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ABSTRACT 

 

Estimation of Velocity Distribution and Suspended Sediment Discharge in Open 

Channels Using Entropy. (May 2011) 

Huijuan Cui, B.En., Tsinghua University 

Chair of Advisory Committee: Dr. Vijay P. Singh 

 

In hydraulics, velocity distribution is needed to determine flow characteristics, 

like discharge, sediment discharge, head loss, energy coefficient, moment coefficient, 

and scour. However, the complicated interaction between water and sediment causes 

great difficulties in the measurement of flow and sediment discharge. Thus, the 

development of a method which can simulate the velocity distribution and sediment 

discharge in open channels is designable. 

Traditional methods for the estimation of velocity distribution, such as the 

Prandtl-von Karman logarithmic velocity and of sediment concentration distribution, 

such as the Rouse equation, are generally invalid at or near the channel bed and are 

inaccurate at the water surface. Considering the limitations of traditional methods, 

entropy based models have been applied, yet the assumption on the cumulative 

distribution function made in these methods limits their application.  

The objective of this research is to develop an efficient method to estimate 

velocity distribution and suspended sediment discharge in open channels using the 

Tsallis entropy. This research focuses on a better-organized hypothesis on the 
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cumulative probability distribution function under more applicable coordinates, which 

should be transformable in different dimensions.  

Velocity distribution and sediment distribution are derived using the Tsallis 

entropy under the hypothesis that the cumulative probability distribution follows a non-

linear function, in which the value of the exponent is shown to be related to the width-

depth ratio of channel cross-section. Three different combinations of entropy and 

empirical methods for velocity and sediment concentration distribution are applied to 

compute suspended sediment discharge. Advantages and disadvantages of each method 

are discussed. 

The velocity distribution derived using the Tsallis entropy is expected to be easy 

to apply and valid throughout the whole cross-section of the open channel. This research 

contributes to the application of entropy theory and shows its advantages in hydraulic 

engineering. 
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1. INTRODUCTION 

1.1 Background 

Velocity distribution is fundamental to modeling of hydraulic processes in open 

channels, such as flow discharge, erosion, sediment transport, pollutant transport, and 

watershed runoff. For instance, the energy and momentum coefficients can be evaluated 

if velocity is determined; the shear stress, which is the main factor for sediment 

concentration, also depends on the velocity distribution. Thus, velocity distribution must 

be investigated and determined prior to solving hydraulic problems in open channels. 

In natural rivers, velocity distribution is affected by channel geometry, vegetation, 

roughness and the presence of bends in natural rivers. In wide open channels, velocity 

increases monotonically from 0 at the channel bed to the maximum value at the water 

surface, and can be approximately considered as one-dimensional (1-D). For the 

channels which are not very “wide”, besides changes in the vertical direction, the 

velocity also changes in the transverse direction, thus velocity distribution needs to be 

considered in two dimensions (2-D). In such a case, velocity increases from 0 at the 

channel boundary to the maximum at or below the water surface near the channel center. 

The phenomenon in which the velocity reaches the maximum value below the water 

surface is called dip-phenomenon. 

 

This thesis follows the style of Journal of Hydrologic Engineering. 
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Several classical laws have been developed to describe the velocity distribution, 

such as the power law and the Prandtl-von Karman universal velocity distribution law. 

These laws have been widely used to determine the 1-D velocity distribution and have 

proved sufficient for very wide channels. Unfortunately, natural channels are not always 

wide enough for the one-dimensional assumption to be applicable, as the velocity varies 

in both vertical and transverse directions.  

The Prandtl-von Karman equation is invalid at or near the channel bed and is 

inaccurate near the water surface, especially for cases where the maximum velocity does 

not occur at the surface. The power law is simple to apply but its accuracy is limited. 

Thus, the universal velocity laws are no longer appropriate. 

Considering the limitations of classical methods, Chiu (1987) derived the 

velocity distribution using the Shannon entropy, assuming time-averaged velocity as a 

random variable. Named after Chiu, this velocity distribution is called Chiu’s velocity 

distribution and has been employed in many different flow cases by Chiu and his 

associates (Chiu,1987, 1989; Chiu and Murray, 1992; Chiu and Said, 1995; Chiu and 

Tung 2002), Barbe (1990) and Barbe et al. (1991). Chiu’s velocity distribution has been 

expanded and applied to 2-D velocity distribution and the variation of velocity has been 

described in both vertical and transverse directions (Chiu, 1988; Chiu and Hsu, 2006; 

Marini et al., 2010). Though Chiu’s method can predict the velocity distribution 

reasonably well, the assumption on the cumulative distribution function of velocity, 

which is based on the coordinates defined by Chiu (1988), is not easy to follow and 

limited by many parameters it contains. A mathematically sound coordinate system was 
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developed by Marini et al. (2010) who obtained the 2-D entropy-based velocity 

distribution with convenience, but the velocity distribution did not capture velocities 

near lower velocity areas or boundary.  

The Tsallis entropy, a generalization of the Shannon entropy, can also be used for 

velocity distributions and leads to explicit expressions for 1-D and 2-D velocity 

distribution (Singh and Luo, 2009, 2011; Luo and Singh, 2011). The Tsallis entropy 

based velocity distribution has an advantage over the Shannon entropy-based 

distribution, but the cumulative probability distribution function used in these studies is 

the same as Chiu’s, hence their practical usefulness is limited by the many parameters 

they contain.  

In this thesis, a more realistic hypothesis on the cumulative distribution function 

(CDF) will be formulated and velocity distribution using the Tsallis entropy will be 

derived. The formulation of the cumulative distribution function will be based on the 

Cartesian coordinate system, so that the CDF can be straightforward when going from 

one dimension to two dimensions and will also be available when going backward. 

Different expressions on the cumulative distribution function will be verified with 

observed values and their inherent relations with the width-depth ratio of the channel 

cross-section will be discussed. Considering the time-averaged velocity as a random 

variable, the Tsallis entropy will be applied for deriving the velocity distribution for the 

whole channel. 

Another main issue that will be discussed is sediment discharge: Flow in natural 

channels often contains sediment, which is one of the most important environmental 
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issues in hydraulics. There are 13 large rivers in the world that transport sediment more 

than 108 tons per year (Chien and Wan 2003). Rivers with such high sediment content 

may complicate flood control and aggravate the reservoir sedimentation. Since 

contaminants are always transported by sediment, one needs to pay close attention to 

sediment transport. 

Einstein (1950) divided the total sediment discharge into bed-load discharge and 

suspended-sediment discharge based on the position and characteristics of particle 

movement and summed the two parts to estimate the total sediment discharge. It is 

widely known that the majority of rivers throughout the world transport more suspended 

sediment than bed load. Too much suspended sediment may lead to reservoir deposition, 

scouring and siltation in the downstream channel, which may destroy the balance 

between flow and sediment concentration. Therefore, the estimation of suspended 

sediment transport is especially significant in the design of hydraulic structures 

influencing or controlling the sediment discharge regime and in the estimation of 

average rate of erosion in a basin. 

The suspended sediment discharge can be obtained from flow discharge and 

suspended sediment concentration, while flow discharge can be determined with the use 

of velocity distribution. Thus, the next main point is to develop an efficient method for 

estimating sediment concentration. 

A classical method to model the sediment concentration is the Rouse equation, 

which is derived from the Prandtl-von Karman logarithmic velocity equation and the 
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linear shear stress distribution. Thus, the Rouse equation is not applicable close to the 

channel bed and is not accurate near the water surface.  

A mathematical model, based on the Shannon entropy, has been developed by 

Chiu et al. (2000), which is capable of describing the sediment concentration from the 

channel bed to the water surface. However this entropy-based model is not reliable, since 

the sediment concentration derived from this model depends on Chiu’s velocity equation 

whose limitations have been mentioned earlier. Choo (2000) derived the suspended 

sediment concentration distribution using the Shannon entropy, considering time-

averaged sediment concentration as a random variable and it showed significant 

advantages over traditional Rouse equation-based methods. Combining Chiu’s mean 

velocity and mean sediment concentration the suspended sediment discharge was also 

computed by Choo (2000). That was an efficient method but is still restricted by the 

many parameters it contains. 

In the second part of the thesis, the sediment concentration distribution will be 

derived in the same way as velocity distribution using the Tsallis entropy. Several 

different hypotheses on the cumulative distribution function will be also discussed and 

verified. Finally, with the knowledge of mean velocity and mean sediment concentration 

in the cross-section, the suspended sediment discharge will be obtained. Three different 

combinations of entropy and empirical methods for velocity and sediment concentration 

distribution will be applied to compute the suspended sediment discharge. Based on the 

results, the advantages and disadvantage of each method will be discussed. 
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1.2 Objectives 

The overall objective of this thesis is to develop an efficient method to compute 

the velocity distribution, sediment concentration distribution and suspended sediment 

discharge in open channels using the Tsallis entropy. The thesis will focus on a better-

organized hypothesis on the cumulative distribution function, which is based on widely-

used Cartesian coordinates, and may be extendable to different dimensions. The 

simulated velocity and sediment values will be tested using both experimental data and 

field data. 

The specific objectives are stated below: 

1) Formulate a cumulative probability distribution function for velocity 

distribution in open channels and compare it with that based on observed values. 

2) Develop a 2-dimensional (2-D) velocity distribution for open channels 

using the Tsallis entropy, which can be easily transformed to a 1-dimensional case, and 

verify the estimated velocities with experimental data. 

3) Introduce and discuss a dimensionless parameter called G, which can 

represent the homogeneity of the velocity distribution.  

4) Discuss the location of the maximum velocity and mean velocity, and the 

relationship between maximum velocity and mean velocity. 

5) Formulate a cumulative distribution function for suspended sediment and 

compare it with that based on observed values. 

6) Develop the distribution of sediment concentration in open channels 

using the Tsallis entropy and verify with experimental data. 
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7) Introduce and discuss a dimensionless parameter called N which affects 

the homogeneity of the concentration distribution.  

8) Discuss the maximum and mean sediment concentration. 

9) Develop a sediment discharge model and verify it with experimental and 

field data. 

10) Compute the suspended sediment discharge with known velocity and 

sediment concentration of the cross-section calculated by different methods. Compare 

the entropy based method and empirical method. 

11) Compare the Tsallis entropy –based distributions with those based on the 

Shannon entropy.  
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2. LITERATURE REVIEW 

2.1 Entropy concept and theory 

Entropy, as the second law of thermodynamics, is a macroscopic property of a 

system which measures the microscopic disorder within the system. In informational 

theory, Shannon (1948) formulated the concept of entropy as a measure of information 

or uncertainty associated with the random variable or its probability distribution. Nearly 

a decade later, Jaynes (1957a, 1957b) developed the principle of maximum entropy 

(POME) for deriving the least-biased probability distribution of the random variable 

subject to given information in terms of constraints as well as the theorem of 

concentration for hypothesis testing. Together these concepts constitute what can now be 

referred to as the entropy theory. 

Entropy can be regarded as a useful characteristic of any probability distribution, 

which makes it applicable to areas other than the initial thermodynamic field, and has 

since been extensively applied in environmental and water engineering, including 

geomorphology, hydrology, and hydraulics. Recent applications of the entropy theory in 

hydrology and water resources have been reviewed and discussed by Singh (1997). Chiu 

(1987, 1991) applied the concept of entropy to open-channel flows, including the 

modeling of velocity distribution, shear stress and sediment concentration. Analysis of 

velocity distribution in the probability domain has an advantage in determining the 

cross-sectional mean velocity and the momentum and energy coefficients without 
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dealing with the geometrical shape of cross sections, which tend to be extremely 

complex in natural channels (Chiu, 1991). 

2.1.1 Shannon entropy  

Shannon (1948) developed the entropy theory for expressing information or 

uncertainty in the field of communication, which is now regarded as a useful 

characteristic of any probability distribution. In probability theory, values of a random 

variable represent possible outcomes of an experiment which is uncertain. Shannon 

(1948) defined a quantitative measure of uncertainty associated with a probability 

distribution of a random variable in terms of entropy, H, called Shannon entropy or 

informational entropy, as 

           
 
          (2-1) 

where pi is the probability of each random value, and N denotes the total number of 

values. 

The Shannon entropy can also be extended to continuous random variables so 

that it may be introduced to hydraulic engineering since hydraulic processes are 

continuous in nature. For a random variable x, which is continuous over the range (-∞, 

∞), the Shannon entropy is expressed as 

                 
 

  
       (2-2) 

where, p(x) is the continuous probability density function of  random variable x. 
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The Shannon entropy, together with the principle of maximum entropy (POME), 

which will be introduced in section 2.1.3, can be applied to determine the probability 

distribution of a given random variable.  

2.1.2 Tsallis entropy 

Tsallis (1988) proposed a general form of the Shannon entropy as 

  
 

   
          

  

  

 
    

 

   
     

  

  
                (2-3) 

where m is a real number, and when m>0, H becomes a convex function. For m=1, 

equation (2-3) reduces to the Shannon entropy. Thus the Tsallis entropy is defined as a 

generalization of the Shannon entropy or Boltzmann-Gibbs entropy. Similar to the 

Shannon entropy, the Tsallis entropy can be coupled with the principle of maximum 

entropy (POME) to achieve the probability distribution of a given random variable and 

may yield more accurate results than the Shannon entropy in some cases. 

2.1.3 Principle of maximum entropy 

The least-biased probability distribution can be obtained by the entropy theory 

when the entropy is maximized. To that end, Jaynes (1957a, 1957b) formulated the 

principle of maximum entropy (POME), according to which the probability density 

function can be obtained by maximizing the uncertainty expressed by entropy, subject to 

given information. In other words, for given information the best possible distribution 

fitting the data is the one with the maximum entropy. The information included through 
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POME is specified as constraints in the form of some statistics, including mean, variance, 

covariance, cross-variance, or linear combinations of these statistics. 

The constraints can be specified by statistical characteristics. The first constraint 

can be  

         
  

  
        (2-4) 

The second constraint can represent the mean value 

           
  

  
        (2-5) 

The third constraint can represent the variance  

                 

  
        (2-6) 

Using POME entropy can be maximized with the constraints gi(x) imposed on 

the distribution using the method of Lagrange multiplier method as follows: 

   
 

   
     

  

  
                 

 
 
           (2-7) 

in which gi(x) is the i-th constraint function, and
 
 is the Lagrange multiplier for each 

constraint, reflecting its weight in the maximization of entropy. The first term on right 

hand side of equation (2-7) is the Tsallis entropy of the random variable and the second 

term is the given information in the form of constraints. 

Differentiating equation (2-7) with respect to p and equating the derivative to 0, 

the probability density function can be obtained.  

Entropy theory provides a way to introduce probability into hydraulic modeling 

and is useful in parameter estimation. For instance, a procedure for derivation of 

frequency distributions used in hydrology, which are the gamma, the log-gamma 
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distribution and extreme value Type I distributions also known as Frechét distributions, 

have been developed using POME (Singh, et al, 1986). Sonuga (1972, 1976) used 

POME in flood frequency analysis and rainfall-runoff relationships. In hydraulic 

modeling, Chiu (1987, 1988), Chiu et al. (2000) and his colleagues derived 1D and 2D 

velocity distributions, and shear stress and sediment concentration distributions using the 

Shannon entropy. 

As an alternative way of assessing the goodness of fit of a distribution to 

experimental data, POME can lead to a simple but useful method of parameter 

estimation. Several advances in the application of POME were discussed by Singh and 

Rajagopal (1987). It is shown that the entropy method can provide a unified approach to 

the derivation of a number of frequency distributions, which is even applicable to the 

areas having limited data. Compared to other methods like methods of moments and 

maximum likelihood estimation, the parameters estimated through POME show 

connections between different distributions (Singh, et al, 1986). POME has an advantage 

in performing multivariate stochastic analysis, because it can be applied to derive the 

functional relationships between two or more variables.  

2.2 Velocity distribution 

There are two classical methods and two kinds of entropy based methods to 

obtain time averaged velocity distributions, which are the simple power law, Prandtl-von 

Karman logarithmic law, Shannon entropy based Chiu’s velocity law and Tsallis entropy 

velocity law. All methods will be compared in this thesis. 
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2.2.1 Classical methods 

For Reynolds number between 3,000 and 100,000, the velocity profile in a 

smooth pipe is found to be closely approximated by the depth rising to the power of 1/7 

(Blasius, 1913), which is the power law also called the seventh root law (Daugherty and 

Franzini, 1977). The power law was expanded to open channel flow by Sarma et. al 

(1983), with exponent n instead of 7, which is usually in the range of 6-7 (Karim and 

Kennedy, 1987). Though power law is simple to apply, its accuracy is limited. 

The Prandtl-von Karman logarithmic velocity distribution law was initially 

developed for pipe flow, which is based on the following two assumptions: The mixing 

length is proportional to the depth from the pipe edge and the shearing stress is constant 

(von Karman, 1935). Later, Vanoni (1941) showed that this equation could also be 

applied to wide open channels. However, the Prandtl-von Karman logarithmic law 

performs poorly near the bottom especially in sediment laden flows (Einstein and Chien 

1955) and is shown to be inaccurate near the water surface, especially for cases where 

the maximum velocity does not occur at the surface, which is often the case in natural 

channel flows. 

Furthermore, there are two constraints in the Prandtl-von Karman law; one is the 

universal constant κ, which is a characteristic of turbulence and the other is the 

characteristic of the boundary, which depends on the nature of the wall surface. The von 

Karman constant κ is shown independent of the amount of suspended sediment in an 

open channel flow (Coleman, 1981; 1986). The boundary characteristic was specified by 

dividing the flow region into different parts. Keulegan (1938) proposed that the flow 
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region can be divided into three parts corresponding to both sidewalls and the bed using 

the bisectors of base angles in an open-channel flow and the Prandtl-von Karman law 

was provided to be valid from a point near the bed to the free surface in the inner region 

(Yang et. al, 2004), if the shear velocity was introduced to the dimensionless distance 

normal to the boundary. 

2.2.2 Entropy-based velocity distribution 

Recognizing the drawbacks of classical methods, various studies have been 

dedicated to developing entropy-based methods to obtain time-averaged velocity 

distributions. Assuming time-averaged velocity as a random variable, both 1D and 2D 

velocity distributions in open channels have been derived by maximizing the Shannon 

entropy (Chiu 1987, 1988 and 1989) and the Tsallis entropy (Singh and Luo, 2009, 2011; 

Luo and Singh, 2011). 

To relate the entropy-based probability distribution to the spatial distribution, an 

assumption on the probability distribution in the space domain is needed. In a uniform 

flow of depth D in a wide open channel, where velocity monotonously increases with the 

flow depth, Chiu (1987) assumed a linear cumulative distribution function, which stated 

the velocity being equal to or smaller than u was y/D, assuming that all values of y 

between zero and D were equally likely. The 1D velocity distribution derived in this 

study has an advantage over the Prandtl-von Karman velocity distribution, which is 

consistently found to increase with the sediment concentration. Singh and Luo (2009) 

developed even a better velocity distribution using the Tsallis entropy than Chiu’s, 
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assuming the exponent value m=3/4. However, 1D velocity distribution is not enough for 

describing the natural channel flow in all circumstances. 

To describe the velocity variation in both transverse and vertical directions, the 

2D assumption on the probability distribution should be made. To that end, a new 

curvilinear ξ-η coordinates system was formed by isovels of primary flow and their 

orthogonal trajectories (Chiu and Lin, 1983; Chiu and Chiou 1986; Chiu 1988). In his 

coordinate system, isovels are represented by a system of ξ coordinate and η coordinate 

curves are their orthogonal trajectories. In this case, the time-averaged velocity u which 

varies from 0 to umax was assigned to the ξ value varying from ξ0 to ξ max. A transforming 

equation from z-y coordinates to ξ-η coordinates was developed to represent different 

features of isovels in a cross-section, which can be estimated directly from actual 

velocity data or indirectly from discharge rate, slope, roughness, and cross section of the 

channel (Chiu and Lin, 1983; Chiu and Chiou 1986). Based on the assumption on the 

cumulative distribution function, the velocity distribution was derived, which described 

the observed data reasonably well (Chiu, 1988). Luo and Singh (2011) applied the same 

coordinates to develop the 2D velocity distribution using the Tsallis entropy, whose 

result is comparable to Chiu’s. However, due to the complexity of the coordinate system 

and a large number of parameters used, the application of these methods is rather limited. 

To reduce the many parameters in the coordinate system, Marini et. al (2010) 

developed a new method for deriving 2D velocity distribution. In their study, CDF was 

hypothesized under the x-y coordinates. The CDF is required to be between 0 and 1, 

which is continuous and differential, and it must have value of 0 on the borders and 
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reaches 1 at only one point where the maximum velocity occurs. They developed the 

CDF in an exponential form to obtain such properties, in which the exponent on the x 

direction is raised to the power D/B, where D is the channel depth, B is the channel 

width. Under such a hypothesis, the 2D velocity distribution was developed and has 

shown advantage over Chiu’s velocity distribution. However, the velocity with lower 

values is not captured accurately. 

In Chiu’s (1987, 1989) derivation of velocity distribution, only two constraints 

are used which are the same as the first and second equations mentioned in section 2.1.3, 

Barbe et. al (1991) applied the entropy-based velocity distribution with three constraints 

in which the conservation of momentum was added, in addition to the conservation of 

mass and energy. Comparison from their work shows that the profile presented with 

three constraints did not offer a significant improvement to fit the overall profile in any 

case, while the greatest improvement was near the channel bed. 

A dimensionless parameter of entropy function M was introduced in the entropy-

based derivation (Chiu, 1988; Chiu and Said, 1995; Chiu and Tung 2002; Singh and Luo, 

2009, 2011; Luo, 2009; Luo and Singh, 2011) with which the entropy-based velocity 

equation can be simplified. This parameter has proved to be useful for characterizing and 

comparing various patterns of velocity distributions and the status of open-channel flow 

system, which can be expressed by the location of mean and maximum velocity and their 

relationships. The mean velocity value, the location of the mean velocity (Chiu and Said, 

1995; Chiu and Tung, 2002) and the energy coefficient (Chiu, 1992) can be obtained 
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from M. The use of the entropy parameter predetermined for a channel section can 

greatly ease discharge estimation, especially in unsteady flow (Chiu, 1992). 

According to Chiu’s (1988) study, when M=0, the proportional probability 

p(u/umax) is a constant equal to unity, which represents a uniform distribution 

corresponding to the maximum value of entropy; when M equals ∞, the probability 

p(u/umax)=0 except at u=umax, p(u/umax)=∞, which corresponds to the minimum entropy 

situation. From data, the entropy is found significantly greater than 0 only when M is 

between 6 to 9, which has a relatively large width-depth ratio and roughness. By 

Relating u/u* to u/umax, Chiu (1988) found that the M value greater than 8 should mean 

the flow is in a turbulent state, and 7-8 represents the transitional range between the 

laminar and turbulent flows. However, it is not certain whether this is also true for 

sediment-laden flow as the data used were from clear-water flows.  

According to the maximum entropy concept, there should be a natural tendency 

for the turbulent, open-channel flow to achieve and maintain an M value between 7 and 

8 as the entropy in this range gets to be maximum for turbulent flow. For an erodible 

channel, this may be accomplished by adjusting the cross section, slope, roughness, 

alignment, velocity distribution and perhaps sediment transport. M=8 represents 

channels of greater values of width to depth ratio and roughness and smaller slopes 

(Chiu, 1988). For a nonerodible channel this can only be accomplished by adjusting the 

water depth and the pattern of velocity distribution. Thus flows in artificial channels of 

rigid boundaries tend to have a relatively wide range of possible values of M. 
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2.2.3 Maximum and mean velocity  

The maximum velocity conveys an important message about channel flow as it 

defines the range of velocity distribution. The location of maximum velocity is of 

interest, as the maximum velocity does not always occur at the water surface, but some 

distance below it, which is called as the dip phenomenon. The dip phenomenon was 

reported more than a century ago by Stearns (1883) and Murphy (1904), which attracted 

a lot of interest. It is stated that the dip phenomenon is caused by the secondary currents 

(Nezu and Nakagawa 1993), which is the circulation in a transverse channel cross 

section as the longitudinal flow component is called primary flow. Because the 

secondary motion will transport the low momentum fluids from the near bank to the 

center and the high-momentum fluids from the free surface toward the bed. 

Yang et. al (2004) investigated the mechanism of dip phenomenon in relation to 

the secondary currents in open-channel flow. In their study, a dip-modified log law for 

the velocity distribution in smooth uniform open channel was developed and its result 

was good. This modified velocity distribution is capable of describing the dip 

phenomenon and is applicable to the velocity profile in the region from the near bed to 

just below the free surface, and transversely from the center line to the near-wall region 

of the channel. From their experiments, the location of the maximum velocity was 

shown to be related to the lateral portion of the measured velocity profile. It is concluded 

that the dip may even occur in a very wide channel, not in the centerline but in the 

sidewall region.  
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Chiu and Tung (2002) states that the location of maximum velocity is linked to 

the ratio of the mean and maximum velocities, velocity distribution parameter, location 

of mean velocity, energy and momentum coefficients, and probability density function 

underpinning a velocity distribution equation derived by entropy. A scale parameter hξ 

called metric coefficient, introduced by Chiu (1989), needed for coordinate 

transformation between the y and ξ systems. Compared with Einstein and Chien’s (1955) 

result, an appreciable difference can be seen in the lower region. 

The mean velocity is another main characteristic of channel flow. With the 

known mean velocity value, the flow discharge, sediment transport and pollutant 

transport can be obtained. It is found that the mean value of the ratio of mean and 

maximum velocities at a given section is stable and constant, and invariant with time and 

discharge (Chiu and Said, 1995). Chiu and Tung (2002) linked this ratio with parameter 

M, which is also shown to be consistent with experimental data. A linear relation 

between mean and maximum velocities was discovered by collecting the velocity data in 

some cross-sections of the Mississippi River (Xia, 1997). It is found that the relation was 

perfectly linear along both straight reaches and river bends where M was constant and 

equal to 2.45 to 5, respectively. Based on Chiu’s velocity distribution, Moramarco et. al. 

(2004) developed a simple method for estimating the mean velocity which is quite 

accurate also for new river sites without knowning M. 
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2.2.4 Other related research  

More research on velocity and discharge of open-channel flow has been 

undertaken by Chiu and his associates. Analysis of velocity distribution in the 

probability domain made it possible to determine the cross-sectional mean velocity and 

the momentum and energy coefficients without dealing with the geometrical shape of the 

cross-section, which is always complex in natural channels. Thus, the entropy based 

velocity distribution is applicable in the nonuniform open-channel flow (Chiu and 

Murray, 1992). For more applications, the velocity equation can also represent the 

velocity distribution in the entire flow field in a pipe, regardless of whether the flow is 

laminar or turbulent, and whether the pipe is smooth or rough (Chiu, et.al, 1993), in 

which study the relationship of friction factor and entropy was established. 

Chiu and Said (1995) developed a technique to determine discharge from a 

velocity profile on a single vertical passing through the point of maximum velocity in a 

channel cross section. The technique is an efficient way to estimate discharge in streams 

and rivers that can be used to continuously update the flow resistance during unsteady 

flow to enhance a filtering scheme designed to reduce uncertainties in flow forecasting. 

The use of a constant value of entropy parameter predetermined for a channel section 

can simplify discharge estimation. 

2.3 Suspended sediment discharge in open channels 

Suspended sediment discharge and bed-load sediment discharge together form 

the total sediment discharge in open channels (Einstein, 1950). The bed-load is the 
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portion of the sediment carried near the bed by the physical processes of intermittent 

rolling, sliding, and saltation of individual grains at various random locations in the bed. 

On the contrary, the suspended load is composed of sediment particles that are lifted into 

the body of flow by turbulence. In other words, the bed-load sediment remains in contact 

with bed most of the time, while the suspended sediment is away from the bed.  

Suspended sediment transport always occurs in steady, uniform turbulent flow, 

where turbulent velocity fluctuations in vertical direction can transport sediment upward. 

As a result of balance between turbulent diffusion of the grains upward and gravitational 

settling of the grains downward, an equilibrium distribution of suspended sediment 

concentration is developed and thus, there are no vertical changes in the sediment 

concentration profile in the flow direction (Sturm, 2010). The equation describing the 

turbulent flux to the gravitational settling flux results in the following differential 

equation that governs the sediment concentration distribution: 

   
  

  
              (2-8) 

where εs= the diffusion coefficient for sediment transfer, C= sediment concentration at a 

given point y, y= vertical distance measured from the channel bed, and ωs= settling 

velocity of sediment particle. 

The diffusion coefficient is not constant in alluvial channel flow, particularly 

near the bed, where turbulence characteristics change with distance above the bed. Thus, 

εs is often estimated as βε, where β is a coefficient of proportionality and ε is the 

turbulent eddy viscosity. 
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The fall velocity, also called the settling velocity, ωs, plays an important role in 

distinguishing between suspended sediment load, and bed load. It is related to particle 

size, shape, submerged specific weight, water viscosity, sediment concentration, etc. In 

the laminar settling region, where the Reynolds number is smaller than 1, Stokes (1851)  

derived the drag force on a spherical particle by solving the Navier-Stokes equations 

without inertia terms, which lead to the well-known Stokes’ law for the settling velocity 

of spherical particles. However, the sediment particles in natural rivers are usually 

irregular shaped and have rough surfaces, which exhibit differences in settling velocity 

in comparison with spherical particles. A new formula for settling velocity of natural 

sediment particles was derived by Rubey (1933). However, Van Rijin (1984) suggested 

using the Stokes law for computing the velocity of sediment particles smaller than 

0.1mm and using Zanke’s (1977) formula for particles of size from 0.1 to 1mm; he also 

derived a formula for the particles larger than 1mm. 

Differential equation (2-8) should be integrated so that the sediment 

concentration can be reached. A classical possible model derived from that equation 

using the Prandtl-von Karman logarithmic velocity equation and linear shear stress 

distribution assumption is the Rouse equation (Rouse, 1937). The ratio in the exponent is 

called the Rouse parameter and is a measure of the relative size of settling velocity and 

turbulent stress. The reference concentration is defined in the Rouse equation that is a 

comparison of concentration with that at some reference level so that the bed-load 

transport is not accounted for. The Rouse solution has been compared favorably with 
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observed suspended sediment concentration distribution but not valid for the sediment 

concentration near the channel bed or the water surface.  

As an alternative velocity distribution, Chiu’s (1988, 1989) velocity distribution 

can be used to integrate differential equation (2-8) (Chiu, 2000). In this study, using 

Chiu’s velocity distribution, instead of the logarithmic velocity distribution, exempted 

from the weaknesses and limitations of the Rouse equation, the efficient model derived 

in this study was capable of describing the sediment concentration from the channel bed 

to the water surface. As a disadvantage, Chiu’s sediment concentration contains a large 

number of parameters and its practical use is therefore limited. 

Rather than using differential equation (2-8), a full entropy-based method for 

modeling sediment concentration was developed by Choo (2000). In his study, time-

averaged sediment concentration was considered to be a random variable. Similar to the 

derivation of Chiu’s velocity, the Shannon entropy was maximized to obtain the least-

biased probability distribution of sediment concentration. Choo’s work showed 

significant advantages over the traditional methods: the entropy based equation was 

capable of describing the concentration distribution in the vertical direction. The mean 

sediment concentration equation was effective for evaluating the cross-sectional mean 

concentration in open channels. However, the cumulative distribution function, the key 

hypothesis in the entropy method, is yet to be identified, which limits its application. 

Einstein (1950) determined the suspended sediment discharge by integrating the 

product of local sediment concentration and flow velocity over the suspended zone. 

Choo’s (2000) entropy-based method can also be used to estimate the suspended 
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sediment discharge as a product of the mean sediment concentration and mean velocity. 

However, he did not show any results of computed suspended sediment discharge, thus 

the validity of this method is yet to be examined. 
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3. EXPERIMENTAL AND FIELD DATA 

To evaluate the accuracy of the entropy-based velocity distribution derived in 

this thesis, several experimental and field data were used. Velocity data from four 

gauged sections in the upper Tiber River basin in Central Italy (shown in Figure 3.1) was 

used for evaluating the 2D velocity distribution, which were collected from seven flood 

events from 1984 to 1997. The mean velocity data collected during a period of 20 years 

at the four gauges were used to evaluate the mean velocity computation using entropy. 

The discharge values for different events varied between 1.5m3/s and 537m3/s with the 

mean velocity ranging between 0.12m/s to 2.42m/s and the maximum water depth 

between 0.8m and 6.7m. The flow characteristics of each station are shown in Table 3.1.  

 

Figure 3.1 Upper Tiber River basin with location of river gauging stations 
(Moramarco et al., 2004) 
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Table 3.1 Flow characteristics: Discharge Q and maximum water depth D of 
available velocity measurements N for four gauges 

Location N Q(m3/s) D (m) 

S. Lucia 42 1.5-215 0.9-5.2 

P. Felcino 34 2.3-412 0.8-6.2 

P. Nuovo 51 5.4-537 1.1-6.7 

Rosciano 38 3-160 1.3-3.3 

 

The field data are collected in Appendix A, whose main characteristics of the 

selected events are shown in Table 3.2. 

Table 3.2 Main characteristics of selected events: Maximum velocity umax, mean 
velocity um, discharge Q, flow area A and water depth along the vertical where umax 
occurs, D 

Location Date umax (m/s) um (m/s) Q (m3/s) A (m2) D (m) 

P. Nuovo Nov. 15, 1982 2.023 1.085 159.19 146.74 2.9 

P. Nuovo Nov. 18, 1996 2.597 1.736 541.58 311.91 6.64 

P. Nuovo Jun. 03, 1997 2.719 1.820 506.39 278.16 6.07 

Rosciano May 28, 1984 2.583 1.784 156.24 87.60 3.2 

Rosciano Nov. 20, 1996 2.447 1.525 131.20 86.03 3.11 

P. Felcino Apr. 21, 1997 3.365 2.120 399.16 188.26 6.15 

S. Lucia May 28, 1984 2.437 1.873 96.53 51.53 2.93 

 

35 Data sets as shown in Appendix B were used to evaluate 2D velocity profiles 

from 8 straight reaches of Ghamasiab River in western Iran. Data was collected from 

wide rectangular channels during periods of constant and low-flow discharge. The aspect 

ratios of selected sites was in the range from 1.62 to 2.5, the Froude number was in the 

range from 0.46 to 0.77, and the Reynolds number was between 1.5×105 and 

7.3×105(Afzalimehr and Anctil, 1999, 2000; Afzalimehr and Rennie, 2009). 
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The laboratory data collected by Einstein and Chien (1955) were used to evaluate 

the 1D velocity distribution and suspended sediment concentration distribution. A total 

of 29 runs were collected, 13 of them with clear water and the 16 with sediment-laden 

flow. Table 3.3 is a summary of the most important and useful data, detailed description 

of each run data can be found in Appendix C. The experiments were conducted in a 

painted steel flume 1.006 ft wide by 1.17 ft deep and 40 ft long. The slope was 

adjustable by means of an especially designed jack and varied from 0.0185 to 0.025, and 

the discharge was variable from 2.6 to 3.0cfs by changing the speed of the pump. The 

water depth ranged from 0.36 to 0.49 ft and the average velocity of different runs 

changed from 6.1 fps to 8.7 fps. Three different sands were used in their experiment 

labeled as coarse (D50=1.3mm), medium (D50=0.94mm), and fine (D50=1.14mm).  

Table 3.3 Summary of data, discharge Q, average depth of flow h, bed slop sB, 
the hydraulic radius of bed RB and von Karman constant κ 

Run no. sand Q (cfs) h (ft) s (10-3) RB (ft) κ 

C-1 c 2.8 0.460 14.5 0.328 0.387 

S-1 c 2.78 0.451 13.9 0.314 0.305 

C-2 c 2.8 0.452 14.1 0.315 0.379 

C-3 c 2.62 0.404 20.6 0.306 0.403 

S-2 c 2.64 0.392 19.4 0.285 0.247 

S-3 c 2.62 0.381 20.9 0.282 0.231 

S-4 c 2.61 0.378 23.6 0.287 0.210 

S-5 c 2.62 0.364 25.5 0.277 0.173 

C-4 c 2.62 0.397 18.4 0.289 0.350 

C-5 c 2.62 0.582 5.5 0.341 0.350 

C-6 m 3.00 0.488 14.7 0.347 0.398 

S-6 m 2.93 0.470 14.3 0.327 0.295 
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Table 3.3 continued 

Run no. sand Q (cfs) h (ft) s (10-3) RB (ft) κ 

S-7 m 2.94 0.467 14.3 0.325 0.281 

S-8 m 2.91 0.470 15.0 0.317 0.263 

S-9 m 2.85 0.455 17.3 0.311 0.247 

S-10 m 2.88 0.447 15.4 0.311 0.248 

C-7 m 2.85 0.432 20.2 0.317 0.395 

C-8 m 2.83 0.449 19.3 0.296 0.391 

C-9 m 2.67 0.399 12.7 0.291 0.410 

C-10 f 2.62 0.398 12.7 0.284 0.400 

C-11 f 2.77 0.437 13.1 0.287 0.406 

S-11 f 2.75 0.439 12.2 0.286 0.398 

S-12 f 2.77 0.435 13.2 0.277 0.274 

C-12 f 2.76 0.433 12.6 0.286 0.391 

S-13 f 2.74 0.433 17.4 0.289 0.237 

S-14 f 2.75 0.440 16.9 0.285 0.218 

S-15 f 2.73 0.404 18.6 0.287 0.168 

S-16 f 2.73 0.408 18.9 0.279 0.182 

C-13 f 2.65 0.39 18.9 0.27 0.427 

 

Coleman’s (1986) experiment data was also used to evaluate the 1D velocity 

distribution and the sediment concentration distribution as shown in Appendix D. 

Experiments were performed in a recirculating flume with a rectangular Plexiglas 

channel 356 mm wide and 15 m long, with slope adjustment capability for maintaining 

uniform flow. 40 velocity profiles and sediment concentration were measured at a 

vertical located on the flume channel centerline 12 m downstream from the entrance. 

The experiment was to establish a uniform flow at constant discharge, depth, and energy 
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gradient, to establish the clear-water velocity profile by local velocity measurement at 

standard elevations, and then to monitor changes in the velocity profile resulting from 

systematic increases in suspended sediment concentration while holding other flow 

conditions constant. Velocity and concentration profiles were established by averaging 

two replications of each local measurement. Experiments were repeated with three sands, 

with nominal diameters of 0.105, 0.210 and 0.420mm. The discharge was held at 0.064 

m3 /s, while the flow depth was held to an average of 169 mm.  

Furthermore, 10 sets of experimental data for rectangular flume with nonuniform 

flow were also used, which is observed in a channel with 2ft width and 0.6ft depth.  
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4. HYPOTHESIS ON THE CUMULATIVE DISTRIBUTION FUNCTION 

Through the principle of maximum entropy, the least biased probability of the 

velocity can be obtained, which will be fully discussed in Chapter 5. As a fundamental to 

this entropy based process, a hypothesis on the cumulative distribution function should 

be formulated so that the entropy based probability can be relate to the natural process in 

space and time domains.  

4.1 2D velocity distribution  

As a first step, the coordinate system used in this thesis should be defined, on 

which the cumulative distribution function is based. 

4.1.1 Setting up a coordinate system 

Natural channel sections are often u-shaped or v-shaped. For simplicity, a 

channel cross-section is idealized as a rectangle with a depth of D and a width of 2B, as 

shown in Figure 4.1. It is assumed that the velocity distribution is symmetric on either 

side of the center vertical line, where the maximum velocity always occurs in the regular 

cross-section. 
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Figure 4.1 Idealized rectangular cross-section 
 

Thus, the coordinates are set at the center of the channel bottom where y 

represents the vertical coordinate and x the horizontal coordinate (in the transverse 

direction) perpendicular to y. As shown in Figure 3.1, the point represented by y= 0 and 

x= 0, denoted as (0, 0), corresponds to the center of the channel bed. Under this 

coordinate system, x has a positive value at the right side of the cross-section and a 

negative value at the left, while y is always positive in the cross-section. 

4.1.2 Velocity isovels 

The velocity isovel is defined by the curve on which the velocity shares the same 

value. Thus the isovels I(u) have the one-to one relationship with the velocity value u. In 

spatial domain, the velocity isovels can be obtained from an assemble of x and y, where 
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the velocity is equal to u, which can be written as I(u)={(x, y), for all u(x, y)=u}, where 

u(x,y) is the velocity at the point (x, y) . 

Since the velocity is assumed to be 0 at the boundary, I(0) = {x=D or y=0}. For 

the maximum velocity which is assumed to occur at the center of the water surface, 

I(umax)= {x=0 and y=D}. For rest of the points, velocity isovels is monotonically 

increasing from 0 to umax. 

4.1.3 Cumulative distribution function 

In natural channels, the velocity varies not only in the vertical direction but also 

transversely. In the vertical direction the velocity increases from the channel bed to or 

near the water surface and in the transverse direction velocity decreases from the center 

to the edge.  

The velocity is shown to be monotonically increasing from the isovel I(0) to 

I(umax). Thus the cumulative distribution function will get the value of 0 at I(0) and get to 

1 at I(umax). With the relation between coordinates x and y with isovesl I(u), the 

cumulative distribution function can be expressed in the space domain. Thus, CDF needs 

to be 0 at x=D or y=0, which corresponds to I(0), and needs to be 1 at x=0 and y=D, 

which corresponds to I(umax).  

The cumulative distribution function (CDF) should be hypothesized such that it 

is capable of maintaining the above characteristics. It also should be continuous and can  

be derived in both x and y. Hence, the following cumulative distribution function can be  
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established as,  

         
 

 
 
 

 
 

 
 

 
 
 

                         (4-1) 

where the values of exponents a and b in equation (4-1) can be determined from 

observations. The values are shown to be related to the width-depth ratio of the channel, 

which will be discussed in Section 4.1.3.  

Figure 4.2 shows a half part of the CDF with a=0.5, b=0.2 in the idealized cross-

section. Figure 4.3 is the CDF contour map, which is also of a half cross-section. In both 

figures, the CDF reaches 1 at x=0 and y=D and reaches 0 at x=B or y=0, which means 

the maximum velocity is at the center of the cross-section and no velocity occurs at the 

boundary. It can also be seen from figures that the CDF increases smoothly from the 

boundary to the center and the rate of increase depends on the values of exponents a and 

b. 
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Figure 4.2 CDF of 2D velocity distribution 
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Figure 4.3 Contours of CDF for 2D velocity distribution 
 

The effect of the exponent values a and b can be analyzed from Figure 4.4, which 

is a set of figures with different combinations of a and b values.  

Comparing Figures 4.4 (a) and (b) with (c) and (d), the change in the a value 

leads to a slower decrease in the vertical coordinate: for a=1, the CDF contour decreases 

from the water surface to the channel bed linearly to the depth, while for a= 0.5, the 

CDF decreases slowly first, then rapidly drops from the depth about 0.1y/D to the 

channel bed. From this feature it seems that Figures 4.4 (a) and (d) are more likely to be 

shallower rivers than Figures 4.4 (b) and (c), since the impact of channel is less spread in 

Figures 4.4 (b) and (c) than in Figures 4.4 (a) and (d). 
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The difference between Figures 4.4 (a) and (d) or between Figures 4.4 (b) and (c) 

shows the effect of the b value. Similarly, for a smaller b value, the CDF decreases from 

the channel center to the wall slower than for a bigger b value. From the comparison of 

Figures 4.4 (a) and (b), one can find that the CDF is distributed more uniformly in 

Figure 4.4 (a) than in Figure 4.4 (b). It may be concluded that the channels described in 

Figures 4.4 (b) and (d) are wider than the channels in Figures 4.4 (a) and (c). 

Figures 4.4 (e) and (f) show two extreme circumstances which are a= 0 or b= 0. 

In Figure 4.4 (e) when a= 0, the CDF decreases only in the transverse direction, which is 

from the center line to the channel wall. However, this circumstance is the least probable 

in natural channels. In Figure 4.4 (f), the velocity changes only in the vertical direction, 

which is monotonically decreasing from the water surface to the channel bed. This might 

result in very wide channels, where the velocity distribution is ideally one-dimensional. 

To sum up, different a and b values result in different forms of CDF in a channel 

section, which may reflect the characteristics of the channel section. A bigger a value or 

a smaller b value tends to imply a higher value of the width-depth ratio. Further 

discussion with observed values will be discussed in the Section 4.1.3. 
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(a) a=1, b=1

(f) a=1, b=0(e) a=0, b=1

(d) a=1, b=0.5(c) a=0.5, b=1

(b) a=0.5, b=0.5

 

Figure 4.4 Contours of CDF for various a and b values 
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4.1.4 Verification of cumulative distribution function 

The assumed cumulative distribution function (CDF) plays an important role in 

predicting the velocity distribution and its accuracy directly affects the validity of the 

velocity distribution. Thus the cumulative distribution function should be satisfactorily 

defined to maintain the validity of the velocity distribution. 

Natural channels are always u-shaped or v shaped, or may not be even symmetric 

at all, thus the rectangular assumption is not valid for most natural channels and need to 

be modified. The following adjustment can therefore be made to deal with an irregular 

cross-section: change the fixed water depth D to D(x), which means that for different 

locations, the water depth is different, and becomes a function of x. Then, equation (4-1) 

becomes 

         
 

 
 
 

 
 

 
 

    
 
 

                          (4-2) 

Another parameter should be introduced to investigate the dip-phenomenon. 

Define a new parameter hy, which can be used as a proportional coefficient redistributing 

the probability in the vertical direction, so that the CDF may reach 1 not at the water 

surface, but at some distance below. With the use of hy, the CDF can be recast in the 

vertical direction as 

         
 

 
 
 

 
 

 
 

    
   

 

                       (4-3) 

The hy value should be determined in such a way that for a fixed value of x the 

CDF increases from the channel bottom to the possible maximum value at the point 

where the maximum velocity occurs and then reduces to the water surface. Here, the 
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least squared method will be used to determine hy, however, more details about the 

method to derive the analytical solution will be discussed in Section 5.3.1. 

Inputting equation (4-3) instead of equation (4-1), the limitations on the channel 

shape can be alleviated and the velocity distribution can be applied to any channel cross-

section by fitting the observed cumulative probability through the least squared method. 

Figure 4.5 shows the simulation of cumulative probability on chosen vertical lines, x 

from -18.86m to 10.49m including the center line x=0. According to observations, a=0.2 

and b=1.8 lead to the best fit of F(u) for the left side of the channel and a=0.2 and b=1 

yield the best fit for the right side.  

From Figure 4.5, the CDF increases from 0 at the channel boundary to the water 

surface and reaches 1 near the water surface at x=0m, which is the center line of the 

channel section. It is seen from the details of each vertical line that the CDF increases 

from the channel bed to some amount less than or equal to 1 and decreases to the water 

surface, which exactly represents the shape of velocity distribution. Since the cumulative 

distribution is considered for the whole cross-section, the CDF can only get to 1 at one 

point, where the maximum velocity occurs. That’s why in the vertical lines other than 

x=0m the CDF grows up to less than 1.  

Though the a and b values are selected differently for left and right sides, the 

simulation of the CDF still cannot capture every observed value, which limits the 

accuracy. On the left side of bank [Figure 4.5(a)], the estimated curve at line x= -18.86m 

shows the best result and the closer to the center line, the lower the accuracy it shows. 

The right hand side is just opposite, the farther apart from the center the worse the 
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simulation. However, the overall estimation of the probability distribution can roughly 

reflect the pattern of the velocity distribution and seems reasonable. 

 

(a) 

 

(b) 
Figure 4.5 Estimated CDF of Italian data at Ponte Felcino. (a) CDF at the left 

side of cross-section, and (b) CDF at the right side of the cross-section 
 

The accuracy of the estimated cumulative probability (est. CDF) can also be seen 

from Table 4.1, as well as observations (obs. CDF). Here, the error is computed as 

error=(est.-obs.)/obs. It is noted that here y’ differs from y, which denotes the depth 
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from water surface (y’=D-y). The cross-sectional root mean square error is 0.049, and it 

has a root mean square error 0.013 at the left bank and 0.048 at the right side. 

Table 4.1 Estimation of cumulative distribution for Italian data  
x y′ obs. CDF est. CDF error x y′ obs. CDF est. CDF error 

(m) (m) 
   

(m) (m) 
   

-18.86 0 0.195 0.155 -0.208 10.49 0 0.415 0.446 0.075 
-18.86 0.06 0.195 0.161 -0.173 10.49 0.06 0.415 0.452 0.091 
-18.86 0.2 0.159 0.174 0.097 10.49 1 0.549 0.525 -0.044 
-18.86 1 0.110 0.213 0.943 10.49 2 0.659 0.573 -0.130 
-18.86 2 0.268 0.240 -0.106 10.49 3 0.720 0.569 -0.209 
-18.86 3 0.220 0.213 -0.029 10.49 3.5 0.659 0.546 -0.171 
-18.86 3.9 0.159 0.165 0.043 10.49 4.6 0.463 0.475 0.026 
-18.86 4.1 0.159 0.140 -0.120 10.49 5 0.390 0.434 0.113 
-18.86 4.25 0.098 0.000 -1.000 10.49 5.7 0.098 0.000 -1.000 
-10.46 0 0.524 0.585 0.116 7.34 0 0.659 0.699 0.062 
-10.46 0.06 0.524 0.590 0.125 7.34 0.2 0.793 0.713 -0.101 
-10.46 0.2 0.659 0.599 -0.090 7.34 1 0.829 0.757 -0.087 
-10.46 1 0.659 0.644 -0.022 7.34 2 0.829 0.793 -0.043 
-10.46 1.93 0.671 0.648 -0.034 7.34 2.93 0.793 0.751 -0.053 
-10.46 2.88 0.549 0.594 0.082 7.34 3.88 0.720 0.694 -0.036 
-10.46 3.88 0.524 0.501 -0.044 7.34 4.88 0.659 0.602 -0.085 
-10.46 4.28 0.390 0.430 0.103 7.34 5.38 0.220 0.521 1.373 
-10.46 4.48 0.354 0.363 0.027 7.34 5.7 0.268 0.415 0.545 
-10.46 4.63 0.098 0.000 -1.000 7.34 5.85 0.098 0.000 -1.000 
-6.29 0 0.878 0.886 0.009 0.00 0 1.000 0.998 -0.002 
-6.29 0.06 0.878 0.889 0.013 0.00 0.06 1.000 1.000 0.000 
-6.29 0.2 0.793 0.897 0.131 0.00 0.2 0.927 0.995 0.074 
-6.29 0.8 0.841 0.925 0.099 0.00 1 0.976 0.967 -0.009 
-6.29 1.71 0.793 0.911 0.149 0.00 2 0.976 0.926 -0.051 
-6.29 3 0.793 0.840 0.060 0.00 3 0.878 0.876 -0.002 
-6.29 4 0.659 0.762 0.158 0.00 4 0.829 0.812 -0.021 
-6.29 5 0.463 0.627 0.352 0.00 5 0.659 0.716 0.088 
-6.29 5.2 0.390 0.578 0.480 0.00 5.8 0.524 0.565 0.077 
-6.29 5.45 0.329 0.475 0.442 0.00 6 0.439 0.477 0.086 
-6.29 5.60 0.098 0.000 -1.000 0.00 6.15 0.098 0.000 -1.000 
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Figure 4.6 compares contour maps of observed and estimated CDFs for the 

whole cross-section of Ponte Felcino River. It is seen from Figure 4.6 that the boundary 

of the channel cross-section is simulated exactly as the observation with the help of 

using D(x) for different locations. By using different values of a and b for left and right 

sides, contours on the right side are much looser than those on the left side, which is 

more likely distributed as observations. It is seen from the figure that the CDF is 

estimated a little larger than the observation at the boundary; however, the overall 

estimation in the whole cross-section seems reasonable. 

 

Figure 4.6 Contours of CDF for Italian data at Ponte Felcino: (a) The observed 
CDF, and (b) The estimated CDF 

 

More CDFs have been computed for Italian rivers and Iranian rivers and those 

results are presented in Appendix E.  

For different river data, the a and b values are different and they are shown to be 

related to the width-depth ratio of the river. Table 4.2 is a summary of the a and b values 
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for different rivers in Italy, from which it can be observed that the a value increases with 

the width-depth ratio (B/D), while b decreases. Comparing the change with the width-

depth ratio, the a value is more sensitive to the ratio than b is. 

Table 4.2 Values of a and b with the width-depth rate 
B/D 2.68 3.17 4.06 4.16 5.25 6.29 Average 

a 0.18 0.21 0.23 0.20 0.25 0.28 0.23 

b 1.10 1.00 0.90 0.90 0.80 0.80 0.92 
 

The CDF for the Iranian data was also computed and the value of a and b are 

shown in Figure 4.7, where the width-depth ratio is much smaller than the Italian rivers. 

It is seen from Figure 4.7 that the value of a increases and the value of b slightly 

decreases with increasing width-depth ratio, which supports the results obtained from the 

Italian data. 

 

Figure 4.7 Values of a and b varying with the width-depth ratio of an Iranian 
river 
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4.2 1D velocity distribution  

4.2.1 Setting a coordinate system 

For 1D velocity distribution, the coordinate system is simpler than in the 2D case, 

since the velocity distribution is only studied in the vertical direction. Thus, the 

coordinate system is set at the channel bottom. Let y represent the vertical, omitting the x 

coordinate as shown in Figure 4.8. 

y

(0)
D

Water surface

Channel bed  

Figure 4.8 Idealized rectangular cross-section 
 

4.2.2 Cumulative distribution function 

The velocity is known to be monotonically increasing from the bottom of the 

channel to the water surface. In such case, the velocity isovels form a set of straight lines 

parallel to the channel bed. At the channel bed, y=0 corresponds to I(0), whose CDF 

needs to be 0, while at the surface, y=D corresponds to I(umax), whose CDF needs to be 1. 

Similar to the 2D CDF, the CDF is hypothesized as  
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                             (4-4) 

Equation (4-4) can also be explained in another way: in the 1D case, where the 

channel is very wide, which has a much bigger value of B/D, which leads to a smaller 

value of b in Equation (4-1), ultimately b=0 as shown in Figure 3.4. Thus, the first term 

on the right side of Equation (4-1) becomes: 

    
 

 
 
 

 
 

           (4-5) 

which can be omitted and only the second term remains in equation (4-4). 

For generalization, the cumulative distribution function containing above 

characteristics can be written in following forms:  

           
 

 
                           (4-6) 

              
 

 
                           (4-7) 

where a0 to a3 are different parameters. In this way, Equation (4-4) can be considered as 

the simplification of Equation (4-6) and (4-7). 

4.2.3 Verification of cumulative distribution function 

The value of a can be determined by fitting the observed cumulative distribution 

just as was done in the 2D case. From fitting experimental data, the a value ranges from 

0.3 to 0.5 seen in Table 4.3, which is much bigger than in the 2D case. For the data of 

Run C1 of Einstein and Chien’s (1955) as an example, a is set as 0.33 which is shown in 

Figure 4.9  
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Table 4.3 Estimation of cumulative distribution of Einstein and Chien’s (1955) 

1D data 
y (ft) obs. F(u) est. F(u) error 

0.006 0.174 0.308 0.770 
0.006 0.043 0.308 6.163 
0.007 0.087 0.325 2.736 
0.008 0.217 0.339 0.562 
0.008 0.130 0.339 1.608 
0.009 0.261 0.353 0.352 
0.010 0.304 0.365 0.201 
0.012 0.348 0.388 0.115 
0.014 0.391 0.408 0.043 
0.020 0.435 0.459 0.055 
0.024 0.478 0.487 0.019 
0.028 0.522 0.513 -0.017 
0.038 0.565 0.567 0.004 
0.044 0.609 0.595 -0.023 
0.053 0.652 0.633 -0.029 
0.074 0.696 0.707 0.016 
0.084 0.739 0.737 -0.003 
0.099 0.783 0.778 -0.006 
0.114 0.826 0.816 -0.012 
0.139 0.870 0.870 0.000 
0.163 0.913 0.917 0.004 
0.214 0.957 1.004 0.049 

 

It is seen from Table 4.3 that the root mean square error is 0.252, which means 

the estimation is close to the observation. It can be seen from Figure 4.9 that the CDF 

increases from the channel bottom monotonically to 1 at the water surface. It grows 

slowly first from the channel bed up to 0.05mm, then faster for higher region, which 

might be caused by the effect of heavy sediments concentrated near the channel bed. The 

estimated curve fit the observation at most points but not all, for example, at the part 

near the channel bed, the estimation is smaller than the observed CDF. The assumption 

on the one-dimensional CDF shows the overall trend of prediction. 



47 

 

 

 

Figure 4.9 CDF of 1D velocity distribution for Einstein and Chien’s data (Run 

C1) 
 

The CDF has also been computed using equations (4-5) and (4-6) with the least 

square method comparing to equation (4-4) in Figure 4.10. It is seen from the figure that 

the most general equation (4-6) fit the observation slightly better than equations (4-5) 

and (4-4). However, the high accuracy of equation (4-6) cost too many parameters and it 

is not recommended for application. Thus, equation (4-4), which also can be considered 

as the simplification of equation (4-6) is reasonable. 
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Figure 4.10 Comparison of hypotheses on the cumulative distribution function 
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5. DERIVATION OF VELOCITY DISTRIBUTION 

The methodology used in this thesis is based on the principle of maximum 

entropy (POME). By maximizing the Tsallis entropy subject to the moment constraints, 

the least-biased probability distribution of random velocity can be obtained. When 

combined with pre-assumed flux-concentration relation, the space or time distribution of 

the random variable can be derived. 

5.1 Entropy based velocity distribution 

5.1.1 Tsallis entropy of velocity distribution 

To apply the entropy theory, consider the time-averaged velocity U in a channel 

cross-section as a random variable and let U vary from 0 to umax. According to the 

definition of Tsallis entropy [equation (2-3)], the entropy of velocity distribution can be 

written as: 

  
 

   
          

    

 

 
    

 

   
     

    

 
                (5-1) 

where u = velocity value at a specified point, umax = the maximum velocity of the cross-

section, f(u) = the probability density function, and m = a real number, and for m>0 H(u) 

becomes a convex function. 

Equation (5-1) expresses the relative Tsallis entropy for continuous velocity 

distribution, which is a measure for uncertainty of spatial distribution of U in a cross 

section associated with     .  
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The objective is to determine the probability density function f(u), which can be 

accomplished by maximizing the Tsallis entropy. In order to maximize the entropy H(u), 

certain constraints need to be specified. 

5.1.2 Specification of constraints 

The first constraint comes from the satisfaction of the probability density 

function, which is 

            
    

 
        (5-2) 

To be more precise, this is not actually a constraint, for f(u) must always sum up to 1 in 

the whole range of U. For convenience of expression, it is often treated as a constraint if 

there are more than one constraint. 

Additional constraints can be obtained from the laws of conservation of mass, 

momentum and energy which flow in open channels must satisfy. The constraint 

obtained from the conservation of mass in flow can be expressed as 

              
    

 
        (5-3) 

where    is the cross-sectional mean velocity equal to Q/A. Here Q is the discharge rate 

and A is the cross-sectional area. Equation (5-3) is equivalent to satisfying the condition 

that u must be distributed over the cross-sectional area so that      . 

The third constraint can be obtained from the conservation of momentum 

equation, which can be written as 

                           

 
       (5-4) 
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in which β is the momentum distribution coefficient equal to       , often referred to as 

the Boussinesq coefficient. 

The last constraint, which is obtained from the conservation of energy equation, 

is expressed as 

                           

 
       (5-5) 

where α is the energy distribution coefficient referred to as the Coriolis coefficient. 

According to Barbe et al. (1991), two constraints are considered enough to 

describe the velocity distribution accurately. Hence in this study, equations (5-2) and (5-

3) will be applied as constraints. 

5.1.3 Maximization of entropy 

To maximize the entropy given by equation (5-1), subject to the specified 

constraint equations (5-2 and 5-3), the Lagrange multiplier method is employed. The 

Lagrangean function L can be expressed as: 

   
    

   

    

 
                

           
    

 
  

             
    

 
   (5-6) 

in which λ0 and λ1 are the Lagrange multipliers. 

Equation (5-6) can be maximized by letting   

     
  . Hence      is obtained: 

      
   

 
 

 

   
         

 

          (5-7) 

Equation (5-7) is the entropy-based probability density function (PDF) of velocity 

containing the Lagrange multipliers λ0 and λ1 as parameters.  
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To simplify equation (5-7), let       
 

   
, and replace    

 

   
 with   . 

Then one obtains 

      
   

 
         

 

             (5-8) 

Substituting equation (5-8) in equation (5-1), the maximum entropy is achieved 

as: 

  
 

   
 

 

 
    

            (5-9)  

Equation (5-9) is the entropy of velocity distribution expressed in terms of given 

information. 

5.1.4 Determination of Lagrange multipliers 

The probability density function, derived above, has two parameters λ1 and λ*, 

which can be computed from a non-linear system containing the two constraints. 

Substituting the entropy-based probability density function     , equation (5-8), into 

equations (5-2) and (5-3) and integrating them from u=0 to umax, the following two 

equations are obtained: 

           
 

       
 

   
 

 

        
 

          (5-10) 

               
 

    
   

    

 

  
           

    

    
   

    

 

  
    

    

         
 

   
 

 

    (5-11) 

These two equations should be solved simultaneously to compute λ1 and λ* for a 

given m value. Computation of these Lagrange multipliers will be discussed in Section 

5.2.1.1. 
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5.1.5 General velocity distribution 

With the hypothesis on the cumulative distribution function the next step is to 

compute velocity profiles using the entropy-based probability density function. To 

derive a general case, consider the density function in 2-D domain as (x, y), where y 

represents the depth from the channel bed and x represents the transverse distance from 

the center line. Since u is a function of x and y,      can be written as          . 

Since      is the derivative of the cumulative distribution function F(u), taking 

the partial derivatives of F(u) with respect to x and y, the following two equations are 

obtained: 
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     (5-13) 

Now define a new variable    
   

 
         

 

   .     (5-14) 

Compute partial derivatives of w with respect to x and y,  

  

  
 

  

  

  

  
    

   

 
         

 

     

  
      (5-15) 

  

  
 

  

  

  

  
    

   

 
         

 

     

  
      (5-16) 

Comparing equations (5-15) and (5-16) with equations (5-12) and (5-13), the 

relationship between F(u) and w can be formed as: 

  

  
   

     

  
           (5-17) 
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          (5-18) 

Equations (5-17) and (5-18) can be seen as a system of linear differential 

equations, which can be solved using the Leibnitz rule: 

 
  

  
   

  

  

     

     
                      (5-19) 

Since the point with coordinates (0, 0) lies on the channel floor, which has the 

velocity u= 0, w(0,0) on the right hand side of equation (5-19) equals     

 
     

 

    from 

equation (5-14). Hence the right hand side of equation (5-19) now becomes 

                      
   

 
     

 

   
     (5-20) 

The definite integral on the left hand side of equation (5-19) can be calculated at 

a generic point of coordinate (     ) which is identified by means of a polygonal curve 

that starts from the origin of axes (0, 0), passing through the point (    ) and ends at 

(     ). The cumulative distribution function F(u) is constantly 0 at point (0, 0) to (    ). 

Thus using equations (5-17) and (5-18), the integral of equation (5-19) yields:  

   
     

  
     

     

  

       

     
      

     

  

  

 
             (5-21) 

Combining equation (5-21) with equation (5-20), 

 
  

  
   

  

  

     

     
      

     

  
     

     

  

       

     
      (5-22) 

Hence, w(x, y) can be obtained as:  

               
   

 
     

 

   
       (5-23) 
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Substituting the definition of w from equation (5-23) into equation (5-14), the 

velocity distribution function is obtained as: 

   
  

  
 

 

  

 

   
         

   

 
   

 

   
 

   

 

     (5-24) 

Hence, the general velocity distribution is derived using the Tsallis entropy. With 

equation (5-24), the velocity distribution in both 1D and 2D can be obtained, according 

to whether the 1D or 2D cumulative distribution function F(u) is used.  

5.1.6 Dimensionless parameter G 

The method of computing the Lagrange multipliers, λ1 and λ*, is difficult, 

because equations (5-10) and (5-11) form a set of non-linear equations. In Chiu’s 

velocity method, there’s a dimensionless parameter M defined by        to reduce the 

computational difficulty, which can also act as an index for characterizing and 

comparing various patterns of the velocity distribution (Chiu, 1988). In a similar manner, 

a dimensionless parameter G can be defined in the following way:  

  
      

         
           (5-25) 

Inputting F(u)=1, the umax can be obtained from equation (5-24), which is 

      
  

  
 

 

  

 

   
     

   

 
   

 

   
 

   

 

     (5-26) 

Dividing equation (5-24) by equation (5-26) with G instead of λ1 and λ*, the 

following equation is obtained: 

 

    
   

 

 
     

 

   
 

 

    

    
           

   

 

     (5-27) 



56 

 

 

Substituting u0=0, the velocity distribution in equation (5-27) can be simplified 

as: 

 

    
   

 

 
         

 

            
 

         

   

 
   (5-28) 

With the known CDF in equation (4-1), the velocity distribution can now be 

obtained with a single parameter G. Assume m= 3, when x= 0 the density function F(u) 

is determined by a only, thus the velocity distribution varies with different a and G 

values, as shown in Figure 5.1. It is seen from the figure that a bigger G value tends to 

slow the growth of the velocity from the channel bed to the water surface, while a plays 

the opposite role. Comparing the effect of the two parameters, the velocity distribution is 

more sensitive to a than G. The method to compute the dimensionless parameter G and 

the importance of this parameter will be discussed in a Sections5.2.1.1 and 5.3. 

 

 

Figure 5.1 The velocity distribution for various a and G values 
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5.2 Application of velocity distribution 

5.2.1 Computation methods 

There are two methods to compute velocity profiles: one is the original method 

which directly solves the set of non-linear equations; and the other makes use of the 

dimensionless parameter G. Either method is feasible, while the second is more 

convenient. 

5.2.1.1 Use of Lagrange multipliers 

Equations (5-10) and (5-11) can be solved simultaneously to obtain the Lagrange 

multipliers λ1 and λ* for a given m value. According to the definition of the Tsallis 

entropy, entropy becomes a convex function when m>0. Thus, m should keep positive to 

maintain the entropy function convex, so that the maximum entropy can be achieved. 

Table 5.1 shows the results of solving λ1 and λ* for different m values in several rivers. It 

can be observed that the λ value tends to decrease with increasing m value. A bigger m 

value leads to more difficulty in solving the equations and the solutions of λ values for 

bigger m values are not as stable as smaller ones. To that end, it seems inappropriate for 

m to exceed a value of 3 or 4. 

Table 5.1 Computation of λ values for different m values for Italian River data 
 River m 1.5 2 3 4 5 

Ponte Felcino 
λ1 0.101 0.055 0.016 0.005 0.001 
λ* 0.464 0.503 0.106 0.027 0.001 

Roscinano 
λ1 0.194 0.123 0.050 0.020 0.001 
λ* 0.676 0.667 0.191 0.067 0.249 

Santa Lucia 
λ1 0.863 0.608 0.319 0.172 0.051 
λ* 1.388 0.543 0.177 0.076 0.018 
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Table 5.1 continued 
 River m 1.5 2 3 4 5 

Pontelagoscuro1 
λ1 0.450 0.331 0.182 0.100 0.031 
λ* 1.816 0.811 0.302 0.141 0.037 

Pontelagoscuro2 
λ1 0.442 0.335 0.194 0.113 0.038 
λ* 1.906 0.883 0.352 0.174 0.051 

 

Table 5.2 and Figure 5.2 show the impact of m on predicting the velocity 

distribution. It is seen from the computed coefficient of determination (R2) between 

estimated and observed values in Table 5.2 that the bigger m values result in better R2, 

which means a bigger m leads to a more accurate prediction. 

Table 5.2 R2 values for different m values 
m 1.5 2 3 4 5 

Ponte Felcino 0.943 0.959 0.977 0.980 0.989 
Roscinano 0.940 0.956 0.982 0.985 0.990 
Santa Lucica 0.938 0.952 0.978 0.980 0.988 
Pontelagoscuro1 0.952 0.963 0.982 0.983 0.985 
Pontelagoscuro2 0.934 0.957 0.979 0.987 0.988 

 

It is seen from the Figure 5.2 that the dimensionless velocity distribution was 

computed for various m values with CDF with a=0.2, b=1. Compared to the data from 

Ponte Felcino River, it is seen that m=3, 4 and 5 curves fit the observations better than 

others, and with increasing m value, the velocity curves have less difference than those 

when m is small. For velocity near the surface, observations are more likely to fit the 

curve for m=5, while for the velocity close to the channel bed, the observations tend to 

be close to the curve for m=3. To sum up, considering the difficulties in solving the 

equations, m=3 seems to be the best choice, which leads to a reasonably accurate 

velocity distribution. 
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Figure 5.2 Dimensionless velocity distribution for various m values (data from 
Ponte Felcino River, Italy) 

 

5.2.1.2 Use of dimensionless parameter G 

If m=3 is defined, equation (5-28) can be further simplified as: 

 

    
   

 

 
                          

 

      (5-29) 

The key step is to determine the value of dimensionless parameter G. According to the 

experience with Chiu’s (1988) method of determining parameter M, the relationship 

between the mean velocity and the maximum velocity is the key. To obtain the analytical 

solution of the mean velocity, equation (5-29) can be integrated over the whole cross-

section: 

   
 

 
     

 

 
        

 

 
                          

 

      (5-30) 

The mean velocity now can be written as some function of G multiplied by umax, 

which is            . If the function  (G) is known, the value of G can be easily 
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obtained through        . However, an analytical solution of equation (5-30) is difficult 

to obtain, hence the numerical methods are applied.  

For the data from the Iranian and the Italian rivers, according to the definition of 

parameter G [equation (5-25)], the value of G can be computed using the Lagrange 

multipliers method described in the previous section. Results can be found in Appendix 

E. Then, its relation with the mean and maximum velocity data is simulated in Figure 5.3. 

The trend line can be simulated with a second order polynomial function which has a 

coefficient of determination as high as 0.997. 

 

Figure 5.3 The relationship between G and um/umax 

 

Thus, Equation (5-30) can be simulated from observed data as  
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methods in computation of the G values. G1 is the computation from the definition 

[Equation (5-25)], and G2 is the result from equation (5-31). It is seen from the 

difference, which has a mean value about 0.003. Thus, it is safe to use Equation (5-31) 

instead of the Lagrange multiplier method. 

Table 5.3 The difference in computation of G values 
umax umean G1 G2 Difference (G1-G2) 

0.524 0.348 0.487 0.488 0.000 
0.491 0.335 0.525 0.526 -0.001 
0.582 0.421 0.603 0.606 -0.003 
0.578 0.424 0.621 0.624 -0.003 
0.575 0.345 0.331 0.333 -0.002 
0.607 0.378 0.391 0.391 0.000 
1.071 0.708 0.479 0.481 -0.002 
0.885 0.584 0.478 0.478 0.000 
0.774 0.516 0.493 0.493 0.000 
0.682 0.493 0.639 0.605 0.035 
0.824 0.614 0.640 0.643 -0.003 
0.778 0.598 0.677 0.680 -0.003 
0.746 0.574 0.678 0.681 -0.003 
0.642 0.435 0.516 0.517 -0.001 
0.585 0.393 0.504 0.504 -0.001 
0.502 0.370 0.626 0.630 -0.003 
0.450 0.347 0.680 0.683 -0.003 
0.469 0.374 0.718 0.719 -0.002 
0.657 0.519 0.707 0.710 -0.002 
0.743 0.561 0.656 0.659 -0.003 
0.735 0.539 0.620 0.623 -0.003 
0.660 0.543 0.751 0.749 0.001 
0.660 0.488 0.630 0.633 -0.003 
0.550 0.366 0.490 0.491 0.000 
0.480 0.302 0.407 0.407 0.000 
0.635 0.426 0.502 0.502 -0.001 
0.710 0.522 0.623 0.626 -0.003 
0.739 0.441 0.323 0.324 -0.002 
0.592 0.506 0.788 0.781 0.007 
0.899 0.579 0.442 0.442 0.000 
0.971 0.683 0.567 0.569 -0.002 
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Table 5.3 continued 
umax umean G1 G2 Difference (G1-G2) 

0.810 0.675 0.755 0.761 -0.006 
0.899 0.663 0.627 0.630 -0.003 

 

5.2.2 2D Velocity distribution 

Now the velocity distribution can be computed. Either equation (5-24) with the 

Lagrange multiplier method or equation (5-29) with the dimensionless parameter G can 

be applied with the assumed CDF. In this study the second method with parameter G is 

preferred. 

Table 5.4 shows the computed velocity distribution of Ponte Felcino River in 

Italy, which has a G value of 0.336. The relative error is computed as (est.-obs.)/obs. The 

root mean square error for the whole cross section is 0.927. The computed errors were 

plotted in Figure 5.4, which shows that the error is normally distributed around 0. 

Table 5.4 Computed velocity at Ponte Felcino River, Italy 
x y′ obs. u est. u relative  x y′ obs. u est. u relative 
(m) (m) (m/s) (m/s)  error (m) (m) (m/s) (m/s)  error 
-18.860 0.000 0.830 0.746 -0.101 10.490 0.000 1.780 1.269 -0.287 
-18.860 0.060 0.830 0.779 -0.061 10.490 0.060 1.780 1.355 -0.239 
-18.860 0.200 0.740 0.840 0.135 10.490 1.000 2.150 2.042 -0.050 
-18.860 1.000 0.640 1.031 0.610 10.490 2.000 2.320 2.416 0.041 
-18.860 2.000 1.150 1.158 0.007 10.490 3.000 2.570 2.546 -0.009 
-18.860 3.000 0.960 1.031 0.074 10.490 3.500 2.320 2.404 0.036 
-18.860 3.900 0.740 0.799 0.079 10.490 4.600 1.950 1.974 0.012 
-18.860 4.100 0.710 0.672 -0.053 10.490 5.000 1.610 1.733 0.077 
-18.860 4.250 0.000 0.000 0.000 10.490 5.700 0.000 0.000 0.000 
-10.460 0.000 2.060 1.937 -0.060 7.340 0.000 2.360 2.504 0.061 
-10.460 0.060 2.060 1.965 -0.046 7.340 0.200 2.610 2.536 -0.028 
-10.460 0.200 2.340 2.025 -0.135 7.340 1.000 2.700 2.640 -0.022 
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Table 5.4 continued 
x y′ obs. u est. u relative x y′ obs. u est. u relative 

(m) (m) (m/s) (m/s) error (m) (m) (m/s) (m/s) error 
-10.460 1.000 2.310 2.269 -0.018 7.340 2.000 2.740 2.738 -0.001 
-10.460 1.930 2.440 2.457 0.007 7.340 2.930 2.610 2.647 0.014 
-10.460 2.880 2.190 2.264 0.034 7.340 3.880 2.530 2.523 -0.003 
-10.460 3.880 2.060 1.928 -0.064 7.340 4.880 2.320 2.314 -0.003 
-10.460 4.280 1.650 1.665 0.009 7.340 5.380 0.980 2.117 1.160 
-10.460 4.480 1.590 1.413 -0.111 7.340 5.700 1.190 1.837 0.544 
-10.460 4.630 0.000 0.000 0.000 7.340 5.850 0.000 0.000 0.000 
-6.290 0.000 2.990 2.980 -0.003 0.000 0.000 3.360 3.360 0.000 
-6.290 0.060 2.990 2.974 -0.005 0.000 0.060 3.360 3.354 -0.002 
-6.290 0.200 2.660 2.960 0.113 0.000 0.200 3.160 3.340 0.057 
-6.290 0.800 2.820 2.896 0.027 0.000 1.000 3.200 3.252 0.016 
-6.290 1.710 2.660 2.785 0.047 0.000 2.000 3.280 3.125 -0.047 
-6.290 3.000 2.610 2.583 -0.010 0.000 3.000 2.910 2.970 0.021 
-6.290 4.000 2.360 2.358 -0.001 0.000 4.000 2.780 2.766 -0.005 
-6.290 5.000 1.950 1.958 0.004 0.000 5.000 2.320 2.461 0.061 
-6.290 5.200 1.600 1.812 0.132 0.000 5.800 2.030 1.964 -0.032 
-6.290 5.450 1.460 1.499 0.027 0.000 6.000 1.860 1.670 -0.102 
-6.290 5.600 0.000 0.000 0.000 0.000 6.150 0.000 0.000 0.000 

 

 

Figure 5.4 Distribution of relative errors computed for velocity distribution of 
Italian data at Ponte Felcino 
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Figure 5.5 shows plots of simulated velocity profiles which can be divided into 

three portions. In the first region from the channel bed to some depth about 0.2m, the 

velocity distribution on each vertical line increases slowly. Then it starts to grow faster 

to the maximum velocity, which is the second region. At last the velocity decreases from 

the maximum to some value at the water surface, where the decreasing rate is similar to 

the increasing rate in the second region. It can be concluded that the slow increase in the 

first region is caused by the resistance due to the bed shear stress, so that beyond the bed 

effective region the velocity grows faster. In the third portion, it is the secondary current 

which retards the velocity from growing to the water surface. 

The highlighted point is the maximum velocity observed from each vertical line. 

The estimation can capture these points well. Comparing the curves in Figure 5.5, it is 

found that the farther from the center line the lower the location of the maximum 

velocity occurring, which exactly meets the analysis of Yang et. al (2004). Overall, the 

estimated values fit the observed values reasonably well with the coefficient of 

determination between the estimation and observation as high as 0.977. 
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(a) 

 

(b) 

Figure 5.5 Simulation of velocity distribution of Italian data at Ponte Felcino: (a) 
The velocity at left ride of cross-section, and (b) the velocity at right side 
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estimated isovels are shown to be more uniformly distributed than observation. It is 

because the velocity distribution reached through POME is meaningful to seek the 

distribution with the maximum entropy, which turns out as the most uniform model 

under the given constraints. Similar to the contours of CDF, the velocity estimated 

around the channel boundary is generally acceptable in this method. 

Figure 5.6 Isovels of Italian data at Ponte Felcino: (a) Isovels of observed value, and (b) 

Isovels of estimated value 

 

For further verification, 4 more sets of Italian data and 20 sets of Iranian data are 
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computations, which shows the validity of the entropy-based. 
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decreasing with the distance from the center. However, the velocity distribution 

collected from the Iranian River shown in Figure 5.7 (c) and (d) shows different patterns. 

Without knowing the location of each profile, it is hard to determine whether the profile 

is obtained from a line near the center or the boundary. It is seen from Figure 5.7(c) that 

profile 4 has the largest velocity value, which is supposed to be the nearest to the center 

line, while the location of the maximum velocity in this profile is the lowest. Similar 

patterns can be found in profiles 1 and 5 of Figure 5.7 (d). But overall, the estimation of 

the velocity was reasonable. 

It can be concluded from the above analysis that the entropy-based method 

employed in this thesis performs well in predicting two-dimensional velocity profiles in 

open channels. Other than previous models, this method cannot only describe the overall 

trend of the velocity accurately, but also can capture the lower value of velocity near the 

channel bed. More comparison will be processed in later chapters. 
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(a) 

 

(b) 

Figure 5.7 2D velocity distributions: (a) Velocity distribution at Rosciano (Italy), 
(b) Velocity distribution at Santa Lucia (Italy), (c) Velocity distribution of Run A2-1 
(Iran), and (d) Velocity distribution of Run B9-1 (Iran) 
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(d) 

Figure 5.7 continued 
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In Chiu’s (1988, 1989) study, the dimensionless parameter was shown as a index 

of the flow status, and it gives a range for laminar and turbulence flow. To analyze the 

possible information about the flow characteristics, the Reynolds number was computed 

as 

   
   

  
          (5-32) 

where Q is the flow discharge, DH is the hydraulic diameter,   is the kinematic viscosity, 

and A is the flow area. Results are shown in Table 5.5, in which H represents the entropy 

computed through equation (5-9). 

Table 5.5 Summary of velocity characteristics for Italian data 

Location Date umax 
(m/s) 

Q 
(m3/s) 

A 
 (m2) 

D 
(m) Re G H  

(napiers) 

P. Nuovo Nov. 15, 
1982 2.023 159.19 146.74 2.9 1882 0.520 0.925 

P. Nuovo Nov. 18, 
1996 2.597 541.58 311.91 6.64 5992 0.485 0.882 

P. Nuovo Jun. 03, 
1997 2.719 506.39 278.16 6.07 5824 0.521 0.925 

Rosciano May 28, 
1984 2.583 156.24 87.6 3.2 3084 0.423 0.804 

Rosciano Nov. 20, 
1996 2.447 131.2 86.03 3.11 2581 0.391 0.765 

P. 
Felcino 

Apr. 21, 
1997 3.365 399.16 188.26 6.15 6201 0.336 0.696 

S. Lucia May 28, 
1984 2.437 96.53 51.53 2.93 2745 0.767 1.231 

 

It is seen from the above results that the relation between G and the Reynolds 

number is not as clear as found by Chiu (1988). It seems like for a higher Reynolds 

number, the G value tends to be smaller, while due to the lack of data it is not obvious. 

However, it is found that the higher G value might imply a higher entropy value, which 



71 

 

 

means more uniform distribution. It might be related that for the laminar flow with a 

higher G value whose entropy tends to be bigger, and vise versa; for the turbulent flow 

with a lower G value whose entropy should be smaller; however, it is yet to be 

concluded. 

5.2.3 1D velocity distribution 

The 1D velocity distribution can be seen as a special case of the 2D velocity 

distribution and can be computed in exactly the same way. However, some adjustment 

should be made first. 

Following the same procedure as in Section 5.2.2, the velocity can be obtained 

with one-dimensional CDF computed as in Table 4.3. The value of G is used using the 

mean and maximum velocity from known observations. Table 5.6 shows the computed 

velocity distribution for 1D Einstein and Chien’s (1955) data (Run C1). The error was 

computed in the same way as was done previously, which turns out to be normally 

distributed around 0. 

Table 5.6 Computed velocity distribution of Einstein Chien’s (1955) data (Run 
C1) 

y (ft) obs. u (ft/s) est. u (ft/s) error 

0.006 2.745 2.641 -0.038 
0.006 2.452 2.641 0.077 
0.007 2.510 2.747 0.094 
0.008 2.831 2.842 0.004 
0.008 2.643 2.842 0.075 
0.009 2.858 2.926 0.024 
0.010 2.960 3.003 0.015 
0.012 3.136 3.144 0.003 
0.014 3.167 3.265 0.031 
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Table 5.6 continued 

y (ft) obs. u (ft/s) est. u (ft/s) error 
0.020 3.566 3.566 0.000 
0.024 3.871 3.728 -0.037 
0.028 3.933 3.873 -0.015 
0.038 4.203 4.171 -0.008 
0.044 4.516 4.322 -0.043 
0.053 4.583 4.519 -0.014 
0.074 4.903 4.901 0.000 
0.084 5.161 5.051 -0.021 
0.099 5.239 5.253 0.003 
0.114 5.372 5.435 0.012 
0.139 5.603 5.697 0.017 
0.163 5.885 5.916 0.005 
0.214 6.295 6.311 0.003 

 

The velocity distribution of this data set was obtained with a high value of G and 

got a high value of entropy, which can be seen from the Figure 5.8; it seems the data is 

likely to be uniformly distributed. It is seen from the figure that the bed effective region 

for this data set is very small only about 0.01ft, so the velocity distribution can 

considered as monotonically increasing from the channel bed to the water surface. 

Figure 5.8 shows the agreement between estimated and observed velocity values. It is 

clear that the agreement is reasonable, with the coefficient of determination equal to 0.97. 

The estimated curve increases from the channel bed to the water surface across 

observations. Unlike the classical method, the velocity distribution computed here can 

also capture lower values of velocity near the channel bed. 
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Figure 5.8 Estimate of 1D velocity distribution 
 

To sum up, the Tsallis entropy based method derived in this study is a good 

predictor for both 1D and 2D velocity distributions. It can simulate the observations 

reasonably well in the whole cross-section and gives good results at the boundaries. 

More advantages will be discussed in the next chapter. 

5.3 Maximum and mean velocity 

The maximum velocity and mean velocity carry important information in open 

channel hydraulics. Most of the time, the velocity distribution in the whole cross-section 

is hard to obtain. However, the maximum velocity provides the range of velocity and the 

mean velocity is needed in the governing equations for transport of mass, momentum 

and energy through a channel cross-section. In the following section, the location of 

these velocities and their values are discussed. 
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5.3.1 Location of maximum velocity 

It is known that in natural channels that are not wide enough, the maximum 

velocity occurs below the water surface (Francis 1878; Stearns 1883). Not only is the 

maximum velocity along the vertical in the center of the channel is located below the 

surface, the maximum velocity on each vertical line is also below the surface. As shown 

in Figure 5.6, isovels in a natural channel are convex and the location of maximum 

velocity in each vertical direction is not under the same depths.  

The velocity distribution varies from one vertical line to another, and the flow 

near the wall is more affected by the boundary shear and vegetation if there is any. Also 

the flow near the wall is dominated by secondary flow, which transports low-momentum 

fluids to the center and high-momentum fluids to the bed. As a result, the depth of 

maximum velocity varies with location.  

Yang (2004) discussed that the depth of maximum velocity is mainly related to 

the lateral position of velocity profiles in natural channels. It is seen from Figure 5.9 that 

the location of maximum velocity, h/D, is more likely below the water surface when the 

G value is bigger than 0.5.  
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Figure 5.9 Location of maximum velocity 
 

To determine the location of the maximum velocity below the water surface, one 

needs to consider the bed shear stress as 

                
  

  
           (5-33) 

where Sf= friction slope; ε0 = momentum transfer coefficient at the channel bed, which is 

equal to the kinematic viscosity of the fluid; du/dy can be computed from Equation (5-29) 

with the modified cumulative distribution function [equation (4-3)], as mentioned in 

Section 4.1.4. 
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According to the Darcy-Weisbach equation 

   
  

  
 

 
          (5-35) 

Equation (5-33) combined with equation (4-3) yields to the following relation: 
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      (5-36) 

where Re= Reynolds number. 

Using equation (5-35) the location of the maximum velocity can be determined. 

Equation (5-35) gives the relation between depth and parameter G and transverse 

distance z, which shows that the previous assumption makes sense. 

If h is defined as the depth from the water surface where the maximum velocity 

happens, where  
 
    , according to the density function, then 

  
 

  
    

  

 

 

   

 

 
 
   

 
     

 

 
      

 

 
  

   

      (5-37) 

For x=0, equation (5-37) reduces to  

  
 

  
    

  

 

 

   

 

 
 
   

 
        (5-38) 

Figure 5.10 shows the computed location of maximum velocity h/D on several 

vertical lines of experimental data. The estimated h/D represents the mean value of 

observed values.  
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Figure 5.10 Simulated depths of maximum velocity 
 

It can be found from Figure 5.10 that for each data set, the location of maximum 

velocity h/D increases with x/B, while the increment does not exactly follow the 

estimated curve. It is seen from the computed results that the data are distributed around 

the estimated curve. For the data from Santa Lucia, the data was most likely with the 

estimated curve, while for the data from Rosciano and Ponte Felcino, the agreements 

only happen in some values of x/B. These results are not acceptable, perhaps due to the 

lack of proper observation data.  

5.3.2 Mean velocity 

In practice, the velocity at every point in a channel section is not necessary, 

which is also not easy to get. More often, the mean velocity is needed to estimate 

sediment transport or other processes in open channels. 
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Equation (5-31) was used to compute the G value for cross-sections with known 

maximum and mean velocities. Vice versa, equation (5-31) can be used to compute the 

mean velocity with known G values, since G value is supposed to be constant for a given 

cross-section. 

For the Ponti Felcino River, G was computed as 0.336 from the previous section. 

The mean velocity was computed for collected data from Ponti Felcino gauges for the 

last 20 years. Computation is shown in Table 5.7 with the root mean square error of 0.02. 

Table 5.7 Estimation of mean velocity at Ponti Felcino River (Italy) 
umax obs. umean est. umean error 
(m/s) (m/s) (m/s)  
0.274 0.186 0.178 -0.042 
0.771 0.492 0.501 0.019 
0.794 0.471 0.516 0.096 
1.678 1.110 1.091 -0.017 
0.594 0.409 0.386 -0.056 
1.130 0.820 0.735 -0.104 
0.082 0.041 0.053 0.300 
0.146 0.111 0.095 -0.145 
1.902 1.292 1.236 -0.043 
2.608 1.802 1.695 -0.059 
3.362 2.296 2.185 -0.048 
0.868 0.604 0.564 -0.066 
1.122 0.777 0.729 -0.061 
2.547 1.734 1.656 -0.045 
2.924 2.025 1.901 -0.061 
3.118 2.154 2.027 -0.059 
1.421 1.026 0.924 -0.100 
0.061 0.023 0.040 0.724 
1.810 1.190 1.177 -0.011 
2.079 1.373 1.351 -0.016 
2.680 1.874 1.742 -0.070 
1.461 0.957 0.950 -0.008 
2.637 1.687 1.714 0.016 
2.906 1.858 1.889 0.017 
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Table 5.7 continued 
umax 
((m/s) 

obs. umean 
(m/s) 

est. umean 
(m/s) error 

2.580 1.900 1.677 -0.117 
1.340 0.885 0.871 -0.016 
1.394 1.060 0.906 -0.145 
2.405 1.594 1.563 -0.019 
3.320 2.163 2.158 -0.002 
3.181 2.074 2.068 -0.003 
2.660 1.815 1.729 -0.047 
3.365 2.120 2.187 0.032 
0.206 0.123 0.134 0.089 
3.410 2.097 2.217 0.057 
1.102 0.726 0.716 -0.013 
2.164 1.449 1.407 -0.029 

 

The estimated mean velocity and the observation are plotted in Figure 5.11. It is 

seen from the figures that the data spread around the 1:1 straight line, and had a high 

relative coefficient as 0.99, which means the estimation has a high accuracy. More 

computation of the mean velocity in other rivers can be found in Appendix E.  

The estimated values for the Ponte Felcino and Santa Lucia cross-sections are 

slightly smaller than observations, which is shown in the Figure 5.11 (a) and (b) that the 

points are distributed more below the 1:1 line. For the data from Ponte Nuovo, the points 

are plotted both up and below the line. However, it seems that the accuracy of equation 

(5-31) is acceptable. 
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(a) 

 

(b) 

Figure 5.11 Comparison of estimated and observed mean velocities. (a) Ponte 
Felcino River (Italy), (b) Santa Lucia River (Italy) and (c) Ponte Nuovo (Italy) 
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(c) 

Figure 5.11 Continued 
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6. COMPARISON WITH OTHER VELOCITY DISTRIBUTION METHODS 

The widely used methods for velocity distribution in open channels are simple 

power law and the Prandtl-von Karman velocity distributions. The entropy-based 

method which was derived by Chiu (1987, 1988) has been shown to have advantages 

over traditional methods. These methods are compared to the velocity distribution 

derived in this thesis. 

6.1 Simple power law 

The power law velocity distribution for flow in an open channel can be stated as: 

 

  
  

 

 
                (6-1) 

where u is the velocity at a vertical depth y above the channel bed, umax is the maximum 

velocity which occurs at the water surface, D is the total depth of the channel, n is a 

parameter which can be determined by the frictional resistance at the bed, which is 

usually in the range of 6-7 (Karim and Kennedy, 1987). Table 6.1 shows the results of 

computation using equations (4-29) and (6-1) for Run C1 from Einstein and Chien’s 

(1955) data, which is from the clear water experiment. It is seen from the errors 

computed in Table 6.1 that the estimated values by power law are always bigger than 

observations, which values are bigger with a bigger n value. 

Table 6.1 Computation of velocity profile using the Tsallis entropy and the 
simple power law 

y 
 (ft) 

obs. u 
(ft/s) 

est. Tsallis 
(ft/s) error est. power n=6 

(ft/s) error est. power n=7 
(ft/s) error 

0.006 2.442 2.894 0.185 3.679 0.506 3.983 0.631 
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Table 6.1 continued 

y 
 (ft) 

obs. u 
(ft/s) 

est. 
Tsallis 
(ft/s) 

error est. power n=6 
(ft/s) error est. power n=7 

(ft/s) error 

0.007 1.455 3.005 1.065 3.774 1.593 4.071 1.798 
0.008 2.755 3.105 0.127 3.858 0.400 4.149 0.506 
0.009 2.899 3.199 0.104 3.938 0.358 4.222 0.457 
0.011 3.154 3.358 0.065 4.070 0.290 4.344 0.377 
0.013 3.286 3.496 0.064 4.184 0.274 4.448 0.354 
0.015 3.433 3.618 0.054 4.285 0.248 4.539 0.322 
0.018 3.560 3.783 0.062 4.418 0.241 4.660 0.309 
0.021 3.804 3.925 0.032 4.532 0.191 4.763 0.252 
0.025 4.079 4.094 0.004 4.666 0.144 4.884 0.197 
0.029 4.226 4.242 0.004 4.784 0.132 4.989 0.180 
0.030 4.249 4.276 0.006 4.811 0.132 5.013 0.180 
0.034 4.470 4.407 -0.014 4.912 0.099 5.103 0.142 
0.039 4.636 4.553 -0.018 5.026 0.084 5.204 0.123 
0.046 4.857 4.735 -0.025 5.166 0.064 5.328 0.097 
0.054 5.039 4.920 -0.024 5.308 0.053 5.454 0.082 
0.064 5.252 5.119 -0.025 5.459 0.039 5.586 0.064 
0.074 5.395 5.296 -0.018 5.591 0.036 5.703 0.057 
0.086 5.592 5.486 -0.019 5.734 0.025 5.827 0.042 
0.099 5.712 5.666 -0.008 5.868 0.027 5.943 0.040 
0.114 5.952 5.857 -0.016 6.008 0.009 6.065 0.019 
0.130 6.084 6.029 -0.009 6.135 0.008 6.174 0.015 
0.149 6.308 6.232 -0.012 6.283 -0.004 6.302 -0.001 
0.170 6.416 6.417 0.000 6.416 0.000 6.416 0.000 

 

The difference of these two methods is seen in Figure 6.1 which shows two 

velocity distributions both from clear water. The velocity distribution estimated by the 

Tsallis entropy fits better than the power law with either n=6 or 7, especially in the 

region near the channel bed. It seems that the n value range 6-7 discovered by Karim and 

Kennedy (1987) is not adequate in both clear water cases, while for Figure 6.1 the n 

value should be smaller than 6 in (a) and bigger than 7 in (b). 
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(a) 

 

(b) 

Figure 6.1 Comparison of velocity profiles by Tsallis entropy and Power law: (a) 
Run C1 of Einstein and Chien’s (1955), and (b) Series 1 of Coleman’s (1981) data 
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least square method. Using the Shannon entropy, it can also be computed from known 

mean and maximum velocities as follows: 

  
 

               
         (6-2) 

In Figure 6.2 the power law is applied with n computed with Equation (6-2), it 

improved the results comparing to n=6 or 7. With equation (6-2) n is computed as 8.53, 

for Run 15 of Coleman’s (1981) data, which is heavy sediment flow. It is seen from the 

figure that the velocity estimated by power law is somehow close to the observation 

from the channel bed to 30mm, while it fails to capture the velocities higher than that, 

while the Tsallis entropy-based method is acceptable for the whole depth. To sum up, 

the power law is still not comparable to the Tsallis entropy-based velocity at all. 

 

Figure 6.2 Velocity profile of power law improved by entropy [data from Run 15 
Coleman (1981)] 
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6.2 Prandtl-von Karman universal velocity distribution 

The Prandtl-von Karman universal velocity distribution was originally developed 

for pipe flow and has been shown to be relatively effective in wide open channels. It 

makes the following two assumptions: 

1. The mixing length is proportional to the depth from the channel bed to the 

specified point. 

2. The shear stress is constant. 

The universal velocity distribution for open channel flow is  

  
  

 
  

 

  
          (6-3) 

where u is the velocity at a vertical depth y above the channel bed, u* represents the shear 

velocity, κ is the  von-Karman universal constant, and y0 is the depth of the shear 

velocity. 

The shear velocity u* can be computed with known channel characteristics from 

following equation: 

                 (6-4) 

where g is the acceleration due to gravity, D is the total depth of the channel, and S is the 

channel slope.  

The von Karman universal constant κ has a value of 0.4 for clear water and a 

value as low as 0.2 for heavily sediment water. 

Table 6.2 gives the velocity distribution of Run S4 of Einstein and Chien’s (1955) 

data computed by the Tsallis entropy and Prandtl-von Karman method, which are also 
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plotted in Figure 6.3. From both the table and figure, it is seen that the Tsallis entropy 

method is more accurate in describing the velocity distribution near the channel bed. 

Table 6.2 Velocity distribution computed by the Tsallis entropy and Prandtl-von 
Karman equations for Run S4 of Einstein and Chien’s (1955) data 

y (ft) obs. u 
(ft/s) 

est. 
Tsallis 
(ft/s) 

error 
est. 

prandt 
(ft/s) 

error 

0.000 0.000 0.000 0.000 0.000 0.000 
0.006 2.221 2.492 0.122 1.306 -0.412 
0.009 2.497 2.821 0.130 1.964 -0.213 
0.011 2.720 3.040 0.118 2.366 -0.130 
0.011 2.858 3.138 0.098 2.535 -0.113 
0.015 2.964 3.407 0.150 2.978 0.005 
0.017 3.329 3.565 0.071 3.224 -0.032 
0.019 3.573 3.776 0.057 3.535 -0.010 
0.024 3.898 4.084 0.048 3.962 0.017 
0.034 4.519 4.604 0.019 4.620 0.022 
0.040 4.831 4.824 -0.001 4.878 0.010 
0.045 5.075 5.029 -0.009 5.108 0.007 
0.050 5.298 5.212 -0.016 5.307 0.002 
0.054 5.522 5.383 -0.025 5.486 -0.006 
0.064 5.806 5.701 -0.018 5.807 0.000 
0.074 6.090 5.986 -0.017 6.081 -0.002 
0.084 6.293 6.242 -0.008 6.316 0.004 
0.095 6.516 6.486 -0.005 6.533 0.003 
0.104 6.699 6.705 0.001 6.720 0.003 
0.124 7.113 7.109 -0.001 7.054 -0.008 

 

From the computed result shown in Table 6.2, it is found that the Prandtl-von 

Karman velocity is smaller than observation for lower values. For heavy sediment data 

from Einstein and Chien’s (1955), it is seen from Figure 6.3 that the Tsallis entropy-

based method works out better for the velocities near the channel bed. Though for the 

depth from 0.04mm to about 0.12mm, the Prandtl-von Karman velocity fits better than 

the Tsallis entropy velocity distribution, for the depth higher than 0.12mm up to the 
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water surface, the Tsallis entropy more accurately follows the natural velocity profile, 

where the velocity should increase smoothly to the water surface without resistance. In 

such cases, the Tsallis entropy-based method is recommended. 

 

Figure 6.3 Comparison of velocity profiles computed by the Tsallis entropy and 
Prandt-von Karman for Run S4 of Einstein and Chien’s (1955) data 
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Chiu’s velocity distribution is obtained by applying POME to maximize the 
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distribution, Chiu (1988) changed Cartesian coordinates y-z (represented as x in this 

thesis) to another system ξ-η based on the velocity isovels as shown in Figure 6.4, where 
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orthogonal trajectories. Once the equation of ξ as a function of y and z is determined, the 

equation of η can be derived from it.  

η

η

ξ

x

Channel bed ξ=ξ0 

 

Figure 6.4 ξ-η coordinate system defined by Chiu (1988) 
 

The idea of using the ξ-η coordinate is similar to that of using the cylindrical 

coordinates in studying the flow in a circular pipe. Let u be the time-averaged and, 

therefore, time invariant velocity on an isovel, which is assigned a value ξ. The value of 

u is almost 0 at ξ0 which corresponds to the channel boundary, and u reaches umax at ξmax, 

which may occur at or below the water surface. Under such circumstances, u 

monotonically increases from ξ0 to ξmax. Then, at any value of the spatial coordinate less 
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than ξ, the velocity is less than u, which can be written in the cumulative distribution 

function as 

     
    

       
         (6-5) 

The Shannon entropy of velocity distribution can be written as:  

                 
    

 
      (6-6) 

Through a similar procedure as stated in Section 5.1, the probability density 

function of the velocity distribution is obtained by maximizing the Shannon entropy 

equation (5-6) with the same constraint equations (5-2) and (5-3): 

                           (6-7) 

where    and    are the Lagrange multipliers. Combining equation (6-7) with equation 

(6-5), Chiu’s velocity distribution is obtained as 

  
    

 
                     

    

 
                

    

       
  (6-8) 

where umax is the maximum velocity which occurs at or below the water surface, M is the 

dimensionless entropy parameter, which equals       . 

The dimensionless parameter M is used as an index for characterizing and 

comparing various patterns of velocity distribution and state of flow systems. From 

equation (6-7), parameter M can be expressed as 

    
       

    
         (6-9) 

which also equals 

    
       

    
   

 
  

  
     

 
  

  
       

       (6-10) 
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Hence, M can be used as a measure of uniformity of probability and velocity 

distributions. The value of M can be determined by the mean and maximum velocity 

values derived from the following equation: 

  

    
            

 

 
        (6-11) 

With known M for a certain cross-section, the mean velocity can be estimated from 

Equation (6-11). With the knowledge of the value of M, the last step is to obtain the 

velocity distribution from equation (6-8) with the cumulative distribution function. 

The Tsallis entropy [Equation (5-29)] and Chiu’s entropy method [Equation (6-8)] 

are compared using 2D data for Ponte Felcino River as shown in Table 6.3 and Figure 

6.5. It is found from Table 6.3 that the Chiu’s velocity distribution has a higher root 

mean square error with 0.12 compared to that of Tsallis entropy-based velocity 

distribution with 0.07.  

Table 6.3 Computation of 2D velocity profiles using the Tsallis entropy-based 
and Chiu’s velocity distribution at Ponte Felcino River (Italy) 

x 

(m) 

y' 

 (m) 

obs. u  

(m/s) 

est. Tsallis  

(m/s) 
error 

est. Chiu 

 (m/s) 
error 

-18.860 0.000 0.830 0.746 0.000 0.811 0.000 
-18.860 0.060 0.830 0.779 -0.061 0.839 0.011 
-18.860 0.200 0.740 0.840 0.135 0.890 0.202 
-18.860 1.000 0.640 1.031 0.610 1.039 0.624 
-18.860 2.000 1.150 1.158 0.007 1.133 -0.014 
-18.860 3.000 0.960 1.031 0.074 1.039 0.083 
-18.860 3.900 0.740 0.799 0.079 0.856 0.156 
-18.860 4.100 0.710 0.672 -0.053 0.748 0.053 
-18.860 4.250 0.000 0.000 0.000 0.000 0.000 
-10.460 0.000 2.060 1.937 -0.060 2.064 0.002 
-10.460 0.060 2.060 1.965 -0.046 2.082 0.011 
-10.460 0.200 2.340 2.025 -0.135 2.120 -0.094 
-10.460 1.000 2.310 2.269 -0.018 2.267 -0.019 
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Table 6.3 continued 

x 

(m) 

y' 

 (m) 

obs. u  

(m/s) 

est. Tsallis  

(m/s) 
error 

est. Chiu 

 (m/s) 
error 

-10.460 1.930 2.440 2.457 0.007 2.373 -0.028 
-10.460 2.880 2.190 2.264 0.034 2.264 0.034 
-10.460 3.880 2.060 1.928 -0.064 2.058 -0.001 
-10.460 4.280 1.650 1.665 0.009 1.882 0.140 
-10.460 4.480 1.590 1.413 -0.111 1.695 0.066 
-10.460 4.630 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 3.360 3.360 0.000 3.286 -0.022 
0.000 0.060 3.360 3.354 -0.002 3.286 -0.022 
0.000 0.200 3.160 3.340 0.057 3.285 0.040 
0.000 1.000 3.200 3.252 0.016 3.265 0.020 
0.000 2.000 3.280 3.125 -0.047 3.188 -0.028 
0.000 3.000 2.910 2.970 0.021 3.028 0.041 
0.000 4.000 2.780 2.766 -0.005 2.727 -0.019 
0.000 5.000 2.320 2.461 0.061 2.134 -0.080 
0.000 5.800 2.030 1.964 -0.032 1.069 -0.474 
0.000 6.000 1.860 1.670 -0.102 0.558 -0.700 
0.000 6.150 0.000 0.000 0.000 0.000 0.000 

 

It is seen from Figure 6.5 that Chiu’s velocity distribution increases more 

smoothly from the water bed to the water surface, which is faster than the Tsallis 

entropy-based velocity distribution. The Tsallis entropy-based velocity is more precise 

than Chiu’s velocity. The Tsallis entropy-based velocity distribution increases from 0 at 

the channel bed up to the depth of maximum velocity and can exactly determine the 

maximum value, then it slowly decreases to the water surface. In the whole profile, the 

estimated curve detects the observation closely. However, Chiu’s velocity distribution 

increases faster than the Tsallis entropy for determining the velocity near the center 

(x=0m vertical line), and slower for the vertical line x=-10.46m. The reason might be 

because in Chiu’s method the velocity is considered for the whole channel cross-section 
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by using the coordinates based on isovels, in which study velocity isovels are simulated 

for the whole cross-section while it may not be accurate for each vertical line. 

 

Figure 6.5 Comparison of velocity profiles computed by Tsallis entropy and 
Chiu’s method 

 

Figures 6.6 and 6.7 show the estimated velocity isovels for Italian rivers by two 

methods. Comparing these figures, Chiu’s velocity isovels are smoother than those from 

the Tsallis entropy. This may be due to the reason that in Chiu’s method, the CDF was 

defined on the ξ-η coordinate system. In Chiu’s method, velocity is not determined at 

every point (x, y) in the cross-section, while the isovel curves mimic observations. 

However, the velocity distribution derived in this thesis based on the x-y coordinate 

system is determined at every point (x, y), which then shows more accuracy than Chiu’s 

velocity. 
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Figure 6.6 Isovels for data from Ponte Felcino (Italy) estimated. (a) by Tsallis 
entropy, (b) by Chiu’s velocity 

 

Figure 6.7 Isovels for data from Santa Lucia (Italy) estimated: (a) by Tsallis 
entropy, and (b) by Chiu’s velocity 

 

The 1D velocity distributions for both methods are compared as shown in Table 

6.4 and Figure 6.8. The set data was from the experiment with heavy sediment flow. It is 
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found that the Tsallis entropy has a smaller estimation error than Chiu’s velocity 

distribution. 

Table 6.4 1D velocity distributions computed by Tsallis entropy and Chiu’s 

method for Run 20 from Coleman’s (1981) data 
y 
m 

obs. u 
m/s 

est. Tsallis 
m/s 

error 
 
est. Chiu 

m/s 
error 

 

0 0 0.000 0.000 0.000 0.000 
6 0.57 0.658 0.154 0.747 0.310 
12 0.648 0.746 0.152 0.811 0.252 
18 0.743 0.800 0.076 0.851 0.146 
24 0.791 0.838 0.060 0.881 0.114 
30 0.848 0.869 0.025 0.905 0.067 
46 0.922 0.928 0.007 0.952 0.033 
69 0.986 0.986 0.000 1.000 0.014 
91 1.043 1.026 -0.016 1.033 -0.009 

122 1.07 1.070 0.000 1.070 0.000 
137 1.068 1.052 -0.015 1.055 -0.012 
152 1.057 1.036 -0.019 1.042 -0.015 
162 1.048 1.026 -0.021 1.033 -0.014 

 

Regarding the impact of cumulative distribution function, the Tsallis entropy-

based method and Chiu’s method are compared for 1D velocity distribution. Figure 6.8 

shows that the velocity from both methods increases slowly from the channel bed to 

20mm then starts to increase faster up to the water surface. It is reasonable, since the 

near bed region is more affected by the shear stress than the higher region. It is seen 

from the figure that the two curves are close each other and both methods can predict the 

actual velocity reasonably well. However, the Tsallis entropy-based method is slightly 

more accurate than Chiu’s method and its advantage is mainly shown in the lower 

velocity values near the channel bed. 
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Figure 6.8 1D velocity distribution by Tsallis entropy and Chiu’s method [data 

from Run 20 of Coleman’s (1981)] data 
 

For comparison of the above three methods with the Tsallis entropy, velocity for 

Einstein’s data Run S16 is computed and plotted in Figure 6.9. The Tsallis and Shannon 

entropy based velocity distributions show an advantage over classical methods in overall 

estimation. The velocity distribution estimated by power law has the least accuracy than 

is the Prandtl-von Karman velocity distribution. The Prandtl-von Karman logarithmic 

law is valid from a depth of 0.03mm up to the water surface. However, all methods 

capture the maximum velocity exactly at the water surface in this case where the dip-

phenomenon does not occur. It is seen from the figure that the Tsallis entropy shows 

more efficiency in determining the velocity near the boundaries over other methods. 

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1 1.2

y 
(m

m
)

u (m/s)

obs.u

est. Tsallis

est.Chiu



97 

 

 

 

Figure 6.9 Comparison of velocity profiles by Tsallis entropy and the other three 
methods 
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7. DERIVATION OF SEDIMENT CONCENTRATION 

The procedure is the same as that for the derivation of velocity distribution, while 

for sediment concentration the upper and lower limits of integration are changed for the 

reason that the sediment is mainly concentrated at the bed and decreases from the bed to 

the water surface. 

7.1 Entropy based sediment concentration distribution 

7.1.1 Tsallis entropy of sediment concentration 

Consider the time-averaged sediment concentration C as a random variable. 

Unlike the velocity in open channels, the suspended sediment concentration is 

distributed conversely, which has the maximum value at the channel bed and decreases 

with increasing depth from the channel bed. If the sediment concentration is assumed 0 

at the water surface, then C varies from c0 to 0. According to equation (2-3), the Tsallis 

entropy of the sediment concentration can be written as: 

     
 

   
          

 

  

 
    

 

   
     

 

  
                (7-1) 

where C is the time-averaged sediment concentration at a specified point, c0 is the 

maximum sediment concentration of the cross-section, f(c) is the probability density 

function, and m is a real number.  

Similar to the derivation of the velocity distribution, the way to obtain the 

probability distribution f(c) is by maximizing the entropy with known information from 

observations. 
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7.1.2 Specification of constraints 

Two constraints will be applied here: one comes from the satisfaction of the 

density function and the other is obtained from the conservation of mass of sediment, 

which are stated as: 

         
 

  
         (7-2) 

           
 

  
         (7-3) 

where    is the mean sediment concentration of the cross-section, which equals     . 

Here Qs is the suspended sediment discharge and Q is the flow discharge. Thus, 

equation (7-3) is equivalent to satisfying the condition that C must be distributed so that 

      . 

7.1.3 Maximization of entropy 

The Lagrange multiplier method is applied to maximize equation (7-1) subjected 

to equations (7-2) and (7-3). The Lagrangean function L can be written as: 

   
    

   

 

  
                

 
          

 

  
  

 
            

 

  
   (7-4) 

in which λ0 and λ1 are the Lagrange multipliers. Let   

     
  , the probability density 

function is obtained as: 

      
   

 
 

 

   
         

 

         (7-5) 

Let       
 

   
, and replace    

 

   
 with   . Then one obtains 

      
   

 
         

 

          (7-6) 
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Equation (7-6) is the entropy based probability density function of sediment 

concentration, which is used to determine the sediment concentration distribution. 

7.1.4 Cumulative distribution function 

Similar to the application of the velocity distribution, a hypothesis on the 

cumulative distribution needs to be specified first. The sediment transport is mainly in 

the stream wise direction of a channel, and for long-term sedimentation problem in 

rivers, the sediment concentration is often applied in 1D, without incorporating details 

over the whole cross-section. In this thesis, the suspended sediment concentration 

distribution is derived to predict the overall suspended sediment discharge through the 

cross-section; thus, it is assumed that sediment concentration is distributed in 1D, which 

will be verified in this research. 

As used in 1D case of velocity distribution, the coordinate y is defined as in 

Figure 7.1. Assume that the water surface is clear at y= D and y= 0 is the intersection of 

the bed-load and suspended sediment concentration, so that the suspended sediment, 

which is dealt with in this thesis, is distributed from y= 0 to D.  
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y

(0)

D

Water surface

Channel bed  

Figure 7.1 Coordinate system for sediment concentration 
 

The cumulative distribution function should be assumed in the way that it is 1 at 

the channel bed, where y= 0 and 0 at the water surface, where y= D. Let the cumulative 

distribution function be assumed as: 

        
 

 
          (7-7) 

where the value of a can be determined from observations. 

As the definition suggests, the cumulative distribution function decreases from 

the channel bed to the water surface as shown in Figure 7.2. The change in the a value 

changes the rate of decline; a smaller a value causes a slower decline while a bigger 

value leads to a faster decline. The smaller the a value is, the less uniform the sediment 

concentration is distributed. For a value smaller than or equal to 0.4, the decline is 

simply separated as two parts: one is from the channel bed up to the depth at about 

0.1y/D, and the other is from about 0.1y/D up to the water surface. The cumulative 

distribution decreases faster in the first part than the second part, which means the 

sediment concentration is distributed more near the bed area. 



102 

 

 

 

Figure 7.2 Cumulative distribution for various values of a 

 

7.1.5 General sediment concentration distribution 

To develop a general sediment concentration distribution, combining the entropy 

based probability distribution [equation (7-6)] with the cumulative distribution function 

[equation (7-7)],  

            
 

  
   

   

 
         

 

   
  

 

  
    

 

 
     (7-8) 

from which one can obtain the sediment concentration distribution as 

   
  

  
 

 

  

 

   
         

   

 
   

 

   
 

   

 

     (7-9) 

Thus, the sediment distribution is derived using the Tsallis entropy. 
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7.1.6 Dimensionless parameter N 

In a similar manner used in the velocity distribution, a dimensionless parameter 

N is introduced to simplify computation, which also helps with an in-depth analysis: 

  
    

       
         (7-10) 

Thus, the velocity distribution in equation (7-9) can be simplified by replacing the 

Lagrange multipliers with parameter N as: 

 

  
   

 

 
         

 

            
 

         

   

 
   (7-11) 

For a fixed m=3, the value of N can be determined from the relationship between 

the mean and maximum sediment concentrations as 

   
 

 
      

 

 
                          

 

        (7-12) 

which is the same as that used for velocity distribution. Hence, the N value can be still 

obtained from equation (5-31). Inputting    and    instead of    and      accordingly, 

one obtains: 

  

  
                           (7-13) 

With the N value obtained from equation (7-13), equation (7-11) can be applied 

to determine the sediment concentration. Vice versa, if the N value is known for a 

channel cross-section, the mean sediment concentration can be obtained from equation 

(7-13). 
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7.2 Application of sediment distribution  

7.2.1 Verification of cumulative distribution function 

The hypothesis on the cumulative distribution function needs to be verified first 

before computing the sediment concentration distribution. Table 7.1 shows the 

difference between observed and estimated cumulative distribution values for Einstein 

and Chien’s (1955) data. For this data series the best fit a value is 0.5.  

Table 7.1 Computation of F(c) of Run S1 of Einstein and Chien’s (1955) data 
y/D obs. F(c) est. F(c) 

0.000 1.000 1.000 
0.046 0.888 0.816 
0.091 0.778 0.732 
0.136 0.704 0.666 
0.227 0.556 0.558 
0.364 0.444 0.427 
0.545 0.333 0.284 
0.772 0.222 0.133 
1.000 0.000 0.000 

 

It is seen from Figure 7.3 that the estimated cumulative distribution fits 

observations well. Though estimated values are slightly smaller than observations except 

only one point at the depth y/D= 0.2, the biggest deviation is only 0.09. The cumulative 

distribution function attains a value of 1 at the channel bed and decreases to 0 at the 

water surface. 
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Figure 7.3 Comparison of computed and observed F(c) values for Run S1 of 
Einstein and Chien’s (1955) data 

 

More data sets from Einstein and Chien’s (1955) and Coleman’s (1981) have 

been used to verify the assumption on the cumulative distribution function. Results are 

shown in Figure 7.4. The distribution of the a value is right skewed and most values 

have dropped between 0.1 to 0.3, while the value of a for Coleman’s (1981) data is 

smaller than for Einstein and Chien’s (1955). Coleman’s (1981) data has a mean value of 

a at 0.1 compared to that of Einstein and Chien’s (1955) at 0.25. 
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Figure 7.4 Computed values of a 

 

It is found from the details of both experiments that the particle size is 

significantly different, which might be the reason for the difference. It is seen from the 

Figure 7.5 that for the same set of data, the value of a is big when the particle size is 

small. However the a value is much bigger for Einstein and Chien’s (1955) data than for 

Coleman’s (1981) data, which means there should be other unknown effective factors. 

The two points where a= 0.5 seems to be an outlier in both cases. 
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Figure 7.5 Value of a related to particle size 
 

7.2.2 Computation of sediment concentration 

With the CDF substituted into equation (7-11), the sediment concentration 

distribution is obtained for Run S1 of Einstein and Chien’s (1955) data as shown in 

Table 7.2. The relative error is computed as (est.-obs.)/obs. as previously; it is seen from 

the table that the computed sediment concentration is close to the observed concentration. 

The biggest error occurs at y= 0.019m, where the water surface is assumed as clear water, 

which is actually not. 

Table 7.2 Computed sediment concentration distribution for Run S1 of Einstein 
and Chien (1955) data 

y obs. c est. Tsallis relative error 

m g/l g/l  
0.005 58.000 58.000 0.000 
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Table 7.2 continued 
y obs. c est. Tsallis Relative error 

m g/l g/l  
0.010 20.700 23.160 0.119 
0.013 11.100 14.506 0.307 
0.016 6.010 6.361 0.058 
0.019 3.050 0.000 -1.000 

 

Figure 7.6 also shows the results of equation (7-11) for both Einstein and Chien’s 

(1955) and Coleman’s (1981) data. It is seen that the Tsallis entropy based method can 

describe the sediment concentration distribution comparably well; the observation is 

distributed around the estimated curve. From comparison of two figures in Figure 7.6, 

the curve in (a) monotonically decreases from the channel bed to water surface with 

similar rate, while in (b) the sediment concentration decreases quickly for about 80% 

from depth 0 to 20mm, then slowly to the water surface. It can be concluded that data in 

(a) is more uniformly distributed than in (b) with a higher value of a and a higher 

entropy value. 

The suspended sediment concentration becomes maximum near the channel bed, 

which is considered as the top of the bed-load sediment concentration. Then it decreases 

from that point up to the water surface, reaches 0 at the water surface as assumed. The 

sediment concentration near the water surface is estimated better in Figure 7.6 (b) than in 

(a). Because the flow in Coleman’s (1981) experiments is much clearer than Einstein 

and Chien’s (1955) at the water surface, the no sediment assumption on the water 

surface is not valid for Einstein and Chien’s(1955) data. 
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(a) 

 

(b) 

Figure 7.6 Sediment concentration distribution for (a) Run S1 of Einstein and 
Chien’s (1955) data, and (b) Run 20 of Coleman’s (1981) data 
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7.3 Comparison with deterministic equations 

Before introducing the methods of estimating the sediment concentration, basic 

theories like the settling velocity of sediment particles are introduced first, which is 

essentially used in empirical methods. 

7.3.1 Preliminaries 

The settling or fall velocity is the average terminal velocity that a sediment 

particle attains in the settling process in quiescent, distilled water. It is related to particle 

size, shape, submerged specific weight, water viscosity and sediment concentration. In a 

clear still fluid, the particle fall velocity of a solitary sand particle smaller than about 

100μm (Stokes-range) can be described as 

   
 

  

        
 

 
        (7-14) 

For suspended sand particles in the range 100-1,000 μm, van Rijin (1984) 

suggested to use following type of equation as proposed by Zanke (1978): 

   
   

  
    

            
 

   
   

         (7-15) 

For larger particles (>1,000 μm), van Rijn (1984) computed    as 

                
          (7-16) 

Cheng (1997) related the settling velocity to sediment and fluid properties but not 

restricted to the particle dimensions as 

    

 
           

              (7-17) 

where     
       

   
      , in which ρ is the fluid density, and ρs is the sediment density. 
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7.3.2 Rouse equation 

The Rouse equation is a solution of differential equation (2-8) with the help of 

Prandtl-von Karman logarithmic velocity equation and linear shear stress distribution 

assumption. For equation (2-8),    does not have a constant value, particularly near the 

bed. The distribution of    with the vertical coordinate y is deduced based on the vertical 

distribution of turbulent eddy viscosity   which is defined as 

    
  

  
          (7-18) 

in which   is the shear stress, and u is the time-averaged velocity at depth y above the 

channel bed. Let      , where   is a coefficient of proportionality. From the Navier-

Stokes equations, the vertical shear stress distribution in a steady, uniform flow in an 

open channel is linear, which can be stated as 

    
      

  
          (7-19) 

where    is the shear stress at the bed, and    is the depth of the uniform flow. 

Recalling the Prandtl-von Karman velocity equation, the gradient of the velocity 

distribution can be written as: 

  

  
 

  

  
          (7-20) 

Substituting       into equation (7-18) along with equations (7-19) and (7-20) 

and solving for   , one gets 

       
 

  
              (7-21) 
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Equation (7-21) can be substituted into differential equation (2-8), so that it can 

be integrated to produce 

 

  
  

      

 

 

      
 
  

        (7-22) 

in which    is the reference concentration at the distance z=a, which is arbitrarily 0.05y0 

above the bed and           , which is referred as the Rouse number.  

The following table shows a comparison between equation (7-11) and Equation 

(7-22). It is seen that the values from the Rouse equation are always smaller than 

observed values, while the Tsallis entropy-based values are smaller for sediment 

concentration near the bed and bigger for that near the water surface. 

Table 7.3 Computed sediment concentration distribution for Run S13 from 
Einstein and Chien (1955) 

y obs. c est. Tsallis error est. Rouse error 

m g/l g/l    
0.004 352.000 352.000 0.000 352 0.000 
0.005 319.000 155.208 -0.513 246.140 -0.228 
0.006 248.000 127.588 -0.486 164.295 -0.338 
0.008 174.000 105.214 -0.395 101.379 -0.417 
0.010 117.000 86.504 -0.261 61.440 -0.475 
0.013 77.900 70.290 -0.098 37.546 -0.518 
0.018 43.100 52.821 0.226 21.024 -0.512 
0.024 21.600 35.979 0.666 11.520 -0.467 
0.031 10.200 20.155 0.976 6.2906 -0.383 
0.040 4.610 5.467 0.186 3.434 -0.255 
 

More computed values are presented in Appendix E. Figure 7.7 compares two 

methods for Einstein and Chien’s (1955) data. Overall, the Tsallis entropy based method 

is more accurate than the Rouse equation. From both figures, the curve computed by the 

Rouse equation estimates the sediment concentration with smaller values than 
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observations, which shows in the figure that observation points are always above the 

curve. However, the minimum point in Figure 7.7 (b) is captured by the Rouse equation 

better than the entropy based curve, since the entropy based method has a trend to reach 

0 at the water surface. 

 

(a) 
Figure 7.7 Comparison of sediment concentration distributions for the Tsallis 

entropy method and the Rouse equation: (a) Run S13 of Einstein and Chien (1955), and 
(b) Run S11 of Einstein and Chien (1955) 
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(b) 
Figure 7.7 Continued 
 

Comparing Figures 7.7 (a) and 7.7 (b), it is found that the data of Run S11 is 

more uniformly distributed than that of Run S13, which is shown with a higher value of 

a and a higher value of entropy. 

7.3.3 Chiu’s entropy based equation  

Chiu (2000) derived another sediment distribution, with his velocity gradient 

instead of equation (7-16). Recall Chiu’s (1987) velocity distribution [equation (6-8)], 

the change of velocity to the depth can be stated as: 

  

  
 

    

  
               

 

 
         (7-23) 

Instead of equation (7-20), combining equation (7-23) with equations (7-18) and 

(7-19), another sediment concentration distribution can be obtained as: 
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        (7-24) 

where    
             

   
  

. 

Table 7.4 shows the comparison between equation (7-11) and equation (7-24). 

The overall root mean square error of estimation for the Tsallis entropy is 0.137 and that 

for Chiu’s method is 0.269. With Chiu’s method, the estimation is bigger than 

observation in the lower half of the depth, while smaller than observation in the upper 

half of the depth. However, no such trend is found for the Tsallis entropy method. 

Table 7.4 Computed sediment concentration distribution for Run 33 of 
Coleman’s (1981) data 

y obs. c est. Tsallis error est. Chiu error 

mm 10-4 10-4 
 

10-4 
 

6.000 2.700 2.700 0.000 2.700 0.000 
12.000 1.400 0.892 -0.363 1.521 0.087 
18.000 0.860 0.740 -0.139 1.097 0.275 
24.000 0.660 0.644 -0.024 0.866 0.312 
30.000 0.570 0.573 0.005 0.717 0.258 
46.000 0.430 0.437 0.016 0.487 0.132 
69.000 0.340 0.307 -0.098 0.316 -0.071 
91.000 0.230 0.215 -0.065 0.217 -0.056 
122.000 0.190 0.115 -0.397 0.120 -0.368 
137.000 0.160 0.074 -0.539 0.081 -0.496 
152.000 0.140 0.036 -0.739 0.040 -0.713 
162.000 0.120 0.013 -0.889 0.000 -1.000 

 

It is seen from Figure 7.8 that the sediment concentration from the Tsallis 

entropy is closer to the observed concentration than Chiu’s sediment concentration. 

Chiu’s method fails to capture the observed point in the middle section in Figure 7.8 (a), 

whose disadvantage is less significant in Figure 7.8(b). Because in Chiu’s method, it is 
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not dealt with the decreasing speed, a more accurate estimation is expected in more 

uniform distribution with a higher entropy value. However, in the Tsallis entropy 

method, the exponent a value will change according to different decreasing speeds, thus 

this method is more widely applicable than Chiu’s method. Based on the clear water 

surface assumption, both of methods are not valid in channels where the sediment is 

distributed up to the water surface. 

 

 

(a) 

Figure 7.8 Comparison between equation (7-11) and equation (7-24) for (a) Run 
33 of Coleman (1981), and (b) Run 22 of Coleman (1981)] 
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(b) 

Figure 7.8 Continued 
 

7.3.4 Choo’s entropy based equation  

Choo (2000) has derived entropy based method to estimate the sediment 

concentration distribution, which is similar to that of Chiu’s (1987) velocity. Consider 

the time-averaged sediment concentration as a random variable, the Shannon entropy of 

the sediment concentration can be written as: 

                  
  

  
        (7-25) 

Using the Lagrange multiplier method as Section 7.1, maximize the Shannon 

entropy subject to equations (7-2) and (7-3), and obtain the probability distribution as: 

                        (7-26) 

To obtain the expression of the sediment concentration distribution, Choo (2000) 

assumed the cumulative distribution as: 
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                   (7-27) 

Substituting equation (7-22) in equation (7-23), the sediment concentration 

distribution can be obtained as 

  
  

           
                

  

 
  

 

 
     (7-28) 

where         and   
  

  
, in which cD is the sediment concentration at the water 

surface, which can be considered as 0. Thus,    . Equation (7-24) reduces to 

  
  

 
                       

 

 
       (7-29)  

Table 7.5 shows the comparison between equation (7-11) and equation (7-29). It 

is seen that it is hard to tell which method is better, since the estimation is close for these 

two methods. The root mean square error is 0.187 for the Tsallis entropy based method 

and is 0.195 for Choo’s method. 

Table 7.5 Computed sediment concentration distribution for Run 35 of Coleman 
(1981) 

y obs. c est. Tsallis error est. Choo error 

mm 10-4 10-4  10-4  
6.000 9.300 9.300 0.000 9.300 0.000 
12.000 4.100 2.577 -0.371 3.029 -0.261 
18.000 2.200 2.122 -0.036 2.385 0.084 
24.000 1.700 1.837 0.081 2.008 0.181 
30.000 1.500 1.627 0.084 1.741 0.160 
46.000 1.100 1.233 0.121 1.266 0.151 
69.000 0.860 0.859 -0.001 0.843 -0.020 
91.000 0.560 0.599 0.071 0.565 0.008 
122.000 0.420 0.318 -0.243 0.276 -0.344 
137.000 0.340 0.204 -0.400 0.162 -0.522 
152.000 0.310 0.101 -0.675 0.062 -0.801 
162.000 0.250 0.037 -0.853 0.000 -1.000 
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From Figure 7.9, the Tsallis entropy-based method and Choo’s entropy-based 

method give similar curves for observed values. It can be seen from the figures that the 

two estimated curves are mostly intertwined, though slight changes can be found. Both 

sediment concentrations decreases from the channel bed to higher depth, while Choo’s 

curve goes faster from depth 20mm to 40mm, then slower from depth 40mm to the water 

surface. Overall the simulation is similar for both methods; however, it seems that for 

lower values of sediment concentration near the water surface the Tsallis entropy based 

method is slightly better than Choo’s. 

 

(a) 

Figure 7.9 Comparison between equation (7-11) and equation (7-29) for (a).Run 
35 of Coleman (1981), and (b) Run 7 of Coleman (1981) 
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(b) 

Figure 7.9 Continued 
 

  

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70

y 
(m

m
)

C (10-4) 

obs. C

est. Tsallis

est. Choo

Run 35, a=0.18
H=0.25 napiers



121 

 

 

8. SUSPENDED SEDIMENT DISCHARGE 

Usually, the sediment discharge is computed by integration of sediment 

concentration and velocity for the channel section. The suspended sediment discharge 

can be estimated from 

        
 

 
          (8-1) 

where    is the specific sediment discharge, c is the sediment concentration at depth y, 

and u is the velocity distribution at depth y.  

Equation (8-1) can also be simplified as 

                 (8-2) 

The problem of getting sediment discharge then can change with the velocity 

distribution and sediment concentration distribution. As discussed in Chapters 5, 6 and 7, 

there are both entropy methods and empirical methods to obtain velocity and sediment 

concentration distributions. In this chapter, different combinations of velocity 

distribution and sediment concentration distribution for sediment discharge will be 

obtained. 

8.1 First combination 

There are two entropy based estimation methods for the velocity distribution: 

Chiu’s velocity distribution and the Tsallis entropy-based velocity distribution. These 

two methods combined with the Rouse equation can be used to compute the suspended 

sediment discharge. 
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Substituting equations (5-29) and (7-22) into equation (8-1), the sediment 

discharge (designated as first) is obtained as: 

            
      

 
 
       

   
 

 
                          

 

     
 

 
  (8-3) 

Equation (8-3) can be simplified like equation (8-2), replacing the velocity term with the 

equation (5-31) which reduces to 

                  
                  

      

 
 
       

  
 

 
  (8-4) 

Substituting equations (6-8) and (7-22) into Equation (8-1), the sediment 

discharge (designated as second) is obtained as: 

    
      

 
  

      

 
 
       

                      
 

 
   (8-5) 

which can also be simplified with the mean velocity equation (6-11). Thus qs2 changes 

to 

            
          

 

 
    

      

 
 
       

  
 

 
    (8-6) 

Equations (8-4) and (8-6) can be solved numerically for the whole cross-section, 

and the results are shown in Table 8.1 for Einstein and Chien’s (1955) sediment 

discharge data. Rather than qs, Qs was computed by integrating the whole cross-section 

by dA not dy in equations (8-4) and (8-6). It is found that the computed errors are bigger 

in Qs2 than in Qs1. 

Table 8.1 Computed sediment discharge Qs for Einstein and Chien’s (1955) data 
obs. Qs (g/s) Qs1 (g/s) error Qs2 (g/s) error 

1.713 0.553 -0.677 0.542 -0.684 
3.903 1.124 -0.712 1.160 -0.703 
5.025 1.509 -0.700 1.490 -0.704 
5.659 1.559 -0.725 1.563 -0.724 
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Table 8.1 continued 

obs. Qs (g/s) Qs1 (g/s) error Qs2 (g/s) error 
10.887 3.057 -0.719 3.082 -0.717 
0.920 0.502 -0.455 0.487 -0.471 
1.874 1.008 -0.462 0.944 -0.496 
2.322 0.948 -0.592 0.916 -0.605 
4.109 1.875 -0.544 1.827 -0.555 
5.706 2.441 -0.572 2.354 -0.587 
1.165 1.006 -0.136 0.991 -0.149 
5.048 3.592 -0.288 3.494 -0.308 
7.924 6.059 -0.235 5.795 -0.269 
9.628 6.709 -0.303 6.651 -0.309 
15.665 8.348 -0.467 8.424 -0.462 
14.379 8.239 -0.427 7.965 -0.446 

 

It is seen from the results from both Figures 8.1 and 8.2 that the estimated 

sediment discharge is much smaller than the observed, especially for larger Qs values. 

The points are far from the 1:1 line. This might be due to the sediment concentration 

being estimated by the Rouse equation, which is often lower than expected. Due to the 

shortcoming of the Rouse equation, the first two methods are not preferred. 
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Figure 8.1 Comparison of sediment discharge for Einstein and Chien’s (1955) 
data 

 

 

Figure 8.2 Comparison of sediment discharge from Coleman (1981) 
 

To modify the results, which is smaller than the observation, the correction factor 

ω is introduced as an amplifying coefficient. It is seen from Figure 8.3, the modified 

discharge is now distributed nearer to the 1:1 line than before. 
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Figure 8.3 Modified sediment discharge for Einstein and Chien’s (1955) data 
 

8.2 Second combination 

In this section, the suspended sediment discharge is obtained with the Prandtl-

von Karman velocity distribution and entropy-based sediment concentration obtained 

from Chiu’s (2000), Choo’s (2000) methods and the method derived in this thesis. 

Substituting equations (6-3) and (7-24) into equation (8-1), the sediment discharge 

(designated as third) equation is obtained as: 

    
    

 
  

  
 

 

        
 

 

 
  

  
 

  
  

 

 
       (8-7) 

where    
             

   
  

. 

Substituting equations (6-3) and (7-29) into equation (8-1), the sediment 

discharge (designated as fourth) equation as: 
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Equation (8-6) can be simplified by substituting the mean sediment concentration. 

According to Choo’s (2000) derivation, the mean sediment concentration can be written 

as 

  

  
 

        
 

              

         
       (8-9)  

Inputting equation (8-9) into equation (8-2) instead of equation (7-29), one 

obtains 

    
  

 
  

        
 

              

         
   

 

  
  

 

 
 

  

 
  

        
 

              

         
         (8-10) 

Substituting equations (6-3) and (7-11) into equation (8-1), the sediment 

discharge (designated as fifth) equation is obtained as: 

      
  

 
    

 

 
         

 

            
 

         

   

 

    
 

  
  

 

 
 (8-11) 

which also can be simplified like the fourth equation. Using equation (7-13), one obtains 

    
  

 
         

                          (8-12) 

Table 8.2 shows the numerical solution of equations (8-7), (8-10) and (8-12) , 

which are also integrated by dA for the whole cross-section. The errors computed in 

these three methods are much smaller than that of Qs1 and Qs2, with root mean square 

error for each as 0.212, 0.207 and 0.176.  

Table 8.2 Computed sediment discharge for Einstein and Chien’s (1955) data 
obs. Qs 

g/s 
Qs3 
g/s error Qs4 

g/s error Qs5 
g/s error 

1.713 1.551 -0.094 1.609 -0.061 1.789 0.045 
3.903 3.315 -0.151 3.291 -0.157 3.956 0.014 
5.025 3.952 -0.213 3.999 -0.204 4.421 -0.120 
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Table 8.2 continued 
obs. Qs 

g/s 
Qs3 
g/s error Qs4 

g/s error Qs5 
g/s error 

10.887 9.322 -0.144 8.413 -0.227 8.488 -0.220 
0.920 0.772 -0.161 0.751 -0.183 0.796 -0.134 
1.874 1.832 -0.022 1.783 -0.048 1.691 -0.098 
2.322 1.792 -0.228 1.778 -0.234 1.844 -0.206 
4.109 3.116 -0.242 3.081 -0.250 3.343 -0.186 
5.706 4.569 -0.199 4.076 -0.286 5.123 -0.102 
1.165 0.959 -0.176 1.020 -0.124 1.082 -0.070 
5.048 4.229 -0.162 4.298 -0.149 4.062 -0.195 
7.924 5.086 -0.358 5.077 -0.359 4.456 -0.438 
9.628 7.552 -0.216 8.148 -0.154 7.438 -0.227 
15.665 10.374 -0.338 11.365 -0.274 10.389 -0.337 
14.379 9.486 -0.340 9.858 -0.314 10.215 -0.290 

 

Comparing Figures 8.4 and 8.5, the fourth equation, which is equation (8-10) 

derived with Choo’s (2000) sediment concentration, yields the best estimation of the 

suspended sediment discharge, since it is the most closely distributed to the 1:1 line. It is 

found that the fifth method, which is derived from the Tsallis entropy method leads to 

more accurate results for smaller values of sediment discharge. This might be because 

the Tsallis entropy-based method has an advantage in describing lower values of 

sediment concentration near the water surface. 
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l 

Figure 8.4 Comparison of sediment discharge values from Einstein and Chien 
(1955) 

 

 

Figure 8.5 Comparison of sediment discharge values from Coleman (1981) 
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observation. However the value of correction factor is closer to 1 than that of Section 8.2, 

which implies the methods applied in this section are better than that in previous section. 

 

Figure 8.6 Modified sediment discharge values from Einstein and Chien (1955) 
 

8.3 Third combination 

Entropy based sediment discharge will be derived in this section, with both 

velocity and sediment concentration derived fully using the Tsallis entropy. The sixth 

equation is obtained from the Shannon entropy by substituting Chiu’s velocity 

[equations (6-8)] and Choo’s sediment concentration [equation (7-29)] into equation (8-

1). 
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or the sediment discharge can be obtained by inputting equations (6-11) and (8-9) into 
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   (8-14) 

The last equation is the Tsallis entropy-based equation obtained from the velocity 

distribution and sediment concentration distribution derived in this thesis: 

              
 

 
                          

 

       
 

 

1   1+0.5      0.5   23]dy       (8-15) 

Equation (8-15) can also be simplified by substituting equations (5-31) and (7-13) 

into equation (8-2). 

                  
                                       (8-16) 

The last two equations (8-14) and (8-16) are computed as shown in Table 8.3. Qs 

for the whole cross-sectional sediment discharge is computed instead of the specific 

discharge qs. It is seen from the error values that both sets of computed values are 

slightly smaller than observed values.  

Table 8.3 Computed sediment discharge values for Einstein and Chien’s (1955) 
data 

obs. Qs 
g/s 

Qs6 
g/s error Qs7 

g/s error 

1.713 1.553 -0.094 1.828 0.068 
3.903 3.420 -0.124 3.957 0.014 
5.025 3.995 -0.205 4.526 -0.099 
5.659 3.830 -0.323 4.338 -0.234 
10.887 9.770 -0.103 8.823 -0.190 
0.920 0.761 -0.172 0.809 -0.120 
1.874 1.797 -0.041 1.771 -0.055 
2.322 1.823 -0.215 1.940 -0.165 
4.109 3.265 -0.205 3.594 -0.125 
5.706 4.651 -0.185 5.408 -0.052 
1.165 0.937 -0.196 1.073 -0.078 
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Table 8.3 continued 

obs. Qs 
g/s 

Qs6 
g/s error Qs7 

g/s error 

5.048 4.290 -0.150 4.235 -0.161 
7.924 6.655 -0.160 6.097 -0.231 
9.628 7.908 -0.179 7.857 -0.184 
15.665 11.748 -0.250 11.660 -0.256 
14.379 10.697 -0.256 11.916 -0.171 

 

The Shannon entropy based discharge and the Tsallis entropy based discharge are 

competitive in these cases. It is seen from the Figure 8.7 that the two methods give 

similar results in estimating sediment discharge which is that the estimated sediment 

discharge is smaller than observed discharge. In Figure 8.8, the Shannon entropy based 

sediment discharge is distributed around the 1:1 line, while the Tsallis entropy based 

estimation is still a little smaller than observed values. However, since the Tsallis 

entropy based velocity distribution and the sediment concentration distribution did not 

show any trend of smaller estimation, the reason is yet to be discovered. 

 

Figure 8.7 Comparison of sediment discharge for Einstein and Chien (1955) 
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Figure 8.8 Comparison of sediment discharge values for Coleman (1981) 
 

Figure 8.9 shows the modified suspended sediment discharge for the last two 

methods. Since the accuracy of the last two methods is higher than those discussed in 

Sections 8.2 and 8.3, the correction factor are most close to the value of 1. 

 

Figure 8.9 Modified sediment discharge values for Einstein and Chien (1955) 
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Comparing all Figures 8.1 to 8.6, the results shown in Figures 8.7 and 8.8 with 

both entropy methods for velocity and sediment concentration give highest value of R2 

compared to previous cases, which means the entropy-based methods give the most 

accurate predictions. It can be concluded that the entropy-based distribution does have 

an advantage over traditional methods. 
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9. CONCLUSIONS 

Entropy-based methods are developed to compute the velocity distribution, 

sediment concentration and suspended sediment discharge, which are shown to be more 

accurate than traditional methods. The following conclusions can be drawn: 

1. A hypothesis on the cumulative distribution function for the Cartesian 

coordinate system is verified with observed values. The exponent values in 

the cumulative distribution are shown to be related to the width-depth ratio 

for the velocity distribution, while it is shown to be related to the particle size 

for the sediment concentration. 

2. A velocity distribution equation is derived with the Tsallis entropy and 

verified using experimental data. The exponent m value is proved to equal 3 

as the best choice.  

3. A dimensionless parameter G is introduced, which can be obtained from the 

maximum and mean velocities of a channel-section. Vice versa, for a known 

cross-section, the mean velocity can be obtained from the G value, whose 

accuracy is supported by observations. 

4. The location of maximum velocity is discussed and an analytical solution is 

derived. However, lacking observed values, the computed values are not 

convincing. 
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5. Comparison with other velocity distributions, the Tsallis entropy based 

velocity distribution seems most accurate. This distribution is also better in 

capturing low velocities near the channel bed. 

6. The sediment concentration distribution equation is derived with the Tsallis 

entropy and verified with experimental data.  

7. A dimensionless parameter N is introduced like parameter G. The mean 

sediment concentration value is simply computed with known N value. 

8. The Tsallis entropy-based sediment concentration has an advantage over 

other methods, especially for the sediment concentration near the water 

surface. 

9. Suspended sediment discharge is computed with estimated velocity and 

sediment concentration for 7 different methods. From comparison of 

computed values, the entropy based methods show more advantages over 

traditional methods. 

However, the research provided in this thesis has the following limitations: 

1. The mathematical model developed in this project is proposed to be capable 

of describing the velocity and sediment concentration for all circumstances. 

However, the model itself contains parameters which need to be specified by 

observed data, which limits this method only applicable for the known 

channel sections with historical data. The validity of the data itself is also 

uncertain. 



136 

 

 

2. The entropy-based model is based on the probabilistic theory, which is not 

based on the physical process; hence it may lack relationships with physical 

factors, such as the characteristics of channel system and flow patterns. 
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APPENDIX A  

VELOCITY DATA OBSERVED FROM ITALIAN RIVERS 

Table A1 Measured velocity data for May 28, 1984, at Santa Lucia on Tiber 
River, Italy. (LS means the left side, RS is the right side) 

vertical n. z (m) depth (m) u obs. (m/s) 
LS -11.89 0 0 
1 -7.24 0 1.68 
1 -7.24 0.06 1.68 
1 -7.24 0.2 1.70 
1 -7.24 0.8 2.10 
1 -7.24 1.5 2.00 
1 -7.24 2.45 1.45 
1 -7.24 2.95 0.71 
1 -7.24 3.1 0.00 
2 -4.13 0 2.24 
2 -4.13 0.06 2.24 
2 -4.13 0.2 2.24 
2 -4.13 0.8 2.34 
2 -4.13 1.38 2.39 
2 -4.13 2.29 2.29 
2 -4.13 3.14 1.50 
2 -4.13 3.29 0.00 
3 0 0 2.39 
3 0 0.06 2.39 
3 0 0.2 2.44 
3 0 0.8 2.44 
3 0 1.34 2.35 
3 0 2.33 2.29 
3 0 2.78 1.90 
3 0 2.93 0.00 
4 3.11 0 1.75 
4 3.11 0.06 1.75 
4 3.11 0.2 1.85 
4 3.11 0.8 2.29 
4 3.11 1.5 2.29 
4 3.11 2.36 1.75 
4 3.11 2.83 1.55 
4 3.11 2.98 0.00 
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Table A1 continued 
vertical n. z (m) depth (m) u obs. (m/s) 

5 6.21 0 1.28 
5 6.21 0.06 1.28 
5 6.21 0.2 1.23 
5 6.21 0.8 1.33 
5 6.21 1.5 1.13 
5 6.21 2 1.06 
5 6.21 2.35 1.13 
5 6.21 2.5 0.00 

RS 9.3 0 0 
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Table A2 Measured velocity data for May 28, 1984, at Rosciano on Chiascino 
River, Italy. (LS means the left side, RS is the right side) 

vertical n. z (m) depth (m) U obs. (m/s) 
LS -16.32 0 0 
1 -10.34 0 1.126 
1 -10.34 0.06 1.126 
1 -10.34 0.26 1.261 
1 -10.34 0.86 1.461 
1 -10.34 1.56 1.177 
1 -10.34 2.36 0.922 
1 -10.34 2.56 0.294 
1 -10.34 2.81 0 
2 -7.25 0 1.695 
2 -7.25 0.06 1.695 
2 -7.25 0.26 1.762 
2 -7.25 1.06 1.762 
2 -7.25 2.06 1.561 
2 -7.25 2.76 1.244 
2 -7.25 2.96 1.244 
2 -7.25 3.11 0 
3 -4.14 0 2.008 
3 -4.14 0.06 2.008 
3 -4.14 0.26 2.133 
3 -4.14 1.06 1.966 
3 -4.14 2.06 1.674 
3 -4.14 2.76 1.319 
3 -4.14 2.96 1.277 
3 -4.14 3.11 0 
4 0 0 2.447 
4 0 0.06 2.447 
4 0 0.26 2.175 
4 0 1.06 2.071 
4 0 2.06 1.758 
4 0 2.76 1.34 
4 0 2.96 1.236 
4 0 3.11 0 
5 4.13 0 2.112 
5 4.13 0.06 2.112 
5 4.13 0.26 2.112 
5 4.13 1.06 2.029 
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Table A2 continued 
vertical n. z (m) depth (m) U obs. (m/s) 

5 4.13 1.86 1.82 
5 4.13 2.46 1.57 
5 4.13 2.66 1.34 
5 4.13 2.81 0 
6 8.27 0 1.883 
6 8.27 0.6 1.883 
6 8.27 0.26 1.862 
6 8.27 1.06 1.883 
6 8.27 1.86 1.674 
6 8.27 2.21 1.465 
6 8.27 2.46 1.236 
6 8.27 2.66 1.109 
6 8.27 2.81 0 
7 11.37 0 1.486 
7 11.37 0.06 1.486 
7 11.37 0.26 1.549 
7 11.37 0.86 1.632 
7 11.37 1.56 1.444 
7 11.37 2.16 1.298 
7 11.37 2.36 1.067 
7 11.37 2.51 0 
8 14.47 0 0.82 
8 14.47 0.06 0.82 
8 14.47 0.26 0.956 
8 14.47 0.86 1.261 
8 14.47 1.56 1.177 
8 14.47 2.06 0.939 
8 14.47 2.26 0.837 
8 14.47 2.41 0 

RS 19.62 0 0 
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Table A3 Measured velocity data for April 21, 1997, at Ponte Felcino on Tiber 
River, Italy. (LS means the left side, RS is the right side) 

vertical n. z (m) depth (m) U obs. (m/s) 
LS -25.58 0 0 
1 -18.86 0 0.83 
1 -18.86 0.06 0.83 
1 -18.86 0.2 0.74 
1 -18.86 1 0.64 
1 -18.86 2 1.15 
1 -18.86 3 0.96 
1 -18.86 3.9 0.74 
1 -18.86 4.1 0.71 
1 -18.86 4.25 0.00 
2 -14.66 0 1.21 
2 -14.66 0.06 1.21 
2 -14.66 0.2 1.21 
2 -14.66 1 1.18 
2 -14.66 2 1.56 
2 -14.66 3 1.09 
2 -14.66 3.8 0.83 
2 -14.66 4 0.71 
2 -14.66 4.15 0.00 
3 -10.46 0 2.06 
3 -10.46 0.06 2.06 
3 -10.46 0.2 2.34 
3 -10.46 1 2.31 
3 -10.46 1.93 2.44 
3 -10.46 2.88 2.19 
3 -10.46 3.88 2.06 
3 -10.46 4.28 1.65 
3 -10.46 4.48 1.59 
3 -10.46 4.63 0.00 
4 -6.29 0 2.99 
4 -6.29 0.06 2.99 
4 -6.29 0.2 2.66 
4 -6.29 0.8 2.82 
4 -6.29 1.71 2.66 
4 -6.29 3 2.61 
4 -6.29 4 2.36 
4 -6.29 5 1.95 
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Table A3 continued 
vertical n. z (m) depth (m) U obs. (m/s) 

4 -6.29 5.2 1.60 
4 -6.29 5.45 1.46 
4 -6.29 5.6 0.00 
5 0 0 3.36 
5 0 0.06 3.36 
5 0 0.2 3.16 
5 0 1 3.20 
5 0 2 3.28 
5 0 3 2.91 
5 0 4 2.78 
5 0 5 2.32 
5 0 5.8 2.03 
5 0 6 1.86 
5 0 6.15 0.00 
6 3.78 0 3.16 
6 3.78 0.06 3.16 
6 3.78 0.2 3.11 
6 3.78 1 3.28 
6 3.78 2 3.20 
6 3.78 2.88 2.61 
6 3.78 3.88 2.57 
6 3.78 4.88 2.53 
6 3.78 5.7 2.03 
6 3.78 5.94 1.86 
6 3.78 6.09 0.00 
7 7.34 0 2.36 
7 7.34 0.06 2.36 
7 7.34 0.2 2.61 
7 7.34 1 2.70 
7 7.34 2 2.74 
7 7.34 2.93 2.61 
7 7.34 3.88 2.53 
7 7.34 4.88 2.32 
7 7.34 5.38 0.98 
7 7.34 5.7 1.19 
7 7.34 5.85 0.00 
8 10.49 0 1.78 
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Table A3 continued 
vertical n. z (m) depth (m) U obs. (m/s) 

    
8 10.49 0.06 1.78 
8 10.49 0.2 1.44 
8 10.49 1 2.15 
8 10.49 2 2.32 
8 10.49 3 2.57 
8 10.49 3.5 2.32 
8 10.49 4.6 1.95 
8 10.49 5 1.61 
8 10.49 5.7 0.00 

RS 16.47 0 0 
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Table A4. Maximum and mean velocities collected at P. Felcino gauged section 
during 20 years 

umax (m/s) umean (m/s) umax (m/s) umean (m/s) 
0.274 0.186 2.405 1.594 
0.771 0.492 3.320 2.163 
0.794 0.471 3.181 2.074 
1.678 1.110 2.660 1.815 
0.594 0.409 3.365 2.120 
1.130 0.820 0.206 0.123 
0.082 0.041 3.410 2.097 
0.146 0.111 1.102 0.726 
1.902 1.292 2.164 1.449 
2.608 1.802 1.810 1.190 
3.362 2.296 2.079 1.373 
0.868 0.604 2.680 1.874 
1.122 0.777 1.461 0.957 
2.547 1.734 2.637 1.687 
2.924 2.025 2.906 1.858 
3.118 2.154 2.580 1.900 
1.421 1.026 1.340 0.885 
0.061 0.023 1.394 1.060 
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Table A5. Maximum and mean velocities collected at S. Lucia gauged section 
during 20 years 

umax (m/s) umean (m/s) umax (m/s) umean (m/s) 
0.088 0.047 3.094 1.945 
0.269 0.182 3.062 2.109 
1.208 0.948 0.496 0.305 
1.467 1.072 0.234 0.147 
1.773 1.135 1.603 0.996 
1.631 1.179 1.678 1.062 
2.760 1.478 2.816 1.816 
2.243 1.648 2.781 1.882 
0.129 0.067 2.781 1.803 
0.495 0.324 0.888 0.570 
0.644 0.401 0.270 0.153 
1.155 0.736 1.511 1.040 
2.194 1.497 0.453 0.262 
2.437 1.873 2.948 1.984 
0.107 0.052 2.989 2.020 
0.482 0.315 2.781 1.819 
0.735 0.497 2.580 1.707 
1.022 0.672 0.228 0.152 
1.678 1.151 2.739 1.836 
0.209 0.123 2.581 1.750 
2.625 1.736 1.453 0.979 
2.778 1.910 0.268 0.154 
0.781 0.541 1.227 0.697 
1.462 0.926 2.555 1.604 
2.182 1.397 1.403 0.870 
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Table A6. Maximum and mean velocities collected at P. Nuovo gauged section 
during 20 years 

umax (m/s) umean (m/s) umax (m/s) umean (m/s) 
0.978 0.620 2.097 1.463 
2.243 1.373 2.405 1.669 
2.384 1.593 0.884 0.566 
2.023 1.085 1.954 1.257 
0.42 0.262 1.904 1.276 
1.803 1.186 1.202 0.825 
2.097 1.464 1.221 0.828 
0.694 0.471 0.387 0.207 
2.972 1.833 1.261 0.854 
2.194 1.487 0.349 0.232 
0.69 0.448 2.054 1.339 
1.288 0.923 0.357 0.249 
2.048 1.406 2.597 1.736 
0.673 0.442 2.48 1.798 
1.578 1.136 1.925 1.33 
0.209 0.117 2.719 1.82 
2.024 1.324 1.779 1.151 
2.048 1.331 1.777 1.211 
2.972 1.946 0.736 0.507 
2.924 1.966 0.221 0.146 
2.521 1.712 1.777 1.173 
0.965 0.615 2.169 1.391 
2.827 1.791 2.029 1.255 
0.346 0.201 1.05 0.71 
2.48 1.627 2.28 1.64 
2.73 1.623 2.387 1.634 
1.954 1.157 2.699 1.847 
1.85 1.106 2.778 1.825 
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APPENDIX B  

VELOCITY DATA FROM IRANIAN RIVERS 

Table B1. Velocity data of Run A0-2 from Ghamasiab River in Iran 
(d50=14.5mm) 

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 
Depth Velocity Depth Velocity Depth Velocity Depth Velocity Depth Velocity 

m m/s m m/s m m/s m m/s m m/s 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.050 0.196 0.050 0.196 0.050 0.218 0.050 0.178 0.050 0.185 
0.060 0.318 0.060 0.303 0.060 0.229 0.060 0.270 0.060 0.189 
0.070 0.273 0.070 0.285 0.070 0.270 0.070 0.321 0.070 0.167 
0.080 0.303 0.080 0.325 0.080 0.303 0.080 0.321 0.080 0.196 
0.090 0.189 0.090 0.299 0.090 0.388 0.090 0.296 0.090 0.203 
0.100 0.237 0.110 0.292 0.110 0.395 0.110 0.273 0.100 0.259 
0.120 0.310 0.130 0.347 0.130 0.421 0.130 0.292 0.120 0.273 
0.140 0.417 0.160 0.384 0.160 0.406 0.160 0.296 0.140 0.266 
0.170 0.487 0.190 0.325 0.190 0.366 0.190 0.292 0.160 0.255 
0.200 0.439 0.230 0.424 0.230 0.410 0.230 0.277 0.190 0.299 
0.230 0.351 0.280 0.347 0.280 0.395 0.280 0.325 0.230 0.292 
0.280 0.413 0.390 0.413 0.330 0.421 0.330 0.303 0.280 0.314 
0.330 0.413 0.450 0.399 0.380 0.421 0.380 0.310 0.330 0.314 
0.380 0.388 0.510 0.424 0.440 0.277 0.450 0.318 0.380 0.310 
0.410 0.388 0.540 0.413 0.500 0.399 0.520 0.303 0.420 0.237 
0.440 0.292 0.570 0.421 0.540 0.491 0.560 0.358 0.450 0.222 

        0.580 0.450 0.590 0.347     
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Table B2. Velocity data of Run A2-1 from Ghamasiab River in Iran 
(d50=14.4mm) 

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 
Depth Velocity Depth Velocity Depth Velocity Depth Velocity Depth Velocity 

m m/s m m/s m m/s m m/s m m/s 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.050 0.399 0.050 0.373 0.050 0.642 0.050 0.539 0.050 0.351 
0.060 0.424 0.060 0.406 0.060 0.721 0.060 0.582 0.060 0.355 
0.070 0.443 0.070 0.517 0.070 0.735 0.070 0.685 0.070 0.399 
0.080 0.465 0.080 0.469 0.080 0.692 0.080 0.807 0.080 0.410 
0.090 0.458 0.090 0.557 0.090 0.746 0.090 0.817 0.090 0.417 
0.100 0.553 0.100 0.603 0.100 0.792 0.100 0.846 0.100 0.428 
0.110 0.589 0.110 0.635 0.110 0.807 0.110 0.821 0.110 0.469 
0.120 0.575 0.130 0.614 0.130 0.882 0.130 0.874 0.130 0.443 
0.130 0.571 0.150 0.728 0.150 0.885 0.150 0.939 0.150 0.480 
0.140 0.567 0.170 0.824 0.170 0.946 0.170 1.006 0.170 0.476 
0.150 0.550 0.200 0.796 0.200 0.960 0.200 1.071 0.200 0.469 
0.160 0.567 0.230 0.867 0.230 0.989 0.230 1.071 0.230 0.487 
0.170 0.599 0.260 0.903 0.260 1.003 0.260 1.060 0.260 0.480 
0.180 0.603 0.290 0.903 0.290 1.017 0.290 1.056 0.290 0.487 
0.190 0.639 0.320 0.939 0.320 1.039 0.310 1.046 0.320 0.498 
0.200 0.624 0.340 0.932 0.340 1.046 0.330 1.042     
0.210 0.617                 
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Table B3. Velocity data of Run B9-1 from Ghamasiab River in Iran 
(d50=16.9mm) 

Profile 1 Profile 2 Profile 3 Profile 4 Profile 5 
Depth Velocity Depth Velocity Depth Velocity Depth Velocity Depth Velocity 

m m/s m m/s m m/s m m/s m m/s 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.050 0.159 0.050 0.123 0.050 0.251 0.050 0.314 0.050 0.200 
0.060 0.207 0.060 0.170 0.060 0.288 0.060 0.318 0.060 0.192 
0.070 0.170 0.070 0.178 0.070 0.303 0.070 0.366 0.070 0.229 
0.080 0.203 0.080 0.203 0.080 0.292 0.080 0.391 0.080 0.203 
0.090 0.192 0.090 0.207 0.090 0.343 0.090 0.373 0.090 0.229 
0.100 0.233 0.100 0.281 0.100 0.318 0.100 0.366 0.100 0.240 
0.120 0.255 0.120 0.310 0.120 0.340 0.120 0.384 0.120 0.222 
0.140 0.270 0.140 0.277 0.140 0.332 0.140 0.402 0.140 0.255 
0.170 0.292 0.170 0.358 0.170 0.399 0.170 0.432 0.170 0.273 
0.200 0.248 0.200 0.384 0.200 0.391 0.200 0.480 0.200 0.299 
0.240 0.277 0.240 0.391 0.240 0.443 0.240 0.480 0.240 0.318 
0.280 0.321 0.280 0.443 0.280 0.439 0.280 0.491 0.280 0.340 
0.320 0.329 0.330 0.443 0.330 0.517 0.330 0.494 0.330 0.343 
0.370 0.347 0.380 0.469 0.380 0.491 0.380 0.546 0.380 0.310 
0.420 0.340 0.440 0.454 0.440 0.531 0.440 0.535 0.440 0.310 
0.470 0.332 0.500 0.480 0.500 0.539 0.500 0.528 0.490 0.303 

    0.540 0.498 0.540 0.524 0.530 0.550 0.540 0.296 
    0.580 0.502 0.580 0.546 0.560 0.546     
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APPENDIX C  

DATA FROM EINSTEIN AND CHIEN (1955) 

Table C1. Velocity data of C1 from Einstein and Chien (1955) (h=0.46ft, 
u*=0.391ft/s) 

y/h u/u* 
0.013 7.02 
0.013 6.27 
0.0152 6.42 
0.0174 7.24 
0.0174 6.76 
0.01955 7.31 
0.0217 7.57 
0.0261 8.02 
0.0304 8.1 
0.0435 9.12 
0.0521 9.9 
0.0609 10.06 
0.0826 10.75 
0.0956 11.55 
0.115 11.72 
0.161 12.54 
0.1825 13.2 
0.215 13.4 
0.248 13.74 
0.302 14.33 
0.354 15.05 
0.465 16.1 
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Table C2. Velocity data of S2 from Einstein and Chien (1955) (h=0.392ft, 
u*=0.422ft/s) 

y/h u/u* 
0.0153 7.15 
0.0204 7.88 
0.0255 8.64 
0.0332 9.47 
0.0383 9.82 
0.046 10.68 
0.0587 11.5 
0.0715 12.23 
0.0842 12.84 
0.097 13.6 
0.11 14.05 
0.122 14.7 
0.135 15.15 
0.148 15.5 
0.161 15.85 
0.174 16.2 
0.186 16.27 
0.199 16.68 
0.212 16.77 
0.224 17.1 
0.25 17.34 
0.288 17.9 
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Table C3. Sediment of S2 from Einstein and Chien (1955) 
(h-y)/y total c 

 g/l 
17.66 121 
16.05 106 
14.1 99 
12.05 78.5 
9.9 58 
7.91 36.2 
6.54 21 
5.33 12.3 
4.45 7.35 
3.51 3.73 
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Table C4. Velocity data of C5 from Einstein and Chien (1955) (h=0.582ft, 
u*=0.246ft/s) 

y/h u/u* 
0.00774 8.78 
0.0103 9.47 
0.01545 11.06 
0.0189 11.38 
0.0275 12.65 
0.0361 13.25 
0.0447 13.9 
0.0533 14.23 
0.0705 15.07 
0.0877 15.65 
0.105 16.2 
0.122 16.65 
0.148 17.25 
0.1735 17.7 
0.1995 18.15 
0.225 18.4 
0.26 19 
0.294 19.25 
0.328 19.85 
0.363 20.2 
0.415 20.6 
0.467 20.9 
0.638 21.1 
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Table C5. Velocity data of S4 from Einstein and Chien (1955) (h=0.476 ft, u*=0.36 
ft/s) 

y/h u (ft/s) 
0.0165 2.37048 
0.0206 2.4038 
0.0261 2.62752 
0.0316 2.80364 
0.0371 3.094 
0.0508 3.5938 
0.0645 4.0698 
0.0783 4.522 
0.092 4.9504 
0.106 5.355 
0.1195 5.67392 
0.133 6.00712 
0.147 6.2832 
0.174 6.7592 
0.202 7.1162 
0.229 7.4494 
0.257 7.7588 
0.27 7.9254 
0.284 8.0444 
0.312 8.3538 
0.34 8.79648 
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Table C6. Sediment data of S4 from Einstein and Chien (1955) 
(h-y)/y total c 

 g/l 
14.15 328 
12.96 295 
11.5 263 
9.95 230.5 
8.25 167.3 
6.66 117 
5.53 76.5 
4.52 45.1 
3.78 28.1 
2.98 14.2 
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Table C7. Velocity data of S7 from Einstein and Chien (1955) (h=0.47 ft, u*=0.387 
ft/s) 

y/h u/u* 
0.0128 6.39 
0.0128 6.79 
0.017 7.26 
0.0213 8.15 
0.0256 8.95 
0.0277 9.14 
0.0383 10.4 
0.0468 11.46 
0.0553 12 
0.0872 13.75 
0.1085 14.45 
0.13 15 
0.151 15.6 
0.183 15.97 
0.226 16.75 
0.268 17.35 
0.321 17.9 
0.374 18.42 
0.481 19.2 

 

Table C8. Sediment data of S7 from Einstein and Chien (1955) 
(h-y)/y total c 

 g/l 
22.2 64.5 
20.1 54.5 
17.55 37.4 

15 32.4 
10.9 13.34 
7.59 4.8 
5.27 1.9 
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Table C9. Velocity data of S11 from Einstein and Chien (1955) (h=0.435 ft, 
u*=0.347 ft/s) 

y/h u/u* 
0.0092 8.7 
0.01035 8.6 
0.01265 9.45 
0.01494 10.13 
0.01955 10.53 
0.0241 11.07 
0.031 11.78 
0.0379 12.16 
0.0448 12.65 
0.054 13.1 
0.0632 13.31 
0.0747 13.73 
0.0862 14.2 
0.1046 14.7 
0.1252 15.05 
0.148 15.5 
0.171 16.04 
0.199 16.35 
0.229 16.86 
0.2745 17.38 
0.3205 17.5 
0.378 18.5 
0.435 19.12 
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Table C10. Velocity data of S16 from Einstein and Chien (1955) (h=0.39 ft, 
u*=0.409 ft/s) 

y/h u/u* 
0.0103 5.75 
0.0154 6.23 
0.0205 6.67 
0.0282 7.65 
0.041 8.49 
0.0538 9.4 
0.0667 9.75 
0.0795 10.42 
0.092 11.05 
0.105 11.95 
0.115 12.5 
0.131 13.1 
0.1565 14.05 
0.182 14.8 
0.22 16 
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APPENDIX D  

DATA FROM COLEMAN (1986) 

Table D1. 40 series of velocity data from Coleman (1986) 
y Run no. (m/s) 

mm 1 2 3 4 5 6 7 8 9 10 
6 0.709 0.705 0.68 0.665 0.662 0.652 0.639 0.63 0.621 0.619 
12 0.773 0.768 0.738 0.74 0.717 0.727 0.709 0.696 0.683 0.688 
18 0.823 0.817 0.795 0.802 0.788 0.766 0.77 0.751 0.751 0.759 
24 0.849 0.852 0.836 0.829 0.814 0.805 0.804 0.8 0.804 0.808 
30 0.884 0.883 0.87 0.863 0.852 0.848 0.849 0.831 0.842 0.841 
46 0.927 0.938 0.922 0.922 0.911 0.905 0.924 0.902 0.897 0.912 
69 0.981 0.975 0.963 0.965 0.968 0.951 0.962 0.958 0.945 0.976 
91 1.026 1.03 1.025 1.023 1.028 1.037 1.03 1.012 1.028 1.033 
122 1.054 1.049 1.048 1.049 1.038 1.054 1.061 1.044 1.048 1.061 
137 1.053 1.043 1.039 1.048 1.047 1.049 1.051 1.046 1.05 1.062 
152 1.048 1.03 1.028 1.033 1.03 1.026 1.04 1.033 1.04 1.05 
162 1.039 1.023 1.02 1.024 1.027 1.031 1.027 1.028 1.032 1.045 
y Run no. (m/s) 

mm 11 12 13 14 15 16 17 18 19 20 
6 0.625 0.598 0.6 0.598 0.588 0.583 0.586 0.579 0.576 0.57 
12 0.688 0.669 0.665 0.669 0.674 0.661 0.655 0.688 0.649 0.648 
18 0.761 0.731 0.747 0.746 0.746 0.744 0.75 0.734 0.743 0.743 
24 0.812 0.796 0.798 0.8 0.799 0.804 0.804 0.78 0.798 0.791 
30 0.855 0.83 0.844 0.84 0.85 0.854 0.838 0.836 0.838 0.848 
46 0.929 0.912 0.914 0.922 0.918 0.922 0.938 0.916 0.916 0.922 
69 0.989 0.964 0.973 0.971 0.98 0.978 0.976 0.966 0.976 0.986 
91 1.05 1.004 1.038 1.042 1.052 1.051 1.022 1.027 1.047 1.043 
122 1.085 1.052 1.07 1.067 1.074 1.074 1.071 1.054 1.07 1.07 
137 1.077 1.058 1.062 1.062 1.07 1.07 1.071 1.053 1.07 1.068 
152 1.07 1.045 1.045 1.051 1.059 1.057 1.06 1.049 1.057 1.057 
162 1.063 1.033 1.039 1.048 1.05 1.046 1.053 1.024 1.048 1.048 
y Run no. (m/s) 

mm 21 22 23 24 25 26 27 28 29 30 
6 0.734 0.738 0.717 0.684 0.66 0.649 0.662 0.638 0.648 0.661 
12 0.789 0.775 0.764 0.742 0.737 0.713 0.72 0.714 0.701 0.713 
18 0.827 0.814 0.816 0.794 0.79 0.775 0.775 0.771 0.776 0.772 
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Table D1 continued 
y Run no. (m/s) 

mm 21 22 23 24 25 26 27 28 29 30 
24 0.867 0.841 0.839 0.844 0.844 0.809 0.801 0.811 0.823 0.822 
30 0.891 0.855 0.866 0.872 0.872 0.843 0.863 0.848 0.853 0.876 
46 0.936 0.916 0.918 0.922 0.934 0.899 0.925 0.91 0.93 0.932 
69 0.987 0.953 0.971 0.959 0.984 0.96 0.984 0.967 0.991 0.999 
91 1.03 1.015 1.03 1.03 1.051 1.02 1.042 1.04 1.055 1.064 
122 1.048 1.026 1.052 1.056 1.073 1.045 1.075 1.065 1.084 1.089 
137 1.046 1.024 1.039 1.049 1.063 1.041 1.064 1.06 1.082 1.093 
152 1.033 1.012 1.027 1.034 1.048 1.032 1.052 1.043 1.066 1.076 
162 1.028 1.008 1.021 1.024 1.04 1.027 1.044 1.044 1.064 1.074 
y Run no. (m/s) 

mm 31 32 33 34 35 36 37 38 39 40 
6 0.598 0.689 0.69 0.709 0.688 0.698 0.674 0.716 0.677 0.678 
12 0.679 0.746 0.746 0.745 0.733 0.74 0.724 0.735 0.745 0.71 
18 0.743 0.786 0.791 0.788 0.788 0.804 0.796 0.81 0.798 0.792 
24 0.791 0.821 0.832 0.82 0.826 0.841 0.835 0.847 0.826 0.836 
30 0.828 0.838 0.853 0.861 0.863 0.881 0.871 0.884 0.871 0.879 
46 0.899 0.887 0.903 0.906 0.917 0.942 0.92 0.952 0.936 0.936 
69 0.96 0.994 0.948 0.952 0.96 0.988 0.985 0.998 0.989 0.985 
91 1.026 0.999 1.027 1.019 1.019 1.055 1.05 1.091 1.068 1.069 
122 1.063 1.024 1.018 1.046 1.065 1.09 1.086 1.118 1.099 1.107 
137 1.058 1.025 1.042 1.05 1.06 1.08 1.077 1.11 1.096 1.101 
152 1.048 1.012 1.027 1.029 1.045 1.068 1.067 1.098 1.084 1.086 
162 1.042 1.004 1.018 1.012 1.028 1.062 1.058 1.092 1.072 1.08 
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Table D2. 40 series of sediment data from Coleman (1986) 
y Run no. (10-4) 

mm 1 2 3 4 5 6 7 8 9 10 
6 0 8.5 17 28 40 51 62 77 90 110 
12 0 6.4 12 19 26 32 40 49 60 66 
18 0 5.2 9.7 15 19 24 32 36 42 49 
24 0 4.2 7.6 12 16 20 25 30 34 39 
30 0 3.7 6.8 10 14 17 21 24 27 32 
46 0 2.8 5.3 7.5 11 12 15 17 19 21 
69 0 2.4 3.9 5.9 7.8 9.6 12 14 15 17 
91 0 1.4 2.5 3.7 5 6.2 7.6 8.6 9.6 11 
122 0 0.81 1.5 2.2 2.8 3.4 4.3 5 5.4 5.5 
137 0 0.65 1.1 1.4 2 2.3 3 3.4 3.5 3.4 
152 0 0.5 0.73 1 1.3 1.4 1.8 2 1.9 2 
162 0 0.3 0.48 0.56 0.86 0.77 1.1 1.2 1.2 1 
y Run no. (10-4) 

mm 11 12 13 14 15 16 17 18 19 20 
6 120 130 140 150 170 180 190 190 210 230 
12 78 82 90 98 100 110 110 110 120 120 
18 54 56 63 68 71 74 64 74 77 82 
24 41 44 49 52 54 56 58 56 59 61 
30 35 36 40 44 44 47 47 46 48 48 
46 24 25 28 30 31 32 31 32 32 33 
69 18 19 21 23 24 25 24 24 25 26 
91 12 12 14 14 16 16 15 15 16 16 
122 5.9 7 7.4 8 8.2 7.9 7.6 8 8 7.6 
137 3.2 4 4.4 4.6 4.5 4.6 4.7 5.2 4.4 4 
152 1.8 2.3 2.4 2.4 2.3 2.2 2.1 2.5 2.2 2 
162 0.7 1.3 1.3 1.2 1.3 1.2 1.4 1.3 1.6 1.1 
y Run no. (10-4) 

mm 21 22 23 24 25 26 27 28 29 30 
6 0 9.8 21 34 48 54 66 80 95 110 
12 0 6.3 12 18 26 32 40 48 52 57 
18 0 4.2 8.6 13 18 22 26 31 34 39 
24 0 3.3 6.8 11 13 18 21 23 26 28 
30 0 3 5.6 8.6 11 14 17 19 21 24 
46 0 2.1 3.9 6 7.6 9.7 12 13 17 16 
69 0 1.6 2.9 4.5 5.9 7.8 8.9 9.8 11 12 
91 0 1.1 1.9 2.7 3.6 4.8 5.3 5.9 6.4 7.1 
122 0 0.64 1.1 1.6 2.2 2.8 2.8 3.3 3.4 3.7 



168 

 

 

Table D2 continued 
y Run no. (10-4) 

mm 21 22 23 24 25 26 27 28 29 30 
           

137 0 0.5 0.9 1.2 1.5 2.1 2 2.3 2.6 2.7 
152 0 0.42 0.63 0.89 1.1 1.5 1.4 1.7 1.6 1.8 
162 0 0.32 0.64 0.63 0.68 1.1 0.88 1.2 0.98 1.1 
y Run no. (10-4) 

mm 31 32 33 34 35 36 37 38 39 40 
6 120 0 2.7 5.1 9.3 17 19 22 27 26 
12 63 0 1.4 2.4 4.1 6.8 7.8 11 11 11 
18 40 0 0.86 1.5 2.2 3.8 4.7 6 6.2 6.4 
24 30 0 0.66 1.2 1.7 3 3.6 4.6 4.9 4.6 
30 24 0 0.57 0.97 1.5 2.3 2.9 4 4 4.2 
46 16 0 0.43 0.7 1.1 1.7 2.2 2.7 3 3 
69 12 0 0.34 0.56 0.86 1.2 1.7 2.2 2.3 2.5 
91 7.7 0 0.23 0.32 0.56 0.88 1.1 1.4 1.6 1.6 
122 4.1 0 0.19 0.27 0.42 0.61 0.8 0.96 1 1.2 
137 3 0 0.16 0.24 0.34 0.48 0.63 0.79 0.88 0.97 
152 2 0 0.14 0.19 0.31 0.4 0.54 0.64 0.8 0.8 
162 1.5 0 0.12 0.18 0.25 0.32 0.43 0.55 0.64 0.69 
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APPENDIX E  

COMPUTED RESULTS 

Table E1. CDF of velocity distribution for Rosciano River (Italy) 
x y′ obs. CDF est. CDF error x y′ obs. CDF est. CDF error 

(m) (m)    (m) (m)    
-10.34 0 0.323 0.542 0.679 4.13 0 0.969 0.951 -0.019 
-10.34 0.06 0.323 0.548 0.695 4.13 0.06 0.969 0.955 -0.014 
-10.34 0.26 0.446 0.565 0.265 4.13 0.26 0.969 0.942 -0.028 
-10.34 0.86 0.569 0.601 0.055 4.13 1.06 0.892 0.874 -0.021 
-10.34 1.56 0.323 0.550 0.701 4.13 1.86 0.815 0.773 -0.051 
-10.34 2.36 0.231 0.448 0.941 4.13 2.46 0.615 0.633 0.029 
-10.34 2.56 0.138 0.398 1.877 4.13 2.66 0.492 0.535 0.086 
-10.34 2.81 0.000 0.000 0.000 4.13 2.81 0.000 0.000 0.000 
-7.25 0 0.692 0.789 0.140 8.27 0 0.815 0.806 -0.011 
-7.25 0.06 0.692 0.793 0.145 8.27 0.06 0.815 0.810 -0.006 
-7.25 0.26 0.738 0.805 0.090 8.27 0.26 0.815 0.824 0.010 
-7.25 1.06 0.738 0.757 0.025 8.27 1.06 0.815 0.764 -0.063 
-7.25 2.06 0.615 0.662 0.075 8.27 1.86 0.692 0.676 -0.024 
-7.25 2.76 0.446 0.531 0.191 8.27 2.46 0.446 0.554 0.241 
-7.25 2.96 0.446 0.448 0.005 8.27 2.66 0.323 0.467 0.447 
-7.25 3.11 0.000 0.000 0.000 8.27 2.81 0.000 0.000 0.000 
-4.14 0 0.892 0.932 0.044 11.37 0 0.569 0.627 0.101 
-4.14 0.06 0.892 0.936 0.049 11.37 0.06 0.569 0.632 0.110 
-4.14 0.26 0.969 0.927 -0.044 11.37 0.26 0.615 0.647 0.051 
-4.14 1.06 0.831 0.868 0.044 11.37 0.86 0.692 0.638 -0.079 
-4.14 2.06 0.692 0.759 0.096 11.37 1.56 0.569 0.571 0.004 
-4.14 2.76 0.492 0.609 0.238 11.37 2.16 0.446 0.468 0.049 
-4.14 2.96 0.446 0.514 0.153 11.37 2.36 0.246 0.395 0.604 
-4.14 3.11 0.000 0.000 0.000 11.37 2.51 0.000 0.000 0.000 
0.00 0 1.000 1.000 0.000 14.47 0 0.184615 0.391328 1.120 
0.00 0.06 1.000 0.996 -0.004 14.47 0.06 0.184615 0.397245 1.152 
0.00 0.26 0.969231 0.982691 0.014 14.47 0.26 0.230769 0.414773 0.797 
0.00 1.06 0.892308 0.920023 0.031 14.47 0.86 0.446154 0.450101 0.009 
0.00 2.06 0.738462 0.804796 0.090 14.47 1.56 0.323077 0.399142 0.235 
0.00 2.76 0.492308 0.646043 0.312 14.47 2.06 0.230769 0.334239 0.448 
0.00 3.11 0 0 0.000 14.47 2.41 0 0 0.000 
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Table E2. CDF of velocity distribution for Santa Lucia River (Italy) 
x y′ obs. CDF est. CDF error x y′ obs. CDF est. CDF error 

(m) (m)    (m) (m)    
-7.24 0 0.450 0.576 0.281 3.11 0 0.550 0.747 0.359 
-7.24 0.06 0.450 0.581 0.291 3.11 0.06 0.550 0.758 0.379 
-7.24 0.2 0.550 0.591 0.075 3.11 0.2 0.575 0.782 0.360 
-7.24 0.8 0.650 0.628 -0.034 3.11 0.8 0.825 0.861 0.043 
-7.24 1.5 0.625 0.584 -0.066 3.11 1.5 0.825 0.849 0.030 
-7.24 2.45 0.350 0.488 0.393 3.11 2.36 0.550 0.714 0.298 
-7.24 2.95 0.150 0.364 1.425 3.11 2.83 0.400 0.537 0.344 
-7.24 3.1 0.000 0.000 0.000 3.11 2.98 0.000 0.000 0.000 
-4.13 0 0.825 0.815 -0.012 6.21 0 0.300 0.267 -0.109 
-4.13 0.06 0.825 0.824 -0.001 6.21 0.06 0.300 0.271 -0.097 
-4.13 0.2 0.825 0.843 0.022 6.21 0.2 0.300 0.278 -0.072 
-4.13 0.8 0.950 0.910 -0.042 6.21 0.8 0.325 0.304 -0.066 
-4.13 1.38 0.950 0.912 -0.040 6.21 1.5 0.225 0.273 0.000 
-4.13 2.29 0.825 0.801 -0.029 6.21 2 0.175 0.238 0.359 
-4.13 3.14 0.400 0.548 0.000 6.21 2.35 0.225 0.187 -0.169 
-4.13 3.29 0.000 0.000 0.000 6.21 2.5 0.000 0.000 0.000 
0.00 0 0.950 0.985 0.037      
0.00 0.06 0.950 0.990 0.042      
0.00 0.2 1.000 1.000 0.000      
0.00 0.8 1.000 0.952 -0.048      
0.00 1.34 0.950 0.898 -0.055      
0.00 2.33 0.825 0.739 0.000      
0.00 2.78 0.600 0.560 -0.067      
0.00 2.93 0.000 0.000 0.000      
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Table E3. CDF of velocity distribution of Run A2 (Iranian River) 
Profile y′ obs. CDF est. CDF error Profile y′ obs. CDF est. CDF error 

 (m)     (m)    
1 0.000 0.000 0.001 0.000 3 0.000 0.000 0.001 0.000 
1 0.050 0.381 0.363 -0.049 3 0.050 0.381 0.363 -0.049 
1 0.060 0.406 0.388 -0.044 3 0.060 0.406 0.388 -0.044 
1 0.070 0.424 0.411 -0.030 3 0.070 0.424 0.411 -0.030 
1 0.080 0.445 0.432 -0.029 3 0.080 0.445 0.432 -0.029 
1 0.090 0.438 0.451 0.030 3 0.090 0.438 0.451 0.030 
1 0.100 0.529 0.468 -0.114 3 0.100 0.529 0.468 -0.114 
1 0.110 0.563 0.485 0.000 3 0.110 0.563 0.485 -0.138 
1 0.120 0.549 0.501 -0.089 3 0.120 0.549 0.501 -0.089 
1 0.130 0.546 0.516 -0.056 3 0.130 0.546 0.516 -0.056 
1 0.140 0.543 0.530 -0.024 3 0.140 0.543 0.530 -0.024 
1 0.150 0.525 0.543 0.033 3 0.150 0.525 0.543 0.033 
1 0.160 0.543 0.556 0.025 3 0.160 0.543 0.556 0.025 
1 0.170 0.573 0.568 -0.009 3 0.170 0.573 0.568 -0.009 
1 0.180 0.577 0.580 0.000 3 0.180 0.577 0.580 0.006 
1 0.190 0.611 0.591 0.000 3 0.190 0.611 0.591 -0.032 
1 0.200 0.597 0.602 0.009 3 0.200 0.597 0.602 0.009 
1 0.210 0.590 0.591 0.002 3 0.210 0.590 0.591 0.002 
2 0.000 0.000 0.001 0.000 4 0.000 0.000 0.001 0.000 
2 0.050 0.357 0.442 0.241 4 0.050 0.335 0.373 0.112 
2 0.060 0.388 0.475 0.224 4 0.060 0.339 0.383 0.129 
2 0.070 0.494 0.505 0.022 4 0.070 0.381 0.391 0.025 
2 0.080 0.448 0.532 0.187 4 0.080 0.392 0.398 0.016 
2 0.090 0.532 0.557 0.047 4 0.090 0.399 0.405 0.015 
2 0.100 0.577 0.580 0.006 4 0.100 0.409 0.411 0.003 
2 0.110 0.607 0.602 -0.009 4 0.110 0.448 0.416 -0.072 
2 0.130 0.587 0.642 0.094 4 0.130 0.424 0.426 0.005 
2 0.150 0.696 0.679 -0.025 4 0.150 0.459 0.434 -0.053 
2 0.170 0.788 0.712 -0.097 4 0.170 0.455 0.442 -0.029 
2 0.200 0.761 0.757 -0.005 4 0.200 0.448 0.452 0.008 
2 0.230 0.829 0.798 -0.037 4 0.230 0.466 0.461 -0.011 
2 0.260 0.863 0.836 -0.031 4 0.260 0.459 0.468 0.021 
2 0.290 0.863 0.871 0.009 4 0.290 0.466 0.476 0.021 
2 0.320 0.898 0.904 0.007  0.320 0.476 0.482 0.012 
2 0.340 0.891 0.883 -0.009      
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Table E4. Computed G values for Iranian data 
umax umean λ1 λ* G 

0.524 0.348 6.778 3.736 0.487 
0.491 0.335 9.129 4.049 0.525 
0.582 0.421 6.676 2.558 0.603 
0.578 0.424 7.114 2.514 0.621 
0.575 0.345 3.145 3.648 0.331 
0.607 0.378 3.275 3.098 0.391 
1.071 0.708 0.779 0.907 0.479 
0.885 0.584 1.371 1.325 0.478 
0.774 0.516 2.135 1.701 0.493 
0.682 0.493 4.532 1.743 0.639 
0.824 0.614 2.572 1.193 0.640 
0.778 0.598 3.333 1.240 0.677 
0.746 0.574 3.791 1.345 0.678 
0.642 0.435 3.981 2.399 0.516 
0.585 0.393 5.094 2.936 0.504 
0.502 0.370 11.015 3.297 0.626 
0.450 0.347 17.374 3.675 0.680 
0.469 0.374 16.741 3.088 0.718 
0.657 0.519 5.947 1.616 0.707 
0.743 0.561 3.643 1.421 0.656 
0.735 0.539 3.457 1.556 0.620 
0.660 0.543 6.478 1.420 0.751 
0.660 0.488 4.893 1.893 0.630 
0.550 0.366 5.908 3.379 0.490 
0.480 0.302 6.966 4.879 0.407 
0.635 0.426 3.962 2.498 0.502 
0.710 0.522 3.864 1.658 0.623 
0.739 0.441 1.434 2.225 0.323 
0.592 0.506 9.782 1.555 0.788 
0.899 0.579 1.181 1.338 0.442 
0.971 0.683 1.313 0.975 0.567 
0.810 0.675 3.610 0.951 0.755 
0.899 0.663 1.921 1.027 0.627 
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Table E5. Velocity profile for Rosciano River (Italy) 
x y′ obs. v est. v error x y′ obs. v est. v error 

(m) (m) (m/s) (m/s)  (m) (m) (m/s) (m/s)  
-10.34 0 1.126 1.155 0.026 4.13 0 2.112 2.154 0.020 
-10.34 0.06 1.126 1.179 0.047 4.13 0.06 2.112 2.147 0.017 
-10.34 0.26 1.261 1.253 -0.007 4.13 0.26 2.112 2.125 0.006 
-10.34 0.86 1.461 1.438 -0.016 4.13 1.06 2.029 2.019 -0.005 
-10.34 1.56 1.177 1.217 0.034 4.13 1.86 1.820 1.856 0.020 
-10.34 2.36 0.922 0.823 -0.107 4.13 2.46 1.570 1.617 0.030 
-10.34 2.56 0.294 0.655 1.227 4.13 2.66 1.340 1.436 0.072 
-10.34 2.81 0.000 -0.012 0.000 4.13 2.81 0.000 -0.012 0.000 
-7.25 0 1.695 1.754 0.035 8.27 0 1.883 1.872 -0.006 
-7.25 0.06 1.695 1.760 0.038 8.27 0.06 1.883 1.891 0.004 
-7.25 0.26 1.762 1.778 0.009 8.27 0.26 1.862 1.952 0.048 
-7.25 1.06 1.762 1.698 -0.036 8.27 1.06 1.883 1.930 0.025 
-7.25 2.06 1.561 1.548 -0.009 8.27 1.86 1.674 1.630 -0.026 
-7.25 2.76 1.244 1.326 0.066 8.27 2.46 1.236 1.232 -0.004 
-7.25 2.96 1.244 1.177 -0.054 8.27 2.66 1.109 0.967 0.000 
-7.25 3.11 0.000 -0.012 0.000 8.27 2.81 0.000 -0.012 0.000 
-4.14 0 2.008 2.084 0.038 11.37 0 1.486 1.450 -0.024 
-4.14 0.06 2.008 2.093 0.042 11.37 0.06 1.486 1.468 -0.012 
-4.14 0.26 2.133 2.120 -0.006 11.37 0.26 1.549 1.521 -0.018 
-4.14 1.06 1.966 1.997 0.016 11.37 0.86 1.632 1.641 0.005 
-4.14 2.06 1.674 1.766 0.055 11.37 1.56 1.444 1.496 0.036 
-4.14 2.76 1.319 1.440 0.092 11.37 2.16 1.298 1.264 -0.026 
-4.14 2.96 1.277 1.228 -0.038 11.37 2.36 1.067 1.094 0.000 
-4.14 3.11 0.000 -0.012 0.000 11.37 2.51 0 -0.01206 0.000 
0.00 0 2.447 2.447 0.000 14.47 0 0.82 0.697298 -0.150 
0.00 0.06 2.447 2.434181 -0.005 14.47 0.06 0.82 0.78657 -0.041 
0.00 0.26 2.175 2.39003 0.099 14.47 0.26 0.956 0.941508 -0.015 
0.00 1.06 2.071 2.185828 0.055 14.47 0.86 1.261 1.26388 0.002 
0.00 2.06 1.758 1.819724 0.035 14.47 1.56 1.177 1.12801 -0.042 
0.00 2.76 1.34 1.339437 0.000 14.47 2.06 0.939 0.952203 0.014 
0.00 2.96 1.236 1.052933 -0.148 14.47 2.26 0.837 0.808693 -0.034 
0.00 3.11 0 -0.01206 0.000 14.47 2.41 0 -0.01206 0.000 
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Table E6. Velocity profile for Santa Lucia River (Italy) 
x y′ obs. v est. v error x y′ obs. v est. v error 

(m) (m) (m/s) (m/s)  (m) (m) (m/s) (m/s)  
-7.24 0 1.680 1.650 -0.018 3.11 0 1.750 1.790 0.023 
-7.24 0.06 1.680 1.677 -0.002 3.11 0.06 1.750 1.824 0.042 
-7.24 0.2 1.700 1.738 0.022 3.11 0.2 1.850 1.895 0.024 
-7.24 0.8 2.100 2.081 -0.009 3.11 0.8 2.290 2.310 0.009 
-7.24 1.5 2.000 1.873 -0.064 3.11 1.5 2.290 2.113 -0.077 
-7.24 2.45 1.450 1.434 -0.011 3.11 2.36 1.750 1.725 -0.014 
-7.24 2.95 0.710 0.917 0.291 3.11 2.83 1.550 1.228 -0.208 
-7.24 3.1 0.000 0.002 0.000 3.11 2.98 0.000 0.002 0.000 
-4.13 0 2.240 2.202 -0.017 6.21 0 1.280 1.205 -0.058 
-4.13 0.06 2.240 2.217 -0.010 6.21 0.06 1.280 1.215 -0.050 
-4.13 0.2 2.240 2.248 0.004 6.21 0.2 1.230 1.237 0.006 
-4.13 0.8 2.340 2.355 0.006 6.21 0.8 1.330 1.309 -0.016 
-4.13 1.38 2.390 2.356 -0.014 6.21 1.5 1.130 1.222 0.000 
-4.13 2.29 2.290 2.176 -0.050 6.21 2 1.060 1.116 0.053 
-4.13 3.14 1.500 1.717 0.000 6.21 2.35 1.130 0.952 -0.157 
-4.13 3.29 0.000 0.002 0.000 6.21 2.5 0.000 0.002 0.000 
0.00 0 2.390 2.425 0.015      
0.00 0.06 2.390 2.430 0.017      
0.00 0.2 2.440 2.440 0.000      
0.00 0.8 2.440 2.391 -0.020      
0.00 1.34 2.350 2.335 -0.007      
0.00 2.33 2.290 2.155 0.000      
0.00 2.78 1.900 1.921 0.011      
0.00 2.93 0.000 0.002 0.000      
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Table E7. Velocity profile for Iranian river (Run A2-1) 
Profile y′ obs. v est. v error Profile y′ obs. v est. v error 

 (m) (m/s) (m/s)   (m) (m/s) (m/s)  
1 0.000 0.000 0.001 0.000 3 0.000 0.000 0.001 0.000 
1 0.050 0.399 0.381 -0.045 3 0.050 0.642 0.746 0.161 
1 0.060 0.424 0.408 -0.040 3 0.060 0.721 0.770 0.068 
1 0.070 0.443 0.431 -0.026 3 0.070 0.735 0.791 0.077 
1 0.080 0.465 0.453 -0.025 3 0.080 0.692 0.810 0.171 
1 0.090 0.458 0.473 0.034 3 0.090 0.746 0.827 0.109 
1 0.100 0.553 0.492 -0.111 3 0.100 0.792 0.843 0.064 
1 0.110 0.589 0.509 -0.135 3 0.110 0.807 0.857 0.063 
1 0.120 0.575 0.526 -0.085 3 0.120 0.882 0.883 0.001 
1 0.130 0.571 0.541 -0.052 3 0.130 0.885 0.905 0.022 
1 0.140 0.567 0.556 -0.020 3 0.140 0.946 0.925 -0.022 
1 0.160 0.567 0.584 0.029 3 0.150 0.960 0.952 -0.009 
1 0.170 0.599 0.597 -0.005 3 0.160 0.989 0.975 -0.014 
1 0.180 0.603 0.609 0.010 3 0.170 1.003 0.996 -0.007 
1 0.190 0.639 0.621 -0.028 3 0.180 1.017 1.015 -0.002 
1 0.200 0.624 0.633 0.013 3 0.190 1.039 1.032 -0.006 
1 0.210 0.617 0.621 0.006 3 0.200 1.046 1.043 -0.002 
2 0.000 0.000 0.001 0.000 4 0.210 0.000 0.001 0.000 
2 0.050 0.373 0.465 0.246 4 0.000 0.351 0.392 0.116 
2 0.060 0.406 0.499 0.229 4 0.050 0.355 0.402 0.133 
2 0.070 0.517 0.530 0.027 4 0.060 0.399 0.410 0.029 
2 0.080 0.469 0.559 0.192 4 0.070 0.410 0.418 0.020 
2 0.090 0.557 0.585 0.051 4 0.080 0.417 0.425 0.019 
2 0.100 0.603 0.609 0.010 4 0.090 0.428 0.431 0.007 
2 0.110 0.635 0.632 -0.005 4 0.100 0.469 0.437 -0.068 
2 0.130 0.614 0.674 0.099 4 0.110 0.443 0.447 0.010 
2 0.150 0.728 0.712 -0.021 4 0.130 0.480 0.456 -0.049 
2 0.170 0.824 0.747 -0.093 4 0.150 0.476 0.464 -0.025 
2 0.200 0.796 0.795 -0.001 4 0.170 0.469 0.474 0.012 
2 0.230 0.867 0.838 -0.033 4 0.200 0.487 0.484 -0.007 
2 0.260 0.903 0.878 -0.027 4 0.230 0.480 0.492 0.025 
2 0.290 0.903 0.915 0.013 4 0.260 0.487 0.499 0.025 
2 0.320 0.939 0.949 0.011 4 0.290 0.498 0.506 0.016 
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Table E8. Velocity profile for Iranian river (Run B9-1) 
Profile y′ obs. v est. v error Profile y′ obs. v est. v error 

 (m) (m/s) (m/s)   (m) (m/s) (m/s)  
1 0 0 0.000 0.000 5 0 0 0.000 0.000 
1 0.05 0.159283 0.214 0.347 5 0.05 0.1998 0.227 0.137 
1 0.06 0.207167 0.224 0.080 5 0.06 0.192433 0.237 0.231 
1 0.07 0.170333 0.232 0.361 5 0.07 0.229267 0.245 0.071 
1 0.08 0.203483 0.239 0.175 5 0.08 0.203483 0.253 0.244 
1 0.09 0.192433 0.246 0.276 5 0.09 0.229267 0.260 0.134 
1 0.1 0.23295 0.252 0.080 5 0.1 0.240317 0.266 0.108 
1 0.12 0.25505 0.262 0.028 5 0.12 0.2219 0.278 0.251 
1 0.14 0.269783 0.272 0.007 5 0.14 0.25505 0.287 0.127 
1 0.17 0.291883 0.284 -0.027 5 0.17 0.273467 0.300 0.098 
1 0.2 0.247683 0.295 0.189 5 0.2 0.29925 0.312 0.041 
1 0.24 0.27715 0.307 0.107 5 0.28 0.339767 0.336 -0.011 
1 0.28 0.32135 0.318 -0.011 5 0.33 0.34345 0.349 0.015 
1 0.32 0.328717 0.327 -0.004 5 0.38 0.3103 0.336 0.083 
1 0.37 0.347133 0.338 -0.026 5 0.44 0.3103 0.318 0.026 
1 0.42 0.339767 0.327 -0.036 5 0.49 0.302933 0.300 -0.008 
1 0.47 0.3324 0.315 -0.052 5 0.54 0.295567 0.278 -0.061 
3 0 0 0.000 0.000      
3 0.05 0.251367 0.285 0.133      
3 0.06 0.2882 0.299 0.039      
3 0.07 0.302933 0.312 0.030      
3 0.08 0.291883 0.324 0.108      
3 0.09 0.34345 0.334 -0.028      
3 0.1 0.317667 0.344 0.082      
3 0.12 0.339767 0.361 0.062      
3 0.14 0.3324 0.376 0.131      
3 0.17 0.3987 0.396 -0.007      
3 0.2 0.391333 0.413 0.056      
3 0.28 0.439217 0.452 0.028      
3 0.33 0.516567 0.472 -0.087      
3 0.38 0.490783 0.489 -0.003      
3 0.44 0.5313 0.508 -0.043      
3 0.5 0.538667 0.525422 -0.025      
3 0.54 0.523933 0.536 0.023      
3 0.58 0.54594 0.546 0.000      
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Table E9. Computed mean velocity for Santa Lucia gauges for the last 20 years. 
umax obs. umean est. umean error 
(m/s) (m/s) (m/s)  
0.088 0.047 0.057 0.217 
0.269 0.182 0.175 -0.039 
1.208 0.948 0.785 -0.172 
1.467 1.072 0.954 -0.110 
1.773 1.135 1.152 0.015 
1.631 1.179 1.060 -0.101 
2.760 1.478 1.794 0.214 
2.243 1.648 1.458 -0.115 
0.129 0.067 0.084 0.251 
0.495 0.324 0.322 -0.007 
0.644 0.401 0.419 0.044 
1.155 0.736 0.751 0.020 
2.194 1.497 1.426 -0.047 
2.437 1.873 1.584 -0.154 
0.107 0.052 0.070 0.338 
0.482 0.315 0.313 -0.005 
0.735 0.497 0.478 -0.039 
1.022 0.672 0.664 -0.011 
1.678 1.151 1.091 -0.052 
0.209 0.123 0.136 0.104 
2.625 1.736 1.706 -0.017 
2.778 1.910 1.806 -0.055 
0.781 0.541 0.508 -0.062 
1.462 0.926 0.950 0.026 
2.182 1.397 1.418 0.015 
0.268 0.154 0.174 0.131 
1.227 0.697 0.798 0.144 
2.555 1.604 1.661 0.035 
1.403 0.870 0.912 0.048 
2.436 1.543 1.583 0.026 
3.094 1.945 2.011 0.034 
3.062 2.109 1.990 -0.056 
0.496 0.305 0.322 0.057 
0.234 0.147 0.152 0.035 
1.603 0.996 1.042 0.046 
1.678 1.062 1.091 0.027 
2.816 1.816 1.830 0.008 
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Table E9 continued 

umax obs. umean est. umean error 
(m/s) (m/s) (m/s)  

    
2.781 1.882 1.808 -0.040 
2.781 1.803 1.808 0.003 
0.888 0.570 0.577 0.013 
0.270 0.153 0.176 0.147 
1.511 1.040 0.982 -0.056 
0.453 0.262 0.294 0.124 
2.948 1.984 1.916 -0.034 
2.989 2.020 1.943 -0.038 
2.781 1.819 1.808 -0.006 
2.580 1.707 1.677 -0.018 
0.228 0.152 0.148 -0.025 
2.739 1.836 1.780 -0.030 
2.581 1.750 1.678 -0.041 
1.453 0.979 0.944 -0.035 

 

 

  



179 

 

 

Table E10. Computed mean velocity for Ponte Nuovo gauges for the last 20 
years 

umax obs. umean est. umean error 
(m/s) (m/s) (m/s)  
0.978 0.620 0.636 0.025 
2.243 1.373 1.458 0.062 
2.384 1.593 1.550 -0.027 
2.023 1.085 1.315 0.212 
0.42 0.262 0.273 0.042 
1.803 1.186 1.172 -0.012 
2.097 1.464 1.363 -0.069 
0.694 0.471 0.451 -0.042 
2.972 1.833 1.932 0.054 
2.194 1.487 1.426 -0.041 
0.69 0.448 0.449 0.001 
1.288 0.923 0.837 -0.093 
2.048 1.406 1.331 -0.053 
0.673 0.442 0.437 -0.010 
1.578 1.136 1.026 -0.097 
0.209 0.117 0.136 0.161 
2.024 1.324 1.316 -0.006 
2.048 1.331 1.331 0.000 
2.972 1.946 1.932 -0.007 
2.924 1.966 1.901 -0.033 
2.521 1.712 1.639 -0.043 
0.965 0.615 0.627 0.020 
2.827 1.791 1.838 0.026 
0.346 0.201 0.225 0.119 
2.48 1.627 1.612 -0.009 
2.73 1.623 1.775 0.093 
1.954 1.157 1.270 0.098 
1.85 1.106 1.203 0.087 
2.029 1.255 1.319 0.051 
1.05 0.71 0.683 -0.039 
2.28 1.64 1.482 -0.096 
2.387 1.634 1.552 -0.050 
2.699 1.847 1.754 -0.050 
2.778 1.825 1.806 -0.011 
2.097 1.463 1.363 -0.068 
2.405 1.669 1.563 -0.063 
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Table E10 continued 
umax obs. umean est. umean error 
(m/s) (m/s) (m/s)  

    
0.884 0.566 0.575 0.015 
1.954 1.257 1.270 0.010 
1.904 1.276 1.238 -0.030 
1.202 0.825 0.781 -0.053 
1.221 0.828 0.794 -0.041 
0.387 0.207 0.252 0.215 
1.261 0.854 0.820 -0.040 
0.349 0.232 0.227 -0.022 
2.054 1.339 1.335 -0.003 
0.357 0.249 0.232 -0.068 
2.597 1.736 1.688 -0.028 
2.48 1.798 1.612 -0.103 
1.925 1.33 1.251 -0.059 
2.719 1.82 1.767 -0.029 
1.779 1.151 1.156 0.005 
1.777 1.211 1.155 -0.046 
0.736 0.507 0.478 -0.056 
0.221 0.146 0.144 -0.016 
1.777 1.173 1.155 -0.015 
2.169 1.391 1.410 0.014 
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Table E11. Computation of velocity profile between Tsallis entropy-based 
method and simple power law [Run S1, Coleman(1981)] 

y (ft) obs. u 
(ft/s) 

est. 
Tsallis 
(ft/s) 

error est. power n=6 
(ft/s) error est. power n=7 

(ft/s) error 

0.006 2.442 2.894 0.185 3.679 0.506 3.983 0.631 
0.007 1.455 3.005 1.065 3.774 1.593 4.071 1.798 
0.008 2.755 3.105 0.127 3.858 0.400 4.149 0.506 
0.009 2.899 3.199 0.104 3.938 0.358 4.222 0.457 
0.011 3.154 3.358 0.065 4.070 0.290 4.344 0.377 
0.013 3.286 3.496 0.064 4.184 0.274 4.448 0.354 
0.015 3.433 3.618 0.054 4.285 0.248 4.539 0.322 
0.018 3.560 3.783 0.062 4.418 0.241 4.660 0.309 
0.021 3.804 3.925 0.032 4.532 0.191 4.763 0.252 
0.025 4.079 4.094 0.004 4.666 0.144 4.884 0.197 
0.029 4.226 4.242 0.004 4.784 0.132 4.989 0.180 
0.030 4.249 4.276 0.006 4.811 0.132 5.013 0.180 
0.034 4.470 4.407 -0.014 4.912 0.099 5.103 0.142 
0.039 4.636 4.553 -0.018 5.026 0.084 5.204 0.123 
0.046 4.857 4.735 -0.025 5.166 0.064 5.328 0.097 
0.054 5.039 4.920 -0.024 5.308 0.053 5.454 0.082 
0.064 5.252 5.119 -0.025 5.459 0.039 5.586 0.064 
0.074 5.395 5.296 -0.018 5.591 0.036 5.703 0.057 
0.086 5.592 5.486 -0.019 5.734 0.025 5.827 0.042 
0.099 5.712 5.666 -0.008 5.868 0.027 5.943 0.040 
0.114 5.952 5.857 -0.016 6.008 0.009 6.065 0.019 
0.130 6.084 6.029 -0.009 6.135 0.008 6.174 0.015 
0.149 6.308 6.232 -0.012 6.283 -0.004 6.302 -0.001 
0.170 6.416 6.417 0.000 6.416 0.000 6.416 0.000 
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Table E12. Computation of velocity profile between Tsallis entropy-based 
method and simple power law [Run 15, Coleman(1981)] 

y  
(m) 

obs. u  
(m/s) 

est. Tsallis  
(m/s) error est. power 

(m/s) error 

0 0 0.000 0.000 0.000 0.000 
6 0.588 0.660 0.123 0.706 0.201 
12 0.674 0.749 0.111 0.766 0.136 
18 0.746 0.803 0.076 0.803 0.076 
24 0.799 0.842 0.053 0.831 0.039 
30 0.85 0.872 0.026 0.853 0.003 
46 0.918 0.932 0.015 0.896 -0.024 
69 0.98 0.990 0.010 0.940 -0.041 
91 1.052 1.030 -0.021 0.971 -0.077 
122 1.074 1.074 0.000 1.005 -0.064 
137 1.07 1.056 -0.013 1.019 -0.048 
152 1.059 1.040 -0.018 1.031 -0.026 
162 1.05 1.030 -0.019 1.039 -0.010 
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Table E13. 2D velocity profile at Ponte Felcino (Italy) 
x y′ obs. V est. Tsallis error est. Chiu error 
m m m/s m/s  m/s  

-18.860 0.000 0.830 0.746 -0.101 1.097 0.322 
-18.860 0.060 0.830 0.779 -0.061 1.101 0.326 
-18.860 0.200 0.740 0.840 0.135 1.109 0.498 
-18.860 1.000 0.640 1.031 0.610 1.143 0.786 
-18.860 2.000 1.150 1.158 0.007 1.141 -0.008 
-18.860 3.000 0.960 1.031 0.074 1.034 0.077 
-18.860 3.900 0.740 0.799 0.079 0.631 -0.147 
-18.860 4.100 0.710 0.672 -0.053 0.378 -0.467 
-18.860 4.250 0.000 0.000 0.000 0.000 0.000 
-14.660 0.000 1.210 1.205 -0.004 1.483 0.226 
-14.660 0.060 1.210 1.225 0.013 1.489 0.230 
-14.660 0.200 1.210 1.271 0.050 1.500 0.240 
-14.660 1.000 1.180 1.474 0.249 1.550 0.313 
-14.660 2.000 1.560 1.503 -0.036 1.547 -0.009 
-14.660 3.000 1.090 1.252 0.148 1.387 0.272 
-14.660 3.800 0.830 0.878 0.058 0.873 0.051 
-14.660 4.000 0.710 0.679 -0.044 0.526 -0.259 
-14.660 4.150 0.000 0.000 0.000 0.000 0.000 
-10.460 0.000 2.060 1.937 -0.060 2.350 0.141 
-10.460 0.060 2.060 1.965 -0.046 2.357 0.144 
-10.460 0.200 2.340 2.025 -0.135 2.370 0.013 
-10.460 1.000 2.310 2.269 -0.018 2.428 0.051 
-10.460 1.930 2.440 2.457 0.007 2.429 -0.004 
-10.460 2.880 2.190 2.264 0.034 2.297 0.049 
-10.460 3.880 2.060 1.928 -0.064 1.787 -0.132 
-10.460 4.280 1.650 1.665 0.009 1.250 -0.243 
-10.460 4.480 1.590 1.413 -0.111 0.733 -0.539 
-10.460 4.630 0.000 0.000 0.000 0.000 0.000 
-6.290 0.000 2.990 2.980 -0.003 2.922 -0.023 
-6.290 0.060 2.990 2.974 -0.005 2.927 -0.021 
-6.290 0.200 2.660 2.960 0.113 2.938 0.104 
-6.290 0.800 2.820 2.896 0.027 2.974 0.054 
-6.290 1.710 2.660 2.785 0.047 2.988 0.123 
-6.290 3.000 2.610 2.583 -0.010 2.878 0.103 
-6.290 4.000 2.360 2.358 -0.001 2.582 0.094 
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Table E13 continued 

x y′ obs. V est. Tsallis error est. Chiu error 
m m m/s m/s  m/s  

-6.290 5.000 1.950 1.958 0.004 1.761 -0.097 
-6.290 5.200 1.600 1.812 0.132 1.419 -0.113 
-6.290 5.450 1.460 1.499 0.027 0.738 -0.495 
-6.290 5.600 0.000 0.000 0.000 0.000 0.000 
0.000 0.000 3.360 3.360 0.000 3.299 -0.018 
0.000 0.060 3.360 3.354 -0.002 3.304 -0.017 
0.000 0.200 3.160 3.340 0.057 3.313 0.049 
0.000 1.000 3.200 3.252 0.016 3.352 0.048 
0.000 2.000 3.280 3.125 -0.047 3.351 0.022 
0.000 3.000 2.910 2.970 0.021 3.266 0.122 
0.000 4.000 2.780 2.766 -0.005 3.034 0.091 
0.000 5.000 2.320 2.461 0.061 2.491 0.074 
0.000 5.800 2.030 1.964 -0.032 1.365 -0.328 
0.000 6.000 1.860 1.670 -0.102 0.753 -0.595 
0.000 6.150 0.000 0.000 0.000 0.000 0.000 
3.780 0.000 3.160 3.197 0.012 3.219 0.019 
3.780 0.060 3.160 3.191 0.010 3.224 0.020 
3.780 0.200 3.110 3.177 0.022 3.233 0.040 
3.780 1.000 3.280 3.093 -0.057 3.272 -0.002 
3.780 2.000 3.200 2.970 -0.072 3.271 0.022 
3.780 2.880 2.610 2.839 0.088 3.202 0.227 
3.780 3.880 2.570 2.649 0.031 2.991 0.164 
3.780 4.880 2.530 2.365 -0.065 2.491 -0.015 
3.780 5.700 2.030 1.908 -0.060 1.435 -0.293 
3.780 5.940 1.860 1.587 -0.147 0.742 -0.601 
3.780 6.090 0.000 0.000 0.000 0.000 0.000 
7.340 0.000 2.360 2.504 0.061 2.684 0.137 
7.340 0.060 2.360 2.514 0.065 2.688 0.139 
7.340 0.200 2.610 2.536 -0.028 2.697 0.033 
7.340 1.000 2.700 2.640 -0.022 2.733 0.012 
7.340 2.000 2.740 2.738 -0.001 2.732 -0.003 
7.340 2.930 2.610 2.647 0.014 2.660 0.019 
7.340 3.880 2.530 2.523 -0.003 2.462 -0.027 
7.340 4.880 2.320 2.314 -0.003 1.950 -0.159 
7.340 5.380 0.980 2.117 1.160 1.377 0.405 
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Table E13 continued 
x y′ obs. V est. Tsallis error est. Chiu error 
m m m/s m/s  m/s  

7.340 5.700 1.190 1.837 0.544 0.646 -0.457 
7.340 5.850 0.000 0.000 0.000 0.000 0.000 
10.490 0.000 1.780 1.269 -0.287 2.514 0.412 
10.490 0.060 1.780 1.355 -0.239 2.518 0.415 
10.490 0.200 1.440 1.515 0.052 2.527 0.755 
10.490 1.000 2.150 2.042 -0.050 2.563 0.192 
10.490 2.000 2.320 2.416 0.041 2.562 0.104 
10.490 3.000 2.570 2.546 -0.009 2.479 -0.035 
10.490 3.500 2.320 2.404 0.036 2.388 0.029 
10.490 4.600 1.950 1.974 0.012 1.947 -0.001 
10.490 5.000 1.610 1.733 0.077 1.611 0.001 
10.490 5.700 0.000 0.000 0.000 0.000 0.000 
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Table E14. 2D velocity profile at Santa Lucia (Italy) 
x y′ obs. V est. Tsallis error est. Chiu error 
m m m/s m/s  m/s  

-7.240 0.000 1.680 1.650 -0.018 2.057 0.224 
-7.240 0.060 1.680 1.677 -0.002 2.062 0.228 
-7.240 0.200 1.700 1.738 0.022 2.074 0.220 
-7.240 0.800 2.100 2.081 -0.009 2.100 0.000 
-7.240 1.500 2.000 1.873 -0.064 2.048 0.024 
-7.240 2.450 1.450 1.434 -0.011 1.636 0.128 
-7.240 2.950 0.710 0.917 0.291 0.778 0.096 
-7.240 3.100 0.000 0.002 0.000 0.000 0.000 
-4.130 0.000 2.240 2.202 0.000 2.347 0.000 
-4.130 0.060 2.240 2.217 -0.010 2.353 0.050 
-4.130 0.200 2.240 2.248 0.004 2.365 0.056 
-4.130 0.800 2.340 2.355 0.006 2.390 0.021 
-4.130 1.380 2.390 2.356 -0.014 2.358 -0.014 
-4.130 2.290 2.290 2.176 -0.050 2.081 -0.091 
-4.130 3.140 1.500 1.717 0.145 0.841 -0.440 
-4.130 3.290 0.000 0.002 0.000 0.000 0.000 
0.000 0.000 2.390 2.425 0.015 2.382 -0.003 
0.000 0.060 2.390 2.430 0.000 2.390 0.000 
0.000 0.200 2.440 2.440 0.000 2.406 -0.014 
0.000 0.800 2.440 2.391 -0.020 2.440 0.000 
0.000 1.340 2.350 2.335 -0.007 2.400 0.021 
0.000 2.330 2.290 2.155 -0.059 1.898 -0.171 
0.000 2.780 1.900 1.921 0.011 0.950 -0.500 
0.000 2.930 0.000 0.002 0.000 0.000 0.000 
3.110 0.000 1.750 1.790 0.023 2.238 0.279 
3.110 0.060 1.750 1.824 0.042 2.245 0.283 
3.110 0.200 1.850 1.895 0.024 2.259 0.221 
3.110 0.800 2.290 2.310 0.000 2.290 0.000 
3.110 1.500 2.290 2.113 -0.077 2.226 -0.028 
3.110 2.360 1.750 1.725 -0.014 1.788 0.022 
3.110 2.830 1.550 1.228 -0.208 0.879 -0.433 
3.110 2.980 0.000 0.002 0.000 0.000 0.000 
6.210 0.000 1.280 1.205 -0.058 1.283 0.002 
6.210 0.060 1.280 1.215 -0.050 1.289 0.007 
6.210 0.200 1.230 1.237 0.006 1.302 0.058 
6.210 0.800 1.330 1.309 -0.016 1.330 0.000 
6.210 1.500 1.130 1.222 0.081 1.264 0.119 
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Table E14 continued 
x y′ obs. V est. Tsallis error est. Chiu error 
m m m/s m/s  m/s  

6.210 2.000 1.060 1.116 0.053 1.051 -0.009 
6.210 2.350 1.130 0.952 0.000 0.595 0.000 
6.210 2.500 0.000 0.002 0.000 0.000 0.000 
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Table E15. Comparison of velocity profile for all methods [Run S16 from 
Einstein and Chien (1955)] 

y (ft) obs. u 
(ft/s) 

est. Tsallis 
(ft/s) est. Chiu (ft/s) est. Prandt (ft/s) est. power (ft/s) 

0.004 2.350 2.055 1.391 0.000 1.415 
0.006 2.546 2.410 1.849 0.560 1.730 
0.008 2.725 2.695 2.227 1.202 1.996 
0.011 3.126 3.049 2.697 1.918 2.341 
0.016 3.469 3.519 3.305 2.759 2.823 
0.021 3.841 3.899 3.780 3.369 3.234 
0.026 3.984 4.226 4.173 3.851 3.601 
0.031 4.258 4.511 4.503 4.245 3.931 
0.036 4.515 4.762 4.784 4.573 4.229 
0.041 4.883 4.999 5.042 4.870 4.518 
0.045 5.108 5.169 5.221 5.074 4.728 
0.051 5.353 5.421 5.481 5.367 5.047 
0.061 5.741 5.783 5.839 5.766 5.516 
0.071 6.048 6.107 6.147 6.105 5.948 
0.086 6.538 6.538 6.538 6.531 6.540 
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Table E16. Computation of Sediment concentration of Run 20 from Coleman 
(1981) 

y obs. C est. Tsallis error 
mm 10-4 10-4  

6 230 230.00 0.000 
12 120 73.17 -0.390 
18 82 60.43 -0.263 
24 61 52.42 -0.141 
30 48 46.46 -0.032 
46 33 35.28 0.069 
69 26 24.62 -0.053 
91 16 17.19 0.075 
122 7.6 9.12 0.200 
137 4 5.85 0.464 
152 2 2.89 0.446 
162 1.1 1.05 -0.041 
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Table E17. Sediment concentration for the Tsallis entropy and the Rouse 
equation [data from Run S11 of Einstein and Chien(1955)] 

y obs. C est. Tsallis error est. Rouse error 
m g/l g/l  g/l  

0.004 31.400 31.400 0.000 31.400 0.000 
0.004 28.300 26.357 -0.069 26.784 -0.054 
0.005 26.300 23.349 -0.112 21.998 -0.164 
0.006 20.650 20.359 -0.014 17.607 -0.147 
0.008 17.000 16.839 -0.009 13.517 -0.205 
0.011 13.400 12.825 -0.043 10.190 -0.240 
0.014 10.610 8.379 -0.210 7.709 -0.273 
0.016 7.130 5.261 -0.262 6.484 -0.091 

 

Table E18. Sediment concentration for the Tsallis entropy and Chiu’s equation 
[data from Run S22 of Coleman (1955)] 

y obs. C est. Tsallis error est. Chiu error 
mm 10-4 10-4  10-4  

6.000 9.800 9.800 0.000 9.800 0.000 
12.000 6.300 4.231 -0.328 6.094 -0.033 
18.000 4.200 3.556 -0.153 4.648 0.107 
24.000 3.300 3.118 -0.055 3.823 0.159 
30.000 3.000 2.786 -0.071 3.270 0.090 
46.000 2.100 2.147 0.022 2.372 0.129 
69.000 1.600 1.520 -0.050 1.659 0.037 
91.000 1.100 1.073 -0.025 1.216 0.106 
122.000 0.640 0.575 -0.101 0.745 0.164 
137.000 0.500 0.371 -0.258 0.535 0.071 
152.000 0.420 0.184 -0.562 0.301 -0.283 
162.000 0.320 0.067 -0.790 0.000 -1.000 
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Table E19. Sediment concentration for the Tsallis entropy and Choo’s equation 
[data from Run S7 of Coleman (1955)] 

y obs. C est. Tsallis error est. Choo error 
mm 10-4 10-4  10-4  

6 62 62.000 0.000 62.000 0.000 
12 40 29.113 -0.272 33.046 -0.174 
18 32 24.511 -0.234 26.202 -0.181 
24 25 21.508 -0.140 22.120 -0.115 
30 21 19.222 -0.085 19.202 -0.086 
46 15 14.814 -0.012 13.989 -0.067 
69 12 10.480 -0.127 9.332 -0.222 
91 7.6 7.385 -0.028 6.253 -0.177 
122 4.3 3.954 -0.080 3.053 -0.290 
137 3 2.548 -0.151 1.800 -0.400 
152 1.8 1.263 -0.299 0.683 -0.621 
162 1.1 0.462 -0.580 0.000 -1.000 
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Table E20. Suspended sediment discharge for different methods [data from 
Coleman (1981)] (m3

/s) 
obs. Qs Qs1 Qs2 Qs3 Qs4 Qs5 Qs6 Qs7 

0.176 0.059 0.060 0.153 0.162 0.151 0.158 0.151 
0.324 0.117 0.121 0.306 0.302 0.302 0.315 0.303 
0.502 0.194 0.199 0.474 0.469 0.441 0.486 0.441 
0.684 0.276 0.283 0.679 0.672 0.633 0.693 0.629 
0.841 0.354 0.364 0.807 0.766 0.764 0.825 0.762 
1.056 0.434 0.445 0.976 0.927 0.925 1.010 0.932 
1.239 0.531 0.545 1.214 1.153 1.115 1.236 1.106 
1.434 0.676 0.698 1.289 1.333 1.204 1.307 1.181 
1.677 0.770 0.790 1.622 1.677 1.515 1.647 1.498 
1.876 0.836 0.863 1.742 1.801 1.627 1.798 1.628 
1.940 0.883 0.911 1.827 1.888 1.706 1.899 1.720 
2.156 0.962 0.992 1.980 2.047 1.849 2.068 1.873 
2.323 1.028 1.060 2.143 2.215 2.086 2.209 2.087 
2.482 1.173 1.209 2.434 2.390 2.195 2.520 2.205 
2.619 1.242 1.280 2.566 2.519 2.314 2.669 2.335 
2.608 1.307 1.348 2.729 2.679 2.360 2.809 2.356 
2.622 1.286 1.326 2.643 2.595 2.286 2.765 2.319 
2.828 1.443 1.488 3.000 2.945 2.594 3.102 2.602 
2.961 1.581 1.630 2.982 2.829 2.587 3.083 2.594 
0.156 0.046 0.047 0.158 0.120 0.135 0.161 0.134 
0.313 0.101 0.103 0.302 0.260 0.272 0.311 0.274 
0.484 0.164 0.168 0.491 0.422 0.442 0.506 0.445 
0.664 0.235 0.240 0.707 0.608 0.572 0.726 0.573 
0.792 0.251 0.258 0.782 0.673 0.725 0.780 0.701 
0.966 0.312 0.322 0.959 0.825 0.889 0.981 0.881 
1.124 0.375 0.386 1.163 1.000 0.941 1.178 0.924 
1.297 0.453 0.467 1.415 1.216 1.144 1.424 1.117 
1.459 0.522 0.540 1.650 1.419 1.335 1.646 1.287 
1.505 0.539 0.562 1.705 1.467 1.380 1.714 1.331 
0.037 0.012 0.013 0.037 0.033 0.031 0.038 0.031 
0.064 0.023 0.024 0.071 0.062 0.058 0.072 0.058 
0.107 0.043 0.044 0.111 0.101 0.097 0.113 0.096 
0.186 0.080 0.083 0.210 0.191 0.161 0.212 0.158 
0.218 0.090 0.092 0.232 0.211 0.203 0.236 0.200 
0.280 0.105 0.109 0.266 0.247 0.237 0.274 0.236 
0.308 0.127 0.132 0.296 0.296 0.276 0.307 0.277 
0.306 0.123 0.128 0.298 0.286 0.275 0.309 0.276 
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APPENDIX F  

SYMBOLS 

a = exponent in the cumulative distribution function 

A = flow area  

b = exponent in the cumulative distribution function 

B = half of the channel width 

c = sediment concentration at a specified point  

c0 = the maximum sediment concentration 

   = the reference concentration at the distance z= 0.05y0 above the bed 

   = the mean sediment concentration of the cross-section 

C = time-averaged sediment concentration variable 

D = water depth of the channel 

DH = the hydraulic diameter 

ds = particle size 

f(c) = the probability density function 

f(u) = probability density function 

F(u) = cumulative distribution function  
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g = the acceleration due to gravity 

G = dimensionless parameter 

h = defined as the depth from the water surface 

hy =  proportional coefficient 

hξ = metric coefficient 

H = Shannon entropy or Tsallis entropy 

I(u) = velocity isovels 

m = a real number  

M = dimensionless parameter  

n = exponent in simple power law 

N = dimensionless parameter  

  = dimensionless parameter 

pi = probability of each random value 

p(x) = continuous probability density function of  random variable x 

   = the specific sediment discharge 

Q = flow discharge 

Qs = the suspended sediment discharge 
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R
2 = coefficient of determination  

  = the Rouse number 

Re= Reynolds number 

S = the channel slope.  

Sf = friction slope 

u = velocity value at a specified point 

umax = maximum velocity of the cross-section 

   = cross-sectional mean velocity 

u* = the shear velocity 

U= time-averaged velocity variable 

w = a new random variable 

x = distance from the channel center 

y = depth from the channel bed  

y0 = the depth of the shear velocity 

   = a parameter derived by Chiu (2000) 

α = the energy distribution coefficient 

β = momentum distribution coefficient 



196 

 

 

ε= turbulent eddy viscosity 

εs= diffusion coefficient for sediment transfer 

ε0 = momentum transfer coefficient at the channel bed 

η = an coordinate by Chiu (1988), which are orthogonal to ξ 

κ = von-Karman universal constant 

λ0 and λ1 = the Lagrange multipliers 

      
 

   
  

  = the kinematic viscosity 

ξ = an coordinate by Chiu (1988), one-to-one relation with a value of velocity 

ρ = the fluid density 

ρs = the sediment density 

  = bed shear stress 

ω = the correction factor  

ωs = settling velocity of sediment particle. 
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