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ABSTRACT 

 

Towards the Development of Training Tools 

for Face Recognition. (May 2011) 

Jobany Rodríguez, B.S., University of Puerto Rico at Mayagüez; 

M.S., Monmouth University 

Chair of Advisory Committee: Dr. Ricardo Gutierrez-Osuna 

 

Distinctiveness plays an important role in face recognition, i.e., a distinctive face is 

usually easier to remember than a typical face.  This distinctiveness effect explains why 

caricatures are recognized faster and more accurately than unexaggerated (i.e., 

veridical) faces.  Furthermore, using caricatures during training can facilitate 

recognition of a person’s face at a later time.  The objective of this dissertation is to 

determine the extent to which photorealistic computer-generated caricatures may be 

used in training tools to improve recognition of faces by humans.  To pursue this 

objective, we developed a caricaturization procedure for three-dimensional (3D) face 

models, and characterized face recognition performance through a series of perceptual 

studies. 

The first study tested whether exposure to caricatures during an initial 

familiarization phase would aid in the recognition of their veridical counterparts at a 
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later time.  Results indicate that people are more accurate at recognizing unaltered faces 

if they are first familiarized with caricatures of the faces, rather than with the unaltered 

faces.   In the second study, we sought to determine the extent to which familiarization 

with caricaturized faces could also be used to reduce other-race effects.  Caucasian 

participants were first familiarized with faces from multiple races, and then asked to 

recognize those faces among a set of confounders.  Participants who were familiarized 

with and then asked to recognize veridical versions of the faces showed a significant 

other-race effect on Indian faces.  In contrast, participants who were familiarized with 

caricaturized versions of the same faces, and then asked to recognize their veridical 

versions, showed no other-race effects on Indian faces.  The final experiment sought to 

determine whether 3D reconstructions from 2D frontal images could be used for the 

same purpose.  Participants who were familiarized with reconstructed faces and then 

asked to recognize the ground truth versions of the faces showed a significant reduction 

in performance.  In addition, participants who were familiarized with caricatures of 

reconstructed versions, and then asked to recognize their corresponding ground truth 

versions, showed a larger reduction in performance. These results are critical for the 

development of training tools based on computer-generated photorealistic caricatures 

from ‚mug shot‛ images. 
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1. INTRODUCTION 

Law enforcement and security officers must be vigilant in their day-to-day duties of at-

large suspects and known terrorists.  These officers must study offender’s faces to be 

able to identify and apprehend them.  However, learning and recognition of faces are 

not easy tasks because certain faces are more difficult to recognize than others.  Several 

studies have demonstrated that distinctiveness plays an important role in face 

recognition by humans.  For example, typical faces are more difficult recognize than 

distinctive faces (Going and Read 1974; Light et al 1979).  Furthermore, people have a 

learned bias toward recognizing faces from their own race better than faces from 

another race (Valentine and Endo 1992).  This other-race effect could negatively affect 

the accuracy of law enforcement officers recognizing individuals, and may lead to false 

positive identification. 

This research explores ways in which our ability to recognize faces (typical or 

other race) could be improved through computer-assisted face recognition training 

tools, specifically through the use of caricaturization.  Researchers have demonstrated 

that caricatures are recognized faster and more accurately than unexaggerated (i.e., 

veridical) faces (Light et al 1979; Valentine and Bruce 1986b, c).  However, is it feasible 

to use caricatures of unfamiliar individuals as training aid to improve recognition of 

their veridical faces (i.e., their real and unaltered faces) at a later time?  If it is possible, 

 
 This dissertation follows the style of Perception. 
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can the same strategy help us improve our recognition of other-race faces?  These core 

questions must be addressed before attempting to implement such face recognition 

training tool. 

The main objective of this dissertation is to answer those core questions.  We 

must determine the extent to which human face recognition of veridical faces improves 

by using faces whose distinctiveness has been enhanced.  To achieve this objective, we 

developed an automated caricature generation method that uses a database of 

morphable 3D faces.  Then, we performed perceptual studies where participants were 

familiarized with caricaturized faces and were asked to recognize them in veridical 

form at a later time.  We also studied the extent to which these caricatures may be used 

to reduce own-race biases. 

After establishing the viability of 3D caricatures as a method to improve face 

recognition, we then addressed the more practical issue of how to obtain 3D facial 

models from individuals.  Returning to the law enforcement scenarios, it is likely that 

most of the face data comes from ‚mug-shot‛ images, where the required 3D 

information is missing.  An alternative in this case would be to reconstruct a 3D model 

from 2D images prior to the caricaturization process.  Though recovering 3D 

information from 2D images is an ill-posed problem, over the past fifteen years a 

number of computer methods have been proposed to reconstruct 3D faces from single 

images, such as the seminal work of Blanz and Vetter on the morphable model (Blanz 

and Vetter 1999).  Although these 3D reconstruction methods produce high quality 
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photorealistic faces, it is unclear whether caricatures from these reconstructed models 

are effective for training.  Thus, we also studied the extent to which caricatures from 3D 

reconstructed models can help to enhance recognition performance and reduce other-

race effects. 

Our rationale is that setting up this perceptual foundation will allow us to better 

define a design framework for a face recognition training tool.  This tool could have a 

broad impact in homeland-security applications, such as training of law enforcement 

agents to better recognize suspects.  Figure 1 shows a high level architecture for the 

 

Figure 1. High-level system architecture.  The system takes a frontal image as input, and 

reconstructs a 3D model from the image.  The difference between the predicted 3D model and an 

average 3D face is emphasized, and a caricaturized 3D model is then generated. Finally, a frontal 

image is rendered based on the 3D caricaturized model. 
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training tool we envision.  This architecture consists of two basic components: 3D 

model reconstruction, and caricaturization:  

 The 3D face reconstruction component processes a 2D frontal image of a target 

individual, and estimates a 3D facial model using existing reconstruction 

algorithms, e.g., Blanz and Vetter (1999); Zhang et al (1999); or Moghaddam et al 

(2003). 

 The caricaturization component distorts a 3D model relative to an average 3D 

face model (Brennan 1985). This 3D average face is calculated based on the 

system’s internal 3D model database. Finally, this component also renders the 

caricaturized frontal image. 

1.1 Organization of this document 

The remaining parts of this dissertation are organized as follows.  Section 2 provides a 

review from the perceptual and cognitive psychology literature on the distinctiveness 

of human faces, caricature effects, and race effects in face recognition by humans.  

Furthermore, it presents several computational models of face perception.  Finally, this 

section reviews several computer algorithms for 3D face reconstructions.  Section 3 

presents an overview of the caricature generation process.  Section 3 also discusses the 

3D face scan database and face normalization procedure that allows us to caricaturize 

the 3D faces consistently and evenly.  Section 4 presents a perceptual study that 

established proof-of-concept for our working hypothesis, namely that caricaturing can 
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aid in the memorization and recognition of veridical faces (i.e., the reverse-caricature 

effect).  Section 5 presents a second study that explored the use of reverse-caricature 

training as a method to reduce other-race effects.  These two studies assume that 3D 

facial models are readily available; Section 6 presents our methodology for generating 

3D reconstructed stimuli from 2D images.  Section 7 describes the final perceptual study 

where we determined the extent to which caricatures from 3D face reconstructions are 

also effective to improve recognition and reduce the own-race bias.  Finally, Section 8 

presents the conclusions and future directions of this research. 
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2. BACKGROUND AND LITERATURE REVIEW 

This section reviews the most common perceptual effects in human face recognition.  It 

also discusses several computational models based on those perceptual effects.  

Furthermore, it reviews multiple 3D face reconstruction algorithms from images. 

2.1 Perceptual effects in face recognition 

It is common to feel that certain faces are harder to remember than others.  For example, 

members from a different racial group than ours seem to look alike, and a caricature of 

a political figure seems easier to recognize than an actual photograph.  These scenarios 

are well documented in the cognitive psychology literature; the former is known as the 

other-race effect and the latter is known and the caricature effect.  Both and related 

effect are reviewed in detail in the subsequent sections. 

2.1.1 Facial distinctiveness and the caricature effect 

Across a wide range of social judgments and perceptions, individuals’ distinct qualities 

typically are given greater weight than their more common or normative qualities 

(Blanton and Christie 2003).  This principle applies to face recognition as well.  In 

general, a prominent chin, nose or hair style can grab attention during initial exposure 

and then be used as a memory aid during recognition.  For instance, a study by 

Winograd (1981) presented evidence that facial-distinctiveness aids memorization of 

face photographs.  Other studies have shown that distinctive faces are remembered 
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more accurately (Light et al 1979; Valentine and Bruce 1986b) and faster (Valentine and 

Bruce 1986c) than typical faces.  This simple fact can be harnessed to create more 

memorable stimuli. Researchers pursuing this strategy create ‚caricatures‛ of normal 

faces by exaggerating their distinct qualities, and they find that people are more able to 

recognize these distorted faces than the veridical faces that were used to create them.  

This caricature effect is well established in the literature on face recognition (Benson and 

Perrett 1994; Cheng et al 2000; Lee et al 2000) (Mauro and Kubovy 1992) (Rhodes et al 

1987). 

Tversky and Baratz (1985) used caricatures of famous individuals created by 

cartoon artists, and compared them against photographs in memory-recall tasks.  The 

authors reported that photographs were recognized more accurately than caricatures in 

both recognition1 and identification2 tasks, which suggests that distinctiveness does not 

improve recognition performance.  Although these studies are not supportive of a 

caricature hypothesis, many have argued this is so because photographs contain more 

spatial information than artistic caricatures (Rhodes et al 1987) or because the artists 

may have used additional caricaturing techniques (e.g., symbolic caricaturing) in 

addition to the exaggeration of distinctive features (Mauro and Kubovy 1992).  Rhodes 

et al (1987) suggested that a better comparison of distinctiveness effects should be made 

 
1 Recognition tasks are usually old/new test. 
2 Identification tasks are usually name/object association test.  
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within the same representational medium. 

 Rhodes et al (1987) used a computer-based caricature generation tool (Brennan 

1985) to create line-drawings of faces based on 169 facial points.  An average face (    ), 

was computed, and a caricature (  ) of a given face ( ) were generated by exaggerating 

the difference between the points of a given face and their correspondences on the 

average face by a factor   (see Equation (1) and Figure 2).  Identification tests of familiar 

faces using veridical and caricaturized line-drawings indicated that caricatures were 

identified faster than veridical line-drawings but not more accurately.  This result led 

the authors to propose two possible explanations for the caricature advantage.  

                        (1) 

 

Figure 2. An example produced by the Brennan’s caricature generator.  John F. Kennedy: (a) α = 

0% exaggeration, (b) α = 50% exaggeration, (c) α = 100% exaggeration. This figure was obtained 

from Rhodes et al (1987). 

(a) (b) (c)(a) (b) (c)
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According to the first view, faces would be represented in memory as caricatures 

instead of veridical faces.  The second view hypothesizes that memory representations 

are veridical but caricatures facilitate the access of the veridical faces.  Benson and 

Perrett (1994) performed similar experiments using an improved line-drawing 

caricature generation tool (Benson and Perrett 1991b); they also reported that 

caricatures were identified faster, but also found a caricature advantage over veridical 

line-drawings in terms of recognition accuracy.  Stevenage (1995) and Mauro and 

Kubovy (1992) successfully demonstrated the caricature advantage over veridical 

representations using hand drawings and an Indentikit3 system, respectively.  

Stevenage (1995) also compared caricature line-drawings against veridical line-

drawings during training to assess whether they aid in recognizing photographic faces.  

Her study showed a caricature advantage over the veridical line-drawing when the 

amount of training was unlimited, but caricature performance was as good as the 

veridical when the amount of training was restricted.  

The caricature advantage has not been restricted to line drawings only. Benson 

and Perrett (1991a) have also shown that photographic-quality caricatures improve 

recognition of natural facial images as well.  These authors borrowed Brennan’s 

technique (Brennan 1985), and extended it to generate caricatures on pixel-based 

 
3 Identikits are composite sketches of faces based on verbal descriptions commonly used by law 

enforcement agencies. 
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images.  Their results indicated that the caricature advantage in photos does indeed 

exist, but at a lower caricaturization level than the one used by Rhodes et al (1987) for 

line-drawing caricatures: the authors reported a disadvantage when using the 

caricaturization levels of Rhodes et al. 

2.1.2 Anti-caricatures and anti-faces 

Rhodes et al (1987) also studied face recognition performance on anti-caricatures.  Anti-

caricatures can be created by reducing differences between an original face and a norm 

face, see Figure 3 for α = -25% thru -75% (Benson and Perrett 1991a; Rhodes et al 1987; 

Rhodes and McLean 1990; Rhodes and Tremewan 1994; Stevenage 1995).  Rhodes et al 

(1987) found that anti-caricatures of line drawings led to significantly slower reaction 

times than veridical and caricaturized faces.  However, Rhodes et al (1987) did not find 

a significant difference in recognition accuracy between veridical and anti-caricaturized 

 

Figure 3. Examples showing an original face (α = %0), anti-caricatures (α  = -25%, -50%, -75%), 

the average face (α = -100%), and the corresponding anti-face (α = -175%). Faces were obtained 

from (Leopold et al 2001). 
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faces.  Rhodes and McLean (1990) found that anti-caricatures had significant slower 

reaction time and worst recognition accuracy than veridical stimuli.  However, Rhodes 

and McLean (1990) did not use faces for their studies, they use line drawing of birds as 

their homogeneous stimuli.  Benson (1991a) obtained similar results using photographic 

faces, namely, that anti-caricatures were recognized worse than veridical or 

caricaturized faces. 

Anti-faces have opposite features to an original face, see Figure 3 for α = -175% 

(Jiang et al 2006; Leopold et al 2001).  Namely, anti-faces lie on the other side of the 

mean in face space (Blanz et al 2000).  People identify a veridical face more accurately if 

they see it immediately after viewing its corresponding anti-face (Leopold et al 2001). 

2.1.3 The other-race effect 

Face recognition has also been studied in the context of race effects (Chance and 

Goldstein 1981; Goldstein and Chance 1980; Lindsay et al 1991; Valentine and Bruce 

1986a; Valentine and Endo 1992).  These studies show that subjects tend to recognize 

faces of their own race better than faces from another race (Brigham and Malpass 1985; 

Chance and Goldstein 1996; Shepherd 1981).  This observation is also known as the 

own-race bias or other-race effect, which largely reflects race-related differences in 

perceptual expertise (Brigham and Malpass 1985; Lindsay et al 1991) although other 

factors could be implicated in this effect, like physiognomic homogeneity, or ethnic 

attitudes (Chance and Goldstein 1996; Malpass 1981).  Researchers have also noted the 
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robustness of this effect, which has been reproduced across many studies (see Bothwell 

et al 1989; Meissner and Brigham 2001; Shapiro and Penrod 1986) and across racial 

groups (Bothwell et al 1989; Brigham et al 2007; Kassin et al 1989).  We will survey some 

these studies and discuss the potential factors causing the other-race effect. 

To explain other-race effects, one may be tempted to infer that faces from 

different races are inherently more difficult to recognize that others.  A number of 

studies, however, have concluded that there is no significant difference in variability 

within faces of different races (Goldstein 1979a, b; Goldstein and Chance 1976; 

Shepherd and Deregowski 1981).  It has also been suggested that interracial attitudes, in 

which subjects may have more favorable attitude towards members of their own race, 

may be a factor in other-race effects (Malpass 1981).  However, no evidence has been 

found to associate interracial attitudes and face recognition performance (Brigham and 

Barkowitz 1978; Lavrakas et al 1976). 

A more likely factor which contributes to the production of the other-race effect 

is level contact (or lack thereof) with members of the other race.  Individuals have more 

experience with members of their own race; therefore they are better equipped at 

recognizing them (Chance et al 1975; Goodman et al 2007; Malpass 1981; Vrij and 

Winkel 1989).  A number of studies supporting this contact hypothesis can be found in 

the literature. Lindsay et al (1991) studied the other-race effect by performing a 

perceptual task using Caucasian and African American subjects.  The authors found 

that Caucasian subjects performed worse in recognizing African American faces than in 
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recognizing Caucasian faces, but African American subjects performed equally well in 

recognizing faces from both groups.  Subjects were also surveyed about their 

interaction with the other race to determine a level of expertise; the results showed that 

African American subjects had higher level of interaction (i.e. contact) with the other 

race than Caucasian subjects.  The authors reported a positive correlation between 

recognition performance for other-race faces and the amount of interaction with 

members of the other race. Another study (Valentine and Endo 1992) evaluated the 

effects of distinctiveness between different races, where British and Japanese subjects 

were asked to rate the distinctiveness of faces from their own race and from the other 

race.  The correlation between the ratings assigned by British subjects, and the ratings 

assigned by Japanese subjects on British faces was 0.82, while the correlation on 

Japanese faces was 0.65.  According to the authors, these results indicate that the 

perception of distinctiveness varies depending of the level of familiarity with faces of a 

particular race. The authors also performed old/new face recognition experiments using 

distinctive and typical faces from Japanese and British individuals.  The experiments 

showed that British subjects recognized British faces significantly better than Japanese 

faces, but Japanese did not show own-race bias effects.  The authors indicated the 

possibility that Japanese subjects were more familiar recognizing Caucasian faces than 

Caucasian subjects with Japanese faces, due to the recent influence of Western films and 

TV (Valentine and Endo 1992). 
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Other-race effects may be rooted to the fact that the most appropriate features 

for discriminating own-race faces are not diagnostic for other-race faces (Lindsay et al 

1991; Shepherd and Deregowski 1981).  For instance, Ellis et al (1975) used verbal 

descriptions to study the frequency of facial features that were used describing 

Caucasian and African faces by both Caucasian and African participants.  The authors 

showed that Africans focus more on the shape and location of the eyes, eyebrows and 

ears, whereas Caucasians focus more on hair texture, and hair and eye color (Ellis et al 

1975). 

As presented above, familiarization plays a role in our ability to recognize faces, 

specifically faces from another race.  These previous studies have shown that distinctive 

faces are better recognized than typical faces, and that our perception of distinctiveness 

is a function of our level of familiarity with a given group of faces.  Collectively, these 

results support the use of caricatures as training aid to familiarize individuals with new 

faces, specifically faces from another race. 

2.1.4 The reverse caricature effect 

A handful of studies have demonstrated a reverse-caricature effect in which 

familiarization with caricatures that highlight the distinct features of a face (i.e., those 

aspects that are uncommon) improves recognition of an image of the veridical face at a 

later time (e.g., Benson and Perrett 1994; Cheng et al 2000; Deffenbacher et al 2000; Lee 

et al 2000; Mauro and Kubovy 1992; Rhodes et al 1987; Stevenage 1995).  This reverse-
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caricature effect highlights the potential for the use of caricatures for training in applied 

settings4. 

A variety of issues surrounding the reverse-caricature effect need to be clarified 

before the technique will be ready for use in an applied setting.  For example, due to 

technological limitations, the earliest studies of the caricature effect (both direct and 

reverse) involved some combination of caricaturized photographs or line drawings 

(Benson and Perrett 1991a; Lee et al 2000; Mauro and Kubovy 1992; Rhodes et al 1987; 

Stevenage 1995).  In more recent work (e.g., Deffenbacher et al 2000; O'Toole et al 1997) 

researchers have used three-dimensional (3-D) laser scans that, together with the 

application of a caricature algorithm (see Benson and Perrett 1991b; Brennan 1985; 

Rhodes et al 1987), allow for much greater experimental control than can be obtained 

using photograph manipulations or line drawings.  However, the influence of this new 

technology, as well as and other presentation choices one might make, have not been 

studied in a systematic fashion.  

In one demonstration of the reverse-caricature effect, Deffenbacher et al (2000) 

used presentation of a three-quarter view of the 3-D stimuli, at both familiarization and 

 
4 A conceptual parallel to the reverse-caricature effect can be found in speech recognition, 

where exaggeration of auditory features can aid in learning unexaggerated nonnative phonetic 

contrasts (McCandliss et al 2002).  Consider as an example the difficulty that native speakers of 

Japanese have trying to discern the difference between the English phonemes [r] and [l] (this 

occurs because this particular contrast in sounds is not present in Japanese.)  Research 

indicates that training with spectrally-exaggerated versions of these two sounds can help 

Japanese speakers recognize the unexaggerated versions of these same sounds (McCandliss et 

al 2002).   
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test, and this choice of presentation may have been consequential. Other studies 

focusing on veridical faces have demonstrated that there is an advantage in recognition 

memory for faces that employ a three-quarter-view representation, when compared to 

either a frontal or profile representation (e.g., Bruce et al 1987; Krouse 1981; Logie et al 

1987).  It remains unclear, however, whether the reverse-caricature effect will generalize 

to 3-D scans in which caricatures are presented only frontally during familiarization.  

Also of note, Deffenbacher et al (2000) familiarized participants with target faces for a 

total of 60 seconds each prior to recognition testing.  The authors indicate that a reverse 

caricature effect does not occur with shorter familiarization periods, a constraint that 

could undermine the feasibility of reverse-caricaturing as a training approach in 

practical scenarios. 

2.1.5 Reversibility of other-race effects 

The other-race effect has been studied extensively on the past three decades.  

Furthermore, there are studies which show that our face recognition system has the 

plasticity to reverse the other-race effect (Goodman et al 2007; Sangrigoli et al 2005), 

making training methods to reduce this effect feasible.  However, there are only few 

studies on face recognition training, specifically attempting to remove the other-race 

effect (Malpass 1981).  

Sangrigoli et al (2005) tested East Asian adults adopted by European Caucasian 

families when they were between 3 and 9 years old, versus East Asian natives. The 
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authors showed that adoptees did not have the other-race effect on Caucasian faces, 

while the East Asian natives showed a significant other-race effect. Notice that the 

other-race effect appears to develop between the ages of three and five (Pezdek et al 

2003). 

Lavrakas et al (1976) showed immediate reduction of the other-race effect after 

training Caucasian subjects with African faces using concept learning5 tasks.  In this 

study, Caucasian participants were asked to identify the concept feature (e.g., light 

eyes) in a series of African faces.  Immediately after the learning stage, participants 

showed a reduction of the other-race effect in a recognition task.  However, a 

recognition task performed a week after the learning stage did not show any reduction 

of other-race effects.  In contrast, however, an earlier study by Malpass et al (1973) 

failed to show a reduction of the other-race effect when using verbal training tasks.  

Hills and Lewis (2006) showed that other-race effects could be reduced by 

familiarizing subjects with own-race faces containing features critical for differentiating 

other-race faces.  This suggests that the other-race effect may be reduced by drawing 

attention to the most distinctive feature of a given face, potentially overriding the own-

 
5 Concept learning is a strategy which requires a learner to compare and contrast groups or 

categories that contain concept-relevant features with groups or categories that do not contain 

concept-relevant features. Such concepts are mental representations which enable one to 

discriminate between objects that satisfy the concept and those which do not (Goodman et al 

2008).  
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race feature biases of the viewer.  Hills and Lewis’ results led us to pose these 

questions:  

(i) Can caricatures be used as a more general approach to direct attention to 

critical features for the identification of other-race faces?  

(ii) Can we use the reverse-caricature effect to reduce the other-race effect?  

2.2 Computational models of face perception 

This section introduces the multidimensional face space framework of Valentine (1991), 

an important model that has been vastly used to formulate how we store and perceived 

faces. This space encodes features that best identify a particular face and accounts for 

multiple perceptual effects, such as distinctiveness, caricature, and other-race effects. 

Other models discussed here have been based on Valentine’s face space. 

2.2.1 Multidimensional face space 

The hypothesis that memory representations are based on facial distinctiveness 

assumes that there is a norm or prototype face that is typical in a given population 

(Rhodes et al 1987; Valentine 1990, 1991).  A norm-based model assesses the 

distinctiveness of a face using a similarity measure relative to a norm or prototype face.  

Valentine (1991) developed a theoretical framework which is consistent with both the 

norm-based model and the experimental results obtained to that date.  Valentine also 

included in his framework an exemplar-based model, which assessed the 

distinctiveness independently from a norm face.  An understanding of these models 
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may help develop better caricature generation methods, create simulations that account 

for the current perceptual results, or improve automatic face recognition algorithms. 

According to the multidimensional face space framework (MDFS) (Valentine 

1990, 1991; Valentine and Endo 1992), which assumes a norm-based model, faces are 

encoded as vectors in a multidimensional space in which the norm or prototype face is 

 

Figure 4. Norm-based coding. (a) shows a two-dimensional representation of faces. The origin 

represents norm or prototype face and faces are defined as vectors; (b) includes the other-race 

faces; (c) illustrates the effect of similarity on the norm-based coding. These figures were adapted 

from Valentine (1990). 
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located at the origin (Figure 4a).  Faces in this space are assumed to be normally 

distributed around the norm face, so regions closer to the origin are more densely 

populated than those away from the norm.  Under the norm-based model, the 

similarity between two faces is defined as a function of the inner-product of their two 

vectors.  During a recognition task, this similarity is computed between the stimulus 

face (i.e., test face) and the faces encoded in this multidimensional space.  The stimulus 

face is recognized if the closest encoded face is the target face.  If one generates a 

stimulus face that is close to the target face (e.g., the target face under slightly different 

illumination conditions), and the target face is located in the low density region of the 

multidimensional space, the probability of the target being selected as a match is higher 

than if the target was in the high density region.  This explanation is consistent with the 

result that distinctive faces are recognized more accurately than typical faces. 

The above model assumes that all faces are from the same race.  Can the norm-

based model account for race effects between a given race (own-race) and another race 

(other-race)?  If one includes faces from another race while maintaining the own-race 

norm at the origin, the other-race faces form a cluster with their own prototype and 

distribution away from the origin (Figure 4b).  The other-race face vectors will have 

higher similarities among themselves than the own-race face vectors, making the other-

race faces harder to discriminate than the own-faces.  Figure 4c illustrates this similarity 

difference between own-race (points A and B) other-race faces (points C and D) when 

using the inner-product metric. In this figure the similarity between points C and D is 
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higher than the similarity between points A and B.  But since the norm-based coding 

assumes that the norm to encode the faces is the own-race norm, there is a conceptual 

problem when one tries to account for distinctiveness within the other-race faces in this 

model (Valentine and Endo 1992).  Assuming that the other-race faces are normally 

distributed around their central tendency, distinctive other-race faces will be further 

away from this other-race central tendency and typical other-race faces will be closer.  

Thus, the vector representation relative to the own-race norm (Figure 4b) is 

inappropriate to capture this normal distribution of distinctiveness within other-race 

faces because the model’s similarity metric is based on the inner product.  These other-

race vectors could not be used to properly compute the similarity within the other-race 

faces as one would within the own-race faces.  In consequence, in order to account for 

distinctiveness with other-race faces, a model should not rely on an own-race norm 

when computing a measure of similarity between faces. 

Based on this, Valentine and Endo (1992) suggested an exemplar-based coding 

as a better model for the perceptual results on distinctiveness and race effects.  The 

exemplar-based model assumes that each face example is stored independent of a norm 

face as a point in the multidimensional face space (Figure 5a).  Like the norm-based 

coding, this model assumes that the encoded faces are normally distributed.  Therefore, 

typical faces are in an area of high exemplar density, whereas distinctive faces are in 

areas of low exemplar density.  Distinctiveness effects are explained using exemplar 

density, as in the norm-based coding.  The only difference between both models is in 
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the similarity measure: the exemplar-based coding uses the Euclidean distance between 

points.  Hence, a distinctive face is recognized more accurately because it will be farther 

from its nearest neighbor than a typical face would be from its nearest neighbor. 

Valentine’s exemplar-based model accounts for the other-race effect by 

assuming that other-race face points are more densely clustered than the own-race faces 

(Figure 5b).  The evidence to support this assumption comes from the fact that the 

dimensions more appropriate to differentiate own-race faces might not be the same 

ones for the other-race faces (Shepherd and Deregowski 1981), e.g., Africans may focus 

more on the shape and location of the eyes, eyebrows and ears, whereas Caucasians 

may focus more on hair texture, and hair and eye color (Ellis et al 1975; Lindsay et al 

1991).  Using this density difference between own-race and the other-race faces, the 

own-race face will be recognized more accurately than a face from another race.  Since 

 

Figure 5. Exemplar-based coding. (a) shows a two dimensional representation of faces. The 

axes origin was arbitrarily placed at the central tendency of the population; (b) shows the other 

race faces. Notice that the other-race are more densely clustered. These figures were adapted 

from Valentine and Endo (1992). 

(a) (b)(a) (b)
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the Euclidean distance measure also accounts for the distinctiveness of the other-race, 

the exemplar-based model does not suffer the problems encountered by norm-based 

coding. 

2.2.2 Face-space-R 

Lewis (2004) proposed a unified model for face recognition that accounts for 

distinctiveness, caricature and race effects. His model is an updated version Valentine’s 

exemplar-based model, but accounts for the effects of proximity of all other exemplars 

(Lewis 2004). In contrast to previous face space representations, Lewis’s model is 

explicitly defined. The model is based on an activation response function       defined 

as follows: 

 

                               

    
 (2) 

 

where         is the activation of a probe face   to a given gallery face     and defined: 

 

          
       

 

   .
 

(3) 

 

The parameter    incorporates level familiarity of a face   into the model.  At the 

boundary,       is an exemplar never encountered before, and      represens a 

highly familiar face.  Finally,   defines the error, where smaller   represents a good 
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quality view of a face and larger   represents a blurred, brief or bad angle views of a 

face.  The second term in       accounts for total activation of the remaining faces in the 

face space. The activation response       of a particular exemplar is determined by that 

exemplar’s activation minus the activation of all other exemplars.  So the exemplar with 

a positive response is the match identity of the probe. If none of the exemplars produces 

a positive response then the probe is considered an unfamiliar face.  The free 

parameters of the computational model are, (i) the number of dimensions, (ii) the 

spread   or error, and (iii) the number of faces the model can recognized.  These free 

parameters are setup such that a caricature probe would have higher activation 

response than the corresponding veridical probe.  

The model obtains higher activation for faces away from the mean, as the face 

space is sparser, which is consistent with the distinctiveness effect.  The model is also 

consistent with the effect that distinctive faces require less caricaturization than typical 

faces to achieve the same level of likeness.  Finally, the model accounts for the other-

race effect.  If the model includes other-race exemplars away from the central tendency 

of the face space (own-race mean), the average activation response is higher for own-

race probes than the average one for the other-race probes. 

Although this model can account for distinctiveness, caricature, and race effects, 

it does not account for reverse caricature effects.  This is due to the nature of the models 

free parameter estimation, which assumes that the activation response for caricature is 

higher than veridical. 
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2.2.3 Other-race effect simulations 

A few researchers have built computational models that attempt to reproduce the 

perceptual results of caricature and race effects (Caldara and Abdi 2006; Furl et al 2002; 

Haque and Cottrell 2005; Lewis 2004; O'Toole et al 1991; O'Toole et al 1994; Tanaka and 

Simon 1996; Valentin et al 1997).  Furl et al (2002) evaluated a number of face 

recognition algorithms to study the extent to which they exhibited OREs.  The authors 

found that algorithms in which the face space captures the lifetime knowledge of a 

given category of faces (e.g., a race, age group), show significant other-race effect. 

Caldara and Abdi (2006) also simulated the ORE using a biased auto-associative 

network.  Results from this study showed a significantly larger classification error for 

gender in the minority race than in the majority race.  O´Toole et al (1991) simulated the 

other-race effects using auto-associate networks (Hopfield 1982).  The ‚own-race bias‛ 

was achieved by training the network with a majority of faces from one race and a small 

number of faces from another race.  This bias led the network to capture those features 

that were more appropriate to the majority faces, making the network results consistent 

with the exemplar-based coding model.  Following training, the network was used to 

generate majority new faces and minority new faces by presenting novel images from 

both groups and recording the recalled faces.  Using a similarity analysis, it was found 

that the generated majority faces were more distinctive than the generated minority 

faces.  This result is consistent with the other-race perceptual effect.  
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In more depth, O'Toole et al (1991) followed a two-stage memory model that 

loosely resembles human memory models (see Atkinson and Shiffrin 1968).  This 

memory model contains a long-term component that represents the lifetime knowledge 

of faces (i.e. primarily own-race faces) and a short-term component representing 

recently learned faces (i.e. a mix of own-race and other-race faces).  O'Toole et al (1991) 

trained both components using an auto-associative network with error-correction –

essentially an on-line implementation of principal components analysis (PCA).  In this 

study, the long-term component was biased toward a single (majority) race, whereas 

the short-term component had an equal amount of faces from two different races (e.g. 

majority and minority).  Using PCA, a long-term face       and a short-term face      

was described as follows: 

 

               
   

    
(4) 

               
   

    
(5) 

 

where     and    denote the long-term and short-term eigenvectors,      and      are the 

average long-term and short-term face,    and    are the corresponding principal 

components of a particular long-term and short-term face, and  ,   are the number of 

long-term and short-term faces, respectively. 
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O'Toole et al proposed a recognition task that is analogous to the standard 

old/new recognition paradigm (see Goldstein and Chance 1980), where human 

participants are asked to memorize a set of faces (the OLD faces), and later are asked to 

recognized them among a set of confounders (the NEW faces).  Here, the short-term 

faces   are treated as the OLD faces and a separate set of faces         are 

considered as the NEW faces.  Recognition is achieved by computing the cosine of the 

angle between each test face             and its reconstruction      
 , and comparing 

it against a decision threshold E: 

 

   
     
       

      
         

 
           
           

  (6) 

 

and the reconstructed test face      
  is obtained by projecting the original face       into 

each memory space independently, and then weighting each resulting reconstruction.  

Namely, the principal components of       on the long- and short-term face space are 

computed as follow:  
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from which the two reconstructions         
  and         

  are obtained as: 
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(10) 

 

which are finally weighted to obtain the final overall reconstruction      
 : 

 

      
             

                 
 

 (11) 

 

where    is a long-term weighting factor, set to a value of 0.75 in the original study by 

O'Toole et al (1991).  Even though the study successfully reproduced OREs, the model 

in equation (11) raises a few questions.  First, it is unrealistic to assume that a lifetime of 

experience with own-race faces can be altered by recently learned faces at least not by 

as much as 25%, as the study suggests.  Second, because the short-term memory 

contains an equal number of own-race and other-race faces, the net effect is a 

rebalancing of both classes, which by necessity will reduce OREs. 

2.2.4 The other-race effect: the speech analogy 

In the context of speech recognition, McClelland (2001) used Kohonen’s Self Organizing 

Maps (SOM) (Kohonen 1990) and Hebbian learning6 to simulate the perceptual problem 

 
6 Hebb’s proposed mechanism of learning states that if a neuron excites another neuron 

repeatedly the connection between them is strengthened. 
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that Japanese native speakers encounter when differentiating /r/ and /l/ phonemes in 

English. For Japanese speakers, those two phonemes are perceived as having the same 

sound.  In consistency with the Hebbian learning rule, McClelland suggested that 

listening either /r/ or /l/ phonemes would reinforce the Japanese single representation of 

the phonemes.  

For the simulation McClelland represented the /r/ and /l/ phonemes in English 

as two overlapping hypothetical patterns (Figure 6a, b), whereas in Japanese the 

phonemes were represented as one central pattern (Figure 6c).  After training a group of 

 

Figure 6. Prototype input patterns for a 7x7 SOM. (a) and (b) show the hypothetical perceptual 

patterns for English /r/ and /l/ phonemes. (c) shows the corresponding  single central prototype 

for Japanese. (d) and (e) illustrate English /r/ and /l/ patterns exaggerated away from each other. 

This figure was adapted from McClelland (2001). 
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SOMs with the Japanese pattern, the English patterns were fed to the networks.  Even 

though the patterns were presented for a large number of epochs, the SOMs fused the 

English patterns into the Japanese pattern at the output (Figure 7).  McClelland 

pondered whether exaggerating the difference the /r/ and /l/ patterns in the input 

would activate different output representations.  McClelland proceeded by training 

with exaggerated versions of the English patterns (Figure 6d, e) until the SOMs were 

able to represent the two patterns as separate.  As a result, when the original English 

patterns were input at a later time, the SOMs were able to separate them as well.  

 

Figure 7. Illustrates the output representation of a ‚Japanese‛ trained SOM after presenting 

one of the ‚English‛ overlapping patterns at the input layer. This figure was adapted from 

McClelland (2001). 
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Although, this simulation was quite simple, it shows the benefits that distinctiveness 

enhancements may provide to pattern classification algorithms. 

2.2.5 Discussion  

The above studies provide important theoretical insights about several face recognition 

perceptual effects, such as distinctiveness, caricature, and other-race effects.  

Furthermore, they allow us to formulate theories about how we represent, store and 

retrieve facial information.  Valentine’s framework is by far the most influential model. 

It accounts for all the effects mentioned above, and also suggests an exemplar-based 

face space representation.  However, these models do not address questions that could 

have greater practical implications for the design of training tools for human viewers 

and better automatic face recognition algorithms.  How can we use the caricature effect 

to improve face recognition?  To what extent can other-race effects be reversed?  What 

strategies may be used to effectively minimize OREs? 

As shown above, simulation of some of the perceptual results on face 

recognition, such as the race effects or the benefits of enhancing distinctiveness, is 

possible.  However, this area of study has not been explored very extensively, 

particularly whether caricaturization can aid in the context of automatic face 

recognition. 



32 

2.3 3D face reconstruction 

Three dimensional (3D) face reconstructions from images has been an active research 

problem given its relevance to many fields. 3D face reconstructions have applications in 

animation, video conferencing, multimedia (Fanany and Kumazawa 2002; Mao et al 

2008; Marques and Costeira 2008; Suen et al 2007; Yip and Jin 2005), biometric and 

security (e.g., face recognition and authentication) (Amin and Gillies 2007; 

Widanagamaachchi and Dharmaratne 2008), morphing, and games 

(Widanagamaachchi and Dharmaratne 2008).  These reconstructions are an alternative 

to more expensive methods such 3D scanning (Mao et al 2008; Suen et al 2007).  

Furthermore, 3D face reconstructions could solve common problems on image-based 

automatic face recognition systems, as these systems are sensitive to variations in pose, 

illumination and expressions (Guan 2007; Hu et al 2004; Mao et al 2008; Moghaddam et 

al 2003).  Additionally, images could have missing spatial information due to noise, 

occlusions, and shadows (Hwang et al 2000).  The advantage of having a facial 3D 

model is that the recognition system can test several settings and conditions such as 

changes in pose and illuminations (Amin and Gillies 2007; Mao et al 2008; Moghaddam 

et al 2003).   

3D face reconstruction from images is a challenging problem due to the 

complexity of the face shape, and the subtle and spatially varying reflectance property 

of the skin (Fanany et al 2002).  Reconstructions from a single image are even more 

problematic, since different shapes may give rise to the same intensity pattern (Hassner 
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and Basri 2006); however, there is a tendency among the latest face reconstructions 

methods to use a single image (Fan et al 2010). 

There are several methods for 3D face reconstruction, which can be categorized 

into four major groups: (i) shape from shading, (ii) shape from silhouettes, (iii) shape 

from motion, and (iv) analysis by synthesis (Amin and Gillies 2007; Ming and Ruan 

2010).  The shape from shading approach recovers 3D depth information from a gradual 

variation of shading in the image (Zhang et al 1999).  In contrast, shape from silhouettes 

deals with obtaining the 3D information from outlines of the object in the target images 

(Cheng and Lai 2001; Matusik et al 2000; Moghaddam et al 2003; Szeliski 1993); in this 

case, the accuracy of the 3D model depends on the number of images with different 

views of the object used to perform the reconstruction. Shape from motion deals with 

recovery of 3D points on an object from 2D correspondences of points across images 

(Amin and Gillies 2007; Cheng and Lai 2001; Choi and Hwang 2002).  Finally, analysis by 

synthesis uses a fully aligned 3D face model database to estimate the statistical 

parameters (e.g., principal components) that better match the projected face shape with 

the target face image (Amin and Gillies 2007; Blanz and Vetter 1999).  There are also 

methods that use a combination of 3D reconstruction categories mentioned above.  For 

example, Cheng and Lai (2001) use shape from motion and shape from silhouettes to 

reconstruct 3D faces from a video sequence, Moghaddam et al (2003) use shape from 

silhouettes and analysis by synthesis to recover the 3D shape of a face, and Atick et al 
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(1997) use a shape from shading approach in combination with an analysis by synthesis 

method for their face reconstruction algorithm.  

Among all approaches for 3D face reconstruction from images, analysis by 

synthesis is the most successful method today (Amin and Gillies 2007).  Analysis by 

synthesis is the focus of our attention on later major sections. 
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3. GENERATION OF 3D CARICATURES 

This section describes the caricature generation process that was used in our work.  We 

discuss how 3D face models are defined in the 3DFS-100 database (Blanz and Vetter 

1999), present the normalization process, which accounts for the original facial 

distinctiveness prior to caricaturization, and describe the caricaturization process, 

which is based on a data-driven caricaturization factor. 

3.1 Three dimensional face models 

The 3D face models used in this dissertation come from the 3DFS-100 database.  This 

dataset is also used by 3D morphable model fitting algorithm (Blanz and Vetter 1999; 

Blanz and Vetter 2003).  In this analysis-by-synthesis approach, faces (with full 

correspondence) are stored in terms of two separate shape    and texture    vectors: 

 

                                   
 

 
(12) 

                                   
  (13) 

 

where   is the index of a particular face and   is the number of vertices in the 3D model.  

For a database of     to   faces, Blanz and Vetter (1999) compute the average of   and 

the average of   and performed Principal Component Analysis (see Duda et al 2001; 

Fukunaga 1990) on the shape matrix               , where            is a mean-

centered shape vector and the texture matrix               , where            is 
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a mean-centered texture vector.  From this, the shape and texture of a given face are 

defined by: 

 

              

   

   

 (14) 

              

   

    

(15) 

 

where    are the shape principal components,    are shape eigenvectors,    are the 

texture principal components, and    are the texture eigenvectors. 

To estimate a 3D model, Blanz and Vetter (1999) find the shape and texture 

principal components in (14) and (15) that minimize the sum-squared error   

 

                             
 

   

 (16) 

 

where        is the 2D input image and        is the 2D rendering of the 3D model.  In 

other words, their algorithm finds the principal components coefficients such that the 

2D image rendered from the 3D model is as close as possible to the 2D input image (see 

Figure 8).  Their optimization algorithm uses a stochastic version of Newton’s method 

which only uses 40 randomly selected triangles from the 3D face model to boost speed 

and to avoid local minima.  This fitting algorithm analytically computes the gradient of 
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the equation (16).  Appendix B provides detailed descriptions of the derivative 

calculations of this cost function.  

In addition to optimizing the 99 shape and 99 texture coefficients7, Blanz and 

Vetter (1999) implementation optimized an additional 22 rendering parameters, such as 

 
7 Their database consists of       faces and therefore there has 99 free parameters.  

 

Figure 8. The fitting algorithm finds the shape coefficients αi and texture coefficients βi of a 3D 

face model such that the rendering of Imodel is as similar as possible to Iinput. This figure was 

adapted from Blanz and Vetter (2003). 

Imodel Iinput

α1 × + α3 ×+ α2 ×

β1 × + β2 × + β3 ×

+ …

+ …

Imodel Iinput

α1 × + α3 ×+ α2 ×

β1 × + β2 × + β3 ×

+ …

+ …
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pose angles, 3D model translation, focal length, light intensities, directional light angles, 

contrast, gain and offsets of color channels.  For the purposes of this research, however, 

our implementation was limited to shape and texture coefficients while the rest of the 

rendering parameters were assumed known.  As will be argued in Section 6, this has 

the advantage of decoupling the performance of the face reconstruction algorithm from 

the more fundamental questions addressed in this research.  Figure 9 shows a 

reconstruction from our morphable model implementation. Refer to Appendix C for 

more details of this implementation. 

3.2 Face normalization 

Distinctive faces need to be caricaturized less than typical faces in order to achieve the 

same level of distinctiveness (Rhodes and McLean 1990),  Therefore, to caricaturize 

 

Figure 9. Reconstruction example from our morphable model implementation. (a) shows the 

input target image, and (b) shows the rendering of the resulting 3D model. In this instance, the 

3D model of the target image was part of the 3DFS dataset. 
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faces consistently and evenly, we first normalize faces so they are at the same 

Mahalanobis distance8 with respect to the norm(see Duda et al 2001) from the mean 

(O'Toole et al 1997).  As a result, normalized faces will lie in a hyper-ellipse (see Figure 

10).  Since computing this average Mahalanobis distance requires the calculation of the 

full covariance matrix, the average distance between the faces and the mean will be 

computed using the whitening transform instead (see Fukunaga 1990), which first 

performs an orthonormal transformation (17) on   using Turk (1991):  

 

       (17) 

 

where                 are the eigenvectors of shape matrix               , and  

           is a mean-centered shape vector.  A second transformation is then 

performed to scale the principal components to unit variance:  

 

          (18) 

 

where   is a diagonal matrix containing the eigenvalues of the covariance of  ;       

is known as the whitening transform.  Once all faces are transformed into the whitened 

space, the average Euclidean distance of all faces to the origin is computed as:  

 
8 The Mahalanobis distance is just the Euclidean distance weighted by the covariance matrix of 

the sample data. 
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 (19) 

 

where   is the number of faces and   is the number of dimensions.  Faces are then 

rescaled to this average distance: 

 

     
  

     
      (20) 

 

Finally, the normalized faces                     are transformed back to the original 

space using equation (21).  

 

          (21) 

 

This normalization process is illustrated in Figure 10.  

3.3 Caricaturization 

The caricaturization process is based on a method first proposed by Brennan (1985), 

where caricatures are generated by amplifying the difference between source model 

and a prototype or average face of a population.  A caricature of a 3D face model   is 

defined as: 

 

                                      (22) 
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where   is the caricaturization factor,      the average face and    is the resulting 

caricature (see Figure 11).  We will expand this caricaturization process later in this 

section, including the use of a different caricaturization factor representation that 

accounts for the face population distribution. 

 

Figure 10. Face normalization. (a) Hypothetical two-dimensional face space with three faces. The 

origin represents the average face and the ellipses represent points at the same Mahalanobis 

distance from the origin. (b) The tree faces, following transformation into a whitened space. The 

dotted line circle represents the average Euclidean distance of all faces from the origin. (c) Faces 

are rescaled to be at the same average distance from the mean. (d) The original space after 

normalization. 

Whitening

Transformation

Getting the data

back

(a) (b)

(d) (c)

Whitening

Transformation

Getting the data

back

(a) (b)

(d) (c)



42 

 

A caricature is a transformation which exaggerates the perceptually significant 

features while reducing the less relevant details (Brennan 1985).  Following Brennan 

(1985), caricatures of a 3D model are generated by amplifying the difference between 

the model and a prototype or average face.  As indicated earlier, this process is applied 

to normalized faces so that a fixed caricature factor leads to the same degree of 

distinctiveness regardless of the face to which it is applied.  A face shape    is defined 

by: 

 

             (23) 

 

where      is the average face and    is its difference from the average face shape.  A 

linear caricature transformation is defined by: 

 

Figure 11. Average face and caricatures. The figure shows the 3DFS average face (a) fAVG and the 

caricature (fC) of a Caucasian male at different caricaturization levels with respect to this average 

face: (b) α = -0.64 or -64%, (c) α = -21%,, and (d) α = +21%. 
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                                (24) 

 

where   is the exaggeration level.  Alternatively, one can define the exaggeration level 

in terms of the standard deviation of the distance of all faces to the mean face (i.e., 

before normalization), illustrated in Figure 12.  This allows for caricaturization levels to 

be based on the face population distribution and avoids over-caricaturization by 

keeping the levels between    and   .  The relation between   and  is defined by: 

 

                         (25) 

 
  

  

 
                         (26) 

 

and the caricaturization equation as function of   is defined by: 

 

Figure 12. Exaggeration (caricature) levels spaced relative to the standard deviation () of the 

average Euclidean distance (µ) of all faces to the mean face (origin). Caricaturization rescales a 

face to a level further away from the origin, whereas anti-caricaturization rescales a face closer to 

the origin.  

-3σ -2σ -1σ 1σ 2σ 3σμ

Average Face

-3σ -2σ -1σ 1σ 2σ 3σμ

Average Face
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    (27) 

 

where   is average Euclidean distance of all faces to the mean face.  Once the 3D 

caricaturized face model is obtained using equation (24) or (27), the image rendering are 

obtained using an OpenGL face rendering tool we developed9, which allows us to 

render images from 3D models based on user-configurable camera and lighting 

positions, and illumination intensity (see Figure 13).  Figure 14 and Figure 15 show 

additional 3D models being caricaturized with factors ranging from +1 to +4.  These 

figures also illustrate the extent to which faces are distorted by the caricaturization 

process.  Finally, Figure 16 and Figure 17 provide a side-by-side comparison between a 

set of veridical faces and their corresponding caricatures 2 apart. 

 
9 During the early stages of this research we used a tool developed by Hernández (2006). We 

developed a new rendering tool that we integrated to Matlab development environment. 

 

Figure 13. Rendering of a 3D face shape model at different caricaturization levels (). Faces are 

presented here without texture to highlight the anthropometric features. 
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Figure 14. Shapes at different caricaturization levels. The figure shows four additional face 

models from the 3DFS dataset from no caricaturization (0) to high caricaturization level (+4). 
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Figure 15. Shapes with textures at different caricaturization levels. The figure shows four face 

models from the 3DFS dataset from no caricaturization (0) to high caricaturization level (+4). 
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Figure 16. Pairwise caricature comparison. The figure shows several veridical 3D shape face 

models from the 3DFS dataset and the corresponding caricatures (2 apart).  
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Figure 17. Pairwise caricature comparison with texture. The figure shows several veridical faces 

from the 3DFS dataset and the corresponding caricatures (2 apart). 
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4. PERCEPTUAL STUDY: CARICATURES AND REVERSE 

CARICATURES 

The main objective of these perceptual studies that will be presented in this section, as 

well as in Sections 5 and 7, is to determine the extent to which the recognition of faces 

can be improved by enhancing their facial distinctiveness during familiarization, 

particularly on groups of faces that are naturally difficult to differentiate, such as 

members from another race or typical faces.  These perceptual studies were conducted 

with the objective of, first, replicating some of results reported in the literature and, 

more importantly, validating our hypotheses. 

All perceptual studies used a common paradigm for recognition tasks known as 

the old/new test.  Specifically, our studies followed similar procedures to the ones 

outlined in Duchaine et al (2003) and Goldstein and Chance (1980).  According to these 

procedures, subjects are first familiarized with a set target faces, each presented for a 

brief period in a random sequential order.  Following the familiarization phase, subjects 

are then tested with a set of faces containing the target faces among a set of 

confounders.  During this recognition phase, the subjects are asked to identify each face 

as ‚new‛ if they have not seen it before, or as ‚old‛ if they recognize it as one from the 

familiarization phase. 

In an initial calibration study, we used a modified old/new face recognition 

procedure (Duchaine et al 2003; Goldstein and Chance 1980) to determine the minimal 
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degree of exaggeration between veridical and caricature faces that would lead to a 

direct caricature effect (i.e., whereby caricatures would be recognized more accurately 

than veridical faces) (Benson and Perrett 1994; Rhodes et al 1987).  This exaggeration 

level was then used as the basis for each of the subsequent recognition experiments.  

This calibration trial also served to verify that we could replicate the distinctiveness 

effects reported in the literature.  Then, in order to better mimic the canonical viewpoint 

for faces and in contrast to the procedure used by Deffenbacher et al (2000), we used the 

above old/new face recognition procedure to establish whether the reverse-caricature 

effect would manifest when only a frontal representation of unfamiliar faces was given 

during both training and testing (Experiment 1).  In the subsequent two experiments 

(Experiments 2 and 3), we shortened familiarization times, and introduced random 

facial rotations at test.  We predicted that, even under these more difficult conditions, 

familiarization with caricatures would produce greater recognition performance with 

unexaggerated faces than would familiarization with veridical versions of those faces. 

4.1 Calibration study 

To avoid ceiling effects, the first phase was a calibration trial to select the appropriate 

exaggeration levels for the veridical and caricature faces.  This calibration trial also 

served to verify that we could replicate the distinctiveness effects reported in the 

literature. 
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4.1.1 Participants 

Participants were recruited from an Introductory Psychology pool.  All participants 

were undergraduate students (ages 18-25).  Ninety-nine students (n = 60 female, n = 39 

male) participated in the calibration study.  A similar gender distribution for 

participants was maintained across experimental conditions. 

4.1.2 Stimuli 

A total of 40 face models were selected from the University of Freiburg 3DFS-100 

dataset (Blanz and Vetter 1999).  Each face consisted of a mesh with 75972 vertices, each 

vertex defined by its position (in 3D Cartesian coordinates) and its reflectance (in RGB 

space).  In order to caricaturize faces consistently and evenly10, each face f was first 

normalized by its Mahalanobis distance (   ) to the average face fAVG (O'Toole et al 

1997) and then caricaturized by linearly exaggerating its differences with respect to fAVG.  

The average face fAVG was computed using all 100 faces from the 3DFS dataset.  Seven 

exaggeration levels were considered: -3, -2, -1, 0, +1, +2, +3 where   was defined 

as the standard deviation of the distance between un-normalized faces in the dataset 

and their average.  This parameterization was chosen (as opposed to the conventional 

percentage factor ) because it adjusts the caricaturization level to the variability of 

 
10 Distinctive faces need to be caricaturized less than typical faces in order to achieve the same 

level of distinctiveness (Rhodes and McLean 1990). 
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faces in the dataset11.  Refer to subsections 3.2 and 3.3 for details on face normalization 

and caricature generation, respectively.  As shown in Figure 18, faces were rendered 

frontally without facial texture to focus attention on anthropometric features.  

Presentation of stimuli was performed using the DMDX display software (Forster and 

Forster 2003). 

4.1.3 Procedure 

Stimuli were displayed on a 17-inch monitor, configured to a 1280 by 1024 resolution at 

60 Hz.  Seven groups of participants (n = 13, 14, 14, 15, 15, 15, 13) were first familiarized 

with 10 randomly chosen target faces.  Following the experimental procedure in 

 
11 The seven exaggeration levels α = {-0.64, -0.43, -0.21, 0, +0.21, +0.43, +0.64} were selected to be 

separated from each other by one standard deviation, as measured on the distribution of faces 

in the database. Note that, for α = -1, the anti-caricature becomes the average face. 

 

Figure 18. Sample stimuli. It shows the face of a Caucasian male without texture at different 

caricaturization levels: (a) -3, (b) -1, (c) +1.  The ears and neck were removed to prevent 

participants from using picture-matching strategies. 



53 

Duchaine et al (2003), each target face was presented twice for 3 seconds at a time.  

Afterwards, participants were tested on 50 faces, of which 30 were new (non-target) 

faces and 10 were the learned targets.  The latter were presented twice to increase the 

amount of data collected during calibration (i.e. each presentation was treated as a 

different observation).  Caricature level was held constant between familiarization and 

test for each group.  Target and non-target faces within a group had the same 

caricaturization level.  Participants were not aware of which exaggeration level they 

were viewing. Order of presentation was randomized across participants for both 

familiarization and test.  Following Duchaine et al (2003) and Goldstein and Chance 

(1980), no time limits were imposed, but participants were asked to make their decision 

(i.e., old vs. new face) as rapidly as possible without sacrificing accuracy. 

4.1.4 Results 

In this and later experiments recognition accuracy was measured using the signal 

detection’s sensitivity index, or d (Macmillan and Creelman 2005).  A one-way analysis 

of variance (ANOVA) on this measure revealed a main effect of condition, F(6, 92) = 

10.45, p < 0.001.  Face recognition performance as a function of caricaturization levels 

are shown in Figure 19a.  Starting from a near-chance level for extreme anti-caricatures 

α = -0.64, recognition performance increased with the level of caricaturization.  Values 

of α = -0.21 (for veridical faces) and α = +0.21 (for caricatures) were found to be 
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the minimally effective levels of exaggeration, t(27) = 2.55, p < 0.05, and were chosen for 

the reverse-caricature experiments.  

No significant differences were observed in response time across 

caricaturization levels, F (6, 92) < 1 (one-way ANOVA).  Additionally, the dual 

presentation of targets had no main effects on hit rates during test, F(1, 92) < 1, and had 

 

Figure 19. Face recognition accuracy on (a) the Calibration Study, (b) Experiment 1, (c) 

Experiment 2, and (d) Experiment 3. 



55 

no interactions with the experimental condition, F(6, 92) < 1 (two-way mixed-factor 

ANOVA); hit rates on the two presentations of the targets are illustrated in Figure 20a. 

4.2 Experiment 1 

The goal of this experiment was to establish the reverse-caricature effect with frontal 

views rather than with the more favorable three-quarter views that have been used in 

Deffenbacher et al (2000).  Additionally, participants were trained for shorter periods to 

test the lower limits of training times. 

4.2.1 Participants 

Participants were recruited from an Introductory Psychology pool.  Eighty-eight 

students (n = 59 female, n = 29 male) participated in Experiment 1.  A similar gender 

distribution for participants was maintained across experimental conditions. 

 

Figure 20. Hit rates on the dual presentations of the targets during (a) the calibration study and 

(b) Experiment 1. 
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4.2.2 Stimuli 

The exaggeration levels established in the calibration study were used to select the 

stimuli for experiment 1 (α = -0.21 for veridical faces, and α = +0.21 for caricatures).  As 

in the calibration study, the faces were rendered without the reflectance information. 

4.2.3 Procedure 

The procedures were the same as in the calibration study, but participants were 

assigned to one of three experimental conditions:  (i) veridical familiarization/veridical 

test (n = 30), (ii) caricature familiarization/caricature test (n = 29), and (iii) caricature 

familiarization/veridical test (n = 29).  In all three conditions (VV, CC, or CV) the same 

ten randomly chosen faces were used (in either caricature or veridical form).  The VV 

condition established the experimental baseline while the CC condition established an 

upper bound on facial recognition performance.  The CV condition tested our working 

hypothesis, according to which familiarization with caricatures improves the 

recognition performance when presenting faces in their veridical form at a later time.  

4.2.4 Results 

A one-way ANOVA on d revealed a main effect of condition on recognition accuracy, 

F(2, 85) = 7.96, p < 0.001.  Face recognition performance of the three experimental 

conditions is shown in Figure 19b.  Consistent with other researchers’ findings and our 

own calibration study, participants exposed to caricature targets and caricature probes 

(CC) showed higher recognition accuracy than participants shown veridical targets and 
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veridical probes (VV), t(57) = 3.90, p < 0.001.  Of greater interest for the current study, 

participants familiarized with caricature targets and tested on veridical probes (CV) had 

higher overall recognition accuracy than those shown veridical targets and veridical 

probes, t(57) = 2.17, p < 0.05.  Looking at the experimental condition and the 

participants’ gender as factors, we found no main effect of gender F(1,82) = 0.052, ns.  

Namely, males and females had similar recognition performance. 

No significant differences were observed in response time across the three 

conditions, F(2, 85) < 1 (one-way ANOVA). Additionally, the dual presentation of 

targets had no main effects on hit rates during test, F(1, 85) < 1, and had no interactions 

with the experimental condition, F(2, 85) < 1 (two-way mixed-factor ANOVA); hit rates 

on the two presentations of the targets are illustrated in Figure 20(b). 

4.3 Experiment 2 

The goal of this experiment was to establish whether a reverse-caricature effect would 

occur given a shorter familiarization time than was used in Experiment 1. 

4.3.1 Participants 

Participants were recruited from an Introductory Psychology pool.  One hundred and 

two students (n = 74 female, n = 28 male) participated in Experiment 2.  A similar 

gender distribution for participants was maintained across experimental conditions. 
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4.3.2 Stimuli 

The faces used in this experiment were the same as in Experiment 1. 

4.3.3 Procedure 

Participants were again assigned to one of three experimental conditions:  VV (n =34), 

CC (n = 34), and CV (n = 34), where they were familiarized with 10 randomly selected 

faces.  However, unlike in the previous experiments, target faces were presented only 

once for 3 seconds (see Goldstein and Chance 1980).  Participants were then tested with 

a single presentation of 40 faces, of which 30 were new (non-target) faces and 10 were 

the learned faces.  These procedures were introduced to increase the difficulty of the 

recognition test.  In all three conditions, the same ten randomly chosen faces were used 

(in either caricature or veridical form).  The exaggeration levels established in the 

calibration study were used for all faces (α = -0.21 for veridical faces, and α = +0.21 for 

caricatures). 

4.3.4 Results 

A one-way ANOVA revealed a main effect for recognition accuracy (d) across the three 

groups, F(2, 99) = 7.78, p < 0.001.  Face recognition performance on the three 

experimental conditions is shown in Figure 19c.  Participants exposed to caricature 

targets and caricature probes (CC) showed higher recognition accuracy than 

participants exposed to veridical targets and veridical probes (VV), t(66) = 3.65, p < 

0.001.  More importantly, participants familiarized with caricature targets and tested on 
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veridical probes (CV) had higher overall recognition accuracy than those shown 

veridical targets and veridical probes (VV), t(66) = 3.31, p < 0.01.  No significant 

differences were observed in response time across the three conditions, F(2, 99) < 1 (one-

way ANOVA).  Looking at the experimental condition and the participants’ gender as 

factors, we found no main effect of gender F(1,96) = 2.81, ns.  Namely, males and 

females had similar recognition performance. 

4.4 Experiment 3 

The goal of Experiment 3 was to rule out the possibility that the results of the previous 

two experiments were based on the use of a superficial ‚picture matching‛ strategy by 

participants rather on actual face recognition.  To this end, test faces were rotated 

relative to their frontal orientation during familiarization. 

4.4.1 Participants 

Participants were recruited from an Introductory Psychology pool at Texas A&M 

University.  One hundred and two students (n = 76 female, n = 26 male) participated in 

Experiment 3.  A similar gender distribution for participants was maintained across 

experimental conditions. 
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4.4.2 Stimuli 

The same stimulus set from Experiment 1 and 2 were used in this study.  However, the 

test faces were rendered with a uniform distributed random rotations in the range of ±5 

degrees in each of the three axes.  An example of these rotations is shown in Figure 21. 

4.4.3 Procedure 

Participants were again assigned to one of three experimental conditions:  VV (n =34), 

CC (n = 34), and CV (n = 34), using identical procedures to the previous studies, with 

two exceptions.  First, participants were familiarized with a single presentation of the 

target faces for 6 seconds each.  Second, all faces were presented with a modest random 

rotation during test. 

 

 
 

Figure 21. Example of face rotations. (a) shows a 3D model with no rotation. (b) shows the 

model rotated 5 degrees on the X axis, (c) 5 degrees on the Y axis, and (d) 5 degrees on the Z 

axis. Finally, (e) shows 5 degrees on all axes combined. 
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4.4.4 Results 

A main effect was observed for recognition accuracy (d) across the three groups, F(2, 

99) = 9.46, p < 0.001.  Face recognition performance on the three experimental conditions 

is shown in Figure 19d.  Participants exposed to caricature targets and caricature probes 

(CC) showed higher recognition accuracy than participants shown veridical targets and 

veridical probes (VV), t(66) = 4.21, p < 0.001.  More importantly, participants 

familiarized with caricature targets and tested on veridical probes (CV) had higher 

overall recognition accuracy than those shown veridical targets and veridical probes 

(VV), t(66) = 2.79, p < 0.01.  No significant differences were observed in response time 

across the three conditions, F(2, 99) < 1.  Looking at the experimental condition and the 

participants’ gender as factors, we found a main effect of gender F(1,96) = 5.13, p < 0.05.  

Females performed better than males overall, t(100) = 1.53, ns (p = 0.13). 

4.5 Summary 

Results from the three reverse-caricature studies support the hypothesis that even very 

brief familiarization with frontally presented caricatures leads to greater recognition of 

their unexaggerated counterparts than does familiarization with veridical versions of 

those faces.  Taking the results from Experiment 1 as a baseline, Experiment 2 explored 

the effect of shorter familiarization times (3-sec vs. 6-sec) on recognition performance, 

whereas Experiment 3 explored the effect of random rotations at test (5 degrees); both 

Experiments 2 and 3 also explored the effect of single presentations at test.  Our results 
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indicate that the reverse-caricature effect is robust to differences in stimuli presentation 

schemes, familiarization times, and modest rotations of the faces. 
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5. PERCEPTUAL STUDY: REVERSIBILITY OF OTHER-RACE 

EFFECTS 

In this study we investigate whether this reverse-caricature effect can be exploited to 

reduce other-race effects, i.e. by familiarizing subjects with other-race faces whose 

distinctiveness has been purposely enhanced.  To achieve this objective, we included 

texture in our 3D face models.  Using the automated caricature generation method and 

3D facial models described in Section 3, we tested our working hypothesis through a 

series of perceptual experiments focused on own-race vs. other-race recognition. 

We employed a similar old/new face recognition protocol described in Section 4, 

where subjects are familiarized with a set of faces, and then asked to recognize those 

faces among a set of confounders.  In an initial calibration study, we used this method 

to determine (i) the minimal degree of exaggeration between veridical and caricature 

faces that would lead to a caricature effect, and (ii) the level and races that would likely 

produce a significant other-race effect on this specific dataset.  This exaggeration level was 

then used as the basis for a recognition study that evaluated whether a brief initial 

exposure to frontally-presented caricaturized faces would reduce the other-race effect 

when tested using their veridical counterparts. 

5.1 Calibration study 

To avoid ceiling effects, the first phase was a calibration trial to select the appropriate 

exaggeration levels for the veridical and caricature faces.  This additional calibration 
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step was deemed necessary given that the faces were rendered with shape and texture, 

whereas the study reported in Section 4 had used only shape.  Thus, given the 

additional information provided by facial texture, it was possible that suitable 

caricaturization levels would differ from those obtained on shape-only faces. 

5.1.1 Participants 

A total of 53 undergraduate Caucasian students (38 females and 15 males) from the 

Department of Psychology at Texas A&M University participated in the calibration 

study. 

5.1.2 Stimuli 

A total of 40 face models were selected from the University of Freiburg 3DFS-100 

dataset (Blanz and Vetter 1999). Each face consisted of a mesh with 75972 vertices, each 

vertex defined by its position (in 3D Cartesian coordinates) and its reflectance (in RGB 

space).  Following Furl et al (2002), the race distribution for these models was 12 

Caucasian, 12 East Asian, 8 Indians, 4 Africans, 4 Other (Middle Eastern, Hispanic, or 

any other group that did not fit in the first 4 groups).  Indian, African, and Other faces 

were considered as filler stimuli since we had initially selected East Asians as the other-

race target for our pool of Caucasian subjects. 

In order to caricaturize faces consistently and evenly, each face f was first 

normalized by its Mahalanobis distance (|| ||M) to the average face fAVG (O'Toole et al 

1997) and then caricaturized by linearly exaggerating its differences with respect to fAVG 



65 

 

(see subsections 3.2 and 3.3.)  The average face fAVG was computed using all 100 faces 

from the 3DFS dataset.  Five exaggeration levels were considered: -3, -2, -1, 0, +1, 

where   was defined as the standard deviation of the distance between un-normalized 

faces in the dataset and their average.  Figure 22 shows an example of the stimuli used 

in this experiment. 

Renderings of the resulting 3D caricatures for three caricaturization levels and 

average face are shown in Figure 22.  Presentation of stimuli was performed using the 

DMDX display software (Forster and Forster 2003). 

5.1.3 Procedure 

Participants were first assigned to one of five experimental conditions, maintaining a 

similar gender distribution across condition (n=10, 11, 10, 11, 11).  Each condition 

 

Figure 22. Sample stimuli with texture.  It shows the face of a Caucasian male at different 

caricaturization levels: (a) -3, (b) -1, (c) +1.  The ears and neck were removed to prevent 

participants from using picture-matching strategies. 
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consisted of stimuli generated at a given caricaturization level (from -3  to +1).  

Participants were familiarized with 20 frontal target faces, each presented twice in 

random order, 3 seconds per presentation.  After the familiarization phase was 

completed, participants were tested on 40 faces, of which 20 faces were ‚new‛ (non-

target) and 20 faces were ‚old‛ (target); all faces in the test phase were rendered with a 

random orientation between 5 degrees in the three axes.  Participants were asked to 

identify each face as ‚old‛ if they recognized it as one from the familiarization phase, or 

as ‚new‛ if they had not seen it before. Following (Duchaine et al 2003), no time limits 

were imposed, but participants were asked to make the identification as rapidly as 

possible without sacrificing accuracy. 

5.1.4 Results 

Significant differences were observed for recognition accuracy across the five 

caricaturization levels, F(4,48) = 20.17, p < 0.001.  Figure 23a shows the recognition 

performance across races, excluding African and Other faces, which were significantly 

under-represented in the stimulus set12.  Starting from a near-chance level (d’ ≈ 0.0) for 

extreme anti-caricatures (-3), recognition accuracy increased with the level of 

caricaturization. Additionally, Figure 23a shows other-race effects on both East Asian 

and Indian faces, but the effect is stronger on Indian faces.  From these results, 

 
12 As a result, we found that faces from these two races could be singled out and recognized 

quite easily.  
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exaggeration levels of -1  and 0  were selected for veridical and caricaturized faces, 

respectively, on the basis that they were the closest pair with the largest statistically-

significant difference in recognition accuracy (see Figure 23b): M0 = 2.64  0.18 (Mean  

S.E.M.), M-1 = 1.85  0.12, t(19) = 3.73, p<0.01 (two-tailed13); and they were far from the 

upper and lower saturation levels, which avoided potential ceiling effects.  

Furthermore, these caricaturization levels showed a other-race effect on the Indian 

stimuli for our selected veridical faces: MCaucasian(-1) = 2.28  0.49, MIndian(-1) = 1.38  0.41, 

t(18) = 1.76, p = 0.09, ns.  Response times are shown in Figure 24; significant differences 

were found across caricaturization levels, F(4,48) = 4.61, p < 0.01, but not within 

caricaturization levels. 

 
13 All t-test are two-tailed unless indicated otherwise. 

 

Figure 23. Calibration study recognition results. (a) Recognition accuracy for the calibration 

studies across races. (b) Same results as in (a) but combining the East Asian, Caucasian, and 

Indian results. Error bars represent standard errors.  



68 

 

An interesting result from this calibration experiment is that other-race effects 

were stronger for Indian faces than for East Asian faces.  Namely, the other-race effect 

was significant for Indian faces at all caricaturization levels except for  = +1, whereas 

significant effects for East Asian faces were only observed for  = -2 and  = 0.  While 

we do not have a precise explanation for this result, our conjecture is that either the 

specific Indian faces in our dataset were more homogeneous than the East Asian faces, 

or our participants had more exposure to East Asian faces, either socially or through the 

media. 

 

Figure 24. Response time across races. It shows that participants responded faster as we 

increased the caricaturization level. Error bars represent standard errors. 



69 

5.2 Reversibility study 

Having identified suitable exaggeration levels that yielded caricature effects and other-

race effects, a second study was performed to test our working hypothesis: namely, that 

reverse-caricature training can reduce other-race effects. 

5.2.1 Participants 

A total of 45 undergraduate students (24 females and 21 males) from the Department of 

Psychology at Texas A&M University participated in this study. 

5.2.2 Stimuli 

Based on our calibration study, we used exaggeration levels of -1 and 0 for veridical 

and caricaturized faces, respectively.  Given that the other-race effect was found to be 

stronger on Indian faces during the calibration study, we adjusted the stimulus dataset 

to balance the distribution of faces: 10 East Asian, 10 Caucasian, 10 Indian, 6 African, 

and 4 Other. A similar gender distribution for participants was also maintained across 

experimental conditions. 

5.2.3 Procedure 

The procedures were the same as in the calibration study, but participants were 

assigned to one of two experimental conditions: (VV) veridical familiarization-veridical 

test (n = 23), which served as a control group, and (CV) caricature familiarization-

veridical test (n = 22), which tested our hypothesis that reverse-caricature training can 



70 

reduce other-race effects.  In all conditions, the same twenty randomly chosen faces 

were used (in either caricature or veridical form). 

5.2.4 Results 

Figure 25 summarizes the results of this experiment. Participants in the VV condition 

showed a significant other-race effect on Indian faces: MCaucasian = 2.10  0.26, MIndian = 1.27 

 0.22, t(44) = 2.43, p < 0.05.  Participants in the CV condition, on the other hand, did not 

show significant other-race effects on Indian faces: MCaucasian(CV) = 2.06  0.24, MIndian(CV) = 

1.94  0.25, t(42) = 0.33, ns.  Moreover, participants in the CV condition showed a 

significant improvement on Indian faces when compared to participants in the VV 

 

Figure 25. Recognition accuracy (d’) across races.  Participants in the VV condition were 

familiarized with veridical faces and then tested with veridical faces. Participants in the CV 

condition were familiarized with caricatures, but tested with veridical faces. Error bars represent 

standard errors. 
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condition: MIndian(CV) = 1.94  0.25, MIndian(VV) = 1.27  0.22, t(43) = 2.03, p < 0.05.  These 

results suggest that the previously reported reverse-caricature effect (Deffenbacher et al 

2000; Stevenage 1995) can also help reduce difficulties recognizing other-race faces. 

In this study we did not find a significant improvement in recognition 

performance of Caucasian (own-race) faces.  Participants had almost no change in 

recognition accuracy between the CV and VV conditions: MCaucasian(CV) = 2.06  0.24, 

MCaucasian(VV) = 2.10  0.26, t(43) = 0.10, ns.  This result is consistent with the fact that our 

participants were experts14 in identifying Caucasian faces; thus, it is to be expected that 

caricaturization would not provide as much benefit with Caucasian faces as it would 

with Indian faces. However, the inclusion of texture in the stimuli may have provided 

enough information to render our Caucasian faces unique.  Caucasians often use skin 

tones and eye color when describing faces (Ellis et al 1975).  Looking at participants’ 

gender, experimental condition, and stimulus race as factor, we found a main effect of 

gender, F(1,41) = 4.44, p < 0.05. Namely, the recognition performance between females 

and males was significantly different. For instance, on the VV condition, females did 

not show a significant other-race effect on Indian faces, t(11) = 1.16, ns; while males had 

 
14 By ‚expert‛ we imply that the participant’s attention is already directed towards the most 

diagnostic features for that race. Therefore, caricaturization of those features would not 

represent a significant advantage. This suggests that a more difficult experiment would be 

required to show a reverse-caricature effect on own-race faces.  This has been the case of 

previous reverse-caricature reports which, unlike in our study, rendered faces without surface 

reflectance, and instead employed either line drawings or shape-only 3D models 

(Deffenbacher et al 2000; Stevenage 1995). 
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a significant other-race effect, t(10) = 2.56, p < 0.05. Finally, consistent with our 

calibration results, participants did not show a significant other-race effect on East 

Asian faces.  As we argued in the calibration study, this may be the result of our 

participants having had more extensive prior exposure to East Asian faces.  Figure 25 

shows that participant in the CV condition actually experienced a decline in 

performance on East Asian faces when compared to participants in the VV condition.  

Although this reduction was not statistically significant, our expectation was that 

performance on East Asian faces would have followed that on Caucasian faces.  Further 

experimentation will be required to identify the source of this discrepancy. 

5.3 Summary 

Results from the reversibility study support the hypothesis that reverse-caricatures are 

able to reduce other-race effects.  Specifically, our Caucasian participants showed other-

race effects on Indian faces, which were reduced after familiarization with caricatures of 

those faces.  However, Caucasian participants did not show other-race effects on East 

Asian faces.  Our conjecture is that our Caucasian participants had a higher degree of 

prior exposure with East Asian faces than with Indian faces, thru popular culture.  It is 

also possible that, within the 3DFS dataset, the specific East Asian face samples may be 

more perceptually distinctive than Caucasian or Indian faces.  The 3DFS only has 100 

face models and it is not race balanced. 
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Our finding that reverse-caricature training can reduce other-race effects 

suggests that this may be an effective paradigm to help individuals focus their attention 

on features that are useful for recognition.  These results have important implications 

for the development of training tools for law enforcement and security. 
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6. RECONSTRUCTION OF 3D FACE MODELS 

In Sections 4 and 5 we described perceptual experiments that tested the feasibility of 

using reverse caricatures for improving face recognition.  These experiments were 

performed using faces for which 3D facial models were available.  As discussed earlier, 

however, 3D facial models are expensive and in many cases not available (as when the 

subject is at large).  For this reason, this dissertation explores whether 3D 

reconstructions from 2D photographs may be used instead of ground-truth 3D models.  

This section describes the 3D reconstruction methods that we have used for this 

purpose, whereas Section 7 describes perceptual results when 3D reconstructions 

(rather than ground-truth 3D models) are used for reverse caricaturization. 

Our face reconstruction method is based on the morphable model (Blanz and 

Vetter 1999), a technique capable of reconstructing photorealistic 3D models of a human 

face from single images.  The morphable model represents faces as linear combinations 

of prototype faces using principal components analysis (PCA).  Given a 2D input image, 

the technique proposed by Blanz and Vetter uses an iterative non-linear optimization 

method to estimate the principal components and rendering parameters (e.g. 

illumination, camera parameters) of a 3D model such that, when rendered, is as close as 

possible to the 2D image.  For the purposes of this research, however, our 

implementation was limited to shape and texture coefficients while the rest of the 

rendering parameters were assumed known.  This was advantageous because the 
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reconstruction problem is linear in the shape and texture parameters, for which an 

optimal solution can be found through least squares.  This allowed us to isolate 

reconstruction errors introduced by the optimization technique from those that are due 

to the (lack of) diversity in the training datasets.   

6.1  Holistic reconstructions 

For these reconstructions, we used the University of Freiburg 3DFS-100 dataset (Blanz 

and Vetter 1999) containing one hundred faces.  Each face consisted of a mesh with n = 

75,972 vertices, and each vertex was defined by its position (in 3D Cartesian coordinates 

                        and its reflectance in RGB space                        . 

Because any reconstructed face must be a linear combination of the prototypes, 

and we assumed several rendering parameters fixed, we replaced the non-linear 

optimization stage in Blanz and Vetter (1999) with a PCA back-projection, which 

represents a best-case reconstruction in the least-squares sense.  

To illustrate the performance of the PCA back-projection algorithm, we 

performed a leave-one-out reconstruction experiment.  Namely, for each face in the 

3DFS-100 dataset (i.e. the test face                    ), we first remove that face from 

the dataset, and then perform a PCA decomposition of the remaining m = 99 training 

faces according to their shape (Strain) and reflectance (Ttrain):  
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 (29) 

 

where    and    denote the shape and reflectance eigenvectors,      and      are the 

average shape and reflectance, and    and    are the principal components of a 

particular face, respectively.   

Next, we project the test face       along the PCA eigenvectors of the training 

data to obtain the predicted principal components αtest and βtest :  
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    (31) 

 

from which a reconstructed 3D model      
  is finally obtained:  

 

 
     
                 

   

 
 (32) 

 
     
                 

   

 
 (33) 

 

The predicted αtest and βtest coefficients represent the best solution that could be obtained 

with the non-linear optimization in (Blanz and Vetter 1999). 
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Figure 27. Error based on two reconstruction algorithms. Reconstruction based on least squares 

(PCA) had smaller error than using the stochastic Newton method in the morphable model in 

both (a) texture and (b) shape. In our implementation rendering parameters were assume fixed 

and equal in both algorithms, the least squares solution is the optimum solution.  

 

Figure 26. Comparison of linear vs. non-linear reconstruction algorithm. (a) shows a ground-

truth 3D face model. (b) shows the holistic PCA back projection (least squares) and (c) shows 

reconstruction with the iterative algorithm in Blanz and Vetter (1999). (b) has perceptually better 

likeness to (a) than (c). Reconstructions done in a LOO fashion.  
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Figure 28. Face reconstruction. The figure shows several ground truth 3D models (a-e) and the 

corresponding reconstructions. Holistic reconstructions are shown in the middle column and the 

segmented-based reconstructions are illustrated in the last column. 
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Figure 26 shows a sample 3D model from the 3DFS dataset, and its 

corresponding shape and texture reconstruction based on PCA and our own 

implementation of Blanz and Vetter’s iterative algorithm (see Appendix B and C).  In 

turn, Figure 27 summarize reconstruction errors obtained through PCA back-projection 

against those obtained with Blanz and Vetter’s iterative algorithm; as shown, PCA 

back-projection produced better reconstruction than the iterative algorithm.  Finally, 

Figure 28 (middle column) shows examples of holistic-based reconstruction of several 

3D face models from the 3DFS dataset. 

6.2 Segment-wise reconstructions  

Face reconstructions      
  have 2(m-1) degrees of freedom (m-1 associated with shape, 

and m-1 associated with texture).  To increase the level of expressiveness, we segmented 

the face into four regions (Blanz and Vetter 1999), and performed the PCA 

decomposition in equations (28) and (29) for each segment independently; see Figure 

29a.  The final face model      
  was obtained by combining each predicted segment 

using an image-blending algorithm (Burt and Adelson 1985) that works as follows.  

Given two input images (A and B) to be blended, we define a mask image (M) to denote 

whether the corresponding pixel should come from image A (mask value equal to 1) or 

B (zero). Then we construct a Laplace pyramid for images A and B, and a Gaussian 

pyramid for the mask image M, as illustrated in Figure 30.  At each level in the 
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Figure 30. Construction of the Laplace pyramid. The process starts with a Reduce() operation 

(low-pass filtering) and sub-sampling (half sized) the original image, G0, to obtain G1. This process 

continues until reaching a predefined level N.  GN is known as the Gaussian pyramid. To complete 

the Laplace pyramid LN, a band-pass operation is required between two successive low-pass 

levels.  The lower frequency image (G3 in the example), is interpolated using the Expand() 

operation before subtracting it from the higher frequency image, G2.  This process continues until 

reaching L0. This figure was adapted from Burt and Adelson (1985). 

 

Figure 29. Face segments and geometry image samples. (a) Face segmentation used for 3D face 

reconstructions; each region is predicted independently and then merged into a composite face. 

(b) Example of a 3D shape and (c) its corresponding geometry image; the geometry image is an n 

 m matrix where XYZ coordinates are represented as RGB values. 
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pyramid, the algorithm blends the two images as: 

 

                                                  (34) 

 

where    ,    , and     are the Laplace pyramids of the input images (  and  ,) and 

the output image  , respectively, and     is the Gaussian pyramid of the mask image 

for a given level  .  Finally, the resulting blended image   (i.e.   ), is synthesized from 

the     pyramid as: 

 

        (35) 

                       (36) 

In order to apply this image-based blending algorithm to 3D models, the 3D segments 

are converted into geometry images (GI) (Gu et al 2002) prior to the blending stage; see 

Figure 29b,c for an example of a geometry image from a 3D shape model.  After 

blending all GI-based segments, the resulting GI is converted back into a 3D model.  

Reconstruction results with the segment-based method       
   are illustrated in Figure 

28 (last column).  In turn, Figure 31 summarizes reconstruction errors with the segment-

based and holistic-based reconstructions, which clearly show that segment-based 

reconstructions are significantly more accurate. 
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6.3 Caricaturization of segment-based reconstruction 

Following the same caricaturization process described in Section 3, we generated 

caricaturized 3D models from reconstructed test faces.  Figure 32 illustrates several 

samples of them at different caricaturization levels.  The caricaturization process 

enhanced the distinctive features of the face, but it seems that reconstruction artifacts 

 

Figure 31. Mean squared error (MSE) per reconstruction method on the entire 3DFS dataset. 

Reconstruction was per formed in a leave-one-out (LOO) fashion. (a) MSE on shape 

reconstruction. (b) MSE on texture reconstruction. In both cases, the segmented-based method 

produced better reconstructions than the holistic-based method. Error bar are standard errors. 
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Figure 32. Caricatures from segmented reconstructions. This figure shows five different 3D 

reconstructed models at different caricaturization level from -1 to +2.  
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are also amplified.  This is clearly noticeable at higher caricaturization levels, see Figure 

32’s +2 column.  Whether these artifacts have an effect in face perception is the subject 

of the final perceptual experiment, which is described in Section 7. 
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7. PERCEPTUAL STUDY: RECOGNITION OF 3D FACE 

RECONSTRUCTIONS 

7.1 Face perception using 3D model reconstructions 

In this final perceptual study, we investigated whether caricatures generated from 3D 

reconstructions, as described in Section 6, would be valid stimuli for reverse caricature 

training.  For this purpose, we employed the same old/new face recognition protocol 

described earlier in Sections 4 and 5, whereby subjects are first familiarized with a set of 

faces, and then asked to recognize those faces among a set of confounders.  Following 

(Rodríguez et al 2008), we used the minimal degree of exaggeration between veridical 

and caricature faces that would lead to a caricature effect.  This exaggeration level was 

then used in a recognition study that allowed us to test whether familiarization with 

caricatures of reconstructed 3D models (as opposed to caricatures of the original 3D 

models) would reduce OREs. 

7.1.1 Stimuli 

Forty face models were selected from the 3DFS-100 dataset (Blanz and Vetter 1999). The 

same 40 faces were used throughout the experiments.  From these ground-truth 

veridical faces (V) (Figure 33a) we generated 40 veridical reconstructions (Vr) (Figure 

33b), which were in turn used to generate 40 caricaturized reconstructions (Cr) (Figure 

33d).  Following Furl et al (Furl et al 2002), our face corpus had a similar distribution 
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Figure 33. Reconstruction studies sample stimuli. (a) ground-truth frontal faces, (b) their 

corresponding 3D segment-based reconstructions, (c) caricatures from ground-truth faces, and 

(d) caricatures from reconstructed faces. Ears and neck were manually removed to prevent 

participants from using picture-matching strategies.  Inspection of (c) and (d) illustrates the 

extent to which caricatures amplify reconstruction errors rather than unique facial traits. 
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across races: 10 Caucasians, 10 East Asians, and 10 Indians.  We also included 6 African 

faces and 4 faces from other groups (Middle Eastern, Hispanic) as filler stimuli.  East 

Asian and Indian faces were treated as other-race faces. 

7.1.2 Procedure 

Forty-three Caucasian undergraduate students (24 females and 19 males) from the 

Department of Psychology at Texas A&M University participated in this study. 

Participants were assigned to one of two experimental conditions:  

 Vr-V condition: familiarization with veridical reconstructions (Vr), recognition 

of veridical faces (V). Twenty-one students participated in this study, which 

served as a control.  

 Cr-V condition: familiarization with caricaturized reconstructions (Cr), 

recognition of veridical faces (V). Twenty-two students participated in this 

condition, which tested our working hypothesis. 

For each condition, participants were familiarized with 20 frontal target faces 

(the same faces for all subjects), each presented twice in random order, 3 seconds per 

presentation.  Following familiarization, participants were tested on 40 faces, of which 

20 were ‚new‛ (non-target) and 20 were ‚old‛ (target); all faces in the test phase were 

rendered with a random orientation between 5 degrees in the three axes in order to 

prevent picture-matching strategies (Rodríguez et al 2009).  Participants were asked to 

identify each face as ‚old‛ if they recognized it as one from the familiarization phase, or 
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as ‚new‛ otherwise.  Following (Duchaine et al 2003), no time limits were imposed, but 

participants were asked to make the identification as rapidly as possible without 

sacrificing accuracy.  In all conditions, the same 20 randomly chosen faces were used (in 

either caricature or veridical form).  Following (Rodríguez et al 2008) exaggeration 

levels were set to     (       ) and    (   ) for veridical and caricaturized faces, 

respectively.  A similar gender distribution for participants was maintained across 

experimental conditions. 

7.1.3 Results 

7.1.3.1 Do 3D reconstructions errors affect recognition performance? 

To answer this question, we compared results from the Vr-V condition (i.e., in the new 

experiments above) against those on the V-V condition (i.e., from our earlier study in 

section 5.2 15) in terms of the signal detection d’ measure (Macmillan and Creelman 

2005).  Results are summarized in Figure 34.  Using the experimental condition (V-V vs. 

Vr-V) and race (Caucasian vs. East Asian vs. Indian) as factors, a two-way ANOVA 

shows a main effect of experimental condition, F(2,82) = 8.735, p < 0.01.  Overall 

performance in the Vr-V condition is lower than in the V-V condition: t(42) = 2.956, p < 

0.01, and also on each individual race.  Thus, these results indicate that reconstruction 

errors have a negative effect on recognition performance, regardless of race. Looking at 

 
15 Our earlier experiments used the same procedure, stimulus set, and subject pool as those 

reported here. 
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participants’ gender, experimental condition, and stimulus race as factor, there was not 

main effect of gender, F(1,40) = 1.10, ns. Namely, females and males recognition 

performance was similar. 

 

Figure 34. Signal detection d’ for (a) V-V and Vr-V conditions, and (b) C-V and Cr-V conditions. 

V-V and C-V conditions are based on Rodríguez et al (2008) results. Error bars represent standard 

errors. 
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To tease apart the influence of reconstruction errors on different decisions, we 

also analyzed results in terms of true positive rates (TPR) and false positive rates (FPR).  

Results are summarized in Figure 35: 

 TPRs showed a main effect of race F(2,84) = 6.95, p < 0.01, and of experimental 

condition, F(1,42) = 18.108, p < 0.001.  There was no interaction effect between 

race and experimental condition, F(2,84) = 0.444, ns.  Overall performance on 

the V-V condition was significant higher than on the Vr-V condition, t(42) = 

4.255, p < 0.001.  

 

Figure 35. (a) True positive and (b) false positive rates across experimental conditions. V-V and 

C-V conditions are based on Rodríguez et al (2008) results. Error bars represent standard errors. 
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 FPRs showed a main effect of race F(2,84) = 4.99, p < 0.05, and interaction 

effects between race and experimental condition, F(2,84) = 3.125, p < 0.05.  

There is no main effect of experimental condition, F(1,42) = 0.687, p > 0.05.  

Overall performance on the V-V condition was not significant different than 

on the Vr-V condition, t(42) = 0.829, p > 0.05. 

These results indicate that reconstruction errors affected recognition 

performance by decreasing TPRs but not necessarily by increasing FPRs.  However, 

there was a main effect of race on both measures, which suggests that reconstruction 

errors affect the viewer’s performance differently depending on the race of the stimulus 

face.  

Finally, we analyzed the signal detection criterion C, which provides cues about 

whether participants have a bias toward a particular answer.  A conservative 

participant will answer ‘no’ more often (positive C values), while a liberal participant 

will respond ‘yes’ more often (negative C values) (Abdi 2007).  Results are shown in 

Figure 36a.  Analysis of variance shows a main effect of race: F(2,84) = 7.55, p < 0.001 and 

a main effect of experimental condition: F(1,42) = 9.621, p < 0.01, but no interaction 

effects: F(2,84) = 2.914, ns.  Participants on the V-V condition were more conservative to 

own-race faces than to other-race faces.  In addition, training on the Vr-V condition 

caused a noted increase in criterion C, which indicates that reconstruction errors made 

participants more conservative.  We can infer participants were having difficulties 

learning from reconstructions.  This is consistent with the TPRs results above; 
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conservative participants would experience a reduced TPR score.  Furthermore, 

conservative participants would improve their FPRs.  In this pair of experimental 

conditions, participants maintained the same level of FPR scores. 

7.1.3.2 Do caricatures reduce the impact of 3D reconstruction errors on recognition 

performance?   

To answer this question, we compared results in the Vr-V and Cr-V conditions, also in 

terms of the signal detection d’ measure.  Using experimental condition (Vr-V vs. Cr-V) 

and race (Caucasian vs. East Asian vs. Indian) as factors, a two-way ANOVA shows no 

 

Figure 36. Criterion C across experimental conditions. V-V and C-V conditions are based on 

Rodríguez et al (2008) results. Error bars represent standard errors. 
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main effect of experimental condition, F(1,41) = 2.068, p > 0.05.  However, performance 

was lower on Cr-V than on Vr-V: t(41) = 1.438,  ns, (p = 0.15).  There was no main effect 

of race, F(2,82) = 2.519, ns.  OREs on Indian faces were observed for participants in the 

Vr-V condition: t(40) = 1.69, ns (p = 0.099), but not for participants in the Cr-V condition: 

t(42) = 0.88, ns.  However, this reduction of OREs with reverse caricatures was due to a 

reduction in recognition performance on Caucasian faces rather than to an increase in 

recognition performance on Indian faces.  There was no significant interaction between 

race and training condition, F(2,82) = 0.997, ns; both training conditions show similar 

performance profile across races.  Therefore, when considering the signal detection d’ 

measure, reverse-caricature training using reconstructed 3D models did not reduce the 

impact of reconstruction errors.  In fact, it appears that the caricature process amplifies 

reconstruction errors to a greater extent that it makes the unique facial traits more 

salient.  Looking at participants’ gender, experimental condition, and stimulus race as 

factor, there was not main effect of gender, F(1,39) = 1.25, ns. Namely, females and 

males recognition performance was similar. 

As before, we performed a finer-grained analysis in terms of true positive rates 

(TPR) and false positive rates (FPR).  Results are summarized in Figure 35a-b: 

 TPRs did not show a main effect of race F(2,82) = 2.096, ns, training condition, 

F(1,41) = 0.959, ns, or interaction effects, F(2,82) = 0.681, ns.  However, 

performance was better on Cr-V than it was on Vr-V: t(41) = 0.972, p > 0.05. 
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 FPRs did not have a main effect of race: F(2,82) = 1.275, ns, but had a 

significant main effect of condition: F(1,41) = 6.332, p < 0.05.  Namely, 

performance was worse on Cr-V than on Vr-V: t(41) = 2.516, p < 0.05.  

These results suggest that although the caricature process may improve TPRs, 

this is at the expense of a much larger increase in FPRs such that the net effect of 

caricaturization (as measured by the signal detection d’ measure) is detrimental. 

Finally, we also analyzed the signal detection criterion C.  Results are shown in 

Figure 36. Analysis of variance shows no main effect of race, F(2,82) = 1.424, ns, and no 

significant interaction, F(2,82) = 0.050, ns.  However, there is a main effect of training 

condition F(1,41) = 3.80, p < 0.05.  Namely, participants in the Cr-V condition become 

less conservative than those in the Vr-V condition and approach the ideal observer (i.e., 

C=0, no strategy). 

7.1.3.3 Do caricatures of reconstructed faces provide better recognition performance than 

veridical faces?   

To answer this question, we compared results in the Cr-V and V-V conditions in terms 

of the signal detection d’ measure.  Using experimental condition (Cr-V vs. V-V) and 

race (Caucasian vs. East Asian vs. Indian) as factors, a two-way ANOVA did not show a 

main effect of race, F(2,86) = 2.796, ns, and did not have an interaction between race and 

experimental condition.  There was a main effect of experimental condition, F(1,43) = 

17.792, p < 0.001; performance on the V-V condition was significantly higher than on the 
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Cr-V condition, t(43) = 4.218, p < 0.001.  Thus, the reverse-caricature effect we observed 

in our earlier work (Rodríguez et al 2008) disappears when caricatures are obtained 

from reconstructed 3D models, which suggests that reconstruction errors can 

perceptually mask distinctive facial cues.  Looking at participants’ gender, experimental 

condition, and stimulus race as factor, there was not main effect of gender, F(1,41) = 

0.18, ns. Namely, females and males recognition performance was similar. 

As before, we also analyzed TPRs and FPRs; results are summarized in Figure 35: 

 TPRs did not show a main effect of race F(2,86) = 2.512, ns, and no interaction 

effects, F(2,86) = 1.313, ns.  TPRs showed a main effect of training condition, 

F(1,43) = 12.09, p < 0.001.  Namely, Cr-V performance was significantly lower 

than V-V performance: t(43) = 3.477, p < 0.001.  

 FPRs had a main effect of race, F(2,86) = 5.501, p < 0.01, but no effect of 

condition, F(1,43) = 3.184, ns, or interaction effects: F(2,86) = 1.759, ns.  

These results mirror those in subsection 7.1.3.1 and indicate that the lower 

recognition performance on Cr-V is due to a reduction of TPRs rather than an increase 

in FPRs. 

Finally, analysis of variance on the signal detection criterion C, summarized in 

Figure 36, shows no main effect of experimental condition: F(1,43) = 2.204, ns, or 

interaction effects: F(2,86) = 2.799, ns.  However, there is a main effect of race: F(2,86) = 

9.031, p < 0.001, namely in terms of reduced OREs in the Cr-V condition. 
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7.2 Summary 

In Sections 4 and 5, we presented perceptual studies that caricatures from ground-truth 

3D models improve the recognition of their veridical counterparts and also reduce 

OREs, as measured by the signal detection’s sensitivity index d' (Macmillan and 

Creelman 2005). The main objective of this final study was to determine whether these 

earlier results would extend to face recognition when the veridical 3D models are not 

available and have to be replaced by reconstructions.   

Our results indicate that 3D reconstructions are not of sufficient quality to be 

used for face recognition purposes, even when rendered without caricaturization.  

Training with reconstructed faces (Vr-V) leads to lower TPRs when compared to 

training with veridical faces (V-V), although FPRs seem immune to reconstruction 

errors.  Training on caricatures of reconstructed faces (Cr-V) leads to higher TPRs when 

compared to training on reconstructed faces (Vr-V) but at the expense of a larger 

increase in FPRs, with a negative net effect.  This suggests that the caricature process 

amplifies reconstruction errors more than it enhances distinctive facial features. Finally, 

training with caricatures of reconstructions (CrV) leads to lower recognition 

performance than training on veridical faces (V-V), mainly in terms of reduced TPRs. 

Collectively, our study indicates that the reconstruction process fails to capture 

the more distinctive features of a given face (e.g., notice the missing chin dimple in the 

second row of Figure 33). Because caricatures amplify differences relative to a norm, 

they also exacerbate any errors introduced during reconstruction (e.g., first row face in 
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Figure 33), possibly distracting participants away from the distinctive features of faces. 

Thus, our results suggest that the original 3D faces may be required in order to generate 

perceptually valid caricatures, and that one needs to pay close attention to the 

reconstruction process, specifically, the quality of synthesized face and its impact on 

face perception (Rodríguez and Gutierrez-Osuna 2011). This reconstruction process 

could introduce unwanted features to the extent that it may prevent individuals from 

focusing their attention on features that are useful for recognition. Additionally, the 

reconstructed faces might not represent accurately the distinctive features, affecting the 

recognition performance and reducing the effectiveness of caricatures as a training aid.  
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8. SUMMARY 

 By definition, caricatures increase the salience of idiosyncratic or normatively distinct 

qualities.  This form of distortion appears to increase the amount of memorable 

information available for later recognition.  As a result, exposure to facial caricatures 

can increase later recognition of their veridical counterparts.  Furthermore, these 

distortions appear to decrease the own-race recognition advantage, possibly by 

allowing participants to focus on those features that are more distinctive for other-race 

faces.  This apparent paradox has important implications for the development of 

training tools for face recognition. 

Although a caricature advantage has been demonstrated in previous work, 

many of these investigations focused on cases in which faces were exaggerated during 

both familiarization and recognition, e.g. (Benson and Perrett 1994; Rhodes et al 1987).  

Effects of this sort are theoretically important, but it is unclear how they might be 

applied to enhance memory of faces in practice, when most operational scenarios 

demand that faces be recognized in their veridical form.  Demonstrations of a reverse-

caricature effect similar to that found in Section 4 (e.g., caricaturized training; veridical 

testing) were based on very different stimuli, such as line drawings and veridical 

photographs (Stevenage 1995), or three-quarter view representations of faces 

(Deffenbacher et al 2000). 
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In the initial perceptual study, described in Section 4, we tested whether the 

‚reverse-caricature effect‛ would be robust to procedural variations that created more 

difficult learning environments.  Specifically, we examined whether the effect would 

emerge with frontal rather than three-quarter views, after very brief exposure to 

caricatures during the learning phase and after modest rotations of faces during the 

recognition phase.  Participants were assigned to one of three experimental conditions: 

(i) veridical familiarization/veridical test (VV), (ii) caricature familiarization/caricature 

test (CC), and (iii) caricature familiarization/veridical test (CV). VV and CC were our 

control groups and set up the lower and upper boundary for CV, our experimental 

group.  Participants on the CC condition showed higher performance than the 

participants on the VV condition, a result that is consistent with the perceptual 

caricature effect reported in the literature.  Participants on the CV condition showed a 

significant improvement over the VV results, but lower than the results obtained on the 

CC experimental condition.  Results indicate that, even under these difficult training 

conditions, people are more accurate at recognizing unaltered faces if they are first 

familiarized with caricatures of the faces, rather than with the unaltered faces 

(Rodríguez et al 2009).  Our findings extend previous reports of a reverse-caricature 

effect, further demonstrating its potential as a training tool for face recognition.  In 

contrast to the work by Deffenbacher et al (2000), in which an optimal three-quarter 

view and a 60-second familiarization exposure were used, our study shows that a 

reverse-caricature effect can also be obtained when only a frontal representation is 
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available during training, with a significantly shorter familiarization time, and that the 

effect is robust to modest rotations of faces. These results support the use of caricatures 

as part of a training tool for face recognition in applied settings.  Consider law 

enforcement as one promising area.  Police officers often are required to learn the faces 

of the at-large suspects that they must try to apprehend.  Law enforcement agencies 

also post the pictures of wanted individuals when they are soliciting the assistance of 

the public. 

How could the results from this study be extended to these applied settings? 

First, stimuli would have to contain both the 3-D shape and the 2-D reflectance/texture 

of faces.  Our focus on facial shape in the first study (Section 4) served two purposes: it 

helped participants focus on anthropometric features of the face rather than on non-

configural features (e.g., skin color, skin blemishes, eye color), and made our results 

comparable with those of Deffenbacher et al (2000), who also used shape-only faces.  

Extensions of the caricature process to both facial shape and facial reflectance are 

technically straightforward; the challenge lies in determining suitable levels of 

exaggeration for shape and reflectance when both sources of information are present.  

To this end, work by O’Toole et al (1999) suggests that the relative contribution of shape 

and texture may be gender dependent; recognition of male faces depends more on 

shape than on reflectance, whereas recognition of female faces relies on both channels 

equally.  Furthermore, reflectance (i.e., skin color in this context) is one of the important 

traits in race determination (Jingrong et al 2004), bringing the other-race perceptual 
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effect to fore.  We included reflectance in the study in Section 5 and investigated the 

presence of other-race effects and to determine the extent to which familiarization with 

caricaturized faces could also be used to reduce other-race effects.  For this purpose, 

Caucasian participants were first familiarized with a set of faces from multiple races, 

and then asked to recognize those faces among a set of confounders.  Specifically, 

participants were assigned to one of two experimental conditions:  (i) veridical 

familiarization-veridical test (VV), which served as a control group, and (ii) caricature 

familiarization-veridical test (CV), which tested our hypothesis that reverse-caricature 

training can reduce other-race effects.  Participants on VV showed a significant other-

race effect on Indian faces, whereas participants on CV showed no other-race effects on 

Indian faces.  This result suggests that caricaturization may be used to help individuals 

focus their attention to features that are useful for recognition of other-race faces 

(Rodríguez et al 2008). 

Second, the caricature process requires a 3-D model for each target face.  In most 

practical settings, however, one will not have the luxury of performing a 3-D face scan 

of each target face; 3-D scanners are still expensive instruments, and scanning is not 

possible when the wanted individual is at large.  One potential solution to this problem 

is to use photogrammetric techniques to reconstruct 3-D face models from 2-D 

photographs; visually convincing reconstructions have been demonstrated by Blanz 

and Vetter (1999) using morphable models.  Whether these reconstructions are 

sufficiently accurate to be used for caricaturing and training is a matter that required 
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further investigation, as even minute reconstruction errors would be amplified by the 

exaggeration process.  We studied this particular issue in Sections 6 and 7, where we 

sought to determine the extent to which familiarization with 3D reconstructed 

caricaturized faces could also be used to reduce other-race effects.  Using PCA and an 

image blending algorithm, we obtained a 3D approximation of a probe face from a 

gallery of 3D faces.  These reconstructions were then caricaturized.  Caucasian 

participants were first familiarized with a set of faces from multiple races, and then 

asked to recognize those faces among a set of confounders.  Specifically, participants 

were assigned to one of two experimental conditions:  (i) familiarization with veridical 

reconstructions - veridical test (VrV), (ii) familiarization with caricaturized 

reconstructions - veridical test (CrV).  Participants who were familiarized with 

reconstructed faces and then asked to recognize the ground truth versions of the faces 

showed a significant reduction in performance compared to the VV results described in 

Section 5.  In addition, participants who were familiarized with caricatures of 

reconstructed versions, and then asked to recognize their corresponding ground truth 

versions, showed a larger reduction in performance.  These results are critical for the 

development of training tools because in most realistic settings 3D scans of the target 

faces are not available.  In these cases, all that is available is a 2D ‚mug shot‛ of the 

target.  While at the onset of this study we anticipated that caricatures would amplify 

reconstruction errors, it was not clear whether these errors would compromise human’s 

ability to recognize faces.  As an example, humans recognize faces under fairly severe 
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manipulations (e.g., at very low resolution, under partial occlusion), but this ability 

breaks down with other types of lossless manipulations (e.g., rotated or inverted faces); 

see (Sinha et al 2006).  

8.1 Conclusions 

The main objective of this dissertation was to determine the extent to which 

photorealistic computer-generated caricatures could be used in training tools to 

improve recognition of faces by individuals.  This research offer clear evidence that 

facial distortions can improve face encoding and subsequent recognition, if they 

exaggerate features that make a face most distinctive with regard to a particular 

population of faces.  We showed that caricatures are useful to improve overall 

recognition, including reducing other-race effects.  Caricatures simply allowed us to 

focus our attention to critical features for recognition.  These results are encouraging for 

the development for face recognition training tools for law enforcement or for medical 

fields (e.g., learning tools for people with autism, or people with prosopagnosia.)  

However, we also found that errors introduced during 3D face reconstructions 

significantly affected recognition, and that caricatures of reconstructed faces further 

exacerbated recognition errors.  Reducing the impact of these reconstruction artifacts is 

an important area for further research. 
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8.2 Future directions 

Future research will need to explore the cognitive mechanisms underlying the reverse-

caricature effect and identify the boundary conditions that guide its application.  The 

effects of race, gender and age on reverse-caricature training would have to be 

characterized in order to design large facial databases.  In Section 4 study, we presented 

familiarization and test faces one at a time on a computer and, as a result, participants 

were able to gain some sense of the norms that defined the full population.  This might 

be necessary for the type of effects we observed, as caricatures can only be defined in 

relation to the norms of a given population.  Perhaps if we had used other methods in 

which the stimuli were presented in isolation or embedded within a sample of faces 

that had different norms (e.g., other-race effects), our caricature effect would have been 

diminished or disappeared altogether.  These ambiguities point to the need for future 

research that can define the boundary conditions for our effect, so that caricatures can 

be used successfully to improve face recognition in real world settings. 

Based on results from the third perceptual experiment, described in Section 7, 

we may be tempted to infer that better reconstruction algorithms would be needed, 

such as the non-linear optimization method in Blanz and Vetter (1999).  While this may 

be the case in more general reconstruction scenarios (e.g., with real photographs), the 

reconstruction method in equations (32) and (33) is optimal (in the mean-square-error 

sense) for our study since the representation is linear in the optimization parameters 

(shape and texture) and all remaining parameters (camera and illumination) were 
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assumed known.  Thus, failure to reproduce results in Sections 4 and 5 (which used 

ground-truth 3D faces) must be attributed to factors other than the reconstruction 

procedure, and instead point in the direction of facial databases.  Specifically, extending 

the 3D face database would certainly improve the reconstruction quality, as additional 

faces would provide a more diverse pool from which to reconstruct new faces.  

Likewise, increasing the number of input images of a probe face (e.g. frontal, 3/4 and 

profile views) might help capture distinctive facial traits that are not prominent in a 

frontal view.  Facial diversity (race, gender, age) most likely plays a significant role in 

the quality of reconstruction.  Having a well-balanced database or one that specifically 

matches the characteristics of the input face (e.g. Caucasian, male, 55-60 years of age) 

might also improve reconstruction results.  Additional research is also needed to 

determine, among others, (i) the level of reconstruction accuracy that must be achieved 

to obtain perceptually realistic (as opposed to photorealistic) results, (ii) the type and 

number of facial segments (Figure 29a), maybe on a race-by-race basis or to account for 

facial asymmetries, and (iii) the types of reconstruction errors (e.g. shape vs. reflectance, 

different facial areas) that have the greatest impact on recognition performance.  

Addressing these questions is a necessary step towards the development of effective 

training tools for face recognition.  

We also evaluated whether reverse-caricatures can improve the recognition of 

specific other-race faces, i.e. a closed-world assumption.  While we believe that, with 

sufficient exposure to caricaturized other-race faces, reduction of OREs may generalize 
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to faces not seen in the familiarization phase (see Hills and Lewis 2006), this issue will 

also require further investigation.  However, in security applications where one seeks to 

improve the recognition of specific faces (i.e. those of a suspect at large), the closed-

world assumption is valid. 

Reverse-caricature effects can also be explored in the context of automatic face 

recognition.  Can similar training strategies be applied to existing face recognition 

algorithms?  For instance, caricatures may assist existing algorithms on local feature 

selection or model initialization by highlighting distinctive facial regions. 

Finally, an important extension of this research is the development of computer 

models that accounts for all the perceptual effects discussed in this dissertation.  We can 

find several models in the literature (Caldara and Abdi 2006; Haque and Cottrell 2005; 

Lewis 2004; O'Toole et al 1991; O'Toole et al 2001), but they address specific perceptual 

effects.  Lewis (2004) accounts for distinctiveness, caricature, and race effects, but the 

model fails on reverse-caricature scenarios as we highlighted in subsection 2.2.2.  

O’Toole et al (1991), Caldara and Abdi (2006), and Haque and Cottrell (2005) dealt 

specifically with other-race effects.  However, unified computational models that 

account for caricature effects, other-race effects, reverse-caricature effects and 

reversibility of the other-effects are yet to be developed.  A unified model would help 

us understand how we process and learn faces, and more importantly how can we 

devise strategies to improve our recognition performance.  Finally, this unified model 



107 

would allow us to make predictions about boundary conditions where perceptual 

effects would be valid. 
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APPENDIX A 

3DFS-100 DATASET 

The 3DFS-100 dataset was developed at the University of Freiburg in Germany based 

on data captured at the University of South Florida as part of the DARPA HumanID 

project.  The dataset contains the PCA decomposition of 100 face shapes and textures 

with full correspondence across faces.  Face shape and texture are defined in the dataset 

as in equations (A.1) and (A.2), where   is the number of principal components (in this 

dataset is 100),    are the shape coefficients,    are shape eigenvectors,    are the texture 

coefficients, and    are the texture eigenvectors.  Notice that both shape and texture 

coefficients are normalized.  The standard deviation for each coefficient is provided in 

database.  

 

              

   

   

 (A.1) 

              

   

   

 (A.2) 

 

The author would like to acknowledge Professor Sudeep Sarkar at the University of 

South Florida for providing access to this dataset. 
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APPENDIX B 

DERIVATIVE OF COST FUNCTION 

This abstract provides a derivation of the iterative optimization algorithm described in 

Blanz and Vetter (2002), namely the calculation of gradient of the input image cost 

function    by    and    coefficients in equation (B.1).  This derivation provides details 

not included in the original publication, but which were important in order to 

implement the method.  

As described in Section 3, the cost function    is defined by the sum of the 

squared differences of the input image (target) and the image rendered from the 3D 

model. 

 

                               
 

 

 

 

 (B.1) 

 

The input image       , and the rendered image from the 3D model       , are defined 

by the three color channels and pixel indices   and  . 

 

                                      
 

 (B.2) 

 

Evaluating    at the center of   randomly selected triangles results in: 
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 (B.3) 

 

Notice that      and      are the pixel indices estimated from the perspective projection 

of the selected triangles from 3D model.  Using the chain rule below, we can compute 

   

    
. We will also compute 

   

    
 similarly later on. 
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From equation (B.7), we need to solve the partial derivatives:  
 

   
                    and 

 

   
          .  Using the following definition for multivariate functions,  

 

  
        
      
      

       
  

  
 
  

  
 
  

  
 
  

  
 
  

  
 (B.8) 

 

we obtain: 
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The partial derivatives 
         

  
 and 

         

  
 are estimated using a discrete differentiation 

operation called the Sobel operator: 
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Using perspective projections (B.11) we can solve for  
     

   
 and 

     

   
 in equation (B.9) as: 

 

 

          
    

    
  

          
    

    
  

(B.11) 

 

where         is the position of the image plane,   is the camera focal length, and the   

triangles’ 3D world coordinates are defined below: 

 

                    
 
              (B.12) 

 

where        are the rotation matrices,    is the spatial shift, and     are the 

coordinates of the center of the randomly selected   triangles.      is defined as: 

 

               
  (B.13) 

 

Thus 
     

   
 is derived as follows: 

 

 
     
   

 
   
   

  
 

   
 
    

    
 (B.14) 

 

where 
   

   
  , and  

 

   
 
    

    
 is solved using the quotient rule, therefore: 
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(B.15) 

 

After some algebraic manipulations (B.16) on the perspective projection equations 

(B.11), 

 

 
    

    
 
      

 
      

    

    
 
       

 
 (B.16) 

 
     

   
 can be rewritten as: 
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Similarly, 
     

   
 can be simplified as follows: 
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The 
     

   
, 
     

   
, and 

     

   
 partial derivatives from equations (B.17) and (B.18) are 

obtained by computing the partial derivative, 
   

   
, of equation (B.12): 

 

 
   

   
 

 

   
            

 

   
   (B.19) 

 

The term 
 

   
   is equal to 0, therefore: 

 

 
   

   
       

    
   

 (B.20) 

 

The 
    

   
 factor can be obtained using the shape equation (A.1) at each selected triangle: 

 

 

    
   

 
     

   
 

 

   
           

     

   
   

    
   

                 
 
 

 
 
    
   

 
    
   

 
    
   

  

(B.21) 

 

Now, going back to equation (B.7), we need to solve the remaining derivative, 

 

   
          , to complete the 

   

   
 derivation. The rendered image   , is defined by the 

gain   , the contrast  , and the overall luminance  . 
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(B.22) 

 

Notice that         for each of the color channels.  Using (B.22), 
   

   
 is expanded as: 

 

 
   

   
      

   

   
           

   
   

      
   

   
      

   
   

   
   

   
 (B.23) 

 

The term 
   

   
 is equal to zero. Now, 

   

   
 is obtained using the Phong illumination 

equation below: 

 

                                                 
  (B.24) 

 

Where: 

             (each color channel) 

         

                                               
  defines the light direction. 

    is normal vector of the kth triangle. 

      is the viewing direction. 

    is the direction of the maximum specular reflection. 

    is the specular reflectance. 

   is the angular distribution of the specular reflection. 
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Then, 
   

   
 is written as: 
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The term 
 

   
             , then 
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   is defined as              , therefore: 
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The term 
  

   
  , and after applying the product rule, 

   

   
 is defined as: 

 

 
   
   

     
   
   

              
   
   

  (B.28) 

 

Now we need to compute 
   

   
 term in equation (B.28). Here,              where 

    
  

    
 and                       , therefore: 
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The above partial derivative is solved using the following definition: 
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Therefore: 
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Now, we compute 
    

   
 as follows: 

 

     
   

 
 

   
 
  

    
  

   
   

      
     
   

   

    
  (B.32) 

 

Using the following definition: 

 

  

  
       

 
     
  

      

      
 (B.33) 

 
    

   
 is rewritten as follows: 
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After some algebraic manipulation, and given that     
  

    
, we finally obtained: 
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Recalling that             , therefore: 

 

 
   
   

        
    
   

 (B.36) 

 

This completes 
   

   
 derivation.  Now, the partial derivative 

   

   
 is computed in similar 

fashion using (B.5): 
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but this time 
 

   
                     , therefore: 
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The only derivative that remains to solve is 
 

   
          .  Using the color contrast 

equation (B.22), 

 

 
 

   
                

   

   
           

   
   

      
   

   
      

   
   

   (B.39) 

 
   

   
 is calculated using Phong’s illumination equation: 
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The term 
 

   
                   

     and 
   

   
 can be obtained from equation (A.2): 
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therefore: 
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and we are done. 
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APPENDIX C 

MORPHABLE MODEL USER’S GUIDE 

System Requirements 

Our implementation of the morphable model software has been tested on a Pentium® 4 

with 2GHz and 2.5 GB of memory.  Table C.1 shows additional system requirements and 

dependencies.  

Table C.1. System requirement dependencies. 

Component Notes 

Video Card The morphable model implementation requires a video card 

supporting OpenGL® 2.0.  The current implementation was 

tested on nVIDIA® 6800 GS and ATI RadeonTM X1600 PRO 

cards. 

 

Microsoft® Visual Studio® OpenGL tools and libraries, and MATLAB® MEX functions 

were implemented and tested using Visual Studio® 2005 

environment. 

 

Mathworks MATLAB® The morphable model optimization code was implemented 

mostly in MATLAB.  The current implementation has been 

tested in MATLAB 2006a and 2007a versions. 

 

ActiveTcl Required for the distribution generation scripts.  Version used 

was 8.4.13.0. 

 

GLUT library This is the OpenGL Utility Toolkit required by the rendering 

tools developed as part of this distribution.  GLUT is a 

programming interface with ANSI C and FORTRAN binding 

for writing windows independent OpenGL programs.  

 

3DFS dataset Dataset containing the PCA decomposition of 100 face shapes 

and textures with full correspondence across faces.  
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Installation and build 

The following subsections describe the procedures to load the morphable model 

software into your system.  Additionally, it shows how to rebuild some of the software 

components if needed. Finally, it shows how to remove the software. 

Loading source and runtime distribution 

Insert DVD on your computer and using the MATLAB environment run 

‘installation.m’ script located in the ‘install’ directory.  The following 

shows a sample output from the installation script assuming the DVD unit is in 

‘D:’ drive. 

>> cd d:\install 

>> installation 

-------------------------------------------------------------- 

         MORPHABLE SOFTWARE INSTALLATION SCRIPT v1.00 

-------------------------------------------------------------- 

 

[CREATING TARGET] 

Creating C:\Morphable... 

Directory C:\Morphable created... 

 

[INSTALLING CORE MODULES] 

Creating C:\Morphable\matlab... 

Directory C:\Morphable\matlab created... 

Copying facefit into C:\Morphable\matlab... 

Copying html into C:\Morphable\matlab... 

Copying mat into C:\Morphable\matlab... 

Copying optimizer into C:\Morphable\matlab... 

Copying segmentation into C:\Morphable\matlab... 

Copying utils into C:\Morphable\matlab... 

Creating C:\Morphable\vstudio... 

Directory C:\Morphable\vstudio created... 

Copying 3dFaces.ncb into C:\Morphable\vstudio... 

Copying 3dFaces.sln into C:\Morphable\vstudio... 

Copying FaceRendering into C:\Morphable\vstudio... 

Copying MatrixLib into C:\Morphable\vstudio... 

Copying PcLoader into C:\Morphable\vstudio... 

Copying SharedMemory into C:\Morphable\vstudio... 

Copying facedb into C:\Morphable\vstudio... 

Copying multiprod into C:\Morphable\vstudio... 

Copying readexr into C:\Morphable\vstudio... 

Copying renderface into C:\Morphable\vstudio... 
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Copying writeexr into C:\Morphable\vstudio... 

 

[CONFIGURING CORE MODULES] 

Setting up MEX files... 

Saving data files... 

Setting up paths... 

 

-------------------------------------------------------------- 

Done! 

>> 

 

The installation script places the entire distribution in ‘C:\Morphable’ 

directory and adds the necessary search paths in MATLAB environment. 

Rebuilding C/C++ software (if needed) 

This distribution also contains the C/C++ source code for the custom MEX 

functions used the morphable model software.  If you need to recompile them 

execute the commands below in the Visual Studio 2005 command prompt.  

Please notice, this distribution comes with MEX DLLs already compiled.  These 

instructions will be required only if a new version of MATLAB is not compatible 

with the installed MEX functions. 

C:\> cd Morphable\vstudio 

C:\Morphable\vstudio> devenv 3dFaces.sln /build 

 

Microsoft (R) Visual Studio Version 8.0.50727.762. 

Copyright (C) Microsoft Corp 1984-2005. All rights reserved. 

 

-- Build started: Project: MatrixLib, Configuration: Debug Win32 -- 

     Creating library... 

     Build log was saved at 

     "file://c:\Morphable\vstudio\MatrixLib\Debug\BuildLog.htm" 

     MatrixLib - 0 error(s), 0 warning(s) 

 

-- Build started: Project: PcLoader, Configuration: Debug Win32 -- 

     Creating library... 

     Build log was saved at 

     "file://c:\Morphable\vstudio\PcLoader\Debug\BuildLog.htm" 

     PcLoader - 0 error(s), 0 warning(s) 

 

-- Build started: Project: multiprod, Configuration: Debug Win32 -- 

     Linking... 
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     Creating library Debug/multiprod.lib and object 

     Debug/multiprod.exp 

     Embedding manifest... 

     Build log was saved at 

     "file://c:\Morphable\vstudio\multiprod\Debug\BuildLog.htm" 

     multiprod - 0 error(s), 0 warning(s) 

 

-- Build started: Project: renderface, Configuration: Debug Win32 -- 

     Linking... 

     Creating library Debug/renderface.lib and object 

     Debug/renderface.exp 

     Embedding manifest... 

     Build log was saved at 

     "file://c:\Morphable\vstudio\renderface\Debug\BuildLog.htm" 

     renderface - 0 error(s), 0 warning(s) 

 

-- Build started: Project: SharedMemory, Configuration: Debug Win32 -- 

     Linking... 

     Embedding manifest... 

     Build log was saved at 

     "file://c:\Morphable\vstudio\SharedMemory\Debug\BuildLog.htm" 

     SharedMemory - 0 error(s), 0 warning(s) 

 

-- Build started: Project: FaceRendering, Configuration: Debug Win32 -- 

    Linking... 

    Embedding manifest... 

    Build log was saved at 

    "file://c:\Morphable\vstudio\FaceRendering\Debug\BuildLog.htm" 

    FaceRendering - 0 error(s), 0 warning(s) 

 

== Build: 6 succeeded, 0 failed, 0 up-to-date, 0 skipped == 

 

C:\Morphable\vstudio> 

 

 

You must copy the new ‘renderface.dll’ and ‘multiprod.dll’ 

to ‘C:\Morphable\matlab\mex’ directory if they were recompiled. 

Removing software distribution 

Insert DVD on your computer and using the MATLAB environment run 

‘cleanup.m’ script located in the ‘install’ directory.  Please close all 

windows and programs accessing any directory or file on ‘C:\Morphable’.  

The following shows a sample output from the cleanup script assuming the 

DVD unit is in ‘D:’ drive. 



140 

>> cleanup  

 

-------------------------------------------------------------- 

           MORPHABLE SOFTWARE CLEANUP SCRIPT v1.00 

-------------------------------------------------------------- 

 

[UNLOADING MEX FILES] 

Unloading multiprod... 

Unloading renderface... 

 

[REMOVING MATLAB PATHS] 

Removing C:\Morphable\matlab\facefit... 

Removing C:\Morphable\matlab\mat... 

Removing C:\Morphable\matlab\mex... 

Removing C:\Morphable\matlab\optimizer... 

Removing C:\Morphable\matlab\segmentation... 

Removing C:\Morphable\matlab\utils... 

 

[REMOVING MORPHABLE SOFTWARE] 

Deleting C:\Morphable... 

 

-------------------------------------------------------------- 

Done! 

 

>> 

High level software description 

The morphable model software implements part of methodology described in Blanz 

and Vetter (2002) and (2003) to estimate a 3D model from a single frontal image.  The 

following subsections provide a brief description of some of the main functions and 

executables of the morphable model software.  Detailed information is provided in the 

online documentation.  
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Optimizer 

Table C.2. Optimizer module core functions.  This module contains additional 

functions not listed in this table; refer to the online documentation for a full list of 

functions. 

Function Description 

derivativeCostFunction Computes the derivative of the cost function. 

 
init Morphable system and rendering parameters 

initialization.  

 
optimizer Kick off the optimization procedure. 

 
updateHessian Re-computes the Hesssian matrix using 

numerical differentiation.  

 

Face fitting 

Table C.3. The face fitting module is available as prototype.  Face fitting module 

allows the user to select 5 features from the target image, and uses those features to 

fit the average 3D model on the target image. 

Parameter Description 

testoptim Driver test script used to prototype the face 

fitting functionality. Use this script  

 
facefit Function to be used in the morphable module 

implementation.  This function is based on 

‘testoptim’ script. Integration still under 

development. 

 
getFaceFeatures Implements manual face feature selection.  It 

returns the row and column coordinates of the 

selected five features. 

 
featuresOptim Implements the cost function used by MATLAB 

Optimization Toolbox. 
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Segmentation 

This module is currently under development.  

Utils 

Table C.4. Utility functions.  The main utility functions deal with rendering and 

plots, and to load the 3DFS dataset into MATLAB.  Additional functions are 

described in the online documentation. 

Parameter Description 

buildMorphableModelDb Builds 3DFS face database and saves it as .mat 

format. 

 
getFace Projects a face and renders it using OpenGL. 

 
getImage Generates an image from a OpenGL rendered 

face. 

 
glplot Displays an OpenGL rendering. 

 

Data sources 

Table C.5. MATLAB data files used by the morphable model distribution. 

Data files Description 

morphable.mat The 3DFS dataset in a MATLAB data format.  

 
targetXX.mat Target images used for testing. ‘XX’ is the face id. The only 

face ids provided are 29, 40, and 90. 

 
fixedXX.mat Data file containing a list of 40 fixed triangles.  This file is only 

used for debugging the morphable model with random 

triangle selection disabled. ‘XX’ is the face id. The only face 

ids provided are 29, 40, and 90. 
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Online documentation 

This distribution provides online documentation for the MATLAB functions.  To access 

it, use a web browser and open ‘C:\Morphable\matlab\html\index.html’.  You 

can also use MALTAB’s ‘help’ command to access each function description. 

Tutorial 

This section describes a walkthrough highlighting some of the functionalities of our 

morphable model implementation.  It briefly describes the initialization process, how to 

estimate a 3D model from an image, and finally how to run the face fitting prototype. 

Initialization 

Before kicking off the optimization procedure, one must run the initialization 

script to set system and rendering parameters, and load up the 3DFS dataset.  

Run ‘init.m’ which is located in ‘C:\Morphable\matlab\optimizer’ on 

the MATLAB environment.  The script takes a few minutes and should return to 

prompt without feedback. Several variables will be created in the workspace.  

The script is preconfigured to with a target image loaded in variable ‘I’.  Figure  

shows this target image. 
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Figure C.1. Target Image preloaded by the initialization script. This image will be 

passed to the optimizer to perform a 3D face reconstruction. This face corresponds to 

face id #40 in the 3DFS dataset. 

 

There are two additional target images that come with the software, 

which correspond to face id #29 and #90.  One can temporarily change the id by 

setting the ‘faceId’ variable in the MATLAB workspace or permanently on 

‘init.m’ to the appropriate number.  Please notice that the face id is simply 

the index in MATLAB corresponding to a particular sample in the 3DFS dataset.  

Also notice that #40 corresponds to a Caucasian male, #29 is a Caucasian female, 

and #90 is a East Asian male. 
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Figure C.2. 3D reconstruction obtained at the 200,000th iteration. This image was 

generated using ‘glplot’ function which is part of ‘utils’ module. 

 

Optimization 

After successfully running the initialization script, start the optimization process 

with a maximum number of iterations set to 116 by executing the following 

MATLAB command: 

 
[a b c sa sb] = optimizer(parameters, model, I,  

zeros(99,1), zeros(99,1), 0, 1); 

 

 
16 We are setting the number of iteration to 1 just to test the installation and initialization. 
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where ‘a’ is the estimated alpha coefficients, ‘b’ the estimated beta coefficients, 

‘c’ is the cost history, ‘sa’ is the history of the alpha parameters, and ‘sb’ is the 

history of the beta coefficients.  Refer to the online documentation for more 

details on the input parameters of the ‘optimizer’ function. 

Figure C.2 shows a 3D reconstruction of the target image (see Figure C.1) 

when the ‘optimizer’ function was set to run for 200,000 iterations.  The 3D 

rendering was generated using the following commands: 

 

rFace = getFace(sa(:,200000), ... 

                model.shapeComponents, ... 

                model.shapeStd, ... 

                model.shapeMean, ... 

                sb(:,200000), ... 

                model.textureComponents, ... 

                model.textureStd, ... 

                model.textureMean, ... 

                model.triangles, ... 

                model.adjacencies); 

 

glplot(rFace); 

 

Face fitting 

This prototype module is not fully integrated with the morphable software, but 

it can be executed as a stand-alone application.  This module contains a test 

script that exercises this prototype functionality.  To start up this test script, 

execute the following command: 

 

testoptim 
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Figure C.3. Face fitting prototype. a) shows the initial rotation and spatial shift of the 

average 3D face model. b) shows the target image. c) shows the location and the 

sequence for the facial feature selection.  Finally, d) shows the result image after fitting 

the 3D model by optimizing the rigid transformations. 

 

The script displays a target image (Figure C.3b) to which we want to fit the 

average 3D face model (Figure C.3a).  On the target image, select 5 features by 

pressing a single left click on the following facial point in sequence: (i) outside 

corner of the model’s right eye, (ii) outside corner of the left eye, (iii) the tip of 

the nose, (iv) the mouth right corner, and (v) the mouth left corner (Figure C.3c). 
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Finally, the optimizer renders the resulting model (Figure C.3d).  The 

current idea is to use this face fitting module implementation in the morphable 

model’s ‘optimizer’ function.  The optimization process could schedule a 

fitting process after a configurable number of iterations. 
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