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ABSTRACT 

 

Ultrasensitive Magnetometry and Imaging with NV Diamond. 

(May 2010) 

Changdong Kim, B.S., Korea University, Seoul, Korea;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Philip Hemmer 

 

NV centers in a diamond are proving themselves to be good building blocks for 

quantum information, electron spin resonance (ESR) imaging, and sensor applications. 

The key feature of the NV is that it has an electron spin that can be polarized and read 

out at room temperature. The readout is optical, thus the magnetic field imaging can also 

be done easily. Magnetic field variation with feature sizes below 0.3 microns cannot be 

directly resolved, and so in this region magnetic resonance imaging must be employed. 

To realize the full sensitivity of NV diamond, the spin transition linewidth must be as 

narrow as possible. Additionally, in the case of NV ensembles for micron-sized 

magnetometers, there must be a high concentration of NV. To this end three techniques 

are explored: (1) Electron paramagnetic resonance (EPR) imaging with microwave field 

gradients, (2) Magic angle rotation of magnetic field, and (3) TEM irradiation to 

optimize the yield of NV in a diamond.  

For the EPR imaging demonstration a resonant microwave field gradient is used 

in place of the usual DC magnetic gradient to obtain enough spatial resolution to resolve 



 iv

two very close “double NV” centers in a type Ib bulk diamond. Microfabrication 

technology enabled the micron-size wire structure to sit directly on the surface of 

millimeter-scale diamond plate. In contrast to conventional magnetic resonance imaging 

pulsed ESR was used to measure the Rabi oscillations. From the beating of Rabi 

oscillations from a “double NV,” the pair was resolved using the one-dimension EPR 

imaging (EPRI) and the spatial distance was obtained. 

To achieve high sensitivity in nitrogen-doped diamond, the dipole-dipole 

coupling between the electron spin of the NV center and the substitutional nitrogen (14N) 

electron must be suppressed because it causes linewidth broadening. Magic angle 

spinning is an accepted technique to push T2 and T2
* down toward the T1 limit. An 

experiment was performed using the HPHT diamond with a high concentration of 

nitrogen, and a rotating field was applied with a microfabricated wire structure to reduce 

line broadening. In this experiment, ~50% suppression of the linewidth was observed 

and the effective time constant T2
* improved from 114 ns to 227 ns. 

To achieve the highest possible sensitivity for micro-scale magnetic sensors the 

concentration of NV should be large. Since the unconverted N are magnetic impurities 

they shorten T2 and T2
*, giving a tradeoff between NV (and therefore N) concentration 

and sensitivity. To construct a damage monitor, a type Ib HPHT sample was irradiated 

with electrons from a transmission electron microscope (TEM) and the effects on the 

ESR transition were seen well before physical damage appeared on the diamond and 

thus this proved to be a sensitive metric for irradiation damage.  



 v

DEDICATION 

 

To My Wife and Son, Grace and Micah, and Family 



 vi

ACKNOWLEDGEMENTS 

 

 I would like to thank my professors, Dr. Hemmer (advisor and chair), Dr. 

Wright, Dr. Zou, and Dr. Teizer in my committee, for their huge academic contribution 

and support. A special thanks goes to Dr. Wrachtrup, Dr. Jelezko, Gopi, and Florian at 

Universität Stuttgart for their willingness to help me in the research. I also want to 

extend my gratitude to Dr. Budker, Victor, and Erik at UC Berkeley for enriching my 

understanding and knowledge. Thanks also goes to my friend, Alek, for his input on my 

experiments. Finally, thanks to my family for their encouragement and to my wife for 

her patience and love. 



 vii

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  vii 

LIST OF FIGURES ...................................................................................................  ix 

LIST OF TABLES ....................................................................................................  xvi 

CHAPTER 

 I INTRODUCTION ................................................................................  1 
 
   1.1 Motivation ................................................................................  1 
   1.2 Nitrogen Vacancy in Diamond .................................................  7 
   1.3 Dissertation Outline ..................................................................  10 

 II PHYSICAL CONCEPTS OF NV DIAMOND ....................................  12 

   2.1 Spin Hamiltonian of NV Center ...............................................  12 
   2.2 Rabi Oscillation ........................................................................  17 
   2.3 Spin Relaxation Time and Linewidth .......................................  19 

III TWO DIMENSIONAL DISTANCE MEASUREMENT OF NV  
 CENTER USING THE EPR IMAGING (EPRI) .................................       23 
 
  3.1 Introduction ..............................................................................       23 
  3.2 Theoretical Background ...........................................................       24 

                   3.3 Materials and the Method .........................................................       26 
                  3.4 Simulation ................................................................................       28 
  3.5 Results ......................................................................................       31 

                   3.6 Conclusion ................................................................................       41 

IV DIPOLAR LINEWIDTH NARROWING ON THE NITROGEN 
VACENCY IN DIAMOND USING THE ROTATING FIELD .........       43 



 viii

CHAPTER                                                                                                                   Page                           
 
  4.1 Introduction ..............................................................................       43 
  4.2 Theoretical Background ...........................................................       44 

                   4.3 Materials and the Method .........................................................       48 
                  4.4 Results ......................................................................................       53 

           4.5 Conclusion ................................................................................       56 

V NV DIAMOND ESR AND IONIZATION FRACTION VS  
 ELECTRON IRRADIATION DOSE ..................................................       58 
 
  5.1 Introduction ..............................................................................       58 
  5.2 Materials and the Method: TEM Irradiation ............................       59 
                  5.3 Results ......................................................................................       62 

                   5.4 Conclusion ................................................................................       72 

 VI CONCLUSION ....................................................................................  73 
 
  6.1 Summary and Future Work ......................................................  73            

REFERENCES ..........................................................................................................  75 

APPENDIX A ...........................................................................................................  84 

APPENDIX B ...........................................................................................................  98 

APPENDIX C  ..........................................................................................................  100 

APPENDIX D ...........................................................................................................  104 

APPENDIX E  ...........................................................................................................  106 

APPENDIX F ............................................................................................................  110 

VITA .........................................................................................................................  113 

                            



 ix

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 1 Sensitivity of magnetometer techniques is depicted ..................................  6 
 
 2 For the bulk diamond magnetometer, the sensitivity δB can be improved  
  using the higher concentration of the NV center but it causes the  
  linewidth broadening. One option is to suppress the inhomogeneous  
  linewidth broadening using the rotating field. The other option is the  
  electron irradiation to convert the residual nitrogen to the NV center .......  7 
 
 3 Schematic diagram of the nitrogen vacancy defect in the diamond ...........  8 
 
 4 (a) Typical spectrum for the NV− center shows the ZPL at 637 nm. (b) If  
  the microwave signal is swept, the NV− center has the EPR resonance 
  frequency at 2.87 GHz ...............................................................................  10 
 
 5 The energy level diagram of electronic states of NV center. The ground  
  state is triplet 3A with the splitting between degenerated upper level  
  mS = ±1 and lower level mS = 0 being about 2.87 GHz. The upper levels  
  are singlet 1A and triplet 3E ........................................................................  13 
 
 6 The schematic diagram plots the three different sets of coordinates. The 
  laboratory axes (x, y, z) are fixed for the sake of reference. The crystal  
  axes labeled (Xˊ, Yˊ, Zˊ) are the orthogonal set of axes in bulk diamond.  
  For the purpose of obtaining the symmetry for the paramagnetic species,  
  the principal axes (X, Y, Z) which are the same as the diagonalized  
  crystal axes are used ...................................................................................  15 
 
 7 Zeeman splitting of the NV center with E = 0 and B||Z  in the C3v  
  symmetry ....................................................................................................  15 
 
 8 Hyperfine structure for the NV electron spin (a) with 14N and (b)  
  coupled to the 15N nuclear spin with the calculated hyperfine splittings ...  17 
 
 9 The pulse sequence for the Rabi oscillation is depicted. The population  
  in mS=0 is measured as the microwave duration τ varies. The whole  
  sequence repeats to average the fluorescence signal in the time-domain  
  of the experiment ........................................................................................  18 
 
 



 x

FIGURE                                                                                                                        Page 

 10 The Rabi oscillations are measured using varying microwave powers  

  of which square root values are (a) mwP , (b) 1.59 mwP , and (c)  

  2.28 mwP .  The calculated Rabi frequencies are 17.81 MHz, 31.71  

  MHz, and 39.31 MHz, respectively and they are approximately linear  
  with respect to the square root of the microwave power ............................  19 
 
 11 The inversion recovery pulse sequence is displayed to measure the T1  
  time .............................................................................................................  21 
  
 12 The spin-echo pulse sequence is depicted to measure the spin-spin  
  relaxation time ............................................................................................  22 
 
 13 The free induction decay (FID) sequence is depicted for the spin  
  dephasing time T2

* measurement ...............................................................  22 
 
 14 (a) The lattice structure of the NV center in diamond is depicted. (b)  
  The triplet state energies as a function of magnetic field (B||z) for D˃0   
  and E=0 is displayed ..................................................................................  26 
  
 15 (a) The ~3 μm thick gold wires are fabricated on top of the (100) cut  
  type-Ib diamond surface. The four wires surrounding the center are used  
  to apply the microwave signal to generate the magnetic field. (b) If the  
  current flows in the same direction through two wires, the wire pair can  
  generate the larger gradient field ................................................................  28 
  
 16 The simulation model for the field distribution is plotted using the  
  commercial 3D finite element method (FEM) simulator (HFSS). The  
  gold wires are placed on top of the bulk diamond. The red and green  
  colored two pairs of wire are excited using the one Watt microwave  
  signals at the same time ..............................................................................  29 
 
 17 (a) The top view of the structure is illustrated. The calculated field  
  distribution between two wires is symmetric on the top surface of the  
  diamond. (b) The H field vector is plotted along the line connecting  
  two points, P1 and P2. (c) The magnitude of the H field is plotted. (d)  
  The fitting curve shows that the magnetic field intensity is quadratic  
  along the line ..............................................................................................  30 
  
 18 The scanned fluorescence image shows the NV centers at the center.  
  They are surrounded by four wires for the microwave excitation which  
  are characterized by the bright regions ......................................................  31 



 xi

FIGURE                                                                                                                        Page 

 19 (a), (b), (c), and (d) The CW ESR measurements show the single dips  
  for NV7 and NV12 when the two different wire pairs are excited with  
  the same microwave power ........................................................................  32 
 
 20 (a) The pulse sequence to measure the Rabi oscillation is depicted. The  
  microwave signal varies during the microwave duration, τ and the laser  
  is turn on and off in sequence. (b), (c), (d), and (e) The Rabi oscillation  
  measurements are plotted in the temporal sequence after the signal  
  processing ...................................................................................................  34 
 
 21 (a), (b), (c), and (d) The transformed Rabi oscillation measurements are  
  displayed in the frequency domain using the FFT method. The spectra  
  for NV7 and NV12 show the single frequencies using the wire 1 and 3  
  pair while they show the two frequencies for NV7 and one dominant  
  frequency for NV12 using the wire 2 and 4 pair ........................................  35 
 
 22 (a) A (100) cut type Ib diamond was used for this experiment but there  
  exists the mismatch between the laboratory reference axes and the  
  crystal axes. (b) and (c) In order to the mismatch in the coordinate  
  systems, the rotation matrix is applied to rotate the xy plane in the  
  crystal coordinate system where the angle, , varies .................................  36 
 
 23 Four different orientations of the NV quantization axis are depicted. The  
  orientations 1, 2, 3, and 4 at (a), (b), (c) and (d), respectively are  
  oriented at the angles, 54.7˚ and 125.3˚, with respect to the [100] axis .....  37 
 
 24 (a), (b), (c), and (d) The measured and calculated Rabi frequencies ratio,  
  Ωm/ Ωc is obtained as the rotation angle  is scanned. The plots show  
  that the crossing of two curves occurs at the different rotation angle   
  but the ration is the same for different orientations ...................................  38 
 
 25 P2 and P4 are shifted parallel to the P2-P4 line. The filed distribution  
  should be obtained to calculate the distance between two NVs .................  40 
 
 26 (a) The quadratic field intensity distribution was obtained from the  
  simulator. (b) The curve fitting shows a=22.10 A/m·μm2 .........................  40 
 
 27 Another NV center position can be calculated while keeping the  
  orientation fixed. The calculated distance between two NVs is 713.16  
  nm ...............................................................................................................  41 
  
 



 xii

FIGURE                                                                                                                        Page 

 28 (a) The energy level diagram of the NV center is depicted. (b) If the  
  magnetic field is applied along the quantization axis, the degenerate  
  mS=±1 state is split and the three energy states are obtained. Using the  
  optically detected magnetic resonance (ODMR) spectroscopy, the  
  mS=±1 transitions are observed ...............................................................  45 
  
 29 (a) The electron spin of the NV center and the N electron spin  
  configuration are illustrated. (b) They are placed in the external  
  magnetic field B and the angle between B and the line connecting the  
  electron and nuclear spins is θ. There exists the dipole-dipole coupling  
  between the NV center and the intrinsic 14N electron spins .......................  48 
 
 30 (a) The gold wires are fabricated on the sapphire substrate and are  
  bonded on the (111) cut HPHT diamond surface. The wires are  
  connected to the external circuit board to apply the microwave and RF  
  signals. (b) In order to produce the rotating field, the four wires  
  structure is suggested with extra wires for the microwave signal ..............  49 
 
 31 (a) The phase-matched sinωt and cosωt signals are excited to the two  
  diagonal wire pairs with 1 Watt of the power. The generated field within  
  the red dotted rectangle with the depth set to 10 μm underneath the  
  surface are displayed at different phases of the input signals such as (b)  
  0º, (c) 45º, (d) 90º, (e) 135º, (f) 180º and (g) 225º, respectively ................  50 
 
 32 (a), (b), (c), and (d) There exist four different orientations of NV center  
  with respect to the crystal axes. (e) The ODMR signals were measured  
  using the microwave frequency sweeping. If the current flow to one  
  electromagnet coil is controlled to vary the magnetic field, the ODMR  
  signal shows the different frequency variation to each orientation. Using  
  this manipulation, the orientation of the ensemble NVs can be  
  selectively chosen .......................................................................................  52 
 
 33 A simple system for the rotating field to suppress the dipole-dipole  
  coupling between the NV center and the 14N electron spin is illustrated.  
  The static magnetic field BDC was applied to isolate four orientations  
  and choose the [100] orientation selectively. The rotating field BAC was  
  applied on the x-y plane and the angle between spin-to-spin vector r and  
  the external rotating field was given as θ ...................................................  54 
 
 
 
 



 xiii

FIGURE                                                                                                                        Page 

 34 (a) The CW ESR data are depicted for different RF powers using  
  ωRF = 12 MHz, Pmw = -20 dBm and Popt = 8 mW. (b) The CW ESR data  
  are characterized for different RF powers and frequencies using  
  Pmw = -25 dBm and  Popt= 10 mW ..............................................................  55 
 
 35 (a) The NV defect center is oriented to the [111] direction in the  
  schematic diagram of the diamond lattice. (b) Typical spectrum for the  
  NV center. The spectrum was taken for the (100) type-Ib diamond with  
  the optical power of Pop=1.98 mW .............................................................  60 
 
 36 (a) The TEM irradiated spots appear before the anneal. The highest dose  
  is located on the rightmost hand side and the dose goes down to the left  
  side. The fluorescence image is measured with no optical attenuator and  
  the low dose spots are not detected since their fluorescence is not high  
  enough compared to the background. The process of annealing removes  
  the irradiation damage to the lattice structure and results in a huge  
  difference in the fluorescence of the NVs. (b), (c), (d) and (e) are the  
  scanned fluorescence images using the APD for twelve different doses,  
  where (b) and (d) are lower six doses and (c) and (e) are higher ones .......  63 
 
 37 The spectra are measured (a) on the unirradiated area and (b) on the  
  irradiated spot for the highest dose before the annealing  and show a  
  very weak intensity in the spectral range for the fluorescence. (c) The  
  spectrum for each dose is obtained at the same optical power and  
  integration time. As the dosage increases, it is observed that the NV0  
  and NV– peaks also rise. (d) For the high dose, the spectra measured at  
  different focal point below the diamond surface displays the TEM  
  irradiation depth profile. The maximum intensity for the third highest  
  dose is ~2 μm below the surface and the irradiation extends penetration  
  down below 18 μm .....................................................................................  64 
   
 38 The fluorescence count rate of the APD before and after anneal is  
  shown on the log scale, where an optical attenuator (0.5% transmission)  
  is used to protect the APD for the count rate after anneal. The count rate  
  after anneal shows a saturation as the dosage goes up ...............................  65 
 
 39 (a) The NV– and NV0 concentrations over 632–643 nm and 572–530 nm  
  ranges respectively can be calculated using the spectrum from the NV–  
  concentration already known. The concentration curves will be the same  
  as ones for A×B in Table 2 except the constant conversion factor is  
  applied. (b) The NV– and NV0 concentrations are depicted as the depth  
  varies ..........................................................................................................  67 



 xiv

FIGURE                                                                                                                        Page 

 40 (a) The energy level diagram for the NV– shows 2.87 GHz for the  
  electron resonance frequency. The Zeeman splitting of the NV center is  
  exaggerated for the purpose of the illustration. (b) The wire is located  
  very close to the irradiated spots to apply the microwave signals and is  
  parallel to the series of irradiated spots. (c) The CW ESR measurements  
  are obtained using the same microwave power, Pmw = 25 dBm. The  
  electron spin resonance frequency for the NV center increases as the  
  dosage gets higher and eventually the resonance disappears. (d) The  
  electron spin resonance frequency shifts up as the dose increases. This  
  shift can be explained by the distortion in the diamond lattice structure  
  caused by the electron irradiation ...............................................................  70 
 
 41 Energy of a magnetic dipole in an external magnetic field B ....................  87 
 
 42 Energy levels of an electron in a magnetic field for a S=1/2 system .........  89 
 
 43 The energy level diagram for a system of electron spin S=1/2 and  
  nuclear spin I=1/2. The red color represents the electron spin  
  components of S=1/2 along the magnetic field while the blue color  
  represents the nuclear spin components .....................................................  91 
 
 44 The triplet state energies as a function of magnetic field (B||z) for D˃0  
  and (a) E≠0 or (b) E=0 ...............................................................................  97 
 
 45 The schematic diagram plots the optical setup for shining the green laser  
  on the sample and collecting the fluorescence emission into the photon  
  counters ......................................................................................................  101 
 
 46 The scanned fluorescence images of (a) the natural NV centers on the  
  type Ib diamond and (b) the generated NV centers on the 12C diamond ...  101 
 
 47 The TEM image of NV nanodiamond with the JEOL 2010 TEM at the  
  400K magnification and 200 keV electron energy .....................................  102 
 
 48 The block diagram depicts the data acquisition and microwave  
  hardware control for scanning, CW ESR and pulsed ESR experiments ....  105 
 
 49 Vacuum chamber design for the thermal evaporator .................................  107 
 
 50 Photolithography setup for a contact mask ................................................  108 
 
 



 xv

FIGURE                                                                                                                        Page 

 51 (a) The fabrication procedure to make a gold structure is illustrated. (b)  
  The gold plated ~10m wide  pattern on a 12C diamond is displayed .......  109 
  
  



 xvi

LIST OF TABLES 

 

TABLE                                                                                                                          Page 
 
 1 Quantum computing roadmap of NV center according to Divincenzo  
  criteria .........................................................................................................  3 
 
 2 The NV– and NV0 peaks are characterized to obtain the center  
  wavelength, FWHM and height .................................................................  68 
 
 3 The characterized data for the CW ESR are obtained from each  
  measurement in Figure 40(c) ......................................................................  71 
 
 4 Physical constants used in the magnetic resonance ...................................  98 
 
 5 Useful conversion factors ...........................................................................  99 
 
 6 Characteristics of selected atoms ...............................................................  99 
 



1 
 

CHAPTER I  

INTRODUCTION 

 

1.1 Motivation 

As predicted by Moore’s law 1 , we have observed the scaling down of the 

electronic devices and their rapid development. In nanometer-sized devices, quantum 

effects cannot be ignored and spin electronics (or spintronics) was developed to handle 

both the electron charge and spin and has a better capability to explain the expected 

physical phenomena2. The giant magnetoresistive (GMR) hard-drive head developed in 

1998 can be considered the first spintronic device. Most recently an involatile magnetic 

random access memory (MRAM) has been researched and is due to emerge into the 

market soon.  

In addition to the information storage, spintronics can be applied to quantum 

computing as well as spin-based multifunctional devices, like the spin-transistor, spin-

LED, and high-speed optical switches3. Controlling a single spin with light offers a 

pathway toward these applications.  Recently spintronics has been researched in a few 

optically detected systems 4 , such as quantum dot 5 , 6 , GaAs quantum well 7 , and 

diamond8,9. 

The advancement of spintronics depends on the development of novel materials, 

micro/nano-fabrication of new structures exhibiting spintronics phenomena. In order to 

characterize such magnetic materials and devices, magnetic imaging techniques and 

____________ 
This dissertation follows the style of Physical Review B. 
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methods with the sensitivity to detect very small magnetic fields can provide spatial 

measurements of the sample structure and its corresponding magnetic properties 10 . 

Among the approaches for magnetic imaging are microscopy techniques such as the 

magnetic force microscopy (MFM)11 and conventional micromagnetometer devices, for 

example, the scanned superconducting quantum interface device (SQUID) 

magnetometer12.   

Recently, diamond-based materials have emerged as novel candidates for 

spintronics13. The nitrogen vacancy (NV) center in diamond has a long electron spin 

coherence time at room temperature. Already key applications, such as the single photon 

transistor14 , quantum logic15 , and nanoscale magnetic imaging16  have demonstrated 

using advanced implantation and spin manipulation techniques. The motivation behind 

the research of NV diamond is the potential to develop room temperature devices for 

spintronics applications from information storage to quantum computing. 

 

Quantum Computing  

Compared to the conventional computer, the quantum computer can speed up 

information processing quadratically or exponentially and transport data with complete 

secrecy17. Divincenzo provided a few basic criteria for the physical implementation of a 

quantum computer and many approaches have been developed18.   

There exist many candidates for quantum bit, qubit, depending on the 

experimental system: nuclear magnetic resonance (NMR), ion trap, neutral atom, cavity 

quantum electro-dynamic (QED), optical or solid state quantum computation, and other 
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techniques. Each approach has its own strengths and weakness and has been researched 

to determine what is needed to implement a quantum computer.  

The NV center is one of these candidates. One of its main advantages is that it 

has a long coherence time at room temperature. The current status of quantum 

computing for the NV center according to the Divincenzo criteria is summarized in 

Table 1. Since the NV center is based on an electron spin in a solid state material, it 

provides more scalability to extend to multiple-qubit processors using the current 

semiconductor fabrication technologies. 

 
 
Table 1. Quantum computing roadmap of NV center according to Divincenzo criteria. 

Divincenzo Criteria NV Cetner at Room Temperature 
1. Well-characterized qubit Achieved 
2. Initialize the qubit state Achieved 
3. Long coherence time Achieved 
4. Universal set of quantum gates Achieved 
5. Qubit-specific measurement capability Achieved 
6. Interconvert stationary and flying qubits Proposed 
7. Transmit flying qubits  Proposed 
Note: Adapted from A Quantum Information Science and Technology Roadmap by 
ARDA, http://qist.lanl.gov, 2004 and “Room-Temperature Solid-State Quantum 
Processors in Diamond” by P. R. Hemmer and M. Lukin, Proc. of SPIE Vol. 6976 , 
697602 (2008). 

 
 
 

Magnetic Imaging Using the NV Center 

For paramagnetic species such as the NV center, electron paramagnetic 

resonance (EPR) imaging techniques have made a huge contribution in obtaining the 

spatial resolution and understanding the nature of impurities in solid state materials. EPR 
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techniques have been performed to identify and detect molecules mainly in biological 

systems and solid state applications.  

 As in NMR imaging (NMRI) or magnetic resonance imaging (MRI), EPR 

imaging (EPRI) consists of measuring the electron spin resonance (ESR) spectra in the 

existence of the gradient field to produce an image of electron spins in the sample19. One 

of challenges in EPRI using the gradient field is that it generally requires a higher field 

gradient than NMRI because the EPRI signals are complicated by the hyperfine coupling 

and anisotropic g-factor. As a possible technique to overcome this and more easily reach 

the T1 limit, a microwave gradient field can be used, but is generally difficult to 

implement.   

In previous magnetic imaging studies using the NV center, a one-dimensional 

(1D) DC gradient field was used to get a 1D image. To achieve 2D imaging, a new 

structure is required. At the same time the metal gradient-wire structure for the 

microwave signals needs to be improved as it was fabricated on a separate substrate and 

therefore a gap existed between the NV center and the gradient-producing structure. In 

order to reduce the gap and obtain the highest gradient field, direct fabrication on the 

diamond is necessary. In principle, higher spatial resolution can be obtained with this 

higher gradient field. By making the gradient wire structures out of coplanar stripline 

design a high microwave gradient field can be easily obtained. 
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Microdevice for Imaging: Magnetometer 

One of the key applications of magnetic imaging is to construct a microdevice for 

magnetic field measurements. Here the emphasis shifts from obtaining high spatial 

resolution of electron spins to mapping the local field with high sensitivity. SQUID 

magnetometers provide this capability today but the drawback is that they need 

cryogenic cooling to function properly.  

Figure 1 shows the sensitivity and size scales for magnetometry techniques, such 

as Hall probes with a simpler structure at room temperature20, magnetic resonance force 

microscopy (MRFM) 21  and atomic vapor magnetic sensors. Each technique has a 

different sensitivity and an optimum size range.  

As shown in the Figure 1 by the shot noise projection, the NV magnetometer can 

provide magnetic field detection with high sensitivity on small size scales at room 

temperature. Using a single NV spin in a nanodiamond mounted on an atomic force 

microscope (AFM) scanning probe, the NV can in principle be brought in close enough 

proximity to detect the magnetic field generated by a single electron or nuclear spin as 

shown by the dashed lines in Figure 1 in the region of “Demo 1.” Further, a bulk 

diamond can be used to detect magnetic material variations at the micron scale with 

ultrahigh sensitivity22 as shown by the region labeled “Demo 3.”  

For bulk diamond magnetometry, one way to improve the sensitivity is to 

increase the NV concentration, but this causes linewidth broadening due to the dipole-

dipole coupling [see Figure 2]. In principle this can be reduced by using a rotating 

sample. However this is very inconvenient for micro-imaging applications because of 
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the difficulty of maintaining high spatial resolution while rotating at high speeds. An 

alternative is to rotate the magnetic field using micro-stripline structures attached to the 

diamond. Still another way to suppress broadening and high NV concentration is to note 

that most of this broadening comes from interactions between NV and residual 

substitutional N that has not formed NVs. In this case, higher sensitivity should be 

achievable by eliminating the residual N using electron irradiation to convert them to 

NV centers. Here the issue is how to prevent damage to the diamond at high radiation 

doses, and especially how to minimize the effect of damage on the NV magnetic 

sensitivity.  

 

 
Figure 1. Sensitivity of magnetometer techniques is depicted. 
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Figure 2. For the bulk diamond magnetometer, the sensitivity δB can be improved using 
the higher concentration of the NV center but it causes the linewidth broadening. One 
option is to suppress the inhomogeneous linewidth broadening using the rotating field. 
The other option is the electron irradiation to convert the residual nitrogen to the NV 
center. 
 
 
 
1.2 Nitrogen Vacancy in Diamond 

The tremendous advances in diamond defect modelings have made possible the 

recent experimental breakthroughs in the study of nitrogen vacancy. Since du Preeze 

first discovered the NV– center of the 1.945 eV absorption line (637 nm) in 196523, the 

NV– defect has attracted considerable attention as a good candidate for a qubit of a 

quantum computer as well as a single photon source for quantum information processing 

24,25,26,27. The uniaxial stress measurements by Davies and Hamer in 1976 showed that 

1.945 eV absorption is a transition between an A ground state and an E excited state of a 

trigonal center 28 . Two-laser hole burning measurement 29 , electron spin resonance 

(ESR) 30 31 , optically detected spin coherence 32  and Raman heterodyne detection 33 

confirmed that the NV– has a triplet 3A ground state29 which is the essential property of 
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the NV center. Collins, Thomaz, and Jorge also showed that that the optically excited 

state is a spin triplet34. 

Nitrogen is the most abundant impurity in natural, high pressure high 

temperature (HPHT) and chemical vapor deposition (CVD) diamonds. Nitrogen defects 

are effective in trapping migrating vacancies. One of the most studied paramagnetic 

defects is the negatively charged nitrogen vacancy center (NV–) which is composed of a 

substitutional nitrogen adjacent to a vacancy35. Experimental results have proved that the 

NV center exists in two charge states, NV0 and NV−, with the neutral state exhibiting a 

zero-phonon line (ZPL) at 575 nm and the singly–charged state at 637 nm (1.945 

eV)35,36,37. In order to form the defects in a diamond, the neutral substitutional nitrogen 

center, NS
0, is irradiated to produce vacancies and the diamond is annealed to allow the 

vacancies to migrate as follows38,39: 

 
0 0 0
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0 0
S S

N  V  NV and 

NV  N  NV  N 

 

  
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Figure 3. Schematic diagram of the nitrogen vacancy defect in the diamond. 
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If the NV0 gains an extra negative charge, which is added to the five electrons 

(the three dangling carbon bonds and two valence electrons from the nitrogen), there are 

six electrons associated with the NV center40. The electron spin of the NV center is 

defined by the coupling between the captured electron from carbonic lattice of diamond 

and the unpaired electron from the nitrogen atom, resulting in a spin S = 1. Thus, the NV 

center exists as a paramagnetic impurity. Figure 3 shows a physical view of the NV 

defect center in diamond. Based on neutron irradiation experiments, the NV defect has 

been identified as a negatively charged center36. 

The NV− defect center in diamond has a few characteristics that can be used to 

identify it.  The fluorescence emission spectrum shows the zero phonon line (ZPL) at 

637 nm and the sidebands which are dominated by the NV− center [Figure 4(a)]. If a 

microwave signal is applied to the NV− center, it shows the electron paramagnetic 

resonance (EPR) or electron spin resonance (ESR) at 2.87 GHz which is called the zero-

field splitting with no external magnetic field applied [Figure 4(b)]. Using these two 

methods, the properties of the NV center are analyzed and characterized effectively.    
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(a) 

(b) 

Figure 4. (a) Typical spectrum for the NV− center shows the ZPL at 637 nm. (b) If the 
microwave signal is swept, the NV− center has the EPR resonance frequency at 2.87 
GHz.  

 
 
1.3 Dissertation Outline 

This dissertation reviews the EPR properties of single NV centers in diamond 

and outlines its experimental methods and results for a few applications. The material 
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presented is as follows: Chapter II describes the spin properties of the NV center such as 

the spin Hamiltonian and hyperfine coupling and gives the theoretical background to 

ODMR on single NV centers. It also covers the Rabi oscillation, 1T , 2T , and *
2T  which 

are obtainable from the continuous wave (CW)/pulsed ESR experiments. Chapters III to 

V cover three applications, which are presented in an independent journal format with 

some repetition of their theoretical background. First, Chapter III presents the 

experimental approach for the distance measurement between two NV centers using the 

Rabi oscillations. Chapter IV provides the experimental methods in acquiring the 

linewidth narrowing using the rotating field which is applied to ensemble NV centers. 

The CW ESR experiment and analysis of the results are given. Chapter V details the 

electron irradiation effect on the bulk diamond where the NV0 and NV− ionization 

fraction and ESR frequency shifts are discussed with respect to the varying electron 

irradiation dose. Finally, Chapter VI summarizes the dissertation and lays out the future 

works in improving current results. The additional contributions to the development of 

NV center imaging, linewidth narrowing experiment, and electron irradiation are 

provided in this chapter. Through basic proof-of-concept experiments and analysis, the 

research presented herein can be improved to have higher performance and greater 

efficiency than this report. Finally, the Appendices detail the theoretical background for 

the EPR concepts, the optical setup and magnetic resonance hardware, and the 

microwave circuit fabrication.  
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CHAPTER II 

PHYSICAL CONCEPTS OF NV DIAMOND 

 

2.1 Spin Hamiltonian of NV Center 

Optically Detected Magnetic Resonance (ODMR) 

The NV center in diamond has triplet ground and excited states as shown in 

Figure 5. The triplet ground state is the essential property of the NV center and has been 

well described by many experiments. The ground state is separated into a doublet and a 

singlet corresponding to 1sm    and 0sm   split by 2.87 GHz. The excited triplet 

state 3E is still explored to better understand the complicated fine structure due to the 

spin-spin and spin-orbit interactions and the strain in the crystal41. There also exists the 

metastable singlet state 1A to which the electron spins of the NV center escape from the 

3E state through intersystem crossing (ISC) 42. Recently, Manson and his colleagues 

found that the infrared (IR) emission is attributed to the 1E↔1A transition43. 

Once the NV center is optically illuminated, the fluorescence is detected due to 

the optical transition between the excited triplet state 3E and the triplet ground state 3A 

and the optical emission spectra show the 637 nm ZPL29,44. A simple three level scheme 

can be used to describe the optical excitation and emission cycle of the NV center45.  

The optically detected magnetic resonance (ODMR) spectrum of the NV center 

is achieved through the microwave signal frequency sweeping. An electron or nuclear 

spin in the magnetic field has a small magnetic moment and aligns either with or against 

any applied field which is designated as spin-up, or spin-down. These two orientations 



13 
 

have different energies, and the energy gap between them is proportional to the 

magnitude of the applied field. Once the levels have been split, the spin resonates with 

the applied radiation which matches the energy gap. The applied signal is typically 

called microwave (mw) radiation in the case of ESR and radiofrequency (RF) radiation 

in the case of NMR. Further splitting of the spin energy levels may arise from local 

interactions between electronic and nuclear spins such as the hyperfine interaction.  

A pulse of resonant microwave radiation flips the spin from one orientation to the 

other. The superposition of the two eigenstates is generated by varying the microwave 

pulse length and is described by ( ) cos 1 sin 1mw s mw st t m t m          where 

mw  is the microwave Rabi frequency depending on the applied microwave field 

intensity46.  

 

Figure 5. The energy level diagram of electronic states of NV center. The ground state is 
triplet 3A with the splitting between degenerated upper level mS = ±1 and lower level mS 
= 0 being about 2.87 GHz. The upper levels are singlet 1A and triplet 3E. 
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Spin Hamiltonian 

The Hamiltonian for the electron spin S=1 of the NV ground state with 

neglecting hyperfine effects can be defined as47,48 

 eH g    T TB S S D S  (2) 

with the electronic g-factor, 2.0028g  , the Bohr magnetron, 249.2740 10 J/Te
  , the 

external magnetic field B , and the zero-field splitting tensor 2.87D  GHz31. For the 

C3v trigonal symmetry with the zero-field splitting, the spin Hamiltonian in the principal 

axis system is given by  

 2 2 21
3[ ( 1)] [ ]e e z x yH g D S S S E S S      B S  (3) 

where the principal axes (X, Y, and Z) are chosen with respect to the crystallographic 

axis system ( X  , Y  , and Z ) [see Figure 6]49. When the external magnetic field is 

parallel to the quantization axis of the electron spins, i.e. ||B Z  where the Z axis is along 

the [111] direction, the electron Zeeman splitting depends linearly on the magnetic field 

strength. At about 1024 Gauss of magnetic field along the NV quantization axis, a level 

anti-crossing (LAC) occurs between 1sm   , and 0sm   state [Figure 7]50. 
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Figure 6. The schematic diagram plots the three different sets of coordinates. The 
laboratory axes (x, y, z) are fixed for the sake of reference. The crystal axes labeled (Xˊ, 
Yˊ, Zˊ) are the orthogonal set of axes in bulk diamond. For the purpose of obtaining the 
symmetry for the paramagnetic species, the principal axes (X, Y, Z) which are the same 
as the diagonalized crystal axes are used.   
 
 
 

Figure 7. Zeeman splitting of the NV center with E = 0 and B||Z  in the C3v symmetry. 
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Hyperfine Coupling 

In EPR, the unpaired electron interacts with neighboring nuclear dipole moments 

and this results in the splitting of resonance which is called nuclear hyperfine interaction 

or splitting. The hyperfine interaction may be either dependent (anisotropic) or 

independent (isotropic) on the orientation of the external magnetic field with respect to a 

molecular axis. In a diamond, the hyperfine structure of nitrogen is much easier to 

observe than that of 13C in EPR since 14N ( 1I  ) is nearly 100% abundant. The nitrogen 

hyperfine parameters are very accurately known and it has been determined that there is 

small unpaired electron probability density on the nitrogen atom, and the unpaired 

electrons are almost entirely localized on the three neighboring carbon dangling 

orbitals51. 

The nuclear spin Hamiltonian of 14N is given by40,52,53 

 2
||

1
( ) ( ( 1))

3N z z x x y y zH A S I A S I S I P I I I           T TS A I I P I  (4) 

where 1I   is the nitrogen nuclear spin, 1S   is the NV center electron spin,
 

2.3A 

MHz and 2.1A   MHz are the hyperfine constants parallel and perpendicular to the 

defect axis, [111], and 5.04P   MHz is the quadrupole splitting constant. The intimate 

view at close range around the 1sm    or 1sm   transition shows the resonances 

corresponding to the three 14N nuclear spin sublevels 54 . This hyperfine interaction 

observed with ESR provides a measurement of ||A  = 2.3 MHz.  

 If the 15N which is naturally 0.1% abundant is implanted to the diamond, the 

ODMR spectrum corresponding to the 15N  is different from that of the 14N55. Similarly, 
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for the 1.1% abundant 13C nucleus, a clearly different hyperfine coupling is measured. 

The ODMR measurements show that the 13C nucleus produces ~130 MHz hyperfine 

coupling parameter56,57. In Figure 8, the energy level diagrams of the NV center coupled 

to the different nuclei are plotted.  

 

(a) 

(b) 

Figure 8. Hyperfine structure for the NV electron spin (a) with 14N and (b) coupled to the 
15N nuclear spin with the calculated hyperfine splittings.  
 
 
 
2.2 Rabi Oscillation 

Once the NV center is excited using the 532 nm green laser, the electron spin of 

an NV center is polarized into 0sm   of the ground state46,58,59 and the microwave signal 

is applied to manipulate the electron spin state. When the applied microwave field is 

tuned to the resonance frequency, i.e., 2.87 GHz, the optical measurement shows the 

spin transition between 0sm    and 1sm    which consists of a simple two level system. 
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If the external magnetic field causes the Zeeman splitting of 1sm    state, two 

resonance frequencies corresponding to the transitions 1 0s sm m     and 

1 0s sm m     are observed. The resonant microwave driven oscillations in the spin 

population between two states are known as Rabi oscillation60,61. In the two level system, 

the Rabi frequency is given by /R B h   where   is the transition dipole moment, 

B  is the applied magnetic field, and h  is the Planck’s constant.  

Figure 9 shows the pulse sequence for the Rabi oscillation where the duration of 

mw pulse,  , varies and the population remaining in 0sm   is measured. The Rabi 

frequency R  is proportional to the square root of the microwave power mwP
 
 [Figure 

10]. Practically, the Rabi frequency is doubled by increasing the mw power by a factor 

of 4.  

 

Figure 9. The pulse sequence for the Rabi oscillation is depicted. The population in 
mS=0 is measured as the microwave duration τ varies. The whole sequence repeats to 
average the fluorescence signal in the time-domain of the experiment.  
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Figure 10. The Rabi oscillations are measured using varying microwave powers of 
which square root values are (a) mwP , (b) 1.59 mwP , and (c) 2.28 mwP .  The 

calculated Rabi frequencies are 17.81 MHz, 31.71 MHz, and 39.31 MHz, respectively 
and they are approximately linear with respect to the square root of the microwave 
power. 
 
 
 
2.3 Spin Relaxation Time and Linewidth  

Linewidth 

 If the magnetic field B  is taken along the Z  axis (B||Z) in Equation 3, the 

energies can be expressed by  
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1
3

2
0 3

eE D g B

E D

  

 
 (5) 

where  0E   due to the C3v symmetry. The transition 0E E   between two levels 

complying with the selection rule 1sm    can be induced by the microwave radiation 

h  as below: 

 /eD g B h     (6) 

 The Heisenberg uncertainty relation can be expressed by62,63 

 / 1 / 2et g B h        (7) 

where   is the electron spin linewidth and t  is the electron spin lifetime. Since the 

lifetime t  is determined by 1 21/ 1/ 1/t T T    where 1T  and 2T  are the spin-lattice 

relaxation time and the spin-spin relaxation time, respectively, the Equation 2-7 becomes 

  1 21/ (2 ) 1/ (2 )T T      (8) 

Usually since 1 2T T , e.g., 2
1 10T   to 410 s and 2 1.8T  ms for the ultrapure CVD 

diamond grown by the state-of-the-art technology64, the electron spin linewidth   is 

simplified to  

 21/ (2 )T    (9) 

 

Broadening 

 The electron spin linewidth   is generally dependent on the spin-lattice and 

spin-spin relaxation times. If the linewidth broadening is dominated by 1T  and 2T , it is 

called the homogeneous broadening. But if the broadening is originated by other causes 
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such as the inhomogeneous g-factor and magnetic field and the hyperfine anisotropy, it 

is called the inhomogeneous broadening.   

 

Spin Relaxation Times: T1 and T2 

The spin-lattice or longitudinal relaxation time T1 is the time over which the spin 

system forced out of equilibrium returns to the thermal equilibrium through the energy 

transfer to the surrounding lattice. In order to measure T1, the inversion recovery 

sequence composed of two pulses is used [Figure 11]65. 

 

 

Figure 11. The inversion recovery pulse sequence is displayed to measure the T1 time. 
 
 
 

The spin-spin or transverse relaxation time T2 is the time for dephasing in the x-y 

plane. The electron spin echo (also known as Hahn echo) is most widely used to measure 

the T2 in ESR experiments52. Figure 12 shows the spin-echo pulse sequence which 

consists of the sequence 1 2/ 2 / 2         where the   pulse is the microwave 

duration to flip the electron spin from 0sm   to 1sm    and 1  and 2  are durations of 

free precession. 
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Figure 12. The spin-echo pulse sequence is depicted to measure the spin-spin relaxation 
time. 
 
 
 
Spin Dephasing Rate, T2

* 

The spin dephasing rate T2
*is a measure of the inhomogeneous electron spin 

linewidth broadening. T2
* can be measured simply by the microwave signal sweeping or 

by the free induction decay (FID) sequence [Figure 13]. In diamond with a high nitrogen 

concentration such as HPHT diamond, the each spin in the ensemble NVs experiences 

the dipole-dipole coupling causing the spin linewidth broadening. The magic angle 

spinning (MAS) is one method to reduce the dipolar broadened line, thus, eliminate T2
* 

or T2 and reach the T1 limit.     

 

Figure 13. The free induction decay (FID) sequence is depicted for the spin dephasing 
time T2

* measurement. 
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CHAPTER III 

TWO DIMENSIONAL DISTANCE MEASUREMENT OF NV CENTER USING THE 

EPR IMAGING (EPRI) 

 

3.1 Introduction 

The nitrogen vacancy (NV) center in diamond is an electron paramagnetic 

species and has many applications, such as quantum computing15, 66  and magnetic 

sensor 67  due to its electron paramagnetic resonance (EPR) properties. Recent 

experiments pronounce that the NV center can be a good probe enabling the bio-cell 

imaging and biomolecular tracking due to a low photobleaching and a low toxicity68,69. 

The electron spin resonance (ESR) is a useful means to identify the NV center in a bulk 

crystal or in bio-cells since the EPR imaging (EPRI) methods have been developed to 

achieve the spatial resolution in molecules70.  

Recently Balasubramanian et al demonstrated nanoscale imaging using the single 

electron spin of NV center in a nanodiamond16. They measured the ESR signal using the 

optical detection and calculated the magnetic field resulting from the magnetic material 

coated AFM tip and the nearby magnetic particle such as an electron. According to their 

measurement, it turned out that the spatial resolution of down to 5 nm was able to be 

obtained. In the other scanning microscopy to obtain the distribution without a magnetic 

field, Hell and his coworkers developed the stimulated emission depletion (STED) 

microscopy as a good competitor for the confocal microscopy, and improved the focal 

plane resolution down to 15–20 nm resolution 71,72,73. 
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 Even though the specific techniques used in different EPR imaging vary, the 

principle of EPRI experiments is described by the change in the resonance frequency at 

the adjacent position as (MHz) / 28 (mT)
e

g
e e gg B h B   

 
where e  is the microwave 

frequency, eg  and g  are the g-factors of the free electron and the interacting electron 

with the surrounding particles, h  is the Plank constant, and the applied magnetic field 

( / )res xB B x B x     is the field at the position x  which is varied by the gradient field 

/xB x   along the x  axis from the resonance field resB 74 . Using this equation, the 

distance between two adjacent paramagnetic species can be calculated experimentally as 

the existence of visually irresolvable particle is verified.   

In the confocal microscopy, the 2D EPR spectroscopy has been performed to 

show the distribution of the NV center 75. Besides, the STED microscopy has a dead area 

where the closely overlapped ‘phantom’ NV center cannot be resolved. In order to 

overcome the limitation of 1D EPRI and suggest an approach for the 2D EPRI beyond 

phantoms, the Rabi oscillation which is based on the spin dynamics of the NV center is 

measured using the pulsed electron spin resonance (ESR) in this experiment. 

 

3.2 Theoretical Background 

 Spin Hamiltonian for Two Unpaired Electrons 

For the system composed of two unpaired electrons with the magnetic field B  

applied along the z axis which is along the quantization axis of the NV center, i.e., the 

[111] orientation [Figure 14(a)], the spin Hamiltonian becomes 
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2 2 21 1

3 2[ ( 1)] ( )

T T
e

e z z z

H g

g B S D S S S E S S



  

    

     

B S S D S
 (10) 

with  zero-field tensors, 3
2 zD D  and 1

2 ( )x yE D D  . Summarizing the Hamiltonian in 

the basis set of 1 , 0  and 1  of zS , the spin Hamiltonian matrix is given by 

 

0 0
3

2
0 0

3

0 0
3

e z

e z

D
g B

D

D
g B





  
 
  
 
   
 

 (11) 

with 2.87D   GHz and 0E  . The calculation of the secular equation gives the energy 

set below:      

 2 1
3 3and e zD D g B   (12) 

and they are plotted in Figure 14(b) as the magnetic field ||B z  increases. Among the 

transition indicated by arrows, the electron resonant transition of 1Sm    is allowed 

by the selection rule.  



26 
 

(a) (b) 
Figure 14. (a) The lattice structure of the NV center in diamond is depicted. (b) The 
triplet state energies as a function of magnetic field (B||z) for D˃0  and E=0 is displayed.  
 
 
 
Rabi Oscillation 

The Rabi frequency is defined as  

 /R B h   (13) 

where   is the magnetic moment, h  is the Planck constant, and B  is the applied 

magnetic field. In the two level system composed of 1sm    and 0sm   of the NV 

center, the Rabi oscillation is given by /R eg B h  .  

 

3.3 Materials and the Method  

Thanks to the progress in the microfabrication technology, the explosive 

development has been made in atomic physics 76 . The micronscale electromagnet 

fabricated using the photolithograph and plating techniques performed successfully to 
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generate the magnetic field up to 0.3T for atom manipulation 77 . The micron-size 

resonators of 200–500 m  were used for the pulsed EPR experiment to measure the FID 

as well as CW EPR experiment78. Their measurements found that the sensitivity of the 

resonator is inversely proportional to the size of the micronresonator. The micronscale 

structure created with the lithography and fabrication techniques is also proposed for 

NMR79. 

In this experiment, the diamond sample is a (100) cut type-Ib crystal (Element 

Six) in which many natural NV centers exist. In order to apply the microwave signal, the 

photolithography using the UV laser was utilized to produce the thin gold wire. The 

photoresist was spin-coated on the surface of the diamond substrate and was baked at 

110˚C. After illuminating the UV light through the mask, the micronscale pattern was 

developed on the Ti and Au deposited surface. Subsequently, the gold plating was 

performed to make a thick pattern and the sacrificial layers of gold and Titanium were 

etched. In Figure 15, the 3–4 m  thick gold wires are separated by 4.8 m  at the central 

area. 

 Figure 15 shows the gold wires of which four inner wires are used to apply the 

microwave signal to manipulate the electron spin of the NV center in diamond. The 

advantage of fabricating the micronscale structure on the surface of the small diamond is 

that the higher magnetic field is acquired in the vicinity of the NV centers that are 

located underneath the surface. By removing the gap between the diamond substrate and 

the external wire or structure, the steep gradient field is obtained on the micron-size area 

with the reasonable microwave power or DC current.     
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(a) (b) 
Figure 15. (a) The ~3 μm thick gold wires are fabricated on top of the (100) cut type-Ib 
diamond surface. The four wires surrounding the center are used to apply the microwave 
signal to generate the magnetic field. (b) If the current flows in the same direction 
through two wires, the wire pair can generate the larger gradient field. 
 
 
 
3.4 Simulation 

Magnetic Field Simulation 

Modeling the magnetic field generated by gold wire is one of the key methods 

for two-dimensional imaging. From the simulation, it turned out that the two wires 

placed at the diagonal positions [Figure 16] produce the symmetric field at the central 

area when they carry the microwave signals in the same direction [Figure 17(a)]. Figure 

16 shows the two pairs of wire to make the symmetric fields. In order to calculate the 

magnetic field at each position, the magnetic field distribution should be simplified and 

modeled. But the 2D field modeling to obtain the field intensity and orientation is very 

complicated compared to the 1D distribution since the field vector and amplitude show 

the quadratic distribution such as 2ax bx c   [Figure 17(b) to (d)]. Instead the 3D 
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mapping on the simulation software (HFSS, Ansoft) was used for this experiment to 

facilitate the analysis.  

 

Rabi Frequency for Different Orientations 

In the crystal structure of diamond, there exist four different orientations of the 

NV center. The quantization axes of the NV center are inclined with respect to the [100] 

crystallographic axis by 54.7˚ and 125.3˚. When the resonant microwave signal is 

applied to the bulk diamond, the Rabi oscillation is observed. When the field acting on 

the NV center is randomly oriented, the effective field which is the projection of the 

magnetic field onto the xy plane should be taken into account for the Rabi oscillation, 

/R B h  .    

 

Figure 16. The simulation model for the field distribution is plotted using the 
commercial 3D finite element method (FEM) simulator (HFSS). The gold wires are 
placed on top of the bulk diamond. The red and green colored two pairs of wire are 
excited using the one Watt microwave signals at the same time.   

Diamond plateGold wires



30 
 

 

(a) (b) 

(c) (d) 
Figure 17. (a) The top view of the structure is illustrated. The calculated field 
distribution between two wires is symmetric on the top surface of the diamond. (b) The 
H field vector is plotted along the line connecting two points, P1 and P2. (c) The 
magnitude of the H field is plotted. (d) The fitting curve shows that the magnetic field 
intensity is quadratic along the line.   
 
 
 

For the random orientation of the magnetic field, the estimated Rabi frequency is 

given by 
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where B  is the perpendicular field to the static magnetic field zB  and   is the angle 

between the random magnetic field B  and ˆ
in , the unit vector along each quantization 

axis of the NV center with i = 1, 2, 3, and 4.  

 

3.5 Results  

The scanned fluorescence image of the diamond surface is shown in Figure 18. 

The bright regions on the four corners are the gold wires and the NV centers are located 

between them. It was found that the natural NVs in the type Ib diamond have a few 

different orientations and are the mixture of single and multiple impurities. Among many 

NVs, NV7 and NV12 are preferred since they are the same orientation. They are located 

at the center, therefore the random effects due to the imperfection of the structure seems 

to lessen.  

 

Figure 18. The scanned fluorescence image shows the NV centers at the center. They are 
surrounded by four wires for the microwave excitation which are characterized by the 
bright regions. 
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Once the image is obtained, the continuous wave electron spin resonance (CW 

ESR) spectrum is scanned using the microwave signal frequency sweeping in order to 

the resonant frequency for each NV center. In Figure 19, the CW ESR measurements 

show that NV7 and NV12 may be single NVs since they display one dominant dip which 

is split using the DC magnetic field (~35 Gauss) controlled by the electromagnet. For 

two different combinations of wires, the ESR measurements show the similar spectra 

around 2.770 GHz. 

 

Figure 19. (a), (b), (c), and (d) The CW ESR measurements show the single dips for 
NV7 and NV12 when the two different wire pairs are excited with the same microwave 
power. 
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If the microwave signal is tuned to the resonant frequency at which the transition 

between two electron spin states, 1sm    and 0sm  , occurs, the pulse experiment 

for the Rabi frequency is performed. As the microwave signal duration,  , varies from 5 

ns to 2500 ns in the step of 5 ns, the laser is turned on for ~3 s  and off in sequence to 

collect the fluorescence [Figure 20(a)]. Using the signal process for the temporal data 

sequence, the Rabi oscillations are plotted for two wire pairs and two NVs in Figure 

20(b) to (e).  

Figure 21 shows the transformed Rabi oscillations in the frequency domain using 

the fast Fourier transform (FFT). In Figure 21(a) and (b), single frequencies are observed 

for NV7 and NV12 when the field caused by the microwave signals which are applied to 

the wires 1 and 3 is applied. On the other hand, when the microwave signals are applied 

to wires 2 and 4, NV7 shows one dominant and another weaker frequencies while NV12 

has a single frequency.   
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(a) 

Figure 20. (a) The pulse sequence to measure the Rabi oscillation is depicted. The 
microwave signal varies during the microwave duration, τ and the laser is turn on and off 
in sequence. (b), (c), (d), and (e) The Rabi oscillation measurements are plotted in the 
temporal sequence after the signal processing.   
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Figure 21. (a), (b), (c), and (d) The transformed Rabi oscillation measurements are 
displayed in the frequency domain using the FFT method. The spectra for NV7 and 
NV12 show the single frequencies using the wire 1 and 3 pair while they show the two 
frequencies for NV7 and one dominant frequency for NV12 using the wire 2 and 4 pair. 
 
 
 
Rotating of the Coordinates  

The diamond sample used for this experiment is the (100) cut crystal [Figure 

22(a)] but for the orientations of four sides, there exists mismatch between the laboratory 

reference axes and the crystal axes. The approach to settle the conflict in different 

coordinate systems is to rotate the xy plane which is perpendicular to the [100] direction.  

Using the rotation matrix given by 
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where    is the varying angle with respect to the laboratory reference, the crystal axes 

are rotated as shown in Figure 22(b) and (c) while the Rabi frequencies for NV7 and 

NV12 are calculated.   

 

(a) (b) 
 

(c)  
Figure 22. (a) A (100) cut type Ib diamond was used for this experiment but there exists 
the mismatch between the laboratory reference axes and the crystal axes. (b) and (c) In 
order to the mismatch in the coordinate systems, the rotation matrix is applied to rotate 
the xy plane in the crystal coordinate system where the angle, , varies. 
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For each wire pair, the Rabi frequencies for NV7 and NV12 were calculated 

using the field intensity and orientation from the simulator. Along with the constant ratio 

of calculated and measured Rabi frequencies, /c m  , for each wire pair, the 

corresponding curves for NV7 and NV12 should have a crossing point at the same 

rotation angle for two wire pairs. The numerical analysis was performed at different 

rotating angles for four NV orientations [Figure 23]. The calculation of /c m   in 

Figure 24 shows that whichever orientation the NV7 and NV12 have, the ratio is ~1.377 

and the 3D field mapping on the simulator gives the reliable field intensity and 

orientation.   

 

(a) (b) (c) (d) 
Figure 23. Four different orientations of the NV quantization axis are depicted. The 
orientations 1, 2, 3, and 4 at (a), (b), (c) and (d), respectively are oriented at the angles, 
54.7˚ and 125.3˚, with respect to the [100] axis.  
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Figure 24. (a), (b), (c), and (d) The measured and calculated Rabi frequencies ratio, Ωm/ 
Ωc is obtained as the rotation angle  is scanned. The plots show that the crossing of two 
curves occurs at the different rotation angle  but the ration is the same for different 
orientations. 
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Distance Calculations 

Since the single dip was observed in the CW ESR spectrum of NV7 but two Rabi 

frequencies were measured, it is expected that double NVs in the same electron spin 

orientation are located at the site of NV7. For the same orientated NVs, the quadratic 

field distribution should be formulated to calculate the distance. The magnetic field 

intensity along the shifted P2- P4 line on the same depth of NV7 [Figure 25] is given 

by  

 2
0( )B a r r b    (16) 

where r0 is the center point of the symmetry and the variables a and b can be obtained 

using the field distribution of the simulator in the factor of 1.377 [Figure 26]. For two 

Rabi frequencies, the frequency difference is achieved by 

 3 2 2
1 0 2 02.8 4 10 [( ) ( ) ] /1.377a r r r r          (17) 

 where r1 and r2 are two NV positions. Using this equation, the calculated distance 

between double NVs is 713.16 nm with no change in the orientation of the second NV as 

shown in Figure 27.   
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Figure 25. P2 and P4 are shifted parallel to the P2-P4 line. The filed distribution should 
be obtained to calculate the distance between two NVs. 
 
 
 

(a) (b) 
Figure 26. (a) The quadratic field intensity distribution was obtained from the simulator. 
(b) The curve fitting shows a=22.10 A/m·μm2.  
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Figure 27. Another NV center position can be calculated while keeping the orientation 
fixed. The calculated distance between two NVs is 713.16 nm. 
 
 
 
3.6 Conclusion 

The distance measurement is one of the fundamental topics in the physical and 

life sciences. In order to achieve the spatial resolution of the NV color centers in the 

solid-state crystal, the 2D EPRI approach is taken for the first time using the pulsed ESR 

experiment to measure the Rabi frequency. Using one wire pair, the NV center seems to 

be a single but the second wire pair discovers the phantom impurity with the resolution 

of 713.16 nm.  

From this experiment it is verified that the steep AC magnetic field gradient 

achieved between two diagonal wires can be used to measure the distance between 

closely located double NVs. The microfabrication technology is one of the essential 

methods for this experiment as it is the enabling technique to make a metal structure 

directly on the bulk diamond surface. However, the imperfection in the micronscale 

pattern can cause the mismatch between the calculation and the measurement.  

Another challenge is the reliability of modeling on the magnetic field at the 

position of the central area. The quadratic dependence of the magnetic field along the 

distance between two points makes the field simplification approach reasonable. But the 

precise quantitative comparison between the calculation and the field measurement is 
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anticipated to reduce the imperfection in the field orientation and intensity, and 

subsequently in the Rabi frequency.      
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CHAPTER IV 

DIPOLAR LINEWIDTH NARROWING ON THE NITROGEN VACANCY IN 

DIAMOND USING THE ROTATING FIELD 

 

4.1 Introduction 

The magnetometer is an essential instrument measuring the magnetic field and 

has many applications in industry and in scientific research. The superconducting 

quantum interference device (SQUID)-based magnetometer provides extremely high 

sensitivity but has a cryogenic barrier which means that the SQUID needs cooling.80 The 

atomic vapor magnetometer based on spin-exchange relaxation free (SERF) can provide 

the higher sensitivity81. Recent experiment demonstrated the atomic magnetometer of 

which sensitivity decreased to  sub-fT Hz-1/2 but the cell needed to be heated to 180°C82. 

Thanks to the advance in the nitrogen vacancy (NV) color center in diamond, the NV-

based magnetometer produces the sensitivity surpassing that of SQUID22 and has less 

limitation in the size and spin linewidth caused by the wall collision at room temperature 

compared to the atomic vapor magnetometer.     

 Due to the recent developments in diamond synthesis, the high purity of diamond 

can be achieved using the homoepitaxial diamond growth based on the chemical vapor 

deposition (CVD) method83. In the high purity diamond, the electron spin dynamics of a 

nitrogen vacancy (NV) is in the presence of strong influence of 13C (1.1% abundance) 

and the spin coherence time and the electron spin linewidth   are dependent on the 

nuclear spin of 13C64,84. On the other hand, a few diamonds synthesized by the high-
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temperature/high-pressure (HPHT) method are characterized by the high concentration 

of the nitrogen atom. The electron spin of the NV center is dominated by the electron 

spins of the substitutional 14N.  

 For the purpose of the magnetic sensor, the HPHT diamond can be used since it 

has a high concentration of the substitutional nitrogen (Ns) and the conversion technique 

from Ns to the NV is investigated85. But the sensitivity of the magnetometer is dependent 

on the spin linewidth which is mainly governed by the dipole-dipole coupling between 

the electron spin of the NV center and the 14N electron spin. In order to suppress the 

linewidth broadening caused by this impurity, the rotating field such as magic angle 

spinning can be used86,87. In this paper, the rotating field is applied to considerably 

suppress the linewidth broadening and enhance the resolution of the ESR spectroscopy 

on the NV center.  

 

4.2 Theoretical Background 

Spin Hamiltonian for Two Unpaired Electrons  

 The NV center is composed of a substitutional nitrogen and an adjacent vacancy. 

The substitutional nitrogen is an electron donor and the NV center is negatively charged 

with the electron spin state S=1. Once the NV center is optically excited, the 

fluorescence emission is detected due to the 3E→3A transition with a 637 nm zero-

phonon line. The triplet ground state (3A) is split into 1sm    and 0sm   sublevels 

separated by the 2.87 GHz microwave transition [Figure 28(a)]31,88.  

The spin Hamiltonian describing the behavior of the NV center is 
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 T T
eH g    B S S D S  (18) 

where g  is the electron g-factor, e  is the Bohr magnetron, D  is the zero-field tensor,  

and S  is the electron spin. If the Hamiltonian is written in the basis set of 1 , 0  and 

1  of the electron spin S and the magnetic field B  is taken along the quantization axis 

( B z ), the energies can be expressed by 2
3 D   and 1

3 e zD g B  with the external 

magnetic field, zB , and 2.87D   GHz due to C3v symmetry ( 0E  ) [Figure 28(b)]. 

 

(a) (b) 
Figure 28. (a) The energy level diagram of the NV center is depicted. (b) If the magnetic 
field is applied along the quantization axis, the degenerate mS=±1 state is split and the 
three energy states are obtained. Using the optically detected magnetic resonance 
(ODMR) spectroscopy, the mS=±1 transitions are observed. 
 
 
 
Unpaired Electron Coupling with 14N Electron 

For the HPHT diamond with a high 14N concentration, the dipole-dipole coupling 

between the electron spin of the NV center and the 14N electron spin is taken into 

account, the total Hamiltonian becomes 

 T T
e ddH g H     B S S D S  (19) 
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If the electron magnetic dipoles behave classically and the external static magnetic field 

B (||z) is applied to align them, the energy of dipole-dipole interaction between them is 

given by the expression below48,89,90,91,92: 

 ( , )T
e N NU B    r  (20) 

where e  and N  are the electron dipole moments of the NV center and 14N and   is 

the angle between B and the line joining the two dipoles separated by the distance r . In 

this classical system which is shown in Figure 29 the local field, NB , at the NV center 

arising from the 14N electron spin depends on the angle   and distance r is given by 

 0
3 2

1 3
( , ) ( )

4
T

N N N NB
r r

  


      
r r r  (21) 

Thus, the energy becomes 

 0
3 2

1 3
( )( )

4
T T T
e N e NU

r r

    


       
r r  (22) 

The dipolar Hamiltonian for the broadening is expressed in the similar way to the dipole-

dipole coupling between an electron spin and a nuclear spin by 

 0
3 2

3
( )( )

4
e n n

dd e N e N

g g
H

r r

  


       
T T TS S S r S r  (23) 

Using the   and   in the polar coordinate,  
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where the dipolar alphabets are 
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and the dipolar frequency   is  
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0
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For the NV and nitrogen system, the dipolar Hamiltonian is simplified to the secular 

term A given by 
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   (27) 

 

Magic Angle Spinning 

The dipole-dipole coupling shows the dependency on the orientation of the spin-

to-spin vector r  with respect to the external magnetic field B . The reorientation of the 

vector r  has been performed by rotating the sample itself in many experiments93. If the 

angle   is manipulated to be the magic angle, 54.7   ,  the dependency turns out to be 

averaged out over the time duration for the experiment.  
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(a) (b) 
Figure 29. (a) The electron spin of the NV center and the N electron spin configuration 
are illustrated. (b) They are placed in the external magnetic field B and the angle 
between B and the line connecting the electron and nuclear spins is θ. There exists the 
dipole-dipole coupling between the NV center and the intrinsic 14N electron spins.  
 
 
 
4.3 Materials and the Method 

The sample used for this experiment was a (111) cut HPHT diamond with 40 

ppm of nitrogen concentration and 10 ppm of NV– concentration. The micronscale gold 

wire was fabricated for microwave signal transmission to manipulate the spin states of 

the NV center. Figure 30(a) shows the gold wires to apply the microwave and RF signals. 

The metal structure was made on the surface of a sapphire coverslip. The sample 

substrate was coated with Ti and Au in order. On top of metal surface, the thick 

photoresist pattern was created using the photolithography technique and development 

and the electroplating was followed in turn. After stripping the remaining photoresist, 

the underlying thin Ti and Au layers were etched and the thick gold pattern remained. 

For the ESR spectroscopy, the microwave and RF signals are transmitted through the 

wires which were bonded on the diamond surface. 
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The diamond sample rotation is technically limited since the microwave and RF 

signal needs to be applied at the same time. As an alternative, the four micron-size wires 

surrounding the central area are suggested [Figure 30(b)]. If the two phase-matched 

sin t  and cos t  signals are applied to the two diagonal wire pairs, the rotating RF 

signal is generated at the center and is proposed to reorient the spin-to-spin vector. 

For the simulation of the magnetic field built on the x-y plane below the diamond 

surface, the 3D finite element method (FEM) simulator (HFSS, Ansoft) was used.  From 

the simulation results in Figure 31, it should be noted that the generated field is elliptical 

rather than circular in the magnitude due to the asymmetry of the structure. Since the 

external field rotates in a slightly different shape at each depth underneath the surface, 

this may cause the axially asymmetric rotating field. 

 

 

(a) (b) 
Figure 30. (a) The gold wires are fabricated on the sapphire substrate and are bonded on 
the (111) cut HPHT diamond surface. The wires are connected to the external circuit 
board to apply the microwave and RF signals. (b) In order to produce the rotating field, 
the four wires structure is suggested with extra wires for the microwave signal. 

10um

sin t

sin tcos t

cos t
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(a) 

 
(b) (c) (d) 

 
(e) (f) (g) 

Figure 31. (a) The phase-matched sinωt and cosωt signals are excited to the two diagonal 
wire pairs with 1 Watt of the power. The generated field within the red dotted rectangle 
with the depth set to 10 μm underneath the surface are displayed at different phases of 
the input signals such as (b) 0º, (c) 45º, (d) 90º, (e) 135º, (f) 180º and (g) 225º, 
respectively. 
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The diamond sample was excited using the 532 nm Ar ion laser. A 0.8 numerical 

aperture objective of 100x was used to focus the green light and collect the fluorescence. 

Once the fluorescence emission passes through the dichroic mirror to separate the optical 

pumping light, it is detected using the color filtered (647–800 nm bandpass) Si 

photodiode.  

There exist four different orientations of the NV center in the diamond as shown 

in Figure 32(a), (b), (c), and (d). In order to separate orientations, three-dimensional 

electromagnetic coils were built to control the magnetic field along each axis 

independently. If the microwave signal is applied to the wire, the electron spin of the NV 

center is manipulated between 1Sm    and 0Sm   in the ground state. The optically 

detected magnetic resonance (ODMR) signals are detected using the microwave signal 

frequency sweeping [Figure 32(e)]. The [111] oriented ensemble NVs are selectively 

chosen using the electromagnet for this experiment.  
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(e) 

 
Figure 32. (a), (b), (c), and (d) There exist four different orientations of NV center with 
respect to the crystal axes. (e) The ODMR signals were measured using the microwave 
frequency sweeping. If the current flow to one electromagnet coil is controlled to vary 
the magnetic field, the ODMR signal shows the different frequency variation to each 
orientation. Using this manipulation, the orientation of the ensemble NVs can be 
selectively chosen.   
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4.4 Results 

Lindwidth Narrowing 

When the microwave signal is applied, the electron spin linewidth    shows 

the dependence on the microwave signal and laser powers 94 . The full-width half-

maximum (FWHM) of the linewidth increases as the microwave power goes up while it 

decreases as the optical power goes down. For the given microwave and optical powers, 

the RF signals are applied to four wires and the external field is rotating on the x-y plane 

[Figure 33].  

Figure 34(a) shows the main dip while the rotating field causes the sidebands 

located at the multiples of the rotation frequency RF . After analyzing the data, the 

characterized FWHM of the electron spin decreases from 3.4 MHz to 2.5 MHz as the RF 

power goes up to 40 dBm. For a few different RF frequencies in Figure 34(b), the 

measurements show that the FWHM decreases, especially from 2.8 MHz to 1.4 MHz for 

RF = 2.5 MHz. 

The observed linewidth was suppressed up to 50% using the rotating field. The 

linewidth did not reach the 13C limit at which the broadening is ~200kHz, thus, the 

rotating field seems to not be large enough to average out the dipole-dipole coupling in 

the time-domain of the experiment. The distance between one wire and the center is 

about 55 m  and needs to be reduced by removing the central two wires. On the other 

hand, in Figure 34(a) the center frequency shift is observed up to 8 MHz for RF = 2.5 

MHz as the RF power increase. The shift may be caused partially by the g-factor 

inhomogeneity, elliptical field distribution, and weak vibration due to the high RF power. 
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Figure 33. A simple system for the rotating field to suppress the dipole-dipole coupling 
between the NV center and the 14N electron spin is illustrated. The static magnetic field 
BDC was applied to isolate four orientations and choose the [100] orientation selectively. 
The rotating field BAC was applied on the x-y plane and the angle between spin-to-spin 
vector r and the external rotating field was given as θ. 
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(a) 

(b) 

Figure 34. (a) The CW ESR data are depicted for different RF powers using ωRF = 12 
MHz, Pmw= -20 dBm and Popt= 8 mW. (b) The CW ESR data are characterized for 
different RF powers and frequencies using Pmw= -25 dBm and  Popt= 10 mW. 

 
 
Optical Magnetometry and the Effective Time Constant T2

* 

In the optical magnetometry, the sensitivity of the magnetometer is given by22,95 

 
*

2e

B
g NtT



  (28) 



56 
 

where   is Planck’s constant, N is the number of the NV centers, t is the total averaging 

time, and T2
* is the effective relaxation time. Practically the inhomogeneously broadened 

linewidth which is the full-width half-maximum of the spectral peak is given by 

*
21 / ( )T    96. Using the rotating field, T2

* was improved from 114 ns to 227 ns. 

This corresponds to ~30% improvement in the detectable sensitivity. 

 

4.5 Conclusion 

In this experiment, the rotating field suppression was observed in the spin 

linewidth broadening of the NV center caused by the substitutional 14N in a HPHT 

diamond. The ESR spectroscopy measurements show that the ~50% improvement was 

obtained in  . Subsequently, the sensitivity of the magnetometer using the diamond 

increases by ~30%.  

In order to achieve the higher suppression of the broadening, the rotating field 

intensity needs to be increased. Using the microfabrication technology for the upgraded 

metal structure with the central wires removed, the distance between the center and 

wires can be reduced to 10 m  which results in the 5.5 times larger field.  It is expected 

that the linewidth dominated by the 13C (1% abundance) can be obtained using the 

higher field intensity.  

The other technique to investigate the linewidth narrowing is the free induction 

decay (FID). The linewidth measurements for the rotating samples were reported using 

the FID97. The rotating field experiment along with the FID is anticipated using the 
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numerical analysis based on the time-dependent Hamiltonian such as Floquet 

Hamiltonian98 for a better understanding of the sidebands and linewidth narrowing.  
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CHAPTER V 

NV DIAMOND ESR AND IONIZATION FRACTION VS ELECTRON 

IRRADIATION DOSE 

 

5.1 Introduction 

The nitrogen-vacancy (NV) center in diamond has been explored recently for 

many applications including quantum information, magnetic sensors and subwavelength 

imaging. Much of the NV utility is due to its optically detectable ground-state electron 

spin resonance. To achieve the best performance, a high concentration of NV centers is 

desired22. This is done by either implanting nitrogen into pure diamond or by creating 

vacancies in nitrogen-rich diamond, followed by annealing to produce the NVs. 

Substitutional nitrogen atoms (N) that do not form NVs are a source of spin dephasing, 

and so it is important to maximize the conversion of N to NV.  One way to achieve this 

is with high-dose electron irradiation. To first order, the fraction of N converted to NV is 

linear in irradiation dose. However at very high doses, so much damage can accumulate 

that the diamond is converted to graphite. In this paper we show that even well below the 

graphitization threshold, the irradiation damage can have a pronounced effect on the 

properties of the NV. 

 Diamond can be damaged using a number of irradiating species including 

electron, neutron, proton and ion beams. Koike et al reported on the displacement 

threshold energy, dT , of type IIa natural diamond using TEM for three principal 

crystallographic directions, [100], [110], and [111]. It was found that dT  was 37-48eV 
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and the minimum electron incident energy needs to be 180-220 keV in order to form 

displacement-related defect clusters 99 . Steeds and his co-workers demonstrated the 

creation of self-interstitials, a carbon-carbon pair along [100], using a 300 keV 

TEM100,101. Campbell and Mainwood predicted the radiation damage of diamond caused 

by both electron and Gamma irradiation. According to their calculations, for 250 keV 

electrons the maximum penetration depth is ~375 μm and the number of vacancies per 

micrometer depth is 0.74 (vacancies/electrons/cm)102. Recently, Acosta et al reported 

proton and electron irradiation on diamond, comparing the converted NV– and NV0 

concentrations for optical magnetometer applications85.

  

5.2 Materials and the Method: TEM Irradiation  

We use TEM irradiation of the [100] orientation of nitrogen-rich type Ib bulk 

diamond. After irradiation the vacancies are made mobile by annealing at approximately 

700 C. These vacancies are attracted to a substitutional nitrogen center, NS
0, to form a 

NV as follows39,103: 

 
0 0 0

S

0 0
S S

N  V  NV and 

NV  N  NV  N 

 

  
 (29) 
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(a) 

(b) 

Figure 35. (a) The NV defect center is oriented to the [111] direction in the schematic 
diagram of the diamond lattice. (b) Typical spectrum for the NV center. The spectrum 
was taken for the (100) type-Ib diamond with the optical power of Pop=1.98 mW.  

 
 
The second reaction assumes that a second nitrogen center serves as an electron donor to 

enhance the fraction of negatively charged NV centers. Here the [100] orientation is 
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atoms compared to the other orientations at room temperature, and this allows us to use 

our 200 keV TEM.  

It is now widely accepted that there are six electrons associated with the NV- 

center40, three from the dangling carbon bonds, two from the nitrogen, and one from the 

donor. Unlike most color centers, the ground state is an electron spin triplet, S = 1, and 

thus the NV- center is a paramagnetic impurity. Figure 35 shows a physical view of the 

NV defect center in diamond and the typical fluorescence emission spectrum. In type-Ib 

diamond, most of the nitrogen exists in the form of a single substitutional nitrogen which 

serves as an electron donor104,105. For this reason, electron irradiation experiments on a 

type Ib diamond normally produce the negatively charged NV–.106 

 The diamond used in this experiment was a type-Ib HPHT single-crystal plate 

grown at Element Six with an initial nitrogen concentration of 40-70ppm. The irradiation 

was done using a 200kV TEM (JEOL JEM-2010) which is over the minimum incident 

electron energy to form the defect clusters reported by Koike et al. A wide range of 

irradiation doses were studied ranging from 1.28×1018 to 6.39×1021e-/cm2. Each 

irradiated spot is produced by focusing the electron beam to a diameter of a few microns 

and exposing it for different time durations to vary the electron dose. After the 

irradiation, annealing at 700°C is done both to create NVs and to heal the irradiation 

damage of the diamond.  

 The optical test setup is based on scanning confocal microscopy. A 532 nm 

Nd:YAG laser illuminates the diamond sample through a long working distance 

objective with numerical aperture of 0.8 and magnification of 60x. The scanned images 
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before and after the annealing process are shown in Figure 36 where the absolute count 

rate is reproducible within factor of 2 between runs. Prior to the annealing, the high dose 

spots give visible fluorescence but the low dose spots are not detected [Figure 36(a)]. 

After the annealing a large increase in the APD count rate is seen shown in Figure 36(b) 

to (e) and Figure 37. 

 

5.3 Results 

 Spectrum 

The emission spectrum from each of the irradiated spots was measured before 

and after annealing, and at different depths. For reference, the spectrum of the 

unirradiated diamond surface is shown in Figure 37(a). Before the annealing, the 

emission spectrum from the highest dose region gives a broad featureless spectrum in 

this spectral region, as seen in Figure 37(b), but after annealing the fluorescence 

intensity shows a drastic increase as seen in Figure 37(c) and Figure 38, for multiple 

irradiation doses. At low doses, the spectra show that NV– is the dominant defect even at 

this low electron voltage as reported by Uedono et al for type-Ib diamond. As the dosage 

increases, the NV0 fraction rises and a new peak at 639 nm appears, which obscures the 

zero phonon line of NV- at 638 nm.  
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(a)  

(b) (c) 

(d) (e) 
Figure 36. (a) The TEM irradiated spots appear before the anneal. The highest dose is 
located on the rightmost hand side and the dose goes down to the left side. The 
fluorescence image is measured with no optical attenuator and the low dose spots are not 
detected since their fluorescence is not high enough compared to the background. The 
process of annealing removes the irradiation damage to the lattice structure and results in 
a huge difference in the fluorescence of the NVs. (b), (c), (d) and (e) are the scanned 
fluorescence images using the APD for twelve different doses, where (b) and (d) are 
lower six doses and (c) and (e) are higher ones.  

25μm

25μm 25μm
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(a) (b) 

(c) 

Figure 37. The spectra are measured (a) on the unirradiated area and (b) on the irradiated 
spot for the highest dose before the annealing  and show a very weak intensity in the 
spectral range for the fluorescence. (c) The spectrum for each dose is obtained at the 
same optical power and integration time. As the dosage increases, it is observed that the 
NV0 and NV– peaks also rise. (d) For the high dose, the spectra measured at different 
focal point below the diamond surface displays the TEM irradiation depth profile. The 
maximum intensity for the third highest dose is ~2 μm below the surface and the 
irradiation extends penetration down below 18 μm. 
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(d) 

Figure 37 Continued 
 
 
 

Figure 38. The fluorescence count rate of the APD before and after anneal is shown on 
the log scale, where an optical attenuator (0.5% transmission) is used to protect the APD 
for the count rate after anneal. The count rate after anneal shows a saturation as the 
dosage goes up. 
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Spectra recorded at various depths below the surface [Figure 37(d) and 39(b)]107 

show NV0 and NV– features down to 2–4 μm below the surface, where the resolution in 

this direction is estimated at 1 μm. 

To estimate NV concentration, the zero phonon peaks at ~575 nm and at ~638 

nm are fit to a Gaussian function. The result is shown in Figure 39. Here, the NV0 and 

NV– concentrations saturate at around 1×1021 –1×1022e-/cm2·s, where NV– saturates 

earlier. The NV–
 concentration still appears to rise at the highest dose but this is actually 

due to the unidentified peak at 639 nm [see Table 2 and c  in Figure 39(a)]. The 

apparent ratio of NV0 to NV– is found to be maximized at 2.55×1021e-/cm2·s. 

At high enough dose, ion irradiation can transform the diamond structure to 

graphite,108 as evidenced by the broadband fluorescence which appears before annealing 

at the highest doses. The transformation proceeds in proportion to the dose and 

eventually the characteristics of diamond are lost. The saturation of the NV conversion 

happens as the graphitization threshold is approached.  
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(a) 

(b) 

 
Figure 39. (a) The NV– and NV0 concentrations over 632–643 nm and 572–530 nm 
ranges respectively can be calculated using the spectrum from the NV– concentration 
already known. The concentration curves will be the same as ones for A×B in Table 2 
except the constant conversion factor is applied. (b) The NV– and NV0 concentrations 
are depicted as the depth varies. 
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Table 2. The NV– and NV0 peaks are characterized to obtain the center wavelength, 
FWHM and height.  

NV–  NV0 

Dose  λc  FWHM (A) Height (B) AxB  Concen. λc  FWHM (A) Height (B)  AxB  Concen.

[e‐/cm2]  [nm]  [nm]  A.U.  [ppm]  [nm]  [nm]  A.U.  [ppm] 

1.28E+18 638.17  3.66  35.09  128.45 0.06  ‒ ‒ ‒  ‒  ‒

2.55E+18 638.51  4.03  47.27  190.41 0.10  ‒ ‒ ‒  ‒  ‒

6.39E+18 638.50  4.01  56.20  225.20 0.11  ‒ ‒ ‒  ‒  ‒

1.28E+19 638.49  4.16  82.19  342.31 0.17  575.84 4.23  8.94  37.79  0.02 

2.55E+19 638.42  3.85  140.26  539.92 0.27  576.25 2.38  17.34  41.23  0.02 

6.39E+19 638.48  3.92  200.27  784.07 0.39  576.24 2.70  36.90  99.50  0.05 

1.28E+20 638.52  4.13  259.44  1071.12 0.54  576.37 2.90  34.24  99.24  0.05 

2.55E+20 638.63  3.77  326.21  1228.32 0.62  576.14 2.72  76.99  209.58  0.11 

6.39E+20 638.85  4.52  483.23  2183.36 1.10  576.16 2.65  181.37  480.19  0.24 

1.28E+21 638.99  4.16  609.59  2534.38 1.27  576.17 2.66  335.97  894.00  0.45 

2.55E+21 638.95  3.93  571.26  2242.67 1.13  576.17 2.66  470.40  1250.99  0.63 

6.39E+21 639.40  3.98  1009.99  4021.66 2.02  576.16 2.63  508.49  1338.63  0.67 
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 Electron Paramagnetic Resonance Shift 

The electron spin transition frequency of the NV– center is given by a 

Hamiltonian typical for a system with two unpaired electrons in C3v symmetry:  

 T T
eH g    B S S D S  (30) 

When the magnetic field ( zB ) is applied along the quantization axis of the electron spin, 

zS , this Hamiltonian has eigenfunctions: 1 , 0  and 1  of zS . If 0zB  , there are 

three states, one of energy 2
0 3E D   and the other two of energy 1

1 3E D   where the 

zero-field splitting tensor 2.87D  GHz31,109 [Figure 40(a)]. In order to identify the NV–  

center in diamond, ESR measurements were performed. The copper wire was placed 

very closed to the irradiated area as shown in Figure 40(b) and the microwave signal was 

frequency swept. In Figure 40(c), the ESR measurements are depicted for the different 

doses and show a blue shift in the resonance frequency. As the dose goes up, the ESR 

frequency increases from 2.87 GHz by an amount up to 18 MHz or 0.7%, as shown in 

Figure 40(d) and the linewidth broadens up to 22.3% (Table 3) and finally disappears at 

a dose 6.39×1020e-/cm2·s.   

Since the ESR linewidth broadening was reported during diamond to graphite 

conversion110,111, the ESR shift may come from a change in lattice constant. The loss of 

ESR is expected to happen as the diamond is graphitized.  
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(a) (b) 

(c) 

Figure 40. (a) The energy level diagram for the NV– shows 2.87 GHz for the electron 
resonance frequency. The Zeeman splitting of the NV center is exaggerated for the 
purpose of the illustration. (b) The wire is located very close to the irradiated spots to 
apply the microwave signals and is parallel to the series of irradiated spots. (c) The CW 
ESR measurements are obtained using the same microwave power, Pmw = 25 dBm. The 
electron spin resonance frequency for the NV center increases as the dosage gets higher 
and eventually the resonance disappears. (d) The electron spin resonance frequency 
shifts up as the dose increases. This shift can be explained by the distortion in the 
diamond lattice structure caused by the electron irradiation.  
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Figure 40 Continued 
 
 
 
Table 3. The characterized data for the CW ESR are obtained from each measurement in 
Figure 40(c).  

CW ESR 

Dose fc  FWHM  Height 

[e-/cm2] [MHz]  [MHz]  [cnts/s] 

1.28E+18 2871.10  14.59  ‐42230.34

2.55E+18 2871.57  14.94  ‐54321.82

6.39E+18 2872.29  15.09  ‐77953.39

1.28E+19 2874.02  16.04  ‐106075.99

2.55E+19 2878.72  15.20  ‐140101.96

6.39E+19 2883.60  17.55  ‐137190.15

1.28E+20 2888.12  16.73  ‐116490.71

2.55E+20 2890.49  17.13  ‐100723.33

6.39E+20 2899.46  18.77  ‐66529.47

1.28E+21 ‒  ‒  ‒

2.55E+21 ‒  ‒  ‒

6.39E+21 ‒  ‒  ‒
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5.4 Conclusion 

After irradiation and annealing at 700°C, the NV0 and NV– concentrations in the 

type-Ib diamond are estimated from the photo-emission spectra for the varying 

irradiation doses. At doses of 1.02×1020e-/cm2·s for NV– and 6.27×1020e-/cm2·s for NV0 

the concentrations saturate. The irradiation also causes the NV- ESR frequency to upshift 

by 18 MHz, possibly due to diamond lattice swelling. Eventually graphitization of the 

diamond causes the loss of the ESR signal.  

 Irradiation temperature is one of factors to control the irradiation damage for 

diamond. Steeds et al performed their experiments at low temperature and showed the 

temperature dependency of the defect centers. Since the high temperature ion 

implantation can avoid graphitization112, this should be pursued to determine the effect 

on NV–  and NV0 conversion efficiency as well as NV– ESR properties. 
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CHAPTER VI 

CONCLUSION 

 

6.1 Summary and Future Work 

Three different applications using the CW and pulsed ESR spectroscopy 

techniques were performed. For the 2D imaging, the Rabi oscillations were measured to 

resolve the double NVs using two pairs of gold wires. The metal structure was fabricated 

directly on the diamond surface with the microfabrication technology. The 2D imaging 

covers the limitation of 1D imaging and provides spatial resolution for the irresolvable 

NVs. In order to improve the 2D imaging, a better magnetic field modeling may be 

needed to anticipate the field orientation and intensity with more accuracy. Using a 

smaller metal structure and a pure diamond with less impurities, the spatial resolution 

will be improved down to a few nm.  

 The rotating field was used to suppress the electron spin linewidth broadening 

caused by the dipole-dipole coupling between the electron spin of the NV center and the 

nitrogen electron spin. The 50% line width narrowing was observed and subsequently 

the 30% improvement of the sensitivity was achieved. The rotating field needs to be 

improved in the intensity and shape. By removing the central two wires, the field may be 

more axially symmetric and the distance between the center to the wires will be also 

reduced. Using the higher field intensity, the electron spin linewidth narrowing can be 

obtained hopefully down to the 13C limit. 
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 The electron irradiation on the type Ib bulk diamond was studied using the wide 

range of the electron dose with TEM. The NV– and NV0 concentrations were 

characterized and their saturation was observed along with the NV0 fraction obtained up 

to ~55%. Using the CW ESR experiments, the ESR resonance frequency shift was found 

by 18 MHz. The spectral dependence on the temperature was reported, thus, the 

conversion efficiency from the substitutional nitrogen to the NV center can be improved 

using the heating stage during the electron irradiation. The ESR resonance frequency can 

be prevented using the heating to avoid the graphitization at the high doses.  
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APPENDIX A 

THEORETICAL BACKGROUND OF ELECTRON PARAMAGNETIC 

RESONANCE† 

 

A.1 Angular Momentum 

The Hamiltonian operator for the total energy, H , is expressed by 

 i i iH E     (31) 

where i  is the energy eigenfunction for a particular system and iE  is the exact total 

energy for the i th state of the system. The energy for a given Hamiltonian is obtained 

from multiplying both sides by *
i   and integrating in the complete range of the spatial 

variables. Assuming  i  is expressed as the linear combination of the orthogonal set of

i ’s, the Hamiltonian matrix (also called the energy matrix) is constructed as 

____________ 
† This review covers the brief summary of fundamental theory and topics on the electron 
paramagnetic resonance which could be found in many books of this subject as listed 
below: 
B. C. Gilbert, M. J. Davies, and D. M. Murphy (Eds.), Electron Paramagnetic 
Resonance Vol. 20 (The Royal Society of Chemistry, Cambridge, UK, 2007); F. Gerson 
and W. Huber, Electron Spin Resonance Spectroscopy of Organic Radicals (Wiley, 
Darmstadt, Germany, 2003); J. A. Weil and J. R. Bolton, Electron Paramagnetic 
Resonance, 2nd Ed. (Wiley, New York, 2007); L. J. Berliner, G. R. Eaton, and S. S. 
Eaton (Eds.), Distance Measurements in Biological Systems by EPR (Kluwer, New York, 
2002); M. A. Hemminga and L. J. Berliner (Eds.), ESR Spectroscopy in Membrane 
Biophysics (Springer, New York,  2007); M. Brustolon and E. Giamello (Eds.), Electron 
Paramagnetic Resonance: A Practitioner's Toolkit (John Wiley & Sons, Hoboken, NJ, 
2009); P. Blumler, B. Blumich, R. Botto, and E. Fukushima (Eds.), Spatially Resolved 
Magnetic Resonance (Wiley-VCH, Weinheim, Germany, 1998); Philip Rieger, Electron 
Spin Resonance: Analysis and Interpretation (RSC Publishing, Cambridge, UK, 2007); 
W. R. Hagen, Biomolecular EPR Spectroscopy (CRC Press, Boca Raton, FL, 2009). 



85 
 

 
11 1

1

n

n nn
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  


  


 (32) 

where  ij j ia H  . 

When the square of the total angular momentum, 2 TJ  J J , is applied to i , it 

can produce the constant of motion, i , as given below: 

 2
i i iJ    (33) 

where the eigenvalue i  is given in the unit of 2 . When J  represents the orbital 

angular momentum, i  is found to be a function of the quantum number j , which is an 

integer. For the spin angular momentum, the quantum number j  is a half-integer. For an 

integer or half-integer j, the allowed m-values are given by 

 , 1, , 1,m j j j j      (34) 

and there exist the complete orthogonal set of 2 1j   states associated with the values m . 

Considering ,i j m  , 2J  and zJ  which can be diagonalized with 2J  are expressed 

with the eigenvalue and eigenstate as1 

 
2 , ( 1) ,

, ,z

j m j j j m

J j m m j m

 



J
 (35) 

 The ladder operator J  and J  are defined by the linear combination of xJ  and 

yJ : 

 
x y

x y

J J iJ

J J iJ





 

 
 (36) 
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By convention, J  and J  are written as 

 
, ( 1) ( 1) , 1 ( )( 1) , 1

, ( 1) ( 1) , 1 ( )( 1) , 1

J j m j j m m j m j m j m j m

J j m j j m m j m j m j m j m





        

         
 (37) 

When there exist two angular momentums, the total angular momentum is given 

by 

 1 2 J J J  (38) 

where 1J  and 2J  are the angular momentum operators for two particles. Since 1J  and 2J  

commute, 1 2
TJ J   is obtained by 

 2 2 21
1 2 1 22 ( )T   J J J J J  (39) 

 

A.2 Magnetic Dipole Moment  

The magnetic dipole moment,  , is one of very important quantities in the 

magnetic resonance. The magnetic moment is proportional to the angular momentum of 

the magnetic species like nuclei and electrons and is given by   

 g   μ J J  (40) 

Here, the factor   is 1 , the dimensionless g factor is the Zeeman splitting constant for 

the each species,   is the same dimensioned factor as μ  called the magnetron,   is the 

gyromagnetic ratio and J  is the dimensionless angular momentum vector.    

For electrons, 1e   , the free-electron Zeeman factor is2  

 2.0023,eg   (41) 

the Bohr magnetron  is 
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 249.2740 10 J/T
2e

e

e

m
   


 (42) 

where  e  is the electron charge and em  is the mass of the electron, and J  is the electron 

spin operator S . In general, the electron Zeeman factor, g  for the electrons interacting 

with other particles is not equal to eg . The gyromagnetic ratio of the free electron is  

 11 1 1/ 1.7609 10 s Te e eg         (43) 

For nuclei, 1n   , the nuclear magnetron is 

 275.0508 10 J/T
2n

p

e

m
   


 (44) 

where pm  is the mass of the proton, and J  is the nuclear spin operator I . The nuclear g 

factor ng  is different for each nucleus and the nuclear gyromagnetic ration is given by 

 /n ng    (45) 

 The energy of a magnetic dipole moment μ  in a field B [Figure 41] is defined by 

 T T cos zE B B          μ B = B μ  (46) 

where   is the angle between the magnetic field and the magnetic dipole moment. 

 

 
Figure 41. Energy of a magnetic dipole in an external magnetic field B. 

z

B μ



z
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A.3 Spin Hamiltonian 

Electron and Nuclear Zeeman Splitting 

The interaction of an electron or a nucleus with a static magnetic field (|| )B z is 

expressed in   

 T
zH B    B μ  (47) 

Considering ez e zg S    and nz n n zg I   from A.2, Equation 47 becomes the 

electron and nuclear spin Hamiltonians defined by 

 e e zH g BS  (48) 

 n n n zH g BI   (49) 

and it shows that electron and nuclear Zeeman interactions have opposite sign. For the 

simplest system with a single electron spin 1
2S   or with a nuclear spin 1

2I  placed in a 

magnetic field, the spin Hamiltonians can be expressed equivalently in Dirac notation by 

 1 1 1
2 2 2e ee e

H g B     (50) 

 1 1 1
2 2 2n n nn n

H g B    (51) 

where 1
2 e

  and 1
2 n

  are the corresponding eigenfunctions of the possible electron 

and nuclear spin quantum numbers, 1
2Sm    and 1

2Im   . Thus, the Zeeman energies 

1
2

eE 
 and 1

2
nE 

 for 1
2Sm    and 1

2Im    are obtained by [ see Figure 42] 

 1
2

1 1 1
2 2 2e ee

E H g B       (52) 

 1
2

1 1 1
2 2 2n n nn

E H g B       (53) 

The energy differences between two levels 
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 1 1
2 2

e e e e e eE E E g B h        (54) 

 11
22

n n n n n nE E E g B h 
      (55) 

correspond to the electronic and nuclear transitions induced by an electromagnetic field 

matching the photon energies, h . 

 

 
Figure 42. Energy levels of an electron in a magnetic field for a S=1/2 system. 
 
 
 
Hyperfine Interaction 

The unpaired electron interacting with neighboring nuclear dipole moments 

causes the splitting of the resonance called nuclear hyperfine interaction. The hyperfine 

interaction can be isotropic or anisotropic according to the dependency on the orientation 

of the magnetic field with respect to the molecular axis. In the absence of anisotropy, the 

hyperfine coupling is expressed by 

 
0

T
0AH A S I  (56) 

where the isotropic hyperfine coupling constant 0A  is 
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20

0

2
(0)

3 e nA g
     (57) 

and 2
(0)  is the probability of finding the electron at the nuclear point3. 

The spin Hamiltonian for the system with one unpaired electron and one nucleus 

with 1
2I   is expressed by the sum of the electron and nuclear spin Hamiltonians and the 

hyperfine interaction:  

 T T T
0e n nH g g A      B S B I S I  (58) 

If the magnetic field is taken along z, the spin Hamiltonian becomes 

 
0

1
0 2

( )

[ ( )]

e z n n z z z x x y y

e z n n z z z

H g BS g BI A S I S I S I

g BS g BI A S I S I S I

 

     

    

    
 (59) 

where x yS S iS    and x yS S iS   . 

For the system with 1
2S   and 1

2I  , there exist four spin states represented in 

,S Im m  which are 1 1
2 2,  , 1 1

2 2,  , 1 1
2 2,  , and 1 1

2 2,  . The energy of each 

state is computed using the spin Hamiltonian H4567: 

 1 1
2 2

1 1 1 1 1 1 1
1 02 2 2 2 2 2 4,

, , e n nE E H g B g B A               (60) 

 1 1
2 2

1 1 1 1 1 1 1
2 02 2 2 2 2 2 4,

, , e n nE E H g B g B A               (61) 

 1 1
2 2

1 1 1 1 1 1 1
4 02 2 2 2 2 2 4,

, , e n nE E H g B g B A               (62) 

 1 1
2 2

1 1 1 1 1 1 1
3 02 2 2 2 2 2 4,

, , e n nE E H g B g B A               (63) 
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If the magnetic field is large enough, the energies become simplified to the first order 

energies with ‘ ’ terms ignored under the condition of high field approximation, i.e., 

0eg B A  . 

The energy levels are illustrated in Figure 43 and the arrows indicate two 

transitions subject to the angular momentum selection rules 1Sm    and 0Im  . The 

allowed transition energies are 

 1 1 1 1
2 2 2 2

1
1 02, , eh E E g B A          (64) 

 1 1 1 1
2 2 2 2

1
2 02, , eh E E g B A          (65) 

The hyperfine interacting gives the splitting to each electron Zeeman spin level. Then, 

the nuclear Zeeman interaction leads to the hyperfine level shift but it has no effect on 

the energy difference between the levels. 

 

Figure 43. The energy level diagram for a system of electron spin S=1/2 and nuclear spin 
I=1/2. The red color represents the electron spin components of S=1/2 along the 
magnetic field while the blue color represents the nuclear spin components. 
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Spin Hamiltonian for Two Electrons 

For the system with two unpaired electrons, the system energy separates into a 

singlet and a triplet states resulting from the coulombic repulsion called electron 

exchange interaction. The electron exchange interaction can be expressed by   

 2 1 2
,

J ij i j
i j

H J S S    1S J S  (66) 

where , , ,i j x y z , ijJ  is the exchange coupling constant and 1S  and 2S  are electron 

spins for electrons 1 and 28,9,10. The singlet and triplet states are (in the notation of 

, SS m ) 

 1 1 1 1 1
2 2 2 22

0, 0 ( , , ) for singlet, 0S      (67) 

and 

 

1 1
2 2

1 11 1 1
2 2 2 22

1 1
2 2

1, 1 ,

,1,0 ( , ) for triplet, 1

1, 1 ,

S

 

   

   

 (68) 

If the singlet-triplet splitting is large ( bk T ) and the triplet state is lower in energy than 

the singlet, the triplet state ( 1S  ) is populated and the exchange interaction can be 

safely ignored with the triplet focused on11. 

Another interaction for the two unpaired electrons called the dipole-dipole 

interaction causes the zero-field splitting to the triplet state in the zero magnetic field. In 

analogy to the electron nuclear dipole-dipole interaction, the electron-electron dipole 

interaction is expressed by 



93 
 

 

T T T
0

3 5

T T T
20

1 2 3 5

3( )
( )

4

3( )

4

D

e

H
r r

g g
r r




 


   
  

 
   

  
 

1 2 1 2

1 2 1 2

μ μ μ r)(μ r
r

S S S r)(S r
 (69) 

where  1μ  and 2μ  are the magnetic dipole moments for electrons 1 and 2, r  is the vector 

from electron 1 and electron2, 1g  and 2g  are electron g factors and 1S  and 2S  are 

electron spin operators. By expanding in a three dimensional space, summarizing and 

integrating over the electron spatial distribution, Equation 69 can be written in the matrix 

form as: 

 

2 2

5 5 5

2 2
20

5 5

2 2

5

3 3 3

3 3
( ) ( )

8

3

x

D e x y z y

z

r x xy xz

r r r
S

r y yz
H g S S S S

r r
S

r z

r

 


   
 
                  

 
  

r  (70) 

where the bracket implies averaging over the spatial variables. 

Equation 70 can be simplified to the spin Hamiltonian 

 1 2( ) 2T T
DH      r S D S S D S  (71) 

where the factor of 2 is due to the interchange of spins 1S  and 2S . It is noted that the 

same spin Hamiltonian term can arises from the electron spin-obit interaction12. Once D  

is diagonalized to dD , the dipolar interaction can be written by   

 2 2 2
D x x y y z zH D S D S D S    (72) 
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where xD , yD , and zD  are diagonal elements of dD  in the principal-axis system with 

zD  taken to be the principal value of the largest absolute magnitude and 

( ) 0x y ztr D D D   D   from Equation 70.  

The effective spin Hamiltonian for two unpaired electrons is obtained by 

 
2 2 2( )

T T
e

e x x y y z z x x y y z z

H g

g B S B S B S D S D S D S





    

     

B S S D S
 (73) 

Equation 73 can be written with two elements of zero-field tensor, 3
2 zD D  and 

1
2 ( )x yE D D  , as 

 2 2 21
3( ) [ ( 1)] ( )e x x y y z z z x yH g B S B S B S D S S S E S S         (74) 

where 2 2 2 2
x y zS S S S    and the eigenvalue of 2S  is ( 1)S S  . 

The orthogonal basis set for 1S   is 

 { 1 , 0 , 1 }i     (75) 

and each spin operator is 

 

1 1 1

0 0 0

1 1 1

z

z

z

S

S

S

  



   

 (76) 

 

2

2

2

1 1 11 1

0 0 0 00

1 1 11 1

z z

z z

z z

SS

SS

SS

   



    

 (77) 

 
0 1(1 1) 0(0 1) 21 1

1 1(1 1) ( 1)( 1 1) 20 0

S

S





     

       
 (78) 
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1 1(1 1) 1(1 1) 20 0

0 1(1 1) 0(0 1) 21 1

S

S





     

     
 (79) 

 2 1 2 0 2 1S S      (80)  

 2 1 2 0 2 1S S      (81) 

 

1 (1/ 2) 1 2 / 2 0

0 (1/ 2) 0 (1/ 2) 0 2 / 2 1 2 / 2 1

1 (1/ 2) 1 2 / 2 0

x

x

x

S S

S S S

S S



 



   

     

   

 (82) 

 

1 ( / 2) 1 2 / 2 0

0 ( / 2) 0 ( / 2) 0 2 / 2 1 2 / 2 1

1 ( / 2) 1 2 / 2 0

y

y

y

S i S i

S i S i S i i

S i S i



 



   

       

     

 (83) 

 

2

2

2

1 2 / 2 0 1/ 2 1 1/ 2 1

0 2 / 2 1 2 / 2 1 0

1 2 / 2 0 1/ 2 1 1/ 2 1

x x

x x x

x x

S S

S S S

S S

     

    

     

 (84) 

 

2

2

2

1 ( 2 / 2) 0 1/ 2 1 1/ 2 1

0 2 / 2 1 2 / 2 1 0

1 ( 2 / 2) 0 1/ 2 1 1/ 2 1

y y

y y y

y y

S i S

S i S i S

S i S

     

     

       

 (85) 

 

2 2

2 2

2 2

1 1( )

( ) 0 0 0

( ) 1 1

x y

x y

x y

S S

S S

S S

  

 

   

 (86) 

and  

 2 21 2
3 3[ ( 1)] ( ) for 1z S z SD S S S m D S m S      (87) 
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If the quantization axis of the electron spin, zS , is taken along the principal axis, Z , the 

Hamiltonian matrix can be written in the basis set of 1 , 0  and 1  of zS  as   

 

11 ( )
3 2

1 2 1
0 ( ) ( )

32 2
1

( )1 32

e z e x y

e x y e x y

e x y e z

D
g B g B iB E

H g B iB D g B iB

D
E g B iB g B

 

 

 

  

   

  

 (88) 

If the magnetic field B  is taken along the Z  axis, the determinant H I  is computed 

with the simplified matrix 

 

1 0
3

2
0 0 0

3

01 3

e z

e z

D
g B E

H I D

D
E g B

 

 

 

  

   

  

 (89) 

since 0x yB B   and 0x y zD D D   . Expansion of H I  yields      

 2 22 1
3 3and ( )eD D E g B      (90) 

and the energies can be expressed by  

 
2
3

2 21
, 3 ( )

z

x y e z

E D

E D E g B

 

  
 (91) 

 If 0zB  , the zero field energies are obtained by 

 
2
3

1
, 3

z

x y

E D

E D E

 

 
 (92) 
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The energies for three states are depicted in Figure 44 for ||B z , 0E  , and 0D  . The 

system with uniaxial symmetry, there exist two degenerate states since 0E  .  

(a) (b) 
Figure 44. The triplet state energies as a function of magnetic field (B||z) for D˃0and (a) 
E≠0 or (b) E=0.  
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APPENDIX B 

FUNDAMENTAL CONSTANTS AND CONVERSION FACTORS 

 

Table 4. Physical constants used in the magnetic resonance6,13,14,15. 

Planck’s constant 
346.6261 10 Jsh    

34/ 2 1.0546 10 Jsh      
Speed of light in the vacuum 

82.9979 10 m/sc    
Permeability of the vacuum 

7 2 2 1 2 1 3
0 4 10 JC s m ( T J m )         

Permittivity of the vacuum 
2 12 1 2 1

0 01/ ( ) 8.8542 10 J C mc        

Electron charge 
191.6022 10 Ce    

Electron mass 
319.1094 10 kgem    

Proton mass 
271.6726 10 kgpm    

Bohr magnetron 
249.2740 10 J/T

2e
e

e

m
   


 

Nuclear magnetron 
275.0508 10 J/T

2n
p

e

m
   


 

Free-electron g factor 
2.0023eg   

Free-electron gyromagnetic ratio 
11 1 1/ 1.7609 10 s Te e eg         

Nuclear gyromagnetic ratio for a proton ( 5.5854ng  ) 
7 1 1/ 4.2575 10 s Tn n ng       
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Table 4 Continued  

Larmor frequency 

0

0

rad/s

= Hz
2

B

B

 



 


 

*The positive and negative Larmor frequencies indicate the anticlockwise and clockwise 
processions, respectively. 
 
 
 
Table 5. Useful conversion factors6,13. 

Magnetic field B (mT) to electron resonant frequency e  (MHz) 

(MHz) 28.0250 (mT)e e
e

e e

g B g g
B

h g g

    

Magnetic field B  (mT) to nuclear resonant frequency n  (MHz) for a proton 

( 5.5854ng  ) 

(MHz) 0.04258 (mT)n n
n

g B
B

h

    

Calculation of electron g-factor 
(MHz)

0.0714
(mT)

e e

e

h
g

B B

 


   

 
 
 
Table 6. Characteristics of selected atoms6,13,16.  

Element 

Natural 
Abundance 

(%) Spin I  ng  

Gyromagnetic Ratio 
6/ (2 10 )  

1 1[MHz s T ]    
1H 99.985 1

2  5.5857 42.576 

13C 1.07 1
2  1.4048 10.705 

14N 99.632 1 0.4038 3.0766 
15N 0.368 1

2  -0.5664 -4.3156 

 
  



100 
 

APPENDIX C 

OPTICAL SETUP FOR THE CONFOCAL MICROSCOPY 

 

The experimental setup is based on a home-made scanning confocal microscopy 

as shown in Figure 45. A 532 nm CW frequency doubled Nd:YAG laser passes through 

an acousto-optic modulator and illuminates a diamond sample through a long working 

distance air objective with the aperture of 0.8 and magnification of 60 or a high 

numerical aperture (1.4) oil immersion objective of magnification 100.  

A 2D galvanometer mirrors are used to scan the x-y image of the sample and a 

fine z-scan is achieved by a piezo objective mount to adjust the vertical position of the 

depth of focus within the diamond. The fluorescence light is collected with the same 

microscope objective, and focused into a multi-mode optical fiber. Spatial filtering is 

achieved by focusing on a 50 m  pinhole. To suppress the coupling of the green laser 

light into the fluorescence detection setup, a combination of a dichroic filter and a color 

filter were used. The fluorescence light from the single NV center is analyzed either by a 

Hanbury-Brown and Twiss setup or a spectrometer. It is finally detected by the single 

photon counting module (SPCM, PerkinElmer) using  silicon avalanche photodiodes 

(APDs). As each incoming photon is detected, the APD generates a 35 ns wide TTL 

pulse, which is transmitted to the ultrafast multiple-event time digitizer for photon 

counting (P7888, FAST ComTec). 

The Figure 46 shows the images of the NV centers between metal structures 

using the 250–300 nm of laser waist in the diamond. For the 12C diamond, the NV 
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centers were created by 15N2 irradiation using the 200 keV energy at a dose of 109 

electrons/cm2. The diamond was annealed in vacuum at 700°C for 1.5 hours. 

 

Figure 45. The schematic diagram plots the optical setup for shining the green laser on 
the sample and collecting the fluorescence emission into the photon counters. 
 
 
 

(a) (b) 
Figure 46. The scanned fluorescence images of (a) the natural NV centers on the type Ib 
diamond and (b) the generated NV centers on the 12C diamond. 
 
 
 

The nanodiamond [see Figure 47] is a very useful source in creating the 

fluorescence emission.   In order to generate the NV centers, the nanodiamonds are 

irradiated with electron or ion beams. They can be a promising tool in life science as a 

nanoprobe17 and in the sensor industry requiring an electromagnetic field detector with 

DichroicObjective
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x z

y
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X-y 
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t2
Correlator
t1

SPCM

SPCM
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the high sensitivity 18 . Recently researchers discovered a new route to produce the 

homogenous nanodiamonds with high yield19. 

 

Figure 47. The TEM image of NV nanodiamond with the JEOL 2010 TEM at the 400 K 
magnification and 200 keV electron energy. 
 
 
 

The time distribution of the emitted photons is characterized by the second order 

fluorescence autocorrelation function, which measures the joint probability of detecting 

the arrival of a photon at time t and another photon at time t + 20. The normalized 

second order correlation function (2) ( )g   is defined as: 2(2) ( ) ( ) ( ) / ( )g I t I t I t  

where ( )I t  is the fluorescence intensity at time t. When observing a single photon 

emitter, the correlation function shows a dip at zero time delay, 0  , indicating that 

after a photon has been emitted, the system must be reexcited before a second photon 

can be emitted21,22,23. This phenomenon is referred to as antibunching. Since the TCSPC 

card has a dead time of 125 ns, it is necessary to apply an electronic delay longer than 

the TCSPC dead time to one of the two SPCM signals such that two fluorescence 

photons generated by the same laser pulse can both be detected24. If all emission is in the 

5nm
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form of single photons and is well separated in time, then (2) ( ) 0g   . Experimentally, 

the probability of exciting biexcitons cannot be reduced to zero. In a loss free 

measurement, if two independent but indistinguishable excited single photon emitters are 

present, it is found that (2) ( ) 1/ 2g   . If the photons are emitted one at a time by a single 

quantum system, then the value of (2) ( )g  is expected to lie between zero and 1/225,26,27. 
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APPENDIX D 

HARDWARE FOR THE CW AND PULSED ESR 

 

Conventional ESR/NMR employed magnetic resonance hardware involved in the 

readout scheme. The readout of the confocal microscopy experiments is completely 

optical and the magnetic resonance circuit is adapted in order to meet the requirements 

of the experimental approach. The microfabricated circuit is used for microwave signal 

transmission to manipulate the spin states of the NV center in diamond.  

As shown in Figure 48, The microwave (mw) signal is generated by PTS 3200 

and is amplified by a high power RF amp (Mini-Circuits). The mw signal generator is 

set to operate in triggered mode in order to synchronize the data acquisition (DAQ) card. 

For the pulsed experiments, the advanced pulse sequence is generated from a 

programmable pulse generator, PulseBlasterESR-Pro (SpinCore). The generated pulse 

sequence is used to control the laser light, microwave signal, and the photon counter.  

The DAQ system and software are designed to meet the specific needs of 

experiments. DAQ is composed of three different parts: scanning, CW ESR, and pulse 

generation for pulsed ESR. For the signal generation and detection, the DAQ software is 

implemented on PCs using a National Instruments software, LabView. 

For the scanning and CW and pulsed ODMR experiments, a program for both 

pulse sequence generation and data acquisition program was implemented. Since the 

equipment has its own delay or response time, accurate timing control is required to 

acquire valid data. For the pulsed ESR, the pulses trigger the microwave generator and 
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the AOM for the laser light and the photon counter was triggered to synchronize the 

acquisition at each pulse sequence.  

 

Figure 48. The block diagram depicts the data acquisition and microwave hardware 
control for scanning, CW ESR and pulsed ESR experiments.  
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APPENDIX E 

MICROWAVE CIRCUIT FABRICATION 

 

E.1 Vacuum System  

In Figure 49, the vacuum system design shows the principal components of a 

vacuum metal deposition chamber for evaporation. In this design, the vacuum deposition 

chamber is large enough to guarantee the distance between the heated source and the 

substrates to minimize the radiated heating from the source 28 . For the thermal 

evaporation, the chamber has following general features29: 

 A stainless steel or mild steel chamber 

 Pumping capacity to reduce the chamber pressure down to 1l0-6 torr or below 

 Evaporation source and power supply 

 Pressure gauge 

 Sample holder 

The evaporation source (W or Mo) will be used to generate a heating to melt the 

target materials such as Ti and Au.   

On the other hand, for plasma cleaning in the thin film technology, the reactive ion 

etching (RIE) uses RF glow discharges30. The reactive gas species, such as O2 or CF4, 

can be added to the chamber. Once the plasma is generated by the applied RF potentials 

between separate electrodes, the gas molecules break down into many fragments and 

radicals, some of which become ionized and are accelerated within the discharge 

chamber. A target sample is placed in the chamber and is exposed to a flux of ion 
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bombardment. The ion bombardment and the chemical reaction between the gas species 

and the surface atoms of the sample which is the reactive etching chemistry clean the 

sample surface. 

 

Figure 49. Vacuum chamber design for the thermal evaporator. 
 
 
 
E.2 Microfabrication  

The microfabrication technology is used to make micron-size metal structures 

directly on the diamond surface. Photolithography is the most critical process in 

microfabrication. There are three types of optical exposure: contact, proximity, and 

projection31. The proximity lithography is performed by bringing the mask 25–50 μm 

close to the resist surface. In contact mode, the mask touches the sample surface, thus 

the mask can get damages and unwanted residues may be left on the sample and the 

mask. In projection lithography, the complicated optics is utilized to project the mask 
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image onto the sample surface. Typical resolution, i.e., the minimum feature size, for 

each mode is ~5 μm, ~ 1–2 μm, and sub-μm, respectively but the depth of focus, 

±λn/(2NA2) should be taken into account for the projection lithography.  

For fabrication of a gold pattern used in experiments, a simple contact mask was 

used as shown in Figure 50. In order to facilitate the UV exposure, the high power UV 

laser diode (Pmax ≈ 80 mW and λ = 405 nm) was scanned using the 2D galvo scanner to 

shine the UV light over the mask area. This contact mask was practically capable of 

making ~5 μm-size pattern. In order to get higher resolution, the superior projection 

lithography may be used but some limitations should be considered32.  

 

 

Figure 50. Photolithography setup for a contact mask. 
 
 
 

Figure 51(a) shows the fabrication process of the gold wire for the microwave 

signal transmission for the experiment. It starts with a plasma cleaned bulk diamond. 

The sample substrate is coated with Ti and Au thin films in order. On top of metal 

surface, the 5–10 μm thick photoresist pattern is created by photolithography and 

development and the electroplating is followed. After the remaining photoresist is 
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removed, the underlying thin metal layer below the photoresist is etched. The fabrication 

procedure is listed below: 

 Sample cleaning with acids and a plasma cleaner 

 Ti and Au deposition 

 Spin-coating the photoresist and baking  

 Developing the photoresist 

 Plasma cleaning 

 Electroplating 

 Photoresist stripping 

 Etching the Au and Ti thin films 

Figure 51(b) shows the final image of the pattern which is mounted on the circuit board 

in the inset image.   

 

 

(a) (b) 
Figure 51. (a) The fabrication procedure to make a gold structure is illustrated. (b) The 
gold plated ~10 m wide  pattern on a 12C diamond is displayed.   
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