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ABSTRACT

Clustering-Based Simultaneous Task and Voltage Scheduling for NoC Systems.

(May 2011)

Yu Yang, B.S., Zhejiang University;

M.S., Zhejiang University

Chair of Advisory Committee: Dr. Jiang Hu

Network-on-Chip (NoC) is emerging as a promising communication structure, which

is scalable with respect to chip complexity. Meanwhile, latest chip designs are increas-

ingly leveraging multiple voltage-frequency domains for energy-efficiency improvement.

In this work, we propose a simultaneous task and voltage scheduling algorithm for energy

minimization in NoC based designs. The energy-latency tradeoff is handled by Lagrangian

relaxation. The core algorithm is a clustering based approach which not only assigns volt-

age levels and starting time to each task (or Processing Element) but also naturally finds

voltage-frequency clusters. Compared to a recent previous work, which performs task

scheduling and voltage assignment sequentially, our method leads to an average of 20%

energy reduction.



iv

To my parents



v

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance and the help

of several individuals who in one way or another contributed and extended their valuable

assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude goes to my advisor, Dr. Jiang Hu. Dr. Hu has

supervised, advised and guided me from the very early stage of this research, as well as gave

me extraordinary experiences through out the work. I would like to thank other professors

as well, who are always willing to discuss with me and give new ideas. Particular thanks to

Dr. Gratz and Dr. Kim for their constructive comments on this thesis.

It is a pleasure to pay tribute to my colleagues. Thanks for all your valuable advice. I

am particularly much indebted to Yifang Liu for his great help on this thesis.

Last but not the least, I am grateful for my family and friends. Thanks to my parents

for their long lasting encouragement and support and thanks to my friends I have made all

the way along.



vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Network-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . 1
B. Voltage-Frequency Island for Energy Efficiency . . . . . . . . . 2

1. VFI in Floorplanning . . . . . . . . . . . . . . . . . . . . 2
2. VFI in Post-Placement . . . . . . . . . . . . . . . . . . . 4
3. VFI in Network-on-Chip . . . . . . . . . . . . . . . . . . 4
4. Other Techniques for Energy-Efficiency . . . . . . . . . . 5

C. Motivation and Contribution . . . . . . . . . . . . . . . . . . . 6

II CLUSTERING-BASED SIMULTANEOUS TASK AND VOLT-
AGE SCHEDULING FOR NOC SYSTEMS . . . . . . . . . . . . 8

A. Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 11
C. Motivation and Main Ideas . . . . . . . . . . . . . . . . . . . . 12
D. Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . 14
E. Tile Clustering for Voltage Assignment . . . . . . . . . . . . . 16
F. Solving Lagrangian Dual Problem . . . . . . . . . . . . . . . . 18
G. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



vii

LIST OF TABLES

TABLE Page

I Energy consumption minimization under task deadline constraint . . . . 20



viii

LIST OF FIGURES

FIGURE Page

1 Tile-based multi-core system on a mesh-based NoC architecture. . . . . . 3

2 A communication task graph. . . . . . . . . . . . . . . . . . . . . . . . 9

3 An iteration in k-means clustering. (a) cluster assignment. (b) center
point moves to the mean of all elements in the cluster. . . . . . . . . . . . 16

4 One iteration in TILE clustering. There are four tiles T1,T2,T3 and
T4. Two supply voltages are available. (a) TILE voltage assignment
at the beginning of iteration. (b) T4’s distances to the two voltages
are re-evaluated. (c) T4 is assigned to a new voltage according to the
re-evaluated distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Comparison on voltage assignment from [12] and our method over 9

tiles on an E3S benchmark - consumer. . . . . . . . . . . . . . . . . . . 22

6 Runtime for each benchmark. . . . . . . . . . . . . . . . . . . . . . . . 23

7 Supply voltage for each tile in auto-industry. . . . . . . . . . . . . . . . 24

8 Supply voltage for each tile in networking. . . . . . . . . . . . . . . . . 25

9 Supply voltage for each tile in consumer. . . . . . . . . . . . . . . . . . 26

10 Supply voltage for each tile in office automation. . . . . . . . . . . . . . 27

11 Supply voltage for each tile in telecommunication. . . . . . . . . . . . . 28



1

CHAPTER I

INTRODUCTION

A. Network-on-Chip

As the multiprocessors which can achieve a higher performance while exploiting of great

cost-effective advantages compared with the traditional single processor emerges, the in-

terconnection is a backbone which supports the above multiprocessor architecture. At first,

bus or switch served this purpose and gained popularity especially for small scale multipro-

cessors. However, the trend towards many-core-based designs entails a large demand for

on-chip global communications. Conventional bus structure will be very difficult to keep

up with such demand. The new paradigm of Network-on-Chip (NoC) which brings net-

work theories into communication, in contrast, is much more scalable with respect to the

complexity and volume of communications, and is gaining substantial popularity. NoC is

also amiable to design modularity, which is another means for handling design complexity.

Figure 1 illustrates a tile-based multi-core system on a mesh-based NoC architecture. Each

tile contains a processing element (PE) and a network router. The PE can be CPU, DSP

module, video processor, or embedded memory block. The edges between two neighbor-

ing tiles indicate interconnection links. Instead of direct connection like in conventional

bus, data are routed through the links and routers toward their destination PEs. More pre-

cisely, the PE will generate the data which is transmitted to local router seamlessly via

Network Interface (NI). After the local router receives the data, it will determine the next

neighbor router that will relay the data according to routing protocols. This process repeats

iteratively until the data reaches the final destination. This mechanism utilizes generating,

processing and relaying the data through the network infrastructure instead of global wires.

The journal model is IEEE Transactions on Automatic Control.
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B. Voltage-Frequency Island for Energy Efficiency

In parallel to the communication issue, energy-efficiency is a more and more critical con-

cern. In many modern chip designs, the power density is approaching the limit of chip

cooling capacity and becomes the major limiting factor to the performance growth. Energy-

efficiency implies that the energy is spent only when it is very necessary. This philosophy

is embodied in the recent popular technology of voltage-frequency-island (VFI) which is

employed at Intel SCC (Single-chip Cloud Computer) [1]. SCC integrates 48 cores and

incorporates NoC as interconnection method. It allows software to dynamically adjust

voltage and frequency to achieve low power consumption. In VFI-based designs, one or a

set of circuit blocks may have its own voltage and frequency level, which is adjusted based

on its performance requirement. For instance, the 3 different grey-scale levels in the tiles

of Figure 1 represent different voltage-frequency levels. The energy-efficiency of such sys-

tems largely depends on how the voltage and frequency of each block (PE) are assigned.

In addition, one must consider that a level shifter is needed when a signal is sent from a

low-voltage island to a high-voltage island. The voltage-frequency assignment problem is

shown to be NP-hard [2] and it can be integrated in many design stages.

1. VFI in Floorplanning

VFI method has been studied together with the floorplanning problem [3–5].

In [3], a dynamic programming algorithm for supply voltage assignment is employed

for System On Chip (SOC). There are several candidate supply voltages for each core.

Note that two cores may have different candidate supply voltages. Given a table of voltage-

energy table, where each entry represents the energy consumptions for each core under its

candidate voltages, the problem is how to choose m supply voltages so that the total energy

consumption is minimized. The main idea of dynamic programming algorithm for this
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Fig. 1. Tile-based multi-core system on a mesh-based NoC architecture.

problem is as follows: given the optimum supply voltage assignment for i supply voltages,

we can get optimum result for the (i + 1)th supply voltages by comparing the total energy

consumptions of replacing each of previous supply voltage with the i+1 one and selecting

the one which results in minimum energy consumption.

A multiple supply voltage (MSV) problem for SOC has been studied in [4]. The prob-

lem that finding optimum supply voltage assignment with minimum energy consumption

has been modeled as a convex cost dual network flow problem by transforming the con-

straints into the objective function as penalty functions and can be solved in polynomial

time. This method can be easily integrated into the simulated annealing based floorplan-

ning algorithm due to its fast running time. However, the overlook of communication

energy consumption makes it unattractive for more accurate analysis.

In [5], a algorithm based on branch and bound is proposed to tackle MSV assignment

problem. This algorithm utilizes the work in [4] to get a fast lower bound estimation by
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transforming the relaxed problem into dual network flow problem. By using this lower

bound, many branches will be pruned out thus running time is reduced. This algorithm will

guarantee to generate the optimal assignment result.

2. VFI in Post-Placement

Voltage island generation for post-placement is studied in [6]. Instead of generating voltage

islands according to logic boundary, the authors propose a dynamic programming algorithm

which exploits ”non-natural” (non-logical) boundary such that the the number of voltage

islands is minimized under the maximum power budget. The motivation of this work is to

avoid the large power delivery overhead caused by fragmented voltage islands.

An improved post-placement VFI generation algorithm is proposed in [7]. The authors

eliminate the unnecessary requirement in [6] that each VFI must be a rectangle shape. The

algorithm is based on the dynamic programming on the constructed tree which is derived

by the placement region.

3. VFI in Network-on-Chip

VFI can be easily integrated with NoC-based systems. Recently, a number of works ad-

dress the voltage-frequency assignment problem for NoC. In [8], the voltage-frequency

assignment and partitioning were performed after the tasks were bound to PEs and mapped

to tiles. The whole procedure can be divided into two separate parts: first, it starts with a

VFI partition where each PE belongs to a different voltage. Second, based on the result of

first stage, an iterative merge process continues. Each time, two different VFIs which will

result in the maximum energy reduction if merged, will be merged. This merge process

will continue until only one single island remains. The best voltage assignment in all these

merge process will be chosen as the output of this algorithm.

In [12], an enumeration-based method was proposed for voltage-frequency assign-
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ment. By using this method, the VFI overhead such as mixed clock FIFOs and voltage

level converters is reduced by 82%, as well as over 9% energy consumption reduction

compared with previous work. Both [8] and [12] assumed that task scheduling has been

finished and delay budget has been allocated to each individual task. Therefore, they did

not consider task precedence constraints which state that certain tasks must be finished be-

fore another task is started. In practice, the precedence constraints often arise from data

inter-dependencies among the tasks.

4. Other Techniques for Energy-Efficiency

Besides the multiple supply voltage design, the energy efficiency can also be achieved by

communication and task scheduling. In [9], an energy-aware scheduling (EAS) algorithm

is proposed under real time constraints which schedules communications and tasks into

heterogeneous NoC architecture which consists of different PEs such as DSP or Power PC.

Each task can have different energy consumptions and execution times when mapped to

different PEs due to heterogeneity. The scheduling problem is to determine the target PE,

the time slot when the task can be executed and when all the communication transaction

can occur such that the total tasks’ energy consumption combined with communications’

is minimized under the real time constraints.

In [10], the authors propose an energy-aware mapping for tile-based NoC architec-

ture under performance constraint. Given an Application Characterization Graph (APCG),

where each vertex represents one select IP/core, each direct arc represents the communi-

cation, and an Architecture Characterization Graph (ARCG), where each vertex represents

one tile in the architecture, and each directed arc represents a routing path. The problem is

how to find the mapping function which map every vertex from the APCG to one and only

one vertex in the ARCG, such that the communication energy is minimized while meet-

ing the bandwidth constraints of all links. A branch and bound algorithm is presented to
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solve the above problem. Effective upper bound cost and low bound cost methods are used

to trim branches of the search tree more quickly. Some other speed-up techniques are also

employed like ordering IP according to their communication demand, exploiting symmetry

property.

A communication latency aware low power NoC synthesis algorithm is presented

at [11]. The NoC topology is a directed graph where each node represents a tile, each edge

represents a point-to-point interconnection between two adjacent tiles. The implementation

of a NoC topology is a mapping from each edge to a particular wire style and a mapping

from each edge to the amount of wiring resources assigned to that edge where different

edge has different power consumption, delay and area. The total communication power

is minimized while the total total size and total delay are subjected to a constraint. La-

tency constraints and power minimization objectives are modeled as multi-commodity flow

(MCF) problem in a unified manner. A polynomial time approximation schemes (PTAS)

is proposed to obtain (1 + ε) optimal solutions in polynomial time, where ε is an input

accuracy threshold.

C. Motivation and Contribution

In this work, we propose a clustering-based simultaneous task and voltage scheduling al-

gorithm for post-mapping energy minimization in NoC designs. In the core, it presents

a new clustering algorithm guided by Lagrangian relaxation. In fact, clustering technique

has been employed in various electronic design automation problems. For example, a novel

clustering based technique, which utilizes equi-slack gate clusters to minimize the leakage

power of circuits in nanometer technology, was presented in [13]. The equi-slack gate clus-

ter based technique achieves much better results in terms of runtime and leakage power re-

duction than most of the existing leakage power minimization methods. Another work [14]
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uses feature extraction based clustering algorithm to enhance the yield by assigning the

same body bias to the gates with similar features.

While the simultaneous approach allows more flexibility for energy reduction, it poses

significant difficulty to solving problem due to the task precedence constraints in DAGs.

We handle this difficulty by proposing a new clustering algorithm and combining it with

Lagrangian relaxation. One of this work’s main contributions is an innovative way to re-

formulate the original scheduling problem. From a new perspective, we transform the

complex simultaneous task and voltage scheduling problem into a clearly defined clustering

problem. This transform is two-fold. First, Lagrangian relaxation integrates the original

objective and constraints into one cost function, which is a linear combination of energy

consumption and deadline constraint violations. Then, this cost function is mapped to a

summation of distances between tasks and voltages in our task clustering space. By doing

this, the difficult simultaneous scheduling problem is transformed to a clustering problem.

The clustering problem is solved by a customization of the classical k-means algorithm.

It makes use of domain-specific analysis to define the centers of the clusters, the distance

metric in the clustering space, and the cluster agglomeration procedure.

In the experiment, we compare our method with a sequential approach of task schedul-

ing followed by voltage assignment [12]. The results show that our method can achieve

20% energy reduction on average under the same task deadline constraints.
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CHAPTER II

CLUSTERING-BASED SIMULTANEOUS TASK AND VOLTAGE SCHEDULING

FOR NOC SYSTEMS

A. Preliminary

An application consists of a set of tasks and data inter-dependencies among them. It can

be described by Communication Task Graph (CTG) G = (P,E) which is usually a Di-

rected Acyclic Graph (DAG). Each node pi ∈ P represents a task. If a task pi is assigned

with supply voltage v, it has an execution time dpi
ex(v) and corresponding energy consump-

tion Epi
(v). A directed edge (pi, pj) implies a precedence constraint between pi and pj .

This constraint is usually caused by the communication from pi to pj with data of volume

φ(pi, pj). Hence, edge (pi, pj) requires that task pj cannot start until pi is finished and data

of φ(pi, pj) has been transferred from pi to pj . A task without any incoming edges is called

source task and a task without any outcoming edges is called sink task. Let S be the set of

all sink tasks in the CTG. For any task pi in S, there is a deadline Dpi
associated with it.

For example, Figure 2 shows a CTG with 5 tasks, p0, · · · , p4. The communication from p0

to p1 has data volume of 3000. The deadline for sink p4 is 10.

The execution time of a task pi is estimated by the product of clock period and the

total number of active cycles, i.e.

dpi
ex(v) = Rpi

× π(v) (2.1)

where Rpi
is the total number of active cycles, π(v) is the clock period for a supply voltage

v. According to [8], π(v) can be calculated as follows:

π(v) =
Kiv

(v − vt)α
(2.2)
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Fig. 2. A communication task graph.

where α is a technology parameter, Ki is a design specific constant [15], and vt is the

threshold voltage.

A task energy consumption which includes the dynamic and static ones is also related

to the supply voltage. By using the above notations, the sum of dynamic and static energy

consumption associated with each task is defined as follows:

Epi
(v) = Rpi

Civ
2 + Qpi

Kive
− vt

St (2.3)

where Rpi
and Qpi

are the total number of active and idle cycles for task pi respectively, Ci

is the total switched capacitance per cycle, Ki is a design parameter and St is a technology

parameter [16].
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We assume tile based mesh NoC architecture is used here as depicted in Figure 1.

Each tile contains a processing element as well as a router. We denote the set of tiles as

T = {T1, T2, ..., TN}. Routing in NoC has been shown to have significant impact on energy

consumption [17]. In this work, we use a commonly adopted routing algorithm [8], which

is similar to wormhole flow control and XY routing algorithm in computer networking.

Asynchronous communication across different voltage islands is obtained by mixed-clock/

mixed-voltage FIFOs [18].

In NoC we assume that the tasks have been allocated to each tile. We use function

M : P → T to represent the mapping function which assigns each task to a specific

tile in NoC. For example, M(pi) denotes the tile which task pi is mapped to. Under the

above assumptions, we define Execution Task Graph (ETG) G′ = (P,E ′) which can be

derived from CTG by the following procedures: for any pair of tasks pi and pj in the

same tile, suppose pi executes earlier than pj , then if (pi, pj) ∈ E in CTG, φ(pi, pj) = 0;

otherwise, we add an edge (pi, pj) in ETG and let φ(pi, pj) = 0. In other words, if two

tasks are assigned to the same tile, a precedent constraint is imposed since the PE in this

tile can only process one task at a time; if the two tasks have communication requirement,

this requirement is eliminated as communication in the same PE can be ignored since the

volume data is stored in local memory and can be retrieved in negligible time.

Using the above notation, the communication energy consumption for any edge (pk, pl) ∈
E ′ is defined as follows:

E(pk, pl) =
∑
i∈Q

φ(pk, pl)Ebit
v2

i

v2
DD

(2.4)

where Ebit is a bit energy metric [8], which is the total energy consumed when one bit of

data is transferred through the link, buffer and switch fabric. Also assume the bit energy

metric is measured under vDD. Q means the set of tiles on the path from tile M(pi) to tile

M(pj) since each link and router belong to a tile in NoC, vi is the supply voltage for tile i.
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Similar to [8], the communication latency for any edge (pi, pj) ∈ E ′ is represented as

follows:

tco(pi, pj) =





0, if M(pi) = M(pj)
∑
i∈Q

µs

fi

+ tfifodφ(pi, pj)

W
e, otherwise

(2.5)

where W is the channel width, fi is the operation frequency of tile i, µs is the number of

cycles it takes to traverse a single router and outgoing link, tfifo is the latency of the FIFO

buffers. Since we use wormhole flow control mechanism, the first term and the second

term of the above equation correspond to the latency of header flits traversing path Q and

latency of serialization for the remaining flits, respectively.

The deadline constraint means that for each source-sink path in the ETG, the sum of

total execution time and communication delay should not exceed the deadline of the sink

at the path end. Let tpi
st and be the starting time, ∀pi ∈ P . Denote by I(pi) the set of

immediate upstream tasks of task pi, i.e. I(pi) = {pj|(pj, pi) ∈ E ′}. Then the following

condition must be satisfied for each task: task cannot start until all of its parents and the

corresponding communication transactions have finished, i.e.

tpi
st =





0, if I(pi) = ∅
max

pj∈I(pi)
(t

pj

st + dpj
ex(vpj

) + tco(pj, pi)), otherwise
(2.6)

By Equ. (2.6), we can calculate all tasks’ start time in topological order. If for each task in

S, its start time plus the execution time is no greater than its corresponding deadline, i.e.,

tpi
st + dpi

ex(vpi
) ≤ Dpi

,∀pi ∈ S, then the deadline constraint is satisfied.

B. Problem Formulation

The simultaneous task and voltage scheduling (ST VS) problem is stated as follows.

Given a NoC architecture with each task has been allocated to a tile, an ETG G′ =
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(P, E ′) derived from a CTG G = (P, E), tasks’ mapping function M as well as a set of

supply voltage options V , assign each tile i ∈ T a voltage vi and each task pi a start time

tpi
st , such that the total application energy consumption is minimized subject to the path

deadline constraints, i.e.

Min:EAPP =
∑

∀pi∈P

Epi
(vM(pi)) +

∑

∀(pi,pj)∈E′
φ(pi, pj)E(pi, pj)

s.t. tpi
st + dpi

ex(vM(pi)) + tco(pi, pj) ≤ t
pj

st ,∀(pi, pj) ∈ E ′

tpi
st + dpi

ex(vM(pi)) ≤ Dpi
, ∀pi ∈ S

vi ∈ V, ∀i ∈ T (2.7)

where S is the set of sink tasks and vM(pi) is the supply voltage for tile where task pi locates.

C. Motivation and Main Ideas

Usually, one wants to assign a tile with a voltage level the same as its adjacent tiles if they

have similar performance requirement. If they use the same supply voltage, the interface

overhead, such as level shifters and FIFOs, can be reduced or avoided. In other words, tiles

with similar performance requirement are preferred to be grouped together and assigned to

the same supply voltage level. This observation is the main motivation for us to schedule

the tasks and voltages by clustering considering performance specifications.

A classic approach for clustering is the k-means algorithm [22]. It starts with k ran-

domly generated clusters. Then, it iteratively assigns every element to the cluster whose

center is the nearest to the element according to certain distance metric. The center of a

cluster is the geometric mean location of all elements in the cluster in certain coordinate

system. After every element is assigned to a cluster, the centers of all clusters are updated.
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This iteration repeats with assigning elements to the clusters resulted from the previous

iteration, followed by clusters’ update according to the new elements’ assignment. The

iteration continues till certain convergence criterion is met. Figure 3 shows an example

of one iteration in k-means clustering. In Figure 3(a), the elements in black squares are

assigned to the clusters closest to them. The line in the middle separates the two clusters.

In Figure 3(b), the centers of the two clusters are moved to the mean point of the elements

in them, respectively. After the adjustment of the cluster centers, the next iteration begins

with the calculation of distances between the elements and the cluster centers.

Despite their similarity, there is a gap between classical clustering and the voltage as-

signment in our case. This gap manifests on two related aspects. On one hand, clustering

requires a well-defined distance/coordinate metric which is not obviously available in the

voltage assignment problem. On the other hand, two tiles are assigned to the same voltage

only if they have similar performance requirements (otherwise, one tile may be unnecessar-

ily assigned with a high voltage and energy waste is induced). However, the performance

requirement for each tile is not clear since the task scheduling has not been done yet.

We propose to bridge this gap by using Lagrangian relaxation. Lagrangian relaxation

converts the complex constraints of an optimization problem into a part of the objective

function, which is a set of penalty terms to any violations to the constraints. The converted

problem, called Lagrangian subproblem, attempts to minimize a linear combination of the

original objective function and the constraint violations. In our case, the objective (cost)

function of the Lagrangian subproblem is a linear combination of energy and deadline

constraint violations. Then, we define the distance metric based on this cost function. By

doing so, both energy cost and performance requirement are handled in a unified manner.

Lagrangian relaxation comes with a dual problem which finds the appropriate values for

the penalty coefficients (Lagrangian multipliers) for the Lagrangian subproblem. In Section

VII, a subgradient approach for solving the dual problem will be introduced.
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D. Lagrangian Relaxation

The ST VS problem formulated in Section III is solved under the Lagrangian relaxation

framework, which is also adopted by other complicate multi-constrained optimization in

electrical design automation area [23]. For each constraint in ST VS , we specify a non-

negative Lagrangian multiplier λ and obtain the Lagrangian function:

Lλ(v, tst) =

∑

∀pi∈P

Epi
(vM(pi)) +

∑

∀(pi,pj)∈E′
φ(pi, pj)E(pi, pj)+

∑

∀(pi,pj)∈E′
λij(t

pi
st + dpi

ex(vM(pi)) + tco(pi, pj)− t
pj

st )+

∑

∀pi∈S

λi(t
pi
st + dpi

ex(vM(pi))−Dpi
) (2.8)

The Lagrangian subproblem is to minimize the Lagrangian function for a specific set

of Lagrangian multipliers and is formulated as:

Min: Lλ(v, tst)

s.t. vi ∈ V, ∀i ∈ T (2.9)

According to KKT conditions [21], the Lagrangian subproblem can be reduced as

in [19]. After the reduction, variables tst is eliminated and the subproblem becomes:

Lλ(v) =
∑

∀pi∈P

Epi
(vM(pi)) +

∑

∀(pi,pj)∈E′
φ(pi, pj)E(pi, pj)+

∑

∀(pi,pj)∈E′
λij(d

pi
ex(vM(pi)) + tco(pi, pj))+

∑

∀pi∈S

λi(d
pi
ex(vM(pi))−Dpi

) (2.10)

In the simplified Lagrangian subproblem, the execution times and communication de-
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Algorithm 1 LR clustering framework

1: initialize (vi, λ);

2: for all k ∈ {0, 1, 2, 3, ...} do

3: Perform TILE clustering (assigning vi’s) on all tiles based on TILE-voltage distance,

while the center of each cluster is a voltage option in the candidate voltage set;

4: Update Lagrangian multipliers λ with our sub-gradient calculation technique;

5: If no improvement, stop with the best clustering solution satisfying the timing con-

straint till kth iteration;

6: end for

lays are independent of each other. Therefore, the subproblem becomes easier to solve.

This subproblem will be tackled by a clustering algorithm described in Section VI.

Besides the subproblem, one needs to find proper values for the Lagrangian multipliers

such that the original ST VS problem is solved. This is the so-called Lagrangian dual

problem and will be discussed in Section VII.

Although variables tst are eliminated in Equ. (2.10), a legitimate task scheduling

solution is still largely specified by the results from our method. Since our method tries

hard to trade the delay slack for energy reduction, the slack for each task, which is defined

by the difference between ALAP and ASAP schedules [20], is minimized. In other words,

the starting time for each task in close to fully specified.

The overall framework of the clustering method guided by Lagrangian relaxation is

outlined in Algorithm 1. Line 2 and 6 indicate the Lagrangian iteration loop. Line 3 solves

the Lagrangian sub-problem by performing tile clustering based on tile-voltage distance

measurement. Line 4 in every Lagrangian iteration updates multipliers to solve Lagrangian

dual problem.
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(a) (b) 

Fig. 3. An iteration in k-means clustering. (a) cluster assignment. (b) center point moves to
the mean of all elements in the cluster.

E. Tile Clustering for Voltage Assignment

We define TILE-voltage distance l(i, vi) for any tile i when it is assigned with voltage vi,

i.e.,

l(i, vi) =
∑

∀pj :M(pj)=i

Epj
(vi)

+
∑

∀Q(pk,pj)pass tile i

φ(pk, pj)
v2

i

v2
DD

+
∑

∀pj :M(pj)=i

(
∑

∀pk:(pj ,pk)∈E′
λjk)d

pj
ex(vi)

+
∑

∀Q(pi,pj)pass tile i

λij
µs

fi

.

(2.11)

where Q(pk, pj) is the set of tiles on the path from tile M(pk) to tile M(pj), fi is the

operation frequency of tile i.

Based on the distance measurement given in Equ. (2.11), a clustering procedure car-

ried out on all tiles actually performs the optimization to minimize the Lagrangian function
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(a)

(b)

(c)

T1

T1

T1

T2

T2 T4T3

T4T3

T4T3T2

Fig. 4. One iteration in TILE clustering. There are four tiles T1,T2,T3 and T4. Two supply
voltages are available. (a) TILE voltage assignment at the beginning of iteration.
(b) T4’s distances to the two voltages are re-evaluated. (c) T4 is assigned to a new
voltage according to the re-evaluated distances.

in Equ. (2.10). In another word, clustering of tiles, using distance measurement in Equ.

(2.11), solves the Lagrangian sub-problem in Equ. (2.9).

Our TILE clustering method is performed in a similar way to classic clustering meth-

ods, except that in our case the center of each cluster is always one of the voltage options

given by the problem. That is, every voltage option corresponds to a cluster and is always

the center of the cluster. Therefore, the number of clusters equals the number of voltage op-

tions. Also, the distance from each tile to a voltage option depends on the supply voltages

of related tiles. When the clustering that results in the minimum overall distance is reached,
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the iteration of clustering method terminates. When the clustering procedure finishes, there

may be a few empty clusters, where there is no tile assigned to them. The number of non-

empty clusters is the best number of voltages for the problem, and the TILE assignment of

the non-empty clusters is the best voltage assignment solution.

Given a set of multipliers, all clustering iteration works like an iteration in k-means

clustering. First, the distances between every tile and all the voltage options are calculated.

Then, based on these distances, each tile is assigned to the cluster whose center - a voltage

option - is closest to the tile. An iteration is completed without re-evaluation of the center

of each cluster, because the center of each cluster is fixed to a voltage option in our case.

In refinement iterations, the tile-voltage distance uses the formula in Equ. (2.11),

accommodating several factors: tasks’ energy consumption, tasks’ communication energy,

tasks’ execution time, and communication delay. The example in Figure 4 illustrates the

change of a TILE’s voltage assignment in one iteration. Figure 4(a) shows the clustering

at the beginning of the iteration, where T4 is in the high voltage cluster. Figure 4(b) re-

evaluate the distances of T4 to all voltages, and T4 gets closer to the lower voltage. Figure

4(c) assigns T4 to lower voltage cluster.

The clustering algorithm is outlined in Algorithm 2. Line 3 performs distance evalu-

ation between tiles and voltage options; Line 4 assigns tiles to specific clusters according

to the updated TILE-voltage distances. Algorithm 2 implements the clustering step in a

Lagrangian relaxation iteration in Algorithm 1.

F. Solving Lagrangian Dual Problem

The goal of the outer loop of the Lagrangian relaxation framework in Algorithm 1 is to

solve Lagrangian dual problem, which basically tunes the multipliers λ to maximize the

minimal value (optimized by adjusting vi and tst in the sub-problem) of the Lagrangian
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Algorithm 2 TILE clustering

1: initialize vi to minimize Ei(vi) + λidexec(vi), ∀pi ∈ P ;

2: for all k ∈ {0, 1, 2, 3, ...} do

3: evaluate all TILE-voltage distances, i.e.,

l(i, vi),∀i ∈ T, ∀vi ∈ V ;

4: make voltage assignment, i.e.,

vi ← argminvi∈V l(i, vi);

5: If no change of assignment made, stop with the current cluster assignment in the kth

iteration;

6: end for

function, min
v,tst

Lλ(v, tst). In a formal formulation, the dual problem is expressed as:

Max: min
v,tst

Lλ(v, tst),

s.t. λ ≥ 0.

(2.12)

The function Lλ(v, tst) is a concave function of λ ≥ 0. However, it is non-differentiable.

Therefore, the subgradient method is employed to solve the dual problem instead [24]. The

method works as follows. First, initial λ values are given. Then, every λ for a constraint

is updated to a new value in the subgradient direction. In our case, in iteration k, we first

solve the Lagrangian subproblem by using the cluster based method; then, we define the

subgradient direction to be the left hand side minus the right hand side of the constraints

in Equ.(2.7). The values of tpi
st, d

pi
ex,∀pi ∈ P and tco(pi, pj),∀(pi, pj) ∈ E ′ needed in this

computation are calculated by a topological traversal of the ETG and ASAP (As Soon As

possible) scheduling method, after we get the supply voltage for each tile in the current

iteration. We use a step size ρk for current iteration k, multiply it with the subgradient
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Table I. Energy consumption minimization under task deadline constraint

Previous work [12] Our method

Benchmark energy normalized energy energy normalized energy

office automation 541 1 423 0.78

telecommunication 232 1 157 0.67

auto-industry 100 1 84 0.84

consumer 646 1 538 0.83

networking 379 1 329 0.86

average 379.6 1 306.2 0.80

direction, and add it to the current λ value, that is:

λij = λij + ρk(t
pi
st + dpi

ex(vM(pi)) + tco(pi, pj)− tpi
st),

∀(pi, pj) ∈ E ′;

λi = λi + ρk(t
pi
st + dpi

ex(vM(pi))−Dpi
),∀pi ∈ S; (2.13)

This whole process continues until it converges, which means:

∑
pi∈P

Epi
(vM(pi)) +

∑

∀(pi,pj)∈E′
φ(pi, pj)E(pi, pj)− Lλ(v, tst)

≤ error bound (2.14)

It is also known that if the step size ρk satisfies when k → ∞, ρk → 0, and
∑k

i=1 ρi →∞, then the subgradient method will converge to its optimal value.
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G. Experiments

In our experiment, the test cases are from Embedded System Synthesis Benchmark Suite

(E3S) [25]. E3S contains some example applications from various areas, such as office

automation, networking, auto industry, and telecommunication. The number of tasks in the

benchmark applications ranges from 5 to 30. These applications are scheduled to 3×3 mesh

networks respectively. The supply voltage candidates are 0.8v,1.0v,1.2v,1.4v and 1.6v.

Our method is compared with the voltage assignment method of [12]. In [12], the de-

lay deadline for each individual task is first obtained according to the energy aware schedul-

ing [9]. Then, the voltage assignment for each tile is found by enumeration. Since we only

compare the voltage assignment method, we assume that the mapping results are the same

for both cases. We implemented both the method of [12] and our method in C++. The

experiment was performed on a Windows-based desktop machine with 2.0 GHz Intel core

2 duo CPU and 2 GB memory.

Figure 5 provides details on the supply voltage assignment results for each tile for

consumer benchmark from both our method and [12]. The voltage distributions by the two

methods differ a lot from each other. This is because our method can handle the energy-

performance tradeoff from a global point of view, while the optimization of [12] tends to

be restricted to local tradeoff.

Our algorithm’s runtime ranges from 0.58s to 2.11s. Figure 6 shows the runtime re-

sults for all benchmarks.

The final supply voltage for each tile in five benchmarks is shown in Fig.7,8, 9,10

and Fig. 11 respectively. In these figures, the bottom squares correspond to all tiles and

the z values of these tiles represent the assigned supply voltages. From the figures, we

can see different tiles are assigned to different supply voltages. Table 1 lists the energy

consumption for all benchmarks both for our method and method of [12]. On average
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Fig. 5. Comparison on voltage assignment from [12] and our method over 9 tiles on an E3S
benchmark - consumer.

over the five benchmarks in E3S, our method achieves 20% energy reduction compared

to [12]. The largest energy reduction is 33%. The main reason for this difference is that

[12] separates the voltage assignment from task scheduling. Without the information on

voltage assignment, the task scheduling may make wrong decisions and incur inappropriate

deadline constraints to the subsequent voltage assignment problem.
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Fig. 7. Supply voltage for each tile in auto-industry.
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Fig. 8. Supply voltage for each tile in networking.
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Fig. 9. Supply voltage for each tile in consumer.
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Fig. 10. Supply voltage for each tile in office automation.
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Fig. 11. Supply voltage for each tile in telecommunication.
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CHAPTER III

CONCLUSION

In this work, we propose a new clustering approach for voltage-frequency optimization

in NoC-based systems. It minimizes a linear combination of energy and latency penalty

enabled by Lagrangian relaxation. We use clustering method to solve the Lagrange sub-

problem and solve the dual problem by subgradient method. Experiments show our method

has significant advantage in solution quality over a previous work on the problem of energy

minimization under task deadline constraint.
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