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ABSTRACT

Constrained Capacity of MIMO Rayleigh Fading Channels. (May 2011)

Wenyan He, B.Eng., Zhejiang University;

M.Eng., Zhejiang University

Chair of Advisory Committee: Dr. Costas N. Georghiades

In this thesis channel capacity of a special type of multiple-input multiple-output

(MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a

finite phase-shift keying (PSK) input alphabet. The constraint on the input alphabet

makes an analytical solution for the capacity beyond reach. However we are able

to simplify the final expression, which requires a single expectation and thus can be

evaluated easily through simulation. To facilitate simulations, analytical expressions

are derived for the eigenvalues and eigenvectors of a covariance matrix involved in

the simplified capacity expression. The simplified expression is used to provide some

good approximations to the capacity at low signal-to-noise ratios (SNRs). Involved

in derivation of the capacity is the capacity-achieving input distribution. It is proved

that a uniform prior distribution is capacity achieving. We also show that it is the only

capacity-achieving distribution for our channel model. On top of that we generalize

the uniqueness case for an input distribution to a broader range of channels.
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CHAPTER I

INTRODUCTION

As IEEE 802.11n standards become more and more readily available in various elec-

tronics products, multi-input multi-output (MIMO) has never been more accepted

by the general public. With 3G networks gradually becoming the main stream and

in some markets even being replaced by 4G networks, consumers’ appetite for more

bandwidth has never been bigger. Under this backdrop, any research work related to

MIMO is expected to have a significant impact on the society in the immediate fu-

ture. The importance of MIMO capacity is that it provides a theoretical limit capping

network throughput for reliable transmission of information over MIMO channels. A

simple MIMO system is illustrated in Fig. 1.

Transmit 
Array

Receive
Array… …

M N
11h

NMh

ijh

Fig. 1. Block diagram of a MIMO system.

This thesis follows the style of IEEE Transactions on Information Theory.
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A. Previous Work on MIMO Capacity

After the pioneering work on MIMO systems was published by Telatar [1] and Fos-

chini and Gans [2] in the late 1990’s, MIMO capacity became a subject of significant

research. Foschini [3] pointed out that the MIMO capacity could be substantially

higher than that of a single-antenna system. He went further to establish the rela-

tionship between the M -dimensional architecture and M 1-dimensional architectures.

The many currently available results on MIMO capacity are based on three exclusive

assumptions: channel known at both the transmitter and receiver, channel known

only at the receiver, and channel known at neither the transmitter nor the receiver.

In the first category, the water-filling power allocation on the singular values of the

channel matrix is shown to be optimal at the transmitter [1, 4]. In the second cate-

gory, when the channel matrix entries are i.i.d., uniform power allocation is assumed

at the transmitter since it has no knowledge of the channel state. Compared to the

first two cases, the third, is mathematically more difficult to deal with and interest

in it is relatively new. Marzetta and Hochwald [5] shed some light on this case by

showing, for instance, that increasing the number of transmit antennas beyond the

number of symbol periods in a coherence interval does not increase capacity. Zheng

and Tse [6] also did some original work that falls into this category. They focused on

the asymptotic capacity at high SNR and tried to give a geometric interpretation to

the problem as sphere packing in the Grassmann manifold [7].

A brief overview of MIMO capacity can be found in [8]. Goldsmith et al. [9] gave a

more detailed overview of recent results on single-user and multiuser MIMO capacity,

in which multiple definitions of time-varying channel capacity are listed, e.g., outage

capacity, ergodic capacity, and minimum rate capacity. Since a closed-form expression

for the MIMO capacity is unavailable, the asymptotic behavior naturally becomes a
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primary topic of interest. When the number of transmit and receive antennas is large,

the instantaneous MIMO capacity, as a random variable, can be well approximated

by Gaussian distribution [10, 11]. Some nice analytical results are presented in [12]

under the assumption that the channel is known at both transmitter and receiver.

There are more asymptotic results available when the channel is assumed known at

the receiver only. For example, Rapajic and Popescu derived a closed-form expression

for the limiting capacity in [13], whose accuracy was corroborated in [11]. Sengupta

and Mitra provided the limiting mean and variance of the conditional capacity given

the channel gain matrix [14]. When the Rayleigh fading is correlated rather than

independent, the corresponding results can be found in [12, 14], the former of which

shows correlation reduces asymptotic capacity subject to uniform power allocation

at the transmitter. Various approaches for calculating MIMO channel capacity have

been used. Janaswamy obtained a series expression for the flat, uncorrelated Rayleigh

fading case using Mellin transform [15]. Alfano et al. studied the capacity for a semi-

correlated Rayleigh fading channel where correlation is present at only one side [16]

and that for an uncorrelated Rician fading channel [17]. Chiani et al. applied Wishart

matrix theory to derive a closed-form expression for the characteristic function of the

instantaneous MIMO capacity [18], which in turn uniquely determines the distribution

function of the capacity. However, one limitation in [18] is that it assumes correlation

only at the end of the link with fewer antennas. A nice complement can be found

in [19], where Smith et al. gave a closed-form expression for the characteristic function

of a semi-correlated channel with correlation present at the end with more antennas.

Kang et al. also calculated the moment generating function of MIMO capacity for

different scenarios [20, 21].

The above being said, we need to point out that all aforementioned results stud-

ied a MIMO system with an unrestricted input, or equivalently, Gaussian input since
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it maximizes mutual information between MIMO channel input and output when

there is no constellation constraint on the input alphabet. Actually, there has been

little effort on input-constrained MIMO capacity [22]–[25], although a finite input

alphabet apparently makes more practical sense when an actual MIMO system is

to be established. Baccarelli [22] derived upper and lower bounds for the “sym-

metric capacity” employing two-dimensional data constellations. Hochwald and ten

Brink [23] computed the MIMO mutual information of constrained constellations in

their study of near-capacity performance of the LSD/APP detector/decoder. Lapi-

doth and Moser [24] took advantage of a dual expression for channel capacity to derive

upper bounds on MIMO capacity. Finally, Müller [25] applied the replica method to

deriving the MIMO channel capacity for a binary input alphabet.

B. Proposed Research

Noticing lack of results on MIMO capacity of constrained constellations, we decided

to pursue this research direction. As will become obvious in later chapters, a MIMO

system with a constrained input constellation usually becomes mathematically in-

tractable , which only makes the capacity more elusive. We choose a relatively easy

starting point, where the input signal is in a PSK constellation, whose diagram is

presented in in Fig. 2. After the final expression for the capacity is obtained, which

carries a double expectation, it is further simplified to a single expectation. Given

this expectation, an analytical solution for the capacity is still beyond reach, which

means Monte Carlo simulation is unavoidable. Yet we are able to find the analytical

eigenvalues and eigenvectors for a covariance matrix included in the single-expectation

capacity expression. This greatly boosts computational efficiency. After these results

are ready, we also obtain some approximations to the capacity at low SNR, two of
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which are in closed form. The closed-form approximations can be used to find some

insight into our MIMO system rather than solve a pure mathematical problem.

Fig. 2. PSK signal space diagram. A signal point in the space is described as

sk = exp(j2kπ/Q), 0 ≤ k ≤ Q− 1. In this particular example Q = 8.

During the process of deriving the capacity, we have to establish that the uniform

input distribution achieves capacity for our PSK signaling system. A by-product is,

this capacity-achieving distribution is unique. Encouraged by this result on unique-

ness, we want to put it in a somewhat unified framework. So we take a look at it

for all MIMO channels with any discrete input alphabet, e.g., QAM. It will be shown

that the uniqueness conclusion indeed works for any discrete input.

C. Organization of Thesis

The remaining part of this thesis is organized as follows. Chapter II summarizes

available results on generic MIMO channels, such as the definition of outage capacity.
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It eventually leads to PSK input constrained MIMO channel in Chapter III, where

we not only study the capacity but also learn the capacity-achieving input distribu-

tion. Once the final simplified expression is obtained for the capacity, we try to find

some approximations that work well within low SNR regime and that provide some

insight. Even though uniqueness of capacity-achieving input distribution is employed

in Chapter III, its proof is deferred to Chapter IV. In Chapter IV we try to prove

uniqueness of capacity-achieving input distribution for a broad range of channels with

a discrete input alphabet, of which PSK constellation is only a special example.
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CHAPTER II

MIMO CAPACITY

MIMO systems have collected extensive attention in the new millennium due to its

promise for a considerable increase in capacity, which is commonly considered to be a

viable means for satisfying the ever-increasing demand for a higher data rate. When

the concept of a multi-antenna system was originally introduced [1, 2, 3], no constraint

was imposed on the input constellation. A Gaussian input was shown to achieve the

capacity, or equivalently, to maximize the mutual information between input and

output of a MIMO channel. However, it is impossible for a true Gaussian input to

be realized in practice. The best one can do is approximate the Gaussian input with

some sort of discrete input, which usually leads to a large and (maybe) irregular

constellation. A more practically feasible way is to directly utilize a constrained

input. Two popular options are phase-shift keying (PSK) and quadrature amplitude

modulation (QAM).

The ground-breaking work by Telatar [1], Foschini and Gans [2] toward the end

of last millennium not only provided some exciting results on capacity of multiple-

antenna Gaussian channels but also stimulated a huge wave of enthusiasm toward

various topics involving MIMO systems, including MIMO channel capacity, MIMO

channel coding, space-time coding, etc. Even though the capacity topic has lost its

original appeal to many researchers in the wireless communications area, there are

still some interesting problems left to be solved.

This thesis focuses on one rather small topic in the MIMO capacity category and

tries to dig deep into it. But before we make the jump, it is sensible to review others’

accomplishments in the broader topic first.

Under most circumstances, a MIMO system can be very well characterized by
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the following simple model,

y = Hx + n (2.1)

where H is a complex Gaussian matrix, n represents complex Gaussian noise with a

scaled identity matrix as its covariance matrix.

Among different notions of capacity [9], ergodic capacity and outage capacity are

the two most often studied.

A. Ergodic Capacity

For ergodic capacity to be a legitimate characterization of a fading channel, the

channel matrix H in (2.1) as a random process needs to be “ergodic” or changing fast

enough. In other words, the fading has to be fast.

Early research on MIMO ergodic capacity assumed no constraint on input signals.

Under this assumption or lack thereof, Telatar [1], Foschni and Gans [2] separately

obtained a similar form of ergodic capacity for channel model (2.1),

CG = E
[
log2 det

(
IN +

γs

M
HH†

)]
, (2.2)

where the subscript G is used to emphasize the Gaussian characteristics of the

capacity-achieving input signal.

More recently people started paying attention to capacity for a MIMO channel

under discrete and finite input signaling, such as PSK [26]. In this case, the ergodic
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capacity becomes

Cerg = M log2 Q−N log2 e

− 1

QM

∑

x′∈X
EH

[
En̂

[
log2

∑

x∈X
exp

{
−‖n̂ + H(x′ − x)‖2

σ2

}]]

= M log2 Q−N log2 e− EH

[
En̂

[
log2

∑

x∈X
exp

{
−‖n̂ + H(x̄− x)‖2

σ2

}]]
(2.3)

where M is the number of transmit antennas, N is the number of receive antennas,

Q is the size of the PSK signal constellation, n̂ ∼ Nc(0, σ2IN), and

x̄ =

(
1√
M

1√
M

· · · 1√
M

)T

.

Note that (2.3) is based on the conclusion that p(x) = 1/QM .

B. Outage Capacity

The basic assumption for ergodic capacity is that the total transmission time is much

longer than the coherence time of a fading channel. If this is not satisfied, as is the

case in some real-time applications, e.g., speech transmission over wireless channels,

the whole concept of ergodic capacity is no longer valid. In that case, we need to

resort to a different definition of capacity, i.e., the outage capacity,

Cout(q) = sup {R ≥ 0: Pr [I(x; y) < R] ≤ q} , (2.4)

where q ∈ (0, 1) is the so-called outage probability.

Telatar also considered outage probability in [1],

Pout(R, P ) = inf
Q≥0

tr(Q)≤P

Pr
[
log2 det(IN + HQH†) < R

]
,

where P is the power constraint, R is the supportable rate, Q ≥ 0 means Q is a posi-
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tive semi-definite matrix. This definition of outage probability is essentially the same

(from a different angle though) as the definition of outage capacity in (2.4). Telatar

conjectured that the optimal input covariance matrix Q is a diagonal matrix with

the power equally shared among a subset of the transmit antennas [1]. Furthermore,

the higher the rate, which inevitably leads to a higher outage probability, the fewer

transmit antennas that should be put into service.

The motivation behind the pursuit of outage capacity is that the MIMO chan-

nel has zero Shannon capacity when the channel is non-ergodic, e.g., quasi-static or

slow-fading. Due to the highly complicated probability density function of the instan-

taneous capacity, it was next to impossible to evaluate the cumulative distribution

function of I(x; y) as in (2.3), much less its pre-image R in (2.4). Therefore, let us

look at the outage capacity with unconstrained input first, in which case the mutual

information in (2.4) is

I(x; y) = log2 det
(
IN +

γs

M
HH†

)
, (2.5)

which is often called the instantaneous capacity. There was some nice effort at approx-

imating the pdf of the above I(x; y) by a Gaussian distribution [10, 11]. Although

the approximation is only good under the assumption that the number of transmit

and receive antennas is asymptotically large, their simulation results illustrate the

surprising accuracy of the Gaussian approximation even for moderate-sized MIMO

arrays. Basically, they showed that I(x; y) in (2.5) converges in distribution to a

Gaussian random variable, which enables one to attain an asymptotic formula for the

capacity. Using singular value decomposition (SVD), Ge et al. [27] derived precise and

good approximate statistical characteristics of I(x; y) for different MIMO channels.

Lately, some random matrix theories, more specifically, about Wishart matrix, have

attracted attention and been applied to specification of outage capacity [18, 28, 29].
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To compute outage capacity efficiently, Shi et al. [29] approximated the distribution of

I(x; y) by Gaussian and Gamma distributions and specified very simple and accurate

formulas for outage probabilities.

Let

W =





HH†, N ≤ M

H†H, N > M

.

Then W is a Wishart matrix [30]. Let Nmin = min{M, N} and λ = [λ1, . . . , λNmin
]T be

the nonzero eigenvalues of the Nmin×Nmin matrix W. Then the mutual information

(2.5) can be rewritten as [18]

I =

Nmin∑
i=1

log2

(
1 +

γs

M
λi

)
(2.6)

where I is the short form of I(x; y) (the same in the following). According to (2.6),

once the joint distribution of λ is specified, the characteristic function of I, denoted

by φI(z), is determined accordingly because

φI(z) = E
[
ej2πIz

]
=

∫
· · ·

∫

0≤xNmin
≤···≤x1

fλ(x)

Nmin∏
i=1

(
1 +

γs

M
λi

) j2πz
ln 2

dx

where x = [x1, . . . , xNmin
]T and dx = dx1 · · · dxNmin

. For the uncorrelated case, the

joint pdf of ordered eigenvalues λ1 ≥ · · · ≥ λNmin
of W is [18, 31]

fλ(x) =
|V(x)|2∏Nmin

i=1 [(Nmax − i)! · (Nmin − i)!]

Nmin∏
i=1

e−xixNmax−Nmin
i

where Nmax = max{M, N}, V(x) is the Vandermonde matrix with x1, . . . , xNmin
as

its parameters. The final closed-form expressions for φI(z) can be found in [18] for

both uncorrelated and correlated cases. Once the characteristic function is available,
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the pdf of the mutual information is simply

fI(I) =

∫ ∞

−∞
φI(z)e−j2πIzdz.

According to (2.4), the cdf of I is actually more helpful, which is easy to get from the

preceding equation,

FI(I) =

∫ ∞

−∞
φI(z)

(
1− e−j2πIz

j2πz

)
dz.

And the probability in (2.4) is nothing more than FI(R).

Up to this point, all accomplishments on outage capacity described are based on

the assumption that the input is Gaussian. When the input is constrained to be, say,

PSK, things will change. For example, (2.5) doesn’t hold anymore. Outage capacity

with a constrained input is still an open problem.
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CHAPTER III

PSK CONSTRAINED MIMO CAPACITY

After the general discussion in Chapter II on capacity of a generic MIMO channel,

we are now ready to focus our attention on the capacity of a MIMO fading channel

under PSK signaling. We will also target the input distribution that achieves the

capacity.

A. PSK Constrained MIMO Capacity

A Gaussian MIMO channel with Rayleigh fading and PSK input is described by

y = Hx + n (3.1)

where H ∈ CN×M , x ∈ X ,
{

(x1 x2 · · · xM)T | xm = exp {j2πq/Q} /
√

M, 1 ≤ m ≤
M, 0 ≤ q ≤ Q−1

}
(superscript T denotes transpose), y,n ∈ CN×1, Q is the number

of points in the PSK signal constellation, and M and N are the number of transmit

and receive antennas, respectively. The definition of X essentially enforces the Q-ary

PSK input constraint and also implies uniform power allocation at the transmitter.

The values x can take guarantee that the average energy from each transmit antenna

is 1/M [32]. Elements of H are i.i.d. complex Gaussian ∼ Nc(0, 1). Those of noise

n are i.i.d. complex Gaussian ∼ Nc(0, σ
2) where σ2 = 1/γs [32] and γs is the symbol

signal-to-noise ratio Es/N0.

According to [1], under the assumption that the channel has no feedback, in

which case the channel input x and the channel matrix H are independent, the

mutual information between x and y with H known at the receiver is I (x; (y,H)) =
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I(x; y | H), where

I(x; y | H) = h(y | H)− h(y | x,H) = h(y | H)− h(n)

= −
∫

f(H) dH

∫
f(y | H) log2 f(y | H) dy −N log2(πeσ2). (3.2)

The probability density function of the received vector y conditioned on H is

f(y | H) =
∑

x∈X
p(x)f(y | x,H) =

∑

x∈X
p(x)

(
1

πσ2

)N

exp

(
−‖y −Hx‖2

σ2

)
, (3.3)

where ‖ · ‖ denotes Euclidean norm. To maintain focus on PSK constrained MIMO

capacity, we defer until Section C to show that the maximum of I(x; (y,H)), which

is by definition the channel capacity C, is achieved when the input is uniformly

distributed, i.e., p(x) = 1/QM in (3.3). Hence it follows from (3.2) and (3.3) that the

maximum achievable rate for the channel in (1) is

C = M log2 Q−N log2 e− 1

QM

∑

x′∈X
EH

{
En̂

[
log2

∑

x∈X
exp

(
−‖n̂ + H(x′ − x)‖2

σ2

)]}
,

(3.4)

where n̂ ∼ Nc(0, σ2I). Furthermore, by noting that the distribution of H is rota-

tionally invariant and that Ux is a point in the same PSK constellation as any PSK

point x for U =
√

M diag(x′) = diag
(
ej2i′1π/Q, · · · , ej2i′Mπ/Q

)
, (3.4) reduces to

C = M log2 Q−N log2 e− EH

{
En̂

[
log2

∑

x∈X
exp

(
−‖n̂ + H(x̄− x)‖2

σ2

)]}
(3.5)

where x̄ =
(

1√
M

1√
M
· · · 1√

M

)T

.

Numerical evaluation of (3.5) can be done using Monte Carlo averaging [33].

However, the two expectations in (3.5) make the evaluation a little inconvenient and

give little insight into capacity computation. So next we would like to combine the

two independent complex Gaussian random variables n̂ and H into one. The idea is
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to determine the covariance matrix for the concatenated random vector n̂+H(x̄−x)

in (3.5) as x runs through all different values in X. This concatenated vector is

zero-mean, complex Gaussian. Thus, its covariance matrix uniquely determines its

statistical characteristics. Fortunately, we can also analytically specify all nonzero

eigenvalues and their associated eigenvectors for this covariance matrix rather than

numerically, which greatly reduces complexity in generating an appropriately corre-

lated Gaussian sequence. In addition, the availability of closed-form expressions for

the eigenvalues and eigenvectors lays a foundation for some approximations presented

in Section B.

1. The Covariance Matrix

For brevity, we introduce a new variable za , x̄ − x, 1 ≤ a ≤ QM . The subscript

a varies with x, i.e., as x traverses the QM different values in its domain, a changes

from 1 through QM . The QM random vectors n̂+Hza (1 ≤ a ≤ QM) in the exponent

in (3.5) can be concatenated to yield a QMN ×1 complex random vector, denoted by

q̃, whose uth (where u = (a − 1)N + b, 1 ≤ a ≤ QM , 1 ≤ b ≤ N) component q̃u is a

zero mean complex Gaussian scalar. The statistics of complex Gaussian vector q̃ are

completely specified by the covariance matrix of q̃, denoted by Ξ̃. Since Ξ̃ = E
[
q̃q̃†

]

(the symbol † denotes conjugate transpose), the (u, v)th element of Ξ̃ is

ξ̃uv = E [q̃uq̃
∗
v ] =

(
σ2 + z†cza

)
δbd (3.6)

for u = (a− 1)N + b, v = (c− 1)N +d, 1 ≤ a, c ≤ QM , 1 ≤ b, d ≤ N , where ∗ denotes

complex conjugate, and δbd is the Kronecker delta. Let ξac = σ2 + z†cza. Equation

(3.6) implies that Ξ̃ is a block matrix composed of QM × QM submatrices with the

(a, c)th submatrix equal to an N×N identity matrix IN multiplied by a scaling factor

ξac, where the pair (a, c) specifies the position of the corresponding submatrix in Ξ̃,
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i.e.,

Ξ̃ =




ξ1, 1IN ξ1, 2IN · · · ξ1, QM IN

ξ2, 1IN ξ2, 2IN · · · ξ2, QM IN

...
...

. . .
...

ξQM , 1IN ξQM , 2IN · · · ξQM , QM IN




= Ξ⊗ IN , (3.7)

where Ξ , (ξac)QM×QM and the symbol ⊗ denotes Kronecker product. According to

(3.7), Ξ̃ is a Hermitian matrix because Ξ is Hermitian.

Let Ξ = ΘΛΘ† be the eigen-decomposition of Ξ. Then because of (3.7) the

eigen-decomposition of Ξ̃, Ξ̃ = Θ̃Λ̃Θ̃
†
, is readily obtained as Θ̃ = Θ ⊗ IN , Λ̃ =

Λ⊗IN [34, Theorem 4.2.12, pp. 245]. This helps lower the complexity involved in the

diagonalization procedure for Ξ̃ as the size of Ξ stays independent of N , the number

of receive antennas.

2. Eigenvalues and Eigenvectors Ξ

Given its size, Ξ has QM eigenvalues, counting multiplicity. Among them, (M +1) are

positive and the rest are zero. To substantiate this, let Z be the M×QM matrix whose

ath column is za, ẑa = ( za
σ ) and Ẑ be the matrix composed of columns {ẑa}QM

a=1. Then

Ξ = Ẑ†Ẑ. Since za = x̄−x, M columns of Z can be selected to form a scaled identity

matrix
(
1− ej2π/Q

)
/
√

MIM , which implies rank(Z) = M . Choose the corresponding

M columns out of Ẑ and also pick one particular column in Ẑ, (0 · · · 0 σ)T. These

(M + 1) columns form a nonsingular matrix. Since this nonsingular matrix is part

of Ẑ and Ẑ has a row number of M + 1, rank(Ẑ) = M + 1, which in turn leads to

rank(Ξ) = M +1 given the relationship between Ẑ and Ξ [35]. Note that Ξ is positive

semidefinite, which makes its eigenvalues nonnegative. In addition, the number of its

positive eigenvalues equals its rank [35]. So Ξ has (M + 1) positive eigenvalues.

We now turn our attention to how to actually analytically determine the nonzero



17

eigenvalues and their associated eigenvectors of Ξ. Analytical evaluation will not only

avoid numerical instabilities but will also make computation faster. So, our aim is to

mathematically derive the matrices Θ and Λ. Note that we restrict our attention to

the (M + 1) positive eigenvalues and their associated eigenvectors.

The ath column of Z is,

za = x̄− x(a)

=
1√
M




1− ej
2iM−1π

Q

...

1− ej
2i0π

Q




=
−2j√

M




sin
(

iM−1π

Q

)
ej

iM−1π

Q

...

sin
(

i0π
Q

)
ej

i0π
Q




,

where a = 1 + iM−1 · · · i0(a − 1, Q) and iM−1 · · · i0(a − 1, Q) =
∑M−1

k=0 ikQ
k is the

Q-ary representation of a−1. In the following, wherever no ambiguity arises, the two

variables for a Q-ary number are omitted for brevity. As for the row structure of Z,

let its top and bottom rows be

−2j√
M

zr
M−1 and

−2j√
M

zr
0

respectively, where the superscript r stands for row. For an arbitrary row −2j√
M

zr
k

(0 ≤ k < M),

zr
k = 1T

QM−1−k ⊗
{[

0 sin

(
π

Q

)
ej π

Q · · · sin

(
(Q− 1)π

Q

)
ej

(Q−1)π
Q

]
⊗ 1T

Qk

}

where 1 denotes an all 1-entry column vector of proper size. Then

Ξ = Ẑ†Ẑ = Z†Z + σ21T
QM 1QM =

4

M

(
gr

iM−1···i0

)

QM×QM

where

gr
iM−1···i0 ,

M−1∑

k=0

sin

(
ikπ

Q

)
e−j

ikπ

Q zr
k + Σr
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is one out of QM rows, iM−1 · · · i0 is a Q-ary number used here as a subscript for the

row vectors and Σr = M
4

(σ2 · · · σ2) is a 1×QM row vector.

To obtain the (nonzero) eigenvalues and the associated eigenvectors of Ξ, we sim-

ply need to solve the vector equation λφ = Ξφ (where λ 6= 0 and φ = (φ0 φ1 · · · φQM−1)
T).

Here φ refers to a generic eigenvector of Ξ. λφ = Ξφ actually consists of QM equa-

tions,

λφ0 =
4

M
gr

0φ =
4

M
Σrφ, (3.8a)

λφp·Qk =
4

M
gr

p·Qkφ =
4

M

[
sin

(
pπ

Q

)
e−j pπ

Q zr
k + Σr

]
φ

=
4

M
sin

(
pπ

Q

)
e−j pπ

Q zr
kφ + λφ0

=⇒ sin

(
pπ

Q

)
e−j pπ

Q zr
kφ =

M

4
λ(φp·Qk − φ0), (3.8b)

where 1 ≤ p ≤ Q − 1, p · Qk in gr
p·Qk is a decimal instead of a Q-ary number, and

finally,

λφiM−1···i0 =
4

M
gr

iM−1···i0φ

=
4

M

[
M−1∑

k=0

sin

(
ikπ

Q

)
e−j

ikπ

Q zr
k + Σr

]
φ

=
M−1∑

k=0

λ
(
φik·Qk − φ0

)
+ λφ0

=⇒ φiM−1···i0 =
M−1∑

k=0

(φik·Qk − φ0) + φ0. (3.8c)

From (3.8c) we know that each element of φ can be expressed as a linear combination

of φ0 and φp·Qk (1 ≤ p ≤ Q − 1, 0 ≤ k ≤ M − 1). So once we get φ0 and φp·Qk , the
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eigenvector φ is determined. After some mathematical manipulation, (3.8a) becomes

[
QM−1(M + Q−MQ)− λ

σ2

]
φ0 + QM−1

Q−1∑
t=1

M−1∑
m=0

φt·Qm = 0. (3.9)

On the other hand,

zr
kφ =

QM−1∑
m=0

zr
k, mφm

=

Q−1∑
t=0

sin

(
tπ

Q

)
ej tπ

Q

Q−1···Q−1∑

iM−1···i0\ik=0···0, ik=t

φiM−1···i0

= −j

2
QM−1(M − 1)(Q− 1)φ0 + QM−1

·
Q−1∑
t=1


sin

(
tπ

Q

)
ej tπ

Q φt·Qk +
j

2

M−1∑
m=0,
m6=k

φt·Qm


 . (3.10)

Note that in the preceding equation the notation iM−1 · · · i0\ik means iM−1 · · · ik+1ik−1 · · · i0
(i.e., the sequence excluding the kth term). It follows from (3.8b), (3.10), and (3.9)

that

{[
M

4
csc

(
pπ

Q

)
ej pπ

Q +
j

2σ2

]
λ− j

2
QM−1

}
φ0 − M

4
λ csc

(
pπ

Q

)
ej pπ

Q φp·Qk

− j

2
QM−1

Q−1∑
t=1

ej 2tπ
Q φt·Qk = 0, (3.11)

which represents (Q − 1) equations for a fixed k as 1 ≤ p ≤ Q − 1. Subtracting the

first from the remaining (Q− 2) equations, we have

[
csc

(
pπ

Q

)
ej pπ

Q − csc

(
π

Q

)
ej π

Q

]
φ0 + csc

(
π

Q

)
ej π

Q φQk − csc

(
pπ

Q

)
ej pπ

Q φp·Qk = 0

(3.12)

for 2 ≤ p ≤ Q− 1. The first equation included in (3.11) corresponding to p = 1 along
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with the (Q− 2) equations represented by (3.12) leads to

[
Mλ−QM

4
csc

(
π

Q

)
ej π

Q + j
λ

2σ2

]
φ0 +

QM −Mλ

4
csc

(
π

Q

)
ej π

Q φQk = 0. (3.13)

Equations (3.9), (3.12) and (3.13) combined together give rise to the following coef-

ficient matrix of size [(Q− 1)M + 1]× [(Q− 1)M + 1]:

C =




QM−1(M + Q−MQ)− λ
σ2 QM−11T

(Q−1)M

1M ⊗A IM ⊗B


 (3.14)

for the unknown vector
(
φ0 φQ0 · · ·φ(Q−1)·Q0 · · ·φQM−1 · · ·φ(Q−1)·QM−1

)T
, where

A =




Mλ−QM

4
csc

(
π
Q

)
ej π

Q + j λ
2σ2

csc
(

2π
Q

)
ej 2π

Q − csc
(

π
Q

)
ej π

Q

...

csc
[

(Q−1)π
Q

]
ej

(Q−1)π
Q − csc

(
π
Q

)
ej π

Q




and

B =




QM−Mλ
4

csc( π
Q)e

j π
Q 0 0 ··· 0

csc( π
Q)e

j π
Q − csc( 2π

Q )e
j 2π

Q 0 ··· 0

csc( π
Q)e

j π
Q 0 − csc( 3π

Q )e
j 3π

Q ··· 0

...
...

...
...

...
csc( π

Q)e
j π

Q 0 0 ··· − csc[ (Q−1)π
Q ]e

j
(Q−1)π

Q




.

Note that when λ = QM/M , the first row of B is all zero, which makes the [(Q −
1)k + 2]th row (0 ≤ k ≤ M − 1) of C equal to

(
j QM

2Mσ2 0T
(Q−1)M

)
. Hence det(C) = 0.

Because of (3.8c) and the assumption that φ is an eigenvector, φ0, φp·Qk can not all be

zero. Then a necessary and sufficient condition for a particular λ to be an eigenvalue

of Ξ is det(C) = 0 as det(λI − Ξ) equals det(C) multiplied by a constant. Since

λ = QM/M makes det(C) = 0, it is a nonzero eigenvalue of Ξ. Now let us assume

λ 6= QM/M so as to find other nonzero eigenvalues of Ξ. Under this assumption, the
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matrix in (3.14) can be further simplified to

C′ =



−Mλ2 + QM(Mσ2 + M + 1)λ−Q2Mσ2 0T

(Q−1)M

1M ⊗A′ −I(Q−1)M


 (3.15)

where

A′ =




1 + j 2λ
(Mλ−QM )σ2 sin

(
π
Q

)
e−j π

Q

...

1 + j 2λ
(Mλ−QM )σ2 sin

[
(Q−1)π

Q

]
e−j

(Q−1)π
Q




.

Let determinant of C′ be 0 and we obtain the following quadratic equation

Mλ2 −QM(Mσ2 + M + 1)λ + Q2Mσ2 = 0, (3.16)

whose two different roots are the simple (i.e., multiplicity 1) eigenvalues of Ξ, denoted

by

λM =
QM

2M

[
(Mσ2 + M + 1)−

√
(Mσ2 + M + 1)2 − 4Mσ2

]
(3.17a)

and

λM+1 =
QM

2M

[
(Mσ2 + M + 1) +

√
(Mσ2 + M + 1)2 − 4Mσ2

]
(3.17b)

respectively. At the beginning of this subsection it was already established that Ξ has

M + 1 positive eigenvalues. Thus another nonzero eigenvalue of Ξ, i.e., λ = QM/M

is of multiplicity-(M − 1). In other words, λ1 = λ2 = · · · = λM−1 = QM/M .

Now that we have all nonzero eigenvalues available, it is time to shift our atten-

tion to their associated eigenvectors. Those eigenvectors corresponding to the zero

eigenvalue are of no use and hence are omitted.

When λ in (3.15) is either λM or λM+1, the elements of the associated eigenvector
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φ satisfy

φp·Qk = φ0

[
1 + j

2λ

(Mλ−QM)σ2
sin

(
pπ

Q

)
exp

(
−j

pπ

Q

)]
. (3.18)

Based on (3.8c) and (3.18), we know

φiM−1···i0 = φ0

[
1 + j

2λ

(Mλ−QM)σ2

M−1∑

k=0

sin

(
ikπ

Q

)
exp

(
−j

ikπ

Q

)]
. (3.19)

To normalize φ, we simply make (after some manipulation)

1 = ‖φ‖2 =

Q−1···Q−1∑
iM−1···i0=0···0

|φ0|2
∣∣∣∣∣1 + j

2λ

(Mλ−QM)σ2

M−1∑

k=0

sin

(
ikπ

Q

)
exp

(
−j

ikπ

Q

)∣∣∣∣∣

2

= |φ0|2QM

[
1 +

2Mλ

(Mλ−QM)σ2
+

M(M + 1)λ2

(Mλ−QM)2σ4

]
,

which yields (choosing the positive real number)

φ0 = Q−M
2

[
1 +

2Mλ

(Mλ−QM) σ2
+

M(M + 1)λ2

(Mλ−QM)2 σ4

]− 1
2

. (3.20)

When λ = QM/M , the second row of C in (3.14) dictates

φ0 = 0. (3.21)

Then the first row implies
Q−1∑
p=1

M−1∑

k=0

φp·Qk = 0. (3.22)

Finally, B yields

φp·Qk = sin

(
pπ

Q

)
csc

(
π

Q

)
ej

(1−p)π
Q φQk . (3.23)

Combining (3.22) and (3.23), it is obvious that

M−1∑

k=0

φQk = 0. (3.24)
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Because φ0 = 0, (3.8c) reduces to

φ =

√
M

2j
csc

(
π

Q

)
ej π

Q Z†
[
φQ0 φQ1 · · · φQM−1

]T
. (3.25)

Next our task is to find (M − 1) orthonormal eigenvectors associated with λ =

QM/M whose entries satisfy (3.21), (3.24) and (3.25) simultaneously. Fix φQ0 in

(3.24) to be − sin
(

π
Q

)
e−j π

Q and let φQ1 , · · · , φQM−1 be sin
(

π
Q

)
e−j π

Q in turn while

others are 0. For example,

φQ0 = − sin

(
π

Q

)
exp

(
−j

π

Q

)
,

φQ1 = sin

(
π

Q

)
exp

(
−j

π

Q

)
,

and φQ2 = · · · = φQM−1 = 0. A total of (M − 1) column vectors are constructed

this way. Corresponding to these (M − 1) vectors, φ =
(
zr

k − zr
M−1

)†
as 0 ≤ k ≤

M − 2. Since zr
M−1, zr

M−2, · · · , zr
0 are M linearly independent row vectors (recall

that rank(Z) = M),
(
zr

M−2 − zr
M−1

)†
, · · · ,

(
zr

0 − zr
M−1

)†
are linearly independent as

well. Following standard Gram-Schmidt orthogonalization procedures, we obtain the

(M − 1) orthonormal vectors θ1, · · · , θM−1, which can be described as follows.

Let ζp (1 ≤ p ≤ M − 1) be a Qp × 1 vector whose
(∑p−1

k=0 ikQ
k
)
th entry is

1

p

p−1∑

k=0

sin

(
ikπ

Q

)
exp

[
j
(1− ik)π

Q

]

and η be a Q− 1× 1 vector whose qth (0 ≤ q ≤ Q) entry is

ηq = sin

(
qπ

Q

)
exp

[
j
(1− q)π

Q

]
.

Then

θp = 2Q−M/2

√
p

p + 1

(
1Qp ⊗ η − ζp ⊗ 1Q

)⊗ 1QM−p−1 .



24

3. Generation of a Correlated Gaussian Sequence

To efficiently evaluate the capacity in (3.5), a zero-mean complex Gaussian sequence

with covariance matrix Ξ̃ = Ξ⊗ IN should be generated. Let Λ (the diagonal matrix

obtained in eigen-decomposition of Ξ) be arranged such that its nonzero eigenvalues

are on the lower right corner. Then R = ΘΛ1/2 (Λ1/2 is the component-wise square

root of Λ) is of the form R = [0 D] where 0 is a zero matrix of proper size and

D =
[√

λ1θ1 · · ·
√

λM+1θM+1

]
,

λk (1 ≤ k ≤ M + 1) is the kth nonzero eigenvalue of Ξ and θk is the eigenvector

associated with λk. Recall now that a vector of Gaussian random variables with

covariance matrix Ξ̃ = R̃R̃†, where R̃ = R⊗ IN , can be generated as v = R̃s̃ where

s̃ is a vector of i.i.d. Nc(0, 1) entries. It is clear that

va =
M+1∑
m=1

[D]amsm, 1 ≤ a ≤ QM

where va is the ath length-N subvector in v and sm is the (QM − M − 1 + m)th

length-N subvector in s̃. Then ra = ||va||2 is the numerator in the argument of the

exponents to be summed in (3.5). Alternatively, one can generate an (M + 1) × N

matrix S of i.i.d. Nc(0, 1) entries and evaluate Q = DS. Clearly the rows of Q are

equivalent to the vectors va. Hence ra equals the squared norm of the ath row of Q.

With the help of ra, (3.5) can be rewritten as

C = M log2 Q−N log2 e− E


log2

QM∑
a=1

exp
(
− ra

σ2

)

 , (3.26)

in which the expectation is over ra.
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B. Some Approximations

With D explicitly available now based on θ1, · · · , θM+1 and λ1, · · · , λM+1, i.e.,

D =
[√

λ1θ1

√
λ2θ2 · · ·

√
λM+1θM+1

]
,

we can attempt to make some approximations regarding the input-constrained capac-

ity given in (3.26).

When γs is small, or σ2 = 1/γs is large, λM+1 is much greater than λ1 through

λM while the elements of θ1, · · · , θM+1 have about the same order of magnitude.

Then, the contribution to ra in (3.26) from all terms other than the one associated

with
√

λM+1θM+1, a−1 is negligible. This means, we only need to generate a 1 × N

i.i.d. Gaussian sequence s = [s1 · · · sN ] and ra ≈ λM+1|θM+1, a−1|2
∑N

b=1 |sb|2, which is

what we call Approximation 1.

Equation (3.19) applies to the eigenvectors associated with either λM or λM+1.

For the eigenvector θM+1 associated with λM+1, when σ2 is large, its entries

|θM+1, a−1|2 u θ2
M+1, 0

[
1 +

4λM+1

(MλM+1 −QM) σ2

M−1∑

k=0

sin2

(
ikπ

Q

)]

for 1 ≤ a ≤ QM , where θM+1, 0 is given in (3.20) with λ replaced by λM+1. Then the

key part in (3.26)

QM∑
a=1

e−ra/σ2 ≈
QM∑
a=1

exp

{
−λM+1θ

2
M+1, 0

σ2

N∑

b=1

|sb|2

·
[
1 +

4λM+1

(MλM+1 −QM) σ2

M−1∑

k=1

sin2

(
ikπ

Q

)]}

= exp

(
−λM+1θ

2
M+1, 0

σ2

N∑

b=1

|sb|2
){

Q−1∑
p=0

exp

[
−4λ2

M+1θ
2
M+1, 0

∑N
b=1 |sb|2

(MλM+1 −QM) σ4
sin2

(
pπ

Q

)]}M

,
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which leads to

E


log2

QM∑
a=1

exp
(
− ra

σ2

)

 ≈ −λM+1θ

2
M+1, 0 log2 e

σ2
E

[
N∑

b=1

|sb|2
]

+ ME

{
log2

Q−1∑
p=0

exp

[
−4λ2

M+1θ
2
M+1, 0

∑N
b=1 |sb|2

(MλM+1 −QM) σ4
sin2

(
pπ

Q

)]}
(3.27)

≈ −λM+1θ
2
M+1, 0 log2 e

σ2
N + M

{
log2 Q− 2λ2

M+1θ
2
M+1, 0 log2 e

(MλM+1 −QM) σ4
E

[
N∑

b=1

|sb|2
]}

(3.28)

= M log2 Q−
[
λM+1θ

2
M+1, 0

σ2
+

2Mλ2
M+1θ

2
M+1, 0

(MλM+1 −QM) σ4

]
N log2 e. (3.29)

Note that from (3.27) to (3.28), an approximation based on the Taylor series expansion

log2

{∑Q−1
p=0 exp

[
x sin2

(
pπ
Q

)]}
≈ log2 Q + 1

2
x log2 e (for small x) is applied. With

(3.29), (3.26) reduces to

C ≈
(

λM+1θ
2
M+1, 0γs +

2Mλ2
M+1θ

2
M+1, 0γ

2
s

MλM+1 −QM
− 1

)
N log2 e, (3.30)

which is our Approximation 2 and can be shown to be independent of Q. It is easily

proved with the help of a little calculus that

lim
γs→0

1

γs

(
λM+1θ

2
M+1, 0γs +

2Mλ2
M+1θ

2
M+1, 0γ

2
s

MλM+1 −QM
− 1

)
= 1.

This leads (3.30) to Approximation 3,

C ≈ γsN log2 e. (3.31)

The significance of (3.31) is that it indicates when SNR is very low, the PSK-

input MIMO capacity is independent of both the number of transmit antennas M

and the size of the signal constellation Q. Actually (3.31) is a special case of the

results presented by Verdú [36, eqs. (16), (53), and (56)]. It also is in agreement

with conclusions in [37], where Oyman et al. pointed out any extra antenna should be
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placed at the receiver end to increase capacity in the low-SNR regime. The difference

is [37] assumed Gaussian input, while here we have shown a similar conclusion holds

for PSK constrained input.

Suppose now that there is no constellation constraint on the input alphabet.

Then the well-known formula for MIMO capacity due to Gaussian input is [1]

C = E
[
log2 det

(
IN +

γs

M
HH†

)]

= E

[
log2

N∏

k=1

(1 + µkγs/M)

]
≈ γs

M
log2 e

N∑

k=1

E [µk]

=
γs

M
log2 eE

[
tr

(
HH†)] = γsN log2 e (3.32)

where µk (1 ≤ k ≤ N) is an eigenvalue of HH†. The approximation holds when γs

is small. Note that the final equation of (3.32) is identical to (3.31), which indicates

PSK input-constrained MIMO capacity is approximately equal to the unconstrained

capacity at low SNR.

C. Optimal Input Distribution

Earlier in Section A we omitted an indispensable part in deriving the capacity to

focus on PSK constrained MIMO capacity itself. Since the final results were based

on the assumption that the channel capacity is achieved when the input is uniformly

distributed, it is necessary to prove the assumption. We achieve this by showing the

uniform input distribution maximizes the mutual information I(x; y | H) in (3.2).

First I(x; y | H) is rewritten below following (3.2) and (3.3),

I(x; y | H) = −N log2 e−βEH

[∫ ∑

x∈X
p(x)e−‖z−αHx‖2 ln

(∑

x∈X
p(x)e−‖z−αHx‖2

)
dz

]
,

(3.33)

where α = 1/σ and β is a positive constant.
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Let p1 ≥ . . . ≥ pQM , where pk = p(xk), be a non-uniform input distribution.

Obviously p1 > pQM . Due to the circular symmetry in the PSK constellation, there

is a certain diagonal and unitary matrix U such that xQM = Ux1. Construct the

following mapping: x̃k = Uxk, 1 ≤ k ≤ QM . The mapping is clearly invertible. Given

the special properties of U, (x̃1 . . . x̃QM ) is simply a permutation of (x1 . . . xQM ).

Besides, p̃k = p(x̃k) = p(xk) = pk. Recall that xQM = Ux1 = x̃1. So in this new

input distribution p̃k, xQM has the highest probability (which is greater than or equal

to the probability of x1) while p(x1) > p(xQM ) in the original input distribution pk.

Then these two input distributions are different. Now for input distribution p̃k, the

mutual information based on (3.33) is

I(x; (y,H)) = −β

∫
EH




QM∑

k=1

p̃ke
−‖z−αHx̃k‖2 ln




QM∑

k=1

p̃ke
−‖z−αHx̃k‖2





 dz

−N log2 e

= −N log2 e− β

∫
EH




QM∑

k=1

pke
−‖z−αHUxk‖2 ln




QM∑

k=1

pke
−‖z−αHUxk‖2





 dz (3.34)

= −N log2 e− β

∫
EH




QM∑

k=1

pke
−‖z−αHxk‖2 ln




QM∑

k=1

pke
−‖z−αHxk‖2





 dz (3.35)

as I(x; (y,H)) = I(x; y | H). From (3.34) to (3.35), the rotational invariance of

H and the fact that U is unitary are employed. Note that (3.35) is actually the

mutual information corresponding to the original input distribution pk. This means an

arbitrary non-uniform input distribution always leads to a different input distribution

that achieves the same mutual information.

In Chapter IV we will establish that mutual information is a strictly concave

function of prior distribution, which implies I(x; (y,H)) has a unique maximizer

that achieves the capacity. So we have in effect shown that any non-uniform input
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distribution fails to achieve capacity because it violates the uniqueness. Hence the

capacity-achieving input distribution has to be the uniform distribution.

D. Simulations

We present simulation results to verify our conclusions drawn earlier.

To substantiate (3.26), we compare the result based on the integral form of

(3.5) to that of Monte Carlo simulations based on (3.26). Because of computational

limitations in computing (3.5), we only look at a binary-input (i.e., Q = 2) MIMO

system with M = 2, N = 1. Fig. 3 illustrates such a comparison. Fig. 4 includes
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Fig. 3. Comparison between Monte Carlo simulation and numerical integral: M = 2,

N = 1, Q = 2.

MIMO capacity subject to different types of input: Gaussian, BPSK, 4PSK, 8PSK,
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and 16PSK. The part at low SNR verifies the identicalness between (3.31) and (3.32).
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Fig. 4. MIMO capacities with different types of input: M = 2, N = 2.

Fig. 5 gives the capacity for the two systems with M = 4 and M = 8, respectively,

while Q = N = 2 in both. It is clear that in low SNR regions, the MIMO capacity

is almost independent of M . Figures 6 and 7 substantiate our Approximations 1, 2,

and 3.
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Fig. 5. Capacity for two systems: M = 4 and M = 8 while Q = N = 2.
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CHAPTER IV

UNIQUENESS OF CAPACITY-ACHIEVING INPUT DISTRIBUTION

Finding the capacity-achieving prior distribution has always been an integral part

in determining channel capacity. In some sense, this optimum input distribution is

the starting point of capacity computation and/or analysis. Sometimes it is rather

straightforward to obtain the optimum input, e.g., for an additive white Gaussian

noise (AWGN) channel with no constraint on its input alphabet [4]. Other times, the

task is more involved but still doable. A case in point is the Gaussian vector for a

Rayleigh MIMO channel [1]. The well-known Blahut-Arimoto algorithm [38, 39] is

another good example, in which a numerical rather than analytical input distribution

is obtained iteratively. Yet for many (if not most) other channels, it is mathematically

intractable to identify the capacity-achieving input distribution, even for a seemingly

simple channel, such as the ISI channel with a finite input alphabet [40]. In this

case a lower bound on the capacity is sought since the optimum input distribution is

unavailable.

Until recently, the capacity-achieving prior distribution has received relatively

little attention compared to capacity itself. Yet, it has gradually been realized that

the prior distribution deserves consideration as well because, to some extent, of the

difficulty in determining the capacity of MIMO and ISI channels with a finite input

alphabet. For the former, even though it is already known thanks to Telatar [1] that

the ergodic capacity achieving input distribution for a Rayleigh fading MIMO channel

is Gaussian, its counterpart for a discrete-alphabet MIMO channel is still very much

in the air. The outage capacity achieving distribution is even more elusive. For

example, Telatar simply used the same Gaussian distribution in his outage capacity

analysis as in the ergodic capacity derivations (implicitly) based on the conjecture
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that the same Gaussian distribution achieves the outage capacity as well even though

the hypothesis might be untrue. Baccarelli assumed a uniform input distribution in

his effort to derive some lower bounds on capacity for a MIMO channel with PSK

and QAM inputs [22]. As for the case of the ISI channel capacity, many researchers

tried to get around the problem of finding the capacity-achieving input distribution

by assuming a uniformly distributed input since the so-called i.u.d. (independent and

uniformly distributed) capacity is expectedly close to the true capacity for practical

channels [41, 42]. So, strictly speaking, the i.u.d. capacity is a tight lower bound for

the ISI channel capacity.

Certain results were announced in some newly finished work. Chan et al. derived

a necessary and sufficient condition for a capacity-achieving input probability distri-

bution for a conditionally Gaussian channel (including AWGN and Rayleigh fading

MIMO channels) subjected to a bounded-input constraint [43]. They further claimed

that the probability measure was discrete under certain conditions. Huang and Meyn

focused on the AWGN channel only and concluded that the optimal distribution,

even if continuous, could be well approximated by a simple, discrete distribution that

nearly achieves capacity [44]. Fozunbal et al. put capacity analysis for continuous-

alphabet channels in a unified analytical framework and were able to derive equations

that fit various scenarios [45].

In this chapter, we will study the optimal input distribution from a different per-

spective. More specifically, we want to show the uniqueness of the capacity-achieving

prior distribution for a class of channels, including MIMO fading channels and ISI

channels, with a discrete input alphabet. The work by Fozunbal et al., as its title

suggests, focuses on the continuous-alphabet case. Its results do not necessarily carry

over to the discrete case, which is our target. At first glance, the problem might seem

trivial as mutual information is proven to be a concave function of the prior distribu-
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tion for a general channel [4]. However, the strict concavity of this function, to the

authors’ best knowledge, has never been established universally. Hence we believe it

needs to be proven for any individual channel, which is the motivation behind our

work.

A. Mathematical Formulation

Since the problem discussed in this chapter is more generalized than the one in Chap-

ter III, we use a slightly different notation to avoid confusion. The channel model is

described in matrix form with the following simple formula:

y = Hx + n, (4.1)

where x and y are the channel input and output, respectively, n is the channel

noise assumed to be i.i.d. zero-mean Gaussian with components of variance σ2, and

independent of both H and x; and H characterizes the channel state. Depending on

what channel (4.1) describes, MIMO or ISI, H has different definitions, which will be

given accordingly later. Note that, unlike the channel model assumed in Chapter III,

here x is not necessarily a point in a PSK signal constellation as long as it belongs to

a finite input alphabet. Let X be the input alphabet. Then since a discrete-alphabet

constraint is imposed on x, the cardinality of X is finite and the distribution of x

can be characterized by a probability mass function (PMF) instead of a probability

density function (PDF). The PMF of x will be interchangeably denoted by p(x) and

p.



36

B. MIMO Channel

Here we focus on the MIMO fading channel with perfect channel state information

at the receiver and the optimal input distribution that achieves its ergodic capacity.

In this case, H in (4.1) is a matrix whose entries are continuous complex random

variables and independent of x. Suppose the MIMO system has M transmit antennas

and N receive antennas. Then the sizes of x, y, H, and n are M × 1, N × 1, N ×M ,

N × 1, respectively. Let the input alphabet size (or cardinality of X) be S.

The task is to show that the mutual information I(x; (y, H)) is a strictly concave

function of prior distribution p(x). The chain rule and independence between x and

H give [1]

I(x; (y,H)) = I(x; y | H) = EH [I(x; y | H = H)] .

In the following the condition H = H will be replaced by H for convenience where

no ambiguity arises.

Based on all assumptions on x, y, H, we have

I(x; y | H) = −N log2 e−
∫

CN

f(y | H) log2

[∑

x∈X
p(x) exp

(
−‖y −Hx‖2

σ2

)]
dy

(4.2)

where CN denotes the N -dimensional complex space and

f(y | H) =
∑

x∈X
p(x)

(
1

πσ2

)2

exp

(
−‖y −Hx‖2

σ2

)
. (4.3)

Substituting (4.3) into (4.2) and after some simple mathematical manipulation, we

have

I(x; y | H) = −N log2 e− β

∫

CN

∑

x∈X
p(x)e−‖z−αHx‖2 ln

(∑

x∈X
p(x)e−‖z−αHx‖2

)
dz,

(4.4)

where α = 1/σ and β is a positive constant. Let p = p(x) = (p1, . . . , pS) be the
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probability vector for x. Then
∑S

k=1 pk = 1, pk ≥ 0, which implies the convexity of the

feasible region of p. We intend to show that, for a fixed but arbitrary H, I(x; y | H)

is a strictly concave function of p, or equivalently, J(p) ,
∫

fz(p) ln fz(p) dz, where

fz(p) =
∑S

k=1 pk exp (−‖z − αHxk‖2), is a strictly convex function of p.

The partial derivative of J(p) w.r.t. pi is

∂J(p)

∂pi

=

∫

CN

[
∂fz(p)

∂pi

ln fz(p) +
∂fz(p)

∂pi

]
dz

=

∫

CN

exp(−‖z − αHxi‖2) ln fz(p) dz + πN

and the partial second derivative is

∂2J(p)

∂pi∂pj

=

∫

CN

exp(−‖z − αHxi‖2) exp(−‖z − αHxj‖2)
1

fz(p)
dz. (4.5)

Define

gi(z,p) , exp(−‖z − αHxi‖2)/
√

fz(p), (4.6)

which is clearly a smooth function. Then (4.5) becomes

∂2J(p)

∂pi∂pj

=

∫

CN

gi(z, p)gj(z, p) dz , gij. (4.7)

Denote the Hessian matrix of J(p) by ∇2J(p) whose (i, j)th (1 ≤ i, j ≤ S) entry,

defined as gij in (4.7), is specified in (4.5).

Next we try to substantiate the positive-definiteness of ∇2J(p) for any fixed but

arbitrary p, which in turn leads to the strict convexity of J(p). It is recalled that one

necessary and sufficient condition for positive-definiteness of an S ×S matrix is that

its r× r (∀1 ≤ r ≤ S) principal submatrix has a positive determinant [35]. Let Gr =

[gij]r×r. According to (4.7), each entry of Gr is an inner product, 〈gi(z, p), gj(z,p)〉 =
∫
CN gi(z,p)gj(z,p) dz (the validity of this inner product space is easy to verify). Gr

is the Gram matrix of g1(z,p), . . . , gr(z,p). Therefore, det(Gr) ≥ 0 with equality if
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and only if g1(z,p), . . . , gr(z,p) are linearly dependent [46, pp. 178, Theorem 8.7.2].

It should be noted that in the following p is fixed but arbitrary. To prove

g1(z,p), . . . , gr(z,p) are linearly independent, we start from the definition of linearly

independent functions, i.e.,
∑

k λkgk(z,p) ≡ 0 for all different values of z implies

λ1 = . . . = λr = 0. Under the assumption that
∑

k λkgk(z,p) ≡ 0 for all z’s,

we have
∑

k λkgk(zm, p) = 0 for r specially picked values of z, i.e., {zm | m =

1, . . . , r}. From there we will try to prove λ1 = . . . = λr = 0, which in turn en-

ables {gk(z, p) | 1 ≤ k ≤ r} to meet the definition of linearly independent functions.

Toward this end, let

zk = αHxk, k = 1, . . . , r. (4.8)

Construct r vectors by evaluating g1(z,p), . . . , gr(z,p) at z1, . . . , zr, respectively.

The result is an r × r matrix,

[gi(zk,p)]r×r =




g1(z1, p) g1(z2, p) · · · g1(zr, p)

g2(z1, p) g2(z2, p) · · · g2(zr, p)

...
...

. . .
...

gr(z1, p) gr(z2,p) · · · gr(zr, p)




. (4.9)
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Combining (4.6), (4.8), and (4.9), we have

[gi(zk,p)]r×r =
1√∏r

k=1 fzk
(p)




e−‖αH(x1−x1)‖2 · · · e−‖αH(xr−x1)‖2

...
. . .

...

e−‖αH(x1−xr)‖2 · · · e−‖αH(xr−xr)‖2




=
1√∏r

k=1 fzk
(p)




e−‖<{αH(x1−x1)}‖2 · · · e−‖<{αH(xr−x1)}‖2

...
. . .

...

e−‖<{αH(x1−xr)}‖2 · · · e−‖<{αH(xr−xr)}‖2




◦




e−‖={αH(x1−x1)}‖2 · · · e−‖={αH(xr−x1)}‖2

...
. . .

...

e−‖={αH(x1−xr)}‖2 · · · e−‖={αH(xr−xr)}‖2




,

(4.10)

where the symbol ◦ denotes Hadamard product [35], i.e., componentwise multipli-

cation of two matrices of the same size. Note that H in (4.10) is a realization of

the channel matrix H. So there is no guarantee that <{αH (xi − xj)} 6= 0 and

={αH (xi − xj)} 6= 0 for 1 ≤ i 6= j ≤ r. However, given the nature of H, a matrix

whose entries are continuous random variables, we have

Pr (<{Hxi} 6= <{Hxj},={Hxi} 6= ={Hxj} | 1 ≤ i 6= j ≤ r) = 1. (4.11)

In other words, the H’s that contribute in the expectation over H in EH [I(x; y | H = H)]

are such that <{Hxi} 6= <{Hxj} and ={Hxi} 6= ={Hxj}, ∀1 ≤ i 6= j ≤ r,

with probability one. Note that EH [I(x; y | H = H)] is an integral over the in-

tegration variable H. Then in this integral we only need to keep H that satisfies

<{Hxi} 6= <{Hxj} and ={Hxi} 6= ={Hxj} simultaneously, which also applies to

(4.10).

Lemma 3.1 in [47] and the Schur product theorem [35, Theorem 7.5.3, pp. 458]
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are crucial in proving the nonsingularity of the matrix in (4.10). Hence they are

repeated below with a little rephrasing.

Lemma 1. [47] The n×n matrix whose elements have the values exp (−‖wj −wk‖2),

j, k = 1, 2, . . . , n, is positive definite for all choices of different wk’s in Rd, where d

is any positive integer.

Lemma 2. [35] If A and B are n× n positive semidefinite matrices, then A ◦B is

also positive semidefinite. Further, if both A and B are positive definite, then so is

A ◦B.

With the help of Lemma 1 and Lemma 2, it is straightforward to show that

the square matrix [gi(zk,p)] (1 ≤ i, k ≤ r) in (4.10) is positive definite and thus

invertible. The nonsingularity of matrix [gi(zk,p)] leads to the linear independence

of g1(z,p), . . . , gr(z, p), which in turn implies det(Gr) > 0. Then it follows that

∇2J(p) is positive definite and J(p) is strictly convex over the feasible region of p.

So far I(x; y | H) has been shown to be a strictly concave function of p for any

H. For convenience let us introduce a new function u(p,H) , I(x; y | H), which is

continuous due to the definition of mutual information. Then

I(x; (y, H)) = EH [I(x; y | H)] =

∫
f(H)u(p,H) dH.

Now, for any p1, p2, and any pair of scalars λ1, λ2 such that 0 < λ1, λ2 < 1 and

λ1 + λ2 = 1, we have

∫
f(H) {u(λ1p1 + λ2p2,H)− [λ1u(p1,H) + λ2u(p2,H)]} dH > 0, (4.12)

because the integrand in (4.12) is positive and continuous w.r.t. H. This demon-

strates the strict concavity of I(x; (y,H)) w.r.t. p. Since the channel capacity is

the maximum of I(x; (y,H)) over p, the strict concavity of the mutual information
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implies the uniqueness of the capacity-achieving input distribution.

C. ISI Channel

Here we only focus on the type of ISI channels existing in magnetic recording, i.e.,

with real and deterministic channel coefficients, since the one for multipath fading

channels is mathematically identical to the case discussed in Section B. For the ISI

channel under discussion with a binary input alphabet, the original channel model in

the matrix form introduced in Section A

y = Hx + n (4.13)

(note that H in (4.1) is replaced by H in (4.13) because the channel matrix is now

assumed to be deterministic) can be reformulated as

yk =
L∑

i=0

hkxk−i + nk, (4.14)

where xk ∈ {±1} and h0, hL 6= 0. It should be kept in mind that even though

(4.13) looks essentially the same as (4.1), the two are indeed different because of

some underlying differences between ISI and MIMO channels. For example, in (4.13)

all variables are real-valued, H is deterministic, and each component of x is binary.

The case for the ISI channel follows the same line as that for the MIMO channel.

So we will skip the steps common to both and instead will only explain those specific
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to the ISI channel. Based on (4.14), we have, for k > L,




yk

yk+1

yk+2

...




=




hL hL−1 · · · h1 h0 0 · · · · · · · · · 0

0 hL hL−1 · · · h1 h0 0 · · · · · · 0

0 0 hL hL−1 · · · h1 h0 0 · · · 0

...
...

...
...

...
...

...
...

...
...







xk−L

xk−L+1

...

xk−1

xk

...




+




nk

nk+1

nk+2

...




.

(4.15)

Comparing (4.15) to (4.14), we can easily obtain the definitions of x, y, n, and

particularly H. From (4.15) the channel matrix H is clearly an upper triangular

matrix with diagonal entries hL 6= 0, which makes H full-column-rank.

Even though H is now deterministic, the mutual information I(x; y) is still (4.4)

with some slight adjustments. For example, the constant term is different and of

course the integration region is now over a multi-dimensional real space. The rest

of the proof for the uniqueness is almost identical to those procedures presented in

Section B. The minor differences are addressed below. In Section B the continuous

random nature of H helped prove <{Hxi} 6= <{Hxj} and ={Hxi} 6= ={Hxj},
∀1 ≤ i 6= j ≤ r, with probability one. Here we take advantage of the fact that H is

of full column rank, which implies H(xi − xj) 6= 0. Since now x, y, and H are all

real, the part for imaginary parts in (4.10) should be discarded and only Lemma 1 is

applicable.

D. Discussion

Though the channel noise n is assumed to be i.i.d. Gaussian in Section A, it could

have other forms as well. For example, when n is colored Gaussian, the exponent in
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(4.2) and (4.3) needs to include the covariance matrix of n. Some proper adjustments

should also be made accordingly in the rest of Section B. In this case Lemma 1 is

no longer applicable. But Theorem 3.3 in [47], which implies positive-definiteness for

a matrix whose entries assume a more generic functional form than the exponential

quadratic function stated in Lemma 1, may very well be used to prove the positive

definiteness of the matrix in (4.9). If the noise n is non-Gaussian, it becomes more

difficult. We don’t have a complete proof for the uniqueness in this case. But our con-

jecture is that it still holds. Here is the argument. The Gaussian exponential function

in the integrand in (4.5) will be replaced by some other function, i.e., the definition

of gi(z,p) will be different. But the new {gi(z,p)} may still be linearly independent

because, intuitively, we can always find r different values of z, {z1, . . . , zr}, that make

the new [gi(zk,p)]r×r invertible as zk can be any point in the N -dimensional complex

space.

Note that we never specified in Section B the statistics of the MIMO channel.

It is because that was irrelevant in the proof of uniqueness. Only the continuous

random nature of H was utilized. And the entries of H do not have to be i.i.d. The

only constraint on H is (4.11). Statistical independence among column vectors of H
is good enough for it. Yet even this is a sufficient but not necessary condition.

It needs to be pointed out that when studying ISI channel coding, many re-

searchers only focus on input x with i.i.d. components. To them, it makes more sense

to add an i.i.d. input constraint in any consideration of the ISI channel capacity.

Unfortunately, this additional constraint destroys the convexity of the feasible region

of the input distribution p and thus the proof provided in this paper becomes invalid

even though the uniqueness might still hold.

Based on the above discussion, we are able to reach the following conclusion. Any

channel that can be described by (4.1) with a complex discrete alphabet for input x,
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additive Gaussian noise n, and a continuous random channel matrix H whose columns

are statistically independent, has a unique capacity-achieving prior distribution. So

does a channel that can be described by (4.13) with a real discrete input alphabet

and a real deterministic channel matrix H of full column rank. Furthermore, for

the same models except that the additive noise is non-Gaussian, we conjecture an

identical conclusion.
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CHAPTER V

CONCLUSION

In this thesis we studied MIMO channel capacity. Special attention was paid to

the capacity of a MIMO fading channel with i.i.d. Rayleigh fading subject to PSK

input constraint. We showed that the uniform input distribution achieves capac-

ity and derived a capacity formula which can be easily computed through Monte

Carlo simulation. To facilitate generating the correlated Gaussian variables needed

we derived analytical expressions for the nonzero eigenvalues and their associated

eigenvectors of the requisite covariance matrix. These analytical expressions lead to

approximations to the MIMO capacity at low SNR, two of which, (3.30) and (3.31),

are closed-form. Both are in agreement with results derived from the theory of capac-

ity per unit cost [36, 48]. They also enable us to conclude there is no need to apply

Gaussian input at low SNR because any PSK input can achieve about the same data

rate. Another point worth mentioning is that Fig. (5) implies in order to enhance the

information-theoretic performance of a system with a PSK constellation and medium

to high SNR, more antennas should be used on the transmitting side than the receiv-

ing side when the total number of the two is fixed. This verifies a similar conclusion

reached by Müller under the binary input constraint [25]. On the other hand, (3.31)

suggests the contrary at low SNR, i.e., more antennas should be put on the receiving

end.

During the process of reaching the final expression for the PSK constrained ca-

pacity, we learned that uniform input distribution is the unique capacity-achieving

prior distribution. We then were able to extend this conclusion to a broad range of

channels, including a generic MIMO channel with an arbitrary input alphabet and

ISI channels.
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