the ma

i i

r

r

p

=

=

=

=

=

=

ℓ

ℓ

( )
ximum number of possible partitions

a function of .f p p=
 

Minimization of the cost function (3.69) is an NP-complete problem and cannot be 

expressed in closed form [96],[107-108].   In (3.69), p is constrained on its upper-end to 

maxp , which is unknown until a power system has been defined by the user.  The number 

of torn capacitors r in this work is at least 2, and is related p, and cannot be expressed in 

closed form.  The upper limit of r is maxr , which is determined by the number of 

capacitor loops in a system.   Once a power system (i.e., a SPS) is defined by the user 

and after the balancing heuristics is completed, the value of r is exposed.  The number of 

loop currents in the ith subsystem is unknown until the graph’s balancing heuristics is 

complete.   

Different values of p and r will be shown in Chapter IV, during the performance 

metric studies.  When introducing (3.60), it was stated that iℓ  represented the 

assumption that all subsystems have the same number of loop currents.  Due to the 

heuristic solution requirement to minimize (3.69), and the possible { }max, , , ip p r ℓ  

solutions, which depend on system order and topology, the cost function in (3.69) was 

not solved in this work.   In  Chapter IV,  a good value for p was determined empirically. 
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3.6 CHAPTER SUMMARY 

This chapter presented the discretization, partitioning, and simulation approaches 

used in this work.  At the end of the chapter, a theoretical cost function was introduced 

to predict the best number of partitions.  The interconnection of all discretized 

component models produced a large interconnected resistive network which is 

formulated using loop currents.   

To partition a power system and reduce simulation run-time, a representative 

graph is created and partitioned according to the mincut algorithm.  To balance the graph 

partitions, boundary vertices are moved across partitions heuristically. Once each 

component is assigned a partitioning number, each subsystem’s loop resistance matrix 

can be formed by connecting only those components in the partition.  When cables are 

the boundary of partitions, their RHS is left short-circuited (i.e., the capacitors do not 

form part of their equations). 

The simulation approach was also presented in this chapter.  Threads were taken 

from the Windows thread pool and used to invoke the solve method on each subsystem 

object.  The thread synchronization approach used in this work is given in  Appendix B.  

The swim-lane diagram in Fig. 3.4.3  presents the details of what occurs during each 

time step of the simulation.   

Producing various subsystems from a large power system permits simulating the 

subsystems in a parallel-sequential fashion using multithreaded programming.    When 

fewer threads than cores are used, the simulation is purely parallel.  When there are more 

threads than cores, the simulation is partially sequential and partially concurrent. 
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CHAPTER IV 

 

STUDIES A�D PERFORMA�CE A�ALYSIS 

IV. STUDIES AND PERFORMANCE ANALYSIS 

4.1 INTRODUCTION 

This chapter presents the performance metrics used to validate the solution 

methodology.  The performance metrics (PMs) were assessed by repeatedly running a 

benchmark case study based on SPS battle damage scenario [8].  The section on results 

presents select simulation waveforms, and the results of evaluating the performance 

metrics.  A summary of the performance metrics results and conclusions are presented in 

the last section of this chapter.  

4.2 DESCRIPTION OF PERFORMANCE METRICS 

4.2.1 Performance Metric 1 

The first performance metric (PM1) evaluates the speed gain and accuracy of 

partitioned simulations using a fixed time step of ∆t=50μs for all number of partitions p 

and number of cores c.  The simulation speed gain was computed as the ratio of 

unpartitioned to partitioned simulation run-times using (4.1)  [35], where 
unpartitionedt  is the 

unpartitioned (i.e., p=1, c=1) simulation run-time in seconds, and 
partitionedt  is any 

partitioned (p>1) simulation’s run-time in seconds. 

 unpartitioned

partitioned

speed

t
K

t
=  (4.1) 
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Simulation accuracy was assessed by comparing the unpartitioned and partitioned 

simulation results at each time step of the simulation using (4.2), where 
1

unpartitioned

kx +
 is a 

data sample from the unpartitioned simulation results (i.e., an instantaneous voltage or 

current measurement), and 
1

partitioned

kx +
 is the same sample but taken from a partitioned 

simulation.   

 

1 1

unpartitioned partitioned

1

unpartitioned

100 %

k k

k

x x

x

+ +

+

−
 (4.2) 

At each simulation time step, line-to-line voltages 
1k

abv +

, 
1k

bcv +

, 
1k

cav +

 were saved for all 

330 three-phase nodes, and currents 
1k

ai
+

, 
1k

bi
+

, 
1k

ci
+

 were saved for all 281 branches.   For 

the simulation length of 1sendt = , a time step of ∆t=50μs, and p=12 partitions,  

( ) ( )( ) 6

6

1
3 330 3 281 12 439.92 10

50 10−× + × × × = ×
×

 data points were evaluated using (4.2). 

The number of simulation runs to evaluate PM1 is illustrated with Fig. 4.2.1, 

where each block represents a unique p and c combination.   The abscissa and ordinates 

show how p and c were swept to evaluate PM1, which resulted in a total of 42 

simulation runs. 
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Fig. 4.2.1. Number of simulation runs (42) to evaluate performance metric 1 

4.2.2 Performance Metric 2 

The second performance metric (PM2) measures speed gain and accuracy, but 

additionally sweeps the time step as: { }75,100,250,500 µst∆ = .  An illustration of the 

time steps sizes (relative to ∆t=50μs) is shown in Fig. 4.2.2.  The time step increase is 

non-linear, starting with a 1.5x size factor and ending with 10x size factor.  The non-

linear increase was chosen as such to observe if the error introduced from partitioning 

SPS simulations follows this trend. 

Partitions

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

One simulation run:

p=10

c=3

∆t=50µs
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Fig. 4.2.2. Time step sizes used for performance metric 2 

The evaluation of speed and accuracy for PM2 was conducted in the same way as 

was conducted for PM1.  Equation (4.1) was used to assess the speed gain, and (4.2) to 

assess accuracy.  The three dimensional sweeping of { }1,12p∈ , { }1,4c∈ , and 

{ }75,100,250,500 µst∆ =  for PM2 required the as many simulation runs as depicted 

with Fig. 4.2.3.   If 4dt" =  is the number of different ∆t sizes used, 12part" =  is the 

maximum number of partitions created (i.e., pmax), and 4cores" =  is the number of cores 

on the multicore computer used, the total number of simulation runs for PM2 is given by 

(4.3).  

 
( )

12

4
4

Total no. 1
 = 168

runs 2 part

cores

dt

cores cores

dt part cores
"

"
"

" "
" " "

=
=

=

− 
− = 

 
 (4.3) 
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Fig. 4.2.3. Number of simulation runs (168) to evaluate performance metric 2 

4.3 DESCRIPTION OF CASE STUDY 

A case study was chosen to assess the aforementioned PMs.  The simulations were 

conducted using a multithread program developed in C# 3.0 which ran on the computer 

listed in Table IV.1.   

TABLE IV.1 . COMPUTER USED TO EVALUATE PERFORMANCE METRICS 

 

  

Partitions

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

Time Step

75 µs

100 µs

250 µs

500 µs

Computer A Dell Precision PWS690

Memory 3.25GB

Operating System Windows XP Professional 2002 with Service Pack 3

Processor Intel Xeon E5345 (quad-core)



149 

 

 

The present case study simulates the battle damage scenario presented in [8] as 

three-phase cable faults causing the successive and simultaneous tripping of protective 

devices throughout the system.  The one-line diagram of the notional AC-Radial SPS 

model used for the case study is shown Fig. 4.3.1, where acronyms and component count 

(as XYZ, 12) are provided in the legend. 

The objectives, limitations, and assumptions, of the system model and case study 

are stated next.  

Objectives: 

• To observe system behavior under battle damage 

• To measure the simulation speed gain after parallelizing the simulation 

• To assess the accuracy of partitioned simulations 

Limitations and Assumptions: 

• The battle damage is modeled as nine three-phase cable faults 

• The fault locations were obtained from the geographical information 

system (GIS) presented in [8] 
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• The SPS model in this work is the same as presented in [8] 

• The nine faults (FLTs), 1 through 9, were applied as follows: 

 

FLT1 applied at 0.1s

FLT2 applied at 0.2s

FLT3 applied at 0.3s

FLT4 applied at 0.4s

FLT5 applied at 0.5s

FLT6 applied at 0.6s

FLT7 applied at 0.7s

FLT8 applied at 0.8s

FLT9 applied at 0.9s

t

t

t

t

t

t

t

t

t

=

=

=

=

=

=

=

=

=  

• The fault line-to-line resistance was 50mfaultR = Ω   

• All faults occurred on the 450V side of the system 

• All faults occurred at the center (midway) of a cable 

• The simulations ran for 60 cycles (t=0s to tend=1s) 

• The system was partitioned up to 12 times  [ ]( )1,12p∈  

• The system was ran on 1,2,3, and 4 cores [ ]( )1,4c∈  

• Only generators 1 and 2 were online 

Protective Device Initial States: 

• All bus transfers started on their normal supply path (side 1) 

• All over-current relays started in the closed position  

• The emergency generator’s  relay was the only relay in the open position 

(i.e., GEN3 was offline) 

• All low-voltage protective devices started in the closed position 



  

 

 

1
5
1
 

 

Fig. 4.3.1. Schematic of SPS used for case studies showing locations of the 9 faults 
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The system ratings and protective device settings are listed in Table IV.2 and 

Table IV.3, respectively.  As noted, LVRs are the only protective devices without a time 

delay, which means LVRs operate instantaneously when any line-to-line voltage  

becomes  ≤405V.  

The average number of components per partition, the number of boundaries, and 

the number of capacitor loops torn are shown in Fig. 4.3.2.  The exact component 

distribution in each partition (i.e., subsystem) is listed in Appendix C.  It is noted that 

there is no direct relation between p and the number of boundaries.  For example, when 

12p =  there are 22 boundaries, which is less than when p=7 having 24 boundaries.  

This indirect relationship between the number of partitions and number of boundaries is 

due to two reasons: the first is the mincut algorithm, where the edge-cut depends on the 

graph connection matrix and p.  The second reason is due to the graph balancing 

heuristics.  When, and if, an internal vertex that is not at a boundary is moved to another 

partition, a new boundary is created to detach said vertex from its current graph 

partition.   
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TABLE IV.2 . NOTIONAL AC-RADIAL SPS MODEL BASE QUANTITIES 

 

TABLE IV.3 . PROTECTIVE DEVICE SETTINGS 

 

 

Description of Quantity Symbol Value Units

Base 3-phase total power 3.125 MVA

Base 3-phase real power 2.500 MW

Base 3-phase reactive power 1.875 Mvars

Power factor 0.8

Power angle 36.87 degrees

Base frequency 60 Hz

Base voltage 0.45 kV RMS line-to-line

Base 1-phase power 1.042 MVA

Base 1-phase current 2.31 kA RMS

Base line-current 4.009 kA RMS

Base per-phase impedance 0.1944 Ohms

3S ϕ

3P ϕ

3Q ϕ

P F

φ

b a s ef

LLV

1S ϕ

pI

LI

pZ

Protective Device Pickup Condition
Pickup 

Time Delay 

(cycles)

Pickup 

Time Delay 

(secs)

Restore 

Time 

Delay 

(cycles)

Restore 

Time 

Delay 

(secs)

Overcurrent relays at load centers Any phase current ≥ specified threshold 3 0.05 - -

Overcurrent relays at switchboards Any phase current ≥ specified threshold 6 0.1 - -

Overcurrent relays on ring bus Any phase current ≥ 2kA 12 0.2 - -

Overcurrent relays at generators Any phase current ≥ 4kA 15 0.25 - -

Low voltage protective devices (LVPs) Any line-to-line voltage ≤ 405V (90%) 3 0.05 - -

Low voltage protective releases (LVRs) Any line-to-line voltage ≤ 405V (90%) 0 0 2 0.033

Automatic bus transfers (ABTs) Any line-to-line voltage ≤ 405V (90%) 2 0.033 2 0.033

Manual bus transfers (MBTs) Any line-to-line voltage ≤ 405V (90%) 2 0.033 - -
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Fig. 4.3.2. Average component distribution per number of partitions 
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The model used for the faults is shown in Fig. 4.3.3, where 50mfaultR = Ω is the 

fault resistance during the fault, 1MopenR = Ω  is the fault resistance before the fault, 
1k

abfv +
 

is the fault voltage across phase ab.  To stage the three-phase faults, the three resistances 

in Fig. 4.3.3 simultaneously change their values from openR  to faultR .    

 

Fig. 4.3.3. Three-phase fault model (inside three-phase cables) 

This section presented the PMs, their importance, the number of runs required to 

asses said PMs,  the system model, an average component distribution in each partition, 

the number of capacitor loops torn, fault times, and an overview of the protective device 

settings.  The following sections present select simulation waveforms and the 

performance metric results. 

  

faultR1k

abfv +

+

−

1k

bcfv +

+

−

1k

caf
v +

−

+
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4.3.1 Simulation Waveforms 

The battle damage scenario simulation produced (when ∆t=50µs) 77 switching 

events: 68 protective device operations, and 9 faults; the switching events are listed in 

Fig. 4.3.4 and Fig. 4.3.5.  The meaning of the column headers in Fig. 4.3.4 and Fig. 4.3.5 

are given in Table IV.4.  Select simulation waveforms are presented before the 

performance metrics results.  The waveforms shown in this chapter are annotated to 

reduce their explanations. 

TABLE IV.4 . COLUMN HEADER DESCRIPTIONS FOR SWITCHING EVENTS OUTPUT FILE 

 

The simulation’s voltage and current envelope for [ ]0,1 st∈ , as measured at the 

terminals of generators 1 and 2 (GEN1 and GEN2) are shown in Fig. 4.3.6 and Fig. 

4.3.7, respectively.  Since generator 3 (GEN3) was disconnected, waveforms are not 

shown for GEN3.  The three-phase waveforms in Fig. 4.3.6 and Fig. 4.3.7 show the 

system’s response at a high-level, where the generator voltages and the total current 

injection into the system can be seen.   

 

Column Header Description

Event Switching event number

Step The time step number immediately before the event.  At this time step the loop resistance matrix is updated

Time (ms) The time corresponding to the time step number immediately before the event

Sub The subsystem number where the event occurred

Relay The relay number that operated (r 1 stands for side 1, r 2 for side 2, and r 3 for side 3) 

Det The time step number at which the overcurrent or undervoltage was detected by the relay

Action The action that occurred at the present event

Vabc (RMS) The last measured RMS voltage made by at the relay before the event occurred

Iabc (RMS) The last measured RMS current made by at the relay before the event occurred
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Fig. 4.3.4. Summary of switching events (1 of 2) 
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Fig. 4.3.5. Summary of switching events (2 of 2) 
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The times at which the nine faults closed-in are labeled on the current plots.  From 

the fault locations shown on the schematic in Fig. 4.3.1, and from the envelope response 

shown in Fig. 4.3.6, faults FLT 1, 2, 3, and 4 are closer to (and supplied mainly by) 

GEN1 except for FLT4.  Fault location 4 (FLT4) was not supplied from any generator 

for long because its upstream breaker BRK1_9 on switchboard 1 (SB1) opened moments 

after FLT4 was applied.   The list of switching events in Fig. 4.3.4 show that BRK1_9 

tripped at 400.2mst = , that is, briefly after FLT4 was applied at 400mst = . 

An overlay of bus tie 12 (p=1 vs. p=12; c=2; ∆t=50μs) and bus tie 13’s (p=1 vs. 

p=7; c=4; ∆t=75μs) envelope waveforms are shown in Fig. 4.3.8 and Fig. 4.3.9, which 

show inter-switchboard flows during the first three faults near SB1.  Before the faults 

were applied (i.e., 0.1st < ) the bus tie flows were small as expected from a ring bus 

topology.  During the faults the bus ties served as paths from generators to faults and 

initiated the bus tie breakers timers.  Ring breakers BRK1_16 and BRK2_1 tripped 

simultaneously at 404.95mst = , which opened bus tie 21 and the supply from GEN2 to 

FLTs 1,2, 3, and 4 downstream of SB1.  The ring breaker tripping are listed as events 18 

and 19 in Fig. 4.3.4.  Similarly for bus tie 31, breakers BRK1_1 and BRK3_16 opened 

the ring as given by events 24 and 25.   
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Fig. 4.3.6. Voltage and current measured from generator 1 {p=1; c=1; ∆t=50μs} 
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Fig. 4.3.7. Voltage and current measured from generator 2 {p=1; c=2; ∆t=50μs} 
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Fig. 4.3.8. Voltage and current: BRK2_1 (p=1 vs. p=12; c=3; ∆t=75μs) 
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Fig. 4.3.9. Voltage and current: (p=1 vs. p=7; c=4; ∆t=75μs) 

Application of FLT1 caused BRK11_1 operated at 150.3mst =  (event 2).  The 

voltage and currents measured at load center 11 (LC11) due to said opening are overlaid 

in Fig. 4.3.10.  The voltage transients due to BRK11_1’s opening exhibit fast resonance 

due to the cables’ small time constants.  The voltage waveforms shown in Fig. 4.3.10. 

are the common to all over-current relays connected from LC11.  The current 

decay from BRK11’s disconnection is shown on the lower part of Fig. 4.3.10.  As 

BRK11_1 opened high resonant decaying currents were noted for a few milliseconds.  
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The resonant behavior shown in Fig. 4.3.10 is also common to other protective device 

openings throughout the system.  At various points in the system, and every time a 

protective device opened, the same resonance was observed. 

 

 

Fig. 4.3.10. Voltage and current: BRK11_1 as FLT1 was cleared 
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Shown in Fig. 4.3.11 are voltage overlays {p=1 vs. p=10; c=3; ∆t=75μs} at LC11 

and current through BRK11_2.  The current through BRK11_2 is 0A prior to the fault 

because BRK11_2 is on MBT4’s alternate path which is normally open.  MBT4’s 

normal path is connected from BRK31_3 on LC31.  Also noted from Fig. 4.3.11 are the 

voltage dips caused by the faults. 

Shown in Fig. 4.3.12 are voltage overlays {p=1 vs. p=6; c=2; ∆t=50μs} for 

FLT3’s voltage and the fault’s line-to-line (LL) current.  The current through FLT3 is 

0A prior to the fault ( )1MfaultR = Ω .  When FLT3 was applied the fault LL current 

increased to a peak level of ~10kA as the fault resistance changed to 50mfaultR = Ω  .   

Also noted from  Fig. 4.3.12 is the rate at which the RMS current increases.  There are 

inherent delays in RMS computations which retards the moment when the relay detects 

the fault.   
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Shown in Fig. 4.3.13 are voltage overlays measured at SB1 {p=1 vs. p=5; c=1; 

∆t=500μs}and current overlays measured by BRK1_9.  The current through BRK1_9 is 

the largest current detected during the simulation which occurs when FLT3 is applied.  

Faults FLT1 and FLT2 occurred downstream of LC11 and are electrically further from 

SB1 than FLT3 is.  Fault 3 drew the largest current due to the proximity (electrically 

close) to SB1, and sunk in-feed current from GEN1 and GEN2.   

Also noted from Fig. 4.3.13 are the voltage dips at SB1 due to the faults.  The 

lengthiest voltage dip was caused by FLT3 because BRK1_9’s time-delay setting is 

longer than for load-center relays (i.e., BRK1_9 took ~6 cycles (~0.1s) to react as shown 

by event 16).  

From the select simulation waveforms presented, there is no apparent error 

between unpartitioned and partitioned simulation results.  Following similar 

explanations as given for Fig. 4.3.6 through Fig. 4.3.13, voltage and current overlays for 

FLTs 4-9 are shown in Fig. 4.3.14 through Fig. 4.3.19, respectively.  The generators 

response to each fault were labeled in Fig. 4.3.6 and Fig. 4.3.7, and the fault locations 

shown in Fig. 4.3.1. 
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Fig. 4.3.11. Voltage and current: BRK11_2 (p=1 vs. p=3; c=2; ∆t=250μs) 
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Fig. 4.3.12. Voltage and phase current:  FLT3’s (p=1 vs. p=6; c=2; ∆t=50μs) 
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Fig. 4.3.13. Voltage and current: BRK1_9 (p=1 vs. p=5; c=1; ∆t=500μs) 
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Fig. 4.3.14. Voltage and phase-current: FLT4’s (p=1 vs. p=3; c=3; ∆t=100μs) 



 171 

 

 

 

Fig. 4.3.15. Voltage and phase-current: FLT5 (p=1 vs. p=2; c=2; ∆t=100μs) 
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Fig. 4.3.16. Voltage and phase-current: FLT6 (p=1 vs. p=3; c=1; ∆t=75μs) 
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Fig. 4.3.17. Voltage and phase-current: FLT7 (p=1 vs. p=6; c=3; ∆t=100μs) 
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Fig. 4.3.18. Voltage and phase-current FLT8: (p=1 vs. p=12; c=4; ∆t=50μs) 
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Fig. 4.3.19. Voltage and phase-current: FLT9 (p=1 vs. p=3; c=1; ∆t=250μs) 

4.3.2 Performance Metric 1 Results 

4.3.2.1 Case Study Results 

The simulation run-time and speed gain for the 42 simulations of PM1 are shown 

in Fig. 4.3.20.  The unpartitioned (p=1) simulation’s run-time was 

unpartitioned 2,709st = (45mins; 09secs) when c=1.  When p=2, the simulation’s run- time 

reduced to 15 minutes 30 seconds for c=1, and to 10 minutes 12 seconds for c=2.  It is 

interesting to note that partitioning alone (i.e., p=2 holding c=1 constant) decreased run-

time by ~30 minutes.   This result indicates that speed gain is possible without 
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parallelizing simulations, and suggests that sequential simulations of partitioned power 

systems should be optimized before parallelizing the simulations.   Following the run-

time trend atop of Fig. 4.3.20, the shortest run-time was 2 minutes 18 seconds when 

p=11 and c=4.   With ∆t=50μs, and before partitioning the SPS, simulations took ~45 

minutes; after partitioning, run-time reduced to ~2 minutes. 

The smallest run-time of 2 minutes 18 seconds corresponds to a maximum speed 

gain of 19.63speedK = .  Since speedK p>  the speed gain is said to be super-linear [35].  It is 

also noted that c=4 does not always result in the highest speed gain for all p, which is a 

counter intuitive result.  There is a general belief that speed gains always increments if c 

does.  For example, when p=4 a higher speedK  was obtained with c=2 and c=3 than with 

c=4.  This result indicates that speedK  is not only a function of c , but of both of p and c.  

Referring to the lower part of Fig. 4.3.20, speedK  increased asymptotically for [ ]2,11p c∈ ∀  

but diminished when p>11 c∀ .  This result indicates that p=11 is a good number, if not 

optimal, number of partitions for the AC-Radial SPS model used and the case study 

conducted.  

The simulation error for PM1 was assessed using (4.2).  The number of cores c 

does not influence the accuracy of the simulation; it only influences run-time.  A 

summary of the errors obtained for PM1 are plotted using on a base-10 logarithmic scale 

in Fig. 4.3.21 and are tabulated in Table IV.5. 
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Fig. 4.3.20 . Simulation run-time (top) and speed gain (bottom) for ∆t=50μs
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Fig. 4.3.21 . Simulation errors for performance metric 1 (∆t=50µs) 

 



 179 

 

 

TABLE IV.5.SIMULATION ERRORS FOR PERFORMANCE METRIC 1  (∆T=50 MICROSECONDS) 

 

A plot of the maximum error against the number of partitions and boundaries is 

shown in  Fig. 4.3.22.  The exact relationship between the error, number of partitions, 

and number of boundaries was not investigated.  From Fig. 4.3.23 and Table IV.5 the 

maximum error detected was when p=10 at relay 1 of BRK21_4 in subsystem 10 of 10.  

The maximum error occurred when the number of boundaries was maximum (24 

boundaries), which suggests that the error has a relationship with the number of 

boundaries.   

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 17.84E-9 17.84E-9 568.00E-21 3.18E-9 0.000050 BRK11_3r1 - Subsystem 1 of 2 Ia

3 7 -2.04E-9 -2.04E-9 2.53E-18 124.47E-9 0.000000 BRK12_4r1 - Subsystem 3 of 3 Ia

4 11 -65.64E-9 -65.64E-9 28.60E-21 43.57E-12 0.438200 BRK11_3r1 - Subsystem 1 of 4 Ia

5 10 6.49E-9 6.49E-9 762.42E-21 11.76E-9 0.000050 BRK21_5r1 - Subsystem 1 of 5 Ia

6 16 17.84E-9 17.84E-9 6.77E-18 37.93E-9 0.000050 ABT14r2 - Subsystem 6 of 6 Ia

7 24 -2.04E-9 -2.04E-9 565.53E-21 27.78E-9 0.000000 MBT11r2 - Subsystem 4 of 7 Ia

8 17 5.81E-12 5.81E-12 365.23E-24 6.28E-9 0.964500 MBT11r2 - Subsystem 7 of 8 Ia

9 18 10.02E-9 10.02E-9 481.70E-21 4.81E-9 0.000000 ABT14r2 - Subsystem 7 of 9 Ia

10 24 5.09E-12 5.09E-12 100.01E-24 1.97E-9 0.921000 BRK21_4r1 - Subsystem 10 of 10 Ib

11 22 -5.29E-6 -5.29E-6 3.64E-18 68.76E-12 0.479250 FLT2r1 - Subsystem 8 of 11 Vbc

12 22 -113.51E-9 -113.51E-9 413.01E-21 363.84E-12 0.597700 MBT11r2 - Subsystem 12 of 12 Ic

No. Partitions
No. 

Boundaries
Avg. % Error

2 7 482.35E-9

3 7 511.65E-9

4 11 2.25E-6

5 10 2.27E-6

6 16 6.89E-6

7 24 17.31E-6

8 17 8.16E-6

9 18 9.08E-6

10 24 22.48E-6

11 22 16.28E-6

12 22 16.07E-6

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 -196.83E+0 -196.81E+0 18.12E-3 9.21E-3 0.250350 BRK11_3r1 - Subsystem 1 of 2 Vca

3 7 341.61E+0 341.59E+0 17.82E-3 5.22E-3 0.400250 BRK12_4r1 - Subsystem 3 of 3 Vbc

4 11 -196.83E+0 -196.79E+0 32.23E-3 16.38E-3 0.250350 BRK11_3r1 - Subsystem 1 of 4 Vca

5 10 -159.46E+0 -159.42E+0 41.94E-3 26.30E-3 0.750350 BRK21_5r1 - Subsystem 1 of 5 Vca

6 16 -151.83E+0 -151.72E+0 108.39E-3 71.39E-3 0.750350 ABT14r2 - Subsystem 6 of 6 Vca

7 24 -189.86E+0 -189.71E+0 144.66E-3 76.19E-3 0.250350 MBT11r2 - Subsystem 4 of 7 Vca

8 17 -189.86E+0 -189.74E+0 119.55E-3 62.97E-3 0.250350 MBT11r2 - Subsystem 7 of 8 Vca

9 18 -151.83E+0 -151.68E+0 155.19E-3 102.21E-3 0.750350 ABT14r2 - Subsystem 7 of 9 Vca

10 24 -159.46E+0 -159.27E+0 192.21E-3 120.54E-3 0.750350 BRK21_4r1 - Subsystem 10 of 10 Vca

11 22 -171.41E+0 -171.24E+0 164.25E-3 95.82E-3 0.150350 FLT2r1 - Subsystem 8 of 11 Vca

12 22 -189.86E+0 -189.65E+0 210.31E-3 110.77E-3 0.250350 MBT11r2 - Subsystem 12 of 12 Vca

Minimum Error (Δt=50μs)

Maximum Error (Δt=50μs)

Average Error (Δt=50μs)
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Fig. 4.3.22 . Maximum simulation error for ∆t=50μs 
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The time at which the maximum error occurred was 0.750350st = , and occurred 

for variable 1k

cav + .  An overlay of the voltage waveform for BRK21_4 is shown in Fig. 

4.3.23, where the maximum error is annotated.  The abbreviation BRK21_4 stands for: 

switchboard 2, load center 1, circuit breaker 4, and can be located in the schematic 

shown in Fig. 4.3.1.   A close-up of 1k

cav +  is shown on the lower part of  Fig. 4.3.23 to 

show the maximum error value as indicated by Table IV.5.  It is seen from the lower part 

of  Fig. 4.3.23 that 1k

cav +  suffered from a magnitude deficiency when 1k

cav + ’s slope 

changed sign.  The event that triggered the maximum error found in 1k

cav +  was event 61 

as listed by Fig. 4.3.5, which corresponds to the tripping of  BRK21_1. 

The second largest error occurred at 0.250350st =  when p=12, and also for 1k

cav + .  

An overlay (p=1 and p=12) of the voltage waveforms for MBT11 are shown in Fig. 

4.3.24, and annotated where the maximum error was reported.  A close-up of 1k

cav +  is 

shown on the lower part of Fig. 4.3.24, which shows the maximum errors as indicated by 

Table IV.5.  It can be seen again that the partitioned waveform also suffered at the peak 

where 1k

cav + ’s slope changed sign.  The event that triggered this error is event 6 in Fig. 

4.3.5, and occurred moments after BRK11_2 operated.  There is no apparent difference 

between the unpartitioned and partitioned waveforms shown in Fig. 4.3.24 either, which 

indicates a good agreement of simulation results.  As seen before the voltage transients 

occurred, the unpartitioned and partitioned waveforms appear to be exactly the same.  To 

note the differences (if/when any), close-ups of the waveforms are necessary. 
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Fig. 4.3.23 . Maximum error: BRK21_4 for ∆t=50μs (bottom curve zooms top) 

 

Fig. 4.3.24 . Second largest error: MBT11 for ∆t=50μs (bottom curve zooms top) 
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4.3.2.2 Summary of Results and Findings for PM1 

Speed gains >11 were obtained when c=1.  This result indicates that before going 

parallel, sequential simulations of partitioned SPSs should be optimized.   The largest 

speed gain was 19.63speedK =  corresponding to a run-time of 2 minutes 18 seconds.  

Comparing the slowest and fastest run-times, partitioning SPS simulations increments 

the number of simulations that can be ran per diem by a factor of ~20.  These results can 

speed up the advancement of technology as significantly more case studies can be 

executed in the same amount of time.   

The speed gains for 12p = , { }2,3,4c =  were almost the same.  The reason for 

this unintuitive result is that when threads are manually assigned to the cores (i.e., unsafe 

programming) it leaves the operating system at an un-optimal operational state.  If the 

operating system (Windows®) needs to give a time slice to the threads of another 

process, the threads of the SPS simulation are suspended until Windows lets them 

continue.  This inherent thread suspension mitigates speed gain, causes undesirable 

dead-time, and a natural (uncontrollable) internal computational imbalance.  In this 

regard, it is recommended that Windows handle the thread-to-core assignment (i.e., 

thread affinity) automatically based on computational resource information (not 

available to the user) [104]. 

The maximum error detected was 0.12%, when 10p = , for variable 1k

cav + , and at 

over-current BRK21_4.  The event that triggered the maximum error found in 1k

cav +  was 

event 61, which corresponds to the tripping of BRK21_1 as listed by Fig. 4.3.5.  As seen 
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from Fig. 4.3.1, both BRK21_1 (cause) and BRK21_4 (effect) are connected to the same 

load center.  In this case, the tripping of BRK21_1 created a voltage transient local to 

BRK21_4.  Both the cause and effect were in the same partition 10 of 10 as shown by 

the component distribution in Appendix C. 

The second largest error also corresponded to 1k

cav +  but at MBT11, 0.5s earlier, and 

moments after BRK11_2r1 tripped.  In this case, the transients from BRK11_2 tripping 

in partition 11 of 12 caused the second 2nd largest simulation error to occur at MBT11 in 

partition 12 of 12.  The error locations may be produced and observed in the same 

partition as was noted for the largest error; however, this is not a necessary condition as 

was seen by the second largest error.  All errors for ∆t=50μs were fractional percentages 

and indicate general good agreement between unpartitioned and partitioned results.  The 

switching of protective devices caused errors to be introduced during fast voltage 

transients.   
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A good way to show that the error incurred from partitioning SPS simulation is 

negligible is to compare the number of switching events (and their time instants) of 

unpartitioned (p=1) and partitioned simulations (p>1).  If the simulation error would 

have been significant, the number of switching events (and RMS measurements) would 

have disagreed between p=1 and p>1.  The consequences of wrong RMS measurements 

are a different number of protective device trippings, and switching events occurring at 

different time instants.  Since the number and times of the protective devices for 

partitioned and unpartitioned simulations was the same, it is said that the error observed 

did not alter the simulation results. 

Another way to assess the impact of the simulation error is by considering the 

average error in Table IV.5.  The average error gives an idea of how close a partitioned 

value is to its true unpartitioned value.  Since the average errors were in ( )610O − , there 

is confidence in the partitioned simulation results. 

4.3.3 Performance Metric 2 Results 

The results descriptions of PM2 follows those of PM1.  Since the graphics and 

tables of PM2 convey the same information as those of PM1, explanations for Fig. 

4.3.25-Fig. 4.3.36 and Table IV.6-Table IV.9 are elided.  
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4.3.3.1 Case Study Results 

4.3.3.1.1 Results for Performance Metric 2: ∆t=75μs  

 

Fig. 4.3.25 . Simulation run-time (top) and speed gain (bottom) for ∆t=75μs 
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Fig. 4.3.26 . Simulation errors for ∆t=75μs 
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TABLE IV.6.SIMULATION ERRORS FOR PERFORMANCE METRIC 2 (∆T=75 MICROSECONDS) 

 

 

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 26.49E-9 26.49E-9 4.09E-18 15.43E-9 0.000075 BRK11_3r1 - Subsystem 1 of 2 Ia

3 7 -2.24E-9 -2.24E-9 7.11E-18 317.34E-9 0.000000 BRK12_4r1 - Subsystem 3 of 3 Ia

4 11 -406.76E-9 -406.76E-9 11.19E-18 2.75E-9 0.498150 BRK11_3r1 - Subsystem 1 of 4 Ia

5 10 23.85E-9 23.85E-9 14.50E-18 60.80E-9 0.000075 BRK21_5r1 - Subsystem 1 of 5 Ia

6 16 8.76E-9 8.76E-9 19.19E-18 218.92E-9 0.000075 ABT14r2 - Subsystem 6 of 6 Ia

7 24 8.01E-9 8.01E-9 343.68E-18 4.29E-6 0.000000 ABT1r2 - Subsystem 6 of 7 Ia

8 17 -4.45E-12 -4.45E-12 371.96E-24 8.35E-9 0.929850 MBT11r2 - Subsystem 7 of 8 Ib

9 18 46.14E-9 46.14E-9 109.02E-18 236.25E-9 0.000075 ABT14r2 - Subsystem 7 of 9 Ia

10 24 5.90E-12 5.90E-12 3.97E-21 67.30E-9 0.930825 ABT15r2 - Subsystem 7 of 10 Ia

11 22 8.16E-9 8.16E-9 13.04E-18 159.85E-9 0.000000 FLT2r1 - Subsystem 8 of 11 Ia

12 22 -134.31E-9 -134.31E-9 6.75E-18 5.03E-9 0.620025 MBT11r2 - Subsystem 12 of 12 Ic

No. Partitions No. Boundaries Avg. % Error

2 7 520.01E-9

3 7 543.37E-9

4 11 2.42E-6

5 10 2.48E-6

6 16 7.57E-6

7 24 19.21E-6

8 17 8.91E-6

9 18 9.91E-6

10 24 24.51E-6

11 22 17.80E-6

12 22 17.89E-6

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 -398.69E+0 -398.60E+0 89.11E-3 22.35E-3 0.250200 BRK11_3r1 - Subsystem 1 of 2 Vca

3 7 467.12E+0 467.04E+0 84.22E-3 18.03E-3 0.400200 BRK12_4r1 - Subsystem 3 of 3 Vbc

4 11 -398.69E+0 -398.53E+0 160.94E-3 40.37E-3 0.250200 BRK11_3r1 - Subsystem 1 of 4 Vca

5 10 -377.72E+0 -377.51E+0 209.89E-3 55.57E-3 0.750225 BRK21_5r1 - Subsystem 1 of 5 Vca

6 16 -375.33E+0 -374.79E+0 534.86E-3 142.50E-3 0.750225 ABT14r2 - Subsystem 6 of 6 Vca

7 24 -370.90E+0 -370.14E+0 756.32E-3 203.92E-3 0.750225 ABT1r2 - Subsystem 6 of 7 Vca

8 17 -396.49E+0 -395.91E+0 584.81E-3 147.50E-3 0.250200 MBT11r2 - Subsystem 7 of 8 Vca

9 18 -375.33E+0 -374.58E+0 752.05E-3 200.37E-3 0.750225 ABT14r2 - Subsystem 7 of 9 Vca

10 24 -370.90E+0 -369.94E+0 957.75E-3 258.22E-3 0.750225 ABT15r2 - Subsystem 7 of 10 Vca

11 22 -387.58E+0 -386.77E+0 810.74E-3 209.18E-3 0.150225 FLT2r1 - Subsystem 8 of 11 Vca

12 22 -396.49E+0 -395.47E+0 1.03E+0 259.03E-3 0.250200 MBT11r2 - Subsystem 12 of 12 Vca

Minimum Error (Δt=75μs)

Maximum Error (Δt=75μs)

Average Error (Δt=75μs)
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Fig. 4.3.27 . Maximum simulation error for ∆t=75μs 
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4.3.3.1.2 Results for Performance Metric 2: ∆t=100μs  

 

Fig. 4.3.28 . Simulation run-time (top) and speed gain for ∆t=100μs 
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Fig. 4.3.29 . Simulation errors for ∆t=100μs 
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TABLE IV.7.SIMULATION ERRORS FOR PERFORMANCE METRIC 2 (∆T=100 MICROSECONDS) 

 

 

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 19.11E-6 19.11E-6 76.10E-18 398.17E-12 0.737400 BRK11_3r1 - Subsystem 1 of 2 Ib

3 7 -2.54E-9 -2.54E-9 1.65E-15 64.75E-6 0.000000 BRK12_4r1 - Subsystem 3 of 3 Ia

4 11 551.22E-9 551.22E-9 1.46E-15 264.70E-9 0.507600 BRK11_3r1 - Subsystem 1 of 4 Ib

5 10 3.40E-9 3.40E-9 4.01E-15 117.99E-6 0.000000 BRK21_5r1 - Subsystem 1 of 5 Ia

6 16 -2.86E-6 -2.86E-6 2.84E-15 99.43E-9 0.713400 ABT14r2 - Subsystem 6 of 6 Vbc

7 24 -264.56E-9 -264.56E-9 2.09E-15 790.59E-9 0.060500 FLT3r1 - Subsystem 1 of 7 Ic

8 17 1.75E-12 1.75E-12 39.58E-21 2.26E-6 0.911900 MBT11r2 - Subsystem 7 of 8 Ic

9 18 -1.99E-6 -1.99E-6 122.67E-18 6.15E-9 0.446900 ABT14r2 - Subsystem 7 of 9 Vbc

10 24 5.10E-12 5.10E-12 12.48E-21 244.56E-9 0.987700 ABT1r2 - Subsystem 7 of 10 Ib

11 22 -351.94E-9 -351.94E-9 1.33E-15 377.57E-9 0.623600 FLT2r1 - Subsystem 8 of 11 Ia

12 22 6.17E-9 6.17E-9 289.05E-18 4.68E-6 0.000000 MBT11r2 - Subsystem 12 of 12 Ia

No. Partitions No. Boundaries Avg. % Error

2 7 5.21E-6

3 7 5.40E-6

4 11 24.39E-6

5 10 25.08E-6

6 16 76.38E-6

7 24 1.10E-3

8 17 89.76E-6

9 18 99.01E-6

10 24 244.27E-6

11 22 178.22E-6

12 22 178.67E-6

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 -440.74E+0 -440.20E+0 532.32E-3 120.78E-3 0.250300 BRK11_3r1 - Subsystem 1 of 2 Vca

3 7 508.15E+0 507.66E+0 490.19E-3 96.46E-3 0.400200 BRK12_4r1 - Subsystem 3 of 3 Vbc

4 11 -440.74E+0 -439.77E+0 969.79E-3 220.04E-3 0.250300 BRK11_3r1 - Subsystem 1 of 4 Vca

5 10 -431.24E+0 -429.98E+0 1.26E+0 293.27E-3 0.750300 BRK21_5r1 - Subsystem 1 of 5 Vca

6 16 -430.18E+0 -426.98E+0 3.20E+0 743.83E-3 0.750300 ABT14r2 - Subsystem 6 of 6 Vca

7 24 8.76E+3 8.50E+3 255.58E+0 2.92E+0 0.359000 FLT3r1 - Subsystem 1 of 7 Ic

8 17 -439.77E+0 -436.28E+0 3.48E+0 792.25E-3 0.250300 MBT11r2 - Subsystem 7 of 8 Vca

9 18 -430.18E+0 -425.73E+0 4.45E+0 1.04E+0 0.750300 ABT14r2 - Subsystem 7 of 9 Vca

10 24 -424.83E+0 -418.99E+0 5.84E+0 1.38E+0 0.750300 ABT1r2 - Subsystem 7 of 10 Vca

11 22 -437.08E+0 -432.24E+0 4.84E+0 1.11E+0 0.150300 FLT2r1 - Subsystem 8 of 11 Vca

12 22 -439.77E+0 -433.66E+0 6.11E+0 1.39E+0 0.250300 MBT11r2 - Subsystem 12 of 12 Vca

Minimum Error (Δt=100μs)

Maximum Error (Δt=100μs)

Average Error (Δt=100μs)
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Fig. 4.3.30 . Maximum simulation for ∆t=100μs 

 



 194 

 

 

4.3.3.1.3 Results for Performance Metric 2: ∆t=250μs  

 

Fig. 4.3.31. Simulation run-time (top) and speed gain (bottom) ∆t=250μs 
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Fig. 4.3.32 . Simulation errors for ∆t=250μs 
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TABLE IV.8.SIMULATION ERRORS FOR PERFORMANCE METRIC 2 (∆T=250 MICROSECONDS) 

 

 

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 -282.78E-9 -282.78E-9 11.04E-18 3.90E-9 0.450000 MBT5r1 - Subsystem 1 of 2 Ia

3 7 -4.16E-9 -4.16E-9 157.58E-18 3.79E-6 0.000000 BRK12_4r1 - Subsystem 3 of 3 Ia

4 11 -267.41E-9 -267.41E-9 371.57E-18 138.95E-9 0.805750 BRK3_12r1 - Subsystem 3 of 4 Ic

5 10 -322.02E-9 -322.02E-9 63.66E-18 19.77E-9 0.528750 BRK21_5r1 - Subsystem 1 of 5 Ic

6 16 16.56E-9 16.56E-9 98.93E-18 597.27E-9 0.000250 ABT14r2 - Subsystem 6 of 6 Ia

7 24 47.91E-9 47.91E-9 131.76E-18 275.02E-9 0.000000 ABT1r2 - Subsystem 6 of 7 Ia

8 17 -5.41E-12 -5.41E-12 24.82E-21 458.77E-9 0.957000 MBT11r2 - Subsystem 7 of 8 Ia

9 18 1.83E-6 1.83E-6 351.33E-18 19.16E-9 0.806500 ABT14r2 - Subsystem 7 of 9 Ic

10 24 -4.80E-12 -4.80E-12 24.47E-21 509.67E-9 0.904250 BRK1r1 - Subsystem 2 of 10 Ia

11 22 -302.80E-9 -302.80E-9 102.96E-18 34.00E-9 0.622750 BRK3r1 - Subsystem 11 of 11 Ic

12 22 73.74E-9 73.74E-9 284.50E-18 385.80E-9 0.000250 MBT11r2 - Subsystem 12 of 12 Ia

No. Partitions
No. 

Boundaries
Avg. % Error

2 7 512.23E-9

3 7 535.91E-9

4 11 2.45E-6

5 10 2.45E-6

6 16 7.50E-6

7 24 19.44E-6

8 17 9.08E-6

9 18 9.51E-6

10 24 23.94E-6

11 22 17.59E-6

12 22 17.59E-6

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value

Partitioned 

Value
Absolute Error % Error Time (secs) Location of Error Variable

2 7 558.03E+0 558.02E+0 11.57E-3 2.07E-3 0.251500 MBT5r1 - Subsystem 1 of 2 Vbc

3 7 567.61E+0 567.60E+0 9.83E-3 1.73E-3 0.251500 BRK12_4r1 - Subsystem 3 of 3 Vbc

4 11 -395.22E+0 -395.24E+0 24.52E-3 6.20E-3 0.028250 BRK3_12r1 - Subsystem 3 of 4 Ib

5 10 91.29E+0 91.32E+0 25.90E-3 28.37E-3 0.750000 BRK21_5r1 - Subsystem 1 of 5 Vab

6 16 91.35E+0 91.41E+0 66.11E-3 72.37E-3 0.750000 ABT14r2 - Subsystem 6 of 6 Vab

7 24 569.76E+0 569.65E+0 112.54E-3 19.75E-3 0.251500 ABT1r2 - Subsystem 6 of 7 Vbc

8 17 -506.88E+0 -506.81E+0 67.16E-3 13.25E-3 0.250000 MBT11r2 - Subsystem 7 of 8 Vca

9 18 91.35E+0 93.87E+0 2.52E+0 2.76E+0 0.750000 ABT14r2 - Subsystem 7 of 9 Vab

10 24 -2.33E+3 -2.33E+3 223.95E-3 9.61E-3 0.028250 BRK1r1 - Subsystem 2 of 10 Ib

11 22 -2.53E+3 -2.53E+3 167.49E-3 6.61E-3 0.028250 BRK3r1 - Subsystem 11 of 11 Ib

12 22 -506.88E+0 -506.76E+0 117.16E-3 23.11E-3 0.250000 MBT11r2 - Subsystem 12 of 12 Vca

Minimum Error (Δt=250μs)

Maximum Error (Δt=250μs)

Average Error (Δt=250μs)
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Fig. 4.3.33 . Maximum simulation error for ∆t=250μs 
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4.3.3.1.4 Results for Performance Metric 2: ∆t=500μs  

 

 

Fig. 4.3.34. Simulation run-time (top) and speed gain (bottom) for ∆t=500μs 
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Fig. 4.3.35 . Simulation errors for ∆t=500μs 
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TABLE IV.9.SIMULATION ERRORS FOR PERFORMANCE METRIC 2 (∆T=500 MICROSECONDS) 

 

 

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value
Partitioned Value Absolute Error % Error Time (secs) Location of Error Variable

2 7 -3.49E-9 -3.49E-9 8.58E-15 245.76E-6 0.000500 BRK2_7r1 - Subsystem 1 of 2 Ia

3 7 -4.87E-9 -4.87E-9 50.19E-15 1.03E-3 0.000000 BRK1_11r1 - Subsystem 1 of 3 Ia

4 11 -455.38E-9 -455.38E-9 121.05E-15 26.58E-6 0.584500 BRK3_12r1 - Subsystem 3 of 4 Ic

5 10 -379.21E-9 -379.21E-9 7.90E-15 2.08E-6 0.853500 BRK1_9r1 - Subsystem 2 of 5 Ic

6 16 -6.79E-6 -6.79E-6 25.13E-15 370.25E-9 0.457000 BRK3_12r1 - Subsystem 6 of 6 Vab

7 24 2.34E-6 2.34E-6 423.93E-15 18.14E-6 0.859500 BRK2_13r1 - Subsystem 7 of 7 Ic

8 17 2.38E-12 2.38E-12 1.34E-18 56.29E-6 0.962000 BRK3_12r1 - Subsystem 6 of 8 Ic

9 18 7.35E-6 7.35E-6 250.68E-15 3.41E-6 0.509500 BRK2_7r1 - Subsystem 3 of 9 Vca

10 24 5.38E-12 5.38E-12 6.81E-18 126.71E-6 0.954500 BRK1r1 - Subsystem 2 of 10 Ib

11 22 753.60E-9 753.61E-9 131.15E-15 17.40E-6 0.495500 BRK3r1 - Subsystem 11 of 11 Ib

12 22 2.92E-9 2.92E-9 368.36E-15 12.60E-3 0.000000 BRK2_13r1 - Subsystem 7 of 12 Ia

No. Partitions No. Boundaries Avg. % Error

2 7 57.45E-6

3 7 60.70E-6

4 11 275.83E-6

5 10 274.50E-6

6 16 816.95E-6

7 24 2.01E-3

8 17 1.01E-3

9 18 1.03E-3

10 24 2.60E-3

11 22 1.90E-3

12 22 1.85E-3

No. 

Partitions

No. 

Boundaries

Unpartitioned 

Value
Partitioned Value Absolute Error % Error Time (secs) Location of Error Variable

2 7 -735.22E+0 -736.20E+0 976.38E-3 132.80E-3 0.028500 BRK2_7r1 - Subsystem 1 of 2 Ib

3 7 -207.87E+0 -208.86E+0 989.26E-3 475.90E-3 0.028500 BRK1_11r1 - Subsystem 1 of 3 Ib

4 11 -396.46E+0 -399.55E+0 3.08E+0 777.20E-3 0.028500 BRK3_12r1 - Subsystem 3 of 4 Ib

5 10 7.90E+3 7.90E+3 1.52E+0 19.20E-3 0.355500 BRK1_9r1 - Subsystem 2 of 5 Ib

6 16 -396.46E+0 -400.91E+0 4.45E+0 1.12E+0 0.028500 BRK3_12r1 - Subsystem 6 of 6 Ib

7 24 -136.07E+0 -146.27E+0 10.20E+0 7.50E+0 0.028500 BRK2_13r1 - Subsystem 7 of 7 Ib

8 17 -396.46E+0 -403.60E+0 7.13E+0 1.80E+0 0.028500 BRK3_12r1 - Subsystem 6 of 8 Ib

9 18 -735.22E+0 -742.68E+0 7.46E+0 1.02E+0 0.028500 BRK2_7r1 - Subsystem 3 of 9 Ib

10 24 -2.34E+3 -2.37E+3 28.14E+0 1.20E+0 0.028500 BRK1r1 - Subsystem 2 of 10 Ib

11 22 -2.54E+3 -2.56E+3 21.05E+0 827.83E-3 0.028500 BRK3r1 - Subsystem 11 of 11 Ib

12 22 -136.07E+0 -145.43E+0 9.36E+0 6.88E+0 0.028500 BRK2_13r1 - Subsystem 7 of 12 Ib

Minimum Error (Δt=500μs)

Maximum Error (Δt=500μs)

Average Error (Δt=500μs)
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Fig. 4.3.36 . Maximum simulation error for ∆t=500μs 

The maximum error for PM2 was found when ∆t=500μs, 7p =  at BRK2_13 as 

given by Table IV.9 as 7.50%.  Waveform overlays of BRK2_13’s current are shown in 

Fig. 4.3.37.  From the upper overlay apparently there is good agreement between 

unpartitioned and partitioned (p=7) line currents.  A close-up of 
1k

bi
+

 is shown on the 

lower part of Fig. 4.3.37, where a magnitude difference of 7.5% was detected at 

28.5mst = .  The error shown occurred in the lower part of Fig. 4.3.37 is the largest error 

obtained for PM2, which also occurred when using the largest ∆t.  Furthermore, no event 

triggered the error.  This error was detected early during the simulation before any 

switching event took place.  All switching events that occurred after 28.5mst =  did not 

exceed this error. 
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Fig. 4.3.37 . Current overlay of BRK2_13 showing largest error for PM2 

4.3.3.2 Summary of Results and Findings for PM2 

Over 200 simulations were conducted to obtain the results presented for PM2.  The 

purpose of PM2 was to determine if variations in ∆t affected the speed gain and the 

accuracy and, if so, by how much.  The largest error for PM2 occurred when ∆t=500μs, 

7p =  at BRK2_13, was 7.50%. and occurred  early during the simulation before any 

faults were applied.  The maximum errors for all ∆t considered in PM2 increased 

similarly to the ratios in Fig. 4.2.2, which suggests that a correspondence between ∆t and 

error exists (i.e., the error from partitioning may accrue more significantly with a larger 

∆t). 



 203 

 

 

The largest error of 7.5% is considered acceptable because it neither changed the 

values of the RMS measurements nor the number of switching events.  For example, 

when comparing p=1 and p=9 (both at ∆t=500us), the number of switching events was in 

both cases as listed in the Appendix C.  Henceforth, a user comparing the switching 

event log of unpartitioned and partitioned simulation results could not tell the difference 

between results. 

The combined run-time, speed gain, and error per ∆t for PM1 and PM2 are 

summarized in Fig. 4.3.38.  Referring to the first set of columns in Fig. 4.3.38, the most 

accurate simulation was when ∆t=50μs.  Using the same ∆t, the least run-time was 2 

minutes and 18 seconds when partitioned as 11p = .  The maximum error found with 

∆t=50μs was 0.12%.  The peak error only occurred for the duration of one time step, 

which indicates that all subsequent errors (if any) are smaller than this peak.   

Referring to the right-most set of columns in Fig. 4.3.38, the least run-time of 25 

seconds (shown as 0.25), the largest speed gain of 27.85speedK = , and largest error of 

7.5% all occurred during PM2 with 500µst∆ = .  The results for ∆t=75μs through 

∆t=250μs are also shown in Fig. 4.3.38.  

The run-time decreased as ∆t increased because there were less number of time 

steps to execute.  The maximum error increased with ∆t, but not at a linear rate.  The 

maximum errors shown in Fig. 4.3.38 are peak values, which mean that these errors 

occurred only once during the simulation and lasted for exactly one time step.  More 

important than the maximum error is the average error, which is a good representation of 

the veracity of each partitioned simulation data point.   
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Fig. 4.3.38 . Run-time, speed gain, and maximum error per time step 

The most important result is that the error from partitioning AC-Radial SPS 

simulations does not cause additional protective devices to operate.  The reason the 

number of protective device operations was different for ∆t=50μs vs. ∆t=500μs (77 vs. 

79 events, respectively) was the ∆t size, not the partitioning approach.  The partitioning 

approach is validated by noticing that for the same ∆t the number of protective device 

operations does not change as exemplified for the ∆t=500μs case in the Appendix C. 

The maximum speed gain obtained per each core is summarized with Fig. 4.3.39.  

The first column group represents the speed gains obtained when c=1 at different ∆t.   

For example, the maximum speed gain with c=1 occurred when ∆t=500μs and was 

19.05speedK = .  Referring to the second column group, when 2c =  the maximum speed 

gain also occurd when ∆t=500μs and was 25.86speedK = .  Generally speedK  increases 
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with both c and p, but not always.  For example when c=3 at ∆t=75μs gave 

17.57speedK =  which is less gain than for ∆t=50μs of .  In other words, larger ∆t’s tend to 

return higher gains than smaller ∆t’s but it is not guaranteed. 

Another interesting result is observed from Fig. 4.3.39.  When ∆t=50μs, the gain 

does not increase proportionally to c.  For example, when using c=1 at ∆t=50μs the gain 

when using c=2 incrased by only 17.82 /11.33 1.57= , and not =2 as may have been 

expected from using twice as many processors.  Similary, when using c=4 the gain 

increase with respect to c=1 was 19.63 /11.33 1.73= .  More suprisingly is that the speed 

gain ratio between c=4 and c=2 was only 1.73 /1.57 1.1= .  This result implies that the 

gain of using 4 cores vs. 2 cores (on the quad-core machine used) is only 10%; an 

empiral, counter-intutive, and non-deterministic result at the same time.  

Referring to the swim-lane diagram in Fig. 3.4.3, the dominant computation times 

at each time step (as p increases) are steps 2 and 7, which are the serial steps of the 

simulation approach.  To estimate the influence of the serial steps on the fastest run-time 

of PM1 (depicted with Fig. 4.3.40), the average times to compute the serial steps were 

measured and tabulated in Table IV.10.  For the simulation indicated in Fig. 4.3.40 the 

average time to compute the serial steps was ~2.2ms (per time step).  The total time used 

to compute the serial steps (for the entire simulation) was ~45 seconds, and constitutes 

~32% of the total run-time of 138 seconds.  This result indicates that ~32% is likely to 

be the maximal affordable time that can be spent doing serial work over parallel-

sequential work before diminishing returns are experienced.  The serial-work 

computation time for other combinations or p, c, and ∆t was not investigated.  
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Fig. 4.3.39 . Summary of speed gain for each ∆t and c 
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Fig. 4.3.40 . Simulation case to determine computation time of serial steps 

TABLE IV.10.INFLUENCE OF SERIAL STEPS ON RUN-TIME 

 

4.4 CHAPTER SUMMARY 

This chapter introduced, described, and discussed the performance metric results 

used to evaluate the solution methodology.  To obtain the results of PM1 and PM2, ~250 

simulations of the same SPS battle damage scenario were conducted. 

C
o

re
s

Per Time 

Step (µs)

Whole 

Simulation 

(secs)

Simulation 

Run-Time 

(secs)

Influence of Serial 

Steps on Simulation 

Run-Time

2253.6 45.072 138 32.66%

Average Time Spent on 

the Serial Steps
Totals
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The are several factors that limit the observed speed gain; some are: Windows 

background processes, computational imbalances, computation of the patch term or 

boundary conditions, the non-zero count and structure of the subsystem matrices, 

programming efficiency, processing power, memory cache, thread affinity, sequential 

simulation techniques, efficient switching models, interpolation techniques, etc.  

The computation of the patch term is the major bottle neck of diakoptics-based 

approaches and becomes dominant as the simulations become finer-grained.  

Computational imbalance was present for two reasons: because the graph partitioning 

and balancing heuristics require that capacitors be present to form partitions and when 

p>c the thread-to-core distribution is not even. 

Errors in the partitioned simulation results were detected.  Referring to the 

discretized capacitor circuit in Fig. 3.2.1, discretized capacitors have a series resistance 

and a series historical source.  The partitioning approach in this work tore active 

branches (i.e., branches with sources), and further tore branches with rapidly-changing 

voltages (i.e., capacitor state-variables).  The shorted capacitors at each boundary 

include the historical sources as part of the torn capacitors which influences the 

computations of the boundary conditions.  The current through the capacitors is very 

small due to the high impedance of the capacitors.  However, the capacitors’ state-

variable (their voltage) is oscillatory due to cable resonance.  This high frequency (fast 

time constant) phenomenon caused fast voltage transients at load centers which is where 

the largest errors occurred.  
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The simulation speed gain increased as the number of partitions increased, but 

only through 11 partitions.  Beyond 11 partitions, the computational burden of 

calculating the boundary conditions dominated the solution at each time step and 

produced diminishing speed gains.  When using all four cores, the simulation speed gain 

does not increase linearly from its two- and three-core counterparts.  This result occurs 

due to processor overwhelming.  When Windows is left without resources for graphical 

rendering or other background process, the thread scheduler must suspend the 

simulation’s threads and respond to other requests.  

The observed errors were within acceptable reason because they did not change 

the RMS measurements, or the number of switching events in the partitioned 

simulations.  The errors observed increased with ∆t, occurred at difference time 

instances, and at different locations throughout the SPS.  The errors reported were peak 

values, which mean that these errors only lasted for one time step.  What is important to 

consider than the maximum error is the average the average error, which gives an idea of 

how accurate each partitioned simulation data point is with respect to its unpartitioned 

counterpart.  

The amount of serial work was measured in terms of computational time for p=11, 

c=4, and ∆t=50µs.  It was found that, for this particular combination of p, c, and ∆t the 

serial work amounts to ~32% of the total run-time.  Other combinations of p, c, and ∆t to 

measure the serial work were not investigated. 
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CHAPTER V 

 

CO�CLUSIO�S A�D FUTURE WORK 

V. CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

 The work in this dissertation presented a formulation-partitioning approach to 

parallelize the simulation of AC-Radial SPSs using multicore computers.   The solution 

methodology was validated with performance metrics, which assessed speed gain and 

accuracy.  This chapter presents concluding remarks organized in two subsections: 

advantages and limitations of the solution methodology.  The chapter ends focusing on 

central research topics to explain what seem likely to become useful future specific 

research work aimed at  reducing  simulation run-times while preserving accuracy in the 

process and outcomes. 

5.1.1 Advantages of the Solution Methodology 

The run-time of AC-Radial SPS simulation was reduced by ~30 times.   This result 

indicated that significantly more case studies could be run in one day, which was the 

main purpose  of this work.  An example of said improvement was the run-time 

comparison of the unpartitioned run-time (∆t=50μs) of ~45mins vesus the partitioned 

run-time of ~2 minutes.   

The hardware cost of using multicore computers is very low when compared to 

other existing hardware solutions (e.g., PC-clusters or dedicated real-time simulators).  

Further, since multicore computers are already ubiquitous, it is likely that hardware need 
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not be bought to implement the simulation approach presented in this work. The 

simulation approach presented in this work does not demand additional hardware cost to 

implement it, which makes simulation an attractive option for investigators in need of 

conducting repeated  parallel simulations of AC-Radial SPSs. 

On the other hand, the accuracy of unpartitioned simulations was preserved when 

compared to partitioned simulations results.   It was shown in Fig. 4.3.38 that the peak 

simulation error, when ∆t=500μs, was barely 7.5%.  This error was a peak one and only 

lasted for one time step.  The error observed in the partitioned simulations nonetheless  

did not alter the number of switching events; that is, for a given combination {∆t, p, c} 

the number of switching events was the same whether the simulation was unpartitioned 

or unpartitioned.  Had  the  error  impacted the results, protective device RMS 

measurements would have been erroneous, which was not the case in this work, 

according to the findings of the performance metrics explained earlier.  Erroneous RMS 

measurements, however,  may  lead to a loss in protective device security [109] and did 

not occur here.   

More important than the peak simulation errors observed in the partitioned 

simulations were the average errors listed in Table IV.5-Table IV.9.  The average error 

shows the level of uncertainty that each partitioned simulation data point is incorrect.  

For instance, for a given random sample point an average error of ( )610O  indicates that 

for a random sample point, the %-error between unpartitioned and partitioned simulation 

results is of this order.  Chapter IV established that the average errors were of negligible 

concern.  
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Formulation of an AC-Radial SPS using loop currents variables is attractive in 

terms of equation count.  Comparing the number of DAE equations versus the number of 

equations in 
1 1 1k k k

loopi loopi loopi

+ + +=R i e (for p=1), the equation count of the latter is lower.  Low 

equation-count simulation results in faster solution times.  The same can be said of a 

formulation using node voltages as variables, where typically there are more node 

equations than loop equations.  Another factor that results in fast computation times is 

the sparsity of the loop formulation.  The loop current approach results in a system over 

99% sparse, which is solved very effectively.  

The simulation approach in this work is both single and/or multicore.  The 

simulation approach was implemented by assigning one subsystem per thread instead of 

one subsystem per core.  The latter method imposed a limitation on the maximum 

number of partitions since there are only four cores to a multicore PC (quad-core 

computers are readily available desktop computers; however, as of the writing dual-

cores are more common).  The simulation approach, by assigning threads to subsystems,  

permits simulating a partitioned SPS on a single core.  From Fig. 4.3.39, the gain with a 

single core simulation neared 20x with ∆t=500μs, which indicates that parallelism is not 

a necessary pre-requisite (though it is desired). 

Due to the low-latency of shared-memory computers, thread synchronizations and 

subsystem overheads were found to be negligible.  It was shown that for p=11, which 

gave the least run-time for all ∆t, the amount of time spend in thread overhead was a 

fractional percent of the run-time.  This result is due to the low-latency in data sharing, 

idle-time, and thread synchronization that in shared-memory computers is not 
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pronounced.  Although subsystem imbalances were not expected, their presence 

however was not detrimental overall. 

5.1.2 Limitations of the Solution Methodology 

The first limitation was that capacitor loops were required to implement 

partitioning approach.  Not all SPS cables were modeled as having capacitor loops [81]; 

however, the inclusion of capacitors in cables of short length should be considered.  

Capacitor loops introduce complex eigenvalues causing oscillatory transients otherwise 

not observable in resistive-inductive networks [110].  Another motivation to include 

cable capacitance is to perform transient recovery voltage studies [30],[82]. 

It should be highlighted that for the partitioning method presented in this work to 

be effective, capacitor loops must exist at buses (i.e., switchboards or load centers).  

Buses produce dense off-diagonal regions in the loop resistance matrix because many 

loop currents are coupled to each other at the same two capacitors.  By shorting two 

capacitors at a bus, much of the off-diagonal region in 
1k

loopi

+
R  becomes zero.   This makes 

the partitioning method particularly effective as the number of flops per time step is 

proportional to the number of non-zeroes in 
1k

loopi

+
R . 

Another limitation of the partitioning approach presented in this work is that a 

ground plane must not exist.  The partitioning approach has only been validated on a 

system modeled as purely ungrounded, where two capacitors per capacitor loop were 

torn.  The presence of ground capacitance would require additional tearing that have not 

been considered (i.e., tearing two capacitors per cable would no longer suffice). 
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An AC-Radial SPS model was used in this work.  Although other, new, and 

emerging SPS architectures exists (e.g., the future all-electric ship), the partitioning 

approach has been tailored to an AC-Radial SPS.  Complex SPS models employing both 

AC- and DC-side have not been tested while writing the work. 

A shared memory machine was used to implement this work.  Though the idea of a 

PC-cluster is plausible, said implementation is likely to result in less speed gain due to 

the communication delay of a physical network.  Shared-memory machines are flexible 

in terms of permissible subsystem imbalance because incurred dead-time is recuperated 

by the speed at which the subsystems access shared memory.  On a PC-cluster, if the 

computational nodes were imbalanced as a result of subsystem imbalance (as in this 

work), the combined dead-time and communication delay would influence the maximum 

speed gain. 

In this work the capacitance between cable conductors was considered to be linear.  

While there was no motivation nor was the scope of this research to assume otherwise, 

tearing non-linear capacitances has not been considered.  If component models with non-

linear capacitors existed and a boundary created at said capacitors, the results might not 

be accurate with the presented approach. Finally, although non-linear processes are 

typically handled iteratively,  the particular partitioning approach employed in this work 

did not take into account iterative techniques of any sort.  
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5.2 FUTURE WORK 

Additional case studies and performance metrics may be created to further test and 

validate the solution methodology presented and examined in detail in this work.  The 

case study provided in Chapter IV modeled nine sequential homogeneous three-phase 

faults. Another research work to look into is that  is likely and expected that under 

different assumptions and applying the faults sequentially in lesser time-intervals 

different estimates may be obtained.   Within the behavior and restrictions of the work 

presented, the interval between each fault was 6 cycles, which allowed the extinction of 

many transients  before the next fault was applied.   

Rigorisity and coverage of most possible scenarios--if not all—in setting up a case 

study is central to determining whether the partitioning approach is valid. Consequently, 

the degree of complexity the researcher engages in will determine the type of results he 

or she will obtain from a work similar to the one provided. Asides from sequential faults,  

one recommendation to further this work is to consider modification inter alia of 

faulting boundaries, simultaneous faults, combinations of single- and three-phase faults, 

and non-linear faults instead of linear ones. 

Another recommendation has to do with gaining full knowledge of the emerged 

errors and average errors treated and analyzed in the work.  It  is desirable that the error 

behavior be completely understood.  It was shown that the error accounted for followed 

or depended upon both the number of partitions p and the number of boundaries. But no 

exact relationship was found.  If future investigation could predict the error  in advance, 

corrective measures could be taken to damp (or even prevent) said error. 
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Optimizations at the programming level that can improve the speed gain are: 

• Using "-core machines 

• Reducing thread overhead times 

• Exploit subsystem latency 

• Automatic thread-to-core assignment 

• Assessment of when it is justifiable to partition 

• Sequential vs. simultaneous subsystem solution 

• Choice of granularity 

• Fill-in reduction 

• Sparse matrix storage techniques 

• Use existing hyper-graph partitioning software 

Latency exploitation (i.e., multi-rate simulation) takes advantage of the fact that all 

subsystems may not require the same ∆t to simulate.  Subsystems with slow time 

constants can be simulated at larger integer multiples of a base ∆t and allow subsystems 

with faster time constants to better utilize available computational resources.  Work in 

power system simulation using multi-rate simulation techniques have been presented in 

[33],[60],[111]. 

Manual thread-assignment is unsafe.  Hardware resources on computers are 

constantly changing and, thus, optimal resource availability cannot be determined 

analytically.  In this regard, assigning one thread per core is not the worse strategy, but it 

is simplistic in its analysis [104].  Simulation runs have shown that in some cases 

Windows® is able to better allocate the threads to the cores based on the internal 

hardware information that it has; in some other cases, manual (unsafe programming) 

assignments may be better.   
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Standard sparse linear solvers permute coefficient matrices (say A) with a 

permutation matrix P.  The permutation matrix is used to permute the rows and columns 

of A to minimize fill-ins during factorization.  In this work, triangular factorization was 

performed without a permutation matrix which is inefficient.  A typical (and 

recommended) approach is the minimum degree ordering (Tinney-II) proposed in [55]. 

Although the linear subsystems A∙x=b in this work are sparse, a sparse storage 

technique was not used.  Speed gain can improve by only storing the non-zero structure 

of the network matrix.  A good storage scheme is the compressed column storage [112], 

but others are possible.  The flop count for component models were based on full-matrix 

computations.  If a sparse storage scheme is used, the vertex weights and cost function 

that endeavors the best p should be revisited. 

An alternative to using the mincut algorithm and create an iterative refinement 

approach customized to tear capacitor loops, would have been to use hMETIS [113].  

The algorithms in hMETIS are targeted towards hyper-graphs arising from large-scale 

circuit integration (a.k.a., VLSI), are fast, and robust.  hMETIS would have taken the 

representative graph of the SPS and used multilevel hyper-graph bisection to reduce the 

size of the edge cut.  Further, the refinement process would have been more accurate as 

algorithms based on Kernighan and Lin’s do not handle hyper-edges properly. In this 

work, graph hyper-edges were created due to the loop current couplings at buses. 
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5.3 CHAPTER SUMMARY 

This chapter presented the conclusions of this work, and was organized as 

advantages and disadvantages of the solution methodology.  The subsection on 

organization summarized each chapter in the order presented.  The section on future 

work suggested that case studies with added complexity and additional performance 

metrics should be considered.   

The multithreaded program developed in C# implemented the partitioning 

approach correctly, but not necessarily efficiently. An efficient implementation of 

partitioning theory [4-5],[53],[98] requires raising the importance of this pragmatic step. 

Lastly, several research topics were described and discussed and other likely research 

interests were itemized  as future work.  All in all, these topics  concern, and are 

expected to increase speed gain without affecting accuracy. Several items were listed as 

future work and are expected to increase speed gain without affecting accuracy. 
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APPE�DIX A 

 

DISCRETIZED COMPO�E�T MODELS 

A. Discretized Component Models 

 

The discretized component models presented next are the discretized versions of 

the models introduced in Section 2.4.2, but use different notation.  The voltages and 

currents for all component models are from the solution to 
1 1 1k k k

loopi loopi loopi

+ + +=R i e , where i 

represents the subsystem  containing the component model. 

Synchronous Generator Windings 

Discretization of the generator’s stator and rotor winding is based on [114-116]. 

 

Fig. 5.3.1. Discretized generator stator and rotor windings 
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Generator winding nomenclature: 
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Synchronous Generator Voltage Regulator and Exciter 
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Induction Motor 

 

Fig. 5.3.2. Induction motor and drive 

Induction Motor Rectifier 

The instants of diode commutation are found by polling all diodes to determine 

whether commutation has occurred.  If any diode requests a commutation according to 

(A.5), the simulation time is interpolated to the earliest diode commutation time and the 

EN and CNs solved again.  Details of the interpolation technique can be found in 

[52],[117]. 
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 (A.5) 

The diode model are characteristics are shown in Fig. 5.3.3 and Fig. 5.3.4, 

respectively.  Since the diode resistance is time-variant and the diode on-voltage varies 

between 0Vand 1V, diodes are modeled with the two equations as represent in Fig. 5.3.4. 
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Fig. 5.3.3. Continuous and discretized diode model 
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Fig. 5.3.4. Discretized diode voltage and current characteristic 

 

Fig. 5.3.5. Discretized induction motor rectifier model 
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Induction motor rectifier nomenclature: 

{ }

{ }

{ } ( )

( )

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1 1

0 1 2 3 4

1

1 th

, , terminal voltages on AC side

, , line currents on AC side

, , , , mesh currents A

DC side current A

the  diode's resistance 

k k k

ab bc ca

k k k

a b c

k k k k k

k

dc

k

Di

v v v

i i i

i i i i i

i

R i

+ + +

+ + +

+ + + + +

+

+

=

=

=

=

= ( )

( )

( )

1

Ω

DC side output voltage V

series on-voltage V

k

dc

on

v

V

+ =

=
 

Induction Motor Windings 

The motor windings are modeled as approximate per-phase equivalent circuits 

referred to the rotor side [78], where due to slip s the winding equations are time-

varying. 
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Fig. 5.3.6. Discretized induction motor windings model 

 
1 1 1k k k

MOT MOT MOT

+ + +=R i e  (A.7) 

 

( )
( )

( )

( )

1

3,3

4,4

5,5

LMab LMab LMab

LMbc LMbc LMbc

LMab LMbc LMab LMbc LMca LMab LMbc LMca
k

MOT
LMab LMab

LMbc LMbc

LMca

R R R

R R R

R R R R R R R R

R R R

R R R

R R

+

⋅ − ⋅ ⋅ 
 ⋅ ⋅ − ⋅ 
 + + − − −
 = − ⋅ − ⋅ ⋅ 
 ⋅ − − ⋅ ⋅ 
 ⋅ ⋅ − ⋅ ⋅ 

R

 
  

1

1

ki +

+

−

+ −

1

2

k

ai
+

1

2

k

bi
+

1

2

k

ci
+

1

2

k

abv +

+

−

1

2

k

bcv +

+

−

sab rab

Lsab Lrab

R R

R R

+ + 
 +  1hist k

Lsrab

+

LMabR

1histk

LMab

+

1
rab

s
R

s

− 
 
 

+

−

+ −

1histk

Lsrbc

+

LMbcR

+−

1histk

Lsrca

+

LMcaR

1k

cav +

−

+

1histk

LMbc

+

1histk

LMca

+

1

3

ki +1

0

ki +

1

2

ki +

1

5

ki +

1

4

ki + 1
rbc

s
R

s

− 
 
 

1
rca

s
R

s

− 
 
 

sbc rbc

Lsbc Lrbc

R R

R R

+ + 
 + 

sca rca

Lsca Lrca

R R

R R

+ + 
 + 

1k

LMabi + 1k

srabi +

1k

LMcai + 1k

srbci +
1k

LMcai +

1k

srcai +



 240 

 

 

 

( ) ( )

( ) ( )

( ) ( )

3,3 1

4,4 1

5,5 1

sab rab LMab

s
Lsab Lrab rab s

sbc rbc LMbc

s
Lsbc Lrbc rbc s

sca rca LMca

s
Lsca Lrca rca s

R R R
R

R R R

R R R
R

R R R

R R R
R

R R R

−

−

−

+ + 
=   + + 

+ + 
=   + + 

+ + 
=   + +   

 

1 1

0

1 1

1

1 1 1 1

1 12

1 1 1

3

1 1 1

4

1 1 1

5

hist

hist

hist hist hist
;

hist hist

hist hist

hist hist

k k

LMab

k k

LMbc

k k k k

k k LMab LMbc LMca

MOT MOTk k k

LMab Lsrab

k k k

LMbc Lsrbc

k k k

LMca Lsrca

i

i

i

i

i

i

+ +

+ +

+ + + +
+ +

+ + +

+ + +

+ + +

   −
 

− 
  − − −

= = 
− 

  −
 

−  

i e


 
 
 
 
 
 
 
    

 

1 1 1 1

0 2 3

1 1 1 1

1 2 4

1 1 1

2 5

Magnetizing currents

k k k k

LMab

k k k k

LMbc

k k k

LMca

i i i i

i i i i

i i i

+ + + +

+ + + +

+ + +

   + −
   

→ = + −   
   −   

 

 

1 1

3

1 1

4

1 1

5

Winding currents

k k

srab

k k

srbc

k k

srca

i i

i i

i i

+ +

+ +

+ +

   
   

→ =   
        

 

1 1 1

2

1 1 1

2

1 1 1

2 2 2

hist

Node voltages hist

k k k

ab LMab LMab LMab

k k k

bc LMbc LMbc LMbc

k k k

ca ab bc

v i R

v i R

v v v

+ + +

+ + +

+ + +

   +
   

→ = +   
   − −   

 

 

1 1

2 0

1 1 1

2 1 0

1 1

2 1

Branch currents

k k

a

k k k

b

k k

c

i i

i i i

i i

+ +

+ + +

+ +

   
   

→ = −   
   −     

 



 241 

 

 

Induction motor nomenclature: 
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Induction Motor Inverter 

The inverter transistors are modeled as controlled (i.e., 1m , or 1MΩ Ω ) resistances 

and without a snubber circuit.  
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Fig. 5.3.7. Discretized induction motor inverter model 
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Single-Phase Cable 

 

Fig. 5.3.8. Discretized single-phase cable model 
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Three-Phase Cable 

 

Fig. 5.3.9. Discretized three-phase cable model 
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Single-Phase Static Load 

  

Fig. 5.3.10. Discretized single-phase static load model 
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Given the power rating of a single-phase load, the phase resistance and inductance 

are computed with (A.12). 
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Three-Phase Static Load 

 

Fig. 5.3.11. Discretized three-phase static load model 
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Given the per-phase power rating of a three-phase load, the per-phase resistance 

and inductance is also computed with (A.12). 
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Three-Phase Transformer 

 

Fig. 5.3.12. Discretized three-phase transformer model (∆-∆) 
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Over-Current and Under-Voltage Relays 

 

Fig. 5.3.13. Over-current relay 
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Since over-current and under-voltage relays do not have shunt branches between 
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Bus Transfer 

The bus transfer model (automatic and manual) is shown on the next page. 
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Fig. 5.3.14. Bus transfer model 
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The center-point (non-physical) shunt resistances of 1MΩ  each were added for the 

following reasons: to compute XBT terminal voltages easily, to avoid >1 output loop 

current per phase on the load side, and to be able to model XBTs with the load side 

open-circuited (i.e., removing the last two rows and columns of 1k

XBT

+
R  makes 

1 1

5 6 0k ki i+ += = ). The peak leakage currents through xabR  and xbcR  are 

6 6450 2 /10 636 10 A−= × , which are negligible. 

 1 1 1k k k

XBT XBT XBT

+ + +=R i e  (A.16) 
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APPE�DIX B 

 

THREAD SY�CHRO�IZATIO� 

B. Thread Synchronization 

 

The thread synchronization constructs in this work are based two-way signaling, 

which use auto-reset and wait-handle arrays (AutoResetEvent[] in C#).  When solving 

p subsystems, p threads were invoked from the Windows thread pool.  The first thread 

(thread 1) is designated the master thread.  Thread 1 has two roles: as a master, and as a 

slave.  When acting as a master thread, thread 1 is signals slave threads 2-p that they 

may continue working after being in the wait state.  As a slave thread, thread 1 is 

responsible of solving subsystem 1.  A high-level illustration of the thread 

synchronization scheme is shown in Fig. 5.3.15.   

Two AutoResetEvent[] arrays are used: a signal array and a wait array.  The 

signal array is used by the slave threads to signal the master thread of their readiness or 

work completion.  The wait array is used so that the master thread can tell slaves 2-p to 

continue working (i.e., leave their wait states).  The signal array works as follows.  The 

master thread waits on this signal array by calling the WaitHandle.WaitAll() method.  

When all slave threads fully signal the signal array, the master thread can do work alone 

while slaves 2-p wait (i.e., serial work, or steps 2 and 7 in Fig. 3.4.3).    

The wait array is used so that slave threads can wait for the master to finish the 

serial work.  When the master finishes the serial work, the master calls the Set() 

method on the wait array and threads 2-p are released and can continue their work.  The 
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atomic operation in C# for said signaling and waiting is the 

WaitHandle.SignalAndWait() method. 

 

Fig. 5.3.15. Thread synchronization arrays and logic 

The threads were assigned to each core using the following code snippet, where 

processorNumber is the integer that selects the core number. 

foreach (ProcessThread thread in Process.GetCurrentProcess().Threads 

if (thread.Id == GetCurrentThreadId()) 

  thread.ProcessorAffinity = (IntPtr)processorNumber; 

 

The thread priority was left at its default value of "ormal.  As the SPS simulations 

took place, other Windows background processes ran as well.  The PCs booted normally 

into Window normally when running the simulations. 
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APPE�DIX C 

 

COMPO�E�T DISTRIBUTIO� 

C. Component Distribution 

 

<Partitions><Partition1of1 
MTCs="ABT1,ABT2,ABT3,ABT4,ABT5,ABT6,ABT7,ABT8,ABT9,ABT10,ABT11,ABT12,AB
T13,ABT14,ABT15,BRK1,BRK1_1,BRK1_2,BRK1_3,BRK1_4,BRK1_5,BRK1_6,BRK1_7,B
RK1_8,BRK1_9,BRK1_10,BRK1_11,BRK1_12,BRK1_13,BRK1_14,BRK1_15,BRK1_16,BR
K2,BRK2_1,BRK2_2,BRK2_3,BRK2_4,BRK2_5,BRK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_
10,BRK2_11,BRK2_12,BRK2_13,BRK2_14,BRK2_15,BRK2_16,BRK2_17,BRK2_18,BRK2
_19,BRK3,BRK3_1,BRK3_2,BRK3_3,BRK3_4,BRK3_5,BRK3_6,BRK3_7,BRK3_8,BRK3_9
,BRK3_10,BRK3_11,BRK3_12,BRK3_13,BRK3_14,BRK3_15,BRK3_16,BRK11_1,BRK11_
2,BRK11_3,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK12_1,BRK12_2,BRK12_4,BRK12
_5,BRK13_3,BRK21_1,BRK21_2,BRK21_3,BRK21_4,BRK21_5,BRK22_1,BRK22_2,BRK2
2_3,BRK22_4,BRK22_5,BRK22_6,BRK22_7,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK
31_5,Cbl1,Cbl2,Cbl3,Cbl4,Cbl5,Cbl6,Cbl7,Cbl8,Cbl9,Cbl10,Cbl11,Cbl12,Cbl
13,Cbl14,Cbl15,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl21,Cbl22,Cbl23,Cbl24,Cb
l25,Cbl26,Cbl27,Cbl28,Cbl29,Cbl30,Cbl31,Cbl32,Cbl33,CBL1,CBL2,CBL3,CBL4
,CBL5,CBL6,CBL7,CBL8,CBL9,CBL10,CBL11,CBL12,CBL13,CBL14,CBL15,CBL16,CBL
17,CBL18,CBL19,CBL20,CBL21,CBL22,CBL23,CBL24,CBL25,CBL26,CBL27,CBL28,CB
L29,CBL30,CBL31,CBL32,CBL33,CBL34,CBL35,CBL36,CBL37,CBL38,CBL39,CBL40,C
BL41,CBL44,CBL45,CBL46,CBL47,CBL48,CBL49,CBL50,CBL51,CBL52,CBL53,CBL54,
CBL55,CBL56,CBL57,CBL58,CBL59,CBL60,CBL61,CBL62,CBL63,CBL64,CBL65,CBL66
,CBL67,CBL68,CBL69,CBL70,CBL71,CBL72,CBL73,CBL74,CBL75,CBL76,CBL77,CBL7
8,CBL79,CBL80,CBL81,CBL82,CBL83,CBL84,CBL85,CBL86,CBL87,CBL88,CBL89,CBL
90,CBL91,CBL92,CBL93,CBL94,CBL95,CBL96,CBL97,CBL98,CBL99,CBL100,CBL101,
CBL102,CBL103,CBL104,CBL105,CBL106,CBL107,CBL108,CBL109,CBL110,FLT1,FLT
2,FLT3,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,GEN1,GEN2,GEN3,Lod1,Lod2,Lod3,Lod4
,Lod5,Lod6,Lod7,Lod8,Lod9,Lod10,Lod11,Lod12,Lod13,Lod14,Lod15,Lod16,Lod
17,Lod18,Lod19,Lod20,Lod21,Lod22,Lod23,Lod24,Lod25,Lod26,Lod27,Lod28,Lo
d29,Lod30,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,LOD4,LOD5,LOD6,LOD7,LOD8,LOD
9,LOD10,LOD11,LOD12,LOD13,LVP1,LVP2,LVP3,LVP4,LVP5,LVP6,LVP7,LVP8,LVP9,
LVP10,LVP11,LVP12,LVP13,LVP14,LVP15,LVP16,LVP17,LVR1,LVR2,MBT1,MBT2,MBT
3,MBT4,MBT5,MBT6,MBT7,MBT8,MBT9,MBT10,MBT11,MBT12,MBT13,MOT_AcCpr2,MOT_
AcCpr4,MOT_ACcpr1,MOT_ACcpr3,MOT_Anchor,MOT_Fpmp1,MOT_Fpmp2,MOT_Fpmp3,M
OT_Fpmp4,MOT_Fpmp5,MOT_Fpmp6,MOT_Hpcpr2,MOT_HPcpr1,MOT_Steer1,MOT_Steer
2,MOT_WPmp1,MOT_WPmp2,MOT_WPmp3,MOT_WPmp4,XFM1,XFM2,XFM3,XFM4,XFM5,XFM6
,XFM7,XFM8,XFM9,XFM10,XFM11" /> 

 

<Partition1of2 
MTCs="ABT2,ABT3,ABT4,ABT5,ABT6,ABT7,ABT8,ABT9,ABT10,ABT12,BRK1,BRK1_1,B
RK1_2,BRK1_3,BRK1_4,BRK1_5,BRK1_6,BRK1_7,BRK1_8,BRK1_9,BRK1_10,BRK1_11,
BRK1_12,BRK1_13,BRK1_14,BRK1_15,BRK1_16,BRK2,BRK2_1,BRK2_2,BRK2_3,BRK2_
4,BRK2_5,BRK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_10,BRK2_11,BRK2_12,BRK2_14,BR
K2_15,BRK2_16,BRK2_17,BRK2_18,BRK3_4,BRK3_5,BRK3_6,BRK3_16,BRK11_3,BRK1
2_1,BRK12_2,BRK12_4,BRK12_5,BRK13_3,Cbl7,Cbl8,Cbl9,Cbl10,Cbl11,Cbl12,Cb
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l13,Cbl14,Cbl15,Cbl22,Cbl23,Cbl24,CBL1,CBL2,CBL4,CBL6,CBL22,CBL29,CBL30
,CBL31,CBL32,CBL33,CBL34,CBL35,CBL36,CBL37,CBL38,CBL39,CBL40,CBL41,CBL4
4,CBL45,CBL46,CBL47,CBL48,CBL49,CBL50,CBL51,CBL52,CBL53,CBL54,CBL56,CBL
57,CBL58,CBL59,CBL60,CBL62,CBL63,CBL64,CBL65,CBL67,CBL74,CBL75,CBL76,CB
L77,CBL78,CBL79,CBL80,CBL81,CBL82,CBL83,CBL84,CBL85,CBL86,CBL88,CBL89,C
BL101,CBL102,CBL103,CBL107,FLT3,GEN1,GEN2,Lod7,Lod8,Lod9,Lod10,Lod11,Lo
d12,Lod13,Lod14,Lod15,Lod22,Lod23,Lod24,LOD4,LOD5,LOD6,LOD7,LOD8,LOD9,L
OD10,LOD13,LVP4,LVP5,LVP6,LVP7,LVP8,LVP9,LVP10,LVP11,LVP12,LVR1,MBT1,MB
T5,MBT6,MBT7,MBT8,MBT9,MBT10,MOT_AcCpr2,MOT_ACcpr1,MOT_Fpmp2,MOT_Fpmp3,
MOT_Fpmp4,MOT_Fpmp5,MOT_HPcpr1,MOT_Steer2,MOT_WPmp1,MOT_WPmp2,XFM3,XFM4
,XFM5,XFM8" /> 

<Partition2of2 
MTCs="ABT1,ABT11,ABT13,ABT14,ABT15,BRK2_13,BRK2_19,BRK3,BRK3_1,BRK3_2,B
RK3_3,BRK3_7,BRK3_8,BRK3_9,BRK3_10,BRK3_11,BRK3_12,BRK3_13,BRK3_14,BRK3
_15,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK21_1,BRK21_2,BRK
21_3,BRK21_4,BRK21_5,BRK22_1,BRK22_2,BRK22_3,BRK22_4,BRK22_5,BRK22_6,BR
K22_7,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_5,Cbl1,Cbl2,Cbl3,Cbl4,Cbl5,
Cbl6,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl21,Cbl25,Cbl26,Cbl27,Cbl28,Cbl29,
Cbl30,Cbl31,Cbl32,Cbl33,CBL3,CBL5,CBL7,CBL8,CBL9,CBL10,CBL11,CBL12,CBL1
3,CBL14,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL23,CBL24,CBL25,CBL
26,CBL27,CBL28,CBL55,CBL61,CBL66,CBL68,CBL69,CBL70,CBL71,CBL72,CBL73,CB
L87,CBL90,CBL91,CBL92,CBL93,CBL94,CBL95,CBL96,CBL97,CBL98,CBL99,CBL100,
CBL104,CBL105,CBL106,CBL108,CBL109,CBL110,FLT1,FLT2,FLT4,FLT5,FLT6,FLT7
,FLT8,FLT9,GEN3,Lod1,Lod2,Lod3,Lod4,Lod5,Lod6,Lod16,Lod17,Lod18,Lod19,L
od20,Lod21,Lod25,Lod26,Lod27,Lod28,Lod29,Lod30,Lod31,Lod32,Lod33,LOD1,L
OD2,LOD3,LOD11,LOD12,LVP1,LVP2,LVP3,LVP13,LVP14,LVP15,LVP16,LVP17,LVR2,
MBT2,MBT3,MBT4,MBT11,MBT12,MBT13,MOT_AcCpr4,MOT_ACcpr3,MOT_Anchor,MOT_F
pmp1,MOT_Fpmp6,MOT_Hpcpr2,MOT_Steer1,MOT_WPmp3,MOT_WPmp4,XFM1,XFM2,XFM6
,XFM7,XFM9,XFM10,XFM11" /> 

 

<Partition1of3 
MTCs="ABT11,ABT12,ABT14,BRK1_11,BRK2_7,BRK3_12,BRK3_13,BRK11_1,BRK11_2,
BRK11_3,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK12_1,BRK12_2,BRK13_3,BRK21_1
,BRK21_2,BRK21_3,BRK21_4,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_
5,Cbl4,Cbl5,Cbl6,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl21,Cbl22,Cbl23,Cbl24,
Cbl31,Cbl32,Cbl33,CBL13,CBL14,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21
,CBL22,CBL55,CBL64,CBL66,CBL67,CBL68,CBL69,CBL70,CBL71,CBL72,CBL73,CBL7
6,CBL77,CBL78,CBL81,CBL87,CBL90,CBL91,CBL92,CBL93,CBL104,CBL105,CBL106,
CBL107,FLT1,FLT2,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,Lod4,Lod5,Lod6,Lod16,Lod
17,Lod18,Lod19,Lod20,Lod21,Lod22,Lod23,Lod24,Lod31,Lod32,Lod33,LOD1,LOD
2,LOD3,LOD4,LOD11,LOD12,LOD13,LVP13,LVP17,MBT1,MBT3,MBT4,MBT5,MBT11,MOT
_Anchor,MOT_Fpmp1,XFM2,XFM6,XFM7,XFM8,XFM11" /> 

<Partition2of3 
MTCs="ABT4,ABT5,ABT6,ABT7,ABT8,ABT9,ABT10,BRK1,BRK1_1,BRK1_2,BRK1_4,BRK
1_5,BRK1_6,BRK1_7,BRK1_8,BRK1_9,BRK1_10,BRK1_12,BRK1_13,BRK1_14,BRK1_15
,BRK1_16,BRK2,BRK2_1,BRK2_2,BRK2_3,BRK2_4,BRK2_5,BRK2_6,BRK2_9,BRK2_10,
BRK2_11,BRK2_12,BRK2_14,BRK2_15,BRK2_16,BRK2_17,BRK12_5,Cbl10,Cbl11,Cbl
12,Cbl13,Cbl14,Cbl15,CBL1,CBL2,CBL6,CBL35,CBL37,CBL38,CBL39,CBL40,CBL41
,CBL44,CBL45,CBL46,CBL47,CBL48,CBL49,CBL50,CBL51,CBL52,CBL53,CBL56,CBL5
7,CBL58,CBL59,CBL60,CBL62,CBL63,CBL74,CBL75,CBL80,CBL82,CBL83,CBL84,CBL
85,CBL86,CBL88,CBL89,CBL101,CBL102,CBL103,FLT3,GEN1,GEN2,Lod10,Lod11,Lo
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d12,Lod13,Lod14,Lod15,LOD7,LOD8,LOD9,LOD10,LVP4,LVP5,LVP6,LVP7,LVP8,LVP
9,LVP10,LVP11,LVP12,MBT7,MBT8,MBT9,MBT10,MOT_AcCpr2,MOT_ACcpr1,MOT_Fpmp
2,MOT_Fpmp3,MOT_Fpmp4,MOT_Fpmp5,MOT_HPcpr1,MOT_WPmp1,MOT_WPmp2,XFM4,XFM
5" /> 

<Partition3of3 
MTCs="ABT1,ABT2,ABT3,ABT13,ABT15,BRK1_3,BRK2_8,BRK2_13,BRK2_18,BRK2_19,
BRK3,BRK3_1,BRK3_2,BRK3_3,BRK3_4,BRK3_5,BRK3_6,BRK3_7,BRK3_8,BRK3_9,BRK
3_10,BRK3_11,BRK3_14,BRK3_15,BRK3_16,BRK12_4,BRK22_1,BRK22_2,BRK22_3,BR
K22_4,BRK22_5,BRK22_6,BRK22_7,Cbl1,Cbl2,Cbl3,Cbl7,Cbl8,Cbl9,Cbl25,Cbl26
,Cbl27,Cbl28,Cbl29,Cbl30,CBL3,CBL4,CBL5,CBL7,CBL8,CBL9,CBL10,CBL11,CBL1
2,CBL23,CBL24,CBL25,CBL26,CBL27,CBL28,CBL29,CBL30,CBL31,CBL32,CBL33,CBL
34,CBL36,CBL54,CBL61,CBL65,CBL79,CBL94,CBL95,CBL96,CBL97,CBL98,CBL99,CB
L100,CBL108,CBL109,CBL110,GEN3,Lod1,Lod2,Lod3,Lod7,Lod8,Lod9,Lod25,Lod2
6,Lod27,Lod28,Lod29,Lod30,LOD5,LOD6,LVP1,LVP2,LVP3,LVP14,LVP15,LVP16,LV
R1,LVR2,MBT2,MBT6,MBT12,MBT13,MOT_AcCpr4,MOT_ACcpr3,MOT_Fpmp6,MOT_Hpcpr
2,MOT_Steer1,MOT_Steer2,MOT_WPmp3,MOT_WPmp4,XFM1,XFM3,XFM9,XFM10" /> 

 

<Partition1of4 
MTCs="ABT3,ABT4,ABT5,ABT10,ABT12,BRK1_5,BRK1_6,BRK1_11,BRK1_12,BRK2_5,B
RK2_11,BRK2_14,BRK2_15,BRK2_16,BRK2_18,BRK3_5,BRK3_6,BRK11_3,BRK12_1,BR
K12_2,BRK12_4,BRK12_5,BRK13_3,Cbl7,Cbl8,Cbl9,Cbl13,Cbl14,Cbl15,Cbl22,Cb
l23,Cbl24,CBL22,CBL31,CBL32,CBL33,CBL34,CBL39,CBL41,CBL44,CBL45,CBL47,C
BL51,CBL54,CBL57,CBL62,CBL63,CBL64,CBL65,CBL67,CBL76,CBL77,CBL78,CBL79,
CBL80,CBL81,CBL82,CBL102,CBL103,CBL107,Lod7,Lod8,Lod9,Lod13,Lod14,Lod15
,Lod22,Lod23,Lod24,LOD4,LOD5,LOD6,LOD10,LOD13,LVP6,LVP7,LVP8,LVP10,MBT1
,MBT5,MBT6,MBT9,MOT_Fpmp2,MOT_Fpmp3,MOT_WPmp1,MOT_WPmp2,XFM3,XFM5,XFM8" 
/> 

<Partition2of4 
MTCs="ABT2,ABT6,ABT7,ABT8,ABT9,BRK1,BRK1_1,BRK1_2,BRK1_3,BRK1_4,BRK1_7,
BRK1_8,BRK1_9,BRK1_10,BRK1_13,BRK1_14,BRK1_15,BRK1_16,BRK2,BRK2_1,BRK2_
2,BRK2_3,BRK2_4,BRK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_10,BRK2_12,BRK2_17,BRK
3_4,BRK3_16,Cbl10,Cbl11,Cbl12,CBL1,CBL2,CBL4,CBL6,CBL29,CBL30,CBL35,CBL
36,CBL37,CBL38,CBL40,CBL46,CBL48,CBL49,CBL50,CBL52,CBL53,CBL56,CBL58,CB
L59,CBL60,CBL74,CBL75,CBL83,CBL84,CBL85,CBL86,CBL88,CBL89,CBL101,FLT3,G
EN1,GEN2,Lod10,Lod11,Lod12,LOD7,LOD8,LOD9,LVP4,LVP5,LVP9,LVP11,LVP12,LV
R1,MBT7,MBT8,MBT10,MOT_AcCpr2,MOT_ACcpr1,MOT_Fpmp4,MOT_Fpmp5,MOT_HPcpr1
,MOT_Steer2,XFM4" /> 

<Partition3of4 
MTCs="ABT1,ABT13,ABT15,BRK2_13,BRK2_19,BRK3,BRK3_1,BRK3_2,BRK3_3,BRK3_7
,BRK3_8,BRK3_9,BRK3_10,BRK3_11,BRK3_12,BRK3_13,BRK3_14,BRK3_15,BRK22_1,
BRK22_2,BRK22_3,BRK22_4,BRK22_5,BRK22_6,BRK22_7,Cbl1,Cbl2,Cbl3,Cbl25,Cb
l26,Cbl27,Cbl28,Cbl29,Cbl30,CBL3,CBL5,CBL7,CBL8,CBL9,CBL10,CBL11,CBL12,
CBL13,CBL23,CBL24,CBL25,CBL26,CBL27,CBL28,CBL61,CBL94,CBL95,CBL96,CBL97
,CBL98,CBL99,CBL100,CBL108,CBL109,CBL110,GEN3,Lod1,Lod2,Lod3,Lod25,Lod2
6,Lod27,Lod28,Lod29,Lod30,LVP1,LVP2,LVP3,LVP14,LVP15,LVP16,LVR2,MBT2,MB
T12,MBT13,MOT_AcCpr4,MOT_ACcpr3,MOT_Fpmp6,MOT_Hpcpr2,MOT_Steer1,MOT_WPm
p3,MOT_WPmp4,XFM1,XFM9,XFM10" /> 

<Partition4of4 
MTCs="ABT11,ABT14,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK21
_1,BRK21_2,BRK21_3,BRK21_4,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK3
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1_5,Cbl4,Cbl5,Cbl6,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl21,Cbl31,Cbl32,Cbl3
3,CBL14,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL55,CBL66,CBL68,CBL
69,CBL70,CBL71,CBL72,CBL73,CBL87,CBL90,CBL91,CBL92,CBL93,CBL104,CBL105,
CBL106,FLT1,FLT2,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,Lod4,Lod5,Lod6,Lod16,Lod
17,Lod18,Lod19,Lod20,Lod21,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,LOD11,LOD12
,LVP13,LVP17,MBT3,MBT4,MBT11,MOT_Anchor,MOT_Fpmp1,XFM2,XFM6,XFM7,XFM11" 
/> 

 

<Partition1of5 
MTCs="ABT12,ABT14,BRK1_11,BRK2_11,BRK3_11,BRK3_12,BRK3_15,BRK11_3,BRK12
_1,BRK12_2,BRK12_4,BRK12_5,BRK13_3,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK3
1_4,BRK31_5,Cbl7,Cbl8,Cbl9,Cbl22,Cbl23,Cbl24,Cbl31,Cbl32,Cbl33,CBL11,CB
L15,CBL16,CBL17,CBL19,CBL20,CBL22,CBL23,CBL51,CBL64,CBL67,CBL76,CBL77,C
BL78,CBL79,CBL80,CBL81,CBL87,CBL102,CBL106,CBL107,Lod7,Lod8,Lod9,Lod22,
Lod23,Lod24,Lod31,Lod32,Lod33,LOD1,LOD2,LOD4,LOD10,LOD13,LVP3,MBT1,MBT5
,MBT9,MOT_Hpcpr2,XFM3,XFM8,XFM11" /> 

<Partition2of5 
MTCs="ABT11,BRK1_9,BRK2_7,BRK3_13,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11
_6,BRK11_7,BRK21_1,BRK21_2,BRK21_3,BRK21_4,Cbl4,Cbl5,Cbl6,Cbl16,Cbl17,C
bl18,Cbl19,Cbl20,Cbl21,CBL13,CBL14,CBL18,CBL21,CBL55,CBL66,CBL68,CBL69,
CBL70,CBL71,CBL72,CBL73,CBL90,CBL91,CBL92,CBL93,CBL104,CBL105,FLT1,FLT2
,FLT3,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,Lod4,Lod5,Lod6,Lod16,Lod17,Lod18,Lo
d19,Lod20,Lod21,LOD3,LOD11,LOD12,LVP13,LVP17,MBT3,MBT4,MBT11,MOT_Anchor
,MOT_Fpmp1,XFM2,XFM6,XFM7" /> 

<Partition3of5 
MTCs="ABT1,ABT13,ABT15,BRK3_2,BRK3_3,BRK3_7,BRK3_9,BRK3_10,BRK3_14,BRK2
2_1,BRK22_2,BRK22_3,BRK22_4,BRK22_5,BRK22_6,BRK22_7,Cbl1,Cbl2,Cbl3,Cbl2
5,Cbl26,Cbl27,Cbl28,Cbl29,Cbl30,CBL7,CBL8,CBL9,CBL10,CBL12,CBL24,CBL25,
CBL26,CBL28,CBL61,CBL94,CBL95,CBL96,CBL97,CBL98,CBL99,CBL100,CBL108,CBL
109,CBL110,Lod1,Lod2,Lod3,Lod25,Lod26,Lod27,Lod28,Lod29,Lod30,LVP1,LVP2
,LVP14,LVP15,LVP16,LVR2,MBT2,MBT12,MBT13,MOT_AcCpr4,MOT_ACcpr3,MOT_Fpmp
6,MOT_Steer1,MOT_WPmp3,MOT_WPmp4,XFM1,XFM9,XFM10" /> 

<Partition4of5 
MTCs="ABT4,ABT5,ABT6,ABT7,ABT8,ABT9,BRK1,BRK1_1,BRK1_2,BRK1_4,BRK1_5,BR
K1_6,BRK1_7,BRK1_8,BRK1_10,BRK1_13,BRK1_15,BRK1_16,BRK2_1,BRK2_2,BRK2_4
,BRK2_10,BRK2_12,BRK2_15,BRK2_16,BRK3_16,CBL1,CBL4,CBL6,CBL35,CBL37,CBL
38,CBL39,CBL40,CBL41,CBL44,CBL45,CBL47,CBL48,CBL49,CBL50,CBL52,CBL58,CB
L60,CBL63,CBL74,CBL75,CBL83,CBL85,CBL86,CBL89,CBL101,GEN1,LOD7,LOD8,LOD
9,LVP4,LVP5,LVP6,LVP7,LVP8,LVP9,LVP12,MBT7,MBT8,MOT_AcCpr2,MOT_ACcpr1,M
OT_Fpmp3,MOT_Fpmp5,MOT_HPcpr1,MOT_WPmp1,MOT_WPmp2" /> 

<Partition5of5 
MTCs="ABT2,ABT3,ABT10,BRK1_3,BRK1_12,BRK1_14,BRK2,BRK2_3,BRK2_5,BRK2_6,
BRK2_8,BRK2_9,BRK2_13,BRK2_14,BRK2_17,BRK2_18,BRK2_19,BRK3,BRK3_1,BRK3_
4,BRK3_5,BRK3_6,BRK3_8,Cbl10,Cbl11,Cbl12,Cbl13,Cbl14,Cbl15,CBL2,CBL3,CB
L5,CBL27,CBL29,CBL30,CBL31,CBL32,CBL33,CBL34,CBL36,CBL46,CBL53,CBL54,CB
L56,CBL57,CBL59,CBL62,CBL65,CBL82,CBL84,CBL88,CBL103,GEN2,GEN3,Lod10,Lo
d11,Lod12,Lod13,Lod14,Lod15,LOD5,LOD6,LVP10,LVP11,LVR1,MBT6,MBT10,MOT_F
pmp2,MOT_Fpmp4,MOT_Steer2,XFM4,XFM5" /> 
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<Partition1of6 
MTCs="ABT3,ABT6,ABT12,BRK1_4,BRK1_10,BRK2_10,BRK2_17,BRK3_6,BRK11_3,BRK
12_1,BRK12_2,BRK12_4,BRK12_5,BRK13_3,Cbl7,Cbl8,Cbl9,Cbl22,Cbl23,Cbl24,C
BL22,CBL33,CBL34,CBL37,CBL38,CBL46,CBL52,CBL54,CBL64,CBL67,CBL74,CBL75,
CBL76,CBL77,CBL78,CBL79,CBL80,CBL81,CBL102,CBL107,Lod7,Lod8,Lod9,Lod22,
Lod23,Lod24,LOD4,LOD6,LOD8,LOD10,LOD13,LVP4,MBT1,MBT5,MBT7,MBT9,MOT_ACc
pr1,XFM3,XFM8" /> 

<Partition2of6 
MTCs="ABT2,ABT5,ABT8,ABT9,BRK1,BRK1_1,BRK1_2,BRK1_3,BRK1_5,BRK1_7,BRK1_
8,BRK1_9,BRK1_11,BRK1_13,BRK1_14,BRK1_16,BRK2_1,BRK2_3,BRK2_4,BRK2_9,BR
K2_12,BRK3_4,BRK3_16,CBL1,CBL4,CBL6,CBL29,CBL30,CBL35,CBL36,CBL39,CBL40
,CBL45,CBL48,CBL49,CBL50,CBL53,CBL58,CBL59,CBL83,CBL84,CBL88,CBL89,CBL1
01,FLT3,GEN1,LOD7,LOD9,LVP5,LVP8,LVP11,LVP12,LVR1,MBT8,MBT10,MOT_AcCpr2
,MOT_Fpmp3,MOT_Fpmp4,MOT_HPcpr1,MOT_Steer2" /> 

<Partition3of6 
MTCs="ABT4,ABT7,ABT10,BRK1_6,BRK1_12,BRK1_15,BRK2,BRK2_2,BRK2_5,BRK2_6,
BRK2_7,BRK2_8,BRK2_11,BRK2_14,BRK2_15,BRK2_16,BRK2_18,BRK3_5,Cbl10,Cbl1
1,Cbl12,Cbl13,Cbl14,Cbl15,CBL2,CBL31,CBL32,CBL41,CBL44,CBL47,CBL51,CBL5
6,CBL57,CBL60,CBL62,CBL63,CBL65,CBL82,CBL85,CBL86,CBL103,GEN2,Lod10,Lod
11,Lod12,Lod13,Lod14,Lod15,LOD5,LVP6,LVP7,LVP9,LVP10,MBT6,MOT_Fpmp2,MOT
_Fpmp5,MOT_WPmp1,MOT_WPmp2,XFM4,XFM5" /> 

<Partition4of6 
MTCs="ABT11,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK21_1,BRK
21_2,BRK21_3,BRK21_4,BRK21_5,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl21,CBL18,
CBL21,CBL55,CBL66,CBL68,CBL69,CBL70,CBL71,CBL72,CBL73,CBL87,CBL90,CBL91
,CBL92,CBL93,CBL104,CBL105,FLT1,FLT2,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,Lod1
6,Lod17,Lod18,Lod19,Lod20,Lod21,LOD3,LOD11,LOD12,LVP13,LVP17,MBT4,MBT11
,MOT_Anchor,MOT_Fpmp1,XFM6,XFM7" /> 

<Partition5of6 
MTCs="ABT1,ABT13,ABT15,BRK2_13,BRK2_19,BRK3,BRK3_1,BRK3_2,BRK3_3,BRK3_7
,BRK3_8,BRK3_10,BRK3_11,BRK3_15,BRK22_1,BRK22_3,BRK22_5,BRK22_6,BRK22_7
,Cbl28,Cbl29,Cbl30,CBL3,CBL5,CBL7,CBL8,CBL9,CBL10,CBL11,CBL23,CBL24,CBL
25,CBL27,CBL28,CBL61,CBL94,CBL95,CBL96,CBL98,CBL100,CBL108,CBL109,GEN3,
Lod28,Lod29,Lod30,LVP1,LVP2,LVP3,LVP14,LVP15,LVR2,MBT2,MBT12,MOT_ACcpr3
,MOT_Fpmp6,MOT_Hpcpr2,MOT_Steer1,MOT_WPmp3,MOT_WPmp4,XFM10" /> 

<Partition6of6 
MTCs="ABT14,BRK3_9,BRK3_12,BRK3_13,BRK3_14,BRK22_2,BRK22_4,BRK31_1,BRK3
1_2,BRK31_3,BRK31_4,BRK31_5,Cbl1,Cbl2,Cbl3,Cbl4,Cbl5,Cbl6,Cbl25,Cbl26,C
bl27,Cbl31,Cbl32,Cbl33,CBL12,CBL13,CBL14,CBL15,CBL16,CBL17,CBL19,CBL20,
CBL26,CBL97,CBL99,CBL106,CBL110,Lod1,Lod2,Lod3,Lod4,Lod5,Lod6,Lod25,Lod
26,Lod27,Lod31,Lod32,Lod33,LOD1,LOD2,LVP16,MBT3,MBT13,MOT_AcCpr4,XFM1,X
FM2,XFM9,XFM11" /> 

 

<Partition1of7 
MTCs="ABT2,ABT5,ABT8,BRK1,BRK1_1,BRK1_2,BRK1_3,BRK1_4,BRK1_5,BRK1_6,BRK
1_7,BRK1_8,BRK1_9,BRK1_10,BRK1_13,BRK1_15,BRK2_4,BRK3_4,CBL1,CBL29,CBL3
0,CBL35,CBL36,CBL37,CBL38,CBL39,CBL40,CBL44,CBL45,CBL48,CBL49,CBL58,CBL
74,CBL83,CBL85,CBL89,FLT3,GEN1,LOD7,LVP4,LVP5,LVP8,LVP12,LVR1,MBT7,MBT8
,MOT_AcCpr2,MOT_ACcpr1,MOT_Fpmp3,MOT_HPcpr1,MOT_Steer2" /> 
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<Partition2of7 
MTCs="ABT3,ABT4,ABT6,ABT7,ABT9,ABT10,BRK1_12,BRK1_16,BRK2,BRK2_1,BRK2_2
,BRK2_5,BRK2_7,BRK2_8,BRK2_9,BRK2_10,BRK2_12,BRK2_15,BRK2_16,BRK2_17,BR
K2_18,BRK3_6,CBL2,CBL6,CBL33,CBL34,CBL41,CBL46,CBL47,CBL50,CBL52,CBL53,
CBL54,CBL57,CBL60,CBL63,CBL75,CBL82,CBL86,CBL101,CBL103,GEN2,LOD6,LOD8,
LOD9,LVP6,LVP7,LVP9,LVP10,MOT_Fpmp2,MOT_Fpmp5,MOT_WPmp1,MOT_WPmp2" /> 

<Partition3of7 
MTCs="BRK1_11,BRK1_14,BRK2_3,BRK2_6,BRK2_11,BRK2_14,BRK12_2,BRK12_4,BRK
12_5,Cbl7,Cbl8,Cbl9,Cbl10,Cbl11,Cbl12,Cbl13,Cbl14,Cbl15,CBL51,CBL56,CBL
59,CBL62,CBL64,CBL77,CBL79,CBL80,CBL81,CBL84,CBL88,CBL102,Lod7,Lod8,Lod
9,Lod10,Lod11,Lod12,Lod13,Lod14,Lod15,LOD10,LOD13,LVP11,MBT1,MBT9,MBT10
,MOT_Fpmp4,XFM3,XFM4,XFM5" /> 

<Partition4of7 
MTCs="ABT14,BRK3_12,BRK12_1,BRK21_1,BRK21_2,BRK21_3,BRK21_4,BRK21_5,BRK
31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_5,Cbl16,Cbl17,Cbl18,Cbl31,Cbl32,Cbl3
3,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL22,CBL55,CBL76,CBL87,CBL90,CBL
92,CBL93,CBL105,CBL106,FLT6,FLT7,Lod16,Lod17,Lod18,Lod31,Lod32,Lod33,LO
D1,LOD2,LOD4,LOD11,LOD12,MBT5,MBT11,XFM6,XFM11" /> 

<Partition5of7 
MTCs="ABT11,ABT12,BRK3_13,BRK11_1,BRK11_2,BRK11_3,BRK11_4,BRK11_5,BRK11
_6,BRK11_7,BRK13_3,Cbl19,Cbl20,Cbl21,Cbl22,Cbl23,Cbl24,CBL13,CBL21,CBL6
6,CBL67,CBL68,CBL69,CBL70,CBL71,CBL72,CBL73,CBL78,CBL91,CBL104,CBL107,F
LT1,FLT2,FLT4,FLT5,FLT8,FLT9,Lod19,Lod20,Lod21,Lod22,Lod23,Lod24,LOD3,L
VP13,LVP17,MBT3,MBT4,MOT_Anchor,MOT_Fpmp1,XFM7,XFM8" /> 

<Partition6of7 
MTCs="ABT1,ABT15,BRK2_19,BRK3,BRK3_1,BRK3_2,BRK3_5,BRK3_7,BRK3_9,BRK3_1
0,BRK3_11,BRK3_14,BRK3_15,BRK3_16,BRK22_4,Cbl1,Cbl2,Cbl3,CBL3,CBL4,CBL5
,CBL7,CBL8,CBL11,CBL12,CBL23,CBL24,CBL25,CBL26,CBL28,CBL31,CBL32,CBL65,
CBL97,CBL110,GEN3,Lod1,Lod2,Lod3,LOD5,LVP1,LVP3,LVP16,LVR2,MBT6,MBT13,M
OT_AcCpr4,MOT_Fpmp6,MOT_Hpcpr2,MOT_Steer1,XFM1" /> 

<Partition7of7 
MTCs="ABT13,BRK2_13,BRK3_3,BRK3_8,BRK22_1,BRK22_2,BRK22_3,BRK22_5,BRK22
_6,BRK22_7,Cbl4,Cbl5,Cbl6,Cbl25,Cbl26,Cbl27,Cbl28,Cbl29,Cbl30,CBL9,CBL1
0,CBL14,CBL27,CBL61,CBL94,CBL95,CBL96,CBL98,CBL99,CBL100,CBL108,CBL109,
Lod4,Lod5,Lod6,Lod25,Lod26,Lod27,Lod28,Lod29,Lod30,LVP2,LVP14,LVP15,MBT
2,MBT12,MOT_ACcpr3,MOT_WPmp3,MOT_WPmp4,XFM2,XFM9,XFM10" /> 

 

<Partition1of8 
MTCs="ABT3,ABT12,BRK1_11,BRK2_11,BRK3_6,BRK11_3,BRK12_1,BRK12_2,BRK12_4
,BRK12_5,BRK13_3,Cbl7,Cbl8,Cbl9,Cbl22,Cbl23,Cbl24,CBL22,CBL33,CBL51,CBL
54,CBL64,CBL67,CBL76,CBL77,CBL78,CBL79,CBL80,CBL81,CBL102,CBL107,Lod7,L
od8,Lod9,Lod22,Lod23,Lod24,LOD4,LOD10,LOD13,MBT1,MBT5,MBT9,XFM3,XFM8" 
/> 

<Partition2of8 
MTCs="ABT4,ABT5,ABT10,BRK1_5,BRK1_6,BRK1_12,BRK2_5,BRK2_14,BRK2_15,BRK2
_16,BRK2_18,BRK3_5,Cbl13,Cbl14,Cbl15,CBL31,CBL32,CBL34,CBL39,CBL41,CBL4
4,CBL45,CBL47,CBL57,CBL62,CBL63,CBL65,CBL82,CBL103,Lod13,Lod14,Lod15,LO
D5,LOD6,LVP6,LVP7,LVP8,LVP10,MBT6,MOT_Fpmp2,MOT_Fpmp3,MOT_WPmp1,MOT_WPm
p2,XFM5" /> 
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<Partition3of8 
MTCs="ABT2,ABT7,BRK1,BRK1_1,BRK1_3,BRK1_7,BRK1_8,BRK1_9,BRK1_10,BRK1_14
,BRK1_15,BRK2_2,BRK2_3,BRK2_12,BRK3_4,BRK3_16,CBL1,CBL4,CBL29,CBL30,CBL
36,CBL40,CBL48,CBL49,CBL50,CBL59,CBL60,CBL74,CBL84,CBL85,CBL86,CBL88,FL
T3,GEN1,LOD7,LVP5,LVP9,LVP11,LVR1,MBT8,MBT10,MOT_Fpmp4,MOT_Fpmp5,MOT_HP
cpr1,MOT_Steer2" /> 

<Partition4of8 
MTCs="ABT6,ABT8,ABT9,BRK1_2,BRK1_4,BRK1_13,BRK1_16,BRK2,BRK2_1,BRK2_4,B
RK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_10,BRK2_17,Cbl10,Cbl11,Cbl12,CBL2,CBL6,
CBL35,CBL37,CBL38,CBL46,CBL52,CBL53,CBL56,CBL58,CBL75,CBL83,CBL89,CBL10
1,GEN2,Lod10,Lod11,Lod12,LOD8,LOD9,LVP4,LVP12,MBT7,MOT_AcCpr2,MOT_ACcpr
1,XFM4" /> 

<Partition5of8 
MTCs="ABT1,ABT15,BRK2_13,BRK3_2,BRK3_3,BRK3_8,BRK3_10,BRK22_2,BRK22_3,B
RK22_5,BRK22_6,BRK22_7,Cbl25,Cbl26,Cbl27,CBL7,CBL8,CBL9,CBL10,CBL24,CBL
25,CBL27,CBL61,CBL94,CBL95,CBL96,CBL98,CBL99,CBL109,Lod25,Lod26,Lod27,L
VP1,LVP2,LVP14,LVP15,LVR2,MBT2,MBT12,MOT_ACcpr3,MOT_Fpmp6,MOT_Steer1,MO
T_WPmp3,MOT_WPmp4,XFM9" /> 

<Partition6of8 
MTCs="ABT13,BRK2_19,BRK3,BRK3_1,BRK3_7,BRK3_9,BRK3_11,BRK3_12,BRK3_13,B
RK3_14,BRK3_15,BRK22_1,BRK22_4,Cbl1,Cbl2,Cbl3,Cbl28,Cbl29,Cbl30,CBL3,CB
L5,CBL11,CBL12,CBL13,CBL23,CBL26,CBL28,CBL97,CBL100,CBL108,CBL110,GEN3,
Lod1,Lod2,Lod3,Lod28,Lod29,Lod30,LVP3,LVP16,MBT13,MOT_AcCpr4,MOT_Hpcpr2
,XFM1,XFM10" /> 

<Partition7of8 
MTCs="ABT14,BRK21_1,BRK21_2,BRK21_3,BRK21_4,BRK21_5,BRK31_1,BRK31_2,BRK
31_4,BRK31_5,Cbl16,Cbl17,Cbl18,Cbl31,Cbl32,Cbl33,CBL15,CBL16,CBL17,CBL1
9,CBL20,CBL55,CBL87,CBL90,CBL91,CBL92,CBL93,CBL105,CBL106,FLT5,FLT6,FLT
7,Lod16,Lod17,Lod18,Lod31,Lod32,Lod33,LOD1,LOD2,LOD11,LOD12,MBT11,XFM6,
XFM11" /> 

<Partition8of8 
MTCs="ABT11,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11_6,BRK11_7,BRK31_3,Cbl
4,Cbl5,Cbl6,Cbl19,Cbl20,Cbl21,CBL14,CBL18,CBL21,CBL66,CBL68,CBL69,CBL70
,CBL71,CBL72,CBL73,CBL104,FLT1,FLT2,FLT4,FLT8,FLT9,Lod4,Lod5,Lod6,Lod19
,Lod20,Lod21,LOD3,LVP13,LVP17,MBT3,MBT4,MOT_Anchor,MOT_Fpmp1,XFM2,XFM7" 
/> 

 

<Partition1of9 
MTCs="ABT2,ABT6,BRK1,BRK1_1,BRK1_3,BRK1_6,BRK1_7,BRK1_8,BRK1_9,BRK1_10,
BRK1_14,BRK1_16,BRK2_1,BRK2_3,BRK2_10,BRK3_4,CBL1,CBL6,CBL29,CBL30,CBL3
6,CBL40,CBL49,CBL52,CBL59,CBL74,CBL75,CBL84,CBL88,FLT3,GEN1,LOD8,LVP5,L
VP11,LVR1,MBT10,MOT_Fpmp4,MOT_HPcpr1,MOT_Steer2" /> 

<Partition2of9 
MTCs="ABT4,ABT7,ABT8,ABT9,BRK1_2,BRK1_4,BRK1_13,BRK1_15,BRK2_2,BRK2_4,B
RK2_9,BRK2_15,BRK2_17,CBL35,CBL37,CBL38,CBL41,CBL44,CBL46,CBL53,CBL58,C
BL60,CBL63,CBL83,CBL85,CBL86,CBL89,CBL101,LOD9,LVP4,LVP6,LVP7,LVP9,LVP1
2,MBT7,MOT_AcCpr2,MOT_ACcpr1,MOT_Fpmp5,MOT_WPmp1,MOT_WPmp2" /> 

<Partition3of9 
MTCs="ABT3,ABT5,ABT10,BRK1_5,BRK1_12,BRK2,BRK2_5,BRK2_6,BRK2_7,BRK2_8,B
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RK2_16,BRK2_18,BRK3_6,Cbl10,Cbl11,Cbl12,CBL2,CBL32,CBL33,CBL34,CBL39,CB
L45,CBL47,CBL54,CBL56,CBL57,CBL65,CBL82,CBL103,GEN2,Lod10,Lod11,Lod12,L
OD5,LOD6,LVP8,LVP10,MBT6,MOT_Fpmp2,MOT_Fpmp3,XFM4" /> 

<Partition4of9 
MTCs="BRK1_11,BRK2_11,BRK2_12,BRK2_14,BRK3_11,BRK12_2,BRK12_4,BRK12_5,C
bl7,Cbl8,Cbl9,Cbl13,Cbl14,Cbl15,CBL23,CBL48,CBL50,CBL51,CBL62,CBL64,CBL
77,CBL79,CBL80,CBL81,CBL102,Lod7,Lod8,Lod9,Lod13,Lod14,Lod15,LOD7,LOD10
,LOD13,MBT1,MBT8,MBT9,XFM3,XFM5" /> 

<Partition5of9 
MTCs="ABT1,BRK2_19,BRK3,BRK3_1,BRK3_2,BRK3_5,BRK3_9,BRK3_10,BRK3_14,BRK
3_15,BRK3_16,BRK22_4,BRK22_5,Cbl1,Cbl2,Cbl3,CBL3,CBL4,CBL5,CBL11,CBL12,
CBL24,CBL25,CBL26,CBL31,CBL96,CBL97,CBL110,GEN3,Lod1,Lod2,Lod3,LVP3,LVP
16,LVR2,MBT13,MOT_AcCpr4,MOT_Hpcpr2,MOT_Steer1,XFM1" /> 

<Partition6of9 
MTCs="ABT13,ABT15,BRK2_13,BRK3_3,BRK3_7,BRK22_1,BRK22_2,BRK22_3,BRK22_6
,BRK22_7,Cbl25,Cbl26,Cbl27,Cbl28,Cbl29,Cbl30,CBL7,CBL8,CBL9,CBL10,CBL28
,CBL61,CBL94,CBL95,CBL99,CBL100,CBL108,Lod25,Lod26,Lod27,Lod28,Lod29,Lo
d30,LVP1,LVP2,MBT2,MOT_ACcpr3,MOT_Fpmp6,XFM9,XFM10" /> 

<Partition7of9 
MTCs="ABT14,BRK3_8,BRK3_12,BRK12_1,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK3
1_5,Cbl31,Cbl32,Cbl33,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL22,C
BL27,CBL76,CBL98,CBL106,CBL109,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,LOD4,LV
P14,LVP15,MBT4,MBT5,MBT12,MOT_WPmp3,MOT_WPmp4,XFM11" /> 

<Partition8of9 
MTCs="ABT11,BRK3_13,BRK11_7,BRK21_1,BRK21_2,BRK21_3,BRK21_5,Cbl4,Cbl5,C
bl6,Cbl16,Cbl17,Cbl18,CBL13,CBL14,CBL55,CBL71,CBL87,CBL91,CBL92,CBL93,C
BL104,FLT4,FLT5,FLT6,FLT7,FLT8,FLT9,Lod4,Lod5,Lod6,Lod16,Lod17,Lod18,LO
D11,LVP13,MBT3,MOT_Fpmp1,XFM2,XFM6" /> 

<Partition9of9 
MTCs="ABT12,BRK11_1,BRK11_2,BRK11_3,BRK11_4,BRK11_5,BRK11_6,BRK13_3,BRK
21_4,Cbl19,Cbl20,Cbl21,Cbl22,Cbl23,Cbl24,CBL66,CBL67,CBL68,CBL69,CBL70,
CBL72,CBL73,CBL78,CBL90,CBL105,CBL107,FLT1,FLT2,Lod19,Lod20,Lod21,Lod22
,Lod23,Lod24,LOD12,LVP17,MBT11,MOT_Anchor,XFM7,XFM8" /> 

 

<Partition1of10 
MTCs="ABT12,BRK1_11,BRK11_3,BRK12_1,BRK12_2,BRK12_4,BRK12_5,BRK13_3,Cbl
7,Cbl8,Cbl9,Cbl22,Cbl23,Cbl24,CBL22,CBL64,CBL67,CBL76,CBL77,CBL78,CBL79
,CBL81,CBL107,Lod7,Lod8,Lod9,Lod22,Lod23,Lod24,LOD4,LOD13,MBT1,MBT5,XFM
3,XFM8" /> 

<Partition2of10 
MTCs="ABT6,ABT8,BRK1,BRK1_7,BRK1_10,BRK1_13,BRK1_14,BRK2_3,BRK2_4,BRK2_
10,BRK2_11,CBL40,CBL51,CBL52,CBL58,CBL59,CBL74,CBL75,CBL80,CBL83,CBL84,
CBL88,CBL89,CBL102,GEN1,LOD8,LOD10,LVP5,LVP11,LVP12,MBT9,MBT10,MOT_AcCp
r2,MOT_Fpmp4,MOT_HPcpr1" /> 

<Partition3of10 
MTCs="ABT3,BRK1_8,BRK2,BRK2_1,BRK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_12,BRK2_
18,BRK3_5,BRK3_6,Cbl10,Cbl11,Cbl12,CBL2,CBL31,CBL32,CBL33,CBL34,CBL48,C
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BL49,CBL50,CBL54,CBL56,CBL65,GEN2,Lod10,Lod11,Lod12,LOD5,LOD6,LOD7,MBT6
,MBT8,XFM4" /> 

<Partition4of10 
MTCs="ABT4,ABT7,ABT9,ABT10,BRK1_1,BRK1_2,BRK1_6,BRK1_12,BRK1_15,BRK1_16
,BRK2_2,BRK2_5,BRK2_15,CBL1,CBL6,CBL35,CBL41,CBL44,CBL53,CBL57,CBL60,CB
L63,CBL82,CBL85,CBL86,CBL101,CBL103,LOD9,LVP6,LVP7,LVP9,LVP10,MOT_Fpmp2
,MOT_Fpmp5,MOT_WPmp1,MOT_WPmp2" /> 

<Partition5of10 
MTCs="ABT2,ABT5,BRK1_3,BRK1_4,BRK1_5,BRK1_9,BRK2_14,BRK2_16,BRK2_17,BRK
3_4,BRK3_16,Cbl13,Cbl14,Cbl15,CBL4,CBL29,CBL30,CBL36,CBL37,CBL38,CBL39,
CBL45,CBL46,CBL47,CBL62,FLT3,Lod13,Lod14,Lod15,LVP4,LVP8,LVR1,MBT7,MOT_
ACcpr1,MOT_Fpmp3,MOT_Steer2,XFM5" /> 

<Partition6of10 
MTCs="ABT13,BRK2_13,BRK3_7,BRK22_1,BRK22_2,BRK22_3,BRK22_4,BRK22_5,BRK2
2_6,BRK22_7,Cbl25,Cbl26,Cbl27,Cbl28,Cbl29,Cbl30,CBL28,CBL61,CBL94,CBL96
,CBL97,CBL99,CBL100,CBL108,CBL110,Lod25,Lod26,Lod27,Lod28,Lod29,Lod30,L
VP16,MBT13,MOT_AcCpr4,XFM9,XFM10" /> 

<Partition7of10 
MTCs="ABT1,ABT15,BRK2_19,BRK3,BRK3_1,BRK3_2,BRK3_3,BRK3_8,BRK3_9,BRK3_1
0,BRK3_11,BRK3_15,CBL3,CBL5,CBL7,CBL8,CBL11,CBL23,CBL24,CBL25,CBL26,CBL
27,CBL98,CBL109,GEN3,LVP1,LVP3,LVP14,LVP15,LVR2,MBT12,MOT_Fpmp6,MOT_Hpc
pr2,MOT_Steer1,MOT_WPmp3,MOT_WPmp4" /> 

<Partition8of10 
MTCs="ABT14,BRK3_12,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_5,Cbl
31,Cbl32,Cbl33,CBL9,CBL10,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL
73,CBL87,CBL95,CBL106,FLT2,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,LVP2,MBT2,M
BT4,MOT_ACcpr3,XFM11" /> 

<Partition9of10 
MTCs="ABT11,BRK3_13,BRK11_1,BRK11_2,BRK11_4,BRK11_5,BRK11_6,BRK11_7,Cbl
4,Cbl5,Cbl6,CBL13,CBL14,CBL66,CBL68,CBL70,CBL71,CBL72,CBL90,CBL104,CBL1
05,FLT1,FLT4,FLT8,FLT9,Lod4,Lod5,Lod6,LOD12,LVP13,LVP17,MBT3,MBT11,MOT_
Anchor,MOT_Fpmp1,XFM2" /> 

<Partition10of10 
MTCs="BRK3_14,BRK21_1,BRK21_2,BRK21_3,BRK21_4,Cbl1,Cbl2,Cbl3,Cbl16,Cbl1
7,Cbl18,Cbl19,Cbl20,Cbl21,CBL12,CBL55,CBL69,CBL91,CBL92,CBL93,FLT5,FLT6
,FLT7,Lod1,Lod2,Lod3,Lod16,Lod17,Lod18,Lod19,Lod20,Lod21,LOD11,XFM1,XFM
6,XFM7" /> 

 

<Partition1of11 
MTCs="ABT3,ABT8,ABT10,BRK1_16,BRK2,BRK2_1,BRK2_4,BRK2_5,BRK2_7,BRK2_8,B
RK2_10,BRK2_11,BRK2_12,BRK2_15,BRK3_6,CBL2,CBL6,CBL33,CBL34,CBL50,CBL54
,CBL57,CBL58,CBL63,CBL89,CBL103,GEN2,LOD6,LVP10,LVP12,MOT_AcCpr2,MOT_Fp
mp2" /> 

<Partition2of11 
MTCs="ABT7,BRK1_15,BRK2_2,BRK2_6,BRK2_14,BRK2_18,BRK3_5,Cbl10,Cbl11,Cbl
12,Cbl13,Cbl14,Cbl15,CBL31,CBL32,CBL56,CBL60,CBL62,CBL65,CBL85,CBL86,Lo
d10,Lod11,Lod12,Lod13,Lod14,Lod15,LOD5,LVP9,MBT6,MOT_Fpmp5,XFM4,XFM5" 
/> 
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<Partition3of11 
MTCs="ABT2,BRK1_3,BRK1_11,BRK3_4,BRK3_11,BRK12_2,BRK12_4,BRK12_5,Cbl7,C
bl8,Cbl9,CBL23,CBL29,CBL30,CBL36,CBL51,CBL64,CBL77,CBL79,CBL80,CBL81,CB
L102,Lod7,Lod8,Lod9,LOD10,LOD13,LVR1,MBT1,MBT9,MOT_Steer2,XFM3" /> 

<Partition4of11 
MTCs="ABT6,ABT9,BRK1,BRK1_1,BRK1_2,BRK1_7,BRK1_8,BRK1_9,BRK1_10,BRK1_12
,BRK1_13,BRK2_9,BRK3_16,CBL1,CBL4,CBL35,CBL40,CBL48,CBL49,CBL52,CBL53,C
BL74,CBL75,CBL82,CBL83,CBL101,FLT3,GEN1,LOD7,LOD8,LOD9,LVP5,MBT8,MOT_HP
cpr1" /> 

<Partition5of11 
MTCs="ABT4,ABT5,BRK1_4,BRK1_5,BRK1_6,BRK1_14,BRK2_3,BRK2_16,BRK2_17,CBL
37,CBL38,CBL39,CBL41,CBL44,CBL45,CBL46,CBL47,CBL59,CBL84,CBL88,LVP4,LVP
6,LVP7,LVP8,LVP11,MBT7,MBT10,MOT_ACcpr1,MOT_Fpmp3,MOT_Fpmp4,MOT_WPmp1,M
OT_WPmp2" /> 

<Partition6of11 
MTCs="ABT11,ABT12,BRK11_3,BRK11_5,BRK11_7,BRK13_3,Cbl19,Cbl20,Cbl21,Cbl
22,Cbl23,Cbl24,CBL67,CBL69,CBL71,CBL78,CBL104,CBL107,FLT4,FLT5,FLT8,FLT
9,Lod19,Lod20,Lod21,Lod22,Lod23,Lod24,LVP13,MOT_Fpmp1,XFM7,XFM8" /> 

<Partition7of11 
MTCs="BRK11_1,BRK11_2,BRK11_4,BRK11_6,BRK21_1,BRK21_2,BRK21_3,BRK21_4,C
bl16,Cbl17,Cbl18,CBL55,CBL66,CBL68,CBL70,CBL72,CBL73,CBL90,CBL91,CBL92,
CBL93,CBL105,FLT6,FLT7,Lod16,Lod17,Lod18,LOD11,LOD12,LVP17,MBT11,MOT_An
chor,XFM6" /> 

<Partition8of11 
MTCs="ABT14,BRK12_1,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_5,Cbl
31,Cbl32,Cbl33,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL22,CBL76,CB
L87,CBL106,FLT2,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,LOD4,MBT4,MBT5,XFM11" 
/> 

<Partition9of11 
MTCs="ABT13,BRK2_13,BRK3_9,BRK22_1,BRK22_2,BRK22_4,BRK22_7,Cbl25,Cbl26,
Cbl27,Cbl28,Cbl29,Cbl30,CBL26,CBL61,CBL94,CBL97,CBL99,CBL100,CBL108,CBL
110,Lod25,Lod26,Lod27,Lod28,Lod29,Lod30,LVP16,MBT13,MOT_AcCpr4,XFM9,XFM
10" /> 

<Partition10of11 
MTCs="ABT15,BRK2_19,BRK3_1,BRK3_2,BRK3_3,BRK3_7,BRK3_8,BRK3_15,BRK22_3,
BRK22_6,CBL3,CBL5,CBL7,CBL8,CBL9,CBL10,CBL11,CBL27,CBL28,CBL95,CBL98,CB
L109,LVP1,LVP2,LVP3,LVP14,LVP15,MBT2,MBT12,MOT_ACcpr3,MOT_Fpmp6,MOT_Hpc
pr2,MOT_WPmp3,MOT_WPmp4" /> 

<Partition11of11 
MTCs="ABT1,BRK3,BRK3_10,BRK3_12,BRK3_13,BRK3_14,BRK22_5,Cbl1,Cbl2,Cbl3,
Cbl4,Cbl5,Cbl6,CBL12,CBL13,CBL14,CBL24,CBL25,CBL96,FLT1,GEN3,Lod1,Lod2,
Lod3,Lod4,Lod5,Lod6,LVR2,MBT3,MOT_Steer1,XFM1,XFM2" /> 

 

<Partition1of12 
MTCs="ABT4,ABT10,BRK1_6,BRK1_12,BRK2_5,BRK2_14,BRK2_15,Cbl13,Cbl14,Cbl1
5,CBL41,CBL44,CBL57,CBL62,CBL63,CBL82,CBL103,Lod13,Lod14,Lod15,LVP6,LVP
7,LVP10,MOT_Fpmp2,MOT_WPmp1,MOT_WPmp2,XFM5" /> 
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<Partition2of12 
MTCs="ABT12,BRK1_11,BRK2_11,BRK11_3,BRK12_1,BRK12_2,BRK12_5,BRK13_3,Cbl
22,Cbl23,Cbl24,CBL22,CBL51,CBL64,CBL67,CBL76,CBL77,CBL78,CBL80,CBL81,CB
L102,CBL107,Lod22,Lod23,Lod24,LOD4,LOD10,LOD13,MBT1,MBT5,MBT9,XFM8" /> 

<Partition3of12 
MTCs="ABT3,ABT5,BRK1_5,BRK2_16,BRK2_18,BRK3_5,BRK3_6,BRK12_4,Cbl7,Cbl8,
Cbl9,CBL31,CBL32,CBL33,CBL34,CBL39,CBL45,CBL47,CBL54,CBL65,CBL79,Lod7,L
od8,Lod9,LOD5,LOD6,LVP8,MBT6,MOT_Fpmp3,XFM3" /> 

<Partition4of12 
MTCs="ABT6,ABT9,BRK1_10,BRK2,BRK2_6,BRK2_7,BRK2_8,BRK2_9,BRK2_10,BRK2_1
2,BRK2_17,Cbl10,Cbl11,Cbl12,CBL2,CBL46,CBL50,CBL52,CBL53,CBL56,CBL74,CB
L75,CBL101,GEN2,Lod10,Lod11,Lod12,LOD8,LOD9,XFM4" /> 

<Partition5of12 
MTCs="ABT2,BRK1,BRK1_1,BRK1_3,BRK1_4,BRK1_7,BRK1_8,BRK1_9,BRK3_4,BRK3_1
6,CBL1,CBL4,CBL29,CBL30,CBL36,CBL37,CBL38,CBL40,CBL48,CBL49,FLT3,GEN1,L
OD7,LVP4,LVP5,LVR1,MBT7,MBT8,MOT_ACcpr1,MOT_HPcpr1,MOT_Steer2" /> 

<Partition6of12 
MTCs="ABT7,ABT8,BRK1_2,BRK1_13,BRK1_14,BRK1_15,BRK1_16,BRK2_1,BRK2_2,BR
K2_3,BRK2_4,CBL6,CBL35,CBL58,CBL59,CBL60,CBL83,CBL84,CBL85,CBL86,CBL88,
CBL89,LVP9,LVP11,LVP12,MBT10,MOT_AcCpr2,MOT_Fpmp4,MOT_Fpmp5" /> 

<Partition7of12 
MTCs="ABT15,BRK2_13,BRK3_2,BRK3_3,BRK22_2,BRK22_4,BRK22_5,BRK22_6,BRK22
_7,Cbl25,Cbl26,Cbl27,CBL7,CBL8,CBL9,CBL10,CBL61,CBL94,CBL95,CBL97,CBL99
,Lod25,Lod26,Lod27,LVP1,LVP2,MBT2,MOT_ACcpr3,MOT_Fpmp6,XFM9" /> 

<Partition8of12 
MTCs="BRK2_19,BRK3,BRK3_1,BRK3_8,BRK3_9,BRK3_11,BRK3_12,BRK3_13,BRK3_15
,BRK22_3,CBL3,CBL5,CBL11,CBL13,CBL23,CBL26,CBL27,CBL98,CBL109,CBL110,GE
N3,LVP3,LVP14,LVP15,LVP16,MBT12,MBT13,MOT_AcCpr4,MOT_Hpcpr2,MOT_WPmp3,M
OT_WPmp4" /> 

<Partition9of12 
MTCs="ABT1,ABT13,BRK3_7,BRK3_10,BRK3_14,BRK22_1,Cbl1,Cbl2,Cbl3,Cbl28,Cb
l29,Cbl30,CBL12,CBL24,CBL25,CBL28,CBL96,CBL100,CBL108,Lod1,Lod2,Lod3,Lo
d28,Lod29,Lod30,LVR2,MOT_Steer1,XFM1,XFM10" /> 

<Partition10of12 
MTCs="ABT11,BRK11_1,BRK11_4,BRK11_5,BRK11_6,BRK11_7,Cbl4,Cbl5,Cbl6,CBL1
4,CBL66,CBL68,CBL70,CBL71,CBL72,CBL104,FLT1,FLT4,FLT5,FLT8,FLT9,Lod4,Lo
d5,Lod6,LVP13,LVP17,MBT3,MOT_Anchor,MOT_Fpmp1,XFM2" /> 

<Partition11of12 
MTCs="ABT14,BRK11_2,BRK21_5,BRK31_1,BRK31_2,BRK31_3,BRK31_4,BRK31_5,Cbl
31,Cbl32,Cbl33,CBL15,CBL16,CBL17,CBL18,CBL19,CBL20,CBL21,CBL73,CBL87,CB
L106,FLT2,Lod31,Lod32,Lod33,LOD1,LOD2,LOD3,MBT4,XFM11" /> 

<Partition12of12 
MTCs="BRK21_1,BRK21_2,BRK21_3,BRK21_4,Cbl16,Cbl17,Cbl18,Cbl19,Cbl20,Cbl
21,CBL55,CBL69,CBL90,CBL91,CBL92,CBL93,CBL105,FLT6,FLT7,Lod16,Lod17,Lod
18,Lod19,Lod20,Lod21,LOD11,LOD12,MBT11,XFM6,XFM7" /> 

</Partitions>  
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APPE�DIX D 

 

FAULT A�D PROTECTIVE DEVICE EVE�TS 

Performance Metric 2: ∆t=75μs 
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Performance Metric 2: ∆t=100μs 
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Performance Metric 2: ∆t=250μs 
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Performance Metric 2: ∆t=500μs (p=1) 
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Performance Metric 2: ∆t=500μs (p=9) 
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