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ABSTRACT

Efficient Nonlinear Optimization with Rigorous Models

for Large Scale Industrial Chemical Processes. (May 2011)

Yu Zhu, B.S., Zhejiang University;

M.S., Zhejiang University;

M.Eng., Texas A&M University

Chair of Advisory Committee: Dr. Carl Laird

Large scale nonlinear programming (NLP) has proven to be an effective frame-

work for obtaining profit gains through optimal process design and operations in

chemical engineering. While the classical SQP and Interior Point methods have been

successfully applied to solve many optimization problems, the focus of both academia

and industry on larger and more complicated problems requires further development

of numerical algorithms which can provide improved computational efficiency.

The primary purpose of this dissertation is to develop effective problem formula-

tions and an advanced numerical algorithms for efficient solution of these challenging

problems. As problem sizes increase, there is a need for tailored algorithms that

can exploit problem specific structure. Furthermore, computer chip manufacturers

are no longer focusing on increased clock-speeds, but rather on hyperthreading and

multi-core architectures. Therefore, to see continued performance improvement, we

must focus on algorithms that can exploit emerging parallel computing architectures.

In this dissertation, we develop an advanced parallel solution strategy for nonlinear

programming problems with block-angular structure. The effectiveness of this and

modern off-the-shelf tools are demonstrated on a wide range of problem classes.

Here, we treat optimal design, optimal operation, dynamic optimization, and

parameter estimation. Two case studies (air separation units and heat-integrated
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columns) are investigated to deal with design under uncertainty with rigorous models.

For optimal operation, this dissertation takes cryogenic air separation units as

a primary case study and focuses on formulations for handling uncertain product

demands, contractual constraints on customer satisfaction levels, and variable power

pricing. Multiperiod formulations provide operating plans that consider inventory to

meet customer demands and improve profits.

In the area of dynamic optimization, optimal reference trajectories are deter-

mined for load changes in an air separation process. A multiscenario programming

formulation is again used, this time with large-scale discretized dynamic models.

Finally, to emphasize a different decomposition approach, we address a problem

with significant spatial complexity. Unknown water demands within a large scale

city-wide distribution network are estimated. This problem provides a different de-

composition mechanism than the multiscenario or multiperiod problems; nevertheless,

our parallel approach provides effective speedup.
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CHAPTER I

INTRODUCTION

The objective of this dissertation is to develop powerful nonlinear programming al-

gorithms and to solve complicated optimization problems arising from large-scale

chemical engineering processes. In this chapter, we describe the overall motivation

and challenges on when determining optimal decisions of chemical processes with

rigorous first-principle models and developing nonlinear programming approach. In

addition, we introduce background information and terminology used throughout this

dissertation.

A. Nonlinear Optimization with Rigorous Large Scale Models

With growing appreciation of large-scale rigorous models which are based on first

principles, nonlinear optimization has also become an effective tool to obtain profit

gain through process design and operations in chemical and petroleum industries.

Large scale rigorous nonlinear models are preferred and often required due to

three main considerations. The first reason is non-linearity of the chemical process

itself. Highly nonlinear behaviors are well known characteristics in most chemical

processes. In models of reaction units or separation units, fundamental principles

including complex phase and reaction equilibrium, hydraulics, as well as mass and

energy balances, are often governed by highly nonlinear equations. In many cases,

linear models can not capture process behavior completely and accurately, resulting

in large mismatch between the model and plant. Secondly, increasing market com-

petitions drive modern petroleum, chemical and gas companies to pursue the higher

The journal model is IEEE Transactions on Automatic Control.
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profitability of their plants and meet better customer satisfaction. Companies not

only focus on stable production and operation as before, but also desire fast, timely

response to market changes. Market changes include product demands and prices,

material prices and customer satisfaction, and environmental regulations. Therefore,

it is necessary to include more and more market information into large scale rigorous

models. The third reason concerns the range of model validity. Although data-drive

models are still used in many applications, the most important advantage of rigorous

first principle models is their large range of validity. For example, the models iden-

tified by step or impulse responses can be adopted in dynamic control applications.

However, such identified models are not suitable and reliable for optimal design and

planning problems.

Optimization (the inverse problem) is more challenging than simulation (the for-

ward problem), and state of the act simulation models are usually more complex than

those used for optimization. However, the requirement of optimal decision making

for complicated chemical process design and operations seriously pushes the demands

to adopt rigorous models in optimization problems, and our desire is to close this

gap. With the development of nonlinear optimization algorithms and continuously

increasing computing power, it is more and more possible for us to obtain reliable

optimal solutions from rigorous mathematical formulations.

B. Chemical Applications of Nonlinear Optimization

There are several important applications of nonlinear optimization in the chemical

engineering field. The interaction and relationship among some of these applications

is given in Figure 1. Several case studies from these application areas are selected

in this dissertation in order to show how to efficiently solve large scale nonlinear
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optimization problems with rigorous models.

Fig. 1. Nonlinear Optimization Applications in Chemical Engineering

1. Design under Uncertainty

At the design stage, engineers not only focus on the unit structure and cost, must

consider how increasing flexibility of operation can affect future operations (especially

given significant uncertainty).Before a process design can be started, the design prob-

lem must be formulated, which asks for a product specification. After the product

design, process design addresses how to transform raw materials into desired chemical

products using the most suitable process structures and operating parameters. Tradi-

tional process design assumes the process operating capacity stays in a narrow range.

However, in modern market-oriented design and operating problems, increased flexi-

bility of the process is required to make fast operating changes. Increasing operating

flexibility asks process designers to take market uncertainty into account [1]. Without

rigorous consideration of uncertainty at the design stage, process flexibility is limited
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and the plant may not effectively handle exogenous disturbances (e.g. changes in

products demands and prices as well as raw material prices).

In order to handle potential uncertainties at design stage, the traditional ap-

proach is to design the process according to nominal values of the uncertain parame-

ters and then apply empirical overdesign factors. However, this method may not be

reliable and can lead to infeasible designs. It is certainly not guaranteed to be optimal.

Instead of the traditional overdesign method, nonlinear optimization can be adopted

to rigorously treat uncertainties. The main goal of the optimal design problem is to

determine optimal values of the desire variables, minimize or maximize the expected

value of economic function over the uncertainty space, maintain feasibility over the

the uncertainty space, and ensure customer satisfaction. This can be treated with

both probabilistic constraints and multiscenario formulations. In the later chapter of

this dissertation, we discuss how to deal with different kinds of uncertain factors and

obtain optimal design solutions for large scale chemical processes.

2. Optimal Operations with Steady State Models

After the design stage, the structures of processes and some process parameters are

fixed during the operation stage. This stage can be separated into several parts. The

top part is the planning and scheduling layer, which makes long-term decisions like

which products to produce, when and how to produce, then how to control inventory

level, in order to earn profit and maintain customer satisfaction. Forecasts of market

information like product demands and prices are used to obtain best estimation of the

optimal decisions for future operations (years/months/weeks). Because this layer has

a strong relationship with market, it is very important for managers and engineers

to make planning and scheduling decisions with consideration of various customer

satisfactions and uncertain market factors. These high-level decisions are often made
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using linear models. However, such linear models can not capture detailed process

interactions. Poor planning/scheduling decisions may challenge lower-level practical

operation due to both inaccurate market forecast and inaccuracies from linear black-

box process models.

Instead of linear black-box process models, rigorous nonlinear models can be

adopted to provide more accurate information of process behaviors. All the opera-

tional planning and real-time optimization using steady state models are typically im-

posed. However, prices of raw materials, energy, and products can change frequently.

Correspondingly, product demands may also change. Due to external markets, pro-

cess inputs and requirements are subject to both variability and uncertainty. It is

necessary to consider these factors and often multiperiod problem formulations are

used.

Furthermore, the conflicts between customer satisfaction and profitability should

also be taken into account. if we only focus on high short-term profit and ignore cus-

tomer satisfaction, nonlinear optimization problems do not need to include constraints

from customer satisfactions and the plant profit can be maximized. As time goes by,

we may lose customers or violate contracts because their demands can not be ade-

quately satisfied. In order to handle uncertain product demands from customers and

guarantee high customer satisfaction, sufficient inventory levels have to be kept. How-

ever, it is undesirable from a cost perspective to keep high inventory levels. Therefore,

multiperiod optimization formulations can be solved to maximize profits while main-

taining contractual obligations. These formulations provide managers with the tools

necessary to evaluate the trade-off between short-term profitability and customer

satisfaction in this level.

In this dissertation, we adopt nonlinear programming formulations with rigorous

models to handle energy cost variability and uncertainty in product demands with
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multiperiod inventory planning.

3. Real Time Optimization and Control

Real-time optimization (RTO) is the next layer which follows the planning and

scheduling layer. The objective of the RTO is to maximize economic performance

of the plant by seeking the detailed optimal operating conditions, based on current

process information and decisions from higher level (planning and scheduling level).

Therefore, this layer needs to optimize operating conditions in real-time according to

the market changes of product price and demands. RTO can be separated into two

different kinds of approaches: steady state and dynamic. Traditional steady-state

RTO has already been applied widely in the process, and closed-loop steady-state

RTO bring increased profits compared with traditional process control alone [2].

However, traditional steady-state RTO has some drawbacks. the first is low fre-

quency. It is normal to run twice or three times per day. second, it does not rigorously

consider the cost of transiting from one operating condition to another. Some plants

need to respond market changes very quickly, like grade change in polymerization

and petroleum process, as well as load changes in cryogenic air separation processes.

In these processes, market competition requires the capability to accomodate fast

and cost effective transitions so that companies can produce and sell on demand at

favorable prices. To provide this capability, dynamic RTO is being developed and

implemented in industrial processes. The largest difference between steady state and

dynamic RTOs is that traditional RTO only provides optimal operating conditions at

one steady state time point, while dynamic RTO provides a trajectory of operating

condition changes. As an analogy, traditional GPS only tells us our next location,

while advanced GPS can tell us a complete pathway by following the dynamic tra-

jectory it provides. Dynamic RTO does not require steady-state conditions to start
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an optimization, and it enables shorter transition times. Shorter transition times

generally result in reduction of off-specification material and therefore increased prof-

itability of a plant.

Dynamic RTO is usually formulated using large-scale nonlinear dynamic process

model. The resulting optimization problem must be solved quickly and however,

computational complexity and efficiency is the largest challenge for the dynamic RTO.

With the set-points or trajectories provided by the RTO layer, the process con-

trol layer drives the plant along these optimal operating conditions while keeping the

plant safe and stable. Currently, traditional PID controllers are stilled widely applied

in practice, because of their cheap price and acceptable performance. When higher

control performance is required by fast market changes and smaller operating mar-

gins, Model Predictive Control (MPC) has been adopted by a lot of plants because it

provides faster process responses and more suitable control actions than traditional

PID controllers. The main advantage of MPC, compared with the traditional PID

controllers, is that it can handle multi-variable interactions through the model. Cur-

rently, the MPC can be separated into two categories: linear and nonlinear. Early

MPC strategies like Dynamic Matrix Control (DMC)[3] uses a linear process model

and it can provide optimal control actions by on-line minimization of the control

objective function. A good review of industrial MPC applications can be found in

[4]. However, the control performance of the linear MPC is limited when there is

a significant mismatch between the linear models and true process behavior, either

because of a highly nonlinear process, or a wide operating range. Therefore, non-

linear MPC using rigorous models has received increasing industrial and academia

attention. Rigorous first-principle models are able to significantly reduce the mis-

match between process and model. However, as with Dynamic RTO, nonlinear MPC

also has significant computational challenges to provide fast solutions and meet on-
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line requirements. With development of advanced numerical algorithm and improved

hardware, it is a trend to adopt nonlinear MPC and improve control performance.

Both the dynamic RTO and the nonlinear MPC are large scale dynamic opti-

mization problems which have a lot of differential and algebraic equations (DAE) as

constraints. There are several methods adopted to solve the DAE optimization prob-

lems. In our process industry, main approaches are all based on NLP solvers. These

approaches can be separated into three categories, sequential, multiple-shooting, and

simultaneous strategies. In the sequential methods, also known as control vector

parameterization, only control variables are discretized, and these are typically rep-

resented as piece-wise polynomials. A DAE solver is used within an inner loop for

integration of DAE system while a NLP solver is adopted at outer loop for solving

the optimization. In simultaneous approaches, both the state and control profiles are

discretized in time, typically using collocation of finite elements. There is no defini-

tive conclusion about which approach (sequential and simultaneous) is more suitable

for large scale dynamic optimization problems since researchers are developing better

algorithms to exploit structure and provide computationally cheap approximations

for both strategies. In general, simultaneous approaches may be more suitable to

deal with DAE optimization problems which include a lot of degrees of freedom. Si-

multaneous approaches are adopted by this dissertation to deal with rigorous DAE

optimization problems, such as Dynamic RTO or nonlinear MPC. In order to obtain

more reliable solutions, uncertain disturbances transients are considered.

4. Process Estimation

Both the RTO and the nonliner MPC mentioned above depend on rigorous mathemat-

ical models of the industrial process. These models are often developed by repetitive

model discrimination and experimental design. After the original model structures
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are fixed, model parameters are tuned based on on-line data extracted and measured

from the full-scale process. Therefore, whatever on-line or off-line, parameter estima-

tion plays a critical role for further development of reliable models. As an analogy,

consider the GPS (the RTO) and the driver (the controller) which need to know the

information about weather and traffic conditions provided from the estimation part,

in order to make good decisions. Sometimes, the RTO and MPC may provide bad

operating decisions due to inaccurate state and parameter estimation.

Nonlinear programming is an effective framework for reliable parameter esti-

mation, by minimizing the objective function associated with differences between

estimated and measured variables under rigorous formulations of the process model

as constraints. In many cases, the model is very complex and the number of data is

so large that the estimation problems are very challenging and require powerful non-

linear programming approaches. Here, in the later chapter of this dissertation, we are

interested in exploiting the advantages of modern computing architecture and com-

putational strategies to solve estimation problems incorporating large-scale process

models.

C. Challenges of NLP Optimization

In the previous section, several important problem classes for chemical process en-

gineering were discussed in the areas of optimal design, operation, and parameter

estimation. The use of rigorous nonlinear models is desired to increase model fidelity

and improve solutions, however, this also increases the size and complexity of the NLP

formulation. This issue is further intractable with consideration of model variability

and uncertainty.

The desire to reduce mismatch between models and processes pushes people to
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adopt rigorous first-principle models. Mass and energy balances are required in such

rigorous models. Rigorous thermodynamic approaches like activity coefficients and

equations of state (EOS) are more frequently adopted in process models for design

and operations, compared to previously used relative volatility methods. These com-

plex mathematical descriptions lead to high order implicit equations which are very

difficult to solve. As well, the number of variables increases significantly when more

complex equations are adopted. In general, rigorous descriptions increase the number

of variables by more than a factor of two over simple models [5]. It is a rough estima-

tion that approximately 60% of computational load is resulted from solving rigorous

thermodynamic and kinetic equations in simulation and optimization [5]. When all

equality and inequality constraints consists of the rigorous model equations (balance

equations, thermodynamic and kinetic relationships etc.), the size of problems is very

huge, however, the Jacobian of the constraints is typically very sparse.

Besides complexity from the models themselves, rigorous nonlinear optimization

problems are very challenging due to other important factors. Here, we want to

briefly discuss these factors which increase difficulty when solving rigorous nonlinear

optimization problems. Problem sizes continue to grow, and parallel nonlinear op-

timization algorithms are developed in order to handle these factors well and solve

practical nonlinear optimization problems with high computational efficiency.

1. Multiple Units

Because of interactions between highly coupled process units or enterprise activities,

both industry and academia are interested in including more of product, process, and

enterprise life cycle under the umbrella of a single integrated optimization problem.

Enterprise or plant-wide optimization has received an increasing attention during re-

cent decades [6]. The operating condition changes of one unit not only have an impact
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on its own energy efficiency and economic performances, but can also significantly af-

fect the performance of its upstream and downstream units. For example, in cryogenic

air separation systems, there are three high coupled columns (High-pressure column,

HPC, low-pressure column, LPC and crude argon column, CAC). When temperature

of the HPC decreases, due to heat integration between the HPC and the LPC, the

upward stream rates in LPC also decrease correspondingly. Furthermore, increases in

the the nitrogen concentrations in side withdrawal flows to the CAC can lead to un-

stable operations when producing argon products. Therefore, it is often necessary to

consider many units within a simple optimization framework. The optimal solutions

from plant-wide optimization can provide more reliable decisions than those obtained

from single-unit optimization, and may also avoid dangerous operating situations such

as snowball effects from recycle operations.

Increasingly, local optimizations over a single unit are replaced by entire plant-

wide formulations. If each unit model is developed according to its own first principles,

the number of process variables in the rigorous plant-wide optimization problems are

close to the sum of all single unit model variables. For instance, the number of vari-

ables within cryogenic air separation systems may be several times of a conventional

distillation column. Large problem size and strong interactions among different units

result in increased difficulty and computational complexity.

2. Uncertainty

Uncertainty always exists in process design and operation.Uncertain process distur-

bances and market variability affect process performance and profit. In order to make

reliable decisions, uncertainty should be rigorously considered within the optimization

framework.

There are two main approaches to deal with uncertainty. One is based on a
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probabilistic or chance constraints and the other is based on the use of multiscenario

formulations. Both these strategies are used to address uncertain in this dissertation,

however, the multisecnerio approach causes significant increases in the problem size.

Typically, the continuous uncertainty space is discretized into different individual sce-

nario, and the objective function is an expected value over the scenarios. All of these

scenarios are included as constraints to ensure feasibility of each scenario. Individual

scenarios are coupled by stage-1 variables. When we simultaneously consider mul-

tiple uncertain parameters within the same optimization framework, the sizes and

complexities of nonlinear optimization problems increase exponentially. For example,

there are 3 uncertain parameters we need to focus on in our process. Each parameter

has its own uncertain range and we separate each uncertain range by selecting 10

sampling points. So, there are 103 scenarios in total. Therefore, considering more

uncertainties can increase sizes of nonlinear optimization problems significantly. Fur-

thermore, more scenarios can provide more reliable solution. Of course, increasing

the number of scenarios results in larger problem size and heavier computational

requirement.

Large problem size creates the need for advanced approaches. In this disserta-

tion, we exploit the structure these problems and develop an internal decomposition

approach that allows for efficient parallel solution.

3. Dynamic Systems

Several important problem classes in chemical engineering requires optimization of

systems governed by differential-algebraic equations. For design problems, the first-

principle models typically consist of all algebraic equations. However, for dynamic

operations, the rigorous models are fundamentally described by large sets of Differ-

ential and Algebraic Equations (DAEs). Sometimes, partial DAEs may be required
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to describe both spatial and time relationships of process variables.

When we solve dynamic optimization problems using simultaneous strategies,

the differential equations are discretized th and included as constraints to convert

dynamic optimization into a large scale nonlinear optimization problem. The number

of elements and the number of collocation points within each element determine the

size of the resulting NLP. Implicit Runge-Kutta and Radau collocation methods are

often used to keep high order accuracy and excellent stability properties. In this

dissertation, we do not decompose these differential problems in the time domain

(although this can be done and is the subject of current research). Instead, we address

dynamic optimization problems with uncertainty and decompose the multiscenario

structure. These problems are particularly challenging because of the large size of each

individual scenarios. In this dissertation, we are interested in developing powerful

computational strategies and solving rigorous dynamic optimization problems of a

multi-unit chemical plant under uncertainties.

4. Multiperiod Problems

A class of problems that can easily be decomposed is multiperiod problems. When

we are interested in seeking optimal operating solutions for longer term planning and

scheduling, a multiperiod programming approach is often adopted with operating

variables within each period and intermediate variables between the periods, such as

inventory levels. These may be additional benefit in allowing the start and end of

each operating period to change. And these can be considered as variables in the

optimization problem. The interaction between additional periods increases the size

and complexity of the resulting nonlinear optimization problem. A computational

strategy is developed and implemented to efficiently solve a multiple period (weekly)

operating problems under uncertain product demands.
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5. Spatial Complexity

In regions highly concentrated with chemical and petroleum industries, raw mate-

rials and products are often supplied via extensive pipeline networks. Many liquid

products, such as gasoline, liquid oxygen and nitrogen, and water, are all delivered

from the plant to different customers through pipeline networks. As an example, a

middle size oxygen pipeline network is over 50 miles long and has approximately 15

customers and 2 cryogenic air separation plants. Both gasoline and water have more

customers, and a city-wide water network can be quite huge, including hundreds of

thousands of nodes.

Optimization of large scale water network is just one example of a problem with

spatial complexity. This structure can also be decomposed by parallel approach. In

this dissertation, we consider the large-scale inverse problem of demand estimation in

a city-wide water distribution system. First-principle hydraulic models of all pipes,

pumps and other devices need to be included. Spatial complexity imposed by a huge

number of nodes and pipes challenges off-the-shelf nonlinear optimization algorithms.

In Chapter VII of this dissertation, we are interested in efficiently solving a large

scale parameter estimation problem with rigorous process model of a city-wide water

pipeline network. Parallel solution is enabled by decomposing the network spatially.

D. Dissertation Outline

While large-scale nonlinear programming (NLP) has seen widespread use within the

process industries, the desire to solve larger and more complex problems drives contin-

ued improvements in NLP solvers. Because of physical hardware limitations, manufac-

turers have shifted their focus towards multi-core and other modern parallel comput-

ing architectures, and we must focus efforts on the development of parallel computing
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solutions for large-scale nonlinear programming. In this dissertation, we develop a

parallel nonlinear interior point algorithm for problem with block-angular structure.

With the help of this parallel nonlinear optimization algorithm, we focus on

addressing several classes of nonlinear optimization problems including process de-

sign and operation under uncertainties, and parameter estimation. We argue that

these advanced parallel algorithm can tackle larger problems and allow for solution

of previously intractable problems using rigorous nonlinear models. The mentioned

challenges, such as uncertainties, dynamics, and spatial complexity, are addressed in

the following sections of this dissertation.

Chapter II describes the development of nonlinear programming approaches in

chemical process engineering. All problems in this dissertation are solved by the

existing nonlinear solver, IPOPT, or by our parallel interior point approach based

on IPOPT. A brief introduction of the line-search based interior point approach is

introduced and the advantages and disadvantages of this method are discussed. In

the later sections of Chapter II, we describe several applications of parallel computing

including simulation and optimization in the chemical process engineering area. Our

internal decomposition approach based on a schur-complement decomposition of the

KKT system is presented.

The main body of this dissertation discusses the application of these approaches

to the problem classes discussed earlier. Chapter III focuses on optimal design under

uncertainty for large scale cryogenic air separation units (ASU) and internal heat-

integrated distillation columns.

Chapter IV addresses the optimal operating problems under uncertain product

demands and different customer satisfaction levels in cryogenic air separation units.

Chapter V introduces switching time as optimization variables and focuses on ob-

taining optimal daily operating strategies under various power pricing and uncertain
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product demands for large scale cryogenic air separation units. Chapters IV and V

focus on optimal multiperiod operation under uncertainty where steady-state models

are used with each period. Chapter VI solves a dynamic optimization problem under

uncertainty. Using a large-scale differential equation models of an ASU, this chapter

focuses on improving dynamic performance during a load change while considering

process uncertainty. Chapter VII demonstrates a spatial decomposition by solving

a large-scale inverse problem to estimate unknown water demands in a city-wide

network. Several of these problems are solved by our parallel nonlinear algorithm,

in order to demonstrate scalability and the computational benefit of using parallel

computing.

The dissertation closes in Chapter VIII, where general concluding remarks and

recommendations for future work are presented.
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CHAPTER II

IPOPT ALGORITHM AND ITS PARALLEL DEVELOPMENT

Nonlinear programming (NLP) has proven to be an effective framework for obtaining

profit gains through optimal process design and operations in chemical engineering.

However, the scale of the NLP problems we wish to solve continues to grow. More

and more is being included within a single integrated optimization formulation. Mul-

tiple units and products are included in plant-wide and enterprise-wide optimization

problems. In order to reduce plant/model mismatch, the development of increas-

ing rigorous models based on first-principles increases both the size and complexity

of problem formulations. Large-scale NLP problems result when simultaneous dis-

cretization approaches are used to reformulate optimization problems with model

behaviour governed by differential and partial differential equations. Furthermore, to

improve the robustness of optimization solutions, uncertainties in both design and op-

erations may need to be considered. Multi-scenario problem formulations provide an

approach for treating uncertainty, however, these formulations grow with the number

of scenarios. Due to the above considerations, as NLP problems grow increasingly

large and more complicated, they continue to push the development of nonlinear

programming algorithms.

In this chapter, at first, the background of nonlinear programming algorithms

is introduced, focusing on the Successive Quadratic Programming (SQP) approach.

Then, the interior-point approach is introduced and discussed as an alternative to

overcome the large shortcoming of SQP methods. Following this background, we

present our implementation of a parallel interior point approach for the solution of

large-scale block-angular nonlinear programming problems based on a schur-complement

decomposition of the KKT system.
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A. SQP Algorithm

The development of nonlinear programming approaches has been very important for

effective solution of chemical process problems arising from both design and oper-

ations. One of the most important NLP algorithms is Successive Quadratic Pro-

gramming (SQP), which deals with NLP problems by successively solving a series of

quadratic programming (QP) sub-problems in order to obtain a search direction and a

step size for next iteration. the constraints of each QP sub-problem are linearizations

of the constraints in the original problem, and the objective function of sub-problem

is a quadratic approximation of the Lagrangian function. An SQP method was first

introduced by Wilson [7] in 1963 for the special case of convex optimization. The ap-

proach was popularized mainly Biggs [8], Han [9], and Powell [10] for general nonlinear

constraints.

At first, we consider a general nonlinear optimization problems only with equality

constraints for easy explanation of fundamental principles of the SQP algorithm.

min
x

f (x)

s.t. c (x) = 0 (2.1)

Here x ∈ Rn, c ∈ Rm and the functions f(x) and ci(x), are assumed to have continuous

second derivatives.

The relevant Lagrangian function for the problem in Equ. (2.1) is

L(x, λ) = f(x) + λT c(x) (2.2)

and the first order optimality conditions are given by,

∇xL = ∇f(x) +
m∑
i=1

λi∇ci(x) = 0 (2.3)
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c(x) = 0 (2.4)

Our desire is to find a critical point x for the nonlinear optimization problem with

optimal multipliers λ. Given an initial estimate (x0, λ0) of Equ. 2.3 and 2.4, we can

generate a sequence (xk, λk) by,xk+1

λk+1

 =

 xk

λk

+

 dxk

dλk

 (2.5)

where the search steps [dxk, d
λ
k ] are obtained by applying Newton’s method to the first

order optimality conditions.

∇2
xL(xk, λk) ∇cTk

∇ck 0


 dxk

dλk

 = −

 ∇xL(xk, λk)

ck

 (2.6)

The final optimal values (x, λ) can be converged by solving Equ. (2.6) repeatedly

with form of line-search to ensure global convergence. In SQP methods, an equivalent

formualtion to Equ. (2.6) can be given by the following QP sub-problem.

min
d

∇(xk)
Td+

1

2
dT∇2

xL(xk, λk)d

s.t. c (xk) +∇c (xk)
T d = 0 (2.7)

As for NLP problems with inequality constraints g(x) ≥ 0, we can derive the resulting

QP with a linear approximation of the inequality constraints

min
x

∇(xk)
Td+

1

2
dT∇2

xL(xk, λk)d

s.t. c (xk) +∇c (xk)
T d = 0

g (xk) +∇g (xk)
T d ≥ 0 (2.8)
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Historically, most SQP algorithms use a positive-definite quasi-Newton approxi-

mation, B, (e.g. BFGS) to replace ∇2
xL, removing the need to calculate the Hessian

degrees of freedom. However, enabled by automatic differentiation packages, modern

algorithms are making use of full second order information.

When the total number of variables is often larger than the number of variables,

reduced space SQP algorithms, termed rSQP, have been developed in order to improve

the computational efficiency. There are several available nonlinear software packages

based on the SQP methods such as SNOPT [11], filterSQP [12], NLPQL [13], NPSOL

[14], and DONLP [15].

However, the main shortcoming of SQP and its variants is that these algorithms

require the explicit identification of variable bounds that are active at the solution of

the QP. Barrier methods, based on earlier work by Fiacco and Mccormick [16], avoid

this problem by shifting the bound constraints to the objective function in the form

of a logarithmic barrier term.

B. Interior Point Algorithm

Interior-point methods, [17, 18, 19, 20, 21, 22], remove the combinatorial approach of

identifying the active-set by moving the variable into the objective in the form of a

barrier term. This barrier term penalizes the objective bounds as variable approach

their bond. Sequences of barrier sub-problems are solved to converge the original

problem. Interior point methods have emerged as highly efficient techniques and

are currently considered among the most powerful algorithms for large-scale NLP

problems [23].
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1. Basic Framework

Here, we briefly introduce the fundamental principles of interior point methods. Con-

sider the NLP problem:

min
x

f (x)

s.t. c (x) = 0

g (x) ≥ 0 (2.9)

where f : Rn → R, c : Rn → Rq, and g : Rn → Rm are assumed to have continuous

second derivatives. With slack variables, s, Equ. (2.9) can be modified to give,

min
x

f (x)

s.t. c (x) = 0

g (x)− s = 0

s ≥ 0 (2.10)

The problem form, shifting the bounds to the objective function in the form of a log

barrier term, gives the barrier sub-problems,

min
x,s

f (x)− µ
m∑
i=1

log si

s.t. c (x) = 0

g (x)− s = 0 (2.11)

where µ > 0 is called the barrier parameter. When µ approaches zero, the barrier

problem closely approximates the original problem. This sub-problem is solved for a

fixed value of the barrier parameter. then the barrier parameter is decreased as the

problem is solved again.
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2. Description of IPOPT Solver

The basic interior point method introduced in the last subsection is adopted by the

IPOPT solver, which considers the following problem formulation,

min
x

f (x)

s.t. c (x) = 0

dL ≤ d (x) ≤ dU

xL ≤ x ≤ xU . (2.12)

Here, the objective function f(x), the vector-valued equality constraints c(x), and

the vector-valued inequality constraints d(x) are all assumed to be twice continuously

differentiable. In the general case, not all variables have both upper and lower bounds,

and not all functions in d(x) have both upper and lower bounds. Instead of setting

these bounds to arbitrarily large positive or negative values, we use permutation

matrices, PL
x , P

U
x , PL

d , and PU
d , which allow the dimensions of the bound vectors dL,

dU , xL, and xU to be smaller than the dimension of d (x) and x. Slack variables are

added internally to convert the general inequality constraints be equality constraints.

This results in the following reformulated problem.

min
x,s

f (x)

s.t. c (x) = 0

d (x)− s = 0(
PL
d

)
s− dL ≥ 0, dU −

(
PU
d

)
s ≥ 0(

PL
x

)
x− xL ≥ 0, xU −

(
PU
x

)
x ≥ 0 (2.13)
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To simplify the notation, the following definitions are made,

sLx (x) =
(
PL
x

)
x− xL sUx (x) = xU −

(
PU
x

)
x

sLd (x) =
(
PL
d

)
s− dL sUd (x) = dU −

(
PU
d

)
s

The first-order optimality conditions of the barrier sub-problem are given by,

∇xf (x) +∇xc (x)λc +∇xd (x)λd

−µ
(
PL
x

)T (
SL
x

)−1
e+ µ

(
PU
x

)T (
SU
x

)−1
e = 0

−λd − µ
(
PL
d

)T (
SL
d

)−1
e+ µ

(
PU
d

)T (
SU
d

)−1
e = 0

c (x) = 0

d (x)− s = 0 (2.14)

with x and s are restricted to be within bounds.

Here SL
x = diag

(
sLx − x

)
, SU

x = diag
(
sUx − s

)
, SL

d = diag
(
sLd − x

)
, and SU

d =

diag
(
sUd − s

)
. Introducing zL = µ

(
SL
x

)−1
e, zU=µ

(
SU
x

)−1
e, vL=µ

(
SL
d

)−1
e, and

vU=µ
(
SU
d

)−1
e, leads to the primal-dual reformulation of the optimality conditions

as,

∇xf (x) +∇xc (x)λc +∇xd (x)λd −
(
PL
x

)T
zL +

(
PU
x

)T
zU = 0

−λd −
(
PL
d

)T
vL +

(
PU
d

)T
vU = 0

c (x) = 0

d (x)− s = 0(
SL
x

)T
zL − µe = 0(

SU
x

)T
zU − µe = 0(

SL
d

)T
vL − µe = 0(

SU
d

)T
vU − µe = 0 (2.15)
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with x and s within bounds, and zL, zU , vL, vU ≥ 0.

The Newton step for this system of equations at iteration k is given by,

Hk 0 ∇xc
(
xk

)
∇xd

(
xk

)
−

(
PL
x

)T −
(
PU
x

)T
0 0

0 0 0 −I 0 0 −
(
PL
d

)T (
PU
d

)T
∇xc

(
xk

)T
0 0 0 0 0 0 0

∇xd
(
xk

)T −I 0 0 0 0 0 0(
zL

)k
PL
x 0 0 0

(
SL
x

)k
0 0 0

−
(
zU

)k
PU
x 0 0 0 0

(
SU
x

)k
0 0

0
(
vL

)k
PL
d 0 0 0 0

(
SL
x

)k
0

0 −
(
vU

)k
PU
d 0 0 0 0 0

(
SU
d

)k




∆x

∆s

∆λc

∆λd

∆zL

∆zU

∆vL

∆vU



=



rx

rs

rc

rd

rLz

rUz

rLv

rUv



(2.16)

where Hk = ∇2
xf
(
xk
)
+∇2

xc
(
xk
)
λk
c +∇2

xd
(
xk
)
λk
d and the right hand side vector is

defined by,

rx = −
[
∇xf

(
xk
)
+∇xc

(
xk
)
λk
c +∇xd (x)λ

k
d −

(
PL
x

)T (
zL
)k

+
(
PU
x

)T (
zU
)k]

rs = λk
d +

(
PL
d

)T (
vL
)k − (PU

d

)T (
vU
)k

rc = −c
(
xk
)

rd = −d
(
xk
)
+ sk

rLz = −
(
SL
x

)k (
zL
)k

+ µe

rUz = −
(
SU
x

)k (
zU
)k

+ µe

rLv = −
(
SL
d

)k (
vL
)k

+ µe

rUv = −
(
SU
d

)k (
vU
)k

+ µe (2.17)
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Rather than solve the above system directly, the smaller symmetric augmented sys-

tem can be obtained by eliminating the step variables corresponding to the bound

multipliers.

Global convergence is ensured through the use of a filter based line search coupled

with the fraction-to-the-boundary rule to make sure x and s stay within bounds and

zL, zU , vL, vU remain positive. The line search requires that the calculated step is a

descent direction. This can be guaranteed by checking the inertia of the augmented

system (available from the linear solver). If the inertia is not correct, the linear system

is modified with the addition of δ1I in the upper left corner and/or the addition of

−δ2I in the following linear system that must be solved (at least once) at each iteration

of the algorithm.



Hk + δ1I 0 ∇xc
(
xk
)

∇xd
(
xk
)

0 δ1I 0 −I

∇xc
(
xk
)T

0 −δ2I 0

∇xd
(
xk
)T −I 0 −δ2I





∆x

∆s

∆λc

∆λd


=



r̄x

r̄s

c (x)

d (x)− s


(2.18)

where,

r̄x = rx +
(
PL
x

)T ((
SL
x

)k)−1

rLz −
(
PU
x

)T ((
SU
x

)k)−1

rUz

r̄s = rs +
(
PL
d

)T ((
SL
d

)k)−1

rLv −
(
PU
d

)T ((
SU
d

)k)−1

rUv

The solution of this linear system is the dominant computational expense of this

algorithm and is the focus of the discussion here. Further details about the IPOPT

algorithm can be found in [20] and the website: https://projects.coin.org/.
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C. Parallel Computing Applications in Chemical Process Engineering

For many optimization problems encountered in chemical engineering general off-the-

shelf solvers are sufficient for timely solutions. However, because observed factors

the size of problems we want to solve continues to increase, often outstripping the

capabilities of a single workstation and a serial algorithm.

Furthermore, computer chip manufacturers are no longer focusing on increasing

clock speeds and instruction throughput, but rather on hyper-threading and multi-

core architectures [24]. This means that free performance improvements that we have

enjoyed as a result of increased clock speed will no longer be possible unless we develop

algorithms that are capable of utilizing parallel architectures efficiently.

In fact, parallel computing has long been used as a means to address large-scale

problems in chemical engineering. In regards to simulation of nonlinear process mod-

els, Vegeais and Stadtherr [25] focus on providing a parallel computing strategy for

chemical flowsheets. Mallya et al. [26, 27] present a parallel block frontal solver for

large-scale process simulation. For dynamic systems, Paloshi [28, 29] shows a parallel

dynamic simulation strategy for industrial chemical engineering problems based on

the dynamic simulator SPEEDUP, and Borchardt [30] presents a Newton-type decom-

position strategy. In addition, there are a number of important contributions related

to parallel solution strategies for nonlinear optimization [31, 32, 33, 34]. Several

methods have been developed based on inducing separation through an augmented

Lagrangian approach [35, 36]. Biegler and Tjoa [37] study a parallel strategy for

parameter estimation with implicit models, and Jiang et al. [38] parallelize the sensi-

tivity calculation in the dynamic optimization of pressure swing adsorption systems.

Zavala, Laird and Biegler [39] apply schur-complement decomposition strategy into

solving large-scale parameter estimation problems.
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While there are a number of approaches that can be implemented for parallel

solution of NLP problems, very large-scale optimization problems are almost always

inherently structured since they are necessarily formulated from a repeating set of

mathematical expressions [40], and algorithms that specifically exploit this structure

show significant promise.

D. Internal Decomposition

Traditional approaches for parallel solution of structured optimization problems de-

pend on problem-level decomposition methods such as Bender’s decomposition [41, 42]

and Lagrangian [43] decomposition. These problem-level methods have been ex-

tremely powerful on particular problem classes. However, for the general non-convex

NLP case, they can exhibit several drawbacks, including poor convergence rates and

overall convergence difficulties[44]. An alternative to these problem-level methods

is internal decomposition, which is adopted in this work. Internal decomposition is

based on the principle that a structured optimization problem will induce structure in

the internal data required by the solver. The fundamental linear algebra operations in

the algorithm can be modified to exploit this structure. Since the fundamental steps

performed by the host algorithm remain unchanged, this approach has the primary

benefit that it enables parallel solution while retaining all the convergence properties

of the host solver.

The major computational expense in serial IPOPT is the solution of large linear

system at each iteration resulting from a Newton step on Primal-dual optimality

conditions. To solve these large linear systems efficiently, there are mainly two general

approaches: iterative and direct. Currently, several sparse parallel direct linear solvers

have been interfaced with IPOPT. MUMPS [45] is a distributed-memory parallel
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direct solver based on a multifrontal method. PARDISO [46] is a well-known shared-

memory parallel direct solver based on a multifrontal method. WSMP [47] has a

hybrid distributed and shared-memory architecture based on multifrontal algorithm.

As an extension of PARDISO on distributed-memory, the new parallel linear system

solver, PSPIKE, has been used and combined with IPOPT to solve large scale PDE-

constrained optimization problem for cancer treatment planning [24]. PSPIKE is

developed from basic SPIKE algorithm [48].

While several parallel linear solvers have been interfaced with IPOPT, these lin-

ear solvers are general in nature and not tailored to a specific, predetermined problem

structure. Significantly improved scalability is possible using a specifically tailored

approach. In this work, we develop an internal linear decomposition approach based

on the IPOPT algorithm that is tailored to problems with block angular structure.

E. Development of Parallel Interior Point Algorithm with Internal Decomposition

Since the dominant computational expense in the algorithm, is the solution of the

augmented system, any internal linear decomposition strategy must be able to solve

this system efficiently. Here, we develop a schur-complement decomposition approach

for this linear system that allows efficient solutions of problems with specialized block

angular structure. The problem formulation considered is,
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min
zq ,y

∑
q∈Q

Γq (zq)

s.t. Ωq (zq) = 0

ϕL
q ≤ (PL

ϕq
)Φq (zq)

ϕU
q ≥ (PU

ϕq
)Φq (zq)

zLq ≤ (PL
zq)zq

zUq ≥ (PU
zq)zq

Lzqzq − Lyqy = 0 (2.19)

where zq are the all local variables corresponding to block q, and y is a vector of

common variables coupling the blocks. The matrices Lzq and Lyq define the linking

relationship between local variables within each block and the common variables. The

equations Ωq contains all local equality constraints corresponding to block q. Note

that Ωq need not have the same structure in each block. The permutation matrices,

PL
ϕq
, PU

ϕq
, PL

zq , P
U
zq and Φq form the inequality constraints for each block. Note that

common variables, y, are not included in any local equality or inequality constraints.

Rather than deriving the augmented system for this problem formulation, we

simply define the mapping between the problem in Equ. 2.12 and the problem in

Equ. 2.19. The primal variables, and their bounds are given by

x =
[
z1, . . . , znq , y

]T
; (2.20)

xL =
[
zL1 , . . . , z

L
nq
,
]T

; (2.21)

xU =
[
zU1 , . . . , z

U
nq
,
]T

; (2.22)
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with the corresponding permutation matrices,

PL
x =


PL
z1

0 0 0

0
. . . 0

...

0 · · · PL
znq

0

 (2.23)

PU
x =


PU
z1

0 0 0

0
. . . 0

...

0 · · · PU
znq

0

 (2.24)

The objective function, equality constraints, inequality constraints, and bounds s

defined as,

f(x) =
∑
q∈Q

Γq (zq) , (2.25)

c(x) =
[
Ω1 (z1) , Lz1z1 − Ly1y, · · · , ,Ωnq

(
znq

)
, Lznq

znq − Lynq
y
]T

, (2.26)

d(x) =
[
Φ1(z1), . . . , Φznq

(znq)
]T

; (2.27)

dL =
[
ϕL
1 , . . . , ϕ

L
nq
,
]T

; (2.28)

dU =
[
ϕU
1 , . . . , ϕ

U
nq
,
]T

; (2.29)

with the corresponding permutation matrices,

PL
d =


PL
d1

0 0 0

0
. . . 0

...

0 · · · PL
dnq

0

 (2.30)

PU
d =


PU
d1

0 0 0

0
. . . 0

...

0 · · · PU
dnq

0

 (2.31)

Using this mapping, the augmented system of Equ. 2.18 can be rearranged to a
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block-bordered structure as,

K1 A1

K2 A2

. . .
...

Knq An

AT
1 AT

2 · · · AT
nq

δ1I





∆t1

∆t2
...

∆tnq

∆y


=



r1

r2
...

rnq

ry


(2.32)

where

Kq =



Hzq + δ1I · ∇zqΩq LT
zq ∇zqΦq

· δ1I · · −I

∇zqΩ
T
q · −δ2I · ·

Lzq · · −δ2I ·

∇zqΦ
T
q −I · · −δ2I


, (2.33)

AT
q =

[
· · · LT

yq ·
]
, (2.34)

∆tq =
[
∆zq , ∆sq , ∆λΩq , ∆λLzq

, ∆λΦq

]T
, (2.35)

rq =
[
r̄zq , r̄sq , rΩq , rLzq

, rΦq

]T
, (2.36)

Given the structure of Equ. (2.32), we can separate the problem by eliminating

each of the AT matrices in the bottom block of rows and solve the linear system with

the schur-complement approach,

[
δ1I −

∑
q∈Q

AT
q K

−1
q Aq

]
∆y = ry −

∑
q∈Q

AT
q K

−1
q rq (2.37)

Kq∆tq = rq − Aq∆y,∀q ∈ Q. (2.38)

Therefore, instead of solving the complete system with a single direct solver,
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the linear system is solved in 3 steps: (1) form the Schur-complement, (2) solve the

Schur-complement linear system for the step in the common variables, and (3) solve

for the steps in the remaining primal and dual variables.

The Schur-Complement in Equ. (2.37) is square, possibly dense, and has the

same dimension as the number of common variables. The computational cost of solv-

ing this Schur-complement is cubic in the number of common variables, therefore,

here it is desirable to keep the number of common variables few (less than a few

hundred). The reason to do this decomposition is because step 1 and 3 can be easily

parallelized. The summations in Equ. (2.37) can be parallelized using a separate pro-

cessor for each q in Q. Furthermore, the linear solver in Equ. (2.38) are independent

and can be solved in parallel. The complete serial algorithm is shown below.

Step 1: Form the Schur-complement and the right hand side

for each q in Q

factor Kq (using MA27 from Harwell Subroutine Library)

let S = [−δ1I], rsc = ry

for each q in Q

for each column j in Aq

solve the system Kqd
<j>
q = [Aq]

<j>

let S<j> = S<j> + AT
q d

<j>
q

solve the system Kqpq = rq

let rsc = rsc − AT
q pq

Step 2: Solve the Schur-complement for step in common variables

solve S ∆y = rsc using dense linear solver from LAPACK
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Step 3: Solve for steps in remaining variables

for each q in Q

solve Kq∆tq = rq − Aq∆y for ∆tq

In this algorithm, there are two potential levels of parallelism. On the first level,

each for loop overall q in Q can be parallelized. This requires one processor for each

block in Q. This level of parallelized has been implemented in the work in this dis-

sertation. The second potential for parallelism occurs in step 1. If enough processors

are available, then the for loop over all columns j in Aq can also be parallelized. This

level of parallelism is not implemented in this dissertation.

This section describes the algorithm for parallel solution of the augmented system

since this is the dominant computational expense. Nevertheless, all scale dependent

operations need to be parallelized for an efficient algorithm. This means that all

required linear operations, including all matrix-vector and vector-vector operations

much be parallelized. This is discussed further in the next section.

Our parallel implementation is based on the nonlinear optimization package,

IPOPT. A recent reimplementation of the IPOPT code focused on a design that al-

lows straightforward customization of all the linear operations for structure specific

problems. A high-level illustration of the design is shown in Figure 2. The fundamen-

tal algorithm code is separated from both the problem specification and the details of

the implementation of all linear operations. This means that the algorithm code itself

never accesses individual elements in any matrix or vector, but rather performs all

operations through the base-class interfaces of the linear algebra library. With this

approach the algorithm code is completely independent from the linear solver and

the implementation of the linear operations. This is extremely valuable since custom

linear operations can be developed that exploit the problem structure without any
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necessary changes to the algorithm code itself. Furthermore, all the theoretical bene-

fits of the IPOPT algorithm are retained since the parallel implementation performs

the same mathematical operations - it just performs them more efficiently, in parallel.

Fig. 2. Redesign IPOPT Structure with Specialized NLP and Linear Algebraic Imple-

mentation

In our implementation, the structure of the problem must be specified so it can

be recognized within the linear operations. On the problem formulation side, we

have implemented a composite NLP that forms the block-angular problem from sep-

arate NLP instances. The overall objective function is built up as the summation

of the individual contributions from each of the blocks, and the constraints from

each individual NLP is included as independent blocks in the composite NLP. A

secondary specification is used to describe the linking constraints between the vari-

ables within each block and the common variables. This was a very flexible interface

that allowed straightforward specification of the entire block-angular problem with

individual pieces. Our specific implementation supports the use of individual AMPL

models to represent each block. In parallel, a separate instance of the AMPL Solver

Library (ASL) exists for each block. Therefore, the objective function, constraint

evaluations, and derivatives could all be evaluated in parallel at the block level.
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In addition, a specialized set of linear algebra classes were developed that were

specific to the structure of the block angular problem. This includes both vectors

and matrices. All scale-dependent operations on both the vectors and the matrices

(mat-vec products, dot products, linear solves, etc.) were implemented to allow

parallel solution across individual blocks. Given this approach, it is important to

note that data corresponding to an individual block (all variables, Jacobian, and

Hessian information) is only ever stored with one process. The entire problem never

exists on one machine or needs to be analyzed on one machine. This is a tremendous

benefit that allows parallel solution of very large-scale problems with much improved

scalability. All of the required parallel communication is performed using the MPICH

implementation of the Message Passing Interface (MPI).

The next four chapters of this dissertation address several challenging problems in

chemical engineering. Each of these problem classes is amenable to parallel solution

using the algorithm previously discussed. In each chapter, the rigorous nonlinear

models, problem formulations, and solution results are discussed.
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CHAPTER III

DESIGN UNDER UNCERTAINTY

Design with unknown information is an important problem in chemical process en-

gineering area. As mentioned in the Chapter I, taking uncertain information into

account at the design phase can increase the robust operating performance and pro-

cess flexibility.

To handle potential uncertainties in the design phase, the traditional approach

is to design the process according to nominal values of the uncertain parameters and

then overdesign based on empirical factors. However, this approach may result in

infeasible or conservative design decisions. The development of systematic design

methods that explicitly consider process uncertainty has been an important research

topic for many years [49, 50]. The two dominant approaches for rigorous consider-

ation of uncertainty in optimization are the stochastic programming approach and

the chance-constrained approach. Grossmann and Guillén-Gosálbez [51] recently dis-

cussed the opportunities for the use of these approaches in the syndissertation and

planning of sustainable processes.

In the stochastic programming approach, individual scenarios are included in the

optimization formulation for each discrete realization of the uncertain parameters.

Continuous uncertainty spaces are usually approximated by appropriate sampling.

The problem can be formulated using multiple stages with potential for decisions (or

recourse) at each stage. Several good textbooks describe this approach in detail [52].

In chance-constrained programming, constraints need not be satisfied over the

entire uncertainty space, but instead they are required to be satisfied with a given

probability. While this explicit description is often desirable, these formulations can

be very difficult to solve in the general case.
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In optimal design under uncertainty, multi-scenario programming problem for-

mulations adopted in this work. Compared with chance-constrained programming,

multi-scenario formulations requires feasibility over all discrete scenarios.

A. Multi-scenario Programming Approaches

Multi-scenario optimization is a popular approach for design of chemical processes

under uncertainty. Several researchers have investigated effective formulation and

solution strategies for this class of problems [53, 54, 55, 56, 57, 58, 59, 60, 61], and

several well known reviews are available [62, 63, 64]. Two stages are typically con-

sidered in these formulations: the design stage and the operation stage. Values for

the design variables must be determined, whereas values of the control variables can

be determined during the operational stage when some uncertainties may have been

resolved.

Rooney and Biegler [60] generalize the multi-scenario approach and classify the

uncertainties into process variability and process uncertainty. Process uncertainty

refers to quantities that are unknown at both the design stage and the operation

stage. The design itself should ensure feasibility across these uncertainties. Process

uncertainty includes, for example, unmeasured disturbances and uncertain model pa-

rameters. Process variability refers to quantities that are uncertain at the design stage

but measurable during operation. Process control variables are allowed to change in

order to compensate for this variability. While multi-scenario programming is a pop-

ular approach, challenges still include efficient solution of these large-scale problems,

especially in the general nonlinear case.

The multi-scenario approach is generally viewed as focusing on reliability more

than profitability since it requires feasibility of all scenarios. However, when the
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uncertainty space is continuous, the discrete scenarios represent only a sample of the

continuous space. Recent research has demonstrated that this approach represents an

approximation of the probabilistic approach and, in special cases, rigorous confidence

intervals can be established [65, 66]. These developments, coupled with improvements

in optimization tools and computational capability, serve to increase the importance

of this approach and its practical applicability.

In conceptual design, unknown information can be classified into two categories

[60, 67]. Process uncertainty includes values that are unknown at the design stage

and the operation stage. These include, for example, unmeasured disturbances, and

unknown model parameters. Process variability includes values that are not known

at the design stage, but can be measured during operation. This variation may be

compensated by control variables.

The multi-scenario formulation can be expressed in general form as:

min
d,u

f0 (d) +
∑
k∈K

∑
m∈M

ωmkfmk (d, uk, lmk, θ
ν
k , θ

u
m)

s.t. hmk (d, uk, lmk, θ
ν
k , θ

u
m) = 0

gmk (d, uk, lmk, θ
ν
k , θ

u
m) ≤ 0, k ∈ K, m ∈ M (3.1)

Where the design variables are given by d, control variables are given by u, and

the state variables are given by l. Inequality and equality constraints are given by g

and h respectively. In the multi-scenario formulation, the uncertainty space is sepa-

rated into discrete points. The index set K is defined for discrete values of variable

parameters, θν , and the index set M is defined for discrete values of unknown param-

eters, θu. The objective function includes fixed costs related to the design variables

and a weighted sum arising from a quadrature representation of the expected value

of the objective over the uncertainty space. Discretization points are selected for
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this quadrature, however realizations can be added to enforce feasibility at additional

points. This gives a large-scale nonlinear multi-scenario problem with significant cou-

pling or interaction induced by both the control and design variables. We assume

that the control variables u can be used to compensate for measured variable param-

eters, θν , but not the uncertainty associated with unknown parameters, θu. Thus,

the control variables are indexed over k in the multi-scenario design problem, while

the state variables, determined by the equality constraints, are indexed over m and

k. There are two case studies which are investigated for design under uncertainty in

this chapter.

B. Case Study 1: Design under Uncertainty for Cryogenic Air Separation Units

Cryogenic air separation systems are widely utilized for providing significant quanti-

ties of high purity nitrogen, argon, and oxygen products in many industries including

the steel, chemical, refining, semiconductor, and aeronautical industries. Methods

of air separation include cryogenic and non-cryogenic approaches [68]. Although

non-cryogenic processes such as pressure swing adsorption and membrane separation

have become more competitive, cryogenic distillation technology is still the dominant

choice for producing large quantities of very high-purity and liquefied air products

[69]. However, cryogenic air separation is an energy-intensive process consuming large

amounts of electricity to compress air for separation and liquefying gas products. The

industrial gas industry consumed approximately 31,460 million kilowatt hours (over

$ 700 million/year) in the USA in 1998, which accounts 3.5% of the total electricity

purchased by the manufacturing industry [70, 71]. In 2002, the industrial gas industry

consumed approximately 35,000 million kilowatt hours of electricity in the USA [72],

which is an increase of 11.3% compared with the amount in 1998.
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1. Current Research about Air Separation Systems

Optimizing the design of the cryogenic air separation system has the potential to

significantly affect not only the capital investment, but also the future economic

performance. In practice, most current design schemes focus on specialized column

structures and opportunities for energy and mass integration. Agrawal and cowork-

ers simulate and analyze various thermal coupling methods [73], structured packing

on packed columns for argon production [74], and multiple component distillation

sequences [75, 76] in order to improve energy efficiency and separation performance.

Egoshi, Kawakami, and Asano [77] address the problem of predicting practical sep-

aration performance and obtaining the optimal design of cryogenic air separation

plants using a rigorous transport model for structured packing. Regardless of the

design strategy used, in order to retain future process flexibility it is important to

consider potential uncertainties during the design phase. These include uncertainty

in process performance, uncertainty in product demands and pricing, and uncertainty

in availability and pricing of process inputs.

In addition to design problems, current research on cryogenic air separation

columns includes process optimization and control. Here, we briefly review the rel-

ative literature. Optimization of cryogenic air separation systems also includes high

level planning and scheduling. Dynamic optimization strategies, linear model predic-

tive control, and nonlinear model predictive control techniques have all been applied

to cryogenic air separation systems [78, 79, 80, 81, 82, 83, 84, 79, 85]. These studies

have focused primarily on the use of rigorous models for improving controller perfor-

mance, and on determining optimal operating profiles targeting specific load changes.

However, formulations like these, with detailed process models, typically do not con-

sider high level operating concerns like uncertainty in product demands. On the other
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hand, planning and scheduling studies [86, 87, 88, 71, 89] do consider market uncer-

tainty and product inventory when planning operating strategies. To enable efficient

solution of these challenging problems, simplified or linearized models are often used,

which may ignore the integrated nature of the system and the nonlinear interactions

between multiple products.

In the following chapters, we investigate optimization and control under uncer-

tainty of cryogenic air separation columns. In this chapter, we discuss the design

of integrated air separation units considering both process uncertainty and process

variability.

2. Uncertainties in Air Separation Process

There are several uncertainties affecting optimal solutions of design and operating

problems. One example of uncertainty in the model arises in the selection of ther-

modynamic methods and parameters. The primary components are separated under

extremely low temperatures, and standard packages may not adequately describe the

behavior of the system under these conditions. Indeed, many companies specializing

in air separation have spent significant resources developing specialized thermody-

namic methods for their systems.

A second form of uncertainty relates to unknown demands on the process. Air

separation systems can produce three component products of various grades in both

vapor and liquid phases. Different customers have different product and purity de-

mands, and these demands can change with seasons and other external factors. It is

important to consider this product demand uncertainty during the design phase and

develop a process that is flexible enough to meet future product demands.

A third form of uncertainty comes from unknown or varying availability of process

inputs and pricing. The dominant operating expense in cryogenic air separation
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systems is the electricity required by the process. Peak versus off-peak costs and

real-time pricing changes, can significantly affect the economic performance of the

process. This uncertainty is well studied in a number of articles [87, 71, 89].

3. Process Description

Considering cryogenic air separation systems, uncertainty can arise from several

sources. Process uncertainty (which is unknown during operation) can arise from

unknown physical properties. For example, activity coefficient models for N2–Ar–O2

systems contain binary interaction parameters that are sensitive to argon purities

and pressures [90]. Process variability (or measurable uncertainty) can arise because

of changing product demands. In order to satisfy variable product demands, the

cryogenic air separation system may be required to switch among different operating

conditions. The argon product variability is often ignored; however, it can affect the

optimal design significantly.

A typical cryogenic air separation system includes a double-effect heat integrated

distillation column with a side column of crude argon. The double distillation column

is the common part of all cryogenic air separation systems, while a crude argon

column (CAC) is adopted in some systems for coproduction of argon. Addition of the

argon column increases the complexity of the system significantly through additional

coupling and recycling, and makes operation more difficult than the system with a

double-effect distillation column alone. Figure 3 shows the process flowsheet for the

system studied in this paper. The crude air feed stream is compressed and primary

impurities such as water and carbon dioxide are removed. After cooling, a portion

of the air feed stream is expanded and introduced into the low-pressure distillation

column (LPC) containing 70 theoretical stages. The remaining feed air stream enters

the bottom of the high-pressure distillation column (HPC) with 36 theoretical stages.
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Fig. 3. Simplified Structure of the Cryogenic Air Separation Process

In the combined condenser/reboiler, the partially liquefied stream in the bottom of

the LPC is vaporized, while the nitrogen vapor stream in the top of the HPC is

condensed. A liquid nitrogen stream from the top of the HPC is introduced into the

top of the LPC as the reflux stream. A portion of the oxygen-rich liquid from the

bottom of the HPC is introduced into the 17th tray of the LPC in order to produce

oxygen product with high purity. The remainder of the oxygen-rich liquid is used by

the condenser at the top of the CAC to condense the argon-rich stream and produce

the reflux for the CAC. A side vapor stream primarily composed of oxygen and argon

is withdrawn at the 28th tray of the LPC and separated in the CAC. Liquid oxygen

product is directly taken from combined condenser/reboiler and gas oxygen product

is taken from the bottom of the LPC. Liquid nitrogen product is taken from the top

of the HPC while gas nitrogen product is from the top of LPC. Crude argon product



44

is withdrawn from the top of CAC.

This is a highly integrated system that can be very difficult to design and operate.

Typically, there are a large number of design variables which need to be determined

in the detailed design phase of a cryogenic air separation plant. However, this study

mainly focuses on conceptual design under uncertainty. Therefore all valves are as-

sumed to be throttle expansion valves, the mass loss in pipelines are assumed to

be negligible, and constant heat transfer area and coefficients are used in the heat

exchanger calculations. Based on process dynamics of the cryogenic air separation

system, five main control variables, u = [U1, U2, U3, U4, U5], are selected to compen-

sate for variability of argon product demands. These variables are defined as the feed

air stream of the HPC (U1), the feed air stream of the LPC (U2), the reflux flow from

the HPC to the LPC (U3), the waste nitrogen stream (U4), and the side withdrawal

from the LPC to the CAC (U5). The five main design variables are the diameters of

the three distillation columns (the HPC, LPC and CAC), the heat transfer area of

the combined condenser/reboiler, and the brake horsepower of the compressor. Table

I shows the nominal operating conditions of the plant used in the case study.

4. Mathematical Steady State Model of Air Separation Columns

The detailed air separation model is derived using the following four assumptions: (1)

complete mixing on each tray and 100% tray efficiency; (2) negligible heat losses in the

tray; (3) constant pressure drop on each tray; (4) uniform pressure and temperature

on each tray.

The model includes mathematical expressions for the three distillation columns,

two main heat exchangers, two integrated exchangers (one between the HPC and

the LPC, another between the CAC and the HPC), and several throttle valves. The

model contains mass and energy balances for all the exchangers and throttle valves.
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Table I. Nominal Operating Conditions for Design of the Air Separation Unit

Process variable Values

Gas oxygen product, mol/s 2.44

Liquid oxygen product, mol/s 0.64

Oxygen product purity ≥98%

Gas nitrogen product, mol/s 13.13

Nitrogen product purity ≥99.99%

Argon product purity ≥96%

Pressure of the LPC, MPa 0.13-0.14

Pressure of the HPC, MPa 0.68-0.69

Pressure of the CAC, MPa 0.12-0.13

We assume that there is no energy loss in the exchangers, and that the pressure

drops are constant across these units. The three distillation columns are all modeled

using the following tray-by-tray equations, physical property expressions, and phase

equilibrium.

The mass balances for each tray are given by,

F V
j + FL

j + Vj+1 + Lj−1 − Vj − SV
j − Lj − SL

j = 0, (3.2)

where j is the index of each tray from the top of each column. F V
j and FL

j are the

vapor and liquid molar feed flows entering into the jth tray. SV
j and SL

j are the vapor

and liquid molar side flows out of the jth tray. The vapor and liquid flow rates are

given by Vj and Lj, respectively. Component mass balances are given by,

Vj+1yi,j+1 + Lj−1xi,j−1 + F V
j zVi,j + FL

j z
L
i,j

−
(
Vj + SV

j

)
yi,j −

(
Lj + SL

j

)
xi,j = 0 (3.3)
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where i ∈ CP is the index of each component(1-Nitrogen, 2-Argon, 3-Oxygen), the

liquid and vapor compositions are given by xi,j and yi,j respectively. z
V
i,j and zLi,j are

the vapor and liquid compositions of feed flows entering the jth tray.

The model includes tray by tray energy balances, expressed by,

Vj+1H
V
j+1 + Lj−1H

L
j−1 + F V

j HFV
j + FL

j H
FL
j

−
(
Vj + SV

j

)
HV

j −
(
Lj + SL

j

)
HL

j = 0, (3.4)

where HFV
j and HFL

j are the vapor and liquid enthalpies of feed flows entering into

the jth tray. The vapor and liquid enthalpies of the jth tray are given by HV
j and HL

j

respectively. HFV
i,j , HFL

i,j , HV
i,j and HL

i,j are calculated by,

HV
j =

∑
i∈CP

yi,jH
V
i,j (Tj,Pj) + ∆HV

mix (Tj,Pj) (3.5)

HL
j =

∑
i∈CP

xi,jH
L
i,j (Tj,Pj) + ∆HL

mix (Tj,Pj) (3.6)

HFV
j =

∑
i∈CP

yi,jH
FV
i,j

(
T F
j ,PF

j

)
+∆HFV

mix

(
T F
j ,PF

j

)
(3.7)

HFL
j =

∑
i∈CP

xi,jH
FL
i,j

(
T F
j ,PF

j

)
+∆HFL

mix

(
T F
j ,PF

j

)
(3.8)

where HFV
i,j , HFL

i,j , H
V
i,j and HL

i,j are the vapor and liquid enthalpies of each component

in each tray respectively, while these enthalpies are calculated based on relevant

bubble point temperatures (T ) and pressures (P). ∆Hmix is mixture enthalpies and

calculated with relevant compressibility factors and binary interactive parameters.

The temperature and pressure dependence of the enthalpies were represented using a

high-order polynomial fit to simulation data.

Summation equations in the jth tray are written by

∑
i∈CP

yi,j = 1 (3.9)
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The vapor-liquid equilibrium expressions for each tray are given by,

yi,j = κjγjKi,jxi,j + (1− κj) yi,j+1 (3.10)

where κj is the Murphee tray efficiency of the jth tray, K is the ideal vapor-liquid

equilibrium constant calculated using Antoine equations (3.12) and γ is the activ-

ity coefficient calculated with Margules equations (3.13-3.15). The tray efficiency is

assumed to be 100% in this study, giving (3.11) from (3.10).

yi,j = γjKi,jxi,j (3.11)

Ki,j = exp [Ai − (Bi/ (Tj + Ci))]/Pj (3.12)

log γ1,j =

(
A1,3x

2
3,j + A1,2x

2
2,j + (A1,3 + A1,2 − A2,3) x3,jx2,j

RTj

)
(3.13)

log γ2,j =

(
A1,2x

2
1,j + A2,3x

2
3,j + (A1,2 + A2,3 − A1,3) x1,jx3,j

RTj

)
(3.14)

log γ3,j =

(
A1,3x

2
1,j + A2,3x

2
2,j + (A1,3 + A2,3 − A1,2) x1,jx2,j

RTj

)
(3.15)

where R is the ideal gas constant and Margules constants, ai,k describe the liquid

phase interactions between components i and k. Margules constants can be found in

[90] while Antoine constants are reported in http://webbook.nist.gov/chemistry/.

The combined condenser/reboiler is modeled as an additional normal tray for

both the HPC and the LPC, which is given by (3.16).

Q1 = UA1

(
THPC
1 − TLPC

70

)
= V HPC

1

(
HV,HPC

1 −HL,HPC
1

)
=

(
V LPC
70 + SV

70

) (
HV,LPC

70 −HL,LPC
70

)
(3.16)

where Q1 is the energy transfer from the HPC to the LPC. UA1 is the heat transfer

coefficients in the condenser/reboiler. THPC
1 is the temperature at the first tray of

the HPC and TLPC
70 is the temperature at the last tray of the LPC. V HPC

1 is the vapor
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flow of the first tray in the HPC, which is fully condensed by Q1. The heat Q1 is

released to the vapor flow V LPC
70 and oxygen product flow SV

70 at the last tray of the

LPC.

Similarly, the heat-integrated condenser of the CAC is modeled using (3.17). The

energy, Q2, is extracted from the condensing vapor stream at the top of the CAC and

released to a portion of the liquid oxygen-rich stream so that this stream is partially

vaporized.

Q2 = UA2

(
TCAC
1 − TO2−rich

)
= V CAC

1

(
HV,CAC

1 −HL,CAC
1

)
= ∆VO2−rich

(
HV

O2−rich
−HL

O2−rich

)
(3.17)

where TCAC
1 , HV,CAC

1 and HL,CAC
1 are the temperature, vapor and liquid enthalpies at

the first tray of the CAC, respectively. V CAC
1 is the vapor flow at the first tray of the

CAC. TO2−rich
and ∆VO2−rich

are temperature and the partially vaporized amount in

the oxygen-rivh stream, respectively. HV
O2−rich

and HL
O2−rich

are the vapor and liquid

enthalpies for vaporization in the oxygen-rich stream.

5. Mathematical Formulation for Conceptual Design under Uncertainty

The following expressions are used to capture design relationships [91, 92]. Column

diameters are given by,

Dm,j =

(
0.0164V 0.5

m,j

[
378Mg

(
Tm,j

520

)(
14.7

Pm,j

)] 1
4

)
(3.18)

where Pm is the tray pressure of each column, and Mg is the molecular weight of

distillate.

Dm = max(Dm,j),m ∈ (LPC,HPC,CAC) (3.19)



49

The height of each column is,

Hm = 2.4nm, (3.20)

where nm is the number of stages in each column and the heat transfer area in the

combined condenser/reboiler can be described by,

A =
Q

U∆T
, (3.21)

where ∆T is the temperature driving force. QI is the transferred heat between the

LPC and the HPC, and U is the heat transfer coefficient. The capital costs of column

shells and trays (CSC and CTC) are estimated with the following equations:

CSCm =

(
M&S

280

)
102D1.066H0.802 (cin + cmcp) (3.22)

CTCm =

(
M&S

280

)
4.7D1.55H (cs + ct + cm) (3.23)

Here, M&S is the Marshall and Swift index. The parameters cp, cm and cin are the

pressure range, construction material and installation cost coefficients. The param-

eters cs and ct are the tray spacing and design cost coefficients, respectively. The

capital cost of heat exchanger (HEC) in combined condenser/reboiler is,

HEC =

(
M&S

280

)
102A0.65 (cin + cm (ct + cp)) (3.24)

and the capital cost of the main compressor (CPC) is,

BHP =

(
(U1 + U2)

1−∆Fl

κ

κ− 1
RTin

((
Pout

Pin

)κ−1
κ

− 1

))
(3.25)

CPC =

(
M&S

280

)
518 (BHP )0.82 (cin + ct) (3.26)

where BHP is the brake horsepower of the compressor. The entrance and exit pres-

sures of the compressor are Pin and Pout, and ∆Fl is the loss amount of the feed flow
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in the compressor. The adiabatic index number of the gas is given by k.

Because the major operating cost of cryogenic air separation processes is required

electrical power, we assume the other operating costs can be ignored. Here, we also

assume that a liquefier is not installed in the system. The power price is assumed to

be constant in this study, however, more complex formulations considering uncertain

power prices will be investigated in future work.

The electricity cost (EC) is given by,

EC = Cele
BHP

η
(3.27)

where Cele is electricity price ($0.0574/(kWh)), and η is the efficiency of the compres-

sor (0.75). The total annual cost (TAC) of our air separation process is given by the

following form,

TAC =
(CSC + CTC +HEC + CPC)

tp
+
∑
k∈K

∑
q∈Q

(ωqkECqk) (3.28)

where tp is the payback time, which is assumed to be 3 years. The last term in

Eq. (3.28) is a numerical integration for the expected value of the operating cost.

In the case studies, we assume that variability and uncertainty are both uniformly

distributed. Therefore, the weights ωqk are all equal. More accurate quadrature rules

could be used along with other distributions. Other costs such as pipelines and valves

are not included in this study.

6. Numerical Results

The base formulation described in the previous subsection is used to find the optimal

design for the nominal case. In addition, a multi-scenario formulation is developed
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Fig. 4. Timing Results for Multi-Scenario Approach (Default options)

that considers uncertainty in argon product demands and the thermodynamic param-

eter α12, and evaluates the objective using the expected value of the operating costs.

Before discussing the optimization results in detail, we first present the timing results

showing the scalability of the multi-scenario approach with IPOPT.

Argon product demands are assumed to be uniformly distributed between 0.1063

(-20%) mol/s and 0.1595 (+20%) mol/s, and the binary interaction parameter, α12,

is assumed to be uniformly distributed between 7.0 and 9.5. Figure 4 shows the

IPOPT solution times using the default options. The same number of discretizations

is used for each uncertain parameter, and the category labels give the total number

of scenarios considered for each run. The white bars on the left list the average CPU

time for each iteration. The grey bars on the right list the total CPU time in seconds.

Note that the number of iterations need not be the same for each case. Furthermore,

by default IPOPT uses exact first and second derivative information, and the number
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Fig. 5. Timing Results for Multi-Scenario Approach (L-BFGS)

of iterations remains relatively constant as the size of the problem increases.

Figure 5 shows the timing information using the quasi-Newton approach within

IPOPT. With this option, the Hessian information is approximated using a limited

memory BFGS update. Similar scaling is seen for this approach. The number of

variables in the 4 scenario case is approximately 8,000, while the number of variables

in the 196 scenario case is approximately 675,000. These results demonstrate that

off-the-shelf nonlinear programming tools are able to scale effectively to reasonably

large problems, even when the models are highly coupled and nonlinear.

Taking the largest number of scenarios (196 scenarios), optimal results from the

multi-scenario formulations are compared with optimal results for the nominal case in

Table II. As expected, the design is more conservative when uncertainty is considered.

The optimal diameter of the HPC is the least sensitive to the uncertainty considered

here.

The diameter of the CAC and the brake horsepower are significantly affected.
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Table II. Optimal Design for the Nominal and Multi-scenario Formulation of the Air

Separation Unit

Variables Nominal Case Multi-scenario Case Difference

Diameter of LPC (m) 0.66 0.76 15.65%

Diameter of HPC (m) 0.88 0.95 8.24%

Diameter of CAC (m) 0.44 0.54 23.42%

BHP (KW) 90 113 25.57%

Heat exchanger area (m2) 24 26 11.45%

TAC ($106) 1.412 1.586 12.35%

This is reasonable, since the variability in argon demands will require greater process

flexibility. This result also shows that it is not optimal (and may not be feasible)

to absorb potential argon variability by operational changes alone. Both design and

operation changes should be considered. The effects of these uncertainties on the

diameter of the LPC are more dramatic than on the diameter of the HPC. This

is expected given the variability in argon production and the integration between

the LPC and the CAC. Increased withdrawal from the LPC to the CAC, coupled

with variability in recycle from the CAC, requires increased flexibility in the LPC. In

contrast, the CAC is less tightly integrated with the HPC.

Figure 6 shows how the optimal design changes as a function of the number

of scenarios considered. The values for the argon demand and the uncertain binary

interaction parameter were selected randomly from the ranges given previously. While

it is difficult to guarantee that the scenarios sufficiently span the space of variability

and uncertainty, it can be seen that the multi-scenario design solution converges as

we increase the number of scenarios.
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Fig. 6. Dependence between Multi-scenario Design and Increasing Scenario Number

7. Conclusions and Future Work

a. Summary and Conclusions

This work uses a multi-scenario approach to determine the optimal design of a cryo-

genic air separation process considering two classes of uncertainty. Process variability

is describes uncertainty that is measurable during operation, and control variables can

be used to compensate for this uncertainty. Process uncertainty represents unmea-

surable quantities like uncertain model parameters or unmeasured disturbances. In

this paper, argon product demands were selected as an example of process variability,

and unknown activity coefficients were selected as an example of process uncertainty.

As expected, the optimal design is more conservative when uncertainties are con-

sidered. However, the multi-scenario approach provides a more rigorous treatment of

uncertainty than applying traditional overdesign factors. The approach allows for a
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more efficient design by capturing the potential for operational changes in the control

variables as a function of process variability. Furthermore, nonlinear interactions be-

tween the uncertainties, the design decisions, and these potential control possibilities

are rigorously captured.

While multi-scenario programming is a popular approach for treatment of un-

certainty in optimization, it can be challenging to find efficient solution strategies

for these large-scale problems, especially in the general nonlinear case. Neverthe-

less, there have been significant advancements in nonlinear programming algorithms,

and the capabilities of general off-the-shelf solvers (e.g. IPOPT) have increased dra-

matically. The largest multi-scenario problem considered in this paper includes 196

scenarios and more than 675,000 variables. Nevertheless, this formulation solves in

under 20 minutes on a standard desktop computer. These results show that recent al-

gorithm improvements, coupled with continued increases in computational capability,

allow practical application of the multi-scenario approach with rigorous, large-scale

nonlinear models. This will be even more evident as we continue to develop algo-

rithms that can exploit modern computing architectures to promote efficient solution

in parallel.

b. Future Work

In this study, a rigorous model of an air separation process was developed that con-

sidered three highly integrated columns. The two uncertainties considered were a

thermodynamic interaction parameter and the argon product demand. Future work

is needed to include treatment of additional uncertainties. A key variability during

operation is the price of electricity, which is the dominant operating cost for the pro-

cess. A careful analysis will help engineers further quantify the impact of this and

other uncertainties on design and operation.
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This work used a steady-state model and assumed that perfect control was pos-

sible. Given the potential control challenges with such a highly integrated process,

these optimization formulations should consider integrated design and control.

Finally, the main challenge in multi-scenario optimization is still efficient solu-

tion of the large-scale problem. The dominant computational expense of the IPOPT

algorithm is the solution of the augmented linear system resulting from a Newton

iteration of the primal-dual equations. Given a problem with a specialized struc-

ture, decompositions are possible that can exploit this structure and produce efficient

solutions in parallel. We have developed a package, SCHUR-IPOPT, that uses an

internal decomposition approach for the parallel solution of structured nonlinear pro-

gramming problems based on the serial IPOPT algorithm. For the general design

under uncertainty formulation, previous results on a large distributed cluster have

demonstrated that the solution time is almost constant as scenarios and processors

are added [93, 39, 85]. In the general multi-scenario formulation considering both pro-

cess variability and process uncertainty, there is additional structure. If the problem

is decomposed with a single scenario for each processor, then the common variables

in the parallel decomposition include both the control variables and the design vari-

ables. However, there is no restriction that each individual block needs to consider

only a single scenario. If the problem is decomposed over the process variabilities

only, then the number of common variables considered in the parallel decomposition

includes only the design variables. With this scheme, the coupling induced by the

control variables is handled internally by the serial linear solver. Furthermore, nested

decomposition strategies are possible to promote further parallelization. Future work

will include the development of specialized decomposition strategies for this nested

structure.
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C. Case Study 2: Design under Uncertainty for Internal Heat-integrated Distillation

Columns

1. Process Description

In this subsection, we determine optimal design solutions under uncertainty with con-

sideration of controllability for an internal heat-integrated distillation column. Here,

on schur-complement decomposition approach is used for parallel solution. Internal

heat-integrated distillation column has received increased attention in recent years due

to its high efficiency and potential for energy saving [94, 95, 96, 97, 98, 99, 100, 101].

Figure 7 shows the structure of this process. The rectifying section and the strip-

ping section in this process are separated into two columns operating at the different

pressures. To adjust the pressures, a compressor and a throttling valve are installed

between the two sections. Unlike the case of the conventional columns, the con-

denser and reboiler are not required in this process. Most previous research on this

Fig. 7. Simplified Structure of Internal Heat-integrated Distillation Column

process focuses on two areas: conceptual design [95, 97, 98, 99] and dynamic con-
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trol [97, 100, 101]. However, little existing research in this area considers potential

uncertainties during the design phase. Adopting deterministic values of operating

parameters without considering the impact from unknown information may produce

a design that does not perform as expected. Conceptual design under uncertainty

can provide more reliable performance in practical scaleup processes, compared to

nominal design parameters that do not consider uncertainty.

2. Mathematical Model of the Process

In order to minimize the total annual cost, a rigorous mathematical model of internal

heat-integrated distillation column is built in the modelling language, AMPL, based

on the mass and energy balances coupled with the equilibrium relationships. The

number of total trays and the feed tray are fixed to 30 and 16, respectively, while the

stripping section pressure is assumed to be 0.1013MPa. Detailed model information

can be found in references [94, 96].

0 = V2Y2 − V1Y1 − L1X1 (3.29)

0 = Vj+1Yj+1 − VjYj + Lj−1Xj−1 − LjXj, j = 2, .., n− 1 and j ̸= f (3.30)

0 = Vf+1Yf+1 − VfYf + Lf−1Xf−1 − LfXf + FZf (3.31)

0 = −VnYn + Ln−1Xn−1 − LnXn (3.32)

0 = Lj −
j∑

k=1

Qk/λ, j = 1, .., f − 1 (3.33)

0 = Lf+j−1 − Lf−1 − Fq + Lj, j = 1, .., f − 2 (3.34)

0 = Ln − F − V1 (3.35)

0 = V1 − F (1− q) (3.36)

0 = Vj+1 − V1 − Lj, j = 1, .., f − 1 (3.37)
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0 = Vf+j − Vf + F (1− q)− Lj, j = 1, .., f − 2 (3.38)

0 = Yj − αXj((α− 1)Xj + 1)−1 (3.39)

0 = Qj − UA (Tj − Tj+f−1) , j = 1, .., f − 1 (3.40)

0 = Tj − b/
(
a− log

(
P sat
j

))
+ c (3.41)

0 = P sat
j − P (Xj − (1−Xj) /α)

−1 (3.42)

where V and L are vapor and liquid flow rates; T , P , and F are temperature, pressure,

and feed flow rate; X and Y are the mole fraction of the liquid and vapor in each

tray; f is the feed tray, and Q is the heat transfer amount of each tray. UA is the

heat transfer rate and α is the relative volatility. The variables q and Zf are the feed

thermal condition and mole fraction of the feed respectively, and n is the number of

total trays indexed by j. Pr is pressure of the rectifying section.

In addition, some inequality constraints are given by,

V1Y1 − FZf ≤ 0 (3.43)

Y1 ≥ 97% (3.44)

Xn ≤ 4% (3.45)

0.1013Mpa ≤ Pr ≤ 0.7091Mpa (3.46)

0 ≤ q,Xj, Yj ≤ 1 (3.47)
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a. Conceptual Design Formulation

The design formulas for installation and operating cost are given briefly and detailed

information can be found in references [99, 97, 91, 92].

D = max

(
0.0164V 0.5

j

[
379MG,j

(
Tb,j

520

)(
14.7

PT,j

)] 1
4

)
(3.48)

H = 2.4n (3.49)

A =
Q

U∆T
(3.50)

CSC =

(
M&S

280

)
102D1.066H0.802 (cin + cmcp) (3.51)

CTC =

(
M&S

280

)
4.7D1.55H (cs + ct + cm) (3.52)

HEC =

(
M&S

280

)
102A0.65 (cin + cm (ct + cp)) (3.53)

BHP =

(
F

1−∆Fl

κ

κ− 1
RTin

((
Pout

Pin

)κ−1
κ

− 1

))
(3.54)

CPC =

(
M&S

280

)
518 (BHP )0.82 (cin + ct) (3.55)

EC = Cele
BHP

η
(3.56)

TAC =
(CSC + CTC +HEC + CPC)

tp
+
∑
k∈K

∑
m∈M

(ωmkECmk) (3.57)

where D are the diameters of the distillation column, H are the heights of the distil-

lation columns, A is the heat transfer area, and ∆T is the temperature driving force.

The capital costs of column shells and trays as estimated are given by CSC and

CTC, respectively. The cp, cm, and cin are the pressure range, construction material,

and installation cost coefficients. The variables cs and ct are the tray spacing, and

design cost coefficients. The capital costs of heat exchanger and a main compressor
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are given by HEC and CPC, respectively. The major operating cost is given by EC.

Cele is electricity price and η is the efficiency of the compressor. The total annual

cost, (TAC), is minimized in our optimization problem.

The three main design variables selected include: the diameter of distillation

columns, D, the heat transfer area, UA, and the brake horsepower, BHP . Again,

two types of uncertainty are considered in this work, unmeasurable and measurable

uncertainty. The relative volatility of benzene and toluene, which may vary from

2.517 to 2.117 is selected as an unmeasurable uncertainty. The range is discretized by

selecting 7 points assuming a normal distribution. Measurable uncertainties include

the concentration of the feed flow, Zf , which varies from 0.55 to 0.45, and the feed

flow rate, F , which varies from 90 to 110 (mol/s). Both of them are measurable

during operation and may be compensated by two control variables: the rectifying

section pressure, Pr, and the thermal condition in the feed flow, q. Here, we dis-

cretize the uncertainty in Zf and F by selecting 15 points with normally distributed

assumptions. In this large-scale structured problem, there are 1575 scenarios and

approximately 300, 000 total variables including 453 common variables (the design

and control variables common across the scenarios).

3. Controllability Constraints

In the previous subsection, it is assumed that the control variables are able to compen-

sate process variability caused from the measurable uncertainties Zf and F . However,

the above assumption is not easily satisfied. Inherent conflicts between process de-

sign and control are present in a lot of chemical processes. The design solution that

results in challenging control problems should be avoided even if this design provides

low capital and operating cost. Therefore, this work considers controllability con-

straints on the conceptual design in order to avoid potential serious control problems.
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Here, we only select the rectifying section pressure, Pr, and thermal condition in the

feed flow, q as control variables to reject disturbances from both mole fraction of feed

flow and feed flow rate, based on our previous dynamics research [100, 101]. The work

does not attempt to test all potential control pairings. A relative gain array (RGA)

is employed for interaction analysis. The 2× 2 RGA matrix is defined by:

RGA =

 λ11 1− λ11

1− λ11 λ11

 (3.58)

The RGA value λ11 of the internal heat integrated distillation column is limited

greater than 0.65, to avoid difficult control interactions during dynamic operation. In

addition to RGA, the condition number (γ) is also adopted here as an index of loop

interaction, which is the ratio between the maximum singular value (σmax) and the

minimum singular value (σmin) of the process shown in 3.59. The condition number

of internal heat integrated distillation column is limited to be less than 9.

γ = σmax/σmin (3.59)

4. Optimal Results

The objective function of the above problem focuses on how to minimize the total

annual cost. In order to obtain comprehensive design information, the results with

and without uncertain parameters and controllability, are compared and listed in the

Table III. As expected consideration o uncertainty and controllability leads to more

conservative designs.

To demonstrate the scaleup properties of Schur-IPOPT on a multi-core parallel

machine, we solve problems with an increasing number of scenarios (225 scenarios

for each block). The timing results are shown in Figure 8. With each additional
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Table III. Design Results with/without Considering Uncertainties and Controllability

(HIDiC)

Variables Nominal Case Multi-scenario Case difference

Diameter, ft 2.1 3.0 42.8%

Horsepower, KW 22.5 39.4 75.1%

Heat exchanger area, ft2 210 245 16.7%

block, we utilize an additional processor. These results show that there is significant

performance improvement possible with the parallel approach. Furthermore, this

approach scales favourably as we increase the number of processors used. These

results were obtained on an 8-core, 3.2Ghz Intel Xeon architecture.

We also tested the scalability of our approach against the general purpose, shared-

memory linear solver PARDISO [46]. We do not have a version of the solver interfaced

with the IPOPT. Therefore, to compare the computational time for PARDISO to per-

form the numerical factorization and backsolve of the same linear system arising from

a particular iteration of the Schur-IPOPT solver is measured. It is important to note

that PARDISO performs a symbolic factorization prior to performing the numerical

factorization. However, within an optimization context, the symbolic factorization

would only need to be performed once, at the beginning of the optimization, there-

fore this time was not included in the results. For this reason, coupled with the fact

that PARDISO is simply solving the linear system and not performing the other se-

rial operations required by Schur-IPOPT, the comparison is conservative (that is the

comparison favors PARDISO somewhat). Figure 8 and Figure 9 show the normalized

wall clock time for the two techniques. The x-axis shows the number of blocks, with

an additional thread or process added along with each block.
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Fig. 8. Parallel Scalability Results of Schur-IPOPT on a Multi-core System

We can see that, in both cases, the scalability as we increase the size of the

problem is impressive. We see a slight increase in the wall clock time as we increase the

size of the problem, which is primarily due to memory bandwidth issues. The Schur-

IPOPT approach does scale better than the general purpose solver PARDISO due

to the fact that it is tailored to the specific problem structure. Furthermore, Schur-

IPOPT shows even better scalability on distributed architectures to many processors,

whereas PARDISO is available for shared-memory machines only.
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Fig. 9. Parallel Scalability Results of PARDISO on a Multi-core System
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CHAPTER IV

OPTIMAL OPERATION: UNCERTAIN DEMANDS AND CONTRACTUAL

CONSTRAINTS

In Chapter III, optimal design under uncertainty is studied for cryogenic air separation

columns and internal hear-integrated distillation columns. In this chapter, we instead

focus on optimal operation under uncertainty. Specially, we address optimal operation

of cryogenic air separation processes with uncertain product demands and constraints

on customer satisfaction levels.

A. Previous and Proposed Research on Operation of Air Separation Units

Optimal operation and control of cryogenic air separation processes has received sig-

nificant attention, with the primary goal of reducing energy consumption and im-

proving economic performance during operation. Load switching in air separation

columns are analyzed by [78], and multivariable control schemes for cryogenic air

separation are developed in [79] and [80]. Trierweiler and Engell [81] investigated

the selection of an appropriate control structure based on dynamic behavior analysis.

Seliger, Hanke, Hannemann, and Sundmacher [82] integrated an air separation pro-

cess model with an IGCC power plant and analyzed the combined process dynamics.

Control strategies such as nonlinear model predictive control (NMPC) are difficult to

implement for these systems because of the high computational cost associated with

optimization of a large, complex dynamic model. Approaches have been developed

that promote efficient NMPC for these systems by reducing the size and complex-

ity of the model. Bian, Henson, Belanger, and Megan [83] developed a strategy for

nonlinear model predictive control by adopting a dynamic wave model for the single

nitrogen column. The advanced step NMPC controller [102], an alternative approach
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based on NLP sensitivity, has also been used in [84] to perform efficient nonlinear

model predictive control of a cryogenic air separation column as a part of an IGCC.

Considering off-line dynamic optimization, Zhu and Laird [85] proposed an effective

parallel nonlinear solution to deal with optimal control and operation under uncer-

tainty for two highly coupled cryogenic air separation columns. These studies have

focused primarily on the use of rigorous models for improving controller performance,

and on determining optimal operating profiles targeting specific load changes. How-

ever, formulations like these, with detailed process models, typically do not consider

high level operating concerns like uncertainty in product demands. On the other

hand, planning and scheduling studies [86, 87, 88, 71, 89] do consider market uncer-

tainty and product inventory when planning operating strategies. To enable efficient

solution of these challenging problems, simplified or linearized models are often used,

which may ignore the integrated nature of the system and the nonlinear interactions

between multiple products.

Several of these formulations directly address uncertainty in product demand.

Multi-scenario approaches are often adopted in stochastic programming to deal with

problems that contain uncertainties in the objective function or constraints [63, 60].

While previous research using this approach has been successful for optimal planning

and operation of air separation systems [87, 88], adopting a purely multi-scenario ap-

proach that requires the satisfaction of customer demands over all the scenarios can

lead to solutions that are too conservative [103, 104, 105]. To relax the constraints,

the feasible region can be expanded and the objective function can be modified to

penalize failure to satisfy all scenarios. However, the exact formulation and penalty

parameter values may be difficult to determine or tune. As an alternative, probabilis-

tic approaches [106, 105] have been used. Coupled with known probability density

distributions, probabilistic constraints can be reformulated as equivalent determinis-
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tic forms. Since the original constraints are only required to be satisfied with a given

probability, solutions using these approaches can be significantly less conservative

[105].

This chapter addresses the problem of determining optimal operating strategies

to maximize the total profit of a cryogenic air separation system while considering

rigorous nonlinear process models, uncertain product demands, and contractual obli-

gations in the form of probabilistic fill rate constraints. A first principles model of an

air separation system is developed for three coupled columns to capture the nonlinear

interactions in this highly integrated flowsheet. This model includes the necessary

mass and energy balances as well as rigorous phase equilibrium and physical property

expressions. In this chapter, we adopt the probabilistic loss function developed in

[103] and [104] to address the uncertainty associated with product demands. Uncer-

tain demands are assumed to be normally distributed with known mean and variance,

and the loss function is used to evaluate the expected revenue in the objective func-

tion.

To include contractual obligations, two types of service levels are typically con-

sidered [103, 104]. The Type 1 service level only focuses on the number of scenarios

that fail to satisfy demands. It it does not consider the magnitude of the demand

deficit in stock-out scenarios. In contrast, the Type 2 service level explicitly considers

the amount of the demand that is not satisfied by plant. The fill rate, or customer

satisfaction level, provides a lower bound on the ratio of the expected product sales to

the expected product demand. The Type 2 service level is used in this work to cap-

ture contractual obligations since it is typically more consistent with actual contracts

[104].

The complete nonlinear programming formulation can be used to identify optimal

operating strategies for a particular facility with given contractual obligations in the
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form of fill rate constraints. As well, solving the optimization problem repeatedly

over the complete space of fill rate values for different products provides valuable

planning information. In particular, three regions can be identified. In the first region,

the Profit Defined Region (PDR), all the fill rate constraints are inactive and the

operating conditions are determined by profit considerations alone. As the required

fill rates are increased, at least one of these constraints becomes active. Profits

begin to deteriorate since the operating strategies are now constrained by contractual

obligations. This region is called the Fill rate Constrained Region (FCR). The third

region, the Infeasible Region (IR), identifies the space of fill rates that cannot be

met by the plant without the use of inventory. These figures can be generated for a

particular facility and used to assist management in analyzing the tradeoffs between

contractual obligations and expected profit.

B. Optimization Formulation and Case Studies

The steady state mathematical model of air separation units is the same as the one we

used in the subsection 4 of Chapter III. However, the nominal operating conditions

are different. The nominal operating conditions for planning under product demands

and various customer satisfactions are listed in the Table IV.

1. Formulation of Uncertain Demands and Customer Satisfactions

Using the process model presented in the Chapter III, a nonlinear programming

formulation is developed to determine optimal operating strategies (eg. production

rates and operating loads). The formulation presented first is for a single period with

no inventory. It will later be extended to a multiperiod formulation with inventory.

Uncertain product demands are considered in both the objective function and in
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Table IV. Nominal Operating Conditions for Planning with Customer Satisfaction of

the Air Separation Process

Process Variable Values

Air input of the HPC, mol/s 25.9

Expanded air feed of the LPC, mol/s 2.18

Waste Nitrogen stream, mol/s 4.38

Side stream from the LPC to the CAC, mol/s, 3.02

Gas oxygen product, mol/s 4.787

Liquid oxygen product, mol/s 0.65

Oxygen product purity ≥98%

Gas nitrogen product, mol/s 18.13

Nitrogen product purity ≥99.99%

Argon product output, mol/s 0.133

Argon product purity ≥96%

Pressure of the LPC, MPa 0.13-0.14

Pressure of the HPC, MPa 0.68-0.69

Pressure of the CAC, MPa 0.12-0.13

probabilistic fill rate constraints. These are both formulated using the loss function

while assuming normally distributed demands. The objective function is written as,

max profit =

(∑
i∈CP

Ri

)
− Cop (4.1)

where Ri is the expected revenue from selling the ith product, and is calculated by

Ri = Eφi
[Ci (min(Pi, φi))] . (4.2)
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Here Ci is the price of each product, Pi is the production rate, and φi is the uncertain

product demand. We assume that the product prices are constant and known and

that the air compressor can successfully switch to meet the requirements of different

operating loads. The prices of nitrogen, argon and oxygen products are assumed to

be $0.113/liter, $0.286/liter, and $0.176/liter, respectively [107, 108]. The expected

revenue from product i can be written as [104]

Ri = Ci

∫ +∞

0

min (Pi, φi) dφi

= Ci

∫ Pi

0

φiρ (φi) + Ci

∫ +∞

Pi

Piρ (φi) dφi

= Ciµi − Ci

∫ +∞

Pi

(φi − Pi) ρ (φi) dφi, (4.3)

where ρ(φi) is the density function of the uncertain demand and µ =
∫∞
0

φρ (φ) dφ is

the mean of the uncertain demand. When the demand is normally distributed with

the mean µ and standard deviation, σ, the integral in (4.3) is written as,∫ ∞

P

(φ− P ) ρ (φ) dφ = σ

∫ ∞

P−µ
σ

(
τ − P − µ

σ

)
1√
2π

e
−τ2

2 dτ

= σL

(
P − µ

σ

)
= σL (z) (4.4)

where L(z) is defined as the standardized loss function and z = (P−µ)/σ is defined as

the standardized variate. Therefore, the expression for the expected revenue becomes,

Ri = Ci

(
µi − σiL

(
Pi − µi

σi

))
= Ci (µi − σiL (zi)) , (4.5)

where the expected amount of product i sold to customers is Si = µi − σiL(zi).

Note that Taguchi loss functions have been used to express the loss in product

quality when a variable deviates from its desired values[109, 110, 111], providing an
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economic penalty for quality deviation.

The loss function used in this chapter is not a quadratic penalty, but the expected

value of the lost demand that cannot be met by the current production rate and

inventory.

Product storage can be added to the facility to increase flexibility and allow

for higher expected product sales. The corresponding revenue from each product

including available production Pi and inventory Ii is given by,

Ri = Ci

(
µi − σi

∫ ∞

Pi+Ii−µi
σi

(
τ − Pi + Ii − µi

σi

)
1√
2π

e
−t2

2 dτ

)
, (4.6)

which gives the resulting objective function for a single period,

max profit = (
∑
i∈CP

Ri)− Cop − CiIi −
C inv,install

i Ii
ti,payback

. (4.7)

Here, CiIi is operating cost associated with keeping inventory. Cinv,Install
i is the capital

cost of storage equipment for product i, and ti,payback is the desired payback time.

The mean of the uncertain demands for nitrogen, argon, and oxygen are assumed

to be 18.13, 0.133, and 5.44 mol/s respectively, and the standard deviation values are

assumed to be 6, 0.04, and 1.4 mol/s respectively.

In this process, the dominant operating cost is the electrical power required to

operate the air compressor and the liquefier. The operating cost is given by,

Cop = Cele

(
Vfe

κc

κc − 1
RTin

((
Pout

Pin

)κc−1
κc

− 1

)
η−1 +Wliq

)
. (4.8)

This expression assumes adiabatic compression and constant compression efficiency,

given by η. The price of electricity is assumed to be constant at Cele = 0.0574/(kWh)

[87, 89] in this study, however more complex formulations that consider time-varying

electricity costs will be investigated in future work. The entrance and exit pressures
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of the compressor are Pin and Pout respectively, and Vfe is the feed flow rate to the

compressor, which is equal to the sum of the feed air flows of the HPC and the LPC.

The adiabatic index number of the gas is given by κ and the Wliq is the energy

consumed by the liquifier. Note that we assume that the capital investment for the

air compressor, the liquifier, and three distillation columns has already been made,

and this cost is not considered here.

The optimal operating conditions are not dictated by expected profit alone. Con-

tractual obligations may further constrain the operation. Given uncertainty in prod-

uct demand, probabilistic constraints can be formulated to capture these contractual

obligations. There are two general approaches for handling feasibility in optimization

under uncertainty problems. The multi-scenario approach [56, 112, 60] considers a

discrete set of possible realizations and can be formulated with a single stage or with

multiple stages containing recourse. These formulations usually require feasibility at

all discrete scenarios, however, scenario specific control variables or recourse decisions

can allow for more aggressive solutions. Infeasibility can also be allowed through re-

laxed formulations where constraint violations are penalized in the objective, however,

in many cases it can be difficult to determine appropriate penalty terms for complex

processes. Probabilistic or chance-constrained programming offers an alternative ap-

proach where constraints containing uncertain parameters are only satisfied with a

given probability. In this chapter, we consider a probabilistic fill rate constraint as

described in [103] and [104].

Considering customer satisfaction as a measure of whether or not the actual

customer demands are met in a given time interval, two types of service levels are

typical considered [103, 104]. The Type 1 service level (also called confidence level)

has been adopted in the application of chance-constrained programming [113, 103],



74

and can be written as,

Prφ{Ψi (φi) ≥ 0} ≥ αi (4.9)

where α is the confidence level decided by managers. This type of formulation ensures

that all customer demand will be satisfied with a given probability, however it does

not consider the magnitude of the deficit when the demand is not met. This Type 1

service level is appropriate when any failure to meet product demand has the same

consequence, independent of its time or amount [103, 104].

The Type 2 service level (also called the fill rate) provides a lower bound on the

ratio of expected sales to expected demand. A Type 2 service level is typically more

consistent with actual contracts [104] and is captured through the following constraint

[103],

Si

µi

=
µi − σiL(zi)

µi

≥ βi. (4.10)

Here, Si is the expected value for the sales of product i and µi is the expected value

for the demand. The fill rate or customer satisfaction level βi is the lower bound on

Si/µi. For the assumption of normally distributed product demands with the mean

µi and standard deviation σi, the above constraint on service level can be written

using the standard loss function from Eq. (4.4). Since the actual sales are always less

than or equal to the actual demand, Si ≤ µi.

Available inventory can be used to significantly improve customer satisfaction

levels, and the fill rate constraints with inventory variables Ii can be written as,

Si = µi − σiL

(
Pi + Ii − µi

σ

)
≥ βiµi. (4.11)

For a multiperiod formulation, the following changes in the inventory level can

be considered,

It,i = It−1,i + Pt,i − St,i, (4.12)
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where t is the index for the period, It,i is the inventory level of product i in period t,

and Pt,i is the production volume of product i in period t. St,i, the expected sales of

product i in period t is given by,

St,i = µt,i − σt,iL

(
Pt,i + It−1,i − µt,i

σt,i

)
. (4.13)

This gives rise to the following multiperiod objective function,

max profit =
N∑
t=1

(∑
i∈CP

Rt,i − Cop
t

)

−
∑
i∈CP

Cinv,install
i maxi (It,i)

ti,payback
. (4.14)

Following the approach of [103], the loss function L(z) is represented using piece-

wise high-order polynomials. The whole range of the standardized variates, z of L (z),

is divided into four continuous parts: (−∞,−3], (−3, 0], (0, 3], (3,+∞). The relevant

coefficients are reported in [103].

2. Case Study 1: Optimal Single Period Operation with a Single Fill Rate

Constraint

In this first case study, we consider only a single operating period. Five manipulated

variables are selected (the same manipulated variables are selected in the all case

studies): the feed air flow of the HPC (U1), the feed air flow of the LPC (U2), the

reflux flow from the HPC to the LPC (U3), the waste nitrogen flow (U4) and the side

withdrawal from the LPC to the CAC (U5). U1, U2, and U3 are the variable symbols

for relevant tray feed flow rates (F ) in the equations listed in subsection 4 of Chapter

III, while the variables symbols U4 and U5 are used for relevant tray side withdrawal

flow rates (S) in the equations in subsection 4 of Chapter III.

While we would prefer to meet customer demands where possible, enforcing a
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high fill rate can significantly reduce expected profits over the planning period. Both

the short-term economic profit goals and the long-term economic consideration as-

sociated with various customer satisfaction levels need to be considered within the

optimization framework. For existing facilities with fixed fill rates, individual problem

formulations can be solved to find the optimal operating conditions while respecting

customer satisfaction constraints. However, profiles can also be created to show the

expected profit and optimal operating conditions as a function of the fill rate. These

profiles can be used as a tool for evaluating future contract alternatives.
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Figures 10 - 12 show the expected profit and optimal operating conditions as a

function of the fill rate for constraints on nitrogen (N2), oxygen (O2), and argon (Ar)

respectively. The first region is the Profit Defined Region (PDR). Within this region,

the fill rate constraint is inactive and operating conditions are determined solely by

profit considerations. This is the ideal region for operation since the expected profit
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Fig. 11. Optimal Operating Strategies as a Function of Ar Fill Rate (Solid Line: with-

out Inventory, Dash Line: with Inventory)

is maximized.

The second region is the Fill rate Constrained Region (FCR). Within this region,

the fill rate constraint becomes active and the expected product sales are forced to

be higher than the optimal value dictated by profit considerations alone. Within this

region, profits decrease as the bound on expected fill rate is increased.

The third region is the Infeasible Region (IR). This region identifies the values

of the fill rate that cannot be met with the existing facility. Adding inventory or

purchasing additional product are potential techniques to achieve higher fill rates

with existing process equipment.

The solid lines in Figures 10 - 12 show the optimal operating conditions and

expected profit for the process with no inventory. For this particular case study,

the profits are most sensitive to variation in the O2 fill rate. Both gas and liquid

oxygen products are generated at the bottom of the LPC where it is coupled with
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Fig. 12. Optimal Operating Strategies as a Function of O2 Fill Rate (Solid Line: with-

out Inventory, Dash Line: with Inventory)

the top of the HPC by the combined condenser/reboiler. The oxygen production rate

affects not only the LPC, but also the HPC through the combined condenser/reboiler.

Furthermore, the oxygen production rate affects the purity and flowrate to the argon

column. In order to meet an increasing fill rate for oxygen, the optimal solution

contains significant changes in all five manipulated variables (U1 through U5).

By contrast, meeting an increased fill rate for nitrogen requires significant changes

to U4 (waste N2 side withdrawal rate) and U3 (reflux rate from the HPC to the LPC)

only. Argon production is primarily affected by the feed flow to the argon column

(U5).

The dashed lines in Figures 10 through 12 show the optimal profit and operating

conditions when inventory is allowed. Including the potential for product storage

allows much higher fill rates to be achieved. The curve of inventory level as a function

of the fill rate shows the point at which inventory should be used. Of course, in all
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Fill Rates without Considering Inventory

three cases, inventory is required to meet fill rate values within the Infeasible Region.

However, in this case study it is more economical to use inventory before this point

when fill rate constraints exist on oxygen or argon alone.

3. Case Study 2: Optimal Single Period Operation with Multiple Fill Rate

Constraints

The previous subsection considered case studies with a fill rate on a single product

only. However, the cryogenic air separation process is highly coupled and the produc-

tion rates cannot be manipulated independently. For example, increasing the oxygen

production rate reduces the production of argon considerably. Therefore, fill rate

constraints across multiple products need to be considered simultaneously.

Figures 13 - 15 show the feasible and infeasible operating regions as a function

of fill rates for two products. For values within the Profit Defined Region, the fill

rate constraints are inactive and the operating conditions are determined by profit

and safety considerations alone. As the fill rate values are increased into the Fill rate
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Constrained Region (FCR), the constraints become active and profits begin to suffer.

While not shown in these figures, the optimal operating strategy can be found for

any point within the feasible region.

Extending the fill rate values into the infeasible region will again require changes

to the process, the addition of product storage capability, or the purchase of additional

product. In the next case study, we consider the addition of product inventory.

Figure 16 shows the expected profit as a function of nitrogen and oxygen fill
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rate values. Figure 16 also shows when it is economical to consider inventory. Profits

decrease quickly as fill rates approach 100% and increased product storage is required.

These same results are shown for the remaining two product pairings in Figures 17 and

18.These figures show that expected profits are more sensitive to fill rate constraints

on nitrogen and oxygen than on argon. However, even with no fill rate constraint

on argon, the optimal solution may include the addition of argon inventory since it

increases process flexibility and allows greater freedom for adjusting nitrogen and

oxygen production rates. Optimal analysis of this situation requires that we consider

all three demand satisfaction constraints simultaneously.

4. Case Study 3: Optimal Multiperiod Operation with Multiple Fill Rate

Constraints

This subsection addresses the more complex multiperiod formulation with fill rate

constraints on each of the three products. Use of inventory is necessary when high

fill rates are required. The formulation seeks to find the optimal operating conditions

for each period. Individual periods are coupled by the product inventory levels at the

start and end of each period. In this case study, we consider a seven day operating

cycle where demands and operating conditions can change daily. Product pricing and

power costs are assumed to be constant. However, this formulation allows for their

variation.

For this seven day multiperiod formulation with rigorous models, the nonlin-

ear programming problem contains over one million variables and constraints. This

large-scale nonlinear programming problem is very challenging for general purpose op-

timization tools. Instead, we make use of our tailored NLP solver, Schur-IPOPT to

allow for efficient solution in parallel. A brief overview of the internal decomposition

approach used in this algorithm was presented in Chapter II.
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Table V. Standard Deviations of Uncertain Product Demands of ASU planning

Day 1 2 3 4 5 6 7

σN2 6 6 6 6 6 6 6

σAr 0.04 0.046 0.05 0.054 0.05 0.046 0.04

σO2 1.4 1.4 1.4 1.4 1.4 1.4 1.4

Each period in this formulation is treated as a single block q ∈ Q from equations

(2.19). The inventory levels link different periods and form the common variables, l,

that couple individual blocks. Therefore, 24 common variables appear in the seven-

day planning strategy. Seven processors from an 8-core 2.8 GHz Intel Xeon work-

station are used, with one core dedicated to each period. The mean values for the

product demands are assumed to be constant and the same as in the single period

case. The fill rates for each product are set to 88.8%. It is assumed that no addi-

tional purchased product can be used to refill inventory. The assumed values of the

standard deviations for the product demands are given in Table V. In practice, this

information would come from historical data.

In this particular case study, the standard deviations on the demand of nitrogen

and oxygen are assumed to be constant, while the standard deviation on argon change

throughout the week. The optimal inventory levels for all seven days are shown in

Figure 19. This figure shows the increase in argon inventory levels corresponding

to the increase in the standard deviation of the demands. This figure also shows

the interaction of multiple products. While the means and standard deviations of

the demands for both nitrogen and oxygen did not change, the optimal solution

shows changes in these inventory levels, demonstrating the significance of nonlinear

interactions between the different products. This multiperiod formulation provides an
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optimal operating strategy that considers demand uncertainty in both the objective

function and in the required contractual obligations formulated as a probabilistic fill

rate constraint.
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Fig. 19. Optimal Inventory Levels for all Seven Days

The full seven day multiperiod problem contains over one million variables and

constraints. Using a serial implementation, this problem requires over 40 minutes

of CPU time to solve. With the parallel approach using seven processors, however,

solution requires only 6 minutes to solve. The complete set of timing results are

shown in Figure 20. Here, we progressively consider two through seven periods, using

one processor for each period. The figure shows the wall clock time per iteration

for each of these problems. These results clearly show the significant benefit using

the parallel approach when scaling to larger problems.Using additional processors,

optimal operating strategies for larger multiperiod problems could be obtained.
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C. Summary and Conclusions

Effective operation of complex air separation systems can be challenging, especially

in the face of uncertainty on key variables such as product demands. There are

often competing short term goals. It is desirable to select an operating strategy that

maximizes profit.This specific strategy may not be feasible, however, given particular

contractual obligations. Therefore, it is important to consider the trade-off between

profitability and customer satisfaction levels. This work addresses the problem of

determining optimal operating strategies for a complex air separation process under

uncertain product demands while considering contractual obligations.

Complex cryogenic air separation processes contain highly integrated flowsheets

and can exhibit strong nonlinear interactions between different process variables and

resulting production rates. A rigorous nonlinear model is developed for three highly

coupled distillation columns. This model is included in a nonlinear programming

formulation to maximize expected profit. The Type 2 service level (fill rate) is used

as a measure of the customer satisfaction levels. Here, the loss function is adopted to

describe the expected value of the product sales as well as the probabilistic constraints
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on the fill rate.

This formulation is used for determining the optimal operating conditions for a

particular facility under given fill rate based contractual obligations. As well, consid-

ering the full space of fill rate values on multiple products, management can effectively

determine the trade-off between expected profits and customer demand satisfaction

levels. Ideally, facilities would like to operate within the Profit Defined Region (PDR)

where operating conditions are determined by profit considerations alone. The three

case studies presented include both single and multiple operating periods with fill

rate constraints on multiple products.

As the complexity of the problem is increased, and multiple planning periods

are considered, the size of the nonlinear programming formulation can become pro-

hibitive. The largest case study considered here is a seven day multiperiod formula-

tion with over a million variables.Here, we use an internal decomposition approach

to exploit the structure of the multiperiod problem and enable efficient solution in

parallel. Schur-IPOPT is a parallel implementation of the nonlinear interior-point

method IPOPT. This tailored approach uses a Schur-complement decomposition to

induce separation in the linear system solved at each iteration of the algorithm. The

case study demonstrates the computational efficiency of the algorithm. Furthermore,

this approach scales very effectively as the problem size is increased, and shows how

additional processors allow efficient solution of larger, more complex problems.

The use of rigorous optimization tools to determine operating strategies is impor-

tant to improve profitability and to enable effective decision making for any complex

chemical process. However, efficient solution of problem formulations addressing un-

certainty is difficult, and the solution of optimization problems including rigorous

nonlinear models and uncertainty remains a significant challenge. Here, we demon-

strate that rigorous nonlinear models can be used to determine optimal operating
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conditions while addressing demand uncertainty and contractual obligations consis-

tent with Type 2 service levels.
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CHAPTER V

OPTIMAL OPERATIONS: UNCERTAIN DEMANDS, CONTRACTUAL

CONSTRAINTS, AND VARIABLE POWER PRICES

As discussed earlier, cryogenic air separation processes consume a large amount of

electricity producing significant quantities of high purity gases. Rather than operat-

ing at a fixed steady state, it may be profitable to switch among different operating

conditions because of variability of electrical prices and product demands. This chap-

ter addresses the problem of determining the optimal daily multiperiod operating

conditions for an air separation process under variable electricity pricing and uncer-

tain product demands. The multiperiod nonlinear programming formulation includes

a rigorous nonlinear model of the highly-coupled process, and decision variables in-

clude the operating conditions within each period, as well as the transition times.

Demand uncertainty is treated using the loss function included in the objective func-

tion and constraints on customer satisfaction levels. Solutions are obtained with high

computational efficiency, allowing management to make informed decisions regarding

operating strategies while considering the trade off between profitability and customer

satisfaction levels.

A. Introduction

Previously, Ierapetritou et al. [87] adopted a two stage stochastic programming ap-

proach to seek optimal operating strategies under varying power prices. Three differ-

ent operating modes are defined and a mixed-integer linear programming formulation

is used to solve for the optimal operating schedule by transitioning among these three

modes. Karwan and Keblis [71] developed a similar mixed-integer programming for-

mulation to obtain operating strategies under real time pricing, considering the impact
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of the forecast horizon length on operating cost. Miller and Luyben [89] used ideal

thermodynamic work to analyze operating strategies under peak and off-peak power

prices. The ratio of peak and off-peak power prices is used to determine when intermit-

tent operation of air separation systems is economically feasible. The above research

contributions assume instantaneous switching among different operating conditions

and typically adopt a simplified or linearized model to capture the process behavior of

the complex air separation plant. When changing operation conditions, interactions

among several highly-coupled distillation columns and other chemical units must be

considered along with safety limits. Therefore, it is preferable to use rigorous non-

linear models that can capture this interaction and reduce plant-model mismatch. In

previous work (Chapter IV), we developed a nonlinear programming formulation and

solution approach to determine optimal operating strategies that considered uncer-

tain demands with probabilistic constraints for contractual obligations. While this

work demonstrated that rigorous nonlinear models of the air separation process could

be included within this probabilistic optimization formulation, it also assumed that

the switching time between different operating conditions was instantaneous. Fur-

thermore, it assumed that electricity prices were constant across the operating cycle.

This chapter extends previous research and addresses the problem of determin-

ing an optimal 24-hour multiperiod operating strategy considering varying power

prices, uncertain product demands, and non-zero transition times. The optimization

is performed using a rigorous model of an air separation process based on first prin-

ciples. This model includes the double-effect columns (coupled high and low pressure

columns), as well as two crude argon columns for providing high purity argon. Focus-

ing on multiperiod operation, a single day is separated into four different time periods

based on the peak/off-peak power prices, and the rigorous nonlinear process model

is included within each period. A typical air separation process can take over several
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hours to reach desired product purities following a complete shutdown. In practice,

it is not reasonable to assume instantaneous transition between different operating

conditions. Instead, this chapter assumes a linear relationship between the required

load change and the transition time.

In addition to power pricing variability, a probabilistic approach is used in this

chapter to handle uncertain demand requirements from customers. Multi-scenario

formulations are widely used to deal with uncertainty in design and operation. How-

ever, this method typically requires feasibility of each scenario, regardless of scenario

probability. Furthermore, the problem size can grow prohibitively large as the number

of scenarios is increased. As in our previous work, we have adopted the loss function

developed in Li et al. [103] and Nahmias et al. [104] to quantify the expected profit

in terms of production rates and uncertain customer demands. To model contrac-

tual obligations, a Type 2 service level, as described in Li et al. [103] and Nahmias

et al. [104], is assumed, and the fill-rate expression is used to constrain customer

satisfaction levels. This treatment allows decision makers to quantify the interaction

between demand uncertainty levels and fill-rate constraints.

B. Multiple Period Operation Formulation

The steady state mathematical model of air separation units is similar to the one

used in Chapter III and Chapter IV, except that this model includes four coupled

distillation columns while the previous chapters only consider three columns. The

model in this chapter contains two crude argon columns rather than one argon col-

umn. Figure 21 shows the structure of four highly coupled distillation columns in air

separation systems. The operating conditions are also different. Table VI gives the

studied operating conditions of air separation columns in this chapter.



91

Fig. 21. Simplified Structure of Cryogenic Air Separation Systems with Four Coupled

Columns

Products from an air separation plant may be available as both a gas and a

liquid. All liquids in our process are liquefied gas products. Therefore, the dominant

operating cost is the energy consumed by the air compressors and liquefiers. We

assume the pressure drop through pipelines, throttle valves, heat exchangers and

other units are constant during the transient operation. The main air compressor is

an integral gear centrifugal compressor. Assuming an adiabatic compression process,

the work is given by,

WC
n =

ΦF
n

1−∆Vloss

κ

κ− 1
RTC

n

((
PC
out

PC
in

)(κ−1
κ )

− 1

)
η1

−1, (5.1)

where adiabatic index number of gas, κ, and compression efficiency, η1, are 1.4 and

0.686, respectively. ΦF
n is the total amount of air feed flow into the air separation

system during the nth period. PC
in and PC

out are the entering and exiting flow pressures
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Table VI. Column Pressures and Product Specifications

Oxygen product output, kmol/h 1306

Oxygen product purity ≥98%

Nitrogen product output, kmol/h 4520

Nitrogen product purity ≥99.99%

Argon product output, kmol/h 33

Argon product purity ≥97

Pressure of LPC, MPa 0.13-0.14

Pressure of HPC, MPa 0.68-0.69

Pressure of CAC-1, MPa 0.12-0.13

Pressure of CAC-2, MPa 0.13-0.14

of the compressor. The flow loss ratio of the air compressor, ∆Vloss, is 0.04. The

liquefier consists of a makeup compressor and a recycle system including the warm

and cold expanders.

The liquefier work is given by,

WL
n =

(∑
i∈P

V L
i,n∆HL

i,n

)
η2

−1 (5.2)

where the liquifier efficiency η2 = 0.5, and P is the set of products, namely nitrogen,

argon, and oxygen. V L
i,n and ∆HL

i,n are liquefied product flows and corresponding

enthalpy changes, respectively.

In this section, we develop a multiperiod formulation that allows for different

steady state operating conditions within each period. Variability of power prices is one

of the main reasons for switching between different operating conditions. The example

pricing schedule used in the case studies is shown in Figure 22. In the multiperiod
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ing

formulation, the daily operation of the air separation process is separated into four

periods according to this schedule. In our case studies, the peak, off-peak, and mid-

peak prices are assumed to be 0.0974, 0.0474, and 0.0674 $/kWh. TM = [0, 6, 12, 18]

are the time points between consecutive periods. Note that the time period could

easily be reduced to smaller units such as one hour if the resolution of the power

pricing or other inputs warrant. Unequal intervals can be also formulated in our

approach, by changing the values of TM .

Equations (5.1-5.2), coupled with the mass and energy balances for all recy-

cle streams and piping equipment form the rigorous, steady state model for the air

separation process. These equations are included in the multiperiod formulation as

constraints describing the process model for each period n. In this work, we do not

consider the possibility of shutting down the crude argon columns since the process

may require very long periods of time to recover normal argon production in the

event of a shutdown. Other practical issues need to be considered when switching

between different operating conditions. These factors include the operating range of

the compressor, pressure control in the distillation columns, and performance of the

expanders. Therefore, in order to prevent hazardous risks like compressor surge, large
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pressure ramps, and nitrogen block in the crude argon columns, we do not assume

instantaneous transition, but rather restrict the rate of transition between periods.

Here, we assume a linear relationship between the transition time and the change

in the air feed flow rate. Furthermore, we allow the start time of the transition to

be an optimization variable. It is assumed that increasing the load values from 65%

to 115% requires 126 mins, while decreasing the load values from 115% to 65% also

requires the same 126 mins, giving a transition slope of 0.4%/min. The air feed flow

rate in period n is defined by V A
n . V

A

n is the feed flow rate at the start of the nth

period (i.e. at time TM
n during the transition). V A

n and V
A

n are given by,

V A
n = U1,n + U2,n, n ∈ (1, 2, 3, 4) (5.3)

V
A

n = V A
n − bn

(
T F
n − TM

n

)
, n ∈ (1, 2, 3, 4) (5.4)

where bn represents the transition slope defined previously. T F
n is the final time of

the transition into time period n, while T S
n is the start time of the transition out of

time period n. Their relationship is defined by,

T F
1 = T S

4 +

(
V A
1 − V A

4

)
b1

− 24 (5.5)

T F
n = T S

n−1 +

(
V A
n − V A

n−1

)
bn

, n ∈ (2, 3, 4) (5.6)

TM
n ≤ T F

n ≤ T S
n ≤ TM

n+1, n ∈ (1, 2, 3, 4) . (5.7)

The variables relating to the transition are all described in Figure 23. The value

of the slope bn is positive if the process is transitioning from a period of low feed flow

rate to a period of high feed flow rate, and negative for the opposite case. Note that

the transition from positive slope to negative slope is smooth since it occurs when the

difference between V A
n and V A

n−1 (and hence the transition time) is zero. The total
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amount of air feed flow compressed in each period, ΦF
n , is described by,

ΦF
n =

1

2

(
V A
n + V

A

n

) (
T F
n − TM

n

)
+ V A

n

(
T S
n − T F

n

)
+

1

2

(
V A
n + V

A

n+1

) (
TM
n+1 − T S

n

)
, n ∈ (1, 2, 3) (5.8)

ΦF
4 =

1

2

(
V A
4 + V

A

4

) (
T F
4 − TM

4

)
+ V A

4

(
T S
4 − T F

4

)
+

1

2

(
V A
4 + V

A

1

) (
TM
1 − T S

4

)
. (5.9)

Similarly, the total amount of each liquefied product at the nth period, ΦL
i,n, is
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given by,

ΦL
i,n =

1

2

(
SP
i,n + S

P

i,n

) (
T F
n − TM

n

)
+ SP

i,n

(
T S
n − T F

n

)
+

1

2

(
SP
i,n + S

P

i,n+1

) (
TM
n+1 − T S

n

)
, i ∈ P , n ∈ (1, 2, 3) (5.10)

ΦL
i,4 =

1

2

(
SP
i,4 + S

P

i,4

) (
T F
4 − TM

4

)
+ SP

i,4

(
T S
4 − T F

4

)
+

1

2

(
SP
i,4 + S

P

i,1

) (
TM
1 − T S

4

)
, i ∈ P (5.11)

where SP
i,n are the production rates in the nth period, as defined by the process model.

S
P

i,n are the production rates at the front boundary of the period (t = TM
n ) given by,

S
P

i,n = SP
i,n −

(
SP
i,n − SP

i,n−1

T F
n − T S

n−1

)(
T F
n − TM

n

)
, i ∈ P ,

n ∈ (2, 3, 4) (5.12)

S
P

i,1 = SP
i,1 −

(
SP
i,1 − SP

i,4

24 + T F
1 − T S

4

)(
T F
1 − TM

1

)
, i ∈ P . (5.13)

In order to satisfy the product demands, product storage is included and the

following constraints can be added,

Ii,n−1 + ΦL
i,n − Ii,n = Di,n, i ∈ P , n ∈ (2, 3, 4) (5.14)

Ii,4 + ΦL
i,1 − Ii,1 = Di,1, i ∈ P , (5.15)

where Ii,n is the inventory level of the ith product in the nth period. Di,n are the

product demand amounts of the ith product in the nth period. The variables, ΦL
i,n,

are the total amounts of each product liquefied at the nth period.

C. Optimal Operating Strategy under Constant Product Demands

In this section, we present a case study assuming that the product demands are known

and constant throughout day so that the only variation is in peak and off-peak power
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pricing. The revenues generated by supplying product to customers are the same in

each period, and the objective minimizes operating costs associated with power usage

as given by,

minO =
4∑

n=1

PE
n

(
WC

n +WL
n

)
(5.16)

where PE
n is the price of electricity in the nth period. Note that other costs associated

with delivery and transportation could be included in the above function; however,

they do not directly affect the optimal operating strategy of the process.

Two different operating strategies are compared. In the first strategy, the oper-

ating conditions are assumed to be constant over the entire day. The second strategy

is the multiperiod formulation where the operating conditions are allowed to change.

This case study demonstrates that transitioning among different operating conditions

can reduce the operating costs compared with constant operation.

These two cases are formulated using the AMPL modeling language [114] and

solved using IPOPT [20]. It is assumed that the constant product demands in each

period for nitrogen, argon, and oxygen are 25920 kmol, 187 kmol, and 6843 kmol,

respectively. Five main manipulated variables are selected for optimization: the feed

air stream of the HPC, U1, the feed air stream of the LPC, U2, the reflux flow from

the HPC to the LPC, U3, the waste nitrogen stream, U4, and the side withdrawal

from the LPC to the CAC-1, U5. Figure 24 shows the profiles of the air feed flow

and production rates for both the constant case (solid line) and the multiperiod case

(dashed line). As expected, the desired feed flowrate (and hence the load on the

plant) is lowest when the price of electricity is the highest and vice versa. The op-

timal transition times over the four periods are (5:49-7:21, 10:49-12:00, 18:00-18:18,

and 21:54-0:19). Given the high cost of electricity in the third period, the optimal

transition times are such that the lowest feed flow rate is utilized over this entire
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period. The optimization has effectively determined, not only the operating condi-

tions within each period, but also the specific time to start and end each transition.

The variation in these times demonstrates the importance of including these degrees

of freedom instead of specifying fixed transition points. For the multiperiod case,

Figure 25 shows the inventory levels at the end of each period and the values for the

manipulated variables. In this case study, the product demands were kept constant.

Therefore, to meet these demands throughout the day, the optimal inventory levels

for each of the three products are highest before their lowest production rate. Com-

paring these two test cases, there is an overall savings of 5.11% in the total operating

costs if we allow multiperiod operation instead of operating at a fixed steady state.

This represents a significant savings for an air separation plant where operating costs

can be very high. Furthermore, the possible savings are a direct function of the gap

between high and low electricity prices. There is potential for increased savings in

cases where variability in electricity pricing is higher.

D. Optimal Operating Strategy under Uncertain Product Demands

In addition to variability in power prices, in certain gas product markets air separation

plants may need to switch operating conditions to satisfy variable product demands

from different customers. Furthermore, the actual demand for specific products may

not be known a priori. In this section, we focus on a multiperiod problem formulation

that considers optimal operating plans for air separation processes with variable (but

known) electricity prices and uncertain product demands.

Uncertainty in product demands has a direct effect on expected revenue and,

hence, profits. Furthermore, contractual obligations may place constraints on the

amount of demand that must be met. As described by Li et al [103] and Nahmais et



100

al [104], we use the loss function to evaluate the expected revenue and, assuming a

Type 2 service level, formulate probabilistic fill-rate constraints on customer demands.

In this section, we describe the necessary changes to the multiperiod formulation and

show how the solution is affected by increasing demand uncertainty.

In any given time period, the actual amount of product sold to customers is

the minimum of the customer demand and the available product (production plus

available inventory). Therefore, the objective function includes the expected revenue

from sale of product i in time period n, and the operating costs, as given by,

maxP =
4∑

n=1

∑
i∈P

Revi,n −
4∑

n=1

PE
n

(
WC

n +WL
n

)
, (5.17)

where the expected revenue is,

Revi,n = ED̂i,n

[
P P
i ·min

(
Ŝi,n, D̂i,n

)]
, i ∈ P , n ∈ (1, 2, 3, 4). (5.18)

The available supply of product i in period n is given by,

Ŝi,n =

 ΦL
i,n + Ii,n−1 n ∈ (2, 3, 4)

ΦL
i,1 + Ii,4 n = 1.

(5.19)

The parameters, P P
i , are the known prices for the ith product, which are assumed

constant throughout the day. Here, we assume that the prices of nitrogen, argon, and

oxygen products are $0.113/L, $0.286/L, and $0.176/L, respectively [107, 108]. The

variables, D̂i,n, are the uncertain demands of the ith product in the nth period.

Defining ρ
(
D̂i,n

)
as the density function of the uncertain demand, the revenue
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can be written as,

Revi,n = P P
i

∫ +∞

0

ρ
(
D̂i,n

)
·min

(
Ŝi,n, D̂i,n

)
dD̂i,n

= P P
i

(∫ Ŝi,n

0

ρ
(
D̂i,n

)
D̂i,ndD̂i,n +

∫ +∞

Ŝi,n

ρ
(
D̂i,n

)
Ŝi,ndD̂i,n

)

= P P
i

(
θi,n −

∫ +∞

Ŝi,n

(
D̂i,n − Ŝi,n

)
ρ
(
D̂i,n

)
dD̂i,n

)
,

i ∈ P , n ∈ (1, 2, 3, 4) (5.20)

where the mean of the uncertain product demand, θi,n, is equal to
∫ +∞
0

ρ
(
D̂i,n

)
D̂i,ndD̂i,n.

The expression,
∫ +∞
Ŝi,n

ρ
(
D̂i,n

)(
D̂i,n − Ŝi,n

)
dD̂i,n is called the loss function. If the de-

mands are assumed normally distributed with the mean, θi,n, and the deviation, σi,n,

the loss function can be expressed by∫ +∞

Ŝi,n

ρ
(
D̂i,n

)(
D̂i,n − Ŝi,n

)
dD̂i,n

= σi,n

∫ ∞

Ŝi,n−θi,n
σi,n

(
τ − Ŝi,n − θi,n

σi,n

)
1√
2π

e
−τ2

2 dτ

= σi,nL

(
Ŝi,n − θi,n

σi,n

)
, i ∈ P , n ∈ (1, 2, 3, 4), (5.21)

and finally the expected revenue is written as,

Revi,n = P P
i

(
θi,n − σi,nL

(
Ŝi,n − θi,n

σi,n

))
, i ∈ P , n ∈ (1, 2, 3, 4). (5.22)

Here, L (·) is defined as the standardized loss function. From equation (5.22), the ex-

pected amount of product i sold to customers in period n is θi,n−σi,nL
(

Ŝi,n−θi,n
σi,n

)
. The

numerical integration of the standardized loss function can be expressed by piecewise

polynomial functions [103].

Since we are now considering the expected value for product sales, the inventories
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are expected values as well, as defined by,

Ii,n = Ŝi,n −

(
θi,n − σi,nL

(
Ŝi,n − θi,n

σi,n

))
, i ∈ P , n ∈ (1, 2, 3, 4). (5.23)

In addition to the impact on expected profit, uncertain demands may have an impact

on customer satisfaction levels if the plant is not able to deliver the desired product

amounts. Two types of customer service levels have been described[103, 104], where

customer satisfaction is measured by whether or not actual customer demands are

met in a given interval. The Type 1 service levels (called confidence levels) have been

adopted in the application of chance-constrained programming [103, 105], and can be

written as

Prφ{Ψi (φi) ≥ 0} ≥ αi (5.24)

where α is the confidence level decided by managers. This type of formulation ensures

that customer demand will be satisfied with a given probability; however, it does not

consider the magnitude of the deficit when the demand is not met.

In this paper, we consider Type 2 service levels. The Type 2 service level (also

called the fill-rate) measures the expected fraction of demand that can be met by

a plant. The Type 2 service level is typically more consistent with actual contracts

[104]. Here, the expected sales of product i is constrained to be at least some fraction

of the expected demand [103], as given by,

θi,n − σi,nL

(
Ŝi,n − θi,n

σi,n

)
≥ βi,nθi,n (5.25)

where β is the fill-rate specified in the contract.

To handle demand uncertainty, the original multiperiod formulation is modified

as follows. The fill-rate constraints (5.25) are added, the original inventory constraints

(5.14) and (5.15) are replaced with (5.23), and the objective function is changed to
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Table VII. Mean Product Demands and Fill-rate over Four Time Periods

Period 1 2 3 4

θN2 , kmol 20736 25920 33696 25920

θAr, kmol 150 187 243 187

θO2 , kmol 5474 6843 8896 6843

βN2,n, 60% 70% 90% 70%

βAr,n, 60% 70% 90% 70%

βO2,n, 60% 70% 90% 70%

that described in equation (5.17). Assuming a known distribution for the product

demands, this probabilistic formulation can be solved to maximize expected profits

while maintaining contractual obligations.

Here, we assume that the product demands are normally distributed with known

mean and standard deviation obtained from statistical analysis of historical data. In

this section, we demonstrate that the multiperiod formulation can be solved efficiently

while considering this demand uncertainty. Table VII shows the values for the mean

demands and the fill-rates.

Table VIII. Results for Different Standard Deviations in Argon Demand

σN2/θN2 σO2/θO2 σAr/θAr Optimal Obj.

Case 3 20% 20% 15% $ 5.42 · 105

Case 4 20% 20% 17.5% $ 5.42 · 105

Case 5 20% 20% 18% $ 5.39 · 105

In the next three case studies, the standard deviation in the uncertain demand
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of argon is varied from 15% to 18% while nitrogen and oxygen are kept constant at

20%, as seen in Table VIII.

Table VIII also shows the optimal objective value for each of these case studies.

There is almost no difference in the optimal objective value between case study 3 and

4. This implies that the fill-rate constraint for argon is not active and that the process

is able to meet the customer satisfaction constraints with optimal operating conditions

based on profit considerations alone. As seen in case study 5, increasing the standard

deviation of argon from 17.5% to 18% causes a reduction in the optimal objective

value. Here, the fill-rate constraint for argon in period 3 becomes active and profits

suffer because of the need to meet customer satisfaction levels. Solving different

case studies and examining the values of the constraint multipliers corresponding

to the fill-rate constraints allows managers to effectively evaluation the contractual

obligations and their impact (at least locally) on profits. In addition to this analysis,

the formulation also provides an optimal multiperiod operating strategy, including

operating conditions and transition times.

In this example, if we increase the standard deviation on the argon demand to

20%, the optimization problem becomes infeasible, indicating that the current plant

is not able to meet the customer satisfaction constraints with this level of uncertainty.

This is important information for managers, showing the challenges associated with

increased uncertainty. At this point, management has few choices to deal with the

increased uncertainty. They can try to find additional resources or seek to increase

facility capacity in order to meet customer requirements. Management may also

choose to negotiate different contracts, guaranteeing lower uncertainty in product

demands or reducing required fill-rates. Detailed case studies addressing the effect of

varying fill-rates have been discussed in our previous work (Chapter IV). Of course,

selection of values for fill-rates needs to account for multiple product interactions. In
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this particular case study, reducing the fill-rate for argon in period 3 from 90% to

80% makes the problem feasible again, with an optimal objective value of $ 5.30 ·

105.

This case study illustrates the potential tradeoffs between profit and customer

satisfaction levels in the face of uncertainty and variable power pricing. More impor-

tantly, this multiperiod formulation gives engineers an effective tool to analyze these

tradeoffs using a rigorous model of their facility.

E. Conclusions and Future Work

Because of external pressures like variable power prices and product demands, it can

be profitable to vary operating conditions regularily, instead of operating at a fixed

steady state. This paper presents a multiperiod formulation to determine optimal

operating strategies for an energy-intensive air separation plant. In particular, the

results demonstrate that a rigorous nonlinear model can be used in a mathematical

programming formulation addressing both variability in inputs and uncertainty in de-

sired product demands. The formulation contains a rigorous mathematical model for

the highly-coupled air separation process including four coupled distillation columns,

heat exchanges, compressors, and liquifiers. Transitions were not assumed to be in-

stantaneous, but rather are assumed to be proportional to the required load change.

Furthermore, the optimization variables include the operating conditions in each pe-

riod as well as the start time for each of the transitions. Uncertainty is addressed

through use of the loss function in both the objective function and in fill-rate con-

straints on supplied product. The loss function is used to express the expected value

of the plant revenue, and provide a means to constrain customer satisfaction lev-

els. Because uncertainty exists on the process outputs only, this approach allows a
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probabilistic treatment without the need for a multiscenario formulation.

This formulation is used in several case studies to illustrate the effectiveness of

the approach. As described in the first two case studies, the formulation can easily and

rigorously determine the potential for improved profits comparing the optimal steady

state case with the optimal multiperiod operating strategy. In the case study pre-

sented, multiperiod operation resulted in a five percent reduction in operating costs,

however, increased savings are possible when power pricing variability is higher. The

final four case studies consider uncertainty in product demands and, in particular, in-

creased uncertainty in argon demand. These case studies illustrate that the approach

can effectively handle this uncertainty, while providing management with valuable

information regarding the tradeoff between profit and contractual obligations. It can

be used to provide effective bounds on the level of uncertainty that can feasibly be

addressed by the plant. Furthermore, since the formulation uses a rigorous process

model, the approach provides facility specific operating strategies.

The multiperiod formulation presented in this paper uses a rigorous model of

the air separation plant, however, modern nonlinear programming tools can obtain

solutions very efficiently. The six case studies in the paper all contained over 3500

variables and solved in under ten seconds on a 3.2 GHz Intel Xeon processor.

Future work will include extending this formulation to include a rigorous dynamic

model of the air separation process. We have previously developed a rigorous dynamic

optimization formulation for optimal load changes in air separation processes [85].

This formulation can be extended to include variable power pricing and uncertainty

in product demands. Furthermore, control strategies (e.g. model predictive control)

could be included in the formulation to realistically describe the required switching

time. Parallel nonlinear programming algorithms may be necessary to ensure efficient

solution of these large-scale problems.
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CHAPTER VI

DYNAMIC OPTIMIZATION UNDER UNCERTAINTY

A. Introduction

Optimal planning under uncertain product demands and different customer satisfac-

tion levels is discussed in Chapter IV, while optimal operating strategies under varying

power pricing are investigated in Chapter V. However, the models in these two chap-

ters are steady state and not any dynamic. The assumption of instantaneous transient

limits the performance of mulitperiod optimization in Chapter IV. Of course, it can

provide rough forecast of long-term optimal planning and scheduling strategies while

considering customer satisfactions. Since the assumption of instantaneous transient

is not practical, Chapter V included a linear relationship between the load change

and the transient time.

In this chapter, we want to adopt rigorous dynamic model of cryogenic air sepa-

ration columns rather than the steady state models used in Chapter IV and Chapter

V. We seek to find optimal control profiles to transition from one operating condition

to another. This problem is challenging for these main reasons. First, the dynamic

ASC process model is represented by a large set of differential constraints. Using the

simultaneous discretization approach, the differential constraints are converted to a

set of algebraic constraints, producing a very large nonlinear programming problem.

Second, the air separation process contains significant mass and energy integration.

The high and low pressure columns are directly heat integrated. Multiple Argon

columns are increasingly used, introducing significant coupling through recycle flows.

The behavior of these integrated systems is highly nonlinear. Third, uncertainties

during transition also challenges optimal control strategies. Uncertainty is an inher-
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ent characteristic of any process system. Many uncertainties are present in such large

scale ASC process and have been classified in references [67]. These uncertainties

always not only cause serious mismatch between the true process and the model but

also have a large influence on optimal control strategies.

Therefore, it is necessary to design effective control strategies for dynamic tran-

sition of ASC systems under uncertainty. There are several publications on advanced

control of air separation systems [83, 84, 78, 81, 80]. However, few of them consider

uncertainty in their control system. By means of our parallel nonlinear algorithm

discussed in Chapter II, this work focuses on obtaining dynamic open-loop optimal

control trajectories for a load change with an uncertain pressure drop discussed in

the LPC.

The structure of the air separation system is the same as the one in Chapter

III and Chapter IV, with three high coupled distillation columns. More detailed

information about this process can be found in Figure 3. Some nominal operation

conditions of the ASC system under study are listed in Table IX.

B. Dynamic Model of the Cryogenic Air Separation Process

Our dynamic model for the air separation process builds off of previous research

[83, 84, 89, 80]. Three assumptions are made in this study: 1. complete mixing on

each tray and 100% tray efficiency; 2. Negligible heat losses in the tray; 3. Constant

pressure drop on each try. The model is based on a first-principle approach includ-

ing mass, energy balances coupled with the equilibrium relationships and hydraulic

equations.
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Table IX. Nominal Operation Conditions of Dynamic Optimization in Cryogenic ASC

Systems

Process Variables Values

Total air input, mol/s 2817

Waste Nitrogen stream, mol/s 471.05

Gas Oxygen product output, (VO2), mol/s 330.65

Liquid Oxygen product output, (LO2), mol/s 180.64

Oxygen product purity ≥98%

Nitrogen product output, (VN2), mol/s 1820

Nitrogen product purity ≥99.99%

Argon product output, (VAR), mol/s 14.66

Argon product purity ≥97%

Pressure on the top of LPC, MPa 0.13

Pressure on the top of HPC, MPa 0.68

Pressure on the top of CAC, MPa 0.12

1. Mass Balances

d (Mjxi,j)

dt
= Vj+1yi,j+1 + Lj−1xi,j−1 + F V

j zVi,j + FL
j z

L
i,j

−
(
Vj + SV

j

)
yi,j −

(
Lj + SL

j

)
xi,j − xi,j

dMj

dt
(6.1)

dMj

dt
= Vj+1 + Lj−1 + F V

j + FL
j −

(
Vj + SV

j

)
−
(
Lj + SL

j

)
(6.2)

where j is the index of each tray from the top of each column, and i ∈ P is the index

of the product set of Nitrogen, Argon, and Oxygen. F V
j and FL

j are the vapor and

liquid molar feed flows entering into the jth tray. SV
j and SL

j are the vapor and liquid
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molar side flows out of the jth tray. The vapor and liquid flow rates are given by

Vj and Lj, respectively. The liquid and vapor compositions are given by xi,j and yi,j

respectively. zVi,j and zLi,j are the vapor and liquid compositions of feed flows entering

into the jth tray. Mj is the liquid holdup. Note that if there are no feed or side flows

to the jth, the relevant terms must be removed.

2. Energy Balances

d
(
MjH

L
j

)
dt

= Vj+1H
V
j+1 + Lj−1H

L
j−1 + F V

j HFV
j

+ FL
j H

FL
j −

(
Vj + SV

j

)
HV

j −
(
Lj + SL

j

)
HL

j (6.3)

where HFV
j and HFL

j are the vapor and liquid enthalpies of feed flows entering into

the the jth tray. The vapor and liquid enthalpies of the jth tray are given by HV
j and

HL
j respectively. All above enthalpies are calculated based on relevant temperature,

pressure, compressibility factors and binary interaction parameters. Note that the

above differential energy equations make the DAE system index 2 which is not easily

solved. Therefore, the same method as reported in references [83, 84] is adopted in

order to reduce this system to index 1 by converting the above differential equation

to an algebraic equation.

3. Hydraulic Equation

A Francis-weir relationship was utilized [89].

Lj = 11988lw,jρl,j (how,j)
1.5 (6.4)

how,j = Mj/ (ρl,jAact,j)− hw,j (6.5)
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where lw is the weir length, ρl is the liquid molar density, how is the height of the

liquid over weir, Aact is the available area on the tray, and hw is the weir height.

4. Summation Equation

∑
i∈P

yi,j = 1 (6.6)

5. Vapor-liquid Equilibrium

yi,j = γjKi,jxi,j (6.7)

Ki,j = exp [Ai − (Bi/ (Tj + Ci))]/Pj (6.8)

log γ1,j =

(
A1,3x

2
3,j + A1,2x

2
2,j + (A1,3 + A1,2 − A2,3)x3,jx2,j

RTj

)
(6.9)

log γ2,j =

(
A1,2x

2
1,j + A2,3x

2
3,j + (A1,2 + A2,3 − A1,3)x1,jx3,j

RTj

)
(6.10)

log γ3,j =

(
A1,3x

2
1,j + A2,3x

2
2,j + (A1,3 + A2,3 − A1,2)x1,jx2,j

RTj

)
(6.11)

The activity coefficients γi,j are calculated using the Margules equations equation and

Ki,j is the ideal vapor-liquid equilibrium constant calculated by Antoine equation. Tj

and Pj are the temperature and pressure of each tray in each column. The Margules

and Antoine constants can be found in references [90].

6. Pressure Equation

dPtop

dt
=

(
RTavg

Vtot

)
(Vtop − Lc − Vdraw) (6.12)

Pj = Pj−1 +∆P (6.13)
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where Ptop is the pressure at the top of each column. Tavg is the average column

temperature. Vtot is the total column volume, Vtop is the vapor flow rate from the

top stage of the column. Lc is the condensation rate at the top of the column and

Vdraw is the product vapor draw rate from the top of the column. We assume that

the feed flow rates of each column depend on the upstream pressure and the column

pressure when these flows pass through the compressor, the expansion turbine, and

the throttling valves. Opposed to previous research [84, 80] where pressure holdup

is negligible, pressure dynamics are considered in this work to better capture the

dynamic behavior. Here, the pressure at the top of the column is calculated from a

differential equation. The remaining stage pressures are calculated using a constant

pressure drop per stage [89]. Note that pressure drop across each tray, ∆P , is constant

in the same column but differs between columns.

7. Heat Integration

The combined condenser/reboiler is assumed to be an additional normal tray for

both the HPC and the LPC. In combined condenser/reboiler, the energy that is

being transferred can be calculated by Equ. (6.14). This energy is extracted from the

condensing vapor stream at the top of the HPC and is released into the vapor stream

at the bottom of the LPC. Similarly, the condenser of the CAC is heat integrated with

the oxygen-rich stream from the bottom of the HPC. The relevant energy transferred

in the condenser of the CAC can be calculated by Equ.(6.15). This energy is extracted

from the condensing vapor stream at the top of the CAC and released into a portion

of liquid oxygen-rich stream from the HPC.

Q1 = UA1

(
THPC
1 − TLPC

70

)
(6.14)
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Q2 = UA2

(
TCAC
1 − THPC

in

)
(6.15)

8. Safety Inequality Constraints

During operating changes, the main safety constraints are concentration and flow rate

limits for normal operation of the CAC. As a result of the poor operation, significant

quantities of nitrogen may enter the crude argon column. The nitrogen, being the

more volatile of all the components, will concentrate at the top of column and form

a non-condensible mixture, which disrupts the column operation [69]. Therefore, the

nitrogen purity of feed flow from the LPC to the CAC is restricted to be less than

0.1%. The range of argon and oxygen purities for this feed flow are 8 − 10% and

90− 91% respectively.

C. Simultaneous Dynamic Optimization Approach

In this case study, we focus on determining robust optimal control trajectories for

a change in oxygen production from 100% to 70%, considering uncertain pressure

drops. Nitrogen, argon and oxygen production rates are treated as controlled vari-

ables. There are five main manipulated variables are selected: the feed air stream

of the HPC, U1, the feed air stream of the LPC, U2, the reflux flow from the HPC

to the LPC, U3, the waste nitrogen stream, U4, and the side withdrawal from the

LPC to the CAC, U5. Given the specifications presented in the previous section, the
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multi-scenario-based optimal control problem with uncertainty can be formulated as

min
U(t)

NS∑
q=1

wq

∫ tf

0

(
y (t)− yS

)T
Vy

(
y(t)− yS

)
+
(
U (t)− US

)T
Vu

(
U (t)− US

)
dt

s.t. Fq(
dxq(t)

dt
, xq(t), yq(t), zq(t), U(t),mq, p) = 0

Gq(xq(t), yq(t), zq(t), U(t),mq, p) = 0

xq(0) = x0

xL ≤ xq(t) ≤ xU

yL ≤ yq(t) ≤ yU

zL ≤ zq(t) ≤ zU

UL ≤ U(t) ≤ UU (6.16)

where U (t) is a vector of manipulated variables. We wish to find a single control pro-

file that is robust to the uncertainty in the pressure drop. Therefore, we seek a single

control profile that is feasible over all scenarios. Once discretized, this discretized

control profile becomes the common variables in the multiscenario formulation. The

variable, yq (t) is a vector of controlled variables in scenario q, while yS and US are

the set-points for the controlled variables and manipulated variables respectively. Fq

and Gq are differential and algebraic equation (DAE) constraints in each scenario

including differential state vectors, xq(t), algebraic state vectors excluding controlled

variables, zq(t), uncertain parameter vectors, mq, and the time-independent parame-

ter vector without uncertainty, p. The initial values of xq in each scenario are given

by x0, and wq is the weighting coefficient of each scenario. Vy and Vu denote diagonal

weighting matrices.

Again, we selected the simultaneous discretization approach in which the state
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and control variables are fully discretized using collocation techniques. In this work,

the simultaneous orthogonal collocation-based discretization approach is adopted,

using 20 finite element and Radau collocation points.

D. Optimal Control Results

In this study, the pressure drop of each tray in the LPC which may vary from 145

to 185 Pa is assumed to be uncertain. The range is discretized by selecting 8 points

assuming uniform distribution. Five manipulated variable profiles are selected as the

common variables. One processor is used for each scenario corresponding to each

pressure drop value. There are 600 differential and 2800 algebraic equations in each

scenario. In the whole large scale problem,there are approximately 1,120,000 total

variables including 300 common variables. The optimal control trajectories with and

without considering uncertain pressure drops are shown in the Figure 26.

In Figure 26, influences of uncertain pressure drop in the LPC on the optimal

control profile can be seen. The profiles of the feed air stream of the LPC, U2, and

the reflux flow from the HPC to the LPC, U3, and the Waste nitrogen stream, U4 are

significantly different from the nominal profiles, while the trajectories of the feed air

stream of the HPC, U1 and the side withdrawal from the LPC to the CAC have only

small differences.

To demonstrate the scaleup efficiency of Schur-IPOPT in this case study, Figure

27 shows the computational timing results as a function of an increasing number of

scenarios. As before, with the addition of each scenario, we allow use of another

processor. It can be seen that the parallel approach significantly outperforms the

serial approach. We can see that the scalability suffers as we approach 8 scenarios

and processors. This is due to a bottleneck in memory bandwidth and much better
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Fig. 26. Optimal Trajectories of Oxygen, Argon and Nitrogen Products, and Manipu-

lated Variables under Nominal (Dashed) and Uncertain (Solid) Pressure Drops

of the LPC.

scalability is expected on a distributed memory cluster.

The approach of this case study can be also extended for not only determining

optimal shut-down and start-up strategies of air separation columns but also imple-

menting effective and reliable nonlinear model predictive control.

E. Conclusions

Dynamic optimization under uncertainty using first-principle models for air separa-

tion units can provide more rigorous treatment of optimal operation when transient

conditions occur. The optimal solution can be obtained quickly, meeting online re-

quirements. Considering uncertain parameters can improve the actual optimal control

performance.

Based on the parallel nonlinear programming algorithm proposed in Chapter II,

large scale uncertain trajectory planning problem can be formulated as a multiscenario
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Fig. 27. Wall Clock Time per Iteration for Serial and Parallel Approaches of Optimal

Control under Uncertainty

problem with common control profiles. The timing results also show the benefits of

our parallel nonlinear algorithm in terms of computational efficiency.
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CHAPTER VII

SPATIAL DECOMPOSITION OF CITY-WIDE PIPELINE NETWORK

The parallel nonlinear optimization algorithm proposed in Chapter II has been used

in Chapter III, Chapter IV and Chapter VI, in order to solve steady state design,

operation planning, and dynamic optimization under uncertainty. These applications

identify the appropriateness of our approach for decomposing both multiscenario and

multiperiod problems. Our parallel nonlinear optimization algorithm can be used

under other problem decomposition methods as well. In this chapter, we focus on

water demand estimation of a large scale network by adopting a spatial decomposition

rather than a multiscenario or multiperiod decomposition.

A. Problem Description

As an important part of the water supply system, a water distribution network is

a hydraulic infrastructure, including a set of pipes, pumps, and other hydraulic de-

vices. There are significant challenges associated with successful operation of water

distribution systems. Our problem is accurate characterization of real-time demands

and network flow patterns. In this chapter, we focus on optimal demand estimation

in a large-scale water distribution system using limited measurement information. In

almost all cases, the number of uncertain demands greatly outnumbers the available

measurement. As with most inverse formulation, the problem must be regularized.

Every node in the network has an assumed demand based on historical monthly data

and daily usage patterns. However, the true real-time demand will deviate from this

value. Given spatially sparse measurements of flow and pressure, the goal is the

estimate the real-time demand using the assume demands as regularization. This

demand estimation can be formulated as a NLP problem. Nevertheless, efficient so-
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Fig. 28. Structure of Large Water Network with Seven Sub-parts

lution of this large scale estimation problem with a first-principle model is still quite

challenging due to the large size of real municipal water networks.

In this section, we spatially decompose a real municipal water network into seven

sub-networks and then adopt our proposed parallel NLP algorithm, to efficiently

estimate water demands at each node. The network structure is shown in Figure 28.

There are over 12500 nodes and 14800 pipelines in this water network.
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B. Mathematical Formulation

The objective function minimizing the least-squares errors in measured flow and head,

with a Tikhonov regularization. On the assumed demand as given by,

minα
∑
i∈Ns

(
di − dBi

)2
+ β

∑
j∈Pm

(
fj − fM

j

)
+ γ

∑
i∈Nm

(
hi − hM

i

)2
, (7.1)

where Ns is the set of all nodes, Pm is the set of all measured pipe flows, and Nm is

the set of all measured node pressures. The variables di, fj and hj are the calculated

demands, flows, and pressures respectively. the measured flows and pressures are

given by fM
j and hM

i respectively, while dBi are the assumed values for the demands.

The weights are assumed 102, 105, and 105, respectively.

For each junction node i, a continuity constraint should be met

∑
fj|κj,i=1 −

∑
fj|λi,j=1 = di, ∀j ∈ Ps, ∀i ∈ Ns, (7.2)

where κj,i and λi,j are the indices of connections between the jth pipeline and the ith

node. When κj,i equals to 1, the fj is flow into the ith junction. Similarly, when λi,j

equals to 1, the fj is flow out of the ith junction. Ps is the set of all pipes.

The head loss in each pipe is the head difference between connected nodes. The

following Hazen-Williams equation is the most commonly used for hydraulics of head

loss and adopted in this section.

∆Hj = ω
Lj (0.0022278|fj|)a

(Cj)
a (Dj)

b
, ∀j ∈ Ps, (7.3)

where ω is a coefficient assumed to be 4.727. Cj is Hazen-Williams roughness coeffi-

cient of the jth pipe and a is a coefficient equal to 1.852. Dj is the jth pipe diameter

(ft) and b is a coefficient equal to 4.871. Lj is the jth pipe length (ft).
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The conservation of energy in each pipeline is given as

hin − hout = ∆Hj, (7.4)

where hin and hout are heads of the input and output nodes for any pipe, respectively.

The conservation of energy for pump is given by

hout
P − hin

P = ∆EP , (7.5)

where hin
P and hout

P are heads of the input and output nodes for any pump, respectively.

∆EP is the head increase through the pump and can be calculated by 7.6

∆EP = µ1 + µ2|fP |µ3 , (7.6)

where µ1, µ2 and µ3 are coefficients equal to 46.7, −0.006212 and 1.31, respectively.

fP is the flow through the pump.

The minimum head constraint for each node is given as

hi − ei ≥ hmin
i , (7.7)

where hmin
i and ei are the minimum required head and elevation of the ith node.

C. Spatial Decomposition

In order to efficiently solve the above problem by our parallel NLP algorithm, the

whole problem is spatially decomposed. Since some nodes have only one input and

one output, we split the whole network by choosing such nodes.

Figure 29 shows how to split one-input-one-output node into different sub parts

of network. In part (a), the pipelines (j + 1)th and jth are connected by the ith node.

The variables relative to the ith node are head (hi), demand (di), input (fj+1) and
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Fig. 29. Structure of Splitting Network by One-input-one-output Node: (a) Original

Nodes Without Splitting; (b) Updated Nodes After Splitting

output (fj) flow rates. In part (b), the left region does not have the information

of the jth pipeline, so needs output flow rate (fj). Similarly, the right region needs

input flow rate (fj+1), while the hi and di are commonly used by the left and right

regions. Therefore, each split node leads to four common variables. In this work, 14

one-input-one-output nodes are selected to split the whole water network into 7 parts

shown in Figure 28. Note that the sizes of sub-networks are different and 56 common

variables are used to connect the sub-networks.

D. Numerical Results

EPANET [115] is adopted to build a simulation model for the above network in Figure

28. Parameter data and network structure are read from EPANET output files using

Python and AMPL .dat files are written. The problem has 52,492 variables. Figure

30 shows the wall clock time per iteration for serial and parallel approaches. This

problem requires 268 (s) of CPU time to solve using the serial approach, while the

parallel approach with seven processors only requires 75 (s) of CPU time. These

results clearly show the significant benefit provided by the parallel approach which

saves 72% of the total calculation time.

Recall that the sizes of sub-networks are different. The largest sub-network has

approximately 12,000 variables, while the smallest has approximately 4,500 variables.

Therefore, the computational loads are different. It is possible that there is a better
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Fig. 30. Wall Clock Time per Iteration for Serial and Parallel Approaches

spatial separation which can provide improved load balancing, improving performance

further.

This case study also demonstrates that our parallel nonlinear algorithm can be

expected to effectively solve multi-unit problems based on spatial decomposition.

In practical chemical processes, several units are always highly coupled together.

Therefore, our proposed algorithm provides a feasible approach to decompose into

individual units, while the linking information between units can be considered as

common variables.
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CHAPTER VIII

CONCLUSIONS

This dissertation was motivated by the need for effective problem formulation and ef-

ficient solutions of optimal design and operation problems with rigorous first-principle

models under external disturbances and uncertain market factors. The incorporation

of first-principle nonlinear models in process design and operation problem can reduce

the mismatch between the true process and the model. Furthermore, a more rigorous

and systematic treatment of uncertainty in process optimization can improve process

profitability and flexibility.

However, the use of first-principle models in optimal process design and opera-

tions under uncertainty also results in several computational challenges. The objec-

tive of this dissertation has been to propose computational strategies including suit-

able model development, problem formulation and advanced numerical algorithms

for overcoming some computational challenges. In this chapter, we summarize our

contributions and present suggestions for future work.

A. Summary and Contributions

A brief description of motivation and challenges of nonlinear optimization with rigor-

ous models is given in Chapter I. Some potential applications of large scale nonlinear

optimization in the chemical engineering area are discussed according to the struc-

ture and relationship of process design and operations under uncertain and varying

market demands. Nonlinear programming approaches can provide an effective tool

to include information from both the process and the market simultaneously and

obtain optimal reliable decisions in design and operation. Based on this structure,

this dissertation focuses on conceptual design under uncertainty (Chapter III), mul-
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tiperiod steady state optimal operating strategies with uncertainty and contractual

constraints (Chapters IV and V), dynamic optimization under uncertainty (Chapter

VI), and parameter estimation (Chapter VII) as case studies to demonstrate that

effective formulation and advanced parallel algorithms can provide significant com-

putational efficiency and handle the emerging challenges of NLP applications in the

chemical engineering area.

In Chapter II, advances in interior-point NLP algorithms were compared with

the classical SQP approach. The main computational cost of interior-point NLP

algorithms, like IPOPT is the solution of large linear systems at each iteration arising

from a Newton step on the primal-dual optimality conditions. We developed a parallel

nonlinear programming algorithm based on general IPOPT package using an internal

schur-complement decomposition. To illustrate the benefit of this proposed algorithm,

we solved several different large-scale chemical process problems.

1. Summary of All Case Studies

As one important application of our parallel nonlinear algorithm, conceptual design

under uncertainty is investigated in detail and we have presented the following con-

tributions:

• A multiscenario problem formulation is developed to handle desire under un-

certainty of a highly coupled air separation process and a heat-integrated dis-

tillation column. To our knowledge, this is the most rigorous air separation

model that has ever been used for design under uncertainty in a simultaneous

NLP framework. Improved model rigor levels to reduce mismatch between the

process plant and the model.
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• In addition to the treatment of uncertainty we have demonstrated that modern

nonlinear programming tools can address complex design problems including

constants a controllability by adopting RGA and condition number methods.

• We have develop a parallel nonlinear programming approach that can effectively

tackle these large scale multiscenario problems (We have shown oven 1500 sce-

nario for the heat-integrated distillation column.) Scalability is excellent for

these problem classes.

In Chapters IV and V, we have seen that optimal operating single and multi-

period strategies of cryogenic air separation units can be obtained by solving large

scale NLP problems. Compared with previous research on this area, we adopt a

rigorous nonlinear model with three highly coupled distillation columns rather than

a simplified linear model. Furthermore, the the Type 2 service level is adopted as

a measure of the customer satisfaction levels, and contractual constraints are inte-

grated into the optimization. Such integration provides an effective tool to consider

the trade-off between profitability and customer satisfaction levels. In additions, the

following contributions have been made:

• Based on contractual constraints, a formulation and solution procedure has

been developed to identify different operating regions and visibly select suitable

contractual obligations. Optimal operating conditions within the Profit Defined

Region (PDR) are determined by profit considerations alone, and customer

satisfaction constraints do not dictate operation. In the Fill-rate Constrained

Region (FCR), the contractual constraints become active and profits begin to

suffer. The Infeasible Region (IR) space can help the management identify

the capacity limitations of a plant under increasing customer satisfaction levels

where inventory and other resources should be considered and used.
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• This formulation simultaneously considers contractual constants on multiple

interesting products. Inventory control is investigated and optimal operating

policies are developed to handle uncertain product demands.

• The Schur-complement decomposition approach provides an efficient parallel

computing strategy. Rather than the multi-scenario method used by design

under uncertainty in Chapter III, the problem is decomposed into different

time periods. The production rates, feed rates, and inventory information are

selected as the common variables to link the different sub-problems (time peri-

ods). It has been demonstrated that this parallel NLP algorithm has very good

scalability as the size of the problem increases.

Chapter V focuses on optimal operation among different operating conditions

considering variability in electrical prices and uncertain product demands. In this

chapter, we have presented the following contributions:

• Both constant and uncertain product demands are studied in detail. It has

been demonstrated that suitable switching operating conditions can have higher

energy efficiency compared with a fixed steady state operation.

• Peak and Off-peak power pricing is considered in this chapter to get optimal

daily operating strategies including feed load, production rates and inventory

levels of three different products, as well as starting and ending time of process

transitions. A linear relationship between load changes and transient time is

adopted and formulated to replace instantaneous switching assumption.

• A rigorous model, safety constraints, and economic evaluation, are included

within this multiperiod formulation.
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Parameter uncertainty has a significant impact on the performance of large scale

dynamic processes. Chapter VI is motivated by the desire for improving the perfor-

mance of dynamic optimization of operating strategies under uncertainty. Contribu-

tions of this chapter include:

• A rigorous dynamic model of a highly integrated air separation process has been

developed, including 600 differential and 2800 algebraic equations. To our

knowledge, this the largest dynamic model of an air separation process that has

been optimized using the simultaneous approach while considering uncertainty.

• Uncertainty is handled with a multiscenario approach where control profiles are

selected as common variables across scenarios. Our parallel NLP algorithm is

able to efficiently solve this extremely complex dynamic control problem includ-

ing 1,120,000 variables.

Chapter VII focuses on the parameter estimation of unknown water demand in a

city-wide water distribution network. In this chapter, we have presented the following

contributions:

• We have built a first-principle hydraulic model of a large water distribution

system. To our knowledge, this is the largest water network model that has

been optimized using a simultaneous framework.

• In this chapter, we demonstrate that our parallel approach is effective for spatial

decomposition of large networks. This approach is expected to handle plant-

wide problems, decomposing at the unit level.
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2. Challenges and Experience

In this subsection, we are interested in discussing some challenges we need to pay

much attention to in future large scale NLP problems with rigorous models while

providing some experiences on handling these challenges.

• Initial guess values: Initialization of nonlinear optimization problems is a deli-

cate issue for both SQP and Interior point methods. Bad initial values can lead

to convergence failure. Different initial values for the same optimization prob-

lem can produce totally different solutions. It is necessary to understand the

fundamental process principles completely to provide reasonable initial values.

Simulation models should be used to provide good initial values for optimization

problems.

• Model development: When we need to develop a large scale NLP problem that

includes several chemical units, it is dangerous to formulate all equations from

all units into one problem before testing. Even if we have a simulation model

of the whole plant, it is better to build independent optimization models of

different units. In order to check these independent optimization models, we

can regard input variables as degrees of freedom formulated into an objective

function that pushes input variables to get close to specified values provided by

simulation models as much as possible. In addition, when we adopt modeling

languages (e.g. AMPL and GAMS) that can provide detailed information of

Jacobian and Hessian, reasonable substitution can reduce the number of inter-

mediate variables arising from complex thermodynamic and kinetic equations.

Correspondingly, the time used for evaluation of Jacobian and Hessian can de-

crease and the size of problem can be also reduced. Of course, such substitution

also leads to a denser augmented matrix in each Newton iteration and may in-
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crease the time used for solving the linear dense augmented matrix.

• Model reduction: This dissertation adopts a parallel NLP algorithm to effi-

ciently solve several design and operating problems in the chemical engineering

area. However, it does not mean that parallel NLP algorithm can solve any large

scale NLP problems without any trouble. Model reduction can be considered in

order to obtain further computational efficiency. In general, model reduction,

used in process industry, can be classified into two main categories: mathe-

matical and physical approaches. Mathematical approaches (e.g. Empirical

Gramians and Proper orthogonal decomposition) transform original variables

to new variables by projection. These models can be applied in different plants

with similar fundamental mathematical principles. The large disadvantage of

these mathematical methods is that the new variables do not have any physical

meaning. Physical approaches depend on adding new physical assumptions in

the models or replacing complex equations with simpler parameterized equa-

tions. For example, a cubic equation of state method may be replaced by much

simpler relative volatility method. Physical reduction does not require addi-

tional mathematical theories so it is preferred in most practical applications.

Model reduction can improve the computational efficiency of large-scale opti-

mization problems. However, reduction level should be considered carefully in

order to keep reasonable accuracy and avoid large mismatch between processes

and models.

3. Parallel Computing

The purpose of parallel NLP algorithms is to solve problems that serial algorithms

can not solve or to solve problems faster than serial algorithms. In this dissertation,
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several case studies are studied in order to demonstrate the excellent scalability and

computational efficiency of our proposed parallel NLP algorithm.

a. Scalability

In this dissertation, we have shown the scalability of our parallel algorithm on multi-

core shared memory machines. On these architecture, our parallel approach can

solve large problems significantly faster than the serial algorithm. However, on the

shared memory architecture, we can observe a memory bottleneck as we scale to more

processors. While not discussed in this dissertation, other research from our group

indicates that distributed memory architecture scale much more effectively for these

problems.

b. Distributed and Multi-core Architectures

There are a number of emerging architectures for parallel scientific computing:

• Distributed Architecture: Beowulf clusters are an example of a distributed-

memory parallel processor architecture. The cluster is built by networking

affordable desktop computers through standard Ethernet or specialized net-

working technologies. The system consists of a primary computer functioning

as a master node, controlling access to the compute nodes. Each compute node

has its own local RAM. Since the memory is not shared with other nodes, com-

munication among nodes occurs over the network. This is typically done via

a Message-Passing Interface (MPI) although other technologies and paradigms

exist. Communication via Ethernet is the biggest cause of latency, so for a

program to run efficiently, this communication and the need for synchroniza-

tion must be kept to a minimum. These architectures are most appropriate
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for coarse-grained problems that require limited communication, and our work

has demonstrated that this architecture is highly appropriate for parallel solu-

tion of large-scale structured nonlinear programs. Grid computing represents

an extreme case of a distributed memory architecture where compute nodes

are typically heterogeneous and geographically distributed, with communica-

tion over the internet.

• Multi-core Architecture: Multi-core architectures allow for shared-memory and

parallel computation within a single node. Each of the processing cores has

access to the same local memory and these architectures promise significantly

faster communication among processes (or threads) through local RAM. Nev-

ertheless, in most multi-core systems access to local RAM is shared through a

common memory bus, and the performance of individual processes may deteri-

orate as each process competes for access to the local memory it needs. Even

with a sufficient number of processors, the memory bandwidth can become a

bottleneck and deteriorate the expected benefits from parallel computing. In

this dissertation, we also demonstrate that multi-core architectures are also ap-

propriate for parallel solution of large-scale structured optimization problems,

however, they do not scale as well as distributed architectures for the class of

problems studied in Chapter III.

B. Future Work

In order to think further about our research, here, we are interested in discussing

potential research work in future. The future work includes the NLP applications we

focus on in this dissertation and the potential development of parallel NLP algorithms.
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1. NLP Application

Challenging industrial applications like cryogenic air separation columns, internal

heat-integrated distillation columns, and city-wide water networks still motivate fur-

ther development in terms of process and algorithm.

a. Integration of IPOPT with Other Software

All the problems in this dissertation are formulated by using AMPL Modeling lan-

guage which can effectively provide good information of Jacobian and Hessian. How-

ever, it also limits the application of our parallel NLP algorithm because of modeling

limitation in AMPL. For example, AMPL does not have constructs for representing

differential equations and all discretization must be done manually.

Here, we give a potential platform called JModelica which can found in http://

jmodelica.org. This platform supports IPOPT by using CppAD to provide Jacobian

information and the BFGS method to approximate the Hessian information. The big

advantage of using JModelica is that it allows users develop their simulation models

in the Modelica language [116] and convert their simulation into an optimization

formulation.

Also, the Python based modeling language PYOMO shows significant promise.

Since it is based on a complete object-oriented scripting language, it allows for ad-

vanced modeling and the development of additional package for high-level modeling

constructs.

b. Air Separation Units

Cryogenic air separation units are studied widely in this dissertation which includes

design under uncertainty, planning and operation under uncertain product demands
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and varying power pricing, as well as dynamic optimization. However, there are still

possible improvements and future developments:

• Integration of RTO and MPC. Dynamic optimization under uncertainty

is investigated in Chapter VI. However, this does not optimize the economic

performance directly because the set-point trajectory is not given by the RTO

layer. In Figure 1, design and long-term planning are always done off-line while

both RTO and MPC should be calculated on-line with high frequency. Future

work should integrate these two with rigorous models while focusing on efficiency

and reliability.

• Development of suitable thermodynamic dynamic models. The dy-

namic model used in this dissertation depends on an activity coefficient ap-

proach to describe the Gas-Liquid equilibrium. However, it is still very difficult

to solve. Model reduction is expected to contribute better computational effi-

ciency. The wave model is built by Bian et. al. [83] however this method is

more suitable for a binary-component system, while air separation columns have

a triple-component system. Compartmental modeling is also studied in [117].

However, this method, which is a physical model reduction approach, aims at

the special plant and it can not be used as a general approach. Therefore, math-

ematical model reduction methods, like Proper Orthogonal Decomposition, can

be tried in order to further improve computational efficiency.

• Network Optimization. We have applied our block-structured nonlinear al-

gorithm to a large-scale water network problem. Gas products of air separation

units are also delivered by pipelines in large scale networks. Such networks

include not only one single air separation unit, but also multiple units at the

different nodes in order to satisfy different customers’ demands. Therefore, one
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candidate research topic is to focus on large scale gas networks under uncertain

factors such as uncertain demand and time delay. Another choice is dynamic

optimization and simulation for pipeline network under uncertain output pres-

sure and demand. Research will include the development of effective techniques

to determine appropriate sub-systems from the whole network.

2. Parallel Computing Development

Here, we focus on introducing some potential architectures for further development

of parallel scientific computing algorithms:

• GPU Architecture: Graphics Processing Units (GPUs) are another type of

multi-core processor that has recently emerged within the scientific comput-

ing community. GPUs typically contain several hundred basic processing cores,

however, these cores are not general purpose CPU cores. Therefore, while these

systems may give access to many hundreds of cores at an affordable price, these

cores are limited in their capability. For example, the general GPU architecture

is modeled after the NVidia Tesla GPU units for scientific computing. Here,

each GPU device contains a number of multiprocessors, each with a number of

single-instruction-multiple-data (SIMD) stream processors. These architectures

have complicated memory structures that must be considered. The different

types of memory in a GPU can be grouped into categories based on their scope.

Registers serve individual processors; shared memory, constant cache, and tex-

ture cache serve multiprocessors; global device memory serves all cores [118].

While this memory hierarchy allows for very low latency at the processor level,

access to global device memory has high latency. Thus, the problem must be

highly parallel so that the program can break it into enough threads to keep the



136

individual processors busy [119]. In spite of these and other drawbacks, there is

significant potential for these architectures in certain scientific computing tasks

and examples of their success are numerous. Current efforts indicate significant

potential for efficient parallel solution of linear systems. With regards to paral-

lel nonlinear optimization, this provides a promising avenue for immediate use

of these architectures since most NLP algorithms require the solution of a large

linear system at each iteration.

• CELL Architecture: The Cell (Cell Broadband Engine Architecture) is similar

to the architecture of the GPU systems in that there are a number of non-general

purpose processing cores that have shared access to various levels of memory.

The Cell processor contains eight Synergistic Processing Elements (SPEs). Each

SPE contains a Synergistic Processing Unit (SPU) that operates using an SIMD

architecture. Processors are mated closely to their own independent memory

allowing for very low latencies between the processor and memory. However, this

is a distributed memory system [120]. The Cell system has gained popularity,

as it is available rather inexpensively and fully supports the Linux operating

system. As with the GPU architectures, there have been significant efforts

towards efficient parallel solution of linear systems on the Cell processor [120],

and the use of parallel linear solvers provides potential for parallel nonlinear

optimization.

• Cray XMT Architecture: The Cray XMT system is designed to give a relatively

inexpensive, scalable multithreading, shared-memory supercomputing platform.

It is built with up to 96 processors per cabinet. Each processor accommodates

128 fine-grained hardware streams and is associated with its own memory sys-

tem. Since these memory systems are linked together the system can function
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as a shared-memory computer. The latency associated with shared-memory

systems is masked in this supercomputer through multithreading. Multiple

threads give processing efficiency by skipping threads that are waiting for data

from memory and running threads that have data available This is ideal for

data-intensive applications requiring irregular memory access.

In addition, while our proposed schur-complement parallel NLP algorithm has

already solved several large scale nonlinear optimization problems with high com-

putational efficiency, one potential limitation of this parallel NLP algorithm is that

the number of backsolves increases linearly with the number of coupling (common)

variables. In order to further improve computational performance of our algorithm,

a new approach including PCG and BFGS can be taken into account.

Instead of explicitly forming the Schur-Complement which is used in this dis-

sertation, PCG solver is used to solve Equ. (2.37) according to Ax = b form. The

inverse of the schur-complement,
[
δ1I −

∑
q∈QAT

q K
−1
q Aq

]−1

, can be approximated by

using a BFGS update to provide the preconditioner. This method requires only one

backsolve of Kq for each PCG iteration.
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