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ABSTRACT

Coherent Control of Laser Field and Spectroscopy

in Dense Atomic Vapor. (May 2010)

Hebin Li, B.S., Wuhan University, China

Chair of Advisory Committee: Dr. Marlan O. Scully

Coherent effects are studied in a dense atomic vapor driven by laser fields. With

optical properties dramatically modified by these effects, the medium can be used

to manipulate some of the properties of laser field. Our experiments demonstrate

the coherent control over transmission, spatial distribution and noise feature of the

laser field interacting with coherent media. The results have potential applications

in the field such as precision metrology, precision spectroscopy, optical imaging and

lithography.

We develop an experiment to investigate the atomic excitation by few-cycle radio

frequency (RF) pulses interacting with Zeeman sublevels. The system provides the

flexibility to fully control all parameters of RF pulses. Such a flexibility can not be

achieved in optical domain. Based on this system, experiments can be conducted to

simulate processes in ultra-short laser physics. In particular, we study the carrier-

envelope effect of few-cycle pulses and the strong off-resonant excitation by short

pulses.

We also discuss the selective reflection spectrum on a highly dense atomic vapor

in which the dipole-dipole interaction can not be neglected. The spectrum broadening

due to dipole-dipole interaction is much broader than the Doppler broadening. Our

experiments show that the excitation by a pump laser can reduce the dipole-dipole

interaction, thus reduce the broadening and improve the spectral resolution. The

excitation dependence is studied at various atomic densities.
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1

CHAPTER I

INTRODUCTION

The interaction of light with matter has been of great interest in modern physics.

Recent advances in laser technology make it accessible to manipulate the properties of

a medium via laser beams, thus to create new media with modified optical properties

which sometimes do not exist in natural materials. For example, applying laser fields

may substantially modify the absorptive and dispersive properties of a medium. The

light-matter interaction is always an interplay of two aspects. The light changes

properties of media on the one hand, and the medium with altered properties acts

back on the light field on the other. Therefore, one can take the advantage of light-

induced properties in media to control properties of light field. This is the key point

which motivates the present studies.

Two aspects of light-matter interaction become even more interesting in the

cases where a superposition of states is excited so that the system involves atomic

coherence and quantum interference [1]. Spectacular examples such as Coherent Pop-

ulation Trapping (CPT) [2], Electromagnetically Induced Transparency (EIT) [3] and

Lasing Without Inversion (LWI) [4] have shown the importance of atomic coherence

to both fundamental physics and innovative applications. In EIT, for example, under

the coherent driving of two laser fields, atoms in the medium can be pumped into

the “dark” state which is a coherent superposition of atomic levels. The atoms in

the “dark” state do not interact with light, therefore the medium is transparent to

the light despite being on resonance. Associated with the vanishing absorption, the

medium also displays an extreme nonlinearity in dispersion. In this way, the coher-

�This dissertation follows the style and format of Physical Review A.



2

ent interaction of light and atoms creates a new state of matter in which one can

manipulate the properties such as absorption and dispersion. The interaction can

lead to many remarkable phenomena such as enhancement of the index of refraction

[5, 6] and light induced chirality in a non-chiral medium [7]. On the other hand, the

extraordinary properties of coherently driven media can be used to control light fields

in a counter-intuitive way to realize slow, fast and stored light [8, 9, 10], forward Bril-

louin scattering [11, 12] and electromagnetically induced coherent backscattering [13],

to name a few. The coherent interaction of light with matter allows us to manipulate

the properties of both media and light fields. Coherent phenomena also play a crucial

role in other fields such as creation of a new type of matter (Bose-Einstein conden-

sation), precision metrology (atomic clock and magnetometer), quantum computing

and quantum information.

The subject of my present research is the quantum coherent effects in atom-field

interaction and their applications. The major objective is to obtain better under-

standing of the fundamental properties of atom-field interaction in general and to

study the coherent control of laser fields, the excitation by few-cycle pulses and the

reflection spectrum, in a dense atomic vapor in particular.

The coherent medium can be utilized to control a laser field, for example, the

spatial properties of laser field. In a simplified version of laser-atom interaction, the

laser beam is considered as a geometric line which is sufficient for some measurements

such as absorption. While in reality, the laser beam is not a plane wave and does not

have an uniform intensity distribution in the plane transverse to the direction of prop-

agation. In EIT, the properties such as absorption and index of refraction strongly

depend on the laser intensity in a nonlinear way. Therefore, the inhomogeneous dis-

tribution of laser intensity may cause a certain inhomogeneity in the medium. For

example, a drive beam with the Gaussian profile can induce a controllable gradient of
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the index of refraction which can deflect laser beams. A careful arrangement of the

intensity distributions of drive and probe beams can create an optical pattern with

the characteristic size beating the diffraction limit.

One of the important topics in light-matter interaction is the interaction of

medium with ultra short laser pulses which contains only a few cycles of the field

oscillations. Modern lasers are capable of generating short bursts of radiation, even

atto-second pulses. It remains a huge technology challenge to fully control all of the

parameters such as pulse shape and carrier-envelope phase. However, in the radio

frequency domain, it is easy to generate a few-cycle pulse with all parameters con-

trolled. Such a field in radio frequency can be coupled with a low energy transition

such as the ones between Zeeman sublevels. The combination of radio frequency fields

and Zeeman sublevels provides an excellent model system to study the excitation by

ultra-short laser pulses.

It is important study the nonlinear optical properties of a highly dense atomic

vapor (N > 1016 cm−3). The conventional absorption spectroscopy may fail because

of the large optical density, while a proper tool is the reflection spectroscopy. The

reflectivity from an interface between a transparent dielectric and absorbing vapor

has a resonant structure near an absorption line of the atomic vapor, this is known

as selective reflection. In a highly dense atomic vapor, the dipole-dipole interaction

between atoms in excite state and ground state dominates the self-broadening in

spectrum. The selective reflection can be used to study the dipole-dipole interaction

in the medium.

Besides the interests in fundamental understanding of atom-field interaction, the

research also leads to innovative applications in the fields such as precision metrology,

optical imaging and lithography, XUV generation and precision spectroscopy.

This dissertation is organized as the following: Chapter II reviews the semiclas-
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sical theory of light-matter interaction; Chapter III studies the influence of phase in

optical or microwave fields on EIT; Chapter IV studies the spatial control of laser

fields in a coherent medium; Chapter V studies the intensity correlation of atomic

excess noise in a coherent medium; Chapter VI studies the atomic excitation by few

cycle radio frequency pulses; Chapter VII studies the reflection spectroscopy on highly

dense atomic vapor; and Chapter VIII summarize the results in this dissertation.
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CHAPTER II

THEORETICAL BASIS OF LIGHT-MATTER INTERACTION

This chapter reviews the semiclassical theory of light-matter interaction, which treats

atoms quantum mechanically whereas electromagnetic fields classically. Simple exam-

ples are reviewed to introduce the notion of quantum inference and atomic coherence,

as well as the notions which will be used in later chapters. The chapter is organized as

the following. The first section reviews the theory of a monochromatic field interact-

ing with a two-level atom. The second section reviews the density matrix formalism.

The third section reviews how to describe the propagation of a field in a resonant

medium. The final section deals with a three level system coherently coupled with

two laser fields.

A. Light interacting with a two-level atom

Following the standard textbooks such as [1], we present the semiclassical theory

of light-matter interactions. The simplest example is that a monochromatic field

interacts with a two-level system.

Consider a electromagnetic field with the frequency ν interacting with an atom

which has the excited state |a〉 and the ground state |b〉, as shown in Fig. 1. In the

dipole approximation, the field can be expressed as E(t) = E cos(νt). The Hamilto-

nian of the system can be written as H = H0 +HI , where H0 is the unperturbed part

given by

H0 = h̄ωa|a〉〈a| + h̄ωb|b〉〈b| , (2.1)

where ωa and ωb are atomic frequencies such that H0|a〉 = h̄ωa|a〉 and H0|b〉 = h̄ωb|b〉.
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Ω

|a >

|b >

Fig. 1. An electromagnetic field with the Rabi frequency Ω interacts with a two-level

atom. The excited state is |a〉 and the ground state is |b〉.

HI represents the interaction between the field and the atom,

HI = −(℘ab|a〉〈b| + ℘ba|b〉〈a|)E cos(νt)

= −h̄(Ω cos(νt)|a〉〈b| + Ω∗ cos(νt)|b〉〈a|) , (2.2)

where ℘ab = ℘∗
ba = e〈a|x|b〉 is the matrix element of the electric dipole moment. Ω is

the Rabi frequency defined as Ω = ℘baE /h̄. The wave function of the system can be

expressed in the basis of the eigenstates of H0 as

|ψ〉 = Ca|a〉 + Cb|b〉 . (2.3)

The corresponding Schrödinger equation is

ih̄
∂

∂t
|ψ〉 = H|ψ〉 . (2.4)

Plug equations (2.1) (2.2) (2.3) into the Schrödinger equation (2.4), we obtain the

equations of motion for the probability amplitudes

Ċa = −iωaCa + iΩ cos(νt)Cb , (2.5)
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Ċb = −iωbCb + iΩ∗ cos(νt)Ca . (2.6)

Use the slowly varying amplitude approximation Ca = cae
−iωat and Cb = cbe

−iωbt,

and the rotation wave approximation in which the counter-rotating terms including

e±i(ω+ν)t are ignored, equations (2.5) and (2.6) become

ċa = i
Ω

2
ei(ω−ν)tcb , (2.7)

ċb = i
Ω∗

2
e−i(ω−ν)tca , (2.8)

where ω = ωa − ωb. These equations have exact solutions for an arbitrary detuning

∆ = ω − ν. For simplicity, we consider the resonant case (∆ = 0) to understand the

physics in the process. Assume the initial conditions ca(t = 0) = 0 and cb(t = 0) = 1,

we have the solution

ca = sin(
|Ω|
2
t) , (2.9)

cb = −iΩ
∗

|Ω| cos(
|Ω|
2
t) . (2.10)

So the inversion is given by W (t) = |ca(t)|2 − |cb(t)|2 = − cos(|Ω|t) which indicates

the inversion oscillates between -1 and 1 at the Rabi frequency Ω. The population of

atoms is driven between the excited and ground states as a result of the laser-atoms

interaction. For a certain atom, the frequency of oscillation represents the strength

of the laser field.

B. Density matrix representation

In principle, a state vector |ψ〉 in Hilbert space contains all possible information for

a given quantum mechanical system, while it does not provide a good approach in

many practical situations. In many cases we may not know the exact form of |ψ〉, but
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only the probability Pψ of being in the state |ψ〉. To obtain the expectation value of

an operator, we need to take the quantum mechanical average as well as the ensemble

average for macroscopic objects.

A quantum mechanical system can be represented by a density operator and it

provides a practical approach in many situations. The density operator is defined by

ρ =
∑
ψ

Pψ|ψ〉〈ψ| . (2.11)

If the probability Pψ is nonzero only for a state |ψ0〉, the state is called a pure state

and the density operator is given by ρ = |ψ0〉〈ψ0|. Knowing the density operator, we

can calculate the expectation value of an operator Ô

〈Ô〉 =
∑
ψ

Pψ〈ψ|Ô|ψ〉

= Tr(Ôρ) . (2.12)

To find out the physical meaning of the density operator, we can write the density

operator in a matrix form for a given basis {|n〉}. The density matrix has matrix

elements ρnm = 〈n|ρ|m〉. The diagonal elements ρnn represent the probabilities of

being the states |n〉. The off-diagonal elements ρnm (n �= m) represent the coherence

between the states |n〉 and |m〉, in particular cases it could be the dipole moment

operator.

As an example, we consider a two level system in the state |ψ〉 = Ca|a〉 + Cb|b〉.
The density matrix operator can be written as

ρ = |ψ〉〈ψ| = |Ca|2|a〉〈a| + |Cb|2|b〉〈b| + CaC
∗
b |a〉〈b| + CbC

∗
a |b〉〈a|. (2.13)

The matrix elements are given by ρaa = |Ca|2, ρab = CaC
∗
b , ρba = ρ∗ab = C∗

aCb, and

ρbb = |Cb|2. We can see that ρaa and ρbb are the probabilities of being in the states |a〉
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and |b〉. The off-diagonal elements ρab and ρba are related with the atomic polarization

P = ρab℘ba + ρba℘ab.

For a particular system described by the Hamiltonian H , the equations of motion

for the density matrix are needed to study the dynamics of the system. Staring from

the Schrödinger equation (2.4), we have

|ψ̇〉 = − i

h̄
H|ψ〉 . (2.14)

From equation (2.11), the time derivative of ρ is given by

ρ̇ =
∑
ψ

Pψ(|ψ̇〉〈ψ| + |ψ〉〈ψ̇|) . (2.15)

Plug (2.14) into equation (2.15), we obtain the equation of motion for the density

matrix,

ρ̇ = − i

h̄
[H, ρ] . (2.16)

The equation of motion (2.16) is not completed to describe a real system since the

decay of atomic levels are not considered. The decay can be considered by including

phenomenological decay terms in the equation of motion. Define a relaxation matrix

Γ by the equation 〈n|Γ|m〉 = γnδnm, the equation of motion with decay terms can be

written as

ρ̇ = − i

h̄
[H, ρ] − 1

2
{Γ, ρ} , (2.17)

where {Γ, ρ} = Γρ+ ρΓ.

We now use the density matrix to treat the two-level atom problem in section

A. The Hamiltonian of the system is given by H = H0 +HI with H0 and HI shown

(2.1) and (2.2). Plug the Hamiltonian into equation (2.17), we obtain the equations

of motion for the elements of the density matrix,

ρ̇aa = iΩ cos(νt)ρba − iΩ∗ cos(νt)ρab − γaρaa , (2.18)
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ρ̇bb = iΩ∗ cos(νt)ρab − iΩ cos(νt)ρba − γbρbb , (2.19)

ρ̇ab = −i(ω + γab)ρab − iΩ cos(νt)(ρaa − ρbb) , (2.20)

where ω = ωa − ωb and γab = 1
2
(γa + γb). With the initial conditions given, we are

able to solve these equations for the matrix elements ρaa, ρbb, ρab and ρba which give

us the information of the system.

C. Light propagation in a resonant medium

So far we have considered a simplified case in which a single mode laser field interacts

with a single atom. However, many problems involve a laser beam propagating in

an ensemble of atoms. In this case, the light-atom interaction is position dependent.

Moreover, we need to consider the influence of the field on atoms on one hand, and

how the atoms affect back on the field on the other. The applied field induces not

only coherence and transitions but also atomic electric dipole moments. The dipole

moment of a single atom may have a negligible effect on the field, but a large number

of atoms can significantly affect the field. A self-consistent theory taking account

the effect of both the field and the atoms is needed to calculate the evolution of the

system.

The electromagnetic field is governed by the Maxwell equations. In free space,

they can be written as the following

∇ · E = 0; (2.21)

∇ · B = 0; (2.22)

∇× E = −∂B
∂t

; (2.23)

∇×B =
1

c2

∂

∂t
(E +

1

ε0
P); (2.24)
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take the curl of equation (2.23), use the identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A

and equations (2.21,2.24), we then have the wave equation of the electric field as the

following,

∇2E − 1

c2

∂2

∂t2
E =

1

ε0c2

∂2

∂t2
P. (2.25)

We now use the so called slowly varying amplitude approximation to reduce this

second order differential wave equation to a first order differential equation. A nearly

monochromatic electric field can be written in a form with a slowly varying amplitude

E(r, t). Let us introduce slowly varying amplitudes for both the electric field and the

polarization,

E(r, t) = E(r, t)eikz−iνt + c.c. (2.26)

P(r, t) = P(r, t)eikz−iνt + c.c. (2.27)

Take the derivatives of equations (2.26,2.27), we have

∇2E = (∇2
⊥E + 2ik

∂

∂z
E − k2E)eikz−iνt + c.c. (2.28)

∂2

∂t2
E = (

∂2

∂t2
E − 2iν

∂

∂t
E − ν2E)eikz−iνt + c.c. (2.29)

∂2

∂t2
P = (

∂2

∂t2
P − 2iν

∂

∂t
P − ν2P)eikz−iνt + c.c. (2.30)

where ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2
is in the transverse direction. Substitute these equations into

equation (2.25), we have

∇2
⊥E+2ik

∂

∂z
E−k2E− 1

c2
(
∂2

∂t2
E−2iν

∂

∂t
E−ν2E) =

1

ε0c2
(
∂2

∂t2
P−2iν

∂

∂t
P−ν2P). (2.31)

In the slowly varying amplitude approximation, we have | ∂
∂t
P| � |νP|, | ∂

∂t
E| �

|νE|, | ∂
∂z
P| � |kE|. Together with the relation ν = ck, equation (2.31) can be reduced

into

1

2ik
∇2

⊥E +
∂

∂z
E +

1

c

∂

∂t
E =

ik

2ε0
P. (2.32)
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This is a self-consistent equation which describes a laser field interacting with

an ensemble of atoms. The right side of the equation is the source of the field which

is driven by the local field. The left side of the equation describes the evolution of

the field in both space and time. Particularly, the first term is related with the field

distribution in the transverse direction of the laser beam. The term is important to

the transverse effects such as beam focusing, it can not be neglected whenever the

beam profile concerns. However, in the cases we care about the overall power rather

than the variation in the transverse direction, the first term can be ignored. The

second term is related with the field propagation. It gives the field distribution along

the direction of propagation. The third term gives the time dependence of the field.

For a continuous wave, the slowly varying amplitude E does not change in time,

i.e. ∂E/∂t = 0. Therefore, equation (2.32) becomes

1

2ik
∇2

⊥E +
∂

∂z
E =

ik

2ε0
P. (2.33)

Use the Rabi frequency Ωp = ℘baE/h̄ and the polarization P = N℘baρab, substitute

them into equation (2.33), we have

1

2ik
∇2

⊥Ωp +
∂

∂z
Ωp =

iNk℘2
ba

2h̄ε0
ρab (2.34)

Identifying the dipole moment with the spontaneous emission rate γr = ℘2
bak

3/3πε0h̄

and using k = 2π/λ, we have

1

2ik
∇2

⊥Ωp +
∂

∂z
Ωp = iηρab (2.35)

where η = 3λ2Nγr/8π is the coupling coefficient. Equation (2.35) is used to describe

most of experiments in the following text involving a continuous wave laser field

propagates in an atomic gas.
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D. Three level Λ system

A two level system is theoretically the simplest case of light-atom interaction. How-

ever, it is hard to realize a two level system experimentally. The simplest realistic

system is a three level system. This section reviews a three level atom interacting

with two laser fields. The coherent interaction between the atom and two laser fields

makes it possible to have the quantum interference of two excitation pathways. As

a result, it dramatically changes the optical properties of the atoms and results in

many counter intuitive phenomena such as Electromagnetically Induced Transparency

(EIT) [1, 14, 3].

| � \

| � \

| � \

bc

Fig. 2. The energy diagram of a three level atom interacting with two laser fields Ω1

and Ω2. Such a system is called a Λ scheme.

We consider an atom with the energy scheme shown in Fig. 2 interacting with

two laser fields with Rabi frequencies Ω1 and Ω2. The fields with Rabi frequencies Ω1

and Ω2 are called probe and drive respectively. The Hamiltonian of the system can

be written as H = H0 +HI , where

H0 = h̄ωa|a〉〈a| + h̄ωb|b〉〈b| + h̄ωc|c〉〈c|, (2.36)
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HI = −h̄(Ω1e
−iν1t|a〉〈b| + Ω2e

−iν2t|a〉〈c| + h.c.), (2.37)

where ωi (i = a, b, c) are the corresponding atomic frequencies, and νi (i = 1, 2)

are the optical frequencies. Plug the Hamiltonian into the equation of motion ˙̂ρ =

− i
h̄
[H, ρ̂] − 1

2
{Γ, ρ̂} for the density operator ρ̂, we then have the equations of motion

as the following,

˙̂ρaa = iΩ1e
−iν1tρ̂ba − iΩ∗

1e
iν1tρ̂ab + iΩ2e

−iν2tρ̂ca − iΩ∗
2e
iν2tρ̂ac − 2γρ̂aa (2.38)

˙̂ρbb = iΩ∗
1e
iν1tρ̂ab − iΩ1e

−iν1tρ̂ba − γρ̂bb − γbcρ̂bb + γbcρ̂cc (2.39)

˙̂ρcc = iΩ∗
2e
iν2tρ̂ac − iΩ2e

−iν2tρ̂ca − γρ̂cc − γbcρ̂cc + γbcρ̂bb (2.40)

˙̂ρab = −iωabρ̂ab + iΩ1e
−iν1t(ρ̂bb − ρ̂aa) + iΩ2e

−iν2tρ̂cb − γρ̂ab (2.41)

˙̂ρac = −iωacρ̂ac + iΩ2e
−iν2t(ρ̂cc − ρ̂aa) + iΩ1e

−iν1tρ̂bc − γρ̂ac (2.42)

˙̂ρcb = −iωcbρ̂cb + iΩ∗
2e
iν2tρ̂ab − iΩ1e

−iν1tρ̂ca − γbcρ̂cb (2.43)

where ωab = ωa − ωb, ωac = ωa − ωc and ωcb = ωc − ωb.

We can write the density operator in the form of slowly varying amplitude such

that the matrix elements satisfy

ρ̂aa = ρaa (2.44)

ρ̂bb = ρbb (2.45)

ρ̂cc = ρcc (2.46)

ρ̂ab = ρabe
−iν1t (2.47)

ρ̂ac = ρace
−iν2t (2.48)

ρ̂bc = ρbce
−i(ν1−ν2)t. (2.49)
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Substituting these into equations (2.38 ∼ 2.43), they turn into the following equations

ρ̇aa = iΩ1ρba − iΩ∗
1ρab + iΩ2ρca − iΩ∗

2ρac − 2γρaa (2.50)

ρ̇bb = iΩ∗
1ρab − iΩ1ρba + γρaa − γbcρbb + γbcρcc (2.51)

ρ̇cc = iΩ∗
2ρac − iΩ2ρca + γρaa − γbcρcc + γbcρbb (2.52)

ρ̇ab = −Γabρab + iΩ1(ρbb − ρaa) + iΩ2ρcb (2.53)

ρ̇ac = −Γacρac + iΩ2(ρcc − ρaa) + iΩ1ρ̂bc (2.54)

ρ̇cb = −Γcbρcb + iΩ∗
2ρab − iΩ1ρca (2.55)

where Γab = γ + i(ωab − ν1), Γac = γ + i(ωac − ν2) and Γcb = γbc + i(ωcb + ν2 − ν1).

Known initial conditions, we are able to solve these equations for the matrix elements

of the density operator. As an example, we solve for ρab which describes the optical

properties of the transition |a〉 → |b〉. For the steady state in which ρij = 0, we obtain

the solution

ρab = iΩ1
(ρbb − ρaa)(Γ

∗
acΓcb + |Ω1|2) + |Ω2|2(ρaa − ρcc)

ΓabΓ∗
acΓcb + Γ∗

ac|Ω2|2 + Γab|Ω1|2 . (2.56)

In a practical case, the drive field is much stronger than the probe field, i.e. |Ω2|2 �
|Ω1|2. The state |a〉 is most populated, i.e. ρbb ≈ 1, ρaa ≈ 0 and ρcc ≈ 0. We then

can write ρab as the following

ρab =
iΓcbΩ1

ΓabΓcb + |Ω2|2 . (2.57)

For an ensemble of atoms with the density N , the polarization is given by P = N℘abρab

and we also have the relation P = ε0χabE where χab is the susceptibility. Therefore,

the susceptibility χab can be expressed as χab = N℘abρab

ε0E
. Use equation (2.57), we have

χab = iκ
iΓcb

ΓabΓcb + |Ω2|2 , (2.58)
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where κ = 3Nλ2γr/8π
2. If the drive field is on resonant (ν2 = ωac) and the probe field

is not, the single photon detuning is defined by ∆ = ωab− ν1. The dependence of the

susceptibility χ on the detuning ∆ is shown in Fig. 3. The parameters used in the

plots are Ω1 = 0.1γ, Ω2 = γ and γbc = 0.01γ. Plot (a) is the imaginary part of χ which

represents the absorption of the medium. Plot (b) is the real part of χ which represents

the index of refraction. Unlike what one would expect for a two level system, at the

resonance (∆ = 0), the absorption approaches zero and the medium is transparent

to the resonant probe field. This phenomenon is called Electromagnetically Induced

Transparency (EIT). Besides the transparency, the associated abnormal dispersion

near resonance is more interesting. It is attributed to many effects which will be

described in the rest of the dissertation.

Fig. 3. Susceptibility χab dependence on the detuning ∆. Both the imaginary part

(a) and the real part (b) of the susceptibility are shown. The parameters are

Ω1 = 0.1γ, Ω2 = γ and γbc = 0.01γ.

To consider two laser fields propagating in an ensemble of three level atoms, the

expression of ρab such as (2.56) can be used in the propagation equation (2.35). The

properties of the probe field are given by the solution of this equation.
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CHAPTER III

PHASE EFFECTS IN EIT

As described in Chapter II, one can have Electromagnetically Induced Transparency

when two laser fields coherently interacts with a three level system. Under EIT

conditions, the medium has an unusual transparency at resonance frequency and

an associated abnormal dispersion which are contributed by quantum coherence

[1, 3, 2, 15, 16]. Besides these properties, the quantum coherence in EIT leads to

many other counter-intuitive phenomena such as slow and stored light in various

media [8, 9, 17, 18, 19, 10, 20], the scattering via a gradient force in gases [21],

the forward Brillouin scattering in ultra-dispersive resonant media [11, 12, 22], con-

trolled coherent multi-wave mixing [13], Doppler broadening elimination [23], light

induced chirality in a nonchiral medium [7], switching faster than relaxation rate [24],

a new class of entanglement amplifier [25] based on correlated spontaneous emission

lasers [26, 27, 28, 29]. Because of the importance of EIT to both understanding the

fundamental physics and the novel applications, EIT and related effects have been

extensively studied throughout the years. In this chapter, we discuss how the phase

of electromagnetical fields affects and controls EIT.

Usually EIT can be realized in atoms that have a three level configuration such

as Λ, V, and Ladder schemes [1, 3]. Natural generalizations of the three level schemes

are the double-Λ, double-V, double-Ladder and Λ-V schemes [30, 31, 32, 33, 34, 35] in

which two additional laser fields are used to have extra control of the coherence of two

states (for example, two ground states for the Λ scheme). Although the easiest way

to control the coherence is to apply one field to the transition between two ground

states, it is not allowed for a closed loop consisting of three transitions which are all

dipole transitions. Such a closed loop is possible if one of the transitions is a magnetic
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dipole transition which can be driven by a microwave field. The optical properties

such as absorption and dispersion of a coherently prepared medium can be modified

by applying an additional microwave [33, 36, 37] or optical fields [34, 38]. In some

regard, the generalized scheme mentioned above can be related to a three level system

coupled with two optical fields and a microwave field. In both the standard three level

systems and the generalized systems, the phase of the fields is crucial to determine

the optical response of the medium. We are interested in how the phase of both the

optical fields and microwave field affects the optical properties of the medium.

In the first section, we study the time response of EIT in a standard Λ scheme to a

rapid variation of the phase of the optical field. In the experiment, we observed a very

fast growth of the absorption when the phase of the optical field was abruptly changed,

followed by a slow return to the level of steady-state absorption. The magnitude of

the variation in absorption is proportional to the magnitude of the phase variation.

The recovery time decreases with increasing optical power and the low power limit of

the recovery time is determined by the ground state relaxation time. The technique

can be used to control the absorption in EIT. It can also be used as a technique to

measure the ground state relaxation rate.

In the second section, we study a closed Λ system in which two laser fields

interacting with a three level system (rubidium atoms) and an additional microwave

field is coupled to two ground state hyperfine levels. It is found that the relative

phase of the microwave field to optical fields can affect the transmission in EIT. The

additional microwave field provide a way to control the coherence of the system. It

is a way to efficiently control EIT and optical properties of the medium.
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A. Coherent control of EIT by the optical phase ∗

The basic EIT system we study is a Λ scheme atomic system coupled with two

stationary optical fields Ωd (drive) and Ωp (probe) as shown in Fig. 4. In the steady

state, the phase of optical fields and the phase of the coherence are locked. The

medium has the transparency and the abnormal dispersion as described before. One

way to understand EIT is to use the concept of dark state. The Λ system is equivalent

to the system shown on the right side of Fig. 4, where two eigenstates |B〉 and |D〉
are given by

|B〉 = sin θ|b〉 + cos θ|c〉 (3.1)

|D〉 = sin θ|b〉 − cos θ|c〉 (3.2)

with tan θ = Ωd(φd)/Ωp(φp). The state |D〉 has zero eigenvalue, so it has no coupling

with the laser field and it is called dark state. In the steady state, most of atoms are

trapped in the dark state so that the medium becomes transparent.

We can see from equation (3.2) that the dark state depends on the Rabi fre-

quencies of optical fields which are phase dependent. We have to keep a stable phase

relation to maintain a stationary dark state. A fast variation in phase of one optical

field will break the phase relation and destroy the dark state. This process has been

theoretically studied in [39], in which the simulation shows a fast variation in the

absorption as a result of a fast variation of optical phase.

In this section, we report the experimental study on the effect of a fast variation

of optical phase in EIT. We are interested in the dynamic processes of establishing

∗Part of the data reported in this section is reprinted with permission from “Dy-
namic control of EIT by changing optical phase,” by V.A. Sautenkov, H. Li et al., J.
Mod. Opt. 55, 3093 (2008) and “Using phase dynamics in EIT to probe ground state
relaxation in rubidium vapor,” by V.A. Sautenkov, H. Li et al., J. Mod. Opt. 56, 975
(2009), Copyright by Taylor & Francis Group.
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Fig. 4. A standard Λ scheme EIT system (left side) including a three level system

and two laser fields. The system is equivalent to the system (right side) with

two eigenstates bright state |B〉 and dark state |D〉.

and destroying EIT instead of the steady state EIT. The time scales of destroying

and recovering the transparency is studied. Based on the experimental results, the

potential applications such as control of EIT and probing the ground state relaxation

rate will also be discussed.

1. Experimental setup

The experimental setup is shown in Fig. 5. An extended-cavity diode laser (ECDL) is

tuned to the maximum absorption resonance which is a combination of two Doppler

broadened optical transitions 5S1/2(F=3)↔ 5P1/2(F=2) and 5S1/2(F=3)↔5P1/2(F=3)

of 85Rb (D1 line, λ = 795 nm). The linearly polarized laser beam is split and a λ/2

wave plate rotates the linear polarization of one beam. An electro-optical modulator

(EOM) is installed in the path of one of the beams to change the relative optical phase.

The orthogonally linearly polarized beams are combined by a polarizing beam splitter

(PBS). After a λ/4 wave plate the laser beams are sent into a glass cell (the length is

7.5 cm) with rubidium atomic vapor. The 85Rb atomic density is estimated as 2×1011

cm−3 from the cell temperature. To reduce the contribution of the stray magnetic
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field the cell is installed in a magnetic shield. Two circularly polarized optical fields

create a coherent coupling between ground state Zeeman sublevels in rubidium atomic

vapor and generate EIT. The transmitted optical beams with orthogonal polarizations

are separated using a second λ/4 wave plate and PBS. After the second PBS the

optical beams are sent to photodiodes PD1 and PD2. The signals from photodiodes

(bandwidth 0∼50 MHz) are recorded by a digital storage oscilloscope (DSO) with the

bandwidth of 0∼100 MHz.

Rb cell in 
magnetic shield

λ/4 λ/4

λ/2

B

PBS PBS

Scope

Laser

Isolator

σ

EOM

σ

m = -1 m = +1

_+

85Rb
a

cb

Fig. 5. Experimental setup and simplified energy level scheme in the inset. EOM,

electro-optical modulator; PBS, polarizing beam splitter; λ/2 and λ/4, wave

plates; PD1 and PD2, photo-detectors; DSO, digital storage oscilloscope.

In practice the beams with orthogonal polarizations can be aligned to be near

perfectly overlapped [40] or crossing with a small angle [41] in the Rb cell. There are

both advantages and down sides for each case. In the first case, the coherent region

where two beams are overlapped is limited by the crossing angle, thus the time of

flight for atoms is not well defined by the geometry of beams. However, the beams

will be well separated for the detection because of the non-parallelism of the beams.

In the later case, the coherent region is maximized to the beam size and the time
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of flight can be estimated by the beam diameter. While in the detection stage, the

separation of beams is limited by the extinction ratio of the polarizing beam splitter.

We have studied the response of EIT to phase change in both cases.

In this experiment, the frequency of the laser field is fixed and the detuning is

introduced by changing the separation of energy levels. As shown in Fig. 5, the

ground states are two Zeeman sublevels. The splitting can be controlled by applying

a longitudinal magnetic field B. Varying the two-photon detuning by the magnetic

field, we can record the EIT resonance in transmission. A typical EIT transmission

peak is shown in Fig. 6. The experimental EIT peak has a perfect Lorentzian fit.

Fig. 6. The EIT resonance in transmission. The experimental result (solid curve) and

the Lorentzian fit (red dot curve) versus the two-photon detuning are shown.

Changing the phase of the optical field is realized by an electro-optical modulator

(EOM) inserted in the path of the beam. We apply low voltage rectangular pulses
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with a repetition rate of 100 kHz to the EOM (bandwidth 0∼200 MHz) directly from

a function generator. The rise time of pulses is about 20 ns and the edge of pulses

can be considered as a step function in our experiment. We have adjusted the beam

polarization and the position of the EOM to avoid intensity modulation at the photo

detector PD1. The measured residual intensity modulation is less than the noise level

in our experiment. We record the transmission of the coupled optical beam by the

photo detector PD2.

2. Experimental results and discussion

As shown in Fig. 7, as we change the phase like curve (a), a general response of

the transmission is represented by the curve (b). We observe a fast drop of the

transmission when the optical phase is abruptly changed, followed by a slow return

to the steady state transmission. The magnitude of the variation in transmission is

dependent on the magnitude of the variation of the optical phase. It is illustrated in

the right plot of Fig. 7.

The temporal response of transmission can be analyzed by using the theoretical

model developed in [39]. A simplified energy level scheme is shown in Fig. 5. We

suppose that optical transitions a → b and a → c are homogeneously broadened

with spectral width γa. In the experiment the Rabi frequencies of the fields with

orthogonal circular polarizations are equal, Ω− = Ω+ = Ω and Ω2/γa > γbc, where

γbc is relaxation rate of the ground state coherence ρbc. Under these conditions when

the variation of EIT is small (the optical phase Φ and the ground state coherence

ρbc have small variations, |∆Φ| 
 π, |∆ρbc| 
 |ρbc|) the master equations in [39] can

be simplified by using the perturbation theory. A slow return of the ground state
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Fig. 7. The left figure shows the change of the EIT transmission (b) as the phase

of optical field (a) changes abruptly. The transmission decreases and slowly

recovers to the steady state level. The right figure shows the variation of

transmission for different variations of the phase.

coherence variation to zero can be described by the exponential function,

|∆ρbc| ∼ exp(−2γbc − Ω2

γa
) (3.3)

For estimation the spectral width γa can be substituted by the Doppler width ∆D.

The expression of the recovery rate is similar to the ground state decoherence rate in

a Λ system discussed in [42]. We shall note that a simple expression for the temporal

response is valid only for the selected parameters. In a general case the time response

of EIT could be more complicated.

We have performed measurements with the selected experimental parameters in

order to satisfy the simplified theoretical model. The power of each optical beam is

P = 0.45 mW and the phase change is ∆Φ = 0.18 rad. A detailed time dependence

of the transmission is shown in Fig. 8. As we change the phase, there is a very

sharp increase in the absorption followed by a slow return back to the steady-state
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Fig. 8. The time dependence of transmission as the phase of optical field is changed

abruptly. The solid line is the experimental result and the blue dash line is the

exponential fit. The measurements are taken with overlapped beams.

transparency value.

The experiments have been done with both overlapped beams and crossing

beams. For the case with overlapped beams, we estimate the rise time of the ab-

sorption between the 10% and 90% points to be on the order of 20 ns. We attribute

this time to the response time of the electronic devices in our setup. The optical

switch time could be much shorter [39]. Then the transmission restores slowly to

the stationary value. The curve can be fit by a single exponential function, which

we also plot in Fig. 8 as the dash line. The recovery time T at the optical power

P = 0.45 mW of each beam is estimated by a least squares fit to be 0.84 µs. The

variation of the transmission is estimated as 0.5%. This value is much less than the

amplitude of the EIT resonance of 8%. For the case with crossing beams, the rise
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time of the absorption between the 10% and 90% points is also on the order of 20 ns.

The recovery time T is estimated to be 0.58 µs. The variation of the transmission is

about 0.5%.

Fig. 9. The power dependence of the recovery rate 1/T . The circles are the experi-

mental data and the red line is the linear fit.

We have also measured the power dependence of the optical response. Keep

the phase modulation and other parameters same as those used in Fig. 8, we did

the measurements at different optical powers. The recovery time T is estimated

for different optical powers from the least squares fit. The power dependence of

the inverse recovery time 1/T (recovery rate) for the case with overlapped beams is

presented in Fig. 9. We fit the experimental data in Fig. 9 by a linear function

y = A +B · P . The linear fit gives A = 0.59 µs−1 and B = 1.2 mW−1µs−1. The low

power limit of the recovery rate should coincide with the inverse effective ground state

relaxation time according to equation (3.3). The estimated ground state relaxation
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time is T0 = A−1 = 1.7 ± 0.009 µs. This value should be the same as the time of

flight which can be calculated for the optical beam with a Gaussian distribution by

using the expression Tν = d/νth, where d is the beam diameter and νth is the thermal

velocity of the rubidium atoms [43]. Based on the optical beam profile in the rubidium

cell recorded by a CCD camera, we can make a rough estimation of the time of flight

as order of 2 µs.

Fig. 10. The power dependence of the recovery rate 1/T . The squares are the exper-

imental data and the red line is the linear fit.

A direct measurement of the time of flight can be done by using the technique

“relaxation in the dark” [44, 45]. In this method the pump pulse optically pumps

the ground state sublevels to populate one of them. A following time-delayed pulse

probes the population of the other sublevels. Changing the delay time between the

pump and probe pulses, the dependence of probe pulse transmission on the delay time

tells us the relaxation time of the ground state sublevels. In our experiment only one
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laser beams is used to measure the relaxation time. The decay curve at low pump and

probe powers is shown in Fig. 10. The measured decay time is 1.56±0.12 µs. We can

see that the relaxation time measured by “relaxation in the dark” is consistent with

the value estimated by the power dependence of the EIT recovery rate considering

the uncertainty of both measurements. The technique of using the phase dynamics

in EIT can be an alternative method to measure the relaxation time or the time of

flight.

B. Coherent control of EIT by a microwave field ∗

The system under study is a three level atomic system coupled with two optical fields

and an additional microwave field forming so called “closed Λ scheme”, as shown

in Fig. 11. The EIT of the system is studied with the presence of the microwave

field. We find that the microwave field “perturbs” the coherence of two ground states

and leads to the change of the maximum transmission of the probe field. Both the

enhanced or suppressed EIT peaks can be obtained depending on the relative phase

between the optical fields and the microwave field.

The systems involving interactions of both optical fields and microwave fields

have been of great interests. The closed Λ scheme with a microwave field coupled with

two ground state hyperfine levels has been theoretically studied [46]. Experimentally,

it has been shown the perturbation of microwave fields to EIT in both three [47] and

four [48] level systems. The microwave field has been used to excite a Raman trapped

state to study the influence of the microwave field on the CPT in a Λ system [49], it

has also been used to realize four-wave mixing (FWM) with optical and microwave

∗Part of the data reported in this section is reprinted with permission from “Elec-
tromagnetically induced transparency controlled by a microwave field,” by H. Li et al.,
Phys. Rev. A 80, 023820 (2009), Copyright by the American Physical Society.
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Fig. 11. Energy levels of a closed Λ scheme three-level system. Ω1 and Ω2 are two

optical fields and Ωµ is a microwave field.

fields [50] and to study double dark resonances [37]. Particularly, the control of the

probe transmission by the microwave phase has been demonstrated [36] in a V scheme

system of Pr3+:YAlO3 excited by a microwave field and two optical fields.

Owing to the additional control of coherence by the microwave field, the close Λ

system has broad range of potential applications. For example, it has been considered

as the perspective candidate for realization of stop-and-go slow light [51, 52, 53] and

coherent backward scattering [13]. The interest in this topic is also stimulated by the

quantum storage based on EIT [54, 55, 56]. It has been shown that the quantum state

of light can be stored and retrieved in a dense medium by switching on and off a control

field. The systems with a microwave field as the control field have better controlled

probe transparency because the absorption of the microwave is much smaller than

optical fields. This is important for improving and optimizing the quantum storage

efficiency [57, 58, 59, 60, 61]. The microwave can also improve the performance of

optical delay lines using slow light [62].

The rest of this section is organized by starting with a simple theoretical model of

a close Λ system. It is followed by the experimental details as well as the experimental

results and discussions. A numerical simulation is presented at the end.
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1. Theory of a closed Λ system

Let us consider a cell filled with a gas of three-level atoms that have the energy level

scheme shown in Fig. 11. Two optical beams are propagating through the cell of

atoms along z axis, and the optical fields

E1 = E1 cos(ν1t− k1z + φ1)

and

E2 = E2 cos(ν2t− k2z + φ2)

are coupled to the atomic transitions |a〉 → |b〉 and |a〉 → |c〉 (see Fig. 11) corre-

spondingly, where ν1 and ν2 are the optical frequencies of the corresponding fields;

k1 and k2 are the wave numbers of the optical fields; φ1 and φ2 are the phases of the

optical fields. The cell is placed in a microwave cavity and a microwave field

Eµ = Eµ(z) cos(νµt+ φµ)

is coupled to two ground states |b〉 and |c〉. Here Eµ(z) is the dependence of the

microwave field on position z inside the cavity, νµ is the microwave frequency, and φµ

is the phase of the microwave field.

The Hamiltonian of the atom located at position z can be written as

H = h̄ωa|a〉〈a| + h̄ωb|b〉〈b| + h̄ωc|c〉〈c| − [℘abE1|a〉〈b| +

℘acE2|a〉〈c| + ℘bcEµ|c〉〈b| + h.c.], (3.4)

where h̄ωα is the energy of the corresponding level |α〉, and ℘α,β = 〈α|℘̂|β〉 are the

dipole moments of corresponding transitions |α〉 → |β〉 (α, β = a, b, c). Use the



31

density matrix equation of motion (2.17),

ρ̇ = − i

h̄
[H, ρ] − 1

2
{Γ, ρ} (3.5)

The non-diagonal elements of the density matrix equations are found as the following,

ρ̇ab = −(γab + iωab)ρab − i
℘abE1

h̄
(ρaa − ρbb) + i

℘acE2

h̄
ρcb − i

℘cbEµ
h̄

ρac (3.6)

ρ̇ac = −(γac + iωac)ρac − i
℘acE2

h̄
(ρaa − ρcc) + i℘abE1ρbc − i

℘bcEµ
h̄

ρab (3.7)

ρ̇cb = −(γcb + iωcb)ρcb − i
℘cbEµ
h̄

(ρcc − ρbb) + i
℘caE2

h̄
ρab − i

℘abE1ρca
h̄

(3.8)

where ωαβ = ωα − ωβ.

We make the rotating wave approximation by leaving only the resonance terms

and neglecting the counter-rotating far-off resonance terms. Introducing slowly vary-

ing envelopes

ρab = σab exp(ik1z − iν1t), (3.9)

ρac = σac exp(ik2z − iν2t), (3.10)

ρcb = σcb exp(i∆kz − i(ν1 − ν2)t), (3.11)

ραα = σαα, (3.12)

where ∆k = k1 − k2, then the density matrix equations can be written as

σ̇ab = −Γabσab − iΩ1(σaa − σbb) + iΩ2σcb − iΩµe
i(ν1−ν2−νµ)t+i∆kzσac (3.13)

σ̇ac = −Γacσac − iΩ2(σaa − σcc) + iΩ1σbc − iΩ∗
µe

−i(ν1−ν2−νµ)t−i∆kzσab (3.14)

σ̇cb = −Γcbσcb − iΩµe
i(ν1−ν2−νµ)t+i∆kz(σcc − σbb) + iΩ∗

2σab − iΩ1σca (3.15)

where

Ω1 =
℘abE1

2h̄
eiφ1 , Ω2 =

℘acE2

2h̄
eiφ2 , and Ωµ =

℘bcEµ
2h̄

eiφµ
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are the Rabi frequencies of the optical probe and drive fields, and the microwave field

respectively; Γab = γab+i(ωab−ν1), Γac = γac+i(ωac−ν2) and Γcb = γcb+i(ωcb+ν2−ν1).

We consider the case in which the drive field is on resonant (ν2 = ωac), while the

probe field and microwave field have the same detuning ∆ ≡ ωab − ν1 = ωcb − νµ,

thus ν1 − ν2 − νµ = 0. Consider the steady-state regime (ρ̇ab = ρ̇ab = ρ̇cb = 0), and

assume that the drive field is much stronger than the probe field and the microwave

field (|Ω2| � |Ω1|, |Ωµ|), so all of the population is in the ground state |b〉, i.e. ρbb � 1

and ρaa = ρcc � 0, we can solve Eqs. (6-8) for σab,

σab =
iΓcbΩ1

ΓabΓcb + |Ω2|2 − Ω2Ωµe
i∆kz

ΓabΓcb + |Ω2|2 (3.16)

with Γab = γab + i∆ and Γcb = γcb + i∆.

Plug the expression of σab into equation (2.35), we obtain the propagation equa-

tion

∂Ω1

∂z
= − ηΓcbΩ1

ΓabΓcb + |Ω2|2 − i
ηΩ2Ωµe

i∆kz

ΓabΓcb + |Ω2|2 (3.17)

On the right hand side of equation (3.17), the first term is due to the contribution

from the Lambda scheme EIT, and the second term is the contribution from the

parameteric process involves the microwave field. The transmission of the probe field

is determined by the interference of these two terms. The second term is interesting

because of the strong dependence on the relative phase of the optical fields and

the microwave field. This gives us several ways to control the coherence and the

transmission of the probe field. For instance, one can use a microwave phase shifter

to change the phase of microwave field; one can also use an optical delay line, like the

one used in [49], to change the phase of optical field. An alternative way is simply

changing the position of the Rb cell, which is described as the following.

Assume that the drive and probe fields are phase-locked, they form a wave pack-
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age along the propagation direction with the frequency which is the frequency dif-

ference of two fields. For 87Rb, this frequency is 6.835 GHz, and the corresponding

wavelength is about 4.4 cm. If we put the Rb cell in a microwave cavity which is

excited by a microwave with the frequency of 6.835 GHz, the phase of microwave

field in the cavity does not change when we move the cell and the microwave cavity

together. However, the relative optical phase changes since the relative position of

the cell with respect to the wave package of optical fields changes. In other words,

we are able to change the phase 
kz by moving the cell and the microwave cavity

along the propagation direction of the optical fields.

2. Experimental setup

The experimental setup is schematically shown in Fig. 12. The 87Rb gas along

with 5 Torr of Neon buffer gas is confined in a glass cell with the length of 25 mm.

To efficiently couple the microwave field with Rb atoms, the Rb cell is installed in

a microwave cavity. The microwave cavity with the cell is installed in a magnetic

shield to isolate the cell from environmental magnetic fields in the laboratory, and

the residue magnetic field is negligible. The Zeeman sublevels are not resolved in our

experiment. A non-magnetic heater is used to heat the cell to reach the atomic density

of 1012 cm−3. The microwave cavity has the resonant frequency of 6.835 GHz. The

loaded quality factor Q is about 2000, and the cavity mode is TE011. A microwave

signal generator provides the 6.835 GHz microwave field, which is amplified by a

microwave amplifier and is then injected into the cavity through an antenna. The

6.835 GHz microwave field is coupled with two hyperfine ground states 5S1/2(F = 1)

and 5S1/2(F = 2) of 87Rb atoms.

The optical fields are provided by a diode laser which is tuned to the D1 resonance

line of 87Rb atoms, specifically at the transition 5S1/2(F = 2) ↔ 5P1/2(F = 2). The
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Fig. 12. Experimental setup. EOM - electro-optic modulator; AOM - acousto-optic

modulator; PD - photodiode; the oven is assembled with 1. copper tube; 2.

non-magnetic heater; 3. magnetic shield; 4. microwave cavity with antenna;

5. Rb cell. Inset (a) shows the relative frequency of the laser fields. L1 is the

drive field, S1 and S2 are two sidebands generated by the EOM and S1 works

as the probe field. L2 is the laser field shifted 200 MHz in frequency by the

AOM. Inset (b) shows the beating signal without considering L2. Inset (c)

shows the beating signals with all fields L1, L2, S1 and S2 considered.

laser beam is split into two beams by a beam splitter. One beam passes through an

acousto-optic modulator (AOM) which shifts the laser frequency by 200 MHz. This

beam with 200 MHz shift in frequency is denoted as L2 in Fig. 12(a). It will be used

as a local oscillator of the heterodyne detection. The other beam is used to make the

drive and probe fields. This beam passes through an electro-optic modulator (EOM)

which is driven by a microwave field with the frequency of 6.835 GHz. Two sidebands

are generated with the frequency separation of 6.835 GHz with respect to the original

field. Two sidebands are denoted as S1 and S2 in Fig. 12(a). The original field

works as the drive field. One sideband (S1) works as the probe field at the transition

5S1/2(F = 1) ↔ 5P1/2(F = 2). The intensity ratio of the probe field to the drive field
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is about 15%. The other sideband (S2) is 6.835 GHz downshifted in frequency with

respect to the drive field. It is far detuned from the resonance and it has negligible

effect on the experiment. The laser beam from the EOM is circularly polarized by a

quarter wave plate and it is directed into the Rb cell.

With the optical fields (drive and probe) coming out from the EOM and the

microwave field in the cavity, we have a closed-Lambda system as shown in Fig.

11. Please note that the microwave signals used by the EOM and the microwave

cavity come from the same microwave signal generator. During the experiment, the

microwave generator is modulated 200 kHz in frequency around 6.835 GHz and the

sweep period is 0.1 s. Therefore, the probe laser field and the microwave field are

synchronized to scan 200 kHz in frequency, and they have the same detuning.

The transmitted probe field is detected by the heterodyne detection used in Ref

[9]. Instead of a direct measurement of the transmitted intensity which contains the

drive and two sidebands, we detect the beating signal using a fast photo detector

with the bandwidth of 25 GHz. The signal from the photo detector is analyzed

by a spectrum analyzer which is synchronized with the modulation of the microwave

generator. As shown in Fig. 12(b), without the presence of the shifted drive beam L2,

the detected beating signal is at 6.835 GHz. It includes the beating signal between L1

and S1, and the beating signal between L1 and S2. With the frequency shifted drive

beam L2, it beats with the transmitted beam to separate the frequency components

of S1 and S2 shown in Fig. 12(c). The beating signal between L2 and S2 is blue

shifted by 200 MHz, and the beating signal between L2 and S1 is red shifted by 200

MHz. The transmission of the probe field is obtained by measuring the beating signal

at the frequency of 6.835 GHz + 200 MHz.
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Fig. 13. The beating signal recorded by a spectrum analyzer at the center frequency of

7.035 GHz. It represents the transmission of the probe field. (a) the enhanced

transmission with the microwave field applied; (b) the suppressed without the

microwave field applied; (c) the destructive transmission with the microwave

field applied. The positions of the cell where (a) and (c) were taken are about

2.2 cm apart.

3. Experimental results

We measure the transmission of the probe field as a function of the detuning and

plot the transmission versus the detuning in Fig. 13. A normal EIT transmission

peak without applying the microwave field is shown in Fig. 13(b). With the presence

of the microwave field, we expect the ground state coherence is “disturbed” by the

microwave field and it changes the transmission of the probe field. As discussed above,

we change the relative phase between the optical fields and the microwave field by

changing the position of the cell and the microwave cavity along the optical axis. The
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Fig. 14. The EIT peaks as we change the position of the cell along the propagation

direction of optical fields. An EIT peak is recorded at every 3 mm we move

the cell. Figures (a) and (b) correspond to the case where the input laser fields

are right and left, respectively, circularly polarized. The distance between two

maxima (or minima) next to each other is about 4.4 cm.

periodicity of the cell position influencing the probe field transmission is expected to

be about 4.4 cm, the wavelength of the microwave field with the frequency of 6.835

GHz. Due to the interference of two terms on the right hand side of equation (3.16),

the transmission of probe field could be either enhanced or suppressed depending on

the relative phase. It is what we have observed in the experiment. As shown in

Fig. 13, with applying the microwave field, we have obtained both enhanced (a) and

suppressed (c) transmission of the probe field as we move the microwave cavity with

the cell to change the relative phase between the optical fields and the microwave

field. The positions of the cell corresponding to the curves (a) and (c) are at the

distance of about 2.2 cm.

An interesting feature needs to be pointed out for the case of suppressed trans-

mission (Fig. 13(c)). In this case, the amplitude of EIT peak decreases as we expected,

and we also have a small dip on the top which indicates that one (the one due to

presence of microwave field) of interfering terms has relatively narrower width. Its

width is narrower than EIT width.
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To systematically study the influence of the relative phase between the optical

fields and the microwave field on the probe field transmission, the EIT transmission

is recorded at different positions of the cell with a step of 3 mm along the propaga-

tion direction of the optical fields as shown in Fig. 14. The transmission has been

obtained with different polarizations of optical fields. The results obtained with the

right circularly polarized laser field are shown in Fig. 14(a), the results with the left

circularly polarized laser field are shown in Fig. 14(b). The amplitude of EIT peak

is oscillating with the change of the cell position. The distance between two maxima

(or minima) next to each other is about 4.4 cm, which is exactly the wavelength of

beating envelope of the input optical fields. This periodicity is consistent with the

theoretical prediction described above.

The oscillation is shown in Fig. 15, where we plot the amplitude of EIT peaks

as a function of the relative phase (phase 2π corresponds the wavelength 4.4 cm).

The dash lines are fittings of the sinusoid function. Comparing the cases of right and

left circularly polarized input laser fields, the behaviors are exactly opposite. This

feature seems to be surprising, because the whole system is symmetrical about the

optical axis and there is no obvious way to tell the difference between left and right

circular polarizations. The physics of such behavior is the following. The left and right

circularly polarized fields are coupled with different Zeeman sub-levels (see Fig. 16).

Due to the optical pumping, among the Zeeman sub-levels of the ground state with

F = 1, the state |F = 1, m = +1〉 is most populated for the right circularly polarized

light and the state |F = 1, m = −1〉 is most populated for the left circularly polarized

light. Then, we can see a simplified level scheme shown in Fig. 11 corresponding to

the real Rb energy levels. For the right circularly polarized fields, we have |a〉 = |F ′ =

2, m = 2〉, |b〉 = |F = 1, m = 1〉, and |c〉 = |F = 2, m = 1〉. For the left circularly

polarized fields, we have |a〉 = |F ′ = 2, m = −2〉, |b〉 = |F = 1, m = −1〉, and
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|c〉 = |F = 2, m = −1〉. The magnetic transition dipole moments between hyperfine

levels are equal to each other as

〈2,−m|µ̂z|1,−m〉 = 〈2, m|µ̂z|1, m〉, (3.18)

while the relation between the dipole moments of optical transitions are the following

〈2′, m+ 1|℘+1|2, m〉 = −〈2′,−m− 1|℘−1|2,−m〉, (3.19)

〈2′, m+ 1|℘+1|2, m〉 = 〈2′,−m− 1|℘−1|1,−m〉, (3.20)

where we use notations |2′, m〉 = |F ′ = 2, m〉 and |2, m〉 = |F = 2, m〉. Consequently,

for the simplified model (shown in Fig. 11), the Rabi frequencies for the right and left

circularly polarized optical fields have the following relations

Ωr
1 = Ωl

1, Ωr
2 = −Ωl

2, (3.21)

where the indices r and l denote the Rabi frequencies of the right and left circularly

polarized optical beams respectively. Thus, the corresponding change of the phase

of the Rabi frequencies of the optical beams have opposite signs which introduce a

phase difference of π in our results.

4. Simulation

We perform a simulation based on the equation (3.17). Assume that the length of

the Rb cell be L, and the optical fields enter the Rb cell at position z0 and leave at

position z0 + L. With the probe field Ω10 entering the cell, equation (3.17) gives the

transmitted probe field Ω1 as the following,

Ω1(z0 + L) = Ω10e
−αL − i

ηΩµΩ2

ΓcbΓab + |Ω2|2 × 1

i∆k + α
[ei∆k(z0+L) − ei∆kz0−αL], (3.22)
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Fig. 15. The amplitude of EIT peaks dependence on relative phase. The solid squares

and hollow squares correspond to the cases of left and right circularly polarized

input laser fields respectively. Dash lines are fittings of the sinusoid function.

where α is the absorption coefficient which is given by

α = η
Γcb

ΓcbΓab + |Ω2|2 . (3.23)

The simulation result is shown in Fig. 17. The parameters we used in the

simulation are the following: γab = 5, γbc = 10−3, Ω10 = 0.1, Ω2 = 1, Ωµ = 0.02,

η = 0.9, L = 2.5 cm and ∆k = 1.5 cm−1. As varying the detuning, the maximum

transmission appears at zero detuning. Meanwhile, the maximum transmission is

oscillating when we change z0 which determines the position of Rb cell, and the

period of oscillation is about 4.4 cm. The simulation shows the similar behavior as

the experimental results.

It is interesting to note that the obtained results can be considered for the real-

ization of the stop-and-go slow light [51, 53, 52]. The dispersion can be modified in

a controllable way that slows or accelerates the group velocity of light by tuning the
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Fig. 16. Rb level scheme. The coupling between the right (a) and the left (b) circularly

polarized optical probe and drive beams and Rb levels. Near each transition

the corresponding Clebsch-Gordon factors are shown.

frequency of the microwave field near the resonance with the hyperfine transition.

The obtained results can be also applied to the backward scattering predicted

in [13]. By controlling dispersion of the medium with the optical fields, a microwave

field can be produced. Its direction of propagation is determined by the parameters

of the fields, in particular, the detuning of the optical fields from the two-photon

resonance.

The interest to this topic is also stimulated by the recent work [56, 55, 54] in

which a quantum storage based on electromagnetically induced transparency has been

predicted. The delay produced by slow light can be used in optical buffers, the delay

time is limited by the absorption of probe field. Because the absorption of a microwave

field is much smaller than optical fields, these systems have better controlled probe

transparency, which is important for improving and optimizing efficiency of quantum

storage [57, 58, 59, 60, 61]. Using auxiliary microwave field can improve the product of

delay time and the bandwidth for the pulse case [62]. The broad range of applications

stimulated our interest to the atomic system with the optical and microwave fields.
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Fig. 17. Numerical simulation of the transmission of the probe field dependence on

detuning and cell positions. In the simulation, we use γab = 5, γbc = 10−3,

Ω10 = 0.1, Ω2 = 1, Ωµ = 0.02, η = 0.9, L = 2.5 cm and ∆k = 1.5 cm−1.
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CHAPTER IV

SPATIAL CONTROL OF LASER FIELDS IN A COHERENT MEDIUM

Optical properties of media can be changed dramatically due to interacting with

optical fields. The ability to manipulate the medium’s properties, such as absorption,

dispersion and refractive index, allows one to control the properties of laser fields. In

this chapter, we study the control of spatial properties of laser fields in a coherently

driven medium as well as its applications.

The propagation of laser fields in a coherent medium is governed by equation

(2.32), recall the equation

1

2ik
∇2

⊥E +
∂

∂z
E +

1

c

∂

∂t
E =

ik

2ε0
P. (4.1)

The second term on the left side is responsible to the field distribution in the prop-

agation direction and it accounts for the dispersion and absorption of the medium.

The first term on the left side is usually discarded in the cases where the profile of

light beam is not important. In other cases, this term describes the field distribution

in the transverse direction and it is crucial for the spatial manipulation of laser fields.

As an example, the spatial distribution in transverse direction can be manip-

ulated by controlling the refractive index of medium. In EIT, the refractive index

can be dramatically changed in the transparency window [5, 6, 63]. The change of

refractive index is dependent on the intensity of laser field, usually the drive laser.

Therefore, an inhomogeneous distribution of the drive laser intensity induces a gradi-

ent of refractive index which changes the propagation or beam profile of laser fields.

Following this strategy, EIT can induce focusing and defocusing [64, 65] effects in a

medium under proper conditions. It is even possible to realize EIT induced waveg-

uiding [66, 67, 68] in which the drive laser works as an optical fiber and confine the
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probe laser.

In this chapter, we first study the optical beam steering based on EIT. The

possibility of using EIT to steer optical beams has been theoretically studied [69].

We have experimentally demonstrated [70] that a coherently driven Rb atomic gas

can steer an optical beam just like a prism does. The device is then referred to

“atomic prism”. More important, the atomic prism possesses the highest spectral

angular dispersion that has ever been shown, to the best of our knowledge. This

property can be used to develop spectral devices with extremely high resolution.

In the second part of this chapter, we study the possibility of creating small

spatial patterns by manipulating the intensity distribution of laser fields in EIT. Our

experiments show that the spatial patterns can be smaller than the optical wave-

length and beats the diffraction limit. This approach has potential applications in

subwavelength imaging [71], lithography [72, 73] and nanoscale control of individual

qubits [74].

A. Beam steering by an ultra-dispersive atomic prism

The ability to deflect and steer optical beams is important in modern optics. As

a perfect example, a prism can not only deflect an optical beam but also spread

out optical beams with different colors. On the one hand, the deflection of optical

beam has important applications in many fields such as radar, optical imaging, laser

machining and free space optical communication. On the other, the ability to spread

out colors, which is characterized by angular dispersion, is essential to spectral devices

and spectroscopy.

Many technologies have been developed for more accurate and faster beam steer-

ing. The simplest approach is to mechanically move or rotate a deflector such as
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mirror and grating. Other approaches, such as using thermal gradient, acousto-optic

effect or electro-optic effect to induce a gradient of refractive index, can provide faster

control of beam deflection. Recent development has been focused on using photonic

crystals [75] and phased arrays [76, 77]. A novel approach has been proposed [69]

to use a light beam to deflect another light beam through the EIT effect. We have

experimentally studied this effect and found that a coherently driven atomic gas can

work as a prism to deflect an optical beam. The results have shown that this atomic

prism has an extremely high angular dispersion which is at least six order of magni-

tude higher than that of a glass prism or a grating. Besides the potential applications

of beam deflection and giant angular dispersion, the experiment is also of interest to

fundamental physics such as the optical analogy of Stern-Gerlach experiment [78].

1. The idea of an atomic prism

A single frequency ray of light is bent by a prism upon an angle determined by the

index of refraction, as shown in Fig. 18(a). Newton discovered several centuries ago

that the dispersion of the index of refraction leads to spread of deviation angles for

different wavelengths. We are trying to make a coherently driven atomic gas working

like a prism and we call it “atomic prism”.

(b) |a>

|c>

|b>

Pump
Probe

∆(c)(a)

Fig. 18. (a) Refraction of light by the prism. (b) Configuration of the probe and drive

laser beams inside the cell of Rb vapor. One can see that our setup can be

viewed as a super-high dispersive prism. (c) Simplified scheme of the energy

levels of Rb atoms.
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The atomic prism is made of a cell filled with gas of three level atoms shown

in Fig. 18(c). Two laser beams, drive and probe, are applied to realize EIT in the

medium. The index of refraction is modified and dependent on the intensity of drive

laser. As illustrated in Fig. 18(b), since the drive laser has a Gaussian profile, it

induces a gradient of refractive index on the slope of Gaussian peak. If we align the

probe laser on the slope of drive, it experiences the gradient of refractive index and

changes the direction of propagation. Meanwhile the refractive index varies as the

frequency of probe is varying within the EIT window. The deflection is different for

different frequency. This property introduces an angular dispersion which is extremely

high because of the extreme nonlinearity in EIT. Here we develop a simple mathematic

description of the idea.

For a dispersive medium, the index of refraction is given by

n′ =
√

1 + χ′(ω), (4.2)

where χ′ is the susceptibility of the medium. It is frequency dependent and its specific

form for our experiment will be discussed in the later text. The trace of a light beam

propagating in a medium can be found by using the eikonal equation [79]. Start with

Maxwell’s equation,

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
. (4.3)

The field and the polarization can be expressed in terms of the slowly varying ampli-

tudes Eν and Pν , and the eikonal ψ,

E =
∑
ν

Eνe
−iνt+ikψ, P =

∑
ν

Pνe
−iνt+ikψ, (4.4)

where k = ν/c. The polarization of the medium is related to the field intensity as

Pν = ε0χνEν , where the susceptibility χν = χ′
ν + iχ′′

ν . Neglecting the second order



47

derivative over coordinates for amplitude Eν , we obtain the eikonal equation given

by

(∇ψ)2 = 1 + χ′ = n′ 2. (4.5)

The trajectory of the light rays propagating in an inhomogeneous medium can

be found by solving a geometrical optics differential equation [79] that is given in

vector form by

d

ds

(
n′dR
ds

)
= ∇n′ (4.6)

where R is the the point of the ray defined as R(x, z) = X(z)x̂ + zẑ, x̂ and ẑ are the

unit vectors along the axes. Then, for the x and z components,

d

ds

(
n′dX
ds

)
=
∂n′

∂x
, and

d

ds

(
n′dz
ds

)
=
∂n′

∂z
. (4.7)

The equation describing the amplitude of the electromagnetic field can be ob-

tained similarly as we obtain equation (4.5). From the imaginary part of equation

(4.3), we can get the equation

2k∇ψ∇Eν + k∇2ψEν = −ν
2

c2
χ′′Eν . (4.8)

The solution of the above equation has the following form

Eν =
E0ν√
n′ exp

(
−
∫ s2

s1

νχ′′

2n′c
ds

)
. (4.9)

At this point, the trajectory of light ray can be described by equations (4.7)

and the absorption of the field can be described by equations (4.8, 4.9). The exact

behavior depends on the susceptibility χ which is determined by the natural of the

medium and the interaction with laser fields.

Our particular interest is the deflection angle of the beam when there is an

induced gradient of refractive index. Consider an example in which the medium is
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an atomic gas, the index varies in the transverse direction only and the variation is

small so that the deflection is also small. From equation (4.7), we have

n′dX
ds

=
∫ s(x=L)

s(x=0)
∇⊥n′ds � L∇⊥n′, (4.10)

here L is the length of the sample, we use s(x = L)−s(x = 0) � L since the deflection

angle is small. Integrate it again and consider the refractive index n′ � 1 for gas, we

can find the beam variation in the transverse direction,

X = L2∇⊥n′

n′ � L2∇⊥n′, (4.11)

therefore the deflection angle θ can be estimated by

θ =
X

L
= L∇⊥n′. (4.12)

This simple expression confirms the idea of using the gradient of refractive in-

dex to defect the laser beam. In the following section, we demonstrate this effect

experimentally in a Rb gas driven by two laser beams under EIT conditions.

2. Experimental implementation

The experimental setup is illustrated in Fig. 19. An external cavity diode laser is used

as the light source. The frequency is tuned to the center of the Doppler broadened

D1 line of 87Rb atoms, specifically at the transition 52S1/2(F = 2) → 52P1/2(F =

1). The laser beam is split into two beams which are tuned to possess orthogonal

polarizations. The beams are later combined and a quarter wave plate converts the

linear polarizations into two orthogonal circular polarizations. The beams, each has

the power of 0.5 mW, are coupled with two ground state Zeeman sublevels and an

excited state as shown in the energy diagram in Fig. 19. The rubidium cell with

the length of 7.5 cm is installed in a magnetic shield, it is temperature controlled to
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reach the atomic density of N = 3× 1011 cm−3. A longitudinal magnetic field can be

applied to change the splitting of Zeeman sublevels so that the two photon detuning

can vary.

Rb cell in 
magnetic shield

λ/4 λ/4

λ/2

B

PBS PBS
Scope

CCD

Laser

Isolator

CCD

m = +1

Ω2 Ω1

m = -1

52P1/2

52S1/2

F=2

F=1

Position 
sensitive PD

Glass
Plate

Fig. 19. The experimental setup of atomic prism and the corresponding energy scheme

of Rb atoms. PBS is polarizing beam splitter. The glass plate is inserted to

shift the beam yet keep the parallelism of the beams.

Two independent techniques are used to measure the probe beam position and

the angle of deviation. The first technique is based on using a CCD camera and a

removable mirror in front of the cell to measure the positions of the drive and probe

beams. The CCD camera is used to record an optical field distribution for selected

two-photon detuning. The second technique uses a position sensitive detector (PSD)

[80] to obtain a relatively more accurate and continuous measurement of the beam

direction. A PSD consists of a pair of photodiodes which are installed close to each

other. If the laser beam covers the pair of photodiodes symmetrically, the difference

signal from two photodiodes gives zero. The difference signal becomes non zero if the



50

laser beam moves, the magnitude of the signal tells us the displacement of laser beam.

The distance from the center of the cell to PSD is 1 meter and to the CCD camera is

2.3 meters. We confirm that the measurements by each technique are consistent with

each other.

The drive and probe beams are aligned to be parallel to each other initially. The

probe beam can then be adjusted to the left or right side of the drive beam profile,

shown in Fig. 20(a) and (c), by tilting a parallel glass plate. As the probe and drive

beams are passing through the cell, the probe field experiences a gradient of refractive

index due to the inhomogeneous intensity distribution of the drive field. As a result,

the probe field is deflected and the deflection angle is dependent on the two photon

detuning. The beam profiles recorded by the CCD camera are shown in Fig. 20.

Prior to entering the cell, the probe field sits on either the right (a) or left (c) slope

of the drive field. The probe field is observed being deflected in opposite directions.

The CCD camera is also used to record the probe beam profiles at the distance of

2.3 m after it passes the cell. We can see the movement of the probe beam as the

two photon detuning is varying. We record the probe beam profiles at the detunings

where the maximum deviation occurs, as shown in (b) and (c). The experimental

results show the deflection of laser beam caused by another beam through EIT.

However, one concern of the data might be that the behaviors are not exactly

symmetric for the right and left cases. The reason is the imperfection of beam profiles

in our experiments. The drive beam does not have a good Gaussian distribution as

we expected. The intensity distribution is not very symmetric nor smooth. This

introduces the complexity in the deflected probe beam profile. A better prepared

Gaussian beam can work better. Another concern is the diffraction of laser beams.

The width of the probe beam (0.7 mm at the Rb cell) is increased by about 1.7

times at 2.3 meter distance from the cell due to diffraction (the diffraction angle
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Fig. 20. The spatial distributions of the drive (1) and probe (2) fields at the input of

the atomic cell. The probe is on either the right (a) or left (c) slope of the

drive field. Figures (b) and (c) show the spatial distributions of the probe

fields (2) and (2’) at the distance of 2.3 meters after passing the atomic cell

for different detunings corresponding to the maximum angles of deviation.
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for a Gaussian beam profile is given by 2λ/πd, where d is the diameter of the laser

beam). For the data shown in Fig. 20(b), the displacement is larger than the spread

of the probe beam due to the diffraction. Although the displacement in Fig. 20(d) is

smaller than the diffraction spreading, the beam profiles systematically shift to two

directions. So the deflection of probe beam is not caused by the diffraction.

Fig. 21. (1) Dependence of the deflection angle of the probe beam on detuning for

the probe beam initially shifted to the right (a) and left (b) slope of the drive

beam. (2) Dependence of the probe field transmission on detuning.
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To obtain the dependence of deflection angle on the two photon detuning, we re-

place the CCD camera with a PSD. The PSD is mounted on a translational stage, with

which the voltage to displacement conversion is calibrated for the probe laser beam.

The deflection angle, converted from the displacement, is continuously recorded as

we change the detuning. As shown in Fig. 21, red curves (1) show how the deflection

angle changes with the detuning for the cases with the probe beam initially sitting on

the right (a) and left (b) slope of the drive. Blue dotted curves (2) are the EIT peaks.

The dramatic deflection occurs within the EIT window. The maximum deflection is

about 0.7 mrad. Considering the change of the deflection angle within a very small

frequency change, the data indicates a very large angular dispersion. An estimation

of the slope of the deflection angle curve gives the angular dispersion dθ/dλ � 103

rad/nm. Comparing with glass prisms (dθ/dλ � 10−4 rad/nm) or diffraction gratings

(dθ/dλ � 10−3 rad/nm), the atomic prism has the potential to provide much better

spectral resolution as a spectral device. It can spatially separate the light beams with

the frequency difference of few kHz.

3. Numerical simulation

Using the density matrix approach, we perform the numerical simulation for a three

level system coupled with two laser fields as shown in Fig. 18(c). The interaction

Hamiltonian of the system can be written as

VI = −h̄[Ω1e
−iωabt|a〉〈b| + Ω2e

−iωact|a〉〈c| + h.c.] (4.13)

where Ω1,2 = ℘1,2E1,2/h̄ is the Rabi frequency of the probe (drive) field, and ωab, ωac,

ωcb are the frequency differences between the corresponding atomic energy levels. The
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time-dependent density matrix equations are given by

∂ρ

∂τ
= − i

h̄
[VI , ρ] − 1

2
(Γρ+ ρΓ), (4.14)

where Γ is the relaxation matrix. A self-consistent system also includes the field

propagation equations

∂Ω1

∂z
= −iη1ρab,

∂Ω2

∂z
= −iη2ρac, (4.15)

where ηj = νjN℘
2
j/(2ε0c) are the coupling constants (j = 1, 2), N is the particle

density of the medium, ε0 the permitivity in vacuum. The equations of motion for

the density matrix elements of the polarization ρab and the coherence ρcb are given by

ρ̇ab = −Γabρab + iΩ1(ρaa − ρbb) − iρcbΩ
∗
2, (4.16)

ρ̇cb = −Γcbρcb + iρcaΩ1 − iρabΩ2. (4.17)

where Γab = γab + i(ωab − ν1); Γca = γca − i(ωac − ν2); Γcb = γcb + i(ωcb − ν1 + ν2);

ωcb is the frequency of c → b transition, and γαβ are the relaxation rates at the

corresponding transitions.

Assuming that the drive field is much stronger than the probe field (|Ω1|2 

|Ω2|2), then ρbb � 1, and the succeptibility is given by

χ =
−iηΓcb

ΓabΓcb + |Ω2|2 . (4.18)

The index of refraction is n � 1 + 1
2
Re(χ), and the angle of refraction can be found

by solving

∂ tan θ

∂z
=

1

2

∂χ′

∂x
= Re

(
iη

(ΓcbΓab + |Ω2|2)2

)
∂|Ω2|2
∂x

, (4.19)

for our case the refraction angle is small so tan θ � θ, we can rewrite equation (4.19)
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in the form

θ = 2π
∫ L

0
dz
∂χ′

∂x
, (4.20)

where L is the length of the cell.
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Fig. 22. Numerical simulation of the dependence of deflection angle on the detuning.

The numerical simulation of the dependence of deflection angle on detuning is

shown in Fig. 22. The following parameters are used for the simulations: atomic

density is N = 3× 1011 cm−3, the spin transition relaxation rate is γcb = 10 kHz, the

homogeneous broadening of optical transitions is pure due to the radiative broadening

determined by spontaneous relaxion and is given by γab = 5 MHz, the Rabi frequency

of the driving field Ω2 = 4γ. The simulation result has a good agreement with the

experimental results.

In conclusion, we have experimentally demonstrated an atomic prism based on

EIT and it has an extremely large angular dispersion. The obtained results have

shown the capability of deflecting laser beams as well as spreading the light beams

with small frequency difference. This technique can be potentially used for a spectral
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device with an ultra-high spectral resolution. It can also be used to realized all optical

steering and produce optical delay lines for radar system. However, the challenge

remains on how to apply this technique to very short laser pulses or the applications

with weak fields, such as single photon sources and controlling the flow of photons at

the level of single quanta [81, 82].

B. Sub-diffraction optical beam for imaging and lithography ∗

In 1873, Ernst Abbe discovered that a lens-based optical microscope can not resolve

two objects that are closer than half of the wavelength. Classically, the diffraction

limit sets the half wavelength barrel for improving the spatial resolution of many

applications including microscopy, optical lithography and atom localization, to name

a few. The ability to create a small optical structure is essential to these applications

since the size of the smallest optical structure, such as a focal spot by a lens, ultimately

determines the resolution.

Recently, several methods have been proposed to overcome the diffraction limit.

Based on the idea of quantum eraser [83], quantum entanglement between photons is

used to produce novel interference effects which lead to subwavelength fringes [84, 85].

However, the difficulty of generating pure, high-order entangled photons and cor-

related detection slows down the practical realization of this idea. Alternatively,

classical fields can also achieve the subwavelength interference pattern by using the

Doppleron-type resonances [72, 73]. With the careful arrangements of classical field

amplitude and phase, the fluorescence enables one to locate the position of atoms

with the subwavelength precision [86, 87, 88, 89]. In the microscopy for biomedical

∗Part of the data reported in this section is reprinted with permission from “Optical
imaging beyond the diffraction limit via dark states,” by H. Li et al., Phys. Rev. A
78, 013803 (2008), Copyright by the American Physical Society.
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applications, the methods such as stimulated emission depletion (STED) [71, 90],

photo-activated localization microscopy (PALM) [91] and stochastic optical recon-

struction microscopy (STORM) [92] have experimentally achieved the subwavelength

resolution.

In this section, we propose an approach to create spatial patterns having sub-

wavelength size by using the dark states formed by the interaction between atoms and

optical fields. Similar approaches have been theoretically studied by several groups

[73, 74, 93, 94]. We have carried out, to the best of our knowledge, the first experiment

[95] to demonstrate the proof of principle.

1. Beating the diffraction limit via dark states

As a qualitative introduction, assume that the drive field Rabi frequency Ωd has the

particular spatial distribution sketched in Fig. 23(a) by the solid line (1). The weak

probe field Rabi frequency Ωp has a diffraction limited distribution shown by the

dashed line (2) in Fig. 23(a). The probe and drive fields are applied to an ensemble

of atoms. According to the field distribution of the drive field, the absorption of

the medium can be sketched as Fig. 23(b). At all positions where the drive field

is strong enough (Ωp 
 Ωd), the dark state, which is given [1] by |D〉 = (Ωp|c〉 −
Ωd|b〉)/

√
Ω2
p + Ω2

d, is practically |b〉. When the drive field is zero or weak, the dark

state is approximately |c〉. Depending on the intensity of the drive field and the

optical density of the medium, we may have a narrow dip (Fig. 23(c)) or sharp peaks

(Fig. 23(d)) in the transmission of the probe field. The width of the dip or peaks

depends on the relaxation rate γcb between levels |b〉 and |c〉 and the Rabi frequency

of the drive field. In either case, the width is narrower than the width in the profile

of the drive field which is ultimately diffraction limited to the size of half wavelength.

Therefore, the structures created in the transmitted probe field have the characteristic
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size smaller than the diffraction limit.

Fig. 23. Qualitative description of the idea. (a) Distribution of the drive (1) and the

probe (2) fields vs. a transverse spatial coordinate at the entrance to the cell.

(b) Dependence of the absorption coefficient given by Eq.(4.24) vs position.

Plots (c) and (d) show the distribution of the probe beam after propagating

through the cell. Case (c) is for a strong drive field and relatively low optical

density. Case (d) is for a relatively weak drive field and large optical density.

We now present a simple mathematical description. The Hamiltonian of a three-

level atom interacting with optical fields (see the inset in the figure on page 63 for

the energy diagram) is given by

H = h̄Ωd|a〉〈b| + h̄Ωp|a〉〈c| + adj., (4.21)

where Ωd,p = ℘d,pEd,p/h̄ are the Rabi frequencies of the drive Ed and the probe Ep
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fields, respectively; ℘d,p are the dipole moments of the corresponding optical transi-

tions. Then, the atomic response is given by the set of density matrix equations

ρ̇ = − i

h̄
[H, ρ] − Γρ+ ρΓ

2
(4.22)

where Γ describes the relaxation processes. The propagation of the probe field Ωp

through the cell is governed by Maxwell’s Equations and, for propagation in the

z-direction, can be written in terms of the probe field Rabi frequency as

∂Ωp

∂z
= −iηρab − i

1

2k

∂2

∂x2
Ωp. (4.23)

The first term accounts for the dispersion and absorption of the resonant three-level

medium, and the second term describes the focusing and/or diffraction of the probe

beam. The density matrix element ρab is related to the probe field absorption which

in turn depends on the detuning and the drive field. This is characterized by an

absorption coefficient:

κ = η
Γcb

ΓabΓcb + |Ωd(z, x)|2 , (4.24)

where Γcb = γcb + iω and Γab = γ + iω; ω = ωab − ν is the detuning from the atomic

frequency ωab; γ is the relaxation rate at the optical transition; and η = 3λ2Nγr/8π;

N is the atomic density; γr is the spontaneous emission rate. We now assume that

the drive field has a distribution of intensity near its extrema given by

|Ωd(z, x)|2 = |Ω0|2
⎧⎪⎪⎨
⎪⎪⎩

[
1 −

( |x|−x0

L

)2
]
, |x| � x0,(

x
L

)2
, |x| 
 L,

(4.25)

where Ω0 = Ωd(z, x0), L is the separation distance between the peaks of the drive field

distribution, and a typical absorption profile vs. x is shown in Fig. 23(b). Neglecting

the diffraction term in Eq.(4.23), we can write an approximate solution for Eq. (4.23)
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as

Ωp(z, x) = Ωp(z = 0, x) exp(−κz). (4.26)

For relatively low optical density (κz � 1), nearly all of the probe field propagates

through the cell except for a small part where the drive field is zero. Absorption occurs

there because the probe beam excites the atomic medium.

We now estimate the width of the region of the excited medium in the vicinity

of zero drive field. Since κz is small, we can rewrite equation (4.26) as

Ωp(z, x) � Ωp0(1 − κz)

= Ωp0(1 − η
Γcbz

ΓabΓcb + |Ωd(z, x)|2 ), (4.27)

where Ωp0 = Ωp(z = 0, x). When the probe field exits the cell (z = z0), the Rabi

frequency of the field at the position x = 0 (at this point |Ωd|2 = 0) is given by

Ωp(z0, 0) = Ωp0(1 − ηz0

Γab
). (4.28)

Suppose that we have the half maximum (intensity) at the position x = xh, it satisfies

the following equation

1√
2
(Ωp0

ηz0

Γab
) = Ωp0η

Γcbz0

ΓabΓcb + |Ω0|2(xh

L
)2
. (4.29)

The solution of the equation gives

xh = (
√

2 − 1)1/2L

√
ΓabΓcb
|Ω0|2

� 0.64L

√
ΓabΓcb
|Ω0|2 . (4.30)

So the width (FWHM) of the dip in Fig. 23(c) is given by

∆x = 1.28L

√
ΓabΓcb
|Ω0|2 . (4.31)
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This region can potentially become smaller if the drive field becomes stronger.

However, the contrast is limited because of the finite absorption of the medium at

the center of optical field.

For higher optical density, this narrow feature becomes broadened (compare

Fig. 23(c) and (d)), but two narrow peaks are formed during the propagation of

the probe beam (see Fig. 23(d)). We now estimate the width of these peaks. Pick up

the peak on the right, the maximum is at the position x = x0. Suppose that the half

maximum (intensity) is at the position x = xh, it satisfies the equation

1√
2
Ωp0 exp[−κ(x = x0)z0] = Ωp0 exp[−κ(x = xh)z0]. (4.32)

The absorption coefficient κ at the positions x0 and xh can be written as

κ(x = x0) = η
Γcb

ΓabΓcb + |Ω0|2 � η
Γcb
|Ω0|2 , (4.33)

κ(x = xh) = η
Γcb

ΓabΓcb + |Ω0|2[1 − (xh−x0

L
)2]

� η
Γcb
|Ω0|2 [1 + (

xh − x0

L
)2], (4.34)

where we assume that the drive field is strong (ΓabΓcb 
 |Ω0|2), and the width of the

peak is narrow (xh − x0 
 L). Plug the absorption coefficients into equation (4.32),

we have

ηΓcbz0

|Ω0|2 = − ln
√

2 +
ηΓcbz0

|Ω0|2 [1 + (
xh − x0

L
)2], (4.35)

solving this equation gives us

xh − x0 = (ln
√

2)
1
2L

√
|Ω0|2
ηΓcbz0

. (4.36)

For the zero detuning, the width (FWHM) of the peaks in Fig. 23(d) is given by

∆x = 1.18L

√
|Ω0|2
ηγcbz0

. (4.37)

The drive field provides flexibility for creating patterns with size smaller than
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the wavelength of the laser. Depending on the conditions (such as laser intensity

and optical density), we are enable to create a subwavelength dip (Fig. 23(c)) or

peak (Fig. 23(d)). The width of the structures depends on the laser intensity and

the relaxation rates Γab and Γcb. The width can be characterized by equations (4.31,

4.37). The distribution of fields is governed by electrodynamics and has a diffraction

limit. In this approach, we take the advantage of the size of atoms to overcome the

diffraction limit. The distribution of atoms in their excited states is not related to

the diffraction limit, but rather determined by the relaxation rates Γab and Γcb, and

thus can have spatial sizes smaller than the wavelength.

2. A proof-of-principle experiment

We have done a proof-of-principle experiment in Rb vapor to demonstrate our ap-

proach. We have observed that the distribution of the transmitted probe beam in-

tensity has a double-peak pattern, which is similar to that of the drive beam, but the

width of the peaks of the probe beam is narrower than that of the drive beam.

The experimental schematic is shown in Fig. 24. We obtain a good quality

spatial profile by sending the radiation of an external cavity diode laser through a

polarization-preserving single-mode optical fiber. The laser beam is vertically polar-

ized and split into two beams (drive and probe). The probe beam carries a small

portion of the laser intensity, and its polarization is rotated to be horizontal.

To create a double-peak spatial distribution for the drive field, the drive beam is

split into two beams that cross at a small angle, using a Mach-Zehnder interferometer

(shown in the dashed square of Fig. 24). A typical two-peak interference pattern of

crossing beams is shown as Fig. 24A.

The probe and drive beams combine on a polarizing beam splitter, arranged so

that the probe field and the interference pattern of the drive field are overlapped in
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Fig. 24. Experimental schematic. λ/2: half-wave plate; λ/4: quarter-wave plate; L1,

L2, L3: lenses; MZ: Mach-Zehnder interferometer; PZT: piezoelectric trans-

ducer; PBS: polarizing beam splitter, PD: photo diode; CCD: CCD camera.

Picture A is the spatial intensity distribution of the drive field. Picture B is

the beam profile of the parallel probe beam without the lens L1. Picture C is

the beam profile of the diffraction limited probe beam with the lens L1. The

inset is the energy diagram of the Rb atom, showing representative sublevels.

a Rb cell. The Rb cell has a length of 4 cm, and is filled with 87Rb. A magnetic

shield is used to isolate the cell from any environmental magnetic fields, while a

solenoid provides an adjustable, longitude magnetic field. The cell is installed in

an oven that heats the cell to reach an atomic density of 1012 cm−3. The laser is

tuned to the D1 line of 87Rb at the transition 52S1/2(F = 2) → 52P1/2(F = 1). As

shown in the inset of Fig. 24, the states |a〉, |b〉 and |c〉 correspond to the Zeeman

sublevels as the following |a〉 = |52P1/2, F = 1, m = 0〉, |b〉 = |52S1/2, F = 1, m = −1〉,
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|c〉 = |52S1/2, F = 1, m = +1〉.
As stated above, the probe and drive beams have the orthogonal linear polar-

izations. A quarter-wave plate converts them into left and right circularly polarized

beams, which couple two Zeeman sublevels of the lower level and one sublevel of the

excited level of the Rb atoms (see the inset of Fig. 24).

After passing through the cell, the probe and drive beams are converted back

to linear polarizations by another quarter-wave plate and the separated by a polar-

izing beam splitter (PBS). The power of transmitted probe field is monitored by a

photodiode (PD). The spatial intensity distribution of probe field is recorded by an

imaging system, consisting of the lens L3 and a CCD camera.

The intensity of the probe beam is low enough that its transmission through the

cell is almost zero without the presence of drive laser. Applying the drive laser makes

the atomic medium transparent for the probe laser wherever the EIT condition is

satisfied. If the drive laser has a certain transverse spatial distribution, then that

pattern can be projected to the transmission profile of the probe laser.

Two different experiments have been performed. In the first experiment, the

lenses L1 and L2 are not used, and the probe beam is a parallel beam with a diam-

eter of 1.4 mm. The image of the drive intensity distribution in the cell is shown

in Fig. 25(a). The probe intensity has a Gaussian distribution before entering the

cell, and its distribution is similar to the drive intensity distribution after the cell.

As shown in Fig. 25(b), however, the transmitted probe intensity has a distribution

that has sharper peaks compared with the pattern of the drive intensity. The hori-

zontal cross-sections of the drive and the transmitted probe distributions are shown

in Figs. 25(c) and (d) respectively. In the drive intensity profile, the width (FWHM)

of the peaks is 0.4 mm. The width (FWHM) of the peaks in the transmitted probe

intensity profile is 0.1 mm. The spacing between two peaks is the same for both the
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(a) Drive field distribution. (b) Transmitted probe distribution.
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Fig. 25. The results of the experiment with a parallel probe beam. Picture (a) shows

the image of the intensity distribution of the drive field in the Rb cell. Picture

(b) shows the intensity distribution of the transmitted probe field. Curves (c)

and (d) are the corresponding intensity profiles. The widths of the peaks in

curves (c) and (d) are 0.4 mm and 0.1 mm, respectively.

drive and transmitted probe fields. We define the finesse as the ratio of the spacing

between peaks to the width of peaks. The finesse of the transmitted probe intensity

distribution is a factor of 4 smaller than that of the drive intensity distribution.

In the second experiment, the lenses L1 and L2 are used. A parallel probe beam

(Fig. 24B) with a diameter of 1.4 mm is focused by the lens L1, which has a focal

length of 750 mm. The beam size at the waist is 0.5 mm, which is diffraction limited.

To assure experimentally that the beam is diffraction limited, we increased the beam

diameter of the parallel beam by the factor of 2, and the beam size at the waist

became two times smaller. The lens L2 is used to make the drive beam smaller in the

Rb cell, where the pattern of drive field is spatially overlapped with the waist of the
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(a) Drive field distribution. (b) Transmitted probe distribution.
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Fig. 26. The results of the experiment with the diffraction limited probe beam. Pic-

ture (a) shows the image of the intensity distribution of the drive field in the

Rb cell. Picture (b) shows the image of the intensity distribution of the trans-

mitted probe field. Curves (c) and (d) are the corresponding profiles. The

widths of the peaks in curves (c) and (d) are 165 µm and 93 µm, respectively.

probe beam. Classically, there should be no structures at the waist of the probe beam

because it is diffraction limited. Structures can be created in a region smaller than

the diffraction limit in our experiment, however. The experimental result is shown in

Fig. 26. The drive field still has a double peak intensity distribution (Fig. 26(a)). The

transmission of the diffraction limited probe beam also has a double-peak intensity

distribution as shown in Fig. 26(b). Curves (c) and (d) are the beam profiles of the

drive and transmitted probe beams respectively. The width of the peaks in the drive

beam is 165 µm, and the width of the peaks in the transmitted probe beam is 93 µm.

The finesse of the transmitted probe beam is 1.8 times greater than that of the drive

beam. For the probe beam, the structure created within the diffraction limit has a

size characterized by the width of peaks (93 µm). This characteristic size is 5 times
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smaller than the size of the diffraction limited probe beam (500 µm, see the spot of

Fig. 24(C)).

Thus, we have demonstrated that our concept works in Rb vapor. Although the

diffraction limit is “beaten,” the experiment does not violate any laws of optics. The

probe beam is diffraction limited, but the atoms are much smaller than the size of

diffraction-limited beam.

Moreover, due to the strong nonlinearity of the EIT, the characteristic size of the

pattern in the transmitted probe beam is much smaller than that of the drive beam

and the diffraction limit of the probe beam.

3. Dependence on detuning

We have also measured the narrowing effect vs. the detuning of the probe field

and have performed simulations using the density matrix approach. The results are

shown in Fig. 27. We plot the narrowing factor (red curves) as a function of the

detuning. The black dash curves are the EIT peaks as a reference. The left figure is

the experimental data and the right figure is the simulation. The calculated results

have a very good agreement with the experimental results.

The dependence on detuning has not been considered in [73, 74, 93, 94]. It is

unique for our approach and can be understood in the following way. In the cases

where we have a small detuning (ω �= 0), the absorption by the atomic medium given

by Eq.(4.24) with a drive intensity distribution given by Eq.(4.25) can be written as

κ = η
γcb + iω

(γab + iω)(γcb + iω) + |Ω0|2[1 − (xh−x0

L
)2]
, (4.38)

Consider |Ω0| is strong and γabγcb, ω
2 are small, the real part of the absorption
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Fig. 27. Narrowing of the transmitted probe intensity distribution as function of the

probe detuning: (a) experimental results (a) and (b) theoretical simulation.

The transmitted probe profile is shown as well.
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coefficient can be written as

Re(κ) = η
γcb(γabγcb − ω2 + |Ω0|2[1 − (xh−x0

L
)2]) + (γab + γcb)ω

2

(γabγcb − ω2 + |Ω0|2[1 − (xh−x0

L
)2])2 + (γab + γcb)2ω2

� η
γcb|Ω0|2[1 − (xh−x0

L
)2] + (γab + γcb)ω

2

|Ω0|4[1 − (xh−x0

L
)2]2

� η
γcb
|Ω0|2 [1 + (

xh − x0

L
)2] + η

(γab + γcb)ω
2

|Ω0|4 [1 + 2(
xh − x0

L
)2]

= η[
γcb
|Ω0|2 +

γω2

|Ω|4 + (
γcb
|Ω0|2 + 2

γω2

|Ω|4 )(
x− x0

L
)2], (4.39)

where γ = γab + γcb. Then, the ratio of the width of the probe intensity distribution

to the width of the drive intensity distribution is given by

R =
L

∆x
=

√√√√ηz
(
γcb
|Ω|2 + 2

γω2

|Ω|4
)
. (4.40)

From this we see that the finesse increases with the detuning.

In conclusion, we have performed a proof-of-principle experiment that our con-

cept works in Rb vapor and have experimentally demonstrated the possibility of

creating structures having widths smaller than those determined by the diffraction

limits of the optical systems. The results obtained here can be viewed as an exper-

imental verification of our approach, as well as evidence supporting the theoretical

predictions and results obtained by others [73, 74, 93, 94]. The challenges associated

with pushing our method to the subwavelength regime are formidable. In our experi-

mental situation, transit-time broadening is the dominant dephasing mechanism that

limits the smallness of the region in which a dark state can be formed. Solid-state

systems may be more appropriate than a gas. Perhaps the most difficult aspect is

devising a way to observe subwavelength structures. This technique might be used in

microscopy by studying the distribution of molecules with subwavelength resolution

or in lithography by manipulating molecules in the excited state. Also, note that it
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may be possible to apply this approach to coherent Raman scattering (for example,

CARS). This may improve the spatial resolution of CARS microscopy.
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CHAPTER V

INTENSITY CORRELATION OF ATOMIC EXCESS NOISE

IN A COHERENT MEDIUM

The intensity noise of optical fields increases dramatically when the fields interact with

a resonant atomic vapor, the induced noise is referred to atomic excess noise [96, 97,

98]. One of the characteristics of diode lasers is that the output intensity is generally

very stable while the frequency fluctuation is relatively large. It has been shown that

the diode laser driven by a stable current source can have the intensity fluctuation

less than the shot-noise level [99]. When the laser field from a diode laser interacts

with an atomic vapor, especially on the resonance, the frequency or phase noise in

the field is converted into the intensity noise [100, 101, 102] through the field-atoms

interaction. The frequency noise to intensity noise conversion is one of the processes

contributed to the atomic excess noise. Another possible process is the four-wave

mixing involving the laser field and vacuum side modes [103]. Despite being referred

to noise, the atomic excess noise has been studied early as a useful spectroscopic

tool [98, 104] for high resolution spectroscopy rather than a source of noise. Yet it

is a major noise and not desirable in many atom-optical-based applications such as

atom-optical magnetometers, atomic clock [105], and the generation of squeezed light

[105, 106, 107, 108, 109, 110].

As an example, improving the sensitivity of magnetometers is important both

for practical applications and for fundamental research. Motivated by the poten-

tial applications to precision magnetometry [111, 112, 113, 114], researchers have

extended a great interest in nonlinear magneto-optical effects [115, 116] in coherent

media. Magnetometers based on atom-optical techniques, such as the optical pump-

ing magnetometers [117] and the nonlinear magneto-optical rotation (NMOR) mag-
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netometers [113, 114, 115, 118, 119], have achieved sensitivities of the order of 10−15

THz−1/2. Quantum noise starts to play a crucial role in obtaining higher sensitivity

approaching the atom shot-noise-limited sensitivity [115, 119]. Coherent effects such

as the squeezing of fields can be used to reduce the noise level below the shot-noise

level. Several schemes for squeezing fields have been studied in EIT [120, 121, 122]

as well as in nonlinear polarization self-rotation [107, 108, 109, 123]. However, it has

been demonstrated that the atomic excess noise can reduce the squeezing of fields

[109]. The addition of excess noise to atom-optical experiments needs to be taken

into account in approaching the better performance, higher sensitivity in the case of

magnetometers.

To reduce or eliminate the influence of atomic excess noise, one can take ad-

vantage of the intensity correlation properties of the optical fields passing through

an atomic vapor. The strong coupling of optical fields in Λ-type atoms induces the

intensity correlation or anti-correlation between two optical fields under certain con-

ditions. In an EIT experiment performed by coupling two beams from one laser

with an excited state and Zeeman sublevels of the ground state in a rubidium vapor,

the intensity correlation and anti-correlation between two circularly polarized laser

beams have been observed [124]. More generally, two laser beams from two indepen-

dent lasers can realize the similar effect [125]. The intensity correlation has also been

studied in NMOR experiments [126]. In the case of correlation or anti-correlation,

the intensity noise in each of two laser fields is fluctuating with a phase difference of

0 or π. A simple summation or subtraction of these two signals can suppress or even

eliminate the noise.

In this chapter, we study the intensity correlation of atomic excess noise in both

EIT [127] and NMOR [128]. The study of power spectra of intensity fluctuations in

both EIT [127] and NMOR [129] shows the possibility to reduce the atomic excess
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noise and helps to find out the best working conditions for reducing noise.

A. Intensity correlation and noise spectra in EIT ∗

Recently the time-dependent intensity correlation function of two optical fields prop-

agating through a dense rubidium vapor has been studied under the condition of EIT

[124]. In this experiment, the intensity fluctuations of the output beams are highly

correlated at two-photon resonance and anti-correlated when a two-photon detuning

is introduced. The transition from correlation to anti-correlation of fields was ob-

served as the two photon detuning changes. Using a similar setup, we now study

the spectral dependence of the atomic excess noise and the correlation of noise. The

noise will be analyzed in the frequency domain by using a spectrum analyzer. We

also demonstrate that the subtraction of two correlated laser beams can suppress the

noise to the shot-noise level.

1. Experiment of noise correlation in EIT

The schematic of experimental setup is presented in Fig. 28. An extended-cavity

diode laser (ECDL) described in [130] is used as the laser source. The laser beam

with the diameter of 0.1 cm is linearly polarized after an optical isolator which reduces

the stray optical feedback from the optical elements of the setup. The spectral width

of the laser emission is less than 1 MHz. The laser is tuned to the center of the

Doppler broadened optical transition 5S1/2 (F=2) → 5P1/2(F=1) of 87Rb (D1 line,

λ=795 nm). The Doppler-free saturation resonance in the Rb reference cell is used

as a frequency reference. After a warming-up time of 3 hours or longer, the laser

∗Part of the data reported in this section is reprinted with permission from “Power
spectra and correlations of intensity fluctuations in electromagnetically induced trans-
parency,” by V.A. Sautenkov, H. Li et al., J. Mod. Opt. 54, 2451 (2007), Copyright
by Taylor & Francis Group.
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Fig. 28. Experimental setup of intensity correlation in EIT and simplified energy level

scheme of rubidium atoms. PBS is the polarizing beam splitter, λ/2 and λ/4

are retardation wave plates, PD is the photo-detector, BPD is the balanced

photo-detector assembly, DSO is the digital storage oscilloscope, SA is the

spectrum analyzer and COMP is the computer.

frequency drift is less than 30 MHz per hour in our laboratory and this passive laser

stability is acceptable for our measurements. To study EIT in Rb vapour the output

laser beam is modified. The first laser beam is split and a retardation λ/2 wave plate

is used to rotate the linear polarization of one beam by 90◦. The orthogonally linearly

polarized beams are combined together by a polarizing beam splitter (PBS). After the

λ/4 wave plate the laser beams are sent to a glass cell with Rb atomic vapor at the

density of 10−12 cm−3. Combination of two orthogonally circularly polarized optical

fields produces a ground state Zeeman coherence in Rb atoms and generates EIT. A

simplified Λ-scheme is shown in the inset of Fig. 28. To avoid the contribution of

environmental magnetic field the Rb cell is installed in a two-layer magnetic shield.
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The transmitted optical fields with orthogonal polarizations are separated using a

second λ/4 wave plate and another PBS. Then the optical beams are sent to the data

acquisition system including photodiodes, oscilloscope and spectrum analyzer.

2. Experimental results and discussion

In order to measure the transmission, one of the beams after PBS is sent to a narrow

bandwidth photo-detector (PD) (a mirror installed in a removable indexing mount

to make the switch) and the signal from the photo-detector is recorded by a digi-

tal storage oscilloscope (DSO). The recorded EIT resonances for two different laser

powers are shown in Fig. 29. Two-photon detuning is controlled by changing the

longitudinal magnetic field B. In our case the two photon detuning is equal to the

Zeeman magnetic splitting ∆ω(F = 2) = 2π × 1.4 MHz/G. We have scan the lon-

gitudinal magnetic field at the frequency of 10 Hz. The width of the EIT resonance

(FWHM) increases with the optical power (Rabi frequency) and it is less than the

natural width of the optical transition 6 MHz. The power dependence of EIT width

is shown in Fig. 31(a) and will be discussed later.

Spectral distribution of the excess noise is studied at the maximum transparency

when the magnetic field B=0. Two fast photo-detectors with bandwidth 100 MHz

are used to study intensity fluctuations of optical beams. The photo-detectors with

opposite polarity (+) and (-) can be used separately or as a balanced photo-detector

assembly (BPD) with the sensitivity of 2×104 V/W. The data acquisition system in-

cludes a radio frequency (RF) spectrum analyzer (Advantest R3162) and a computer

with LabView software. The results in Fig. 30 are obtained under the same exper-

imental conditions as those for EIT resonances in Fig. 29. The curves are recorded

with the resolution of 300 kHz and video-band of 300 Hz. The electronics noise (dark

noise) is extracted. Curves (1a) and (1b) in Fig. 30 are recorded with only one
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Fig. 29. The EIT resonances; (a) the power Pin of each beam at the cell is equal to

0.22 mW (total power Pt=0.44 mW), (b) Pin=0.11 mW (Pt=0.22 mW).

optical beam sent to the BPD. Curves (2a) and (2b) are recorded with both optical

beams at BPD and the output signal is the subtraction of two beams. We also have

recorded reference curves which is obtained when we remove the Rb cell from the

optical path and reduce the optical powers at BPD by variable filters to the previous

levels. The no-cell reference curves (3a) and (3b) are recorded with two beams in

the subtraction scheme and they are close to the shot-noise-limited curves. There are

small noise bumps in the low frequency region. This extra noise is associated with

the gain of the registration system. We shall note that the diode laser has a very

small intensity noise. When we have detected only one laser beam we have observed

the same spectral distribution by taking into account a variation of the total optical

power.

The intensity noise dramatically increases when optical fields propagate through
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Fig. 30. Spectra of noise signal are recorded at power Pin=0.22 mW [set (a)] and

Pin=0.11 mW [set (b)] under EIT conditions. Curves (1a) and (1b) are

recorded with one laser beam sent to the photo-detector. Curves (2a) and

(2b) are recorded with two beams at the balanced photo-detector assembly.

Curves (3a) and (3b) are reference curves which were recorded without a Rb

cell.

the Rb cell. The spectral distribution of the intensity fluctuations in one of the beams

is presented in Fig. 30 as curves (1a) and (2b). The conversion of the laser frequency

noise to the intensity noise in Rb atomic vapor enhances the intensity fluctuations.

The spectra show a resonant behavior of the intensity fluctuations with a maximum

at the low frequency and a flat background.

The correlation of the intensity fluctuation can be estimated when both optical

beams are sent to the BPD. The difference in the signals is shown in Fig. 30(2a)

and (2b). At the low optical power the correlation curve (2b) coincides with the

reference curve (3b). At the high optical power there is a difference between the
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subtracted correlation curve (2a) and the reference curve (3a). The correlation of

the intensity fluctuation decreases with increasing optical power (Rabi frequency).

Similar power behavior of correlations between two independent optical beams in

the EIT experiment was observed in [125]. Variation in the correlation coefficient is

explained in [125, 124] as a consequence of the competition between EIT and Raman

processes. The result is that the best reduction of excess atomic noise in EIT can be

reached at low optical intensity.

It is interesting that intensity fluctuations of coupled optical fields are highly

correlated in a broader spectral range compared with EIT width.

The power dependence of the EIT width is presented in Fig. 31(a). The experi-

mental data are shown as circles. The solid line in Fig. 31(b) is the result of a fit using

expression w = w0+kP , where w0 = 0.07±0.02 MHz and k = 2.14±0.1 MHz/mW. A

linear dependence of EIT width on the moderate laser power was discussed earlier in

[131]. The zero power limit of width w0 is close to the calculated transient broadening

0.98Vth/πD = 0.09 MHz [43], where Vth is the thermal speed of an atom and D is

the laser beam diameter. The estimated width w0 is obtained by the linear intensity

dependence which can be switched to nonlinear dependence at very low intensities.

At the lowest laser beam power 0.048 mW we have measured an EIT width of 0.1

MHz which can be considered as the low power limit in our experiment.

The spectral distribution of intensity fluctuation is a combination of a resonant

curve and a flat background. It is possible to fit the resonant part of the spectral

distribution by the half Lorentzian function (half of a bell-shaped curve). In Fig.

30(1a) the amplitude drops to the half maximum at the frequency of 10.5 MHz.

For curve (1b) it drops to the half at the frequency of 15.6 MHz. The noise width

versus laser beam power P is presented in Fig. 31(b). The experimental data are

shown as squares. The width is obtained from the Lorentzian fit of the noise spectral
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Fig. 31. Power dependence of (a) the width of the EIT resonance and (b) the width

of the intensity noise spectrum. The solid lines are results of a linear fit.

distribution at different laser powers. The error bar is small, less than the size of the

squares. The errors can be attributed to systematic errors in the power measurements

and temperature (atomic density) drift. The solid line in Fig. 31(b) is the result of

a fit to expression W = W0 + KP , where W0 = 5.4 ± 0.9 MHz and K = 36 ± 3.9

MHz/mW. The power dependence of the noise spectra can be associated with the

spectral hole in the absorption due to the saturation of the optical transition and

the re-population of the ground state levels [132, 133]. The results are consistent

with previous studies of the time-dependent cross-correlation function for intensity

fluctuations in the EIT experiment where a narrow correlation peak order of 20 ns
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was observed [124].

To summarize this section, we have studied the spectral distribution and correla-

tion of optical fields coupled the excited state and two ground state Zeeman sublevels

in a dense rubidium atomic vapor. Under resonant EIT conditions, the intensity noise

is highly correlated. The experiment has demonstrated that the atomic excess noise

can be reduced to the shot-noise level by using the subtraction scheme. The results

can be used to improve the performance of atomic clocks and magnetometers.

B. Intensity correlation in NMOR ∗

In the previous section, we have studied the correction between the fluctuations be-

tween the left and right circularly polarized beams, which are the normal modes of

the system. However, the experimental configurations are slightly different in many

atom-optical applications in optical magnetometry [115] measurements such as the

NMOR experiment. We now study the correlation of intensity fluctuations in the con-

figuration with two orthogonally linearly polarized beams, which are not the normal

modes of the system.

In the first part of this section, we study the atomic noise correlation in a NMOR

experiment with a rubidium vapor and the dependence of the correlation function on

the longitudinal magnetic field. In the second part, we study the noise spectra in the

same configuration and demonstrate the reduction of the atomic excess noise under

proper conditions. In the final part, a simple theoretical model is presented.

∗Part of the data reported in this section is reprinted with permission from
“Intensity correlations in resonance nonlinear magneto-optical rotation,” by T.S.
Varzhapetyan, H. Li et al., Opt. Comm. 282, 39 (2009), Copyright by Elsevier;
and from “Atomic noise spectra in nonlinear magneto-optical rotation in a rubidium
vapor,” by H. Li et al., J. Opt. Soc. Am. B 25, 1702 (2008), Copyright by Optical
Society of America.
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1. Experiments of atomic excess noise in NMOR

The experimental schematic is illustrated in Fig. 32. The laser source is an external

cavity diode laser (ECDL) described in [130]. The laser is tuned to the rubidium

D1 line (795 nm), specifically at the transition 5S1/2 (F=2) ↔ 5P1/2 (F=1) of 87Rb,

referenced to the Doppler-free saturation resonance in a rubidium cell at room tem-

perature. The frequency drift is less than 30 MHz per hour after a sufficient warm-up

time. The linewidth of the laser emission is less than 1 MHz. The laser beam has

a diameter of 1 mm, and it is linearly polarized. After passing through an optical

isolator, the beam proceeds through a polarizing beam splitter (PBS) and possesses

a polarization parallel to the optical table.

The beam goes into a glass cell filled with a rubidium vapor that contains the

natural isotope abundance of rubidium atoms. The cell has the length of 7.5 cm,

and it is heated to reach an atomic density of 1012 cm−3. A two-layer magnetic

shield isolates the cell from environmental magnetic fields in the lab, while a solenoid

inside the magnetic shield provides an adjustable longitudinal magnetic field. The

linearly polarized beam is a combination of the left- and right-circularly polarized

components. The two circular components are coupled to the energy levels of 87Rb

as shown in the energy diagram in Fig. 32(c).

To study the polarization rotation and the correlation of noise, the output beam

from the rubidium cell is analyzed by a half-wave plate (λ/2) and two identical fast

photo-detectors (block (a) in Fig. 32) with a frequency bandwidth of 75 kHz - 1.2

GHz. The optical path lengths for both beams and the length of cables between the

photo-detectors and the oscilloscope are chosed to be the same to avoid any time delay

between the signals in two registration channels. The half-wave plate is set to rotate

the polarization by 45◦, such that without the rubidium cell, the PBS equally splits
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Fig. 32. Experimental setup of noise study in NMOR and the energy levels of rubidium

atoms. (a) is the detection setup for measuring the correlation of noise, (b) is

the detection setup for measuring the noise spectra, (c) is the energy diagram.

The notations are the following: OI is an optical isolator; PBS is a polarizing

beam splitter; DSO is a digital storage oscilloscope; PDs are photo-detectors;

BPD is a balanced photo-detector; SA is a spectrum analyzer.

the intensity of the beam. If the rubidium cell is placed in the system, a rotation

angle of the beam polarization will be introduced that depends on the magnitude

of the longitudinal magnetic field [115]. With a nonzero magnetic field (B�=0), the

two beams coming out from the PBS do not have equal intensities. Recording the

intensities of two beams as I1 and I2, the polarization rotation due to rubidium atoms

can be calculated using the following equation

φ =
1

2
arcsin(

I1 − I2

I1 + I2
) . (5.1)

We can also calculate the correlation function of two beams from the recorded inten-

sities.
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To study the power spectra of the atomic excess noise, a balanced photo detector

(BPD) with a sensitivity of 2×104 V/W and a bandwidth from DC to 100 MHz is

used to register the intensities of two laser beams (block (b) in Fig. 32). The signal

is analyzed by an RF spectrum analyzer. In the case of a zero magnetic field (B=0),

for example, each channel of the BPD records an intensity

Ii = I0 + I(t) + δIi(t) , (i = 1, 2) , (5.2)

where I0 is the average intensity, I(t) is the low frequency intensity fluctuations due

to the instability of the laser source such as the fluctuations of temperature and

current, and δIi(t) is the atomic excess noise due to the interaction between the

laser beam and the atoms. Then, the difference signal ∆I from the BPD is given by

∆I(t) = δI1(t) − δI2(t). The spectrum analyzer gives the Fourier transform of the

time dependence of the signal.

2. Intensity correlation in NMOR

In this part, we present the measurements of the intensity correlation function in

NMOR. We start the presentation of experimental results with a demonstration of

the narrow EIT resonance. The transmission T versus magnetic field B is shown

in Fig. 33(a). In a magnetic field, the linear polarization of the laser field rotates,

and the polarization rotation dependence on the external magnetic field is shown in

Fig. 33(b). The width of nonlinear magnetic optical resonances is determined by the

power broadening of the two-photon transition, which for our conditions is narrower

than the natural optical width (6 MHz). The observed background in Fig. 33(b) is

due to the linear rotation of polarization.

To study the fluctuations of an optical field transmitted through a dense Rb

vapor, we have registered the time dependent signal fluctuations δS1,2(t) of the two
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Fig. 33. Magnetic field dependence of the EIT (a), polarization rotation (b) and cor-

relation function G(2)(0) (2b). In (c) the circles represent experimental data

and the solid curve is a visual guide for the eye.

optical beams after the second PBS. We record these signal fluctuations for the two

output beams in a 10 µs time-window for different magnetic fields, and then we

calculate the normalized correlation functions given by

G(2)(τ) =
〈δS1(t)δS2(t+ τ)〉√

〈[δS1(t)]2〉 〈[δS2(t+ τ)]2〉
, (5.3)

where δS1,2(t) are the time dependent fluctuations of the two beams, and stochastic

averaging [1] denoted by angular brackets is defined as 〈Q(t)〉 ≡ 1/T
∫ t+T
t Q(t′)dt′.
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The intensity fluctuation is very low when the cell has been removed from the

laser beams due to the fact that the diode laser radiation possesses low intensity noise.

In the presence of a resonant medium, however, the situation changes, and the phase

noise of a diode laser is transformed into intensity fluctuations. The laser beams

then possess significant intensity noise. The study shows that the intensity noise of

two beams can be well correlated depending on the magnetic field. The magnetic

field dependence of the correlation function at zero time delay, G(2)(0), is shown in

Fig. 33(c). The correlation magnitude is close to 0.9 at zero magnetic field.

Increasing the magnetic field up to 0.2 G results in decreasing the correlation

function magnitude to about 0.2. But further increase of the magnetic field leads

to a revival of the correlation, and it reaches about 0.7 at 0.8 G field strength. We

underline here that this behavior is different from that observed in [124]. The key

difference is that, in this experiment, we study the fluctuations of the orthogonal linear

polarization components, which are not normal modes because of the Faraday effect.

Unlike the experiment in EIT, no anti-correlation is observed in this experiment.

By examining the polarization angle rotation dependence shown in Fig. 33(b),

one can conclude that the maximum correlation is obtained when the magnetic field

and the polarization rotation in the atomic medium are close to zero. The correlation

functions G(2)(τ) for three different magnetic fields are shown in Fig. 34.

The signals from the photo-detectors in the time interval of 200 ns are shown in

the inset boxes in Fig. 34. The signals are proportional to the laser beam power with

a slope of 500 V/W. The vertical range of the plot is 4 mV. The amplitude variations

of the signals are practically the same as in Fig. 34.

The temporal behavior of the signal is modified by the applied magnetic field.

The signals shown in Fig. 34(a) and (c) are correlated, and the ones shown in

Fig. 34(b) are not. We observe that at a low or high magnetic field, fluctuations
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Fig. 34. Intensity correlation function G(2)(τ): curve (a) recorded at zero magnetic

field, curve (b) at a magnetic field of 0.18 G and curve (c) at a magnetic

field of 0.9 G. Also signals from photo-detectors are shown in boxes. The

waveforms are recorded in time intervals of 200 ns and amplitude intervals of

4 mW.

are strongly correlated. At an intermediate magnetic fields, the peaks of correlation

function have less magnitude. The correlation function behaves as if it changes sign

around zero time delay. Possibly different frequency components of the signals can be

correlated or anti-correlated at these magnetic fields. For the dependence shown in

Fig. 33(c), we have selected the magnitudes of the correlation function at zero time

delay.

We note that the inverse width of the peaks is the order of 2π × 20 MHz, and
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it is comparable with the width of the saturation resonance [132, 133, 134], and it is

much broader than the ground state relaxation rate. The inverse width depends on

the excited state decay rate 2π×6 MHz and the optical excitation rate. The influence

of one-photon optical saturation on MNOR is discussed in [115].

To summarize the results, we have studied atomic noise correlations in a non-

linear magneto-optical rotation experiment with rubidium atomic vapor by using

broadband detection. The correlations between the orthogonally polarized compo-

nents of the laser beam are maximal in the absence of a magnetic field. The width of

the correlation function peak is proportional to the excited state lifetime and the in-

verse Rabi frequency. When a longitudinal magnetic field is applied, the correlations

first decrease and then increase. The minimal correlations and the maximal rotation

angles are observed at the same magnetic fields. The performed study is important

for understanding of noise properties of radiation interacting with the Lambda-type

atomic systems that demonstrate a variety of quantum coherence effects.

3. Atomic noise spectra in NMOR

In this part, we present the measurements of atomic noise spectra in NMOR. We

begin the presentation of the results by showing the power spectra of noise with

no magnetic field (B=0). Fig. 35 shows the noise spectra for different input laser

intensities. The left and right figures display the spectra for input laser powers of 0.24

mW and 0.49 mW, respectively. Traces (a2) and (b2) are recorded with two laser

beams sent to the BPD, and they show the noise spectra of the difference signal. The

noise is larger in the low frequency region. The noise level approaches the shot-noise

level at higher frequencies.

The expected shot-noise levels are indicated as the red dashed lines in Fig. 35.

Note that the shot-noise in NMOR includes the spin shot-noise and the photon shot-
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Fig. 35. The power spectra of the noise from laser beams in an NMOR experiment

with the magnetic field B=0. The left and right figures show the spectra with

input laser powers of 0.24 mW and 0.49 mW, respectively. Traces (a1) and

(b1) are the noise spectra of one laser beam. Traces (a2) and (b2) are the

noise spectra of the balanced signal (with both beams). The red dashed lines

indicate the expected shot-noise level. The spectrum analyzer was setup with

a resolution of 300 kHz and a video bandwidth of 100 Hz.

noise [113, 115], in our experiment the photon shot-noise dominates and determines

the shot-noise level. As discussed in [127], the photon shot-noise level is experimen-

tally determined by sending one or two laser beams to the BPD without passing

through the rubidium cell. In this case the photon shot-noise is proportional to the

square root of the laser power.

For comparison, traces (a1) and (b1) are recorded with only one laser beam sent

to the BPD. They represent the noise spectra of the laser beam passing through the

rubidium vapor. Before entering the cell, the laser beam has small intensity noise

but large phase noise. The phase noise is converted into the intensity noise due to

the laser interacting with the atoms. This process causes a substantial increase of

intensity fluctuations in the laser beam coming out of the cell [98]. Our results show
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Fig. 36. The polarization rotation is plotted as a function of the longitudinal magnetic

field B.

that these intensity fluctuations can be suppressed by subtracting the intensity of

one laser beam from the other. Comparing the noise spectra of one laser beam and

of the difference signal, (a1) and (a2) for instance, the noise level of the difference

signal is dramatically reduced. When the input laser power is doubled (0.49 mW), the

corresponding spectra presented as (b1) and (b2) show the same behavior, although

the shot-noise level increases approximately two times because of the higher laser

power. These results can be understood as a consequence of the intensity correlation

between the two output laser beams from the PBS. As is shown in [128], the intensities

of two beams in an NMOR experiment are highly correlated (correlation function

G(2)(0) ≈ 0.9) at zero magnetic field (B=0). The fluctuations δI1(t) and δI2(t) are

varying simultaneously, and thus ∆I(t) will be small.

The intensity correlation and the substantial reduction of noise in NMOR ex-

periments is not trivial in terms of various behaviors at different magnitudes of the

magnetic field B. To show this, besides the preceding results with a zero magnetic

field, we have also studied the noise spectra in NMOR at magnetic fields of various
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Fig. 37. The noise spectra dependence on the longitudinal magnetic field. The noise

level is plotted as a function of both the frequency and the magnetic field.

(a) The spectra corresponding to magnetic fields ranging from 0 to 26.3 mG;

(b) The the spectra corresponding to magnetic fields ranging from 26.3 mG

to 184 mG. The arrows denote the ascending direction of the magnitude of

the magnetic field.

magnitudes. Prior to showing these results, a typical measurement of the polariza-

tion rotation in our experiment (laser power P=0.24 mW) is presented in Fig. 36, to

remind us of the rotation dependence on the magnetic field.

We record the noise spectra of the difference signal with two output beams sent to

the BPD for several magnetic fields. The results are presented as three dimensional

plots in Fig. 37 (laser power P=0.24 mW). The magnetic field varies from 0 to

184 mG. The spectra corresponding to magnetic fields ranging from 0 to 26.3 mG

are shown in plot (a), and the ones corresponding to magnetic field ranging from

26.3 mG to 184 mG are shown in plot (b). The spectra are sorted by the magnetic

field ascending along the arrows shown in the figure. The magnetic field in plot (a)

steps by about 2.6 mG, while it steps by about 26 mG in plot (b). Note that the

noise spectra corresponding to negative magnetic fields, which are not plotted here,



91

Fig. 38. (a) The level of noise at different frequencies is plotted as a function of the

magnitude of the magnetic field. (b) The magnification of the dashed square

region in (a). Different symbols denote different frequencies. Square: 2 MHz;

hollow square: 5 MHz; triangle: 10 MHz; hollow triangle: 15 MHz; dot: 20

MHz; circle: 30 MHz. The solid lines are smooth connections of the data

points.

have the symmetric behaviors. From these results, we see that the reduction of high

frequency noise is nearly the same for different magnetic fields, but the low frequency

noise is not appreciably reduced. This shows that the low frequency noise is not

correlated at all magnitudes of the magnetic field, but the high frequency noise is

better correlated. A detailed study of the noise spectra dependence on the magnetic

field for each individual NMOR system can provide a guideline for choosing optimal

working parameters to reduce or eliminate the atomic excess noise.

To better demonstrate how the noise at a certain frequency depends on the

magnitude of the magnetic field, we cut the three dimensional plots in Fig. 37 at

specific frequencies along the plane of the magnetic field axis and the intensity axis.

The cross sections picked up are shown in Fig. 38(a), in which the symbols square,

hollow square, triangle, hollow triangle, dot and circle represent the level of noise at
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frequencies of 2 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz and 30 MHz, respectively. At

the zero magnetic field, the noise is strongly reduced over the entire frequency range

and at the high frequencies it is close to the shot-noise level. For the frequencies lower

than 20 MHz, the noise level increases quickly within about 50 mG, and comes back

close to the shot-noise level within about 130 mG. For the frequencies higher than

20 MHz, the noise level essentially remains close to the shot-noise level. To show the

details of the rising slope in the dashed square in Fig. 38(a), a magnification of this

region is shown in Fig. 38(b). For low frequency noise, the noise level remains nearly

minimum value not only at the zero magnetic field but also in a small region around

zero magnetic field. In our data, the noise level of 2 MHz and 5 MHz noise is almost

flat for magnetic fields ranging from 0 to 2.5 mG.

These results show that, for the best reduction of atomic excess noise in atom-

optical applications, one should work near a zero longitudinal magnetic field. How-

ever, a rigorously exact zero magnetic field is not necessary, because the same reduc-

tion of noise can be obtained in a region around zero magnetic field. This property

makes the implementation relatively easier and more reliable. As an example, to

obtain the best reduction of the atomic excess noise in NMOR magnetometers, one

might use an external calibrated magnetic field to compensate [115], so that longitu-

dinal magnetic field is close to zero.

To summarize the results, we have experimentally studied the noise spectra in

a nonlinear magneto-optical rotation experiment in rubidium vapor. We have shown

that a detailed study of noise reduction, due to the intensity correlation between

two orthogonally polarized components of the laser beam, can suggest the optimal

working conditions for reducing atomic excess noise. The noise in the difference

signal of two orthogonal components at different frequencies has been studied as a

function of magnetic field. The study of the noise dependence on both the noise
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frequency and the magnetic field shows that the maximum reduction of noise can be

obtained around zero longitudinal magnetic field. Our results can be used to reduce

or eliminate atomic excess noise, and thus improve the sensitivity of magnetometers.

The study also indicates the potential importance of the intensity correlations in other

atom-optical applications such as atomic frequency references and the generation of

squeezed light.

4. Theoretical description and discussion

This part presents a simplified theoretical description of our system treating the laser

fields classically and using a density matrix for the atomic response. The laser beams

are in resonance with a three-level medium as depicted in Fig. 39. The Hamiltonian

of the atom is given by

H = h̄Ω−|a〉〈b| + h̄Ω+|a〉〈c| + h.c., (5.4)

where Ω± = ℘c,bE±/h̄ are the Rabi frequencies of left- and right-circularly polarized

beams; ℘c,b and E± are the corresponding dipole moments of the atomic transitions

and the electric fields. The density matrix equation is given by

ρ̇ = − i

h̄
[H, ρ] − 1

2
(Γ̂ρ+ ρΓ̂), (5.5)

where Γ̂ is the relaxation matrix. The equations for field propagation are

∂Ω−
∂z

= −iηbρab, ∂Ω+

∂z
= −iηcρac, (5.6)

where ηb = ν−N℘2
b/(2h̄ε0c), ηc = ν+N℘

2
c/(2h̄ε0c) are the coupling constants, ν±

are the frequencies of circular polarized fields, ℘b,c are the dipole moments of the

corresponding transitions, N is the atomic density of medium. Note that the left-

and right-polarized beams are the normal modes of the current system, and their
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polarizations do not change while they are propagating through the cell.

+Ω Ω−

c

b−∆ δ∆

a

Fig. 39. A simplified three-level scheme. Splitting of the ground state is ωcb = 2gµBB,

where g is the Lande factor, µB is Borh’s magneton, and B is the magnetic

field.

The intensities of the optical beams propagating through the cell fluctuate. The

corresponding correlation function is defined as

G(2)(τ) =
〈δI−(t)δI+(t+ τ)〉√

〈[δI−(t)]2〉〈[δI+(t+ τ)]2〉
. (5.7)

Intensity fluctuations have been studied in [124], and they are related to the atomic

responses

δI− ∼ ImρabΩ
∗
−, δI+ ∼ ImρacΩ

∗
+. (5.8)

The corresponding atomic coherences in the three-level system can be found from

the solution of the density matrix equations. Assuming the phase diffusion of optical

fields is a slow process, the atomic coherences are given by

ρab = −inbaΩ− + ρcbΩ+

Γab
, ρca = i

ncaΩ+ + ρcbΩ−
Γca

(5.9)

Γcbρcb = iρcaΩ− − iρabΩ+, (5.10)

where Γab = γab+ i(ωab−ν−); Γca = γca− i(ωac−ν+); Γcb = γcb+ i(ωcb−ν− +ν+); and
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γab, γca are the relaxation rates for atomic coherence at optical transitions, γcb is the

relaxation rate for atomic coherence between magnetic sublevels (for γab, γca � γcb,

γab = γca = γ); nα = ραα; nαβ = ραα−ρββ; ωαβ are the atomic frequencies; α and β are

labels for atomic levels a, b, c; ν−(t) = ν+(t) are the instantaneous frequencies of laser

radiation in both beams having orthogonal polarizations. Assuming Ω− = Ω+ = Ω,

and defining δ = ωab − ν− − ωcb/2, we solve Eq. (5.10) with respect to ρcb. Then,

substituting the solution into Eqs. (5.9) gives us the following:

ρab = i
Γcb(Γ − iδ)nab + ncbΩ

2

Γcb(δ2 + Γ2) + 2ΓΩ2
Ω, (5.11)

ρca = i
Γcb(Γ + iδ)nca + ncbΩ

2

Γcb(δ2 + Γ2) + 2ΓΩ2
Ω. (5.12)

The set of equations for populations can be obtained by substituting Eqs.(5.11,5.12)

into Eq.(5.6) for the appropriate atomic populations:

γana +

(
Γcb(Γ − iδ)

Γ̃cb
+

Γbc(Γ
∗ + iδ)

Γ̃∗
cb

)
Ω2nab +

(
1

Γ̃cb
+

1

Γ̃∗
cb

)
Ω4ncb = 0, (5.13)

γana +

(
Γcb(Γ + iδ)

Γ̃cb
+

Γbc(Γ
∗ − iδ)

Γ̃∗
cb

)
Ω2nac +

(
1

Γ̃cb
+

1

Γ̃∗
cb

)
Ω4nbc = 0, (5.14)

where Γ̃cb = Γcb(δ
2 + Γ2) + 2ΓΩ2. By introducing Ab = A− δB, Ac = A + δB, and

A =

(
ΓcbΓ

Γ̃cb
+

ΓbcΓ
∗

Γ̃∗
cb

)
Ω2, B = −i

(
Γcb

Γ̃cb
− Γbc

Γ̃∗
cb

)
Ω2, (5.15)

C =

(
1

Γ̃cb
+

1

Γ̃∗
cb

)
Ω4, (5.16)

the set equations for the populations can be re-written in the compact form

γana + Abnab + Cncb = 0, (5.17)

γana + Acnac + Cnbc = 0, (5.18)
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with the condition na+nb+nc = 1, we can solve the equations and get the following,

na =
AbAc + C(Ab + Ac)

3AbAc + C(3Ab + 3Ac + 4γa) + γa(Ab + Ac)
(5.19)

nb =
AbAc + C(Ab + Ac + 2γa) + Acγa

3AbAc + C(3Ab + 3Ac + 4γa) + γa(Ab + Ac)
(5.20)

nc =
AbAc + C(Ab + Ac + 2γa) + Abγa

3AbAc + C(3Ab + 3Ac + 4γa) + γa(Ab + Ac)
(5.21)

The solution for the population difference in level b and c is given by

ncb =
2γaBδ

3AbAc + C(3Ab + 3Ac + 4γa) + γa(Ab + Ac)
. (5.22)

Simplifying Eqs. (5.15,5.16), we obtain A � γcb, B � ∆
γ
, C � |Ω|2

γ
, and

ncb � ∆δ

|Ω|2 . (5.23)

The intensity fluctuations are determined by atomic coherences, which are

Imρab � γcbγ + ∆δ

γ|Ω| , Imρac � γcbγ − ∆δ

γ|Ω| , (5.24)

where the field phase fluctuation is related to the frequency deviation δ that is re-

stricted by the EIT window [124], δ ∼ Ω2

γ
.

We can see from Eq.(5.24) that the intensity fluctuations have two contributions:

the first originates from absorption, which is the same for both modes, and the second

originates from the Raman term appearing from the population difference ncb, which

has opposite signs for these two modes. One field is amplified due to absorption of

the second field. Depending on the one- and two-photon detuning, ∆, the intensity

fluctuations occur in phase if γcbγ
2/Ω2 � ∆ or out of phase if γcbγ

2/Ω2 
 ∆. The

last condition gives rise to the anti-correlations.

Let us note here that at the EIT condition, ∆ = 0, correlated intensities can

be also considered from the point of view of matched pulses [135]. Note that in-
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tensity correlations originate from the resonant interaction between radiation and

matter. Phase of electromagnetic field propagating through the cell changes due to

phase fluctuations of laser radiation and dispersion of the resonant medium, due to

spontaneous emission and Raman-like scattering involving atomic coherence between

magnetic sublevels of Rb atoms. These intensity correlations and anti-correlations

have been experimentally observed in two orthogonally circularly polarized optical

beams from the same laser [124] and in orthogonally linearly polarized optical beams

from two independent lasers [125].

Now we are ready to consider intensity fluctuations between the orthogonally

linearly polarized beams in the current experiment. Linearly polarized light can be

regarded as a linear combination of left- and right-circular polarized light. The light

with left- and right-circular polarizations does not change its state of polarization

while propagating through the gas cell. We previously studied the correlation of

intensity fluctuations between the normal modes [127].

In the current experiment, to detect rotation of polarization, we use the following

scheme. After the polarizer, the beam propagates through the cell, and then after a

half-wave plate, the polarization plane rotates 45o degrees and is split by a PBS into

two orthogonally polarized optical beams. The intensity of each beam is detected.

Thus, the measured signals, S1 and S2, are proportional to the intensities of the

propagated circularly polarized components, which are given by

S1,2 ∼ I1,2 =
1

2
(I+ + I− ± 2

√
I−I+ sinφ), (5.25)

and the polarization rotation φ is given by equation (5.1).

Then the correlation between S1 and S2 can be calculated by

G(2)(τ) =
〈δI1(t)δI2(t+ τ)〉√

〈[δI1(t)]2〉〈[δI2(t+ τ)]2〉
. (5.26)
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As is seen from Eq. (5.25), the circularly polarized beams are equally split into

two linear polarizations. Thus, the two intensities of the linearly polarized components

are correlated. The only contribution that decreases the correlations is due to the

terms depending on the rotational angle, which have different signs for orthogonal

polarizations in Eq. (5.25).

The intensity fluctuations should be small for the components that are not per-

fectly anti-correlated. But as we have shown in a previous paper [124], increasing

the magnetic field causes these components to become anti-correlated (note here that

Raman-type effects described by Eq. (5.23, 5.24) are involved). On the other hand,

increasing the magnetic field increases the rotation at first, but then once the split-

ting becomes bigger than the EIT width, the rotation angle decreases, restoring the

correlations between the intensities of the linear components.

One can see from Eq. (5.25) that if the rotational angle in a magnetic field is

small, the beams mainly consist of the sum of intensities for left- and right-circularly

polarized beams, and thus the fluctuations are correlated. Anti-correlations come

from the interference terms having different signs due to Faraday rotation in the

magnetic field. So we have correlations at zero magnetic field. But for stronger

magnetic fields, due to the decreasing of the angle of rotation, the interference term

becomes much smaller than the sum of intensities of left- and right-circularly polarized

components (I+ + I− � 2
√
I−I+| sinφ|), and only the correlation between beams is

observed.

For larger two-photon detuning, the nonlinear magneto-optical rotation of polar-

ization becomes smaller and intensity correlations restore their correlations. Define

I+ = I0 + i+, I− = I0 + i−, (5.27)

where i± are the intensity fluctuations of the beams I±, correspondingly. Then,



99

using
√

1 + z � 1 + z
2
− z2

8
, introducing x = i+ + i− and s = i+ − i− (note that

i+i− − x2

4
= 4i+i− − (i+ + i−)2 = −(i+ − i−)2 = −s2), we can rewrite Eqs. (5.25) as

I1,2 = 2I0 + x± (2Io + x− s2

4I0
) sinφ. (5.28)

Thus, we obtain

δI1,2 = I1,2 − 〈I1,2〉 = x(1 ± sinφ) ∓ s2 − 〈s2〉
4I0

sin φ (5.29)

and

〈(I1 − 〈I1〉)2〉 = 〈x2〉(1 + sin φ)2 +
〈s4〉 − 〈s2〉2

16I2
0

sin2 φ (5.30)

Finally, we can calculate the correlation function G(2), defined by Eq.(5.26),

G(2)(0) =

〈x2〉 cos2 φ+
〈s4〉 − 〈s2〉2

16I2
0

sin2 φ√√√√(〈x2〉 cos2 φ+

(〈s4〉 − 〈s2〉2

16I2
0

)
sin2 φ

)2

+ 4〈x2〉〈s
4〉 − 〈s2〉2

16I2
0

sin4 φ

(5.31)

In the last equation, one can see that the correlation function G(2)(0) is close to unity

for two cases: for small magnetic fields, when the rotation angle is small (the beam

intensities are correlated [124]), and for strong magnetic fields, when the rotation

angle is also small (the beam intensities are anti-correlated [124]). Correspondingly,

in the intermediate case, we have correlations that are less perfect.
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CHAPTER VI

ATOMIC EXCITATION BY FEW CYCLE RF PULSES

The development of modern laser technology has brought significant advantages to

the study of field-matter interaction. As spectacular examples, modern lasers can

cover a wide range of spectrum from X-ray to THz regime and produce remarkable

ultra-short bursts of light such as atto-second pulses. However, there are cases where

the sufficient flexibility of laser fields is not easily accessible, sometimes even impos-

sible. For instance, it is extremely hard to obtain few cycle laser pulses with stable

and controllable carrier-envelope phase, especially for atto-second pulses. Using elec-

tromagnetic waves in radio frequency (RF) or microwave regime provides an unique

way to study field-matter interactions.

52S1/2

52P1/2
F=1

F=1

σ+

RF
RF-1

0
+1

-1
0

+1

σ+

87Rb

87Rb

Laser field
RF field

B

Fig. 40. The geometry of optical and RF fields alignment is shown on the left. The

energy diagram is shown on the right.

It has been a long history to use RF fields to study properties of atoms [136]. In

this chapter, we use an RF field to interact with the ground state Zeeman sublevels of

rubidium atoms. The excitation by short RF pulses are studied under some extreme

conditions which can hardly be realized with optical fields. In our experiments, the

rubidium atoms are initially prepared by a circularly polarized laser field which opti-
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cally pumps the system, thus populates one of the ground state Zeeman sublevels, as

shown by the energy diagram in Fig. 40. We then apply an RF field to interact with

the Zeeman sublevels and to transfer some population to the other Zeeman sublevels.

The geometry of the field alignment is shown in Fig. 40(left). A static magnetic field

along the propagation direction of the laser field is used to control the splitting of

Zeeman sublevels. The excitation RF field is applied in the transverse direction. The

population transferred by the RF field can be probed by measuring the absorption of

the circularly polarized laser field.

This technique of using RF fields to interact with Zeeman sublevels has many

advantages comparing with optical fields interacting with atoms. First of all, Zeeman

sublevels are relatively well isolated from other levels since the transitions between

them are energetically far away from other transitions, especially optical transitions.

This makes it possible to have an experimental system with well isolated two level

or three level atoms, which is fundamentally important from the theoretical point of

view. The level splitting can be tuned over a large fractional range that no other

system is capable of. Secondly, the RF field has an extreme flexibility on control

of all parameters. It is hard or even impossible, in the optical domain, to achieve

the same degree of control as in the RF domain over all parameters of the field.

With the RF field, it is specially interesting that we can generate “ultra-short” (few

cycles of oscillation) and “ultra-strong” (Rabi frequency comparable with the atomic

frequency) pulses. We are able to fully control important parameters such as pulse

shape, carrier-envelope phase, chirp and duration. With these advantages, this is

a perfect system to model the processes in ultra-short laser physics. The studies

conducted in the RF domain potentially have a great impact on experiments in the

optical domain.

Before moving on to the study with RF fields, we have run several demonstrations
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Time sequence of pulses

Laser

RF

Time

Fig. 41. The time sequence of optical and RF pulses.

to assure ourselves that the system with RF field can excite atoms as what we know

in the optical domain. The experiment can be performed with continuous wave (CW)

fields or pulsed fields. With CW fields, the optical field optically pumps the systems

and has a certain transmission. The excitation by an RF field introduces changes in

the transmission which can be recorded to characterize the excitation. While in the

case of pulsed fields, as shown in Fig. 41, a strong optical field is used to prepare

the system by the optical pumping, then we apply an RF pulsed followed by a weak

optical pulse as the probe. The population transfer by the RF pulse can be measured

by the absorption of the probe pulse.

In the first demonstration, we keep the optical field as a continuous wave and

use an RF pulse to excite the transition. In Fig. 42, the red curve represents the

transmission of the optical field which is related to the population of upper states,

while the blue curve is the amplitude of RF field. Applying the RF pulse changes

the transmission of optical field. The RF frequency matches the splitting of Zeeman

sublevels such that the excitation is on resonance. The oscillation in the transmission

of optical field is identified as the Rabi oscillations.

In the second demonstration, we use pulses for both the RF field and the optical
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Fig. 42. The Rabi oscillation in the transmission of laser field as the an RF pulse

excites the transition between Zeeman sublevels. The blue curve is the RF

field and the red curve is the transmission of laser field.

field. For the convenience to implement in experiments, the frequency of RF field

is kept constant as 50 kHz, and the splitting is varied by changing the longitudinal

magnetic field. In Fig. 43, we plot the transmission of the probe pulse as a function

of the Zeeman splitting. In (a), the applied RF field is linearly polarized, there are

two absorption peaks corresponding to the one-photon and three-photon excitations.

The one-photon excitation happens at 50 kHz, while the three-photon excitation is

shifted to about 130 kHz due to Bloch-Siegert shift [137]. In (b), the applied RF field

is circularly polarized (σ−), the selection rules allow only the one-photon excitation

but not the three-photon excitation. In (c), a σ+ field is used, thus neither the

one-photon excitation nor the three-photon excitation are allowed and there are no

absorption peaks appear.

Both demonstrations show that the transition between Zeeman sublevels can be

excited by RF fields. The transferred population due to excitation can be probed

sufficiently by the optical field. The system works as we expect from the excitation

by optical fields, thus we can use it to model the processes in the optical domain. We



104

20 40 60 80 100 120 140 160 180
0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

 

 
La

se
r t

ra
ns

m
iss

io
n 

(a
rb

. u
ni

ts
)

Zeeman splitting (kHz)

RF

RF
0

-1

+1

20 40 60 80 100 120 140 160 180
0.060

0.065

0.070

0.075

0.080

0.085

 

 

La
se

r t
ra

ns
m

iss
io

n 
(a

rb
. u

ni
ts

)

Zeeman splitting (kHz)

RF

RF
0

-1

+1
σ -

20 40 60 80 100 120 140 160 180

0.070

0.075

0.080

0.085

0.090

 

 

La
se

r t
ra

ns
m

iss
io

n 
(a

rb
. u

ni
ts

)

Zeeman splitting (kHz)

RF

RF
0

-1

+1
σ +

(a) (b) (c)

Fig. 43. The excitation by RF fields with different polarizations. There are one-photon

and three-photon excitations according to the selection rules.

will discuss two of such examples in the following sections.

A. Carrier envelope phase effect on atomic excitation

Modern pulsed laser can produce ultra-short intense bursts of light with only few

cycles of carrier oscillation [138]. The carrier-envelope (CE) phase strongly affects

many processes involving few-cycle pulses. In particular, it has been demonstrated

the CE phase effects on the high-harmonic generation [139], the strong-field pho-

toionization [140], the ionization of Rydberg atoms [141], the dissociation of HD+

and H+
2 [142], and the injected photocurrent in semiconductors [143], by few-cycle

pulses. The stabilized and adjustable CE phase is important for applications such as

optical frequency combs [144] and quantum control in various media [145, 146, 147].

Several techniques have been developed to control the CE phase of femtosecond pulses

[148, 149]. A crucial step is to measure the CE phase and provide a feedback to the

laser system. Promising approaches use, for instance, the photoionization [150, 151]

and the quantum interference in semiconductors [143].

In this section, we study the CE phase effect on population transfer between
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two bound atomic states interacting with few-cycle pulses. For our experiment, we

use intense RF pulses interacting with the magnetic Zeeman sublevels of rubidium

(Rb) atoms. The pulses are only a few cycles in duration and have Rabi frequencies

comparable to the carrier frequency. We have found that short pulses can be crafted

to cause significant population transfer, the CE phase of the pulse strongly affects that

transfer, and relatively large population transfer may be observed far off resonance.

The significance of our experiment is two-fold. First, it provides the insight

of CE phase effect in a new regime. Unlike the processes mentioned above, our

experiment is the first, to our knowledge, to observe the CE phase effect on a transition

between two bound atomic states. The transition is driven by RF pulses with the

Rabi frequency comparable to the carrier frequency, a regime being mainly studied

theoretically [152, 153, 154]. Our study in RF domain suggests experiments with

bound states and few-cycle pulses in optical domain as another way to measure the

CE phase. Furthermore, the observed phase dependent excitation, as a result of the

interference between one- and multi-photon transitions [143, 155], is important to

quantum control experiments [145, 146, 147]. Second, as we mentioned before, our

experimental system provides an unique system serving as an experimental model

for studying ultrashort optical pulses. The system is suitable for studies which the

technology in optical domain is not ready for, it may also lead to further suggestions

for optical experiments.

1. Excitation by cos and sin pulses

In this experiment, we study the excitation by the ultrashort pulses described in

Fig. 44(A,B) interacting with a two-level atom; states |c〉 and |d〉 refer to the ex-

cited and ground states, respectively, as shown in Fig. 44(C). These pulses have the

same envelope but different CE phases. One pulse may be called a cosine pulse (see
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Fig. 44(A)); the other, a sine pulse (see Fig. 44(B)). The amount of excited population

depends on the shape of the pulses [156].

|c>

|d>

(A) (B)

(D)

(C)

cos pulse sin pulse

cos pulse
sin pulse

Fig. 44. A few-cycle RF pulse with different carrier-envelope phases: (A) ϕ = 0; (B)

ϕ = π/2. The dotted curves indicate the envelope of the pulses. Figure (C)

shows a two-level system with |c〉 as the excited state and |d〉 as the ground

state. Figure (D) shows the population of |c〉 excited by an RF pulse as a

function of the frequency difference of the two-level system. The two curves

correspond to the results of the cosine (ϕ = 0)and the sine (ϕ = π/2) pulses.

Our experiment is performed in a gas of rubidium atoms. A 2.5 cm-long cell

containing 87Rb (and 5 torr of neon) is located within a magnetic shield. The cell is

heated in order to reach an atomic density of the order of 1012 cm−3. The configuration

of the optical and magnetic fields is shown in Fig. 45. A longitudinal static magnetic

field is applied along the laser beam to control the splitting of the Zeeman sublevels

of the ground state. A pair of Helmholtz coils produces a transverse RF field at a

frequency of 50 kHz.

The energy level scheme is shown in Fig. 45. The ground state (87Rb, 52S1/2,
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Fig. 45. The upper block shows a diagram of the relevant energy levels and the ge-

ometry of the Rb cell and the applied fields. The lower block shows the time

sequence of the laser pulses and the RF pulses.

F = 1) has three sublevels; a circularly polarized laser pulse optically pumps the

system and drives the atoms to the sublevel with mF = +1. This is followed by

a few-cycle RF pulse, which excites some population to the sublevels with mF = 0

and mF = −1. The population in the sublevels with mF = 0,−1 is subsequently

determined by measuring the transmission of a weak circularly-polarized probe pulse.

The Hamiltonian for an atomic state with F = 1 in a magnetic field B =

(Bx, By, Bz) is given by

Ĥ = −gµ0

⎛
⎜⎜⎜⎜⎜⎜⎝

Bz
Bx+iBy√

2
0

Bx−iBy√
2

0 Bx+iBy√
2

0 Bx−iBy√
2

−Bz

⎞
⎟⎟⎟⎟⎟⎟⎠

(6.1)

where g = −1/2 is the Lande factor for this Rb state, µo is the Bohr magneton, the

Bz = B0 is the static magnetic field that is chosen in the direction of z-axis; the Bx

and By are the transverse components that are driven by a digital function generator.
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The function generator can be programmed to provide short pulses with controllable

parameters, such as the pulse duration and the CE phase. To make sure the coils

produce the expected pulses, a signal from a sampling resistor in serial is used to

monitor the current in the coils.

The time sequence of the laser pulses and RF pulses is detailed in Fig. 45. The

sequence of laser pulses includes a 1.5 ms strong pulse to optically pump the Rb atoms,

and a 5 µs weak pulse (100 µs later) to probe the population of the upper Zeeman

sublevels. The sequence repeats every 20 ms. The linearly-polarized magnetic field

component of the RF field, Bx = B(t) cos(νt+φ) and By = 0, has a Gaussian-shaped

envelope B(t) = Box exp
[
−
(
t
τ

)2
]
, where τ = T/(2

√
ln 2), and T is the FWHM

duration of the pulse. The RF pulse is delayed by 50 µs with respect to the optical-

pumping laser pulse, and its duration, T , varies from 20 to 28 µs. The transmitted

intensity of the probe pulse is monitored by a fast photodiode.

The transmitted intensity of the probe pulse does not directly give the population

of the upper levels. We need to take into account the processes of atomic relaxation

and noise in the laser system. The latter is related to the intensity and frequency

fluctuations of laser.

To determine the population transfer due to the RF excitation, the experiment

is performed with a sequence of laser pulses with a RF pulse followed by a sequence

of laser pulses without RF pulse. For the first sequence, the transmitted probe pulse

intensity is given by I1 = I0ηe
−NσLPc , where I0 is the probe pulse input intensity, η

is a factor due to the dephasing, N is the atomic density, σ is the absorption cross

section, L is the cell length, and Pc is the population of the upper sublevels due to

the RF excitation. For the second sequence, in which there is no RF excitation, the

transmitted probe pulse intensity is given by I2 = I0η. Therefore, the population

due to the RF excitation is given by the quantity − ln(I1/I2) = NσLPc, which is
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presented as our experimental results in Fig. 44(D).

To calculate the behavior of this system, we employ the density matrix approach,

which naturally incorporates the relaxation processes. Even though the relaxation of

the atomic system with no optical pumping is slow, it is important to explain the

experimentally observed results. The set of density matrix equations is given by

ρ̇ = − i
h̄
[H, ρ] − Γ(ρ− ρ0), where H is given by Eq. (6.1), Γ describes the relaxation

in the system from atomic motion, and ρ0 is the thermal equilibrium density matrix

of atoms in the cell without the optical and RF fields. We assume that the optical-

pumping step transfers all of the population to the |S1/2F,mF 〉 = |1,−1〉 state, and

then we simulate atomic dynamics using the density matrix equations.

The main experimental result is shown in Fig. 44(D), where the quantity NσLPc

is plotted as a function of the Zeeman splitting. The behavior is dramatically different

for the sine and cosine pulses, as is shown by the blue and red curves respectively. The

RF pulses all have the same carrier frequency (50 kHz), and we modulate the Zeeman

splitting. The RF pulse has a Gaussian envelope with the duration (FWHM) of 20

µs (one cycle). For the sine pulse, we observe a well-defined one-photon resonance

at 50 kHz and a three-photon resonance that is shifted to about 110 kHz (Bloch-

Siegert shift [137]). For the cosine pulse, the upper state population decreases almost

exponentially as the atomic frequency is tuned away from one photon resonance. An

important feature is that, at 80 kHz, the RF excitation for the cosine pulse is larger

by over an order of magnitude compared to that of the sine pulse. This shows that it

is crucial to take into account the CE phase for processes involving few-cycle pulses.

2. Dependence on pulse duration and CE phase

We also studied the effect of the CE phase for different RF pulse durations. As an

example, Fig. 46 shows the results for both the cosine and sine pulses with different
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durations varying from 20 to 28 µs. We compared these experimental results with

the theoretical simulations from the set of density matrix equations. The short pulse

transfers population from the ground state |1,−1〉 to the states |1, 0〉 and |1, 1〉 (see

Fig. 45). The circularly-polarized probe laser is absorbed because it is equally coupled

to the transitions |S1/21, 0〉 → |P1/21,−1〉 and |1, 1〉 → |P1/21, 0〉 as shown in Fig. 45

(the dipole moments of both transition are the same). The depletion of population

from the ground state is given by 1 − ρ1,−1. The calculated signals are shown in

Fig. 46 (c) and (d), which agrees well with the experimental results in (a) and (b).

Fig. 46. The population of the upper Zeeman sublevels excited by (a) cos RF pulses;

(b) sin RF pulses with different pulse durations from 28 to 20 µs. Correspond-

ing theoretical simulations appear in (c) and (d).

The results can be understood as the CE phase dependent interference between

one- and multi-photon transitions as suggested in [143, 155]. When the pulse is so

short that its frequency spectrum is broad enough to cover two frequencies for both

one- and three-photon transitions, the overall excitation depends on the interference

between the one- and three-photon pathways. As shown in Fig. 44(D), the sine pulse

has a destructive interference while the cosine pulse has a constructive one. If the



111

pulse duration becomes longer, the narrower spectrum makes the interference and the

effect of CE phase less pronounced. As shown in Fig. 46, the difference of excitations

is less influenced by the CE phase as the pulse duration goes from 20 µs to 28 µs. The

results also suggest that a few-cycle pulse with adjustable CE phase can manipulate

the atomic excitation, the same method can be used for quantum control in atoms

[145], molecules [146] and semiconductors [147].

For a simple mathematical description of the results, let us neglect relaxation

and consider only two levels coupled by the radiation field (see Fig. 44(C)). The Rabi

frequency is given by Ω(t) = Ω0f(t) exp(−α2t2), where f(t) = f0(e
iνt + pe−iνt) is

either sin(νt) or cos(νt). For sin(νt), p = 1 and f0 = 1/2; for cos(νt), p = −1 and

f0 = −i/2. The equations for the state vector |Ψ〉 = Ceiωct|c〉 +D|d〉 are

Ċ = −iΩ̃D, Ḋ = −iΩ̃∗C (6.2)

where we introduce Ω̃ = Ω0f(t) exp(−α2t2+iωct). For the lowest order in the coupling

field (D � 1), the solution of Eq. (6.2) is

C(1) � −i
√
πf0Ω0

α

(
e−

(ωc−ν)2

4α2 + pe−
(ωc+ν)2

4α2

)
. (6.3)

One can see that for long (α << ωc) and short (α ∼ ωc) pulses, both the sine and

cosine pulses have a similar profile: we have a sum of two spectral components at

±ωc. The profile has no zero points for ν > 0. For the next non-zeroth order, we

have four terms that correspond to spectral components at ±ωc and ±ωc/3 and their

spectral widths are broader. As in Eq. (6.3), the positive and the negative frequency

components do not strongly influence each other. The components at ωc and ωc/3

are given by

C(3) � i

√
π

3
f 3

0 Ω3
0

α(ωc − ν)2

(
pξe−

(ωc−ν)2

12α2 + e−
(ωc−3ν)2

12α2

)
, (6.4)
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where ξ = (3ωc − ν)/(ωc + ν). For long pulses, these components are easily resolved.

But for short pulses (a few periods of oscillations, α ∼ ωc), the widths of these

components are broader than the widths of the components of C(1). For the cosine

pulse, the components are not resolved: the profile resembles one broad spectral

component. For the sine pulse, the situation is completely different: the total profile

has zero at ωc = 2ν + 3α2 ln ξ
ν

where the components (having opposite signs) cancel.

Another insight into the observed effect can be related to the Ramsey effect [157].

Namely, the two pulses delayed with respect to each other produce interference. Sine-

pulse (see in Fig. 1) can be viewed as two pulses and changing the frequency introduces

delay between pulses. Meanwhile a cosine-pulse is just one pulse and changing fre-

quency changes just the duration of the pulse. Then, what we have observed is that

the first half of the sine-pulse is interfering with the second half of the sin pulse, and

this interference produces the dip in the excitation of upper level (see in Fig. 1).

1E−2 

1E−1 

1

Fig. 47. The population excited by the RF pulse dependence on the CE phase. Ex-

periment result is shown in left panel and simulation in right panel.

Thus, sine and cosine pulses, which correspond to a change of π/2 in CE phase

difference, can be clearly distinguished. Our last study involved changing the CE

phase in smaller steps. In particular, we performed experiments with the pulses with
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CE phases varying from 0 to 360◦ by steps of 10◦ for various Zeeman splittings.

The result is shown as an image in Fig. 47 (left panel). The RF pulses used in

the experiment have the frequency 50 kHz and the pulse duration (FWHM) 20 µs.

The obtained data is plotted using color coding showing in Fig. 47. The range of

the population in the excited state is the same as in Fig. 46. One can see that

the excited population is a continuous function of the CE phase at a given Zeeman

splitting, and consequently, this can be used to determine and/or to control the CE

phase of the ultra-short pulses. We have performed simulations that reproduce the

observed results and they are shown in Fig. 47 (right panel). We note that measuring

population in the excited state might be easier than the asymmetry of the direction

of produced ions or electrons. This figure also demonstrates the temporal stability of

the experimental setup.

In conclusion, we have theoretically and experimentally demonstrated that the

carrier-envelope phase effect on population transfer between two bound atomic states

interacting with intense ultra-short pulses. The pulses are only a few cycles in du-

ration and have Rabi frequencies of the order of the carrier frequency. The phase

difference between the carrier and the envelope of the pulses has a significant ef-

fect on excitation of atomic coherence and population transfer. We acknowledge and

honor here the ground-breaking experiments performed with CW RF radiation [136].

These experiments in the RF region might furnish physical insight for the develop-

ment of CE phase control in optical fields, which are important for the generation of

pulses with a predetermined absolute phase.
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B. Off-resonance excitation by short laser pulses ∗

The two-level system (TLS) is a useful model with application to many fields such

as condensed matter physics, quantum field theory and quantum optics. Substantial

work has been directed toward detailed analytical solutions as well as experimental

verifications. Our experimental system with RF fields and Zeeman sublevels provides

an opportunity to experimentally study such a two-level system.

In this section we consider a two-level atomic system under the action of a far-

off resonance, strong, ultra short, pulse of laser radiation. We first develop new

solutions for a TLS transcending the usual multiphoton adiabatic treatments. In

particular, we show that intense ultrashort pulses can excite remarkable coherence

on high frequency far-detuned transitions. We then show the experiment performed

with RF fields whose result supports the theoretical calculation. This result holds

promise for various applications, such as a new approach to the generation of XUV

radiation as is discussed in detail in [158].

1. A Model of off-resonant field-atom interaction

In this section, I will present an analytical treatment of the detuned atom-field in-

teraction beyond the rotative wave approximation (RWA). The Hamiltonian of a

two-level system is given by

Ĥ = h̄ωc|c〉〈c| − ℘E|c〉〈d| − (℘E)∗|d〉〈c|,

where h̄ωc is the energy difference between two levels; ℘ is the atomic dipole moment;

E(t) = E(t) cos(νt) is the classical external electromagnetic field having amplitude

∗Part of the data reported in this section is reprinted with permission from “Exci-
tation of atomic coherence using off-resonant strong laser pulses,” by Y.V. Rostovtsev
et al., Phys. Rev. A 79, 063833 (2009), Copyright by the American Physical Society.
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E(t) and frequency ν. The state vector can be written as

|Ψ〉 = C(t)e−iωct|c〉 +D(t)|d〉. (6.5)

Introducing Ω̃(t) = ℘E(t)
h̄
eiωct, the Schrödinger equation yields the set of equations

Ċ = −iΩ̃(t)D (6.6)

Ḋ = −iΩ̃∗(t)C (6.7)

The amplitude of the Rabi frequency, even for modern level of laser intensities

is much smaller than the frequency of transition, |Ω̃(t)| 
 ωc, all population is in the

ground state, |D(t)| � 1, the value of |C(t)| is small, and it is given by

C(t) � −i
∫ t

−∞
dt′Ω̃(t′). (6.8)

It is instructive to compare a solution of Eqs. (6.6) (6.7) for different pulse shapes

and also to compare the RWA with the exact ones. For the Gaussian pulse, for RWA,

Ω̃(t) = Ω0e
i∆t−α2t2 , where ∆ = ωc − ν. Eq. (6.8) gives

C(∞) = −i
∫ ∞

−∞
Ω(t)ei∆tdt = −i√πΩ0

α
exp

(
− ∆2

4α2

)
. (6.9)

In particular, we note that Eq. (6.9) goes with the usual “wisdom” that it is the

“high frequencies contained in the envelop” that make the transition resonant for

large detunings. This is an oversimplification. Indeed, Eqs. (6.6) (6.7) are nonlinear

with respect to the field and the excitation can be orders of magnitude higher than

that given by Eq. (6.9). The best way to see it, let us introduce the function

f(t) = C/D. Then Eqs. (6.6) (6.7) yield the following Riccati equation

ḟ = iΩ∗(t) cos(νt)e−iωctf 2 − iΩ(t) cos(νt)eiωct. (6.10)
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The solution of Eq. (6.10) allows one to find the amplitude for excited state C(t) as

|C(t)| = |f(t)|/
√

1 + |f(t)|2. In the RWA, Eq. (6.10) reduces to

ḟ = i
Ω∗(t)

2
e−i∆tf 2 − i

Ω(t)

2
ei∆t. (6.11)

Now we are ready to calculate C(∞) for the Gaussian pulse in the next order. By

substituting Eq. (6.8) into Eq. (6.11), we obtain, for ∆ � α,

C(∞) ≈ −i√πΩ0

α
e−

∆2

4α2 + i

√
π

3

Ω3
0

α∆2
e−

1
12

∆2

α2 . (6.12)

The nonlinear-term correction is proportional to exp[− 1
12

∆2

α2 ], while in the first order

we have exp[−1
4

∆2

α2 ]. The ratio of the second and the first terms in Eq. (6.12) is

Ω2
0√

3∆2 exp[1
6

∆2

α2 ]. As a result, for ∆ � α the nonlinear-term correction is exponentially

larger than the answer obtained by solving the linearized equation.
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Fig. 48. (a) Time dependence of population in level C for a Gaussian pulse. Curve (1)

corresponds to the linear solution of Eq. (6.8); (2) and (3) are the solutions

of Eqs. (6.6) (6.7) for RWA and exact for ν/ωcd = 1/3. (b) Population left

in the upper level |c〉 after applying Gaussian pulse as a function of the pulse

frequency ν obtained for linear solution given by Eq. (6.8) – curve (1), RWA

– curve (2), and exact – curve (3).

In Fig. 48(a), we show the results for the Gaussian pulse obtained for the ap-
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proximated and exact solutions of Eq. (6.6) (6.7) (for the exact solution, Ω̃(t) =

Ω0 cos(νt)eiωct−α2t2) shown by lines 1, 2, 3. We take α = 0.08ωc and Ω0 = 0.02ωc (for

RWA) and Ω0 = 0.04ωc for the exact solution.

Dot line 1 in Fig. 48(b) shows the curve given by Eq. (6.9). Dash line 2 in Fig.

48(b) shows |C(∞)| given by Eq. (5). The exact solution agrees with the numerical

solution of Eq. (6.6) (6.7). Dip on the curve occurs due to interference when the

second term in Eq. (8) cancels the first one. Note that line 1 lies substantially below

the solid lines 2 and 3 at large detuning.

Next, we rewrite the nonlinear term in Eq. (6.10) as

f 2 = (f − f1)
2 + 2ff1 − f 2

1 , (6.13)

where f1(t) is the solution of Eq. (6.10) without the f 2-term, that is

f1(t) = −iθ(t), (6.14)

and the tip angle θ is defined by θ(t) =
∫ t
−∞ dt′Ω̃(t′). Then, Equation (6.10) can be

rewritten as

ḟ + iθ̇ = 2θθ̇∗(f + iθ) − iθ2θ̇∗ + (f + iθ)2 (6.15)

or in the form of an integral equation

f + iθ =
∫ t

−∞
dt′[(f + iθ)2 − iθ2θ̇∗] exp[2Φ(t, t′)], (6.16)

where Φ(t, t′) =
∫ t
t′ dt

′′θθ̇∗. Now we can see that Eq. (6.16) is the solution of Eq. (6.10)

if |f + iθ|2 
 |θ2θ̇∗|.
Another way to go beyond the simple adiabatic solution, we consider the following

approximation of the nonlinear term in Eq. (6.10)

f 2 = (f − f1)
2 + 2ff1 − f 2

1 ≈ 2f1f − f 2
1 , (6.17)
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Then Equation (6.10) reduces to

ḟ = θθ̇∗(2f + iθ) − iθ̇ (6.18)

which has the exact solution given by

C(t)

D(t)
= −i

∫ t

−∞
dt′
(
dθ(t′)
dt′

− θ2(t′)
dθ∗(t′)
dt′

)
×

exp
(
2
∫ t

t′
θ(t′′)θ̇∗(t′′)dt′′

)
. (6.19)

By iterating this procedure, we could have used the obtained solution to improve

results further.

2. Experimental implementation with RF fields

To experimentally demonstrate the excitation difference between the calculations by

taking into account the RWA and no RWA, we use the technique described above

using RF fields and Zeeman sublevels. The experiment is performed with rubidium

atoms. The atoms are initially optical pumped to the ground state sublevel with

mF = +1, then an RF pulse with the frequency of 50 kHz is applied to induce the

excitation, as shown in Fig. 49(a). The splitting between the sublevels is tunable

by changing the longitudinal magnetic field. In the experiment, the frequency of the

RF field is fixed while we vary the splitting to introduce different detunings in the

system. The RF field can be linearly polarized or circularly polarized. In the later

case, two sets of coils are used to produce the magnetic field and the drive currents

in two sets are out of phase by 90◦.

The experimental result is shown in Fig. 49(b). We plot the population of upper

states as a function of the ratio of field frequency to atomic frequency, i.e. Zeeman

splitting. Curve (1) represents the result for the linear polarization and the curve
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Fig. 49. (a) The energy diagram. (b) Experimentally observed excited population vs

the ratio ν
ωcd

for a Gaussian pulse.

(2) is the result for the circular polarization. For a circularly polarized field, there is

only the rotating component in the field and the excitation curve can be described

by the calculation with RWA. However, for the linearly polarized field, the excitation

does not behave as described by the calculation with RWA. To properly model the

excitation by a linearly polarized light, we need to use the approach described in the

above section. Under the off-resonant conditions, the fields with different polarizations

show a remarkable difference in the excitation. The result is helpful to understand

how to use a short and strong laser pulse to induce the excitation under off-resonant

conditions.

In conclusion, we presented an analytical solution for population transfer in a

two-level system interacting with an external off-resonant classical field. The solution

is valid for a very general driving perturbation without making the RWA. Multiphoton

processes appearing due to the counter-rotating terms in the interaction Hamiltonian

can substantially enhance the population transfer in a two-level system. One can

suppress such processes, e.g., by making the applied driving field circularly polarized.

As a consequence, predictions of the present analysis can be tested experimentally in
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various regimes using circularly or linearly polarized driving fields. We have performed

experiments in Rb vapor that support our theoretical results.
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CHAPTER VII

OPTICAL PROPERTIES OF HIGHLY DENSE ATOMIC VAPOR

For a highly dense atomic vapor (N > 1016 cm−3), the dipole-dipole interaction be-

tween atoms in the ground and excited states becomes significant and can not be ne-

glected. It is important for many applications and fundamental physics to study the

nonlinear optical response of such dense vapor in which the dipole-dipole interaction

dominates. The high optical density makes it hard to use conventional transmission

spectroscopy to study highly dense media, while the reflection spectroscopy is the

proper tool.

Almost a century ago, Wood [159] discovered that the reflection from the mercury

vapor has a resonant structure around the mercury absorption line at 253.7 nm. The

similar reflection spectra were observed later for alkali vapor [160, 161, 162]. This

phenomenon is known as Selective Reflection (SR), in which the reflection coefficient

of light reflected from an interface between a transparent dielectric and an absorbing

vapor has a resonant structure near an absorption line of the atomic vapor. The SR

spectrum solves the problem of strong absorption in a highly dense vapor. However,

the spectrum broadening due to the dipole-dipole interaction reduces the spectral

resolution.

In this chapter, we study the SR spectrum from the interface between the cell

window and the Rb vapor. As we increase the atomic density, the spectrum is strongly

broadened so that the hyperfine structures are not resolvable. We found that applying

an additional pump laser can reduce the dipole-dipole interaction, thus reduces the

broadening and increase the spectral resolution. We have also studied the excitation

dependence of the broadening at different atomic densities to find the experimental

evidence for the the disordered exciton theory [163] of self-broadening.
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A. Selective reflection from Rb vapor

Selective reflection is a useful spectroscopic technique to study optical properties of

dense atomic vapor and atom-surface interactions. Linear SR spectroscopy has been

applied to study collision-induced self-broadening and shifts of atomic resonance lines

[164, 165], the van der Waals interaction between atoms and a surface [166, 167],

the Zeeman structure of the Cesium D2 line [168], etc. Nonlinear extensions of SR

spectroscopy with the probe-pump scheme have been theoretically studied for two-

level [169, 170] as well as three-level atoms [171, 172]. Numerous nonlinear effects of

SR have been observed and studied in the recent years. For instance, light-induced

ground state Zeeman coherence [173, 174], spectral structure inside homogeneously

self-broadened lines [175], the excitation dependence of the Lorentz local-field shift

and self-broadening [176, 177], coherent effects in ladder scheme [178] have been

observed. Practically, SR provides a potential means for novel optical filters [179]

and possible optical bistability.
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Fig. 50. The energy diagram of 85Rb and 87Rb atoms on the left. The schematic of

selective reflection experiment on the right.

A simple selective reflection experiment can be performed on the window of a

rubidium cell as shown in Fig. 50. The cell contains the natural abundance of isotopes
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and it is installed in an oven so that the atomic density can be controlled. A laser

beam from a free running diode laser shines on the window of the cell. The window is

slightly wedged, thus the reflection from two surfaces can be separated. The reflected

beam from the surface of the window and the vapor is detected by a photo-detector

PD3. To establish a frequency reference, the absorption spectrum of rubidium vapor

at the room temperature is recorded by PD1. The signal from PD2 is used to calibrate

the laser intensity variation due to injecting-current scanning. The laser is tuned to

the rubidium D2 line (780 nm). As shown in the energy diagram in Fig. 50, there

are four hyperfine levels in the ground state while the splitting between the hyperfine

levels in the excited state is smaller than the doppler broadening. When the atomic

density is not too high, we can see four resonance structures in the reflectivity, as

shown in Fig. 51(1), as we scan the laser frequency. The spectrum gets broader

if the atomic density increases and the broadening due to dipole-dipole interaction

dominates, in which case the ground state hyperfine levels can not be resolved as

shown in Fig. 51(8).

The reflectivity from the interface of the window and the vapor can be calculated

by the Fresnel equations [79],

R‖ = |nw cos i− n cos t

nw cos i+ n cos t
|2, R⊥ = |n cos i− nw cos t

n cos i+ nw cos t
|2 (7.1)

where i is the angle of incidence, t is the angle of refraction, nw is the refractive index

of the window and n is the refractive index of the vapor. The notation ‖ represents

the case where the light is polarized in the plane of incidence, while ⊥ means that the

polarization is perpendicular to the plane of incidence. The refractive index of the

vapor is given by n =
√
ε, where ε is the dielectric coefficient of the vapor. For a very

dense atomic vapor, the homogeneous broadening is larger than Doppler broadening
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Fig. 51. The calculated reflection spectra from the interface of cell window and Rb

vapor. The spectrum is broadened as the atomic density increases.
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and the dielectric coefficient ε can be written as the following,

ε = 1 +
kN

∆ω − ikN
, (7.2)

where ∆ω is the frequency detuning from the resonance frequency, N is the atomic

density. The constant k is given by k = fcreλ with re the classical radius of electron,

f the oscillator strength of the transition, λ the wavelength and c the speed of light in

vacuum. Using equations (7.1, 7.2), one can calculate the reflection spectrum which

is dependent on the atomic density. As an example, the reflection spectra at different

atomic density from N = 0.1 × 1016 cm−3 to N = 5 × 1016 cm−3 are shown in Fig.

51.

Fig. 52. Reflection spectra with the incident angle of 76◦ for different atomic densities.

(a) atomic density 6.6 × 1015cm−3; (b) atomic density 9.0 × 1015cm−3; (c)

atomic density 1.2×1016cm−3; (d) absorption spectrum as frequency reference.

For the sake of simplicity, the reflection spectrum is usually investigated at the

normal incident angle. Few investigations have also been extended to the oblique

incidence such as the incidence at Brewster angle [179]. It is of special interest

to study the reflection spectrum at very large angles such that the frustrated total

internal reflection occurs [180]. In Fig. 52, we show the reflection spectra with incident
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angle of 76◦ at different atomic densities. The spectral profiles are featured with a

flat top and a steep rising slope. This feature can be used to develop an optical filter

with a very narrow linewidth which can not be realized by a dichroic filter. Moreover,

the filter linewidth is adjustable within a range by changing the atomic density.
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PD 3

Isolator

Oven

LD 
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Frequency reference

Fig. 53. Experimental schematic for the frequency modulated reflection spectrum. The

laser is driven by a slow ramp and a fast modulation. A lock-in amplifier is

used to detect small changes in the spectrum.

As the atomic density increases, the reflection spectrum becomes broader and

the hyperfine structures become less pronounced. One way to increase the sensitivity

and reveal small changes in the reflection spectrum is to use the frequency modulated

reflection spectrum. The method takes the advantage of a lock-in amplifier to improve

the sensitivity. An experimental schematic is shown in Fig. 53. In additional to the

frequency scan (shown as a slope in the figure), a higher frequency cosine wave is used

to modulate the laser frequency. The frequency reference for the lock-in amplifier is

taken from the cosine wave. After being processed by the lock-in amplifier, the

signal is recorded by an oscilloscope. The processed signal can be understood as the

derivative of the reflection spectrum with respect to the frequency. This method is

useful to study small changes in the spectrum and it will be used in the following

sections.
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B. Reduce dipole-dipole interaction in a dense vapor ∗

The improvement of the spectral resolution of atomic and molecular lines is very

important for general research and for applications. There are many approaches for

eliminating inhomogeneous spectral broadening: for example, in gases, Doppler-free

saturation spectroscopy, or in solids, the hole-burning technique [181]. It is still

a challenge to reduce the homogenous broadening of spectral lines caused by the

interactions between atoms or molecules. For instance, the spectral resolution is

limited by the broadening due to dipole-dipole interaction in the reflection spectrum

of a highly dense atomic vapor. One way to improve the resolution is to create a

narrow structure inside the homogeneously broadened line using the technique of hole

burning, attributed to the influence of coherent population oscillations [175, 182]. A

more direct way is to reduce the dipole-dipole interaction by partially exciting atoms

using an additional pump laser beam [176, 177].

In this section, we discuss the use of the excitation dependence of the dipole-

dipole interaction to improve the spectral resolution of self-broadened lines, when

the atomic collision induced homogeneous spectral width is broader than the inho-

mogeneous Doppler width. We experimentally study the selective reflection from an

interface between a transparent dielectric and a dense rubidium vapor when the vapor

is incoherently excited by a pump laser. We found that the dipole-dipole interaction

can be reduced in the presence of the pump laser and the width of spectrum becomes

narrower. This reduction of spectral width can be used to improve the resolution of

spectroscopy of dense media.

∗Part of the data reported in this section is reprinted with permission from “Im-
provement of spectral resolution by using the excitation dependence of dipole-dipole
interaction in a dense atomic gas,” by H. Li et al., Appl. Phys. B 91, 229 (2008),
Copyright by Springer.
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Fig. 54. Reflection spectroscopy with a pump laser. LD - laser diode, PD - photo

detector, DSO - digital storage oscilloscope.

The experiment is performed with a typical reflection spectroscopy setup with

an additional pump laser shown in Fig. 54. A sapphire cell filled with Rb vapor

(natural isotope abundance) is installed in an oven which can heat the cell to 350 ◦C.

Windows of the cell are made of Garnet crystal which is free of birefringence. The

windows are slightly wedged in order to separate the reflections from the two surfaces

of the window. The probe beam comes from a free running laser diode, LD1 (with

linewidth 18 MHz), which is scanning in frequency over a range of 25 GHz near the

D2 absorption line of Rb atoms (780 nm). The probe beam is sent to the window

of the cell at a near-normal angle of incidence. The selective reflection spectrum is

recorded by PD3. To establish a frequency reference, the absorption spectrum of Rb

vapor in a second cell at room temperature is recorded by PD1. The signal from PD2

is used to calibrate the LD1 intensity variations due to injection current scanning.

Another laser diode, LD2, provides a pump beam with the power P = 120 mW. Its

beam is sent to the window at a near-normal incident angle as well. Focused by a lens,

the two beams are superposed at a spot with diameter d ≈ 0.1 mm on the interface

between the Rb vapor and the window.
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Fig. 55. Observed reflection spectra. (a) the linear reflection spectrum at

N = 3.5× 1016 cm−3; (b) the saturated reflection spectrum with Ppump = 120

mW at N = 3.5 × 1016 cm−3; (c) the linear reflection spectrum at

N = 1.2 × 1016 cm−3; (d) the absorption spectrum of the low density Rb

vapor as the frequency reference.

The experimental results are shown in Fig. 55. Curve (a) shows the linear

(no pump laser) reflection spectrum of the rubidium vapor with the atomic density

N = 3.5 × 1016 cm−3. At this atomic density, the spectrum is so broad that the

hyperfine structures are not resolved. As shown in curve (b), however, the structure

shows up at the same atomic density (N = 3.5×1016 cm−3) when we apply the pump

laser (P = 120 mW) tuned by 21 GHz into the red wing of the absorption line. Curve

(d) is the D2 line room temperature absorption spectrum of rubidium atoms.

As discussed in previous papers [176, 177], coherent effects can be neglected

in the case when the pump laser is far-detuned from the resonance lines. In this

case, the rubidium atoms are partially excited by the pump laser. The saturation

is enhanced by the radiation trapping effect [176, 177]. To estimate how much the

dipole-dipole interaction is reduced, we decrease the atomic density of the Rb vapor
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until the reflection spectrum without the pump laser has a similar profile to that of

curve (b). The result is shown as curve (c), which is the reflection spectrum recorded

without pump laser at the atomic density N = 1.2 × 1016 cm−3. Thus, the pump

laser is able to reduce the dipole-dipole interaction to that of Rb vapor with three

times less atomic density. This also shows that the width is reduced by a factor of

three with the presence of the pump laser.

Note that the incoherent excitation of dense gas can strongly decrease homo-

geneous broadening of resonant lines. The inhomogeneous broadening due to the

dipole-dipole interaction in solids can also be reduced by using the so-called “magic-

angle” technique [183]. Both techniques of spectral narrowing may be used to improve

spectral resolution.

The qualitative features of experimental results can be explained in terms of the

dielectric coefficient ε of the rubidium vapor. The reflectivity can be calculated by

the Fresnel formulas with the index of refraction given by n =
√
ε. Without the

saturation, the dielectric coefficient ε for a two level system is given by the expression

[165, 184]

ε(∆ω) = 1 +
kN

∆ω + ∆Ω − iΓ
, (7.3)

where N is the atomic density, ∆ω is the frequency detuning, ∆Ω is the line shift

and Γ is the self-broadened linewidth of the transition. The constant k is given

by k = fcreλ, here re is the classical radius of electron, c is the speed of light,

f is the oscillator strength of the transition, and λ is the wavelength. The line

shift can be written as ∆Ω = ∆ωL + ∆ωNL, here ∆ωL is the Lorentz shift and

∆ωNL represents the non-Lorentz contribution to the line shift. The Lorentz shift is

given by ∆ωL = kN/3 theoretically [185, 186], both ∆ωL and ∆ωNL can be found

experimentally [165, 176, 177, 184, 187, 188]. The self-broadened linewidth is given
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by Γ = kN
√
ge/gg, with gg and ge the degeneracies of the ground and excited state

respectively [189].

For partially excited Rb vapor (incoherent excitation), the fractional population

difference between the ground and excited states is defined in [185, 186] as η =

(Ng − Negg/ge)/N , where Ng and Ne are respectively the atomic densities of the

ground and excited states. Zero excitation is represented by η = 1, and maximum

excitation is signified by η = 0. According to Manassah’s approach [186], the atomic

density N in Eq. (1), as well as in the expressions of ∆ωL, should be replaced by Nη.

Also the self-broadened linewidth should be rewritten as [176, 177]

Γ = kNg

√
ge/gg . (7.4)

The ground state density Ng can be calculated by the definition of η and N = Ng+Ne.

In Rb vapor, we must take account the collisional mixing of the 52P3/2 and 52P1/2

states. The expression for ε in the partially excited vapor is therefore given by

ε(∆ω) = 1 +
kNη

∆ω + ∆Ω − ik
√
ge/ggNg

. (7.5)

Using this theoretical model, we perform a simulation of the reflection spectrum.

In our experiment, there are four lines in the absorption spectrum because the cell

contains both 87Rb and 85Rb atoms. These are taken into account in the simulation.

The results are shown in Fig. 3, where curve (1) shows the calculated reflection

spectrum at an atomic density of N = 3.5 × 1016 cm−3 in the absence of partial

excitation. With partial excitation, the calculated reflection spectrum is shown in

curve (2), which corresponds to η = 0.4. We see that the numerical simulation

spectrum is in a good agreement with the spectrum obtained in the experiment.

To summarize the section, we have experimentally studied the dipole-dipole
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Fig. 56. The numerical simulation of reflection spectrum. (1) the linear reflection

spectrum at N = 3.5 × 1016 cm−3; (2) the narrowed reflection spectrum with

η = 0.4 at N = 3.5 × 1016 cm−3.

broadened reflection spectrum from the interface between a Garnet crystal and a

dense Rb vapor. We have shown that the dipole-dipole interaction can be dramati-

cally reduced when the rubidium vapor is excited by a strong pump laser. By using

this technique, we have resolved hyperfine structures of Rb D2 line hidden by col-

lisional broadening. We also present a numerical simulation, which agrees with the

experimental results. In this way, one can obtain a remarkable narrowing of dipole-

dipole broadened spectra in dense media. This could be used to improve the resolution

of spectroscopy of dense media.
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C. Excitation dependence of self-broadening in a dense vapor ∗

As shown in the previous section, the spectral broadening is dominated by the ho-

mogeneous self-broadening for a dense vapor in which the dipole-dipole interaction

between atoms in the ground and excited states can not be neglected. It is necessary

to know the mechanism of self-broadening and the nonlinear optical response of such

dense media.

There was a common opinion that calculations of self-broadening can be per-

formed by using the two-particle approximation in the fast collision limit (impact

collisions) as well as in the opposite limit, static interactions [163, 189, 190, 191, 192].

In [163], the theory of self-broadening is developed on the basis of disordered exciton

in a dense resonance medium, in which many particle interaction should be taken into

account. By using this model it was shown that the self-broadening is a combination

of collision and static atomic interactions. A ratio of the static width to the collision

width is independent on atomic density in a wide range where thermal motion of

atoms can be neglected.

It has been shown that the probing of the homogeneous and inhomogeneous

contributions to the linewidth can be performed efficiently by nonlinear optical meth-

ods such as photon echoes and hole burning [193]. The inhomogeneous component

of the spectral line could be sensitive to the optical saturation. Recently by using

time resolved femto-second spectroscopy, the non-Markovian collision dynamics and

the bi-exponentional correlation of energy level fluctuations have been observed in a

dense potassium vapor and simulations of molecular dynamic are in good agreement

∗Part of the data reported in this section is reprinted with permission from “Exci-
tation dependence of resonance line self-broadening at different atomic densities,” by
H. Li et al., J. Phys. B 42, 065203 (2009), Copyright by Institute of Physics and IOP
Publishing. The article is available online at http://www.iop.org/journals/jphysb.
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with experimental results [194, 195]. The slow exponential component is attributed

to long-range resonant attraction in a dense atomic vapor. By using CW pump-probe

technique, the excitation dependence of the self-broadening is observed in rubidium

[176, 196] and potassium [177, 197] vapors. Nevertheless, note that in these papers

the measurements have been performed only at selected atomic densities.

In the current section the selective reflection spectra from the interface between

the cell window and rubidium vapor are recorded in the presence of a far-detuned

pump beam. We study the excitation dependence of self-broadening of a reso-

nance atomic line at different atomic densities in the range where self-broadening

of atomic line is stronger than Doppler broadening. The excitation dependence of

self-broadening is found to be independent on the atomic density. These results sup-

port the disorder exciton based theory of self-broadening[163].

The experiment is performed with a pump-probe scheme shown in Fig. 54. To

improve the sensitivity, we use the frequency modulated reflection spectrum described

above in Fig. 53. The reflected beam from the interface between the rubidium vapor

and the window is sent to a photodetector (PD). The signal from the photodetector

is processed by a lock-in amplifier while we frequency modulate the probe laser with

modulation depth of 37 MHz at frequency of 8 kHz. Frequency modulated reflection

spectrum is used to improve the signal to noise ratio in our experiment, and it can

reveal subtle details of change in reflectivity. A typical frequency modulated reflection

spectrum is shown in Fig. 57 as curve (a) which was obtained at the atomic density

N=1.3×1017 cm−3. The dipole-dipole interaction and collisional broadening dominate

at this atomic density, the spectral width due to self-broadening is larger than the

ground state hyperfine splitting and the ground state hyperfine structures in reflection

spectra that can be seen at low atomic density are not resolved. While we apply the

pump laser beam, atoms are partially excited and the dipole-dipole interaction is
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reduced. Thus, the self-broadened line width is also reduced [176, 177, 196, 197], and

the ground state hyperfine structures start to be revealed as described in [176, 196].

The narrowed frequency modulated spectrum with pump power P=180 mW is shown

as curve (b) in Fig. 57.

Fig. 57. FM reflectivity spectra at atomic density N=1.3×1017 cm−3. Blue (a) and red

(b) solid curves correspond to the cases without pump laser and with pump

laser (P=180 mW), respectively. The dashed curves are corresponding fitting

results. Curve (c) is the absorption spectra of a reference Rb cell, where the

ground state hyperfine splitting is resolved.

As described in [177], the reflection spectra as well as the FM reflection spectra

can be interpreted in terms of the dielectric coefficient of atomic vapor. Taking into

account the excitation, the dielectric coefficient ε of a two-level atomic system is given

as

ε(ω) = 1 +
kηN

∆ω + ∆Ω − iΓ
, (7.6)

where N is the atomic density, ∆ω is the frequency detuning, ∆Ω is the overall
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line shift which includes Lorentz and non-Lorentz shift, and Γ is the self-broadened

linewidth. The constant k is given by k = fcreλ, where f the oscillator strength of

transition, re the classical radius of electron, λ the wavelength of transition, and c

is the speed of light in vacuum. An excitation factor η is defined as the fractional

population difference between ground and excited states

η =
Ng −Negg/ge

N
, (7.7)

where Ng and Ne are the ground and excited state atomic densities respectively, gg

and ge are the degeneracies of the ground and excited states respectively. Maximum

excitation corresponds to η = 0 and zero excitation η = 1. Using this expression for

the dielectric coefficient ε and Fresnel formula, we are able to calculate the reflectivity

and FM spectra which is the derivative of reflectivity with respect to frequency.

In order to obtain the width and excitation factor from the experimental data,

we use the expression of FM spectra to fit the experiment data by leaving the self-

broadened width Γ, the excitation factor η and the line shift ∆Ω as fitting parameters.

The excitation factor η is normalized to unity for the case where no pump laser is

applied. In our experiment, Rb vapor contains natural abundance of 85Rb and 87Rb

which gives rise to four doppler-broadened absorption lines in the absorption spectra.

All of four components are taken into account in the fitting of reflection spectra. Each

component is given a normalized oscillator strength. The dashed curves in Fig. 57

are the examples of the fitting. For the case without the pump laser, the fitted width

is 13.0 ± 0.3 GHz and η = 1.0; for the case with the pump laser (laser power P=180

mW), the fitted width is 4.98 ± 0.05 GHz and η = 0.36. At the same atomic density

(N=1.3 × 1017 cm−3), the FM spectrum is recorded when we apply the pump laser

with different powers. The fitting of these FM spectra gives the widths corresponding

to the different excitation factors. The fitting results are shown as the red squares
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in Fig. 58, where the width is plotted as a function of the excitation factor η. The

dashed line in Fig. 58 is a linear fit (y = a + bx, where the dependent variable

x represents the excitation η and a and b are fitting parameters) of the excitation

dependence of the width at atomic density N=1.3× 1017 cm−3, and the slope (fitting

parameter b) is 12.7 GHz.

Fig. 58. The fitting value of the width is plotted as a function of the excitation fac-

tor η. Different colors represent the results at different atomic density from

N=1.3 × 1017 cm−3 to N=2.2 × 1016 cm−3. The straight lines are the linear

fits.

We determine the widths and excitation factors by measuring and fitting the FM

reflection spectra at different atomic densities from N=1.3×1017 cm−3 to N=2.2×1016

cm−3. The measured density dependence of the self-broadened rubidium D2 linewidth

is the same as in Refs. [198, 199]. The excitation dependence of the width for different

atomic densities is shown in Fig. 58 with different colors. The corresponding linear

fit gives the slope (width/η) for each density. In Fig. 59 (left), the slope is plotted

as a function of the atomic density. The solid line is a linear fit. If the slope for each
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density is normalized by taking the ratio of the slope to the width without the pump

laser at each density, the normalized slopes are close to unity. As shown in Fig. 59

(right), the value of the normalized slope is 0.90 ± 0.05. According to our simple

model for the fit, the normalized slope is density independent. It indicates that the

self-broadening at high atomic density is a combination of collision and static spectral

broadening (inhomogeneous profile).

Fig. 59. The slope (left figure) and the normalized slope (right figure) of the excita-

tion dependence on the atomic density is plotted as a function of the atomic

density. Squares are the results of fitting from Fig. 58. The solid straight

lines are linear fits.

We have observed that the excitation dependence of self-broadening is the same

in the range of atomic density from 2.2×1016 to 1.3×1017 cm−3, where dipole-dipole

interactions are a dominant source of spectral broadening. Our results support the

predictions of the theoretical model developed in Ref. [163]. The obtained results

can be useful for understanding of excitation processes in a condensed media such as

solutions, glasses, polymers, proteins and molecular crystals. In atomic gases it will

be interesting to study a possible transition from many body interactions (disordered

excitons) [163, 194, 195, 176] to the resonance two-body interaction (impact collisions)
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at lower atomic densities [189, 190]. Probably the studies will require applications

of non-linear optical methods in frequency and time domain as the complimentary

spectroscopic techniques. We shall note that additional information about the dipole-

dipole interaction in a dense gas may be obtained by using a nano-cell [200].
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CHAPTER VIII

CONCLUSION

In summary, we have studied the interaction between electromagnetic fields, both in

optical and radio frequency domain, and dense rubidium atomic vapors. The study

includes the control of laser fields over transmission, spatial distribution and noise

feature in coherent media; the atomic excitation by few-cycle radio frequency pulses

interacting with Zeeman sublevels; and the reflection spectroscopy on a highly dense

atomic vapor. The main results of the study are the following:

1. The time response of EIT to a rapid variation of optical phase has been

studied. We have observed a very fast growth of the absorption when the phase of

optical field abruptly changes, followed by a slow return to the level of steady-state

absorption. The recovery time decreases with increasing optical power. The low

power limit of the recovery time is determined by the ground state relaxation time

which, in our case, is the time-of-flight of atoms through laser beam.

2. We have studied the so called close-Λ system formed by coupling two optical

fields and a microwave field with a three level system. We found that the transmission

of the probe beam depends on the relative phase between the optical and microwave

fields. Both constructive and destructive interferences in EIT have been observed.

3. Spatial control of laser beam can be realized in a coherent medium by ar-

ranging the spatial distribution of laser fields. We have demonstrated an atomic gas

prism which processes an extreme angular dispersion ( 103 nm−1) and can optically

steer an optical beam. We have also demonstrated the possibility to create an optical

structure with the size smaller than the diffraction limit.

4. We have studied the intensity correlation of atomic excess noise in both EIT

and NMOR. The atomic excess noise can be correlated and anti-correlated depending
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on specific conditions. The study of power spectra of intensity fluctuations shows

that we can reduce or eliminate the atomic excess noise using the correlation or anti-

correlation.

5. We have developed a technique in which few cycle radio frequency pulses

interact with ground state Zeeman sublevels of rubidium atoms. The radio frequency

pulses can simulate short laser pulses in optical domain and their interaction with

atoms. We have studied the off resonant excitation by short pulses and the carrier-

envelope phase effect on atomic excitation by few cycle pulses.

6. We have studied the selective reflection from the interface between a glass

window and dense rubidium atomic vapor. The spectrum is strongly broadened due

to the dipole-dipole interaction as we increase the atomic density. We found that

applying an additional pump laser to partially excite atoms can reduce the dipole-

dipole interaction, thus reduce the broadening and increase the spectral resolution.

The excitation dependence of the broadening at different atomic densities have also

been studied.
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APPENDIX A

SOME PROPERTIES OF RUBIDIUM ATOMS

The experiments in this dissertation were performed with the chemical element

rubidium. Rubidium is an alkali metal. It was discovered by Robert Bunsen and

Gustav Kirchhoff in 1861. The name rubidium originated from Latin rubidus (deepest

red) for its near infared spectroscopic lines.

Rubidium has the atomic number of 37 and one unbound electron. Its melting

point is 39.3 ◦C and the boiling point is 688 ◦C. There are twenty six known isotopes

of rubidium and two naturally occurring isotopes 85Rb and 87Rb with the natural

abundance of 72.2% and 27.8% respectively. 85Rb is a stable isotope while 87Rb is

radiative with the half-life of 4.88 × 1010 years.

In our experiments, we fill the rubidium metal into a glass cell and use the

saturated rubidium atomic vapor as the sample. The atomic density of the vapor is

determined by the temperature at the cold point of cell and can be calculated by the

imperical formula [201]

N =
exp(16.963 − 9580.8

T+273.15
) × 133.322

(T + 273.15) × 1.38 × 10−17
, (A.1)

where the temperature T is in unit of ◦C and the atomic density is in unit of cm−3.

As an example, we plot the atomic density at the temperature from 0 to 300 ◦C

calculated from this formula. It is shown in Fig. 60.

Our experiments involve D lines which are the transitions from the ground state

5S to the first excited state 5P. The state 5P splits into two states 5P1/2 and 5P3/2

due to spin-orbit coupling. The transition from 5S1/2 to 5P1/2 is called D1 line, it has

the wavelength of 794.760 nm and the excited state has the lifetime of 29.4 ns. The
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Fig. 60. Atomic density of Rb atoms at different temperatures.

transition from 5S1/2 to 5P3/2 is called D2 line, it has the wavelength of 780.027 nm

and the excited state has the lifetime of 27.0 ns. The energy levels of both D1 and

D2 transitions of 85Rb and 87Rb are shown in Fig. 61 and 62.
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Fig. 61. D1 transition energy levels of 85Rb and 87Rb, the splitting between hyperfine

levels is given in the figure.
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Fig. 62. D2 transition energy levels of 85Rb and 87Rb, the splitting between hyperfine

levels is given in the figure.
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