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ABSTRACT 

 

Gain Scheduled Control Using the Dual Youla Parameterization. (May 2010) 

Young Joon Chang, B.S., Inha University, Korea; M.S., Inha University, Korea 

Chair of Advisory Committee: Dr. Bryan Rasmussen 

 

Stability is a critical issue in gain-scheduled control problems in that the closed 

loop system may not be stable during the transitions between operating conditions 

despite guarantees that the gain-scheduled controller stabilizes the plant model at fixed 

values of the scheduling variable. For Linear Parameter Varying (LPV) model 

representations, a controller interpolation method using Youla parameterization that 

guarantees stability despite fast transitions in scheduling variables is proposed. By 

interconnecting an LPV plant model with a Local Controller Network (LCN), the 

proposed Youla parameterization based controller interpolation method allows the 

interpolation of controllers of different size and structure, and guarantees stability at 

fixed points over the entire operating region. Moreover, quadratic stability despite fast 

scheduling is also guaranteed by construction of a common Lyapunov function, while 

the characteristics of individual controllers designed a priori at fixed operating condition 

are recovered at the design points. The efficacy of the proposed approach is verified with 

both an illustrative simulation case study on variation of a classical MIMO control 

problem and an experimental implementation on a multi-evaporator vapor compression 

cycle system. The dynamics of vapor compression systems are highly nonlinear, thus the 
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gain-scheduled control is the potential to achieve the desired stability and performance 

of the system. The proposed controller interpolation/switching method guarantees the 

nonlinear stability of the closed loop system during the arbitrarily fast transition and 

achieves the desired performance to subsequently improve thermal efficiency of the 

vapor compression system.  
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1. INTRODUCTION 

 

 

Many physical systems in nature exhibit complex dynamics. Researchers believe 

that nonlinear control system should be designed to regulate these systems within 

desired performance criteria and guarantee stability under any operating condition. With 

a system’s nonlinearities and uncertainties, a single linear controller may not achieve 

acceptable performance throughout the entire set of operating conditions. Gain-

scheduling is one of the most popular approaches for controlling nonlinear systems in 

practice and has been successfully applied to various fields both in academia and 

industry. Gain-scheduled control offers a means of constructing a nonlinear controller by 

interpolating a family of local controllers, thus dividing the nonlinear control design 

problem into several smaller problems where linear design tools are generally employed 

[1].  

This “divide and conquer” approach enables various linear control design 

methods to be applied to nonlinear control problem and allows simplicity both in design 

and analysis. However, guaranteeing the stability of the nonlinear closed loop system is 

still a challenging task due to the presence of hidden coupling terms or unexpected 

additional dynamics during gain-scheduled controller interpolation [2]. 

Gain-scheduled control has also been applied to physical systems that include 

uncertainties. However, any modeling uncertainties or nonlinearities may result in a  

____________ 
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significant mismatch between plant model and the real system, thus a given model may 

not precisely reflect the nonlinear dynamics of the real system. In this case, conventional 

stability analyses may not be sufficient to evaluate the practical stability of nonlinear 

systems, thus stability with robustness consideration is a possible solution to improve the 

practicability assured in applications [3]. 

A vapor compression system might be a good example of implementation of 

gain-scheduled control since the dynamics of a vapor compression system meet the 

prescribed “highly nonlinear” condition and an advanced framework based on gain-

scheduled control will have the potential to improve thermal efficiency and reduce the 

demanding load of those systems [4], [5].  

In summary, this dissertation addresses a challenging problem in the control of 

nonlinear systems and proposes a solution to this problem by applying the theory and 

technique of gain-scheduled control. An advanced control design method which 

guarantees the nonlinear stability and desired performance of the system is developed to 

improve the efficiency of mechanical systems and guarantees of stability and 

performance will be shown both theoretically and experimentally.  

       

1.1 Review of Gain-scheduled Control Literature 

Gain-scheduling has been widely used to control nonlinear systems in a variety 

of industrial application, such as controls of vehicles [6], flights [7], [8], [9], power 

plants [10], [11], and hydraulic systems [12]. One significant advantage of gain-

scheduling is its potential to incorporate linear control methods into a nonlinear control 
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design. Also, this paradigm does not require strict structural or analytic assumptions of 

the plant model. To ensure effective operation, scheduling variables should be selected 

to appropriately reflect the changes in plant dynamics as operating conditions change.  

The design of a gain-scheduled controller for nonlinear systems can be described 

as a four-step process [13]: First, a linear model of the nonlinear system is determined 

from Jacobian linearization of the nonlinear plant about a family of equilibrium points or 

quasi-LPV plant modeling where nonlinear terms can be hidden by reformulating plant 

dynamics. Second, gain-scheduled controllers for the plant are designed with linear 

control design methods. Third, linear controllers are represented in terms of scheduling 

variables and interpolated by a specified interpolation method. Final step is evaluating 

stability and performance of the closed loop system on both the local and global level. 

Typically, stability can be only assured locally under the assumption of “slow-varying” 

and there are rarely global performance guarantees.  

Many different design schemes have been proposed for gain-scheduling 

methodologies. However, if these designed plant models can’t reflect the real system 

accurately, guaranteed global stability of the nonlinear system and desired performance 

may not be achieved [3], [13]. 

In classical gain-scheduling approaches, a nonlinear plant can be represented 

with a finite number of linearized models. Stabilizing controllers are designed for each 

local plant models then interpolated as a function of scheduling variables that may be 

exogenous or endogenous signals with respect to the plant. Controller interpolation 

methods that guarantee the stability for any fixed value of the scheduling parameter, 
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known as frozen parameter stability, have been proposed and recently focused on 

guaranteeing this level of stability by construction [14], [15], [16], [17]. The 

interpolation method used in common is called “Local Controller Network (LCN)” [18], 

[19], discussed extensively in the following section. Although it seems to be working 

properly in practice, this design procedure may not provide the stability and performance 

where scheduling variables are arbitrarily varying fast.  

The LPV (or quasi-LPV) modeling method was recently introduced in nonlinear 

plant modeling techniques. In this framework, controller gains depend on the variation 

of plant dynamics and nonlinear terms of the plant model are hidden with newly-defined 

time-varying parameters that include scheduling variables, termed in “quasi-LPV 

modeling [20], [21], [22], [23].” LPV control theory has been useful to simplify the 

interpolation and realization associated with conventional gain-scheduling. Specifically, 

it enables the design of a single parameter-dependent gain-scheduled controller. 

However, controller synthesis may not be computationally feasible and stabilizing may 

not exist since gain-scheduled controllers cannot be designed at specific operating points 

[2]. 

Despite its successful applicability in many engineering problems, gain-

scheduling remains an ad hoc approach. Stability analysis as well as performance 

assessment of a global gain-scheduled control system are not explicitly implemented in 

design procedure, mostly by extensive simulations [3], [24]. Furthermore, guaranteeing 

the stability of the nonlinear closed loop system is still a challenging problem. Simplicity 

in design, where linear controllers and ad hoc interpolation methods are used, is 
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contrasted with difficulties in analysis, thus guaranteeing that the stability of the 

resulting nonlinear closed loop system will be extremely challenging. Moreover, the 

presence of “hidden coupling” terms or “scheduling dynamics” due to the interpolation 

functions can create unanticipated stability problems.  

Furthermore, no research has given an exact solution to guarantee stability when 

scheduling variables are varying rapidly. Conventional gain-scheduling approaches may 

not guarantee performance when the system includes modeling uncertainties. Thus 

introducing an advanced framework, improving system robustness, and guaranteeing 

global stability under arbitrary switching, satisfy the desired goal of nonlinear system 

control.      

 

1.1.1 Scheduling Variables 

Choice of scheduling variables in gain-scheduled plant models provides a design 

degree of freedom which can effectively reflect the dynamics of the system. Thus many 

different design schemes have been proposed for gain-scheduling methodologies, but 

there exist two rules-of-thumb – “scheduling variable should vary slowly” and “the 

scheduling variable should capture the plant’s nonlinearities” [2]. The “slowly varying” 

requirement is intended to extend local stability analysis to provide global results, and 

the “capturing the nonlinearities” assumption ensures nonlinear model accuracy. 

Scheduling variables may have exogenous or endogenous signals with respect to the 

system. Thus, in some cases, assumed rate limitations on the scheduling variables are not 

realistic, and advanced analysis techniques are required to guarantee stability. 
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1.1.2 LPV Plant Modeling 

Clearly, gain-scheduled control design involves nonlinear plant modeling, 

controller interpolation, and stability/performance assessment - these three categories are 

closely related [19], [25]. In classical ways, the Local Model Network (LMN) approach 

has been proven to be effective for appropriately selected scheduling variables [18], [26]. 

Alternatively, the implication of LPV-way in gain scheduling is obvious since gain 

scheduling often involves a linear parameter varying system [20], [27]. Several LPV 

approaches such as off-equilibrium linearization (velocity-based linearization) and 

Lyapunov-based LPV methods are introduced in [28], [29], [30], [31]. In application, 

several works in quasi-LPV plant modeling techniques are incorporated in aerospace 

technologies [32], [33], [34]. 

  

1.1.3 Gain-scheduling via Linear Controller Interpolation 

Many different approaches have also been proposed for controller interpolation 

[2], [35]. These include interpolation between controller transfer function, H  

controllers by linearly interpolating the solution of Ricatti equation [8], state-space 

matrices of balanced controller realizations, state feedback gains [7], and observer gains 

[16], [36], [37], [38], [39]. The interpolation method commonly used is called “Local 

Controller Network (LCN)”, [18], [19]. In essence, several controllers are implemented 

in parallel, and their respective outputs are blended to form the control signal. This 

approach is similar to fuzzy controllers [40], but instead of blending the values of state 

variables, the total output is a weighted average of the individual controller outputs. The 
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LCN is simple and intuitive, but may not stabilize the system at off-design points, and 

may require that the controllers be open-loop stable [24]. 

Controller interpolation methods that guarantee stability for any fixed value of 

the scheduling parameter, known as frozen parameter stability, have been proposed and 

have recently focused on guaranteeing the stability by construction [14], [17]. However, 

guaranteeing stability during transitions, particularly fast transitions, is challenging [41]. 

For a restricted case, Hespanha and Morse considered this interpolation “switching 

between stabilizing controllers” and proposed the suitable interpolation method via the 

realization of controller transfer matrices and stability with impulse effect [15].   

 

1.1.4 Gain-scheduling via LPV Control Synthesis 

The LPV (or quasi-LPV) gain-scheduling method assumes an LPV plant 

representation, where the parameter variations capture the system nonlinearities. 

Nonlinear controller is synthesized based on the LPV plant model, and guarantees 

nonlinear stability by construction [13], [20], [21]. While the problem of guaranteeing 

stability is solved, the resulting LPV controller does not allow the user to design specific 

controllers under key operating conditions [42], [43], [44]. Moreover, the control 

synthesis procedure may prove infeasible. 

 

1.1.5 Stability Analysis 

For the local and global-level stability analysis, a Lyapunov-based nonlinear 

stability criterion is exploited in this work. Using the Lyapunov-based stability analysis, 
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many works have introduced the LMI-based algebraic conditions to provide a common 

Lyapunov function to guarantee stability over operating envelopes using parameter-

dependent functions under discrete output feedback [45], [46], [47], continuous output 

feedback LPV control [48], and state-feedback control [49]. Liberzon proposed the 

commutativity of nonlinear system based on Lie-algebra as a preliminary condition for 

the existence of a common Lyapunov function [50], [51], [52], [53]. Other works have 

derived specific algebraic conditions as a necessity of existence in similar ways [54], 

[55]. Comparatively, Blondel explained it using “simultaneous stabilization” concepts 

based on Nyquist and Popov criterion in frequency domain [56], [57].    

 

1.2 Youla Parameterization-based Gain-Scheduling 

Gain-scheduling based on the Youla parameterization is a recently proposed 

approach [58], [59], [60], [61], utilizing the idea proposed by Youla, Bongiorno, and 

Jabr in 1976 [62]. The crux of the Youla parameterization is the ability to explain how 

all stabilizing controllers can be parameterized in terms of a single variable, called 

“Youla parameter” Q ; all plant models can be parameterized in terms of dual Youla 

parameter S . Under this framework, the closed loop system is affine in the Youla 

parameters and allows the problem of the search for an optimal stabilizing controller to 

be posed as a convex optimization problem [63]. 

The dual Youla parameter is the open-loop transfer function between input and 

output vectors for the connection of the Q  parameter in the standard Youla 

parameterization. Thus stability of the closed-loop system requires stability of the 
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nominal closed-loop system and the real system. The magnitude of the dual Youla 

parameter is a measure of the difference between the nominal and real system. These 

two important points make the Youla parameterization useful in both design of different 

types of controller and the validation of closed-loop performance. By virtue of Youla-

based gain-scheduling, interpolation between controllers of different sizes and structures 

or open-loop unstable is allowable [24].   

 

1.3 Stability Analysis with Robustness Consideration 

One of the significant impacts of gain-scheduling strategy on nonlinear system 

controls is its applicability to physical systems whose dynamics are highly nonlinear or 

have a high uncertainty level [64], [65]. When an LPV plant model includes unstructured 

uncertainties or modeling error and these factors significantly affect the system 

dynamics, plant model may not precisely reflect the nonlinear system and conventional 

stability analyses may not be sufficient to guarantee the stability of the nonlinear system 

[66], [67]. Any plant model could possibly contain the unstructured modeling error, thus 

unmodelled dynamics uncertainty could be addressed with a simple nominal model [3] 

and investigated here to improve robustness of the perturbed nonlinear system. 

 Thus an LPV closed loop system with uncertainty is prepared and its state matrix 

is forced to form in a block-diagonal structure by construction. The resulting system is 

then guaranteed to be robustly stable where the preliminary condition, 1


, is 

satisfied. The proposed framework, utilizing 2L  gain of the modified LPV/LQN system 

via optimizing feedback gains of the closed system, guarantees the global level of robust 
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stability by minimizing the 2L  gain that remains within desired bounds over the 

operating envelop [68], [69]. 

 

1.4 Control of Vapor Compression Systems 

Vapor compression systems have been widely used for residential and industrial 

purposes and consume a huge amount of energy [70]. Thermal efficiency of the system 

has been considered a key aspect in energy saving since energy demand in air 

conditioning systems will be reduced by achieving the desired energy efficiency via 

developing an accurate system model and advanced control strategy [71], [72].   

Unfortunately, the dynamics of these systems are well known to be highly 

nonlinear, and vary significantly over operating conditions. Although a very strictly 

designed controller could possibly stabilize the system, significant performance would 

be sacrificed to guarantee the desired global stability, thus an advanced gain-scheduled 

control approach can be an intuitive solution for these systems [5]. 

For these purposes, an advanced gain-scheduling framework based on previously 

obtained results is applied to the vapor compression system. This experimental case 

study illustrates the effectiveness of the proposed Youla-based gain-scheduling 

framework in practice while achieving desired stability and performance. 
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1.5 Research Objectives 

The main goal of this research is to create an advanced gain-scheduling method 

for the nonlinear system that guarantees stability and an acceptable level of performance. 

This research will utilize the Youla parameter-based framework for gain scheduling, 

under the assumption that local controllers have been designed a priori. Thus, the 

selected problem is to ensure local controller recovery at specified design points while 

utilizing an interpolation scheme that guarantees stability at off-design conditions and 

during scheduling transitions. The local controllers may be of different state dimensions 

and possibly open-loop unstable. Research achievements include: 

 Examining the general case of Youla parameter-based gain-scheduling, and 

identify elements of design freedom 

 Develop a Youla parameter based framework for LPV systems that guarantees 

stability of the nonlinear closed loop system while scheduling variables 

arbitrarily vary fast 

 Eliminate the need to run multiple local controllers in parallel by developing an 

LPV controller synthesis procedure that ensures local controller recovery and 

closed loop stability 

 Extend stability analysis to include robustness and performance considerations 

 Experimental case study demonstrating the above techniques 

 



 12 

1.6 Dissertation Organization 

The remainder of this dissertation is organized as follows. Section 2 describes 

fundamentals and background on gain scheduled control and Youla parameterization. 

Section 3 examines general case of Youla-based gain scheduling and develops a specific 

Youla based framework for an LPV system that guarantees stability of the nonlinear 

closed loop system while scheduling variables vary arbitrarily fast. Based on the results 

obtained in Section 3, extended stability analysis to include robustness and performance 

considerations is presented in Section 4. Section 5 discusses the experimental case study 

that demonstrates the above techniques by applying to vapor compression system. 

Conclusions and recommendations for future work are given in Section 6. 
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2. INTRODUCTION TO GAIN SCHEDULED CONTROL 

 

Many physical systems have been observed to be highly nonlinear and vary 

arbitrarily fast in a wide range of operating envelopes. To achieve the desired control of 

nonlinear systems, the nonlinear control strategy should guarantee acceptable 

performance as well as nonlinear stability throughout the operating conditions [1]. Gain-

scheduled control paradigm has successfully been proved to be an efficient way to 

satisfy the stability and performance criteria required in nonlinear system analyses. This 

section presents fundamentals of gain-scheduled control and the Youla parameterization, 

an advanced controller interpolation method used in gain-scheduled control design and 

implementation.  

 

2.1 Introduction  

As discussed in the introduction, gain-scheduling has shown good potential to 

incorporate linear control methods into nonlinear control design and has been widely 

used to control nonlinear systems in a variety of industrial applications [1]. In general, 

when a plant is modeled with the gain-scheduled control paradigm implemented by the 

collection of linear time-invariant approximations to a nonlinear plant at a fixed 

operating condition where scheduling variables are assumed to be varying slowly, then 

individual controllers are designed explicitly at fixed operating points. Plant model is 

also assumed to capture the nonlinearities that exist in real systems.  
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Plant models of a nonlinear system are determined from first principles or by 

interpolating identified models. Then local controllers for the plant are designed by 

linear control design methods and linear controllers are represented in terms of 

scheduling variables and interpolated by a specified interpolation method. Stability and 

performance of the closed loop system should be evaluated both locally and globally.  

Despite overwhelming successes in gain scheduling, few approaches guarantee 

stability while scheduling variables are varying rapidly or where the system is highly 

nonlinear and includes modeling uncertainties. Thus improving system robustness and 

guaranteeing global stability under arbitrary switching will be the motivation for this 

dissertation. 

The remainder of this section is organized as follows. Section 2.2 describes 

nonlinear plant modeling, including LPV and LMN frameworks. Section 2.3 examines 

controller interpolation methods in gain-scheduling such as LPV synthesis and LCN 

interpolation. Stability analysis to include nonlinear stability, linear stability with Linear 

Matrix Inequalities (LMIs), and LMI-based stability with performance is presented in 

Section 2.4. Finally, Youla parameterization-based gain-scheduling with mathematical 

backgrounds is discussed in Section 2.5. This section is described with details in 

reference [5].  

        

2.2 Nonlinear Plant Modeling  

This section discusses nonlinear plant modeling and local control design in gain-

scheduling. Considering the standard feedback loop of the nonlinear control system 
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depicted in Figure 2.1, the plant and controller in Figure 2.1 are assumed to be nonlinear 

where d  is disturbance inputs, u  is control outputs, z  is performance outputs, and y  is 

control inputs. 

 

 

Fig. 2.1. General closed loop of nonlinear system. 

 

 

2.2.1 Nonlinear Plant Model 

A general representation of nonlinear control system in Figure 2.1 is given by  

 

),,(

),,(

),,(

duxhz

duxgy

duxfx







                                                   (2.1) 

where x  is the state of the system, y  is system outputs (control inputs), and z  is 

performance outputs. Note that the functions hgf  and , ,  are assumed to be continuously 

differentiable in real space.  
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2.2.2 Linearization-based Plant Modeling 

The nonlinear plant representation in Equation 2.1 can be linearized around the 

equilibrium point ),,( 000 dux using Jacobian linearization. The resulting state space 

representation of the nonlinear system is derived by a low-order Taylor series expansion 

as given by 

d
d

h
u

u

h
x

x

h
z

d
d

g
u

u

g
x

x

g
y

d
d

f
u

u

f
x

x

f
x

duxduxdux

duxduxdux

duxduxdux


















































































































































































000000000

000000000

000000000

,,,,,,

,,,,,,

,,,,,,

                        (2.2) 

where 0xxx  , 0uuu  , 0ddd  , 0yyy  , and 0zzz  . 

The Jacobian matrices of states, control inputs, and performance outputs in 

Equation 2.2 can be a function of the system variables ),,( dux . The subset of the 

variables that parameterize the Jacobian matrices can be denoted as a scheduling 

variable ),,( dux . Thus a linear approximation of a nonlinear plant model around 

the equilibrium point, ),,( 0000 dux , is given by a Linear Time Invariant (LTI) model 

as follows: 
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where   
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Under linearization-based modeling methods, the nonlinear plant can be 

decomposed into several linear approximations around specific operating conditions. 

Similarly in the gain-scheduling paradigm, a nonlinear plant model can be represented in 

terms of several LTI plant models obtained at specific operating points that are suitable 

for utilizing linear control design tools; those plant models are parameterized by a set of 

scheduling variables that indicate the current states of the nonlinear system. Note that a 

local LTI approximation of the nonlinear plant at equilibrium point is not identical to a 

Linear Parameter Varying (LPV) representation at specific operating point; this will be 

described in the following section. 

 

2.2.3 Linear Parameter Varying (LPV) Plant Modeling 

A Linear Parameter Varying (LPV) representation of the nonlinear system is a 

special case of a system modeling method defined as “A linear system whose dynamics 

depend on exogenous parameters with values that are unknown a priori but can be 

measured on-line” [13]. A state space representation of LPV system is given in Equation 

2.4 
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If there does not exist an LPV representation of the nonlinear system in nature, 

an alternative plant representation approach called “quasi-LPV representation” can be 

potentially used to parameterize a family of linear models. In the quasi-LPV method, 

nonlinear terms are hidden with newly defined time-varying parameters that are then 

included in the scheduling variable [73]. Note that quasi-LPV representations are not 

unique and a suitable representation may not be well suited for controller design.   

 

2.3 Controller Interpolation  

A rough categorization of controller design methods on gain scheduled control 

would include two classes: 1) local linear control designs and 2) LPV control design 

methods [13]. The former approach is extensively used in practice and allows a 

sufficiently large degree of freedom in the design process. However it may suffer from a 

general lack of suitable tools for stability analysis. The latter has the advantage that some 

level of stability is guaranteed by construction of the controller but the controllers are 

designed as a whole and synthesized with common dimension and structure and no 

guarantee of existence. Thus some freedom in the design process may be lost and result 

in difficulties during the computation.  
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2.3.1 Local Controller Network (LCN)  

 

2.3.1.1 Local Controller Design 

In this framework, a nonlinear control design problem can be decomposed into 

several linear control problems by employing many linear design tools, often called the 

“divide-and-conquer” method. The local linear controllers can be designed at each 

design point which is suitable for implementing linear control design, denoted as follows 



























u

x

DC

BA

u

x k

kk

kkk













)()(

)()(

00

00


                                   (2.5) 

Design methods of local linear controllers have been reported from PID control to LQG 

and H  control [2], [5]. Controller interpolation between these locally designed 

controllers is implemented by parameterizing them in scheduling variables, a key idea of 

gain-scheduled control which will be intensively discussed in the next section.  

 

2.3.1.2 Local Controller Network (LCN)    

Controller interpolation is the crux of gain-scheduling approaches and many 

different controller interpolation methods have been proposed. These include the 

interpolation of poles, zeros, and gains, interpolation of H  controllers by interpolating 

Riccati equations, interpolations of balanced state space matrix coefficients, 

interpolation of state feedback gains and observer gains, and the interpolation of pole 

placement of state feedback gains [13]. Alternatively, several approaches have been 

proposed that implement controller blending as a function of operating condition then 

forming a global nonlinear controller [2].  
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The latter type of gain-scheduled control is often called “output-blending,” 

similar to the Tagaki-Sugeno model that is widely used in the derivation of fuzzy 

membership function [40]. By virtue of output-blending, interpolation between 

controllers with different dimension and structure is allowable without any restriction on 

the design of local controllers.  

Under this type of controller interpolation, a nonlinear controller can be formed 

by blending the weighted outputs of several linear controllers. These weighting functions 

can be presented in terms of scheduling variables  , as ))(()( tft    and the weighted 

sum of those functions is commonly assumed to be ]1,0[)( ti  and  1)(ti , but 

this assumption is situation-dependent and may not be necessary in some cases.  

This output-blending approach results in a Local Controller Network (LCN), 

widely used in practice due to its simplicity during controller interpolation. A controller 

is constructed using a linear approximation of the nonlinear model, either first principle 

model or empirical identification model, by employing linear control design tools. The 

weighted sum of outputs from a family of local controllers is then applied to the 

nonlinear plant.  

Similarly, a Local Model Network (LMN) is constructed by computing local 

plant models in parallel. This is assumed to adequately represent the dynamics of 

nonlinear system where the local linear representations of the plant are obtained from 

linearization of nonlinear plant or empirically through system identification techniques. 

This LMN can be simply denoted as  )()( sPsP ii , and similarly the LCN as 
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 )()( sKsK ii . The interconnected LCN/LMN system is depicted in Figure 2.2, 

and the simplified diagram in Figure 2.3. 

 

 

Fig. 2.2. Interconnected system of LMN/LCN. 
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Fig. 2.3. Simple diagram of LMN/LCN interconnected system.  

 

2.3.1.3 LCN/LMN Closed Loop System 

Consider the interconnected LCN/LMN system derived in Figure 2.2. Under this 

framework, a set of local linear models of plant )(sPi  is given by 
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and a set of local linear controllers )(sK i  is given by 
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The state space representation of the closed loop from  Tww 21  to   Tyu  is given in 

Equation 2.8, denoted )(sG . Note that this closed loop can be represented as a system 

affinely parameterized in   with the constraint  1)(ti . Alternatively, the plant and 

controller representations can be formed in a polytopic system of individual plant 

models and controllers respectively as given by Equations 2.9-10. 
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2.3.2 LPV Control Synthesis 

 One recently used control design method in gain-scheduling is the LPV control 

design. Under this framework, an LPV representation of the nonlinear plant is assumed 

to exist and the associating controllers are designed as a whole with common size and 

structure where each controller shares the state variables. Thus, if this representation 

exists, stability of the nonlinear closed loop system is guaranteed when prescribed 

conditions restricted to the scheduling variable are satisfied. Specifically, these 

conditions advocate that scheduling variables are measurable, bounded, and that the time 
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derivative of scheduling variables is bounded. These pre-conditions may be very 

conservative in practice and thus current research attempts to reduce them [5]. 

Although the LPV control cannot allow a sufficiently large design degree of 

freedom in design and implementation of gain-scheduling, e.g., design local controllers 

at key operating point a priori are not available, it guarantees a certain level of stability 

of the system by construction. First, we assume parameter variations in the LPV plant 

model as modeling uncertainty where a single LTI controller is sought so that a small 

gain condition is met [24]. If there exists an LTI controller that satisfies the condition, 

stability can be guaranteed for arbitrarily fast variations in the scheduling parameter, but 

this generally results in a poorly performing controller due to extremely conservative 

assumptions of control design.  

Alternatively, an LPV controller can be sought so that stability of the closed loop 

system is guaranteed by existence of a common or parameter-dependent Lyapunov 

function. Under this framework, an interpolated controller can be sought by solving a set 

of Linear Matrix Inequalities (LMIs) which allows enhanced efficiency in analysis [24] 

[74]. However, guaranteeing stability in this way may potentially be very conservative in 

that the common Lyapunov function should be found over the entire operating envelope 

where scheduling variables may change arbitrarily fast. Thus recent researches have 

employed parameter dependent Lyapunov functions that can reduce some of the severe 

restrictions if the time derivative of the scheduling variable can be bounded [51]. 
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LPV gain scheduling has been proved to be successful for guaranteeing a certain 

level of stability by construction, but lack of existence and conservatism of the design 

process cause computational difficulties and limit wide application in practice.  

 

2.4 Stability Analysis  

As mentioned in Section 1, guaranteeing the closed loop stability of nonlinear 

system has been a challenging problem. Some research has successfully shown the 

stability of the nonlinear system at local operation conditions, but little research has 

shown global stability. Furthermore, the endogenous scheduling system requires more 

careful evaluation in order to guarantee the stability over operating regions since 

endogenously scheduling variables or their bounds cannot be known a priori. Thus 

guaranteeing the desired level of performance and stability of the gain-scheduled closed 

loop system under any operating conditions is he primary research objective of this 

dissertation. 

 

2.4.1 Stability Classification 

Stability analyses of gain-scheduled closed loop systems can be roughly 

categorized into linear and nonlinear stability criteria [13], [64]. The simplest criteria in 

linear stability analyses, i.e., stability evaluated for linearized system, is frozen 

parameter stability where closed loop stability is evaluated and the standard feedback 

loop of linearized plant model and linear controller is examined to be Hurwitz. Note that 

frozen parameter stability is a merely guarantee of stability at fixed scheduling 
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parameters. Although this stability criterion is commonly used in practice, it may not be 

sufficient for the nonlinear stability of real systems when significant nonlinear dynamics 

are neglected during the linearization.  

In contrast, nonlinear stability ensures the practical stability of nonlinear system 

in that stability is evaluated for closed loop systems without neglecting any aspects of 

the system techniques. There exist several nonlinear stability analyses in literature [46], 

but Lyapunov stability is one of most commonly used solutions to achieve nonlinear 

stability. Under this criterion, the existence of the common or parameter-dependent 

Lyapunov function with respect to the trajectories of the nonlinear system will guarantee 

the asymptotic stability of the nonlinear system globally or for reasonably large region 

around the equilibrium point [36].           

 

2.4.1.1 Linear Stability Analysis  

One of the common methods used in linear stability analysis can be examined 

simply by evaluating the closed loop stability of the linearized plant model. In nonlinear 

system approaches, this level of stability can be guaranteed for any fixed value of the 

scheduling variables without considering scheduling dynamics. However, the global 

controller, which is formed by interpolation between local stabilizing controllers, may 

not stabilize the system at the intermediate operating points, i.e., off-design points, even 

if local controllers may stabilize at design points.  

The simple example given below efficiently illustrates the possibility that a 

global control system violates stability. Using the linear control design under the Local 
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Controller Network (LCN) approach, an interpolated controller could be defined as a 

convex set of two local controllers where weighting factor ]1,0[i  (Equation 2.12). 

Note that individual controllers 1K  and 2K  successfully stabilize the plant but the 

interpolated controller IK , denoted in Equation 2.12, fails to stabilize the plant for 
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21 )1()( KKsK I                                             (2.12) 

Several studies have proposed controller interpolation methods that guarantee frozen 

parameter stability under the preliminary condition that scheduling variables are changed 

sufficiently slowly, then the stability of nonlinear system will be guaranteed when the 

condition is valid over the operating regions.  

Alternatively, other approaches define the acceptable rate of change on 

scheduling variables, but the “slowly varying” assumptions are still essential to 

guarantee the global stability of a given system. Thus, these types of approaches may be 

valid for exogenously-scheduling systems where the rate of change of the scheduling 

variable is usually known a priori and nonlinear behavior of many systems is more 

appropriately captured by scheduling parameters that are functions of system outputs.  

However, guaranteeing the stability of endogenously scheduled systems is much harder 

to achieve since a bound on the rate of change may not be known a priori.  
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2.4.1.2 General Nonlinear Stability Analysis  

Any linear stability technique merely evaluates whether the system is 

asymptotically stable for infinitesimal deviations around the equilibrium point [46]. It 

may not be sufficient to guarantee the stability of the nonlinear system particularly when 

scheduling variable changes in a wide range of operating conditions. To guarantee the 

desired global stability under arbitrary variations, the nonlinear stability of the closed 

loop system should be evaluated.  

A well-known method for guaranteeing this level of stability of a nonlinear 

system is to use Lyapunov stability criterion, defined in Theorem 2.1 [25]. Before 

explaining the Lyapunov stability, some key definitions related to this criterion are 

addressed for better understanding of the stability analysis in this dissertation.   

 

Definition 2.1) Stability of an equilibrium point [25]  

The equilibrium point 0x  of the autonomous system )(xfx   is 

- stable if, for each 0 , there is  0)(    such that  

  )()0( txx  , 0t                                  (2.13) 

- unstable if it is not stable 

- asymptotically stable if it is stable and there exists   such that 

0)(lim)0( 


txx
t

                                            (2.14) 

 

Definition 2.2) Global asymptotic stability [25] 
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The equilibrium point 0x  of the autonomous system )(xfx   is globally 

asymptotically stable if  

- 0x  is asymptotically stable and 

- 0)(lim 


tx
t

 for all nRx 0                                                                                   (2.15) 

 

Definition 2.3) Class K functions [25] 

The continuous function   is called a Kclass  function if 

- 0)0(                                                                                                                 (2.16) 

-   0x ,  0  x                                                                                            (2.17) 

-  x  is strictly monotonically increasing with x                                             (2.18) 

 

Definition 2.4) Positive-definite functions [25] 

The continuous function ),( txV  is positive definite on nRG  if 

-  xtxV ),( ,   Gx  and 0t                                                                  (2.19) 

 

Definition 2.5) Decrescent functions [25] 

The continuous function ),( txV  is called a decrescent function on nRG  if there exists 

a Kclass  function   such that 

-  xtxV ),( ,   Gx  and 0t                                                                  (2.20) 
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Theorem 2.1) Lyapunov stability [25]  

Let 0x  be an equilibrium point for the nonlinear autonomous system )(xfx  . Let 

RRV n  :  be a continuously differentiable function such that 

0)0( V and 0)( xV  0x                                       (2.21) 

c   )(xV                                            (2.22) 

0)( xV  0x                                                 (2.23) 

Then the equilibrium point 0x  is a globally asymptotically stable. 

Proof: 

Assume there exists   in class k  function such that  xtxV ),(  where ),0( hBx , 

0tt  . Also, when 0),( txV  is satisfied along the trajectories of system )(xfx   then 

we know that  

),(),( 00 txVtxV                                                (2.24) 

Next, let   be the smallest 0x  such that )(),( 00 txV . Given 0 , for all  ,     

  )(0 txx                                     (2.25) 

Then we know that: 

)(),( 000   txVx                                     (2.26) 

)(),(0   txVx                                         (2.27) 

Finally, we can conclude that the solution to the nonlinear autonomous system )(xfx   

is globally asymptotically stable using the final form in Equation 2.28 

    )()())(( txtx                                      (2.28) 
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A function )(xV  that satisfies the conditions in Equation 2.21-23 is called a 

Lyapunov function; thus a Lyapunov function should be a positive-definite decrescent 

function and the negative form of Lie-derivative )(xV  is positive-definite. The 

quadratic form of Lyapunov function 0 ,)(  PPxxxV T  has been widely used for 

linear, LPV, and polytopic systems where x  is system states and P  is Lyapunov matrix. 

For linear autonomous systems Axx   the choice of quadratic function leads to the 

condition in Equation 2.23 as 0)()(  xPAPAxxV TT  such that the condition for 

stability is equivalent to finding a solution to the well-known Lyapunov Equation 

QPAPAT   where Q  is a positive-definite matrix [74].   

 

2.4.1.3 Nonlinear Stability with Guarantee of Worst Performance  

Despite the fact that the nonlinear stability guarantees closed loop stability of the 

nonlinear system, it may not be sufficient for assuming the practical stability required in 

gain-scheduled control. Under the gain-scheduling framework, the LMN or LPV 

representation of the nonlinear system may perform reasonably well - merely within a 

specified operating range. Thus, any stability guarantees will be valid only when the 

system does not leave the operating range during the entire operation [65].  

Furthermore, guarantees of the worst case performance will be useful in 

improving practical aspects of the stability analysis for nonlinear systems and extending 

the Lyapunov stability to performance consideration through examining worst 

performance bounds from system inputs to outputs or disturbance. To implement the 
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performance efficiently, Linear Matrix Inequalities (LMIs) techniques are commonly 

used to permit simplicity in analysis [39], [75], described in the following section.  

 

2.4.2 Stability Analysis with Performance Bounds via LMIs 

Linear matrix inequalities (LMI) have the form 0)(
1

0  


m

i

i FxFxF  where 

mRx  is the variable and nnT

ii RFF  , mi ,...,1  are given. This inequality means 

that )(xF  is positive-definite, i.e., 0)( uxFuT  for all nonzero nRu . Also, this LMI 

is a convex constraint on x , i.e., the set  0)(  xFx  is convex. Although the LMI may 

have a specialized form, it can represent a wide variety of convex constraints on x . In 

particular, linear inequalities, quadratic inequalities, and constraints that arise in control 

theory, such as Lyapunov and convex quadratic matrix inequalities, can be cast in the 

form of LMI [74].       

This vector gives more flexibility as well as simplicity to the analyses in practice, 

thus many complex problems in analytic or computational studies can be easily solved 

by formulating them into LMIs. For example, multiple LMIs 0)(,,0)( )()1(  xFxF p  

can be expressed as a single LMI  0))(,,0)(( )()1(  xFxFdiag p , therefore a set of 

LMIs can simply be converted into a single LMI [74].  

When the matrix iF  is diagonal, the LMI 0)( xF  is just a set of linear 

inequalities. The LMI formula described above can be converted into a simple LMI 
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formula called “Schur complement.” Note that these two formulae are completely 

identical and Q  and R  are symmetric and positive-definite matrices [49]: 

,0)( xR  and 0)()()()( 1   TxSxRxSxQ                         (2.29) 

0
)()(

)()(










xRxS

xSxQ
T

                                           (2.30)                                                                         

Also, LMI-based analyses have best-fit for the polytopic system representation 

showing that overall system is composed of a convex hull of several linear systems, 

described as follows.  

 

Definition 2.6) Convex hull and polytopic systems [74] 

The convex hull of a given set of points nxx ,,1   is defined as: 









  
 

n

j

n

i

iiiin xxRxxxCo
1 1

1  1  [0,1], ,  }),,({                (2.31) 

Then, a state space representation of the polytopic system is given by 



























w

x

tC

tBtA

z

x

0)(

)()(
                                            (2.32) 

where }),,({)( 1 nAACotA  , }),,({)( 1 nBBCotB  , and }),,({)( 1 nCCCotC  .  

 

Note that }),,({ 1 nAACo   is formed by the combination of system matrices and its 

weighting function, nn AAA   2211 , and the sum of weighting function  i  

needs not be one. Under these conditions, the closed loop of the LMN/LCN has a 
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polytopic relationship, affine in weighting function  , that allows the convex 

optimization in controller interpolation. This will be discussed later in this dissertation.   

Let a quadratic Lyapunov function be 0 ,)(  PPxxxV T , then a necessary and 

sufficient condition for asymptotic stability of the linearized system is determined by the 

existence of a solution to the LMI 0 PAPAT . For polytopic systems, asymptotic 

stability can be guaranteed by the solution of a set of LMIs 0 i

T

i PAPA , mi ,,1  

for the common Lyapunov matrix 0P . 

 

2.4.2.1  H  performance 

Among various norm-based performance definitions, the most commonly used 

one in stability is H  performance, denoted as [44]: 

2

2

0
2

sup))((max
w

z
jwGG

w
Lww





                                (2.33) 

H  performance is known as a power norm, defined by finite energy to finite energy, 

and also an induced norm in terms of expected values of stochastic signals. The H  

norm is usually computed numerically fom a state space realization as the smallest value 

of   such that the Hamiltonian matrix H  has eigenvalues on the imaginary axis. In 

robust control, the H  norm is commonly used because it is convenient for representing 

unstructured modeling uncertainty [69], [75] and satisfies the multiplicative property that 

is useful in analysis. 



 35 


 )()()()( sBsAsBsA                                  (2.34) 

Using this definition, LMI conditions for an upper bound on the H  gain can be 

prepared and the resulting asymptotic stability criterion is given as follows 

 

Theorem 2.2) Stability using H  performance 

The standard LTI system is given as 

  

























w

x

C

BA

z

x

0


                                                 (2.35) 

Then the system in Equation 2.32 is asymptotically stable and has an H  norm less than 

  if and only if there exists 0P  such that  

0
2



















IPB

PBCCPAPA
T

TT


                                  (2.36) 

Proof: See [74] 

 

For the polytopic system, this LMI formulation can be easily extended as the set of 

LMIs: 

0
2




















IPB

PBCCPAPA
T

i

ii

T

ii

T

i


, for .,,1 mi             (2.37) 
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2.4.2.2 2H  performance 

Another norm-based performance used widely in practice is 2H  performance, 

denoted by [49]. 

 







 dwjwGdwjwGjwGtrG

i

i

H ))((
2

1
))()((

2

1 2

2



       (2.38) 

The 2H  norm can be interpreted as a 2-norm output resulting from applying unit 

impulses )(ti to each output. In general, the 2H  norm has a number of outstanding 

mathematical as well as numerous properties and its minimization has important 

engineering implications. In stochastic process, this interpretation allows the 

implementation of optimal control in terms of Linear Quadratic Gaussian (LQG) where 

we measure the expected root mean square (rms) value of the output in response to white 

noise excitation.  

However, the 2H  norm is not an induced norm and does not satisfy the 

multiplicative property. Note that the inducing norm is defined as a maximum gain for 

all possible input directions,  

p

p

wip w

Gw
G

0
max


  where 

i

pp

ip
ww

1

)( . Thus 

looking for the direction of vector w so that the ratio 

p

p

w

z
 is maximized then the 

induced norm gives the largest possible amplifying power of the matrix. 

 

Theorem 2.3) Lyapunov stability [74] 
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The system in Equation 2.29 is asymptotically stable and has the 2H  norm less than   if 

and only if there exists 0P  such that  

0

















IPB

PBPAPA
T

T


 and 0














IC

CP T


                        (2.39) 

Equivalently,  

0

















ICP

PCPAPA TT


 and 0




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



IB

BP
T

i

i


                     (2.40) 

Proof: See [74] 

 

Also, these LMIs can be extended to polytopic systems as the set of LMIs 

0




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



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
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









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i

T

i


, for .,,1 mi      (2.41) 

Equivalently,  

 0


















IPC

PCPAPA

i

T

ii

T

i


 and 0









IB

BP
T

i

i


, for .,,1 mi    (2.42) 

Note that the difference between the interpretation of the 2H  and H  norms 

may help the readers to understand the applications in practice. Minimizing H  norm 

corresponds to minimizing the peak of the largest singular value, i.e., “worst direction 

and worst frequency,” while minimizing the 2H  norm results in minimizing the sum of 

the square root of all singular values over all frequencies, i.e., “average direction and 

average frequency” [3].   
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2.4.3 Conclusion: Stability of Gain-scheduled Control System 

In gain-scheduled control, the closed loop of the nonlinear system is represented 

as a polytopic model and the associated stability can be determined using an LMI-based 

Lyapunov stability analysis. Using Lyapunov stability, the interconnected LMN/LCN 

system can be guaranteed to be stable for arbitrarily fast variations of the scheduling 

variable where a common Lyapunov function can be found for each local plant model in 

the polytopic system. For exogenous gain scheduled systems, this condition would be 

sufficient for guaranteeing the stability globally throughout the operating envelope since 

the change in scheduling variables is known a priori.   

However, for endogenously-scheduled systems, the above conditions may not be 

sufficient to guarantee global stability because a bound of change of scheduling 

variables may not be known a priori. For practical stability, it is necessary to ensure the 

scheduling variable remains within acceptable bounds for an assumed class of 

disturbances. Although the existence of a common Lyapunov function guarantees 

stability through bounded inputs and outputs, if sudden changes in inputs or outputs 

drive the system outside of the region then the instability occurs.  

Thus, guarantees of the worst case performance from disturbances to system 

inputs and outputs could be very useful to ensure the practical stability of the physical 

systems. In essence, Lyapunov stability can be extended to generate the worst case of 

norm-based performance bounds on system outputs, controller outputs or scheduling 

variables, thus the LMI-based method is used efficiently in the stability of a gain 

scheduled closed loop system.  
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2.5 Youla-based Gain-scheduled Control  

 

2.5.1 General Youla Parameterization 

Youla parameterization is one of the more recent approaches in gain scheduling 

and is based on the work by Youla et al, in the 1970’s [62]. The crux of Youla 

parameterization can be described as “all stabilizing controllers can be parameterized in 

terms of a single parameter,” often called “Youla parameter,” denoted by Q . Under this 

framework, the closed loop system can be represented as an affine system in the Youla 

parameter Q  that allows the optimal design of the stabilizing controller to be a convex 

optimization problem.  

In general, Youla parameterization is implemented through coprime factorization. 

For plant models and controllers, factorization leads to the models and controllers being 

represented as the ratio of two stable transfer functions. This factorization is termed 

coprime when two transfer functions have no common zeros in RHP. Thus coprime 

factorization excludes any pole-zero cancellations in the fractional representation.  

In multivariable cases, the plant model and nominal controller transfer functions 

are factored into the product of a stable transfer function and a transfer function with a 

stable inverse. In the mathematical view, a dynamic system (plant model and controller) 

can be decomposed into right and left coprime factors NMNMsP
~~

)( 11   .   

Using this coprime factorization, the controller can be decomposed into left and 

right coprime factors, UVUVsK
~~

)( 11    and a plant model into 
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NMNMsP
~~

)( 11    such that RHVVUU
~

,,
~

,  and RHMMNN
~

,,
~

, . If a 

nominal plant model 0P  is stabilized by a nominal controller 0K  and its coprime factors 

satisfy the double Bezout identities (Equation 2.43), then all stabilizing controllers can 

be parametrized in terms of coprime factors of the nominal controller/plant and Youla 

parameter, denoted by Q  (Equation 2.44). Similarly, all plants that can be stabilized by 

the nominal controller 0K  are parameterized in terms of the dual Youla parameter S  

(Equation 2.45)  
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Dual Youla parameterization allows us to represent all stabilizing controllers and 

stabilizable plants as a Linear Fractional Transformation (LFT) [76]. Under this 

framework, a standard feedback control loop with stabilizing controller 0K  (Figure 2.4) 

can be equivalent to the decomposed system showing that all stabilizing controllers can 

be represented as a lower LFT of interconnection matrix kJ  and Youla parameter Q , 

denoted by ),( QJF kl . Also, the class of all stabilizable plants can be represented as an 

upper LFT of interconnection matrix pJ  and dual Youla parameter S , denoted by 

),( SJF pu . The associating closed loop system can be interconnected with those two 
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systems, ),( QJF kl  and ),( SJF pu , as shown in Figure 2.5. Note that the interconnected 

LQN/LSN system is equivalent to the standard feedback control system in Figure 2.5.   

  

  

Fig. 2.4. Feedback control loop. 

 

 

Fig. 2.5. Feedback control loop with dual Youla parameterization. 
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The closed loop system of standard feedback loop in Figure 2.4 can be represented by 
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Thus the stability of the closed loop system is guaranteed when the system 
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 is Hurwitz. To show the ability 

of convex optimization of the closed loop system in terms of (dual) Youla parameters, 

the above system representation can be written as follows [63] 
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Note that the closed loop system is affine in Youla parameter Q  and dual Youla 

parameter S  which allow the design of the optimal stabilizing controller to be a 

controller design through the convex optimization that is computationally feasible. Also, 

the closed loop system is stable when systems 
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Hurwitz. This is confirmed by the examination of the interconnection of matrices kJ  and 

pJ  (Equation 2.50) using the double Bezout identities. The closed loop system in Figure 

2.5 is internally stable if and only if the system in Figure 2.6 is stable [5], [63]. 
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Fig. 2.6. Simple diagram of feedback loop using Dual Youla parameterization. 

 

 

2.5.2 Interpolation of Dual Youla Parameters 

Although the LCN/LMN approach has been successfully applied in practice, 

there exist several shortcomings in the aspect of stability. For example, even when all 

stabilizing controllers can stabilize the plant at every fixed operating points, the blended 

controller may not stabilize the plant at the intermediate points over the operating 

envelopes. Furthermore, classical gain scheduling approaches require that locally 

defined plant models and controllers should be open loop stable for guaranteeing the 

internal stability of the closed loop system.  
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The Youla-based gain-scheduling framework allows the parameterization of 

plant models and stabilizing controllers designed at local operating points and guarantees 

recovery of the original local controllers at the design point and increases the stability of 

gain-scheduled systems by guaranteeing frozen parameter stability at intermediate 

design points while recovering the original local controllers at the design points.  

Variations of this approach have been termed QJ  interpolation [14], or 

blending of the Youla parameters [77].  By virtue of the Youla parameterization, this 

framework permits the scheduling of unstable controllers [78]. Moreover, this 

framework has the intuitive appeal of isolating common controller elements in function 

kJ  and blending only the differences between the individual controllers. When 

implementing a blended controller for a plant 0P , the blended controller may be 

constructed as in Equation 2.44 where 
1

000


 VUK  is any controller that stabilizes the 

plant. Note that the original local controller iK  is recovered at 1i .  

Moreover, when )(QK  stabilizes 0P  for any RHQ , then  QK  also 

stabilizes 0P  for every frozen value of  , since each RHQi  and thus 

 RHQii , something not necessarily guaranteed with the LCN framework. The 

systematic differences between the conventional LCN framework and Youla-based 

QJ  interpolation method can be easily depicted in Figure 2.7-2.8. 
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Similarly, the nonlinear plant can be characterized by a group of dual Youla 

parameters, iS  [58], [63]. In this case, the coprime factors are selected as to satisfy 

another Bezout identity (Equation 2.52). The nonlinear model is formed as shown in 

Equation 2.53 with the dual Youla parameters constructed as 00

~~
NMMNS iii  .  

 

Fig. 2.7. Output blending of local controller network (LCN). 
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Fig. 2.8. Output blending of local Q-network (LQN). 

 

 

The interpolated plant model in terms of dual Youla parameter is called Local S-

Network (LSN) and the resulting interconnected LQN/LSN system is depicted in Figure 

2.9. The interconnection of matrices kJ  and pJ can be determined by Equation 2.55. 

Clearly, the interconnected system can be described as a simplified representation on the 
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left hand side thus the condition for stability of the overall system is equivalent to the 

stability of the simplified system also shown in Figure 2.10.  

 

 

Fig. 2.9. Closed loop system with LQN/LSN. 
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Fig. 2.10. Feedback loop of LQN/LSN interconnected system. 

 

 

One of the important aspects in Youla-based gain scheduling is the local 

controller recovery procedure. To demonstrate local controller recovery, a standard 

mathematical expression of Youla parameter is considered 
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Also, a nominal controller can be derived using coprime factorization and the 

Bezout identity as follows: 
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Using the results obtained above, local controller recovery can be shown by 
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Equivalently,  
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(2.59) 

Finally, the closed loop representation of the LQN/LSN framework is 

implemented. Note that the relationship form  Tww 21  to  Tee 21 or  Tyu  of the 

system in Figure 2.11 for the modified framework is given by Equation where 1T , 2T , 3T , 

and 4T  depend merely on the choice of 0K  and 0P .  
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Fig. 2.11 Simplified interconnected LQN/LSN system. 
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Compared to the Local Q-Network (LQN), the Local S-Network (LSN) is a 

versatile framework, having been used to capture system variations and model 

uncertainty [17], [58]. Furthermore, it allows special cases where scheduling variables 

cannot be measured on-line [77].   

The LQN framework for gain-scheduling offers significant advantages such as 

guaranteed frozen parameter stability, and yet only a few researchers have explored this 

framework.  Niemann and Stoustrup have examined standard LQN approaches [17], [58] 

[77] and Q-blending with an observer-based control scheme [59], [79]. They have 

applied their work to power plant control [80], [81] and assessed the performance of the 

system where modeling errors exist, denoted by a fault tolerant system [60], [82]. 

Stilwell et al. also discussed this framework under the title “J-Q interpolation” [14], and 

examined interpolation of controllers by defining a stability-preserving condition 

corresponding to bound on rate of variation of scheduling variables [83], [84], and a 

state-space version of Q-blending using state feedback and observer gains [85].  
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3. YOULA PARAMETER BASED CONTROLLER INTERPOLATION 

 

As discussed previously, guaranteeing global stability of the nonlinear system is 

a challenging problem in gain-scheduling approaches which has motivated the research 

presented in this dissertation. This section will examine the gain-scheduling problem 

with a particular focus on controller interpolation with guaranteed stability of the 

nonlinear closed loop system. Specifically, an advanced controller interpolation method 

that guarantees stability of the nonlinear system under arbitrarily fast-varying scheduling 

is proposed and demonstrated through the simulation case study.     

First, the general case of Youla parameterization-based gain-scheduling will be 

examined to identify degrees of freedom in the design of the gain-scheduled control 

framework. Second, for the Linear Parameter Varying (LPV) system a particular 

controller interpolation method utilizing the Youla parameterization will be proposed. 

Under this framework, quadratic stability is guaranteed by construction of a particular 

controller interpolation method, while the characteristics of individual controllers 

designed a priori are recovered at critical design points.     

 In essence, the proposed approach ensures closed loop stability despite arbitrarily 

fast transitions which lead naturally to the application of switched linear systems. The 

efficacy of the method is demonstrated in simulation using a multi-input-multi-output 

nonminimum phase system while interpolating between two controllers with different 

sizes and structures. 
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3.1 Local Controller Network (LCN)/Local Model Network (LMN) Presentation  

The Local Model Network (LMN) framework has been widely used in practice 

and commonly implemented under the assumption that the nonlinear plant is adequately 

represented by interpolation of local linear models. Under the LCN/LMN framework, 

local controllers and plant models are assumed to be represented as in Equation 3.1  

kikiki

kikikiki

xCu

eBxAx
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 2
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    and      
pipipi

pipipipi

xCy

eBxAx
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                       (3.1) 

By virtue of output blending, the Local Controller Network )(sK and Local Model 

Network )(sP  can be formed in polytopic representation in Equations 3.2-3, 

respectively, and the resulting LCN and LMN are a quasi-LPV representation that are 

affine in the bounded parameters ]1,0[i , depicted in Figure 3.1.  
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Fig. 3.1. Interconnected LCN/LMN system. 

 

The closed loop system from  Tww 21  to  Tyu  is given in state-space 

representation in Equation 3.4, denoted by  sG . Again, this system is formed in a 

polytopic representation of individual models. 
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3.2 Local Q-Network (LQN)/Local S-Network (LSN) Presentation 

 

3.2.1 Closed Loop System Representation 

This section discusses general Youla-based gain-scheduling, focusing several 

design aspects such as plant representation, selection of nominal controller, and the 

effect of coprime factorizations of the system based on a local model/controller network. 

Using a dual Youla parameterization, the formulation of the interconnected Local Q-

Network (LQN) and Local S-Network (LSN) system is presented in Equation 3.5 and 

also depicted in Figure 3.2.  
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Fig. 3.2. Interconnected LQN/LSN system. 

 

This interconnected system satisfies that Bezout identities can be found based 

on a choice of feedback gains pF  and kF  such that the matrices kkk FBA   and 

ppp FBA   have strictly negative eigenvalues [14], and the state space representations of 

the associated left and right coprime factors are given in Equations 3.6-7 respectively. 


































I

I

B

B

FC

CF

FBA

FBA

VN

UM
Kj

Pi

KjPi

KjPi

KjKjKj

PiPiPi

ji

ji

   0

0   

0

0

           

             

0

0

                  (3.6) 



















 


















I

I

B

B

FC

CF

ACB

CBA

MN

UV Kj

Pi

KjPi

KjPi

KjPiKj

KjPiPi

ii

jj

   0

0   

0

0

  

   ~~

~~

                       (3.7)    

The resulting closed loop from  Tww 21 to  Tyu  is characterized with the 

interconnection of LQN and LSN, denoted  sH  (Equation 3.5), where 1T , 2T , and 3T  

depend on the choice of 0K , 0P , and their coprime factorizations as given in Equation 

3.9  
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Typically, the choice of 0P  should be made so that LSN adequately represents 

the nonlinear plant, but the 0K  can be chosen somewhat arbitrarily among the 

controllers designed at each operating point so that the class of acceptable disturbances 

is maximized. Note that the trivial choice of 000  PK  results in recovery of the 

LCN/LMN framework.  

The choice of coprime factorization presents an additional degree of design 

freedom that can be exploited to improve stability and performance, and can be 

equivalent to selectrd matrices pF  and kF  so that kkk FBA   and ppp FBA  are 

Hurwitz. Clearly, gain-scheduling on the Youla parameters has the interpretation of 

isolating common controller elements in kJ , and controller differences in iQ , defined by 

the coprime factors as 00 )(
~

VKKVQ iii  . For the nominal choice 0 kp FF , the 

associated coprime factors are simply 1

00 )(
~  PKIVi  and IV 0 . Thus, iQ   is simply 

the controller differences filtered by the loop sensitivity function.                                                                                                                                                                                       

Generally, finding the optimal pF  and kF  that minimizes some performance 

norm is a nonconvex optimization problem. Even in the simple case of scheduling only 

two plants/controllers, the resulting closed loop system can be represented as a 
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constrained state-feedback problem for a polytopic system.  For the unconstrained case, 

this is easily solved by the Linear Matrix Inequality (LMI) [27]   

0
1

2,,,,  QCQCBBBYYBQAQA i

T

i
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iwiw
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iu

T

iiiu
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ii


              (3.10)    

However, in a constrained case, this is a well-known Bilinear Matrix Inequality (BMI) 

that may not be computationally feasible [63], [74].  

 

3.2.2 Gain-Scheduled Control of a Mass-Spring–Damper System 

The reader knows that the choice of coprime factorization presents a design 

degree of freedom in Youla-based gain-scheduling and can be implemented by finding 

the optimal feedback gains pF  and kF . Although finding the optimal choice of coprime 

factors remains computationally difficult, a simple example illustrates the value of a few 

heuristic rules. The illustrative simulation example presented in this section shows the 

effect of the choice of coprime factors via selecting the optimal pF  and kF . 

As for the simulation case study, consider a nonlinear mass-spring-damper 

system as given in Figure 3.1. The damping coefficient, c , and spring constant, k , are 

assumed to vary linearly as a function of displacement and the resulting state space form 

of the system is presented in Equation 3.11 
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Fig. 3.3. Mass-spring-damper system. 
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where 0.7]  ,3.0[c ,  0.05]  ,15.0[k , and 1 m .  

Over the operation envelopes, two design points are chosen at upper end values 

of the prescribed range. The pole-zero plot for the linear parameter varying plant is 

shown in Figure 3.4, the step response and bode magnitude/phase plot at the two design 

points are given in Figures 3.5-3.6 respectively. 

To illustrate the effect on the choice of coprime factors, the reference-to-error 

H  norm of the polytopic system,  
22 LL

sG
 , is calculated for several cases. Note that 

the system  sG  is defined as Equation 3.12 and H norm of the system  sG  can be 

calculated by Equation 3.13.   
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Fig. 3.4. Pole-zero plot for varying k and design points. 

 

 

Fig. 3.5. Step responses of two local linear models. 
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Fig. 3.6. Bode plots of two local linear models. 
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First a “good” choice of coprime factors is constructed using LQR techniques to 

determine the matrices PF  and KF . Second, a “nominal” choice of coprime factors 
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determined by 0 KP FF   is evaluated. Third, a “bad” choice of coprime factors is 

constructed by trial and error. For the purpose of comparison, the H  norm of the 

LCN/LMN approach is also calculated.   

The results show that the choice of coprime factors has a significant role in 

performance bound in stability analysis. This is also evident in the transient response of 

the nonlinear closed loop system as given in Figure 3.7. Although LQN indicates that it 

is clearly possible to perform better than the standard method (LCN), there is also the 

potential to perform worse. Furthermore, the reader can recognize that a key indicator 

appears to be the maximum H norm of the ii SQ /  interconnection in Table 3.1. Note 

that the H norm of the interconnected LQN/LSN system with bad coprime factors is 

several times worse than those of other cases.  

 

Table 3.1. Performance bound on LQN/LSN. 

  
22 LL

sG


  
22

,max
LLii

i
SQF


 

     Good coprime factors      1.42   1.83 

  Nominal coprime factors      6.76   1.97 

         Bad coprime factors     10.12   6.69 

      Local Control Network      1.55    NA 
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Fig. 3.7. Nonlinear step response depending on choice of coprime factors. 

 

To analyze the results clearly, recall of the closed loop representation of 

LQN/LSN interconnection system is obtained in Section 3.2.1. 
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Equation 3.14 indicates that the closed loop performance depends on several time 

invariant coprime factors, 1T , 2T  and 3T  (Equation 3.15), and the polytopic system which 

is formed by the ii SQ /  interconnection as given in Equation 3.16. Thus, intuitively, 

jointly minimizing ii SQ / , formed by the differences between controllers/plants would 

serve to decrease the system performance norms. 

To ensure good performance, the following guideline for the choice of coprime 

factors will be useful to demonstrate Youla-based gain-scheduled control. First, select 

the matrices PF  and KF  so that kkk FBA   and ppp FBA   are Hurwitz. This allows for 

the interpolation of plant/controller that is not open loop stable to be incorporated in the 

LQN/LSN framework. Second, verify that for the choice of matrices PF  and KF , the 

matrix QSA  given in Equations 3.17-21 is Hurwitz. This ensures that the individual 

ii SQ /  interconnections are stabilized. Third, iterate on the choice of matrices PF  and 

KF  to minimize an appropriate performance norm. 
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In conclusion, response of bad coprime factors can be found to be worse than that 

of nominal choice and obviously shows that the choice of coprime factors directly 

affects the dynamics of the interpolated controller and the closed loop system (Figure 

3.8).  
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Fig. 3.8. Simulation comparison of LQN and LCN.  

  

3.3 LPV Control with LPV-Q System  

The approach in this section is based promarily on the paper [86], [87]. In this 

section, the specific case of a model represented by an LPV system is considered.  

 

3.3.1 Preliminaries     

First, a few mathematical and notational preliminaries are prepared. The transfer 

function for a Linear Parameter Varying (LPV) system is denoted ),( sG . When it is 

clear from the context, the more compact notation )(G  will be used. The associated 

state space system representation is given by 
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The scheduling parameter  may be a scalar or vector and is assumed to lie 

within some predefined range, ] ,[    with the set of critical design points defined by 

nii ,,1 ,  .  As appropriate, we will use the following as an equivalent notation for 

the system defined in Equation 3.23 
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In this section, stability of the closed loop system will be established using 

common quadratic Lyapunov functions (CQLF) of the form, 0 ,)(  PPxxxV T ; thus 

0)( xV . Assuming an associated LPV dynamic system uBxAx )()(   , if 

0 ,0)()(  xPAPA T  , then the LPV system is asymptotically stable [74]. The 

search for such a common quadratic Lyapunov function typically would require gridding 

the variable over its predefined range [42] and solving the finite number of associated 

Linear Matrix Inequalities (LMIs). The number of LMIs is generally reduced 

considerably for a polytopic LPV system [74] where the system matrices are defined in 

terms of vertices, at which the LPV system is evaluated at a particular operation point, 

e.g.  
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At these points the dynamics are denoted simply as: 
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The set of all real, rational, proper, and stable transfer functions (real rational 

subspace of H ) is denoted as RH  [67].  A square matrix A is called a Hurwitz matrix 

if every eigenvalue of A has a strictly negative real part, i.e. 0))(Re( A . 

 

3.3.2 LPV Control with Local Controller Recovery 

 When nonlinear system models are constructed using first principles, the state 

variables generally remain tied to the physics of the system. This naturally leads to 

Linear Parameter Varying (LPV) models where linear models at different operating 

points share the same state variables, and the state space system matrices are 

parameterized in terms of the scheduling variable, θ: 
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This is in contrast to a set of controllers, defined a priori, where there is no physical 

relationship between state variables. Assume that these local controllers have been 

designed for a set of critical operating conditions with plant dynamics defined by 

Equation 3.26 with i  : 

 ijji       0   and    1                                     (3.27) 

In this case, the Local Control Network (LCN) representation is more appropriate. 

Assuming individual controllers are represented in state space form as: 
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The full LCN can be constructed as: 
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The input/output notation is defined consistent with the general feedback control 

diagram shown in Figure 3.9. 

 

 

Fig. 3.9. General feedback control diagram. 

 

A sufficient condition for stability of the closed loop system is the existence of a 

common quadratic Lyapunov function. This can be checked using the finite set of 

Linear Matrix Inequalities (LMIs): 

     0,,  PAPA
T

iLPVCLiLPVCL   
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When this polytopic system is evaluated at its vertices, the state matrix in 

Equation 3.30 assumes an upper block triangular structure. By inspection, we may 

conclude that a necessary precondition for stability is that each controller must be open 

loop stable. Moreover, we note that the existence of a common Lyapunov function may 

be computationally elusive, particularly for a large set of controllers. However, using the 

Youla parameterization as an alternate framework for controller interpolation is possible 

with less restrictive conditions and with guaranteed stability. 

3.3.2.1 Youla Parameter-Based Gain-Scheduling 

To create a controller interpolation scheme that satisfies the aforementioned 

objectives we employ a Youla parameter-based framework. First it is necessary to select 

a nominal controller  
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Note that this controller need not be an LPV controller. It simply needs to be any 

controller (LTI or LPV) that stabilizes the LPV plant over the range defined by the 

scheduling parameter. In most cases, this nominal controller would be designed for 

robustness, not performance, as the local controllers can be designed to achieve high 

performance at critical operating points. This aspect of the design process, including 

particular choices for ),(0 sK , will be discussed later in section 3.3.2.5. 
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Next we decompose the plant and nominal controller into left and right coprime 

factors, as 
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For the remainder of the paper, we will drop the ),(0 sK  notation for the more 

compact )(0 K . These coprime factors are constructed such that 
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 ),( 0000  , and such that they satisfy the double Bezout identity 
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One such factorization can be constructed from the state space representations as: 
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where ( )pF   and ( )kF   are feedback gains chosen so that the matrices 

)()()(  ppp FBA   and )()()( 000  kkk FBA   are Hurwitz. A particular technique 
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for selecting )(pF  and )(kF  which guarantee stability for time-varying   will be 

given later in equations 3.56-57. 

The set of all stabilizing controllers for the LPV plant can then be formulated in 

terms of the interconnection system 
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and a Youla parameter  as shown in Figure 3.10. For implementation, state-space 

representations of these elements are given by 
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Fig. 3.10. Youla parameter based feedback control system. 

 

3.3.2.2 Local Controller Recovery 

The set of all stabilizing controllers is parameterized in terms of system Q . 

Assuming that the local controller iK  stabilizes the LPV plant with i  , then the 

local controller can be recovered as ) ,( iKli QJFK   where lF  is the lower fractional 

transformation. iQ  is defined as )()(
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0000 iiiiiiii VKKVUVVUQ   , and the 

necessary coprime factors are defined as given below to satisfy a similar Bezout identity 

as in Equation 3.34. Note that by construction RHQi , and each iQ  is stable. 
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To show that we do in fact recover the controller  at the i
th

 operating condition: 
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gives the identity: 
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Thus with some minor algebraic manipulation, iiiKl KQJF ) ),((  . 
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3.3.2.3 Stability of the Closed Loop System 

The closed loop system can be written as ) ),(()( QTFG l   as shown in Figure 

3.10. After some algebraic manipulation, and application of the Bezout identities, the 

system  is given as: 
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The particular structure of )(T  leads to the closed loop system, 
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affine in the system Q  as:  
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The state matrix of the closed loop system )(G  is given as follows (where * indicates 

nonzero matrix entries): 
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The closed loop system is stable under arbitrarily fast variations in  if there 

exists a common quadratic Lyapunov function (CQLF): 0x  ,0)(  xPxxV G

T and 

0x  ,0)()(  G

T

GGG PAAP  . Noting the block diagonal structure of the closed 

loop system state matrix (Equation 3.51), stability of the system can be guaranteed by 

ensuring the stability of each sub-block. 

First, the state matrix )(21 TA  is simply the closed loop describing the interaction 

between the nominal controller and the LPV plant. By assumption, the nominal 

controller, fixed or LPV, stabilizes the LPV plant, such that there exists a corresponding 

CQLF: 

0)()( 21212121  T

T

TTT PAAP                                        (3.55) 

Second, assuming that the state feedback gains for the coprime factors, )(pF  and 

)(kF , are chosen such as 
1

)()(


 pp PXF   and 
1

)()(


 kk PYF  , so that the 

following Linear Matrix Inequalities (LMIs) are satisfied, then )(12 TA  is also 

guaranteed to be quadratically stable: 
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(Note that for polytopic LPV systems, these conditions can be written as a finite set of 

LMIs.) Finally, we assume that the interpolation scheme is designed so that there exists a 

quadratic Lyapunov function QP  such that: 

0 Q

T

QQQ PAAP .                                             (3.58) 

Methods for creating such an interpolation scheme will be given in the next section.  As 

the state matrix of the closed loop system is block diagonal, then the block diagonal 

CQLF  2121 ,,,, PPPPPdiagP QpkG   is sufficient for guaranteeing stability of the system 

under arbitrarily fast transitions of scheduling variables. 

 

3.3.2.4 Construction of LPV-Q System 

The previous sections discuss how to form iQ  so that each local controller iK  is 

recovered at the corresponding operating point, and showhow the stability of the 

resulting closed loop system can be guaranteed, assuming there exists a CQLF for the 

interpolated Q . In this section we present a method for interpolating between these iQ  

while guaranteeing the existence of a CQLF for the interpolated Q , and limiting the 

state dimension of the eventual controller.   

The standard LCN approach to interpolation would be to simply create a 

weighted average of the output signals from each  based on the current operating point 

(Equation 3.59).  The stability of the resulting polytopic system can be established with a 

simple CQLF (Equation 3.60) 
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 QnQQQ PPPdiagP ,,, 21                                           (3.60) 

However, utilizing a large number of local controllers within a LCN/LQN can 

lead to significant computational problems, as the state dimension of the resulting 

nonlinear controller can become very large. In contrast to plant models where the 

physical nature of the dynamic states naturally leads to LPV representations, the states of 

a set of local controllers do not share any physical significance. Thus LPV controllers 

generally only arise from direct synthesis, and do not allow separate control design at 

specified operating conditions. However, a notable advantage of LPV controller 

implementation is the limited number of dynamic state variables required. Thus we 

propose an alternative formulation of the gain-scheduled interpolated controller where 

states are shared, leading to an LPV controller formulation which enjoys a significantly 

lower state dimension than the Local Controller Network approach but retains the 

benefits of local controller recovery.  

First, note that if the local controllers iK   have different state dimensions, the 

corresponding iQ  would also have different state dimensions. In this case, stable, 

unobservable/uncontrollable states are augmented to the state space representations of 
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iQ  such that the augmented iQ̂  has equal state dimensions to the highest dimensional 

iQ . 
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Each iQ̂  is guaranteed to be stable by construction, and therefore there exists an 

associated QLF, 
iQ

Pˆ .  For the purposes of this paper, the following finite set of LMIs 

will be solved to obtain the matrices 
iQ

Pˆ  that guarantee stability and also ensure that 
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Next, note that a state transformation can be applied to each augmented system 

iQ̂  without affecting its input-output nature. Applying a similarity transformation 

defined by 2

1

ˆ )(
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P , to each iQ̂  system yields: 
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It is straightforward to verify that under this similarity transformation, the LMI norm 

bound becomes: 



 81 

02

ˆ̂ˆˆ̂ˆˆ

ˆ̂ˆˆ̂ˆ̂ˆˆˆ̂




















IDDCDB

DCBCCAA

i
Q

T

QQ

T

Q

T

Q

Q

T

QQQ

T

Q

T

QQ

ii

iiii


.                          (3.64) 

Thus the polytopic system formed by the transformed systems (Equation 3.65) is 

guaranteed stable with CQLF IPQ )( , and with guaranteed norm bound 

max
ˆmax)(  

 iQQ . 
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Note that the stability of the nonlinear closed loop does not depend on how the 

state matrices of the particular iQ
ˆ̂

 are interpolated to form )(Q ; this offers an 

additional element of design freedom. In general the weighting functions are designed 

such that ]1 ,0[i  and  1i , with the magnitude based on the relative distance to 

the respective design point in the scheduling space (e.g. Figure 3.11).   
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Fig. 3.11. Quadratic weighting function for a 2-dimensional scheduling space. 

 

A summary of the design procedure is given as follows: 

Step 1) Design fixed linear controllers at key operating conditions )(sK i . 

Step 2) Select a nominal controller )(0 K  that stabilizes the system for the entire 

operating envelope (see section V for a detailed discussion). 

Step 3) Utilizing the LPV representation of the system dynamics, solve equations 3.56-

57 for feedback gains as 
1

)()(


 pp PXF   and 
1

)()(


 kk PYF  .  These are 

used to construct the coprime factors given in Equations 3.35-36. 

Step 4) Formulate the interconnection system )(kJ  given in equation 3.37 and the 

individual Youla parameters )(sQi  as given in Equation 3.45. 
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Step 5) As necessary, augment the states of the individual iQ  systems as given in 

Equation 3.61 to ensure equal state dimension among controllers. 

Step 6) Use the LMIs given in Equation 3.62 to determine the state transformation 

specified in Equation 3.63, and formulate the LPV representation of )(Q  as in 

Equation 3.65, and select the weighting functions )( f . 

Step 7) The final controller is implemented as the interconnection of )(kJ  and )(Q . 

 

3.3.2.5 Application to Control of Switched Linear Systems 

The capability of the proposed interpolation approach to guarantee closed loop 

stability for arbitrarily fast changes in the scheduling variable leads naturally to 

application of switched linear systems. If the transitions between critical operating 

conditions occur infinitely fast (instantly), the LPV plant model can be represented by a 

switched linear system using standard notation [52]: 

uBxAx pppp  ,,   

 pp xCy ,                                                       (3.66) 

where denotes the switching signal.  Application of the techniques presented above 

result in stable switching between controllers of arbitrary size/structure if there exists a 

nominal control strategy ),(0 sK  that stabilizes the switched system so that there exists 

a common quadratic Lyapunov function 

0,,  PAPA T

PKPK                                               (3.67) 
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where 
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
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



,,,

,,,,,,

,

kpk

kppkpp

PK ACB

CBCDBA
A                                (3.68) 

If any such nominal stabilizing controller exists, then the above framework 

allows local control strategies to be parameterized in terms of this nominal controller so 

that the characteristics of the local controllers are recovered exactly, but the stability of 

the closed loop system is guaranteed. This technique provides a promising alternative to 

standard switched systems control methodologies such as dwell-time or switching 

sequencing approaches [52]. 

 

3.4 Special-Cases: Choice of Nominal Controller  

The approach outlined in the previous section provides a general method of 

constructing a gain-scheduled controller for LPV system with local controller recovery. 

Additionally, an interpolation approach is given that results in an LPV controller, 

significantly reducing the large state dimensions resulting from simple controller 

blending. However, a prerequisite to this design methodology is the existence of a 

nominal controller )(0 K  that stabilizes the plant for the entire range of operating 

conditions.  The synthesis of a single fixed controller that meets these conditions is the 

well-known, and provably difficult, simultaneous stabilization problem, while the 

synthesis of a stabilizing LPV controller relies on existing design methods available in 

the literature.  However, in practice, a far simpler method involves selecting one of the 

fixed controllers and attempting to verify stability by determining an appropriate 
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common Lyapunov function.  In this section, two specific choices for nominal controller 

are discussed, where the approach for verifying stability is more formulaic and the state 

dimensions of the final controller can be further reduced.  These special cases result 

when the nominal controller is selected as a state feedback/estimator controller or as a 

simple static output feedback controller.  

 

3.4.1 State Estimate/State Feedback Controller 

A common choice when implementing Youla-based controller interpolation 

schemes is to use state estimate/state feedback controllers. If the nominal controller is 

selected as such, the result is similar to that presented in [88] where the authors use a 

Youla based LPV controller and self-schedule the Q-parameter to optimize 2L -gain 

performance. However, instead of focusing on LPV controller synthesis, we will 

examine this choice of nominal control from the perspective of ensuring local controller 

recovery.  

Assuming a state estimate/feedback controller )(0 K of the form: 

200 )()]()()()()([ zHxCHFBAx pkpppppk    

0)( kp xFu                                               (3.69) 

where the state feedback and observer gains are calculated as 1)()(  fp PXF   and 

)()( 1  WPH hp

 , such that the following Linear Matrix Inequalities (LMIs) are satisfied: 

0)()()()()()(  T

p

T

p

T

pffp BXXBAPPA                     (3.70) 

0)()()()()()(  TT

ppphh

T

p WCCWAPPA                     (3.71) 



 86 

As before, for polytopic LPV systems, these conditions can be written as a finite set of 

LMIs, and a feasible solution to the LMIs is necessary to guarantee stability. 

For controllers of this form, a doubly coprime factorization satisfying the Bezout 

identities for the LPV plant and nominal LPV controller )(0 K  can be constructed as: 

0

0

( ) ( ) ( ) ( ) ( )
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( )          
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With only the state estimate/feedback controller, the resulting closed loop LPV system is 

guaranteed to be quadratically stable by construction. But to recover the local controller 

behavior at each operating condition, we define the coprime factors at the i
th

 operating 

condition as given previously in Equation 3.43-44, and the individual Youla parameters 

as: 
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(3.74) 

 The system )(kJ  is constructed simply as:    

 

1 1

0 0 0

1 1

0 0

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) 0          ( )
( ) ( ) ( )

( )         0

p p p p p

pk

p

A B F H B
U V V

F IJ
V V N

C I

    
  


  



 

 

   
   

    
    

.  

 (3.75) 
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3.4.2 Static Output Feedback 

Another technique for reducing the dimension of the interpolated controller is to 

select the nominal controller to be as simple as possible namely static output feedback 

control: )(),( 00  kDsK  . Although many nonlinear systems can be stabilized by static 

output feedback control (constant or scheduled with ), the synthesis problem of solving 

Equation 3.76  is nonconvex in general. Thus for the purposes of the approach proposed 

in this paper, the authors advocate selecting a static output feedback gain and verifying 

stability in place of attempting to synthesize a stabilizing gain. 

0)]()()()([)]()()()([ 00   pkpp

T

pkpp CDBAPPCDBA          (3.76) 

This choice of controller does in fact simplify the resulting interpolated controller.  

Assuming this choice for the nominal stabilizing controller, the associated coprime 

factorizations would be: 
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   (3.78) 

Again, we define the coprime factors at the i
th

 operating condition as given previously in 

equation 3.43-44, and the individual Youla parameters as: 
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   (3.79) 



 88 

The interconnection system is then given as:  

1 1
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     (3.80) 

To show the recovery of the controller iK  at the i
th

 operating condition, the lower 

fractional transformation of )(KJ  and iQ  is explored, while once again the notation 

)(0 iU   is dropped for the simpler iU ,0 : 

     iiiiiiiiiiKLFT VQNVIQVVUQJF ,0

1

,0

1

,0

1

,0

1

,0,0

~
,


               (3.81) 

An equivalent expression is given by: 

      1

,0,0,0,0,


 iiiiiiiiKLFT QNVQMUQJF                       (3.82) 

By substituting the definition of the Youla parameters iQ , above equation is termed in: 

         1

,0,0,0,0,0,0,0,0

~~~~
,



 iKiiKiiiiKiiKiiiiiKLFT UVVUNVUVVUMUQJF   (3.83) 

and simplifying yields: 

      1

,0,0,0,0,0,0,0,0,0,0

~~~~
,



 iKiiiKiiiiKiiiKiiiiiKLFT UVNVUNVUVMVUMUQJF  (3.84) 

Using the Bezout identities, it can be replaced as: 

             1

,0,0,0,0,0,0,0,0,0,0

~~~~
,



 iiKiiiKiiiiKiiiKiiiiKLFT UNVVIMVVUNUIVMUUQJF   

(3.85) 

After collecting terms and simplifying, recovery of the a priori designed controller at 

design point can be achieved as given by: 
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    (3.86) 

 

3.4.3 Gain-scheduled Control of a Quadruple Tank System 

To demonstrate efficacy of the proposed gain-scheduling framework, a quadruple 

tank system is selected as a simulated model. This system is a well known multivariable 

control example and has been discussed in detail in [89]. A schematic diagram of the 

quadruple tank system is shown in Figure 3.12. The two inputs to the system are the 

input voltages to pumps 1 and 2, and two outputs of interest are the fluid levels in tanks 

1 and 2. Two valves divide the flow from each of the pumps to the upper and lower 

tanks. The upper tanks (tanks 3 and 4) drain into the lower tanks (tanks 1 and 2) which 

drain into a reservoir. The cross flow from pump 1 to tank 4 and from pump 2 to tank 3 

creates interesting dynamic phenomena. 

This system can be modeled using mass balances and Bernoulli’s law. The 

resulting nonlinear model is given in Equation 3.45 where A  is the tank cross-sectional 

area, a  is the orifice cross-sectional area, h  is the fluid level, u  is the pump input with a 

scalar gain uk . The valve parameters  1,0  determine the flow to each tank. The 

selected outputs are the fluid levels of tanks 1 and 2 and are measured with a scalar gain 

yk . The linearized version of this model is determined by Jacobian linearization given in 

[89].  
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Fig. 3.12. Diagram of a quadruple tank system. 
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This system was chosen as simulation model for several notable reasons. First, 

this is a well known multivariable controls example with a validated modeling approach 

available in the literature. Second, the poles of the system strongly depend on the 

nominal fluid height in the tanks; thus as the fluid heights, the system dynamics change 

significantly. Third, the system has a multivariable zero that can be arbitrarily placed in 

the right or left half plane.   
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For control design purposes, a quasi-LPV representation of the dynamics can be 

constructed from the nonlinear model as shown in Equation 3.88, with equilibrium 

defined by Equation 3.89: 
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A slight variation of the parameter values published in [89] is used for the 

simulations presented here. The values of tank and orifice areas, and input/output 

scaling, depending on the units used, are given in Table 3.2. The gravity is given as 9.81 

[m/s
2
], and the steady state values at the chosen operating conditions (both minimum and 

non-minimum phase) are given in Table 3.3.  
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Table 3.2. Tank and orifice areas [m2] / Input/output Scaling 

A1 2.8E-03 a1 7.1E-06 

ku 

V 3.33E-06 

A2 3.2E-03 a2 5.7E-06 m
3
/s 1.0 

A3 2.8E-03 a3 7.1E-06 

ky 

m 1.0 

A4 3.2E-03 a4 5.7E-06 Pa 9.81E+03 

 

Table 3.3. Operating condition (minimum phase, non-minimum phase) 

h1
0
 (0.12, 0.12) [m] u1

0
 (2.44, 3.80) [V] 

h2
0
 (0.12, 0.12) [m] u2

0
 (3.80, 2.44) [V] 

h3
0
 (0.081, 0.037) [m] 

1
 (0.7, 0.4) [-] 

h4
0
 (0.052, 0.014) [m] 

2
 (0.6, 0.3) [-] 

 

The valve parameters 1  and 2 determine the flow ratio of lower to upper tank.  

Low values of   signify a significant amount of cross-flow, thus resulting in non-

minimum phase behavior. In this case a multivariable right half plane zero will be 

present when 121   as depicted in Figure 3.13. 
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Fig. 3.13. Controller design points in minimum and nonminimum phase region.  

 

For this example, 1  and 2 are selected as the scheduling variables. External 

changes to these variables will change the underlying system dynamics, as well as a 

disturbance to the closed loop system attempting to regulate the fluid height of the lower 

tanks. Two operating points in a quasi-LPV model [2] are selected: one in the minimum 

phase region and the other in the nonminimum phase region, depicted in Figure 3.13. As 

advocated in [43], a decoupled PID controller is designed for the minimum phase 

condition.  A static decoupling matrix )0()( 1GsW  is used and PID controllers are 

designed (Equation 3.90-91). Similarly, a set of PI controllers is designed at the 

minimum-phase phase operating point as given in Equation 3.92: 
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For the nonminimum phase operating point, [87] suggests the use of an H  

controller [90]. Using standard design and model reduction procedures, a 4
th

 order H  

controller is designed as given in Equation 3.93. These controllers are not necessarily 

selected for optimal performance, but to demonstrate the full capabilities of the proposed 

interpolation approach. Not only do the two controllers have different state dimensions, 

but they are designed for fundamentally different plant dynamics. The PI and PID 

controller has pure integrators that prevent the controller from being strictly stable.  
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Fig. 3.14. Step response of PID controlled system at minimum phase design point. 

 

Fig. 3.15. Step response of H  controlled system at minimum phase design point. 
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  (3.93) 

As a result, both controllers perform adequately around their respective design 

points, and are easily able to track reference changes in the desired fluid height. Note 

that Figure 3.14 and Figure 3.15 shows the step responses of the PID and H  controller 

respectively and Figure 3.16 depicts the step response of PI and H  controlled systems.  

 

Table 3.4. Closed loop system poles. 

PI controller with minimum phase plant: 

-0.095, -0.033, -0.040±0.032j, -0.022±0.012j 

PI controller with nonminimum phase plant: 

+0.016, -0.023, -0.012±0.035j, -0.034±0.009j 

H∞ controller with nonminimum phase plant: 

-0.087, -0.009, -0.037±0.067j, -0.018±0.025j, -0.017±0.001j 

H∞ controller with minimum phase plant: 

+0.074, -0.220, -0.009, -0.014, -0.056±0.026j, -0.029±0.019j 
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Fig. 3.16. Step response of PI and H  controlled systems at design points. 

 

Although the step response of the H  controlled system displays significant 

undershoot, this is an expected strong non-minimum phase nature of the plant. However, 

these controllers are not effective at controlling the system at off-design conditions, and 

in fact are destabilizing. Figure 3.17 (a) and (b) show this destabilizing effectively and 

Table 3.4 gives the closed loop poles for the four possible combinations of 

plant/controller. 
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Fig. 3.17. Fluid heights in lower tank 1 and tank 2 (log scale). 
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A principal advantage of the LQN framework for controller interpolation is 

ability to interpolate controllers of different dimensions and structure or open-loop 

unstable controllers. As described in previous sections, a nominal LPV observer-based 

controller is designed for the system, and Q parameters are calculated so that the original 

MIMO-PI and H∞ controller are recovered near the design point, blended by the 

exponential weighting function. The resulting controller is evaluated in simulation as 

applied to the nonlinear system dynamics. The interpolated controller retains the abilities 

of the local controller designs, and is capable of rejecting disturbances and regulating the 

lower tank fluid heights to the desired levels at both nonminimum phase and minimum 

phase conditions.  

For example, Figure 3.18 shows the closed loop system response to instantaneous 

disturbances applied to individual tank fluid heights. More importantly, the interpolated 

controller can transition smoothly and stably from one design point to another.  Figure 

3.19 shows the system response to rapid changes in and , which both induce 

disturbances on the system and change the underlying system dynamics from minimum 

phase to nonminimum phase. As the scheduling variables change, the exponential 

weighting factors allow smooth transitioning between the two Q functions. The control 

input voltages remain within reasonable bounds and fluid heights in the two lower tanks 

are effectively regulated.  
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Fig. 3.18. Disturbance rejection at design conditions. 
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Fig. 3.19.  Tracking during transition between operating conditions. 
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4. ROBUST STABILITY OF GAIN SCHEDULED CONTROL SYSTEM 

 

When LPV plant models include uncertainty in scheduling variables or modeling 

error in plant model and these factors affect the system dynamics significantly, the plant 

model may not reflect the nonlinear system precisely and the associated conventional 

stability analyses may not be sufficient to guarantee the stability of nonlinear system in 

practice [3].  

In this section, we extend the stability analysis in Section 3 to robustness and 

performance, focusing the guarantees of robust stability when the LPV plant model is 

assumed to include the modeling errors. A proposed framework can guarantee a global 

level of the stability of the perturbed nonlinear system by minimizing the 2L  gain that 

remained within desired bounds over the operating envelope.    

 

4.1 Uncertain System Modeling  

 

4.1.1 Uncertainty Description   

An uncertain system is often defined as a system that does not have a completely 

accurate representation of a real system although the modeling difference between 

system representation and real system may exist in practice. There are several ways in 

which systems will be considered to be uncertain [3]: 

The local controllers may be of different state dimensions and possibly open-loop 

unstable. Research achievements include: 



 103 

 System’s external inputs, e.g., exogenous disturbances, significantly affect the 

behaviors of the system, but separation between system and environment 

cannot be implemented 

 Uncertainty in the accuracy of a system model itself is a central source when 

dynamic model of the system will neglect some physical phenomena. Any 

control method using this model will neglect some operating regimes and result 

in the failure of the controlled system 

Note that any of these factors may result in uncertainty significantly included in the 

system. In any case, the control objective is to minimize the effects of unknown initial 

conditions and external influences on the behavior of the system, subject to the lack of a 

suitable system representation.  

Among those uncertainty descriptions, the third definition of uncertain system is 

quite attractive in the gain-scheduling paradigm since the plant model used in gain-

scheduling strategies virtually alleviates the requirement of exact structure or 

mathematical model. However, it may cause the failure of the desired stability or 

performance of the system when the plant model cannot reflect real dynamics of the 

system precisely at certain operating points. Thus an uncertainty consideration could be 

useful to achieve the desired stability and performance of the real systems in practice. 

Several uncertainty modeling methods have been proposed in the literature but 

mainly categorized into two classes: 1) Parametric uncertainty and 2) 

neglected/unmodelled dynamics uncertainty [3]. The former is based on the structure of 

the model that is known but some of the parameters are uncertain. This class of 
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uncertainty is often called structured uncertainty since it models the uncertainty in a 

structured manner. In contrast, the latter appears when the model is in error because of 

missing dynamics, usually at high frequencies, either through deliberate neglect or 

because of a lack of understanding of the physical process. Note that any plant model 

will possibly contain this source of uncertainty [3].  

Parametric uncertainty is often avoided in that it usually requires large efforts to 

real perturbations which are more difficult to deal with numerically, especially when it 

comes to controller synthesis. Thus unstructured modeling uncertainty will preferably be 

considered for the robust stability analysis demonstrated in this dissertation. This class of 

uncertainty can be addressed when one chooses to work with a simple nominal model 

which represents neglected dynamics as uncertainty which is unstructured. 

 Among uncertainty representations, additive and multiplicative uncertainty 

representations are most commonly used, denoted in Equation 4.18-9, respectively, and 

also depicted in Figure 4.1 where G  is plant model, W is weighting function, and   is 

unstructured modeling uncertainty [3].               

Additive uncertainty: 

    ,1)(     );()()()( A jssWsGsG AAp                      (4.18) 

Multiplicative uncertainty: 

    ,1)(     ));()(1)(()( I jssWsGsG IIp                    (4.19) 
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Fig. 4.1. Uncertainty representations:  

(a) additive uncertainty (b) multiplicative input uncertainty 

 

4.1.2 General Uncertain System Representation   

Consider a feedback control system with input uncertainty as depicted in Figure 

4.2 where I  is input multiplicative uncertainty, IW  is a normalized weight for I , and 

PW  is performance weight. This feedback loop can be converted into a standard closed 

loop system with a generalized plant P  to allow more flexibility in analysis, depicted in 

Figure 4.3 [3].       

 

 

Fig. 4.2. Closed loop configuration of uncertain system. 
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Fig. 4.3. General configuration of uncertain system for controller synthesis. 

 

A suitable representation of generalized plant P  can be sought based on the 

subsystems appearing in Figure 4.3. The closed loop from  uwu  to  vzy  in 

Figure 4.3 is determined by: 
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where u  is uncertainty output, y  is uncertainty input, w  is disturbance input 

(exogenous input), z  is performance output, u  is control output, and v  is control input. 

As shown in Equation 4.20, transfer function from u  to y , upper left elements in P ,  
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is zero since u  has no direct effect on y  except through a controller K . Thus 

partitioning P  to be compatible with K  can be simply implemented by: 

uP
w

u
PvuP

w

u
P

z

y
22211211   , 
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Then the uncertain system representation, called “ N  structure,” is constructed in 

which N  is an interconnected system between a generalized plant P  and a controller 

K ; Linear Fractional Transformation (LFT) effectively shows this interconnection [76].  

Using the system configuration in Figure 4.4, N  is simply modified by a lower LFT of 

P  and K  [3]: 

21

1

221211 )(),( PKPIKPPKPFN l

                          (4.23) 

Similarly, the closed loop transfer function from w  to z  is related to N  and   

by upper LFT: 

12

1

112122 )(),( NNINNNFF u

                          (4.24) 

By pulling out the perturbation block and nominal system, the system in Figure 4.4 is 

rearranged by “ M  structure” of Figure 4.5 where 11NM   is the transfer function 

from the output to the input of the perturbation block  . Under this framework, the 

reader can easily focus on the input-to-output properties of the perturbed system for the 

robust stability. 
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Fig. 4.4. N  system.  

 

 

Fig. 4.5. M  system. 

 

When the state matrix of the system is formed in block-diagonal by a particular state 

transformation, the stability of the resulting system is guaranteed where preliminary 

condition, 1


, is satisfied. This particular state transformation that ensures block-

diagonal system matrix will be demonstrated later in this section.  
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Furthermore, state space models of each component of the system will be sought 

for the stability analysis gain-scheduled control framework. The associating state space 

model of individual components can be derived by: 

Controller K :    

vDxCu

vBxAx

kkk

kkkk




                                              (4.25) 

Plant G :  

               
pp

pppp

xCy

uuBxAx



  )(
                                  (4.26)               

 Input uncertainty weight function IW : 

II

IIII

WW

WWWW

xCy

uBxAx








                                        (4.27) 

Performance weight function PW :  

PP

PPPP

WW

WWWW

xCz

vBxAx




                                        (4.28) 

Based on these state space models, the M  system is derived following state 

space representation from  Twu to  Tzy  where subscripts of the system matrices 

Iwpk  , ,  are controller, plant, and weight on input uncertainty, respectively. Note that the 

state matrix of this system is given by a block-diagonal structure constructed by system 

matrices of controller, plant, and input weight.  
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4.2 Robust Stability Analysis 

 

4.2.1 Robust Stability Description  

Before discussing robust stability of the uncertain system, addressing the 

background of the robust stability and performance could be helpful in understanding the 

key ideas of this section. 

 

Definition 4.1) [3] 

Robust stability analysis: Determines whether the system remains stable for all plants in 

uncertainty set with a given controller K . 

Robust performance analysis: If robust stability is satisfied, determines how large the 

transfer function from exogenous inputs to outputs may be for all plants in the 

uncertainty set. 

 



 111 

For the N system, sufficient conditions for guarantees of the stability and 

performance can be summarized using Definition 4.1 as follows: 

 

Definition 4.2) [3] 

Nominal stability: N is internally stable 

Nominal performance: 122 


N  with satisfying nominal stability  

Robust stability: ),(  NFF u  in Equation 4.24 is stable 1, 


 with satisfying       

nominal stability 

Robust performance: ,1


F 1, 


 with satisfying robust stability 

 

The primary interest of this section is to guarantee the stability of the perturbed 

system, thus recall the general system configuration for robust stability analysis that is 

prepared in Section 4.1. Consider the N  system for which the transfer function from 

w  to z is given by  

12

1

112122 )(),( NNINNNFF u

                          (4.30) 

Supposing that system N  is nominally stable and   is also assumed to be stable, one 

can directly see the only possible source of instability is the feedback term 1

11 )(  NI . 

Thus when nominal stability is guaranteed, the stability of the N  system would be 

equivalent to the stability of the M system in Figure 4.5 where 11NM  . 

Seeking the direct method to evaluate stability of the  M  system uses 

Nyquist stability theorem as follows [3]: 
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Theorem 4.1) Determinant stability condition for perturbations [3] 

Supposing that the nominal system )(sM  and the perturbations )(s  are stable and  

considering the convex set of perturbations  , then the M system is stable for all 

allowed perturbations if and only if  

- Nyquist plot of ))(det( sMI  does not encircle the origin ,              (4.31) 

   0))(det(  sMI ,    ,w                                                                    (4.32) 

 

Proof: 

The statement in Equation (4.31) is simply a generalized Nyquist theorem applied to a 

positive feedback system with a stable loop transfer function )(sM  as the generalized 

Nyquist theorem is given in Lemma 4.1 [3]: 

 

Lemma 4.1)  

The closed loop system with loop transfer function )(sL  and negative feedback are 

stable if, and only if, the Nyquist plot of ))(det( sLI  makes і) n  anti-clockwise 

encirclements of the origin and іі) does not pass through the origin.  

 

Also, a sufficiency of the statement in Equation (4.31) to the form in Equation 

(4.32) can be proved by statement 2) in Lemma 4.1, “no encirclement of the origin”. For 
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the necessity, please see Theorem 8.1 in [3]. Using the spectral radius definition, the 

equivalent theorem will be prepared as follows: 

 

 Theorem 4.2) Spectral radius condition for perturbations [3] 

Suppose that nominal system )(sM  and perturbations )(s  are stable. Considering the 

convex set of perturbations  , then the M system is stable for all allowed 

perturbations if, and only if,  

,1))((  jwM ,    ,w  

                     ,1))((max 


jwM   w                                    (4.32) 

where  (  ) is spectral radius, the largest of absolute eigenvalues of system (  ), 

)(max)(  i
i
 . 

Proof: See [44] (simply proved by the definition of spectral radius) 

 

 Now, considering the special case where the perturbation block )(s  is allowed 

to be any full complex transfer function matrix satisfying 1


 which is often 

referred to as unstructured uncertainty. To get a final form of stability theorem, the  

mathematical relationship between spectral radius (  ) and eigenvalues ( ) of the 

system is modified and holds [3]: 

)()()(max)(max)(max MMMM  


                (4.33) 
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Finally, we can conclude the robust stability of the system using Theorem 4.1-2 and 

Equation 4.29, presented as follows: 

  

Theorem 4.3) Robust stability for perturbations [3]  

Supposing that the nominal system )(sM  and the perturbations )(s  are stable and 

considering the convex set of perturbations  , then the M system is stable for all 

allowed perturbations if, and only if,  

       1))(( jM              1


M                                 (4.34) 

Proof: See [3] 

 

4.2.2 LPV-Q System Modification   

In this section, the proposed LPV-Q system will be formed in a suitable 

representation for robust stability. First,   
~

QT representation is constructed using 

 M  system in Figure 4.6. Note that tilde (~) on T  represents the difference between 

system T constructed in Section 3.4. Figure 4.6 shows a general configuration of the 

LPV-Q system with uncertainty and Figure 4.7 depicts the   
~

QT representation. Note 

that the controller in the LQN closed loop system can simply be decomposed into an 

interconnection system kJ  and Youla system Q . Referring to Figure 4.7, the transfer 

function T
~

, from  Tsu to  Try , is constructed by interconnecting plant P  with 

system kJ  [30]:  
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Fig. 4.6. Closed loop of perturbed system for all stabilizing controllers. 

 

 

Fig. 4.7.   
~

QT   system. 
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Then the variable u  and y  can be eliminated using the coprime factorization of 

the plant NMG
~~ 1  and controller UVK

~~ 1 . The useful coprime factorization of 

interconnected system that simplifies the system representation can be derived using the 

double Bezout identities given by [30]:  

VMNMUVIPJI
~

)
~~

()( 1111

2211                          (4.37) 

Using Equation 4.37, the resulting state space representation of system T
~

can be derived 

as [30]: 

11 12 11 12 21 12

21 22 21 0

y u uT T P P UMP P M

r s sT T MP

  
        

         
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                (4.38) 

In Equation 4.38, 22

~
T  is always zero under any choice of plant and controller 

representation. Using this result, the closed loop transfer function from u  to y  is 

given by: 

  uTQTTuFy Q )
~~~

( 211211                                     (4.39) 
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Note that this closed loop representation allows the convex optimization of Q  by 

minimizing disturbance responses where T
~

, Q , and QF  are Hurwitz. Also, the affine 

characteristic of the QF  system in Youla parameter Q  enables feasibility in computation.  

 

4.2.3 LPV-Q Closed Loop System   

 The reader knows that the transfer function QF  could be a direct indicator of 

robust stability of the closed loop system. In the LPV-Q system, transfer function QF  is 

determined by plugging general coprime factors of subsystems, kJ , Q , and T
~

 

(Equation 4.40.-44) that can be defined using Youla parameterization into QF .  
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For nominal controller, a doubly coprime factorization satisfying the Bezout identities 

for the LPV plant and static output feedback LPV controller )(0 K can be constructed 

as: 
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4.3 Robust Stability of LPV-Q System 

 

4.3.1 LMI-Based Robust Stability   

 Theorem 4.3 describes a necessary and sufficient condition so that the nonlinear 

system is robustly stable. This is a well-known criterion that evaluates the closed loop 

stability of the system according to the H  performance of a given system in that it 

requires a less conservative assumption and enables simple analysis [91] [92]. Consider 

the   
~

QT structure of the proposed LPV-Q system. By applying the theorem 4.3 to the 

  
~

QT system, a revised version of necessary and sufficient condition for the robust 

stability of the LPV-Q system is given by Theorem 4.4. 

 

Theorem 4.4) Robust stability of perturbed systems [63] 

Suppose that the system )(
~

sT  and the perturbations )(s  are stable with stable )(sQ  . 

Let   be convex set of perturbations, then the LPV/LQN system is guaranteed to be 

robustly stable for all perturbations   satisfying 1


 if, and only if,   

1
QF                                                   (4.47) 

Proof: See [63] 
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It is interesting to note that the closed loop transfer function )
~~~

( 211211 TQTTFQ   

is affine in Youla system Q  that allows the convex optimization in performance 

evaluation. Often norm-based performance of the system is calculated using Linear 

Matrix Inequality (LMI) techniques that alleviate the complexity in computation [74]. 

The LMI form of the H  performance and its Schur complement of the closed loop 

system are given as: 
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Note that the Schur complement has been widely used in analytical studies because of 

computational flexibility. The alternative formula adapted to LMI toolbox in Matlab is 

given by [93]: 
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In the gain-scheduling paradigm, the desired level of stability is easily 

guaranteed at local operating points, but guarantees of the stability over the entire 

operating envelop is much more difficult to achieve. However, even though the 

quadratic Lyapunov function P  can be found at each local operating point  so that the 

H  norm, i.e., 2L  gain, of the system remains within a desired bound, finding a 
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common quadratic Lyapunov function (CQLF) to guarantee global stability is still a 

challenging problem [93].  

 

4.3.2 Robust Stability via Optimizing Coprime Factors     

In Section 4.3.1, we know that robust stability of the system is globally 

guaranteed by the existence of CQLF so that the 2L  gain of the system remains within a 

desired bound over operating envelopes. To guarantee the global stability of the LPV-Q 

system, consider   
~

QT representative of the system and find the degree of freedom 

included in the closed loop transfer function QF . The subsystems 11

~
T , 12

~
T , and 21

~
T  

consist of system matrices and associating feedback gains of plant and controller so that 

PPP FBA   and KKK FBA   are Hurwitz (Equation 4.41-44). It is interestingly note that 

11

~
T  and 21

~
T  merely include the feedback gain of controller kF  and 12

~
T  includes the 

feedback gain of plant, pF .  

By virtue of gain-scheduling, the choice of feedback gains of plant and controller 

would be an additional freedom where they merely meet the restriction so that the state 

matrices of the state feedback system are Hurwitz. Also, the reader can find the 

particular relationships between those feedback gains and subsystem matrices by 

carefully noting that subsystems 11T  and  21T  include only PF  while KF  merely appears 

in 12T . Thus finding the optimal subsystem is implemented through optimizing feedback 

gains in sub systems that minimize the H  norm to guarantee global stability and 

performance. Alternatively, guaranteeing the closed loop stability of the system is 
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achieved through retaining the H  norm globally within specific bounds and also 

minimizing the difference between 2L  gains calculated locally and globally. 

 

4.3.3 Case Study: Robust Stability on Gain Scheduled Control System     

In Section 4.3.2, we know that robust stability of the LPV-Q system is globally 

guaranteed by the optimal choices of coprime factors of Youla system. In essence, 

choice of coprime factors is design degree of freedom but significantly affects stability 

and performance of the system as illustrated in Section 3.2. This section illustrates a 

simple example of robust stability of the Youla based gain-scheduled control system. 

To find the optimal feedback gains of plant model and controller PF  and KF , we 

employ the LQR technique. By virtue of state feedback control, LQR control provides 

optimal gain matrices PF  and KF  by minimizing cost function included Q  and R  thus 

choice of these weighting matrices would be an additional freedom where they merely 

are positive-definite. 

Equations 4.51-52 present state-space forms of LPV plant model at controller 

design points and state-space forms of two LQR controllers with integrators are given in 

Equations 4.53-54, respectively. Note that plant models are defined as LPV way,  

( )  at = ,  1,2i iP P i    , so that each plant model shares the states.       
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Table 4.1 Performance bounds on LPV-Q system.  
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Table 4.1 indicates H
 performance bounds on LPV-Q closed loop system. First, 

we examine the performance bounds of LPV-Q system at controller design points. 

Before optimizing coprime factors, we initially guessed reasonable values of Q and R 

matrices in LQR control design.  
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Then we optimized coprime factors such that  H
 norm of the system is minimized. 

As given in Table 4.1, LPV-Q closed loop system is robustly stable at design 

points since H
 norm of the system is less than one where 1


 satisfies. 

Furthermore, the reader can recognize that H
 norm of the system remains within 

acceptable bounds over operating envelope. Thus we can conclude that LPV-Q system is 

guaranteed to be robustly stable with optimal choice of coprime factors.  Note that norm 

bound using initially guessed values is 2.5743 which remains out of desired bound.          
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5. MULTI EVAPORATOR VAPOR COMPRESSION SYSTEM CONTROL 

 

Gain-scheduled control is known to be a powerful solution for nonlinear systems 

that are highly nonlinear and vary arbitrarily fast in a wide range of operating regions. In 

this section, the efficacy of the proposed controller interpolation method is demonstrated 

in experimentation using a multi-evaporator vapor compression system. The dynamics of 

the vapor compression system are highly nonlinear but gain-scheduled control has the 

potential to achieve the desired stability and performance of the system. Clearly, this 

section demonstrates the experimental study of gain-scheduled control as applied to a 

multi-evaporator vapor compression system, while the thermal efficiency and cooling 

capacity of the system are subsequently improving.   

     

5.1 Introduction 

Vapor compression systems have been widely used for various residential and 

industrial purposes. A huge amount of energy is consumed for air conditioning, 

becoming one of the largest sources of energy consumption in the world [70]. Thus the 

thermal efficiency of these systems is a key aspect in energy saving since the energy 

demand for air conditioning systems will be reduced by achieving desired energy 

efficiency of vapor compression systems, via developing accurate system model and 

advanced control strategies. Energy saving air conditioning systems have significant 

effects on the economy as well as the environment. This situation has been widely 

studied for many years [71].  
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Unfortunately, the dynamics of this system are known to be highly nonlinear and 

also vary arbitrarily fast over the operating envelopes. Although a very strictly designed 

controller could possibly stabilize the system, significant performance would be 

sacrificed. To guarantee desired global stability, an advanced gain-scheduled control 

approach can be an intuitive solution for this problem [5]. 

In this section, the proposed gain-scheduled control strategy will be applied to a 

vapor compression system to achieve the desired energy efficiency. The efficacy of the 

proposed controller interpolation method will be demonstrated in experimental studies 

on multi-evaporator vapor compression system. 

 

5.2 Vapor Compression Cycle 

To build an advanced control framework for vapor compression systems, an in-

depth understanding of the characteristics of these systems would be helpful. Consider a 

standard air conditioning system operating on a vapor compression cycle. As shown in 

Figure 5.1, a standard vapor compression system consists of four components - 

compressor, condenser, expansion device, and evaporator [72]. Assume that refrigerant 

steadily circulates through each of components in the cycle. First, the refrigerant enters 

the evaporator as a two-phase liquid-vapor mixture at a lower pressure. In the evaporator, 

some of the refrigerant changes phase from liquid to vapor as a result of heat transfer 

from the region of low temperature to the refrigerant then exits as a superheated vapor at 

a lower pressure.  
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Fig. 5.1. Vapor compression system. 

 

Then the refrigerant is compressed to a high pressure by the compressor. During 

compression, the temperature of the refrigerant goes up to a temperature that is higher 

than ambient temperature. Next, the refrigerant passes from the compressor into the 

condenser where it changes phase from a saturated vapor to a saturated liquid as a result 

of the heat transfer to a region of high temperature and, then exits the condenser as a 

subcooled liquid at a higher pressure. However, the refrigerant at a two-phase flow may 

result in a choked flow problem thus a receiver is placed at the exit of condenser to avoid 

the two-phase refrigerant [72]. 

The refrigerant returns to the inlet of the evaporator by expanding through the 

expansion device. In this process, the temperature goes down from a high to low 

temperature and there is a drop in pressure. The hP   diagram of each of the vapor 

compression processes is shown in Figure 5.2.  
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Fig. 5.2. hP   diagram of vapor compression cycle. 

 

The characteristics of vapor compression systems are affected by the 

thermodynamic states of refrigerant at various components in the vapor compression 

cycle such as evaporator pressure, condenser pressure, and evaporator superheat 

temperature. To evaluate the system’s efficiency, key thermodynamic properties, i.e., 

cooling capacity (refrigerant capacity) and coefficient of performance (COP), are 

commonly used. The former is modulated as a desired cooling requirement while the 

latter is regulated to be maximized for energy saving [94], [95]. 

Cooling capacity is defined as the amount of heat transferred from the refrigerant 

region resulting in the vaporization of the refrigerant [72]. As refrigerant passes through 

the evaporator, the mass and energy balance are reduced to give the heat transfer rate per 

unit mass of refrigerant flow where m  is the mass flow rate of the refrigerant, and 4h  
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and 1h   are the enthalpy at evaporator inlet and outlet, respectively. In Equation 5.1, heat 

transfer rate inQ  refers to cooling capacity, normally expressed in kW.  

41 hh
m

Qin 



                                                    (5.1) 

Cooling efficiency or COP indicates the efficiency of the vapor compression system. For 

the Carnot system, COP is simply given as: 

 
lowhigh

low
C

TT

T
COP


                                                (5.2) 

However, the Carnot vapor compression cycle is an ideal thermodynamic cycle, 

generated under conservative theoretical assumptions and cannot be realized in real 

systems. Thus the COP of the real vapor compression system at steady-state can be 

presented as [72]: 

   
12

41

hh

hh
COPR




                                                  (5.3) 

Note that the enthalpy at the evaporator outlet plays a significant role in cooling capacity. 

The COP of real systems and maximum thermal efficiency can be achieved via minimal 

evaporator superheat, i.e., maximizing the two-phase region of the evaporator, since heat 

transferred from the cold temperature region to liquid refrigerant is much higher than 

when transferred to vapor refrigerant. However, liquid refrigerant may result in the 

failure of the compressor, thus improving the cooling capacity. The COP of the vapor 

compression system should be achieved by optimal choice of evaporator superheat 

temperature.  
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Four components of the vapor compression system can be categorized into two 

classes – heat exchanger and actuator. The evaporator and condenser function as heat 

exchangers in that they add (remove) heat from (to) the ambient region, respectively, 

while the compressor and expansion valves function as actuators. In heat exchangers, 

heat is removed from the refrigerant as it flows at a constant pressure through the 

condenser and heat is transferred into the refrigerant as it flows at constant pressure 

through the evaporator. The two principle actuators, expansion valve and compressor, 

modulate the mass flow rate of the system at each state. The change of mass flow rate 

results in the change of operating pressures and the resulting two-phase and superheat 

region in heat exchangers that directly affect the cooling of the system. Among various 

expansion devices, an electronic expansion valve (EEV) has been widely used since a 

stepping motor is used to open or close the valve by control action that can be directly 

applied to voltage signal of motor [96], [97]. 

Multi-evaporator vapor compression systems whose evaporators serve different 

cooling zone, has been used in this dissertation, depicted in Figure 5.3, and hP   

diagram of the system is presented in Figure 5.4. Typically, a static discharge valve 

(SDR) is installed on the secondary evaporator to regulate a pressure difference between 

evaporators; thus each evaporator provides individually cooling under different 

operating conditions [71]. More details on this strategy will be addressed later in Section 

5.4.  
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Fig. 5.3. Multi-evpaorator vapor compression system. 

 

 

Fig. 5.4. hP   diagram of two-evaporator vapor compression system. 
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5.3 Vapor Compression System Control 

 

5.3.1 Experimental Vapor Compression System     

  The experimental vapor compression system for the research presented in this 

dissertation is two-evaporator water chiller system. This system has been built in 

Thermo-Fluids Control Laboratory for research of model validation, control design, and 

fault detection. The primary (refrigerant) system consists of four components of vapor 

compression system – compressor, condenser, expansion valve, and two evaporators – 

and the secondary (water) system is constructed to circulate water. Figures 5.5-5.7 

present primary and secondary loop of the system, and experimental system respectively. 

Note that two evaporators serve different cooling zones since static discharge valve has 

been installed at the outlet of second evaporator, regulating evaporator pressure 

individually. The reader can find more detail about the system in [71]. 

 

5.3.2 Control Aspects in Vapor Compression System     

Thermal efficiency of vapor compression systems would have a notable effect on 

energy savings in both industrial and residential air conditioning systems, but primary 

interests in control paradigms depend on the class of system operation [5]. For 

residential purposes, a prompt response in the start-up process has the potential to reduce 

energy consumption and automotive air-conditioning systems rarely operate at steady 

state conditions since the driving and external conditions are continuously changed [4]. 
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In both cases, air conditioning systems operate in transient but these transients are 

different. 

 

Fig. 5.5. Primary (refrigerant) loop of experimental vapor compression system. 
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Fig. 5.6. Secondary (water) loop of experimental vapor compression system. 
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Fig. 5.7. Experimental vapor compression system. 
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5.3.3 Control of Vapor Compression System     

As mentioned in Section 5.1, thermal efficiency of vapor compression systems 

would have a notable effect on energy savings in both industrial and residential air 

conditioning systems, but primary interests in control paradigms depend on the class of 

system operation [5]. For residential purposes, a prompt response in the start-up process 

has the potential to reduce energy consumption and automotive air-conditioning systems 

rarely operate at steady state conditions since the driving and external conditions are 

continuously changed [4]. In both cases, air conditioning systems operate in transient but 

these transients are different. 

To improve thermal efficiency of the system while maximizing the cooling effect, 

the portion of two-phase flow in the evaporator needs to be maximized since the amount 

of heat transferred between liquid and evaporator walls is much higher than the amount 

of heat transferred between vapor and evaporator walls. Furthermore, the two-phase 

portion of the evaporator enhances the cooling capacity of the system. However to 

operate the compressor safely, the fluid entering the compressor must be completely 

vaporized so the placement of the receiver at the evaporator exit can ensure safe 

operation of the compressor while maximizing the evaporator’s performance. In essence, 

evaporator superheat and cooling capacity of the system are control objectives in this 

section.    

Among various control strategies, a simple on/off control or classical single-

input-single-output (SISO) control method has been widely used both in industrial and 

residential air conditioning systems. However, the on/off control significantly diminishes 
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system efficiency due to larger power consumption at start-up. Furthermore, classical 

methods in vapor compression system controls generally employ multiple SISO loops 

where superheat and cooling capacity are modulated by expansion valve opening and 

compressor speed respectively, i.e., superheat is regulated by using the expansion valve 

and cooling is regulated by the compressor. However, performance of the superheat 

regulation has been limited due to the difficulty in tuning the feedback gains under SISO 

control strategies. It has been shown that there are strong cross-coupling effects between 

superheat and compressor speed thus a proper coordination between expansion valve 

opening and compressor speed using MIMO control strategy can improve the superheat 

regulation of the system. Furthermore, not only superheat, but other essential cycle 

variables including evaporating pressure and condensing pressure can be properly 

regulated through the coordination of these actuators [4].  

Typically, evaporator superheat is modulated by opening the expansion valve but 

may often result in unexpected oscillations in the amount of superheated vapor at the 

evaporator exit, often observed in practice. This phenomenon, called “valve-hunting,” is 

usually solved by adjusting the valve parameters and resulting in decreased performance 

[5]. Using multivariable control schemes, these fluctuations could be avoided while 

allowing the system to function at more efficient operating levels. 

To modulate the cooling capacity supplied from the evaporator, evaporator 

temperature has been commonly used as control input in classical control of vapor 

compression systems. Alternatively, evaporator pressure can be employed since it is 

closely related to the evaporator saturation temperature. The associating enthalpy at 
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evaporator inlet/outlet in cooling calculation is a function of both evaporator pressure 

and temperature which affect subsequent cooling capacity. Furthermore, pressure 

response is much faster than temperature response, increasing the bandwidth of the 

output sensing [71].          

Thus multivariable control paradigms have been developed to achieve multiple 

objectives, i.e., maximizing thermal efficiency with desired cooling capacity, through the 

cross-coupling effect between superheat regulation and compressor speed. This 

dissertation demonstrates the effectiveness of advanced MIMO coordination-based 

control strategies in both simulation and experiment. 

 

5.3.4 MIMO Control of Vapor Compression Systems    

 In Section 5.3.2, the shortcomings of classical SISO control in vapor 

compression system are addressed to stimulate the development of a MIMO control 

strategy to prevent the cross-coupling of two actuators, expansion valve and compressor. 

Furthermore, to match the thermal load (cooling capacity) with thermal efficiency 

(superheat) requires an MIMO control system that meets multiple control objectives.  

Typically, a vapor compression system has various controllable inputs for 

feedback control: electronic expansion valve (EEV) opening, compressor speed, 

condenser fan speed, and water flow valve opening. The fan speed of the evaporator and 

condenser affect the amount of heat transferred across the evaporator and condenser, 

respectively, but compared to EEV and the compressor, these effects on superheat and 
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cooling capacity are not as significant and will not be considered as control inputs in this 

dissertation.  

A general MIMO feedback control system is built to achieve the proper 

superheat regulation as well as match the load of cooling capacity, depicted in Figure 5.8, 

where Q  is cooling capacity [kW] and SHT  is superheat temperature of the evaporator 

[°C]. The controller in Figure 5.8 regulates compressor speed [rpm] and the electronic 

expansion valve (EEV) opening [%] with respect to the difference between reference 

and current values of cooling capacity and superheat in the evaporator. Constructing the 

cascade expansion valve-compressor control strategy will follow in the next section. 

 

 

Fig. 5.8. MIMO control of vapor compression system. 

 

5.3.5 MIMO Cascade Control for Vapor Compression Systems    

In Section 5.3.3, a general MIMO control paradigm was introduced for the 

control of superheat and cooling capacity of vapor compression systems. This control 
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paradigm may perform the desired control of multi-evaporator vapor compression 

systems but may possibly be limited for employing aggressive control action due to 

strong nonlinearities. It is difficult to construct an exact plant model using system 

identification. Typically, strong nonlinearities create difficulties in plant modeling using 

system identification techniques and the resulting control design using those models may 

not achieve the desired stability and performance of nonlinear systems; thus sluggish or 

weak control action is merely acceptable in practice [98], [99]. 

In this section, we employ the cascade MINO control paradigm which prevents 

the shortcomings of conventional MIMO control for superheat and cooling capacity 

regulation. By virtue of the cascade control paradigm, an indirect relationship between 

control outputs and system outputs allows more exact plant modeling and aggressive 

control action can be applied to construct a plant model [67], [71]. 

 

 

Fig. 5.9. MIMO cascade control of vapor compression system. 
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Figure 5.9 illustrates an equivalent control algorithm to Figure 5.8 using a 

cascade control paradigm. Instead of EEV opening and compressor speed, evaporating 

pressure and condensing pressure have been used as controller outputs where 

proportional gains 1K  and 2K  are determined from experimentation. Under the cascade 

framework, a plant model of the nonlinear system is constructed changing evaporating 

and condensing pressures to superheat and cooling capacity; thus any model can more 

precisely reflect the dynamics of a nonlinear system.  

 

5.4 Gain-Scheduled Control for Multi-Evaporator Vapor Compression Systems 

In this section, a proposed Youla-based gain-scheduled control approach is 

applied to a multi-evaporator vapor compression system. To demonstrate the gain-

scheduled control, we follow a conventional control design process of gain-scheduling 

for nonlinear systems: First, select control variables and adjustable parameters such as 

control inputs, outputs, states, and scheduling variables according to the control 

objectives. Second, construct the LPV plant model from empirical models. In this case, 

empirically identified models constructed using system identification techniques that 

closely reflect the physical system at prescribed operating conditions, then the LPV 

model was created from system identification models using particular state 

transformation. Note that empirical models have no common states and states of each 

model don’t have any physical meanings thus a state transformation forces the LPV 

model to share the states.   
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Third, linear controllers were designed at each operating condition according to 

empirical models constructed by system identification. Finally, linear controllers 

designed at local operating points were interpolated using the proposed controller 

interpolation method. The stability/performance of the closed loop system was evaluated 

using LMI-based Lyapunov stability. 

The remainder of this section is organized as follows. Section 5.4.1 describes 

closed loop system formulation with selection of control variables. Section 5.4.2 

examines empirical modeling using system identification and LPV plant modeling. 

Local control design using linear control design at local design points will be presented 

in Section 5.4.3 and an LPV-LQN feedback system will be discussed in Section 5.4.4. 

Section 5.4.5 prepares experimental results and analyses.  

 

5.4.1 Closed Loop Formulation 

In this section, feedback control system is formulated with a choice of control 

variables and adjustable parameters. As discussed in Section 5.3, MIMO control 

framework ensures that desired performance will match the thermal load (cooling 

capacity) with maximizing thermal efficiency (superheat) so that two evaporator 

superheats are primary system output regulated as desired values. Instead of direct 

regulation of cooling capacity supplied from an evaporator, condensing pressure is 

selected as the secondary system output. Clearly, the crux of multi-evaporator vapor 

compression system is to provide cooling individually from the demand of each 

evaporator thus water flow rates are selected as scheduling variables in this dissertation.  
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Another significant decision is a proper choice of actuators. As presented in 

Section 5.3, two expansion valves and a compressor are the primary manipulators to 

alter the mass flow rate of refrigerant, thus these three actuators are employed to 

modulate superheats and condensing pressure as desired values. Also, water flow valves 

have been used as disturbance inputs to regulate cooling capacities of the two 

evaporators since they alter heat transfer from refrigerant to water. Note that condensing 

pressure is not changed significantly by any actuators of the system. Compressor speed 

doesn’t affect superheat responses while superheats are strongly regulated by expansion 

valves. A schematic diagram of cascade feedback control system is depicted in Figure 

5.10. 

      

 

Fig. 5.10. MIMO cascade feedback control Loop.  

 

Under this framework, gain-scheduled controller modulates two expansion valve 

positions and compressor speed to track the reference inputs. Two superheat and 
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condensing pressure and local design points are determined in terms of scheduling 

variable (second water flow valve opening). 

 

5.4.2 MIMO System Identification and LPV Plant Modeling 

To create an empirical model to design a controller at local operating conditions 

through investigating the dynamics of vapor compression system, a set of data-driven 

models are constructed at prescribed design points using standard system identification 

techniques. First, the system is operated at a steady state then a pseudo-random binary 

signal (PRBS) input is applied. This procedure was then repeated: the first run was used 

for model identification and the second run for model validation [100].  

When preparing data for the model identification, experimental data was scaled 

properly to modulate the effects of each input into each output equivalently. Among 

various identification models, prediction error method (PEM) was used to define the 

estimating parameter model formed in a state-space representation since it reduces the 

prediction error fit by minimizing a quadratic prediction error criterion [100]. 

Before demonstrating the system identification of the vapor compression system, 

key operating conditions were selected in scheduling space. In this dissertation, water 

flow valves are scheduling variables. The sudden change of water flow rate affects the 

cooling capacities as disturbance input.  

Figure 5.11 illustrates local design points in scheduling space where three 

different operating conditions are selected for cooling of two evaporators. Note that 

design point 1 and 2 present full and half openings of water flow valve #2 while two 
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evaporators are running, and point 3 presents a zero opening of water flow valve #2 

while evaporator #2 is closed. Using prediction error method (PEM) as a system 

identification technique [100], 2nd order state space models for each input/output pair 

are created at three operating conditions as follows ( 3,2,1i ).: 

xCy

uBxAx

iP

iPiP

,

,,




.                                                      (5.4) 

 

 

Fig. 5.11. System identification points in scheduling space. 

 

The reader recognizes that empirical models defined at fixed operating 

conditions would not have common states. Thus a particular state transformation 

technique, i.e., Cholesky Transformation, has been employed to force the LPV model to 

share the states where iT  is Cholesky matrix, iPC ,  in this dissertation. 
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Finally, LPV plant model is constructed in a form of scheduling variable where ]10[ . 

  
1 2 1 1 2 1( 2(1 )( ) ( 2*(1 )( )x A A A x B B B u

y Ix

        


.              (5.6) 

To construct LPV plant model, initial guesses are made from individual system 

identification runs then refined them using PEM technique. Note that the LPV plant 

model can be recovered at design points where full, half, and zero water flow valve 

openings present 1, 0.5, and 0 of weighting on scheduling  , respectively.  

 

 

Fig. 5.12. Pseudo random bias input of evaporator set pressures. 
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Fig. 5.13. Model identification and validation. 

 

Model identification and validation are performed using the system identification 

toolbox in Matlab [100]. Figures 5.12-13 illustrate model validation of experimental data 

for system identification models at operating conditions 1 and 2. As discussed previously, 

pseudo-random binary signal (PRBS) input was applied to system inputs, two evaporator 

set pressures, then prediction error method (PEM) was used to define the estimating 

parameter model using these data which reflect input/output characteristics of system.  

Also, state space representations of three LPV identification models are 

presented in Equation 5.7.     



 148 

Operating condition 1: 
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Operating condition 2: 
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Operating condition 3: 
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Using an LPV plant model constructed from those system identification models, a 

proposed controller interpolation is applied to vapor compression system.  

  

5.4.3 Local Controller Design 

By virtue of gain-scheduled control paradigm, any linear controller design tools 

can be applied to design linear controller that stabilizes the plant at fixed operating 

condition. In this dissertation, LQR and PI control methods have been employed to 

design stabilizing controllers. Despite being most commonly used in practice, the LQR 

design method does not consider a reference input nor does it provide for command 

following. To achieve the desired performance of the system, a good disturbance 
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rejection and good command following need to be considered in designing a control 

system [101]. Good command following is implemented by properly introducing the 

reference input into the system equations.  

For the purpose of command following, robust tracking can be achieved by 

utilizing integral control in that the result from a standard LQR controller is not robust 

because any change in the plant parameters would result in the steady state error to be 

nonzero. Integral control is a special case of tracking a signal that does not go to zero in 

the steady state.   

To modify the LQR control representation included integrator, integral control is 

augmented the state vector with desired dynamics. Consider a standard plant 

representation with reference [101]: 

Cxy

BuAxx




                                                 (5.10) 

integral error, rye  , and the state of the plant x , by augmenting the plant state with 

the extra state Ix  that yields the differential equation as: 

     rCxxI                                                       (5.11) 

where  

      
t

I dtex
0

                                                        (5.12) 

Then the augmented state equations will be: 
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where the feedback law is: 
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The integral control structure of LQR control is depicted in Figure 5.14. 

 

 

Fig. 5.14. LQR control with integral structure. 

 

Also, state space representation of LQR and PI controller can be represented respectively 

as follows: 
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where  1PK  and 2PK  are proportional gains, and 1IK  and 2IK  are integral gains of PI 

controller. 
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5.4.4 LPV-Q Feedback System  

An LPV-Q feedback system is prepared using an LPV plant model and local 

controllers. To achieve the desired performance levels across the entire operating 

envelop an Youla-based gain-scheduling controller is constructed using the local 

controllers, based on the LPV-Q framework outlined in Section 3. A schematic diagram 

of LPV-Q feedback system is depicted in Figure 5.15 [86].         

 

 

Fig. 5.15. LPV-Q feedback system. 

 

5.4.5  Gain-scheduled Control on Vapor Compression System  

Finally, a proposed Youla-based gain-scheduled control approach is 

experimentally demonstrated on a multi-evaporator vapor compression system in this 

section. The LPV plant model indicates that the system dynamics of the system change 
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with a variation in the water flow rate applied to the second evaporator. Assuming that 

the water flow valve which regulates water flow rate remains fully opened and applied to 

the first evaporator, compressor speed will not significantly affect the evaporator 

superheat.           

 To demonstrate the gain-scheduled control, controller interpolation/switching is 

implemented among the three controllers that were designed at high, medium, and zero 

water flow conditions and experimentally evaluated. Note that two controllers are 

designed at high and medium water flow conditions where two evaporators are working 

using an LQR design method; the third controller is designed at a zero water flow 

condition using the PI control method. A desired gain-scheduled control can be achieved 

via interpolating two LQR controllers when water flow rate varies within a range 

between high and medium flow while simultaneous switching between an LQR 

controller designed at medium flow condition and PI controller designed at zero 

condition is implemented when the water flow valve is instantly closed.  

 Variation of water flow rate and the associating weighting functions are shown in 

Figure 5.16. Water flow rate [kg/s] is regulated by changing the water flow valve 

opening [%] electronically over operating conditions and closing manually after 1800 

seconds to implement controller switching. As shown in Figure 5.16, linear weighting 

functions properly reflect change of the water flow condition. Note that weighting 

function 1, 1 , and weighting function 2, 2 , vary nearly linearly with scheduling 

variable between high and medium operating conditions. Weighting function 3, 3 , 

dominates the control switching when the water flow valve is instantly closed. 
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Fig. 5.16. Water flow rate and weighting functions. 

 

Condenser pressure and compressor speed are presented in Figure 5.17. As 

discussed in Section 5.4.1, condensing pressure remains constant across the entire 

operating regime and compressor speed [rpm] is well regulated to achieve desired 

condensing pressure (1000 [kPa]).  
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Fig. 5.17. Condensing pressure and compressor speed. 

 

Figure 5.18 presents two evaporator cooling capacities supplied from two 

evaporators. Cooling capacities are relatively noisy, fluctuating in a wide range over the 

operating regime. However, cooling capacity of the second evaporator remains nearly 

zero at zero water flow condition while that of the first evaporator increases due to the 

large opening of EEV 1 that compensates the loss of cooling capacity of the second 

evaporator.       
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Fig. 5.18. Evaporator cooling capacities. 

 

 

Figure 5.19 shows evaporator superheats and EEV openings of the system when 

gain-scheduled control is applied. When controller interpolation between high and 

medium water flow occurs, superheat of the first evaporator begins oscillating but 

recovers quickly since EEV 1 responds instantly to regulate superheat as a desired value, 

10 [ºC]. Furthermore, when the water flow valve is manually closed, EEV 2 is also 

closed instantly and EEV1 is opened sufficiently to compensate evaporator superheat 2. 

After the water flow valve is re-opened, EEV 2 also opens again and controller 
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interpolation is implemented properly. The reader recognizes that stability of the system 

can be guaranteed over the operating envelop. More important, the interpolated/switched 

controller can transition smoothly and stably from one design point to another.  

Figure 5.20 presents superheat regulation where a single controller, LQR 

controller designed at high flow condition, is used over operating conditions. This single 

control case performs sufficiently well - even the second evaporator never loses 

superheat at zero water flow condition since second EEV never closes. However, the 

cascade control paradigm alleviates the strong effects of EEV on superheat in general 

control cases and results in an effective superheat regulation. This may not happen in 

practice since most physical systems are highly nonlinear and a single controller cannot 

achieve the desired control when cascade control may not reduce strong nonlinearities of 

the system.   
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Fig. 5.19. Superheat regulation and EEV opening in gain-scheduled control system. 
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Fig. 5.20. Superheat regulation and EEV opening in LQR controlled system. 
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6. CONCLUSIONS AND FUTURE WORK 

  

 

6.1 Summary of Research Achievement 

This dissertation provides a method for stable controller interpolation for LPV 

systems using the Youla parameterization. The existence of a quadratic common 

Lyapunov function is given by construction, guaranteeing stability of the closed system 

despite arbitrarily fast transitions in the scheduling variables. A particular state 

transformation is used to allow the interpolated Q-system to share state variables, 

significantly reducing the number of the states required for controller interpolation. The 

approach has the advantage that controllers of different sizes and structures can be 

interpolated smoothly and stably with the performance of the local controllers recovered 

exactly at critical operating conditions.  

A proposed stability analysis has been extended to the LPV closed loop system 

that includes robustness and performance considerations since the LPV plant model 

includes modeling that significantly affects the system dynamics. In this case, the plant 

model may not reflect the nonlinear system precisely and conventional stability 

analyses may not be sufficient to guarantee the stability of a nonlinear system. The 

proposed framework, utilizing 2L  gain of the modified LPV-Q system via optimizing 

feedback gains of a closed system, guarantees the global level of robust stability by 

minimizing the 2L  gain that remains within desired bounds over the operating envelop.
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The efficacy of the proposed controller interpolation is demonstrated in 

experimentation using a multi-evaporator vapor compression system. The dynamics of 

vapor compression systems are highly nonlinear, thus the gain-scheduled control is the 

potential to achieve the desired stability and performance of the system. The proposed 

controller interpolation/switching method guarantees the nonlinear stability of the closed 

loop system during the arbitrarily fast transition and achieves the desired performance to 

subsequently improve thermal efficiency of the vapor compression system.   

    

6.2 Future Work 

This research mainly contributes nonlinear stability for gain-scheduled systems. 

The efficacy of the proposed method is demonstrated in simulation and experimentation. 

There exist a number of directions where attention for future work can be focused, 

including following. 

 

Gain-scheduled Control: 

In a proposed LPV-Q framework, stability of the nonlinear closed loop system is 

guaranteed by the existence of a quadratic common Lyapunov function but performance 

of the system is rather not to be considered in this dissertation. To improve the 

performance of the nonlinear system, a plant model should reflect the dynamics of the 

system more precisely since controllers are designed using a model that is constructed 

from system identification models. When an LPV model doesn’t exist in practice, a 

data-driven or first principle model should represent real dynamics of the nonlinear 
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systems. Thus advanced methods in system identification-based plant modeling can 

become milestones in performance improvement. 

 

Control of Vapor Compression System:  

There are a plenty of choices in controllable inputs and outputs for vapor 

compression systems. We examined rather simple cases in experimental studies; other 

choices of controllable inputs and outputs may achieve high-level of thermal efficiency. 

Also, this dissertation has implemented control design at a steady state, not focusing on 

the start-up process; thus a comparatively large overshoot and sluggish settling time has 

appeared on start.-up. Control design with start-up and shut-down considerations will 

improve thermal efficiency via reducing the load applied to system.           
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