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ABSTRACT 

 

Circuit Optimization Using Efficient Parallel Pattern Search.  

(May 2010) 

Srinath Sudharshan Narasimhan, B.E., College of Engineering Guindy, Anna University 

Chair of Advisory Committee: Dr. Peng Li 

 

Circuit optimization is extremely important in order to design today’s high performance 

integrated circuits. As systems become more and more complex, traditional optimization 

techniques are no longer viable due to the complex and simulation intensive nature of 

the optimization problem. Two examples of such problems include clock mesh skew 

reduction and optimization of large analog systems, for example Phase locked loops. 

Mesh-based clock distribution has been employed in many high-performance 

microprocessor designs due to its favorable properties such as low clock skew and 

robustness. However, such clock distributions can become quite complex and may 

consist of hundreds of nonlinear drivers strongly coupled via a large passive network. 

While the simulation of clock meshes is already very time consuming, tuning such 

networks under tight performance constraints is an even daunting task. Same is the case 

with the phase locked loop. Being composed of multiple individual analog blocks, it is 

an extremely challenging task to optimize the entire system considering all block level 

trade-offs.  
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In this work, we address these two challenging optimization problems i.e.; clock mesh 

skew optimization and PLL locking time reduction. The expensive objective function 

evaluations and difficulty in getting explicit sensitivity information make these problems 

intractable to standard optimization methods. We propose to explore the recently 

developed asynchronous parallel pattern search (APPS) method for efficient driver size 

tuning. While being a search-based method, APPS not only provides the desirable 

derivative-free optimization capability, but also is amenable to parallelization and 

possesses appealing theoretically rigorous convergence properties.  

 

In this work it is shown how such a method can lead to powerful parallel optimization of 

these complex problems with significant runtime and quality advantages over the 

traditional sequential quadratic programming (SQP) method. It is also shown how 

design-specific properties and speeding-up techniques can be exploited to make the 

optimization even more efficient while maintaining the convergence of APPS in a 

practical sense. In addition, the optimization technique is further enhanced by 

introducing the feature to handle non-linear constraints through the use of penalty 

functions. The enhanced method is used for optimizing phase locked loops at the system 

level. 
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CHAPTER I 

INTRODUCTION 

 

There are many kinds of circuit optimization problems. Some of them can be solved by 

traditional optimization techniques like SQP, Linear programming, etc since there exist 

closed form expressions for the objective function of these problems. But there are some 

circuit optimization problems which are so complex that it is impossible to obtain a 

closed form expression for the objective function. The objective function can only be 

evaluated through complex and time consuming simulations for those circuits. In such 

cases, it is necessary to look at non-traditional optimization techniques which do not 

require any closed form expression for the objective function as input. In most cases, 

such techniques are heuristics which may or may not converge to an optimum solution. 

Otherwise, it might be a traditional technique but the derivative information is computed 

internally through multiple time consuming simulations. It thus makes sense to look at 

optimization techniques which are guaranteed to converge but do not need to waste time 

on computing the derivative information either. This work mainly looks at such an 

optimization technique called Asynchronous Parallel Pattern Search (APPS). It has the 

advantage of being derivative free and having theoretically rigorous convergence 

properties apart from being inherently parallel. Two complex circuit optimization 

problems which have been very difficult to solve using traditional techniques are 

targeted in this work – clock mesh skew optimization and PLL locking time reduction. 

____________ 

The journal model is IEEE Transactions on Automatic Control. 
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Mesh based clock distribution networks have been used in high performance 

microprocessor designs as the global clock distribution strategy [1], [2] because of their 

low local skew and immunity to on chip variation. A three dimensional view of the mesh 

based clock network is illustrated in Fig. 1. In Fig. 1, a central chip buffer drives a tree 

whose leaves are the sector buffers, also known as clock drivers. Each sector buffer 

drives a lower level tree which is connected to the grid. Therefore, the grid is driven by 

multiple trees whose roots are sector buffers. The wiring redundancy of the grid not only 

enhances design robustness but also has the effect of smoothing out delay differences 

between clock sink nodes, which helps minimize clock skew. 

 

Despite their favorable properties, mesh-based clock distributions present significant 

CAD challenges. An accurate clock mesh model considering full coupling effects with 

power/ground network may consist of up to millions of linear elements and up to 

hundreds of clock drivers. Simulating the circuit model alone could take up to hours of 

runtime. Tuning/optimizing such networks at a desirable accuracy level requires even 

longer time since multiple simulations are needed during the optimization. Compared to 

many other areas of physical design automation, clock mesh optimization has been 

researched to a much less extent. To alleviate design complexity, in [1], a divide-and-

conquer approach is employed to tune the clock distribution network. First, the grid is 

cut into smaller independent linear networks. Each smaller linear network is then 

optimized in parallel. To compensate for the loss of accuracy induced by cutting the 

grid, capacitive loads are smoothed or spread out on the grid. 
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Figure 1: Mesh Based Clock Distribution Network 

 

 

Although the efficiency of the optimization can be improved by this approach, there is 

no systematic way of controlling the error. In [3], very fast combinatorial techniques are 

proposed for clock mesh optimizations. These techniques are heuristics in nature. While 

previous work about the clock mesh optimization focus on the clock driver placement or 

wire sizing, it appears that sizing the clock drivers is also important since for very non-

uniform clock load distribution, if changing the clock driver placement is impossible due 

to blockage or other constraints, changing the sizes of clock drivers can achieve the same 

or even better results. Moreover the number of clock mesh drivers is relatively less 

compared to the size of the mesh. And tuning the tree driving the mesh is a lot easier if 

only the sizes of the drivers are changed and not the location. However, significant 

challenges arise from the need to size a potentially large set of nonlinear clock drivers 
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that are coupled through the large mesh network. To this end, the choice of optimization 

methods is critical. 

 

Similar problems exist for phase locked loop optimization. Being composed of many 

smaller subsystems, the performance measures of the PLL are complex functions of the 

block level parameters. Again it is impossible to obtain a closed form relationship 

between the block level parameters and the performance measure of the overall system. 

The performance objective has to be computed through complex time consuming 

simulations. Most of the time, a hierarchical approach is employed in optimizing such 

large systems. The block level performance trade-offs or pareto fronts are first obtained 

before-hand. The pareto fronts represent the best block level performances. The entire 

system is then optimized across these block level performances. In other words, the 

block level performance measures are now the variables in the optimization. Once the 

best block level performances measures are determined from the system optimization, 

they are later translated into circuit level parameters. Still, it is an extremely challenging 

problem which cannot be solved by traditional optimization techniques. 

 

In many fields of science and engineering, there are a lot of optimization problems 

similar to the clock mesh optimization problem and PLL system level optimization 

characterized by objective function evaluations through expensive computer simulations 

and lack of explicit derivative information. Standard continuous optimization methods 

such as sequential quadratic programming method have many disadvantages in solving 
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this kind of optimization problems. Due to the lack of explicit derivative information, 

continuous optimization methods compute the derivative internally by using inefficient 

numerical differentiation. Furthermore, these methods usually have small incremental 

step sizes which slow down the progress. On the other hand, simulated annealing 

converges to good final solution given sufficiently long time. And it has been 

parallelized for CAD problems before [4]. However, the runtime required by simulated 

annealing to reach a good final solution is often considered to be extreme long, and is 

thus impractical. 

 

This work proposes to use the recent asynchronous parallel pattern search (APPS) 

method [5], [6] for the clock driver sizing problem. To the best of our knowledge, this is 

the first attempt to use APPS for circuit optimization. Based on a manager worker 

paradigm, the APPS method spawns off a set of trial points from the predefined search 

directions. These trial points are sent by the manager processor to available worker 

processors for objective function value evaluation via direct simulation. Then, in an 

asynchronous fashion, evaluated trial points (not necessarily all trial points) are collected 

and checked for objective function value. Depending upon completed objective function 

evaluations, new trial points are generated or the search step length is altered. The 

process repeats till convergence. The APPS method has many advantages over the 

aforementioned optimization methods in solving the two specific optimization problems 

– clock mesh skew reduction and PLL system level optimization. First, no derivative 

information is needed in APPS. Furthermore, the pattern search based approach is fully 
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parallelizable. In our experiments, we observed that running the APPS method in 

parallel mode gives close to linear speedup over the serial mode. It is noteworthy that as 

a search-based method, APPS has an appealing theoretical convergence property. Under 

certain mild conditions, APPS is guaranteed to converge to a local optimum [5], [6] and 

hence it is well suited for tuning of clock driver sizes. 

 

Although the original APPS method is significantly more efficient compared to other 

alternative optimization methods, two domain-specific enhancements are proposed to 

further extend its applicability to the challenging clock mesh optimization task. By 

exploring specific clock mesh circuit topologies, efficient mesh modeling and simulation 

techniques are developed to provide quick evaluation of the objective function. The 

quick estimation is employed to pre-screen and preorder trial points before committing 

to much more expensive full simulation based evaluations. Once the estimated function 

values are obtained for all new trial points, they are ranked by their estimated function 

values. Trial points with smallest estimated function values are sent to available 

processors for full simulations first. In this way, the modified APPS method can find a 

successful trial point much faster every iteration thus speeding up the entire optimization 

procedure. The second enhancement is adding additional search directions. By exploring 

the theoretical convergence properties of APPS, it is found that one or more additional 

promising search directions can be introduced that can potentially accelerate the 

optimization process. These additional search directions are estimated by the proposed 

efficient modeling and simulation techniques. These directions are subjected to mild 
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convergence requirements such that they can be aggressively estimated without 

interfering with the theoretical APPS convergence. Experimental results show that for 

the clock driver sizing problem, the proposed method significantly outperform the 

traditional sequential quadratic programming (SQP) based method [7]. It achieves much 

better final solution in less time compared with the SQP method. Furthermore, the 

application-specific enhancements can achieve more than two times speedup over the 

original APPS method for a set of clock meshes.  

 

In the case of the PLL system level optimization, there are non-linear constraints 

enforced by the block-level performance trade-offs. The default APPS package does not 

have the feature to handle non-linear constraints. In order to solve the PLL optimization 

problem, we can use some techniques to make APPS handle these constraints. The use 

of penalty functions is one such technique which may be employed to make APPS 

handle non-linear constraints. It transfers the non-linear constraint into the objective 

function through a penalty parameter transforming the original non-linearly constrained 

probably into a linearly constrained one. A series of such linearly constrained problems 

are sequentially solved with progressively increasing penalty parameter values. The 

method progresses in this fashion until the constraints do not violate.  

  

The rest of the thesis is organized as follows. In Chapter II, the basic algorithm of APPS 

is introduced. In Chapters III and IV, the two proposed improvements to the APPS 

algorithm are explained. The results of applying APPS to clock mesh optimization are 
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presented in Chapter V. In Chapters VI and VII, techniques for handling non-linear 

constraints are introduced followed by the enhanced APPS optimization algorithm with 

the non-linear constraint handling feature. In Chapter VIII, the phase locked loop and its 

optimization technique is explained. In Chapter IX, the PLL optimization results are 

presented. The thesis is concluded in Chapter X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

CHAPTER II 

ASYNCHRONOUS PARALLEL PATTERN SEARCH 

 

APPS is a derivative free search based optimization method which is best suited for 

solving problems whose objective functions are evaluated by complex simulations and 

also lack explicit derivative information [5], [6]. APPS solves unconstrained, bound or 

linearly constrained nonlinear optimization problems. The bound constrained problem is 

given by  

min𝑥∈𝑅𝑛 𝑓 𝑥                                                            (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙 ≤ 𝑥 ≤ 𝑢 

 

Here 𝑓 ∶  𝑅𝑛 → 𝑅 , 𝑥 ∈  𝑅𝑛 , 𝑙 is a size n vector with entries in 𝑅 ∪ −∞ and 𝑢 is a size 

n vector with entries in 𝑅 ∪  {+∞}. APPS can also handle linear constraints.  

 

A. Algorithm flow 

The complete algorithm is described in Algorithm 1. Notations used in Algorithm 1 are 

explained as follows: 𝐷𝑘  =   𝐷𝑘
 1 

, 𝐷𝑘
 2 

,… , 𝐷𝑘

 𝑝𝑘    is the set of search directions at 

iteration k, superscripts denote the direction index, which ranges from 1 to 𝑝𝑘  at iteration 

k. ∆𝑘
(𝑖)

 the step length along the 𝑖𝑡 direction. 𝐴𝑘  contains the indices of search 

directions that have an associated trial point in the evaluation queue at the start of 

iteration k, it may be reset or modified in Step 3 or 4. 𝐴𝑘  is also called the  “active” set. 
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𝑞𝑚𝑎𝑥  is the max size of the evaluation queue. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏  𝐀𝐬𝐲𝐧𝐜𝐡𝐫𝐨𝐧𝐨𝐮𝐬 𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 𝐬𝐞𝐚𝐫𝐜𝐡 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦                                                         

 

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧: 
Choose initial solution 𝑥0 
Choose initial step length  Δ0  and step length tolerance Δtol  . 
Choose initial search directions:   ±e1 , ±e2 ,… , ±en . 
𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: For 𝑘 = 0,1,… 
1: Generate new trial points: 

     𝑋𝑘 =  𝑥𝑘 +  Δ𝑘
 𝑖 

𝑑𝑘
 𝑖 

∶ 1 ≤ 𝑖 ≤ 𝑝𝑘 , 𝑖 ∉ 𝐴𝑘, and Δ𝑘
 𝑖 

>  Δ𝑡𝑜𝑙  .          

     Sent all trial points in 𝑋𝑘  to the evaluation queue. 

     Set Ak+1 =  𝑖: Δk
 i <  Δtol  . 

2: Collect a nonempty set of evaluated points 𝑌𝑘 .  If ∃𝑦𝑘 ∈ 𝑌𝑘  such that 𝑦𝑘  satisfies the sufficient  
    decrease condition, then go to Step 3; else go to Step 4. 

3: The iteration is successful. 
     Set 𝑥𝑘+1 = 𝑦𝑘 . 
     Choose new search directions 𝐷𝑘+1 . 

     Set Δ𝑘+1
 𝑖 =  Δ   𝑓𝑜𝑟 𝑖 = 1,… ,𝑝𝑘+1where Δ  is the step length that produced 𝑦𝑘 . 

     Reset 𝐴𝑘+1 =  ∅. 
     Prune the evaluation queue to  𝑞𝑚𝑎𝑥 − 𝑝𝑘+1 or fewer entries. 
     Go to Step 1. 
4: The iteration is unsuccessful. 
     Set 𝑥𝑘+1 =  𝑥𝑘 . 
     Set 𝐷𝑘+1 =  𝐷𝑘 . 
     Let 𝐼𝑘 =  direction 𝑦 : 𝑦 ∈ 𝑌𝑘  and parent 𝑦 =  𝑥𝑘   i. e, directions of evaluated trial points  
    whose parent is 𝑥𝑘 . 
     Update 𝐴𝑘+1 ← 𝐴𝑘+1\𝐼𝑘 , where 𝐴𝑘+1  is defined in Step 1. 

     For 𝑖 = 1,… . . ,𝑝𝑘+1: 𝑖𝑓 𝑖 ∈ 𝐼𝑘 , set Δ𝑘+1
(𝑖)

= 0.5Δ𝑘
(𝑖)

; else if 𝑖 ∉ 𝐼𝑘 , set Δ𝑘+1
(𝑖)

=  Δ𝑘
(𝑖)

 

     If Δ𝑘+1
 𝑖 <  Δtol for 𝑖 = 1, … ,𝑝𝑘+1 , terminate. Else, go to Step 1. 

 

                                                                                                                                                                                          
 

 

During the initialization phase, the user provides the initial trial point 𝑥0, step length ∆0 

and search directions 𝐷0. The algorithm generates a set of trial points 𝑋𝑘  along the set of 

search directions to begin with. The search directions should satisfy a few conditions in 

order to guarantee the convergence of the algorithm. Firstly, they should positively span 

𝑅𝑛 , where 𝑛 is the number of variables and their cosine measure should be uniformly 
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bounded. Secondly, they should be uniformly bounded. In the original implementation 

of APPS [5], the search directions are only along axial directions. This choice of search 

directions satisfies the above two conditions. APPS has a manager-worker paradigm and 

uses MPI to manage the parallel tasks. There is a single manager processor controlling 

the optimization flow while worker processors are doing objective function evaluations. 

At the beginning of every iteration, once the trial points are generated they are sent by 

the manager processor to the evaluation queue to be evaluated. Trial points are evaluated 

in parallel by worker processors. In the synchronous PPS method, the algorithm waits 

for all the trial points to be evaluated. On the other hand, in APPS, the algorithm waits 

for only a subset of trial points 𝑌𝑘  to be evaluated. If there is a successful trial point 

among this subset, there is no need to wait for the rest of the trial points to be evaluated 

thus saving time. The asynchronous behavior of the APPS method makes it more 

efficient than the synchronous pattern search because no synchronization is needed at the 

end of each iteration which avoids waste of computing resources in the case of uneven 

computing power or task load distribution among processors. 

 

A successful trial point is judged based on either the simple decrease condition or 

sufficient decrease condition. For the simple decrease condition, a successful trial point 

only needs to give smaller objective function value than the current best point. For the 

sufficient decrease condition, a successful trial point should be lower than the current 

best point by a certain margin set by a forcing function 𝜌 [5]. 
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The sufficient decrease condition relaxes the convergence conditions on search 

directions. Among the subset of evaluated trial points, if there exists one trial point 

which minimizes the objective function value by satisfying the sufficient decrease 

condition, the current iteration is successful and this successful trial point is chosen as 

the starting point for the next iteration. The successful trial point will be used to generate 

new trial points around it in the next iteration with the same step length with which it 

was generated. Any or all trial points still in the evaluation queue waiting to be 

simulated are pruned so that the number of trial points in the evaluation queue is no 

more than the maximum queue limit. If no evaluated trial point satisfies the sufficient 

decrease condition, the current iteration is unsuccessful and starting point for the next 

iteration is unchanged. If the parent of an evaluated unsuccessful trial point is from an 

earlier iteration, such trial point is discarded. 

 

The step size is reduced by half along directions corresponding to other evaluated and 

unsuccessful trial points. New trial points along these directions with the reduced step 

length are generated in the next iteration. No new trial points will be generated along 

directions for which a trial point is still in the evaluation queue. 

 

The algorithm proceeds in this fashion until when all directions have step length smaller 

than the step length tolerance ∆𝑡𝑜𝑙 .  Fig. 2 is an illustrative example of APPS for a 2 

dimensional case. The number of worker processors is assumed to be three. In the first 

iteration, we begin with an initial point and generate four trial points along the four axial 
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directions. Only two of those four points get evaluated in iteration one. Since there is a 

trial point which provides sufficient decrease of the objective value, it becomes the 

starting point of iteration 2. In the second iteration, four more points are generated. 

Unlike the previous iteration, we find that no evaluated trial point decreases the 

objective function value. Hence, the unsuccessful direction from the current iteration is 

step reduced and re-evaluated in iteration 3. 

 

 

Figure 2: APPS Illustration 
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CHAPTER III 

QUICK ESTIMATION 

 

This chapter and the next chapter focus mainly on techniques to speed up APPS. While 

the techniques basically can be applied to any kind of problem for which APPS may be 

employed, they also make use of some domain specific knowledge. The following two 

chapters explain the two proposed enhancements to APPS in the context of clock mesh 

optimization. 

  

For the clock driver sizing problem, since the objective is to minimize clock skew, we 

define 𝑓(𝑥) as a performance metric for clock skew: 

    𝑓 𝑥 =   Tj −  μ 
2

𝑗 ∈𝑆                                     (2) 

where  𝑥 is the vector containing the sizes of all clock drivers, 𝑇𝑖 is the clock arrival 

time at sink node 𝑗,  𝑆 is the set contains all sink nodes, 𝜇 = ( 𝑇𝑗 )𝑗 ∈𝑆 / 𝑆  is the 

average of all 𝑇𝑠. The purpose of the optimization is to find an optimal set of clock 

driver sizes to minimize 𝑓(𝑥).  Since there are only axial search directions in the original 

APPS method, this means each direction either sizes up or down only one clock driver. 

Apart from providing the initial clock driver sizes, we also provide an initial step length 

∆0. A large initial step length will result in large change in driver sizes. For the purpose 

of fine local tuning, it is better to have well controlled initial step size. 
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A. Purpose of quick estimation 

In the original asynchronous parallel pattern search (APPS) method [5], once a set of 

trial points are generated at the beginning of an iteration they are sent out by the master 

processor to available worker processors for the cost function value evaluation. The 

sequence of the trial points being sent out to worker processors is random. So the master 

processor does not control which trial point will be evaluated first and which trial point 

will be evaluated later. In the clock driver sizing problem, in order to evaluate the 

objective function 𝑓(𝑥) for a trial point 𝑥′, we have to do an accurate transient 

simulation for the entire clock mesh using driver sizes in the vector 𝑥′. The transient 

simulation of the clock mesh is the most time consuming part in the entire optimization 

flow. There are some disadvantages with the above process. First of all some trial points 

or most of the trial points in an iteration cannot satisfy the sufficient decrease condition. 

Therefore, it is worthless to spend processor resources and time on these “bad” points. 

Second, for trial points which satisfy the sufficient decrease condition, some of them are 

better than others. In other words, some trial points may give larger objective function 

value decrease than others. But the original optimization flow cannot identify those 

better points since the order in which the trial points are evaluated is random. However, 

if we can identify a smaller set of good trial points before we commit processor 

resources to do costly evaluation for all trial points, we can find a successful trial point 

much faster in an iteration, thereby making the entire optimization flow faster. 

Identifying the smaller set of good trial points should be done quickly, otherwise this 

extra step may slow down the entire optimization flow. We propose to use a quick 
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estimation method for this step. Before we run the accurate simulation, all trial points are 

going through a quick estimation step. This quick estimation step is like a “virtual 

evaluation” step in which we estimate the objective function value for all trial points 

quickly. After the estimated objective function value for all trial points are obtained, we 

sort them. Trial points with smaller estimated objective function values will be placed 

before trial points with larger estimated objective function values in the evaluation 

queue. So, trial points will be sent to available worker processors in the ascending order 

of the estimated objective function value. In this way, we make sure we always evaluate 

potentially successful points are given preference over the other trial points, and we 

always evaluate potentially “better” trial points first. Since the original APPS method 

only has axial search directions, we need to evaluate large number of trial points quickly 

and still capture the effect of individual gate change. Since we rank trial points after 

quick estimation, capturing the relative difference in the objective function value 

between trial points is important. And after the quick estimation step, we pick the top 10 

or 20 with the smallest estimated objective function values instead of only 1 trial points 

for the accurate evaluation. In this way, despite the fact that the estimated objective 

function values for those top 10 or 20 points have some error, the chance that the best 

trial point is among them is very high.  
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B. Procedure of quick estimation 

As explained in the beginning of this chapter, the quick estimation is a general technique 

which can be applied to any kind of optimization problem which can solved using APPS. 

But what is important is the fact that we need to make use of critical domain specific 

knowledge to realize it. This section mainly explains the quick estimation techniques 

which are used for the clock driver sizing problem. 

 

The quick estimation method is similar to the driver merging method and harmonic-

weighted model order reduction method proposed in [8]. For fast clock mesh simulation, 

we want to use model order reduction to reduce the size of the linear mesh. A multi-

input multi-output (MIMO) passive interconnect network can be described using the 

following circuit equations  

 

𝐶 𝑑𝑥

𝑑𝑡
+  𝐺𝑥 = 𝐵𝑢, 𝑦 =  𝐿𝑇𝑥                                             (3) 

where 𝐺, 𝐶 ∈  𝑅𝑛𝑥𝑛  describe the resistive and energy storage elements in the circuit, 

𝑢 ∈  𝑅𝑚  is the input vector, 𝑥 ∈  𝑅𝑛  is the vector of unknown voltages and currents, 

and 𝐵,𝐿 ∈  𝑅𝑛𝑥𝑚  are the input and output matrices, respectively. 

 

1. Driver merging  

The widely used passive model reduction algorithm PRIMA [9] generates a reduced 

order model of (3) by computing an ortho-normal basis 𝑉 of the Krylov subspace 
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spanned by 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝑅, 𝐴𝑅,𝐴2𝑅,…  }, where 𝐴 ≡  −𝐺−1𝐶 and 𝑅 ≡  𝐺−1𝐵, and 𝐴𝑖𝑅 is 

the 𝑖𝑡 order block transfer function moment. 

 

The reduced order model is given by a set of system matrices of a smaller dimension 

𝐺 = 𝑉𝑇𝐺𝑉, 𝐶 = 𝑉𝑇𝐶𝑉, 𝐵 = 𝑉𝑇𝐵, 𝐿 = 𝑉𝑇𝐿 

where the order of the reduced order model is determined by the column dimension of 𝑉 

denoted as 𝑞. The bottleneck in the standard model order reduction is the large number 

of ports of the linear part. Assuming a clock mesh has 50 clock drivers and 20 moments 

are matched for each driver port, then a reduced order model with size 𝑞 = 1000 will be 

computed. The factorization cost of such dense model is 𝑂(10003). The generation and 

simulation of such a dense reduced order model can be even more time-consuming than 

simulation of the original clock mesh. This is why we need to aggressively reduce the 

number of ports of the linear part of the clock mesh by using the driver merging method. 

After the number of drivers is drastically reduced, we can then apply the harmonic 

weighted model order reduction [8] to simulate the simplified clock mesh. As a result, 

two orders of magnitude of speedup and certain level of accuracy are achieved by the 

quick estimation routine. The driver merging is done by exploiting the locality in the 

clock mesh. In the driver merging step, the modified driver is retained as is so that the 

effect of its size change is captured. All the other drivers are merged into less number of 

super drivers according to their geometric locations on the clock mesh. For example, if 5 

drivers are close together, we merge them into one super driver whose size is the sum of 

all 5 drivers. The geometrical location of this super driver is the weighted center location 
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of those 5 drivers. More specifically, if the sizes of all 5 drivers are the same, the super 

driver will be placed in their geometric center. If their sizes are unequal, the super driver 

will be placed closer to larger drivers to reflect their relatively larger influence in the 

original clock mesh. The driver merging scheme is formulated in (5). In (5), S is the size 

of a driver; L is the location of a driver, which can be represented by its coordinates in 

the X-Y coordinate system. Driver j through driver k are merged into a new driver with 

size 𝑆𝑛𝑒𝑤  and location𝐿𝑛𝑒𝑤 . 

𝑆𝑛𝑒𝑤  =   𝑆𝑖
𝑘
𝑖=𝑗                                                             (4) 

𝐿𝑛𝑒𝑤 =   𝑆𝑖/𝑆𝑛𝑒𝑤
𝑘
𝑖=𝑗 𝐿𝑖                                               (5) 

 

This driver merging approach is illustrated in Fig 3. Our objectives are met: first, 

simulating the simplified clock mesh is much faster; second, the effect of individual gate 

change is kept. 
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Figure 3: Driver Merging When Modified Clock Driver Is Retained 

 

 

Another more aggressive driver merging approach can also be used. In this approach, 

there will be only one merging scheme for one clock mesh no matter which driver is 

modified. This approach is illustrated in Fig. 4. The effect of individual gate change can 

still be kept. For example, if two adjacent drivers are modified in two trial points 

respectively, since their sizes are different, the location of super driver into which these 

two drivers are merged will be different in these two cases. So the relative difference 

between trial points is captured. In the driver merging, there is a tradeoff between the 

speedup and accuracy. If there are more super drivers in the resulting simplified clock 

mesh, the accuracy of the estimated objective function value will be better, but the 

runtime of simulating the simplified clock mesh will be longer. On the other hand, if 

lesser number of super drivers are kept in the resulting simplified clock mesh, accuracy 

will become worse and runtime will become shorter. 
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Figure 4: Driver Merging When Modified Clock Driver Is Not Retained 

 

2.  Harmonic weighted model order reduction  

Once the number of drivers is drastically reduced by the driver merging method, we can 

use harmonic weighted model order reduction to simulate the resulting simplified clock 

mesh. Since the clock signal changes periodically with a known frequency 𝑓0 in the 

clock mesh, a model order reduction technique where the frequency responses at a set of 

harmonic frequencies are matched would be better than the generic model order 

reduction technique PRIMA where frequency responses of the network over a 

continuous frequency range are matched. In the harmonic weighted model order 

reduction, a multi-point expansion based model order reduction where the transfer 

functions at each harmonic (corresponding to the expansion point 𝑠 =  𝑗2𝜋𝑘𝑓0) are 

computed and included into the projection matrix V to facilitate projection-based model 

order reduction. It can be shown that the resulting model will match the system transfer 
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functions at all these harmonic frequencies considered [10]. Transfer function vectors at 

these harmonic frequencies can be computed by building SIMO (single input multiple 

output) based model on a per port basis. Such choice leads to only one LU factorization 

of the system conductance matrix G. Since each harmonic frequency has different 

impact on the time-domain performance of the clock mesh, we apply weights on transfer 

function at different frequencies to reflect their relative important. This leads to further 

reduction of the size of the reduced order model. The entire harmonic weighted model 

order reduction algorithm is shown in Algorithm 2. The entire quick estimation step is 

illustrated in Fig. 5. “TFs: port i” in Fig. 5 should be interpreted as contributions from 

transfer functions at port i instead of the actual transfer functions at port i since there will 

be weighting and SVD based compression applied on transfer functions. Fig. 6 shows 

the comparison of waveforms computed by the quick estimation routine and the accurate 

transient simulation. The starting point of an iteration and a trial point generated from it 

are evaluated by both quick estimation routine and accurate transient simulation. 

 

The trial point has single clock driver change. We can see that quick estimation routine 

captures the effect of single driver change very well. More experimental results for the 

quick estimation method are included in results section. 

 

An important feature of this enhancement is that the quick estimation procedure need not 

be accurate or physically relevant. For example, the clock mesh drivers are physically 

not just a single buffer rather each driver is usually realized by a tree of buffers. So, they 
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are very bulky circuits. In such a case it is physically impossible to merge all these bulky 

drivers into one super driver. But that is not a cause for concern since for quick 

estimation the circuit does not have to be physically relevant but should be good enough 

for a quick approximation. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝐇𝐚𝐫𝐦𝐨𝐧𝐢𝐜 − 𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 𝐨𝐫𝐝𝐞𝐫 𝐫𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧                          

 
𝐈𝐧𝐩𝐮𝐭: Full Model:𝐺,𝐶 ,𝐵, 𝐿: fundamental frequency 𝑓0 , Control factor:𝜅, 
Reduced order model size:𝑆𝑅  
𝐎𝐮𝐭𝐩𝐮𝐭: Reduced order model: 𝐺 ,𝐶 , 𝐵 , 𝐿  

 
1: Compute weight 𝑊𝑘  for each harmonic frequency. 
2:𝑉 ←      . 
3:𝐅𝐨𝐫 each input 𝑖 𝐝𝐨 
4:       Compute the transfer function at dc:𝑉𝑖 ← 𝑇𝐹 0, 𝑖 . 
5:       𝐅𝐨𝐫 each harmonic 𝑘, 𝑘 = 1,… , 𝑁𝐝𝐨 
6:             Compute the transfer function:𝑇𝐹 𝑘, 𝑖 . 
7:             𝑉𝑖  ←  𝑉𝑖 ,𝑅𝑒 𝑇𝐹 𝑘, 𝑖  , 𝐼𝑚 𝑇𝐹 𝑘, 𝑖   . 
8:       𝐄𝐧𝐝 𝐟𝐨𝐫 
9:       Normalize each column in 𝑉𝑖and multiply each column using the  
           corresponding weight 𝑊𝑘 . 
10:     Perform SVD on the weighted 𝑉𝑖  matrix:𝑉𝑖 ,𝑤 = 𝑃𝑖Σ𝑖𝑄𝑖

𝑇 . 

11:     Keep the first 𝜅 dominant singular vectors in 𝑃𝑖 . 
V ← [𝑉  𝑝𝑖 , 1, … ,𝑝𝑖 , 𝜅 ]. 
12:𝐄𝐧𝐝 𝐟𝐨𝐫 
13: Perform SVD on 𝑉:𝑉 = 𝑃𝛴𝑄𝑇  
14: Keep the first SRdominant singular vectors 𝑋 of 𝑃 

𝑋 =  𝑝1, … ,𝑃𝑆𝑅
  for model reduction: 

𝐺 = 𝑋𝑇𝐺𝑋, 𝐶 = 𝑋𝑇𝐶𝑋, 𝐵 = 𝑋𝑇𝐵,𝐿 = 𝑋𝑇𝐿 
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Figure 5: Quick Estimation Flow 
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CHAPTER IV 

ADDITIONAL SEARCH DIRECTIONS 

 

In the APPS method [6], search directions 𝐷𝑘  are the union of two subsets 𝐺𝑘  and 𝐻𝑘 . 

The subset 𝐺𝑘  is the core set of search directions and the subset 𝐻𝑘  is a possibly empty 

set of additional search directions which might accelerate the search. 𝐺𝑘  is the key to the 

convergence analysis and must satisfy Condition 1 for the bound constrained 

optimization problem defined as  

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1.𝐹𝑜𝑟 𝑎𝑙𝑙 𝑘,𝐺𝑘 =  ±𝑒1, ±𝑒2,… , ±𝑒𝑛   

 

The set of additional directions 𝐻𝑘  is subject to different convergence conditions under 

different decrease conditions. If simple decrease condition is used, an additional 

condition is required to ensure 𝐻𝑘  does not interfere with convergence. If sufficient 

decrease condition is used, the additional condition is not required while Condition 2 is 

required for the step length of any search directions. Since the implementation of APPS 

uses sufficient decrease condition, only Condition 2 is required. The additional direction 

can be a linear combination of any axial directions. And the step length of the additional 

direction should not exceed ∆𝑘  at iteration k. Condition 2 guarantees that the trial point 

associated with the additional direction is in the feasible region.  
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𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2.

max  ∆ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 <  ∆  <  ∆𝑘  ,

𝑥𝑘 +  ∆ 𝑑𝑘
 𝑖   ∈  Ω,

𝑤𝑒𝑟𝑒 Ω 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡𝑒

𝑏𝑜𝑢𝑛𝑑𝑠.

 

 

Fig. 6 illustrates the benefits of adding additional search directions. The trajectory 

marked by the solid line only takes axial directions while the trajectory marked by the 

dashed line takes non-axial directions, the step length is the same for both trajectories. 

We can see that to reach the same final point, solid line takes 4 steps while dashed lines 

takes only 3 steps. 

 

Figure 6: Advantage of Adding Additional Direction 
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A. Selection of additional directions 

In the modified APPS method, additional search directions are not along axial direction, 

therefore, their corresponding trial points have multiple drivers change. In the modified 

APPS method, we select additional directions according to the sensitivity of each driver 

size with respect to the objective function value. At the beginning of 𝑘𝑡 iteration, trial 

points corresponding to 𝐺𝑘  (axial directions) are first generated and sent to available 

worker processors for the quick estimation. In each trial point, there is only one driver 

size change ∆𝑘  with respect to the starting point 𝑥𝑘  of the current iteration. Since the 

corresponding objective function value of 𝑥𝑘  is available from the last iteration and 

objective function values for trial points are estimated by the quick estimation routine, 

the sensitivity of each driver size with respect to the function value can be computed as 

𝑠𝑖 =  
𝑓𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  − 𝑓(𝑥𝑘  )

∆ 𝑘
(𝑖)

𝑑𝑘
(𝑖)  .                                                  (6) 

In (7), 𝑓𝑖, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the objective function value of the 𝑖𝑡 trial point computed by 

the quick estimation routine, 𝑓(𝑥𝑘) is the objective function value of the starting point 

𝑥𝑘  at the 𝑘𝑡 iteration, ∆ 𝑘
(𝑖)

𝑑𝑘
(𝑖)

 is the change in size of the 𝑖𝑡 driver in the 𝑘𝑡 

iteration. Once the sensitivity for each individual driver is computed, the additional 

direction is computed as follows: Let 𝑆𝑣𝑒𝑐  =  (. . . −𝑠𝑖  . . . , 0, . . . , −𝑠𝑗 ) be the size n vector 

whose entries are either negative of the sensitivity if the driver provides smaller 

objective function value (either size down or size up), or zero if the driver provides 

larger objective function value (both size down and size up). The vector of size change 

associated with the additional direction is 
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𝑘
(𝑙)

=  
𝑆𝑣𝑒𝑐

 𝑆𝑣𝑒𝑐  
 ∆                                                            (7) 

where ∆  is the step length value which satisfies Condition 2. The main benefit of using 

additional search directions is to reduce the number of iterations and the total runtime. 

 

B. Flow of modified APPS 

The complete flow of modified APPS method is shown in Fig. 7. Quick estimation is 

after Step 1 in Algorithm 1. Adding additional direction is after quick estimation since it 

needs the estimated objective function values to compute sensitivities. 

 

Figure 7: Modified APPS Algorithm 
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CHAPTER V 

CLOCK MESH OPTIMIZATION RESULTS 

 

In this section, the results of the proposed modified APPS method are shown for the 

clock driver sizing problem. Since the quick estimation routine is the deciding factor for 

the speedup of the modified APPS method over the original APPS method, we conduct 

experiments to verify the accuracy and speedup of the quick estimation routine. The 

tradeoff between accuracy and speedup is also carefully studied. For the overall 

optimization, we use a set of clock meshes with different number of clock drivers and 

circuit elements as test cases. These examples with varying characteristics and sizes 

allow us to understand how the modified APPS method works for a wide range of 

problems. We also run the original APPS method [5] and the sequential quadratic 

programming based optimization method called DONLP2 [7] for these example circuits 

as comparison reference. The clock skew improvement, number of iterations and the 

runtime for the modified APPS method are compared against the original APPS method. 

We also record the final objective function value and clock skew, and runtime for 

DONLP2. Experimental results show that the modified APPS method has on average 

about 2 times speedup over the original APPS method while DONLP2 only works for 

very small clock meshes. The driver merging step in the quick estimation routine is 

implemented using the Perl scripting language. The model order reduction and transient 

circuit simulation program is implemented in C++. The software package of the original 

APPS method is freely available. It is based on MPI. We add the quick estimation and 
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additional directions modifications to the original APPS implementation. All 

experiments are conducted on a Linux server with 8GB  memory and two 2.33GHz 

quad-core processors. We use 7 processors for the original and modified APPS methods. 

1 processor is the manager and 6 other processors are the workers.  

 

A. Quick estimation 

As mentioned in Chapter III, the quick estimation routine needs to provide a fairly 

accurate estimation of the objective function value for a trial point in much shorter time 

compared with the full evaluation. We achieved this purpose by using the driver merging 

and model order reduction techniques. The results of verifying the quick estimation 

routine are included in Table 1. We do both the quick estimation and full evaluation for 

three clock mesh examples. Their corresponding runtimes, speedup of the quick 

estimation routine, error of the quick estimation in objective function value are included. 

We can see that for all three clock mesh examples, quick estimation routine achieves 

good accuracy in objective function value in much shorter time compared with the full 

simulation. In this way, it helps the modified APPS method to identify potential 

successful trial points before the full evaluations and provides estimated sensitivities 

which are needed to decide the additional direction. 

 

There is tradeoff between the accuracy and runtime in the quick estimation routine. In 

Table 2, we do the quick estimation for the same three clock mesh examples. But we 
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keep more drivers after the driver merging step. We can see that the runtime of quick 

estimation is increased while the accuracy becomes better. 

 

Table 1: Quick estimation results 

Mesh 

ID 
#drivers 

#drivers 

(after 

merging) 

#linear 

elements 

Runtime 

Speedup Error% Full 

sim(s) 

Quick 

est(s) 

1 15 5 2370 7.37 0.95 7.76 4.75 

2 20 5 16000 160.23 2.92 54.87 4.89 

3 25 5 25000 292.56 3.11 94.07 10.68 

 

 

Table 2: Quick estimation results showing trade-off 

Mesh 

ID 
#drivers 

#drivers 

(after 

merging) 

#linear 

elements 

Runtime 

Speedup Error% 
Full 

sim(s) 

Quick 

est(s) 

1 15 8 2370 7.37 1.93 3.82 3.17 

2 20 10 16000 160.23 8.05 19.90 0.98 

3 25 13 25000 292.56 19.95 14.66 4.52 

 

B. Comparison of optimization methods  

In this subsection, we present the results of applying the original APPS method, our 

modified APPS method and DONLP2 to the clock driver sizing problem. We have 6 

different clock mesh examples with varying complexities and clock load distribution. 

For every clock mesh example, we start the three optimization methods with the same 

initial clock driver sizes. Original APPS method and modified APPS method use the 
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same initial step length and stopping criteria. In Table 3, we include the results of 

applying DONLP2 for the optimization. We run DONLP2 for much longer time than 

APPS method for every example. DONLP2 only reduces the objective function value for 

the smallest clock mesh. For all the other larger ones, it does not effectively reduce the 

objective function value within the time frame. The reason for the poor performance of 

DONLP2 is that DONLP2 needs to approximate the Hessian matrix of the Lagrangian 

internally, which requires multiple full simulations of the clock mesh. For the clock 

driver sizing problem where n is in the range of 20 to 50 and one simulation takes a few 

minutes at least, approximating the Hessian matrix could take days.  

 

Table 4 summarizes the runtime and the number of iterations spent by the original APPS 

method and the modified APPS method to reach the same objective function value. For 

mesh1 and mesh2, the optimization process is carried to the convergence. For the other 

larger clock mesh examples, we stop the optimization when it reaches a satisfying 

objective function value and clock skew. This is due to practical considerations. At the 

later stages of the optimization, the APPS method needs to spend much more time to 

find a successful trial point than it does in the earlier stages. If the objective function 

value is already good enough, it would be better to stop the optimization than carrying 

out the optimization for one or two more days for a small improvement in objective 

function value. We can see that the modified APPS method gets 2x speedup over the 

original APPS method on average. Also the modified APPS method uses less number of 

iterations. The performance improvement is due to the incorporation of the quick 
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estimation step and additional directions. From this comparison we can see that for this 

practical optimization problem which is characterized by expensive objective function 

value evaluation and lack of explicit derivative information, parallel pattern search based 

methods are much more effective than sequential quadratic programming based method. 

 

In Figs. 8 to 11, we show the relative clock arrival time distribution for a clock mesh 

before and after the optimization for different loading conditions. Here the relative clock 

arrival time at each sink node is defined as Tj −μ, where Tj is the actual clock arrival 

time at node j, μ is the average clock arrival time among all sink nodes. We can see that 

after the clock driver size optimization, the clock arrival time at sink nodes across the 

chip become much closer. 

 

Table 3: APPS and modified APPS results 

Mesh 

ID 

Driver 

count 

Linear 

elements 

Clock Skew 

(ps) 
APPS Runtime 

Speedup 

APPS Iterations 

 

Initial Final Original Modified Original Modified 

1 15 2370 12.91 2.82 6 mins 3 mins 2 48 35 

2 20 16000 91.82 7.5 9 hrs 8 hrs 1.125 166 119 

3 25 25000 100.98 21.7 25.7 hrs 11 hrs 2.34 225 76 

4 25 27000 159.74 59.8 10.5 hrs 5.5 hrs 1.91 84 34 

5 30 30000 103.88 38.6 27.5 hrs 12.5 hrs 2.2 158 62 

6 50 40000 114.97 44 41 hrs 20 hrs 2.05 164 37 
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Table 4: DONLP2 results 

Mesh 

ID 

Driver 

count 

Linear 

elements 

Function 

Value 

Clock Skew 

(ps) 
DONLP 

Runtime 

APPS 

Runtime 
Initial Final Initial Final 

1 15 2370 1.16e1 6.04 12.91 9.83 20 hrs 3 mins 

2 20 16000 8.52e1 8.49e2 91.82 90.78 47 hrs 8 hrs 

3 25 25000 7.02e2 7.01e2 100.98 100.95 48 hrs 11 hrs 

4 25 27000 1.68e3 1.68e3 159.74 159.72 48 hrs 5.5 hrs 

5 30 30000 5.07e2 5.07e2 103.88 104.84 58 hrs 12.5 hrs 

6 50 40000 1.07e3 1.07e3 114.97 114.96 58 hrs 20 hrs 

 

 

 

 

C. Delay surfaces 

 

The below surface charts show the delay distribution across the mesh nodes before and 

after optimization for different kinds of loading patterns. The delay surfaces represent 

the arrival time of the clock signal at different output nodes of the mesh also taking into 

account the placement information. Two different loading patterns are considered – a 

smooth loading distribution in which the load varies uniformly from one side of the 

mesh to the other (figures 8 and 9) and a random loading distribution (figures 10 and 

11). 
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1. Smooth Load Distribution 

 

 
 

Figure 8: Clock Arrival Time Distribution before Optimization for Smooth Load Variation 

 

 

 

 
 

Figure 9: Clock Arrival Time Distribution after Optimization for Smooth Load Variation 

 

 

 

 

3.90E-10

4.10E-10

4.30E-10

4.50E-10

4.70E-10

4.90E-10

5.10E-10
5.10E-10-5.10E-10

4.90E-10-5.10E-10

4.70E-10-4.90E-10

4.50E-10-4.70E-10

4.30E-10-4.50E-10

4.10E-10-4.30E-10

3.90E-10-4.10E-10

3.90E-10

4.10E-10

4.30E-10

4.50E-10

4.70E-10

4.90E-10

5.10E-10

4.90E-10-5.10E-10

4.70E-10-4.90E-10

4.50E-10-4.70E-10

4.30E-10-4.50E-10

4.10E-10-4.30E-10

3.90E-10-4.10E-10



 36 

2. Non-Uniform Load Distribution 

 

 
 

Figure 10: Clock Arrival Time Distribution before Optimization for Random Load Variation 

 

 

 

 

 
 

Figure 11:Clock Arrival Time Distribution after Optimization for Random Load Variation 
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CHAPTER VI 

NON-LINEAR OPTIMIZATION USING APPS 

 

The default APPS algorithm cannot handle non-linear constraints. But many VLSI 

optimization problems have important trade-offs which appear as non-linear constraints 

in optimization problems. This chapter and the next few chapters present ways of 

including non-linear constraints into the APPS method and using it for large VLSI 

optimization problems specifically PLL system level optimization for locking time 

reduction. 

 

A few options exist in practice to extend APPS to non-linear optimization. Approaches 

like the Augmented Lagrangian method or a filter-like method for handling constraints 

have been proposed based on pattern search and later based on GSS[9]. It works well but 

is expensive in terms of the number of function evaluations. Augmented Lagrangian 

methods have many parameters to tune. This work makes use of a penalty based 

approach that solves a sequence of linearly constrained sub-problems using APPS.  

 

The nonlinear programming problem is defined as follows 

      min
𝑥∈ 𝑅𝑛

𝑓 𝑥                                                                    (8) 

                                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝐸 (𝑥) = 0  

                                                                         𝐶𝐼 𝑥 ≤ 0, 

                                                                    𝑙 ≤ 𝐴𝑥 ≤ 𝑢. 
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Here, 𝑓 ∶  𝑅𝑛 →  𝑅 is the objective function, , 𝑐 ∶  𝑅𝑛 →  𝑅𝑚  includes both the 𝑚𝑒 

equality and 𝑚𝑖  inequality nonlinear constraints with 𝐼 ∪ 𝐸 =   1, . . . ,𝑚 =  𝑚𝑒 +  𝑚𝑖 . 

The matrix 𝐴 ∈  𝑅𝑝𝑥𝑛  contains all linear constraints and we require only that 𝑙 ≤  𝑢 

(permitting equality constraints). Penalty methods transform constrained optimization 

problems into a sequence of unconstrained (or linearly constrained) sub-problems whose 

solutions converge to a solution of the original optimization problem. Consequently, (8) 

is transformed into a linearly constrained problem of the following form: 

min𝑥∈ 𝑅𝑛   𝑓 𝑥 +  𝑃(𝑥, 𝜌𝑘 )                                       (9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑙 ≤ 𝐴𝑥 ≤ 𝑢. 

A sequence of such linearly constrained sub-problems is solved with progressively 

increasing penalty parameter values 𝜌. 

 

The penalty function 𝑃 ∶  𝑅𝑛 →  𝑅 enforces feasibility in the limit, i.e., 

lim
𝜌→∞

𝑃 𝑥, 𝜌  =    
+∞   𝑖𝑓 𝑎𝑛𝑦 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
    0   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                                                          

  

 

The parameter 𝜌 is referred to as the penalty parameter and determines the severity of the 

penalty. 

 

To simplify descriptions of the penalty functions, the following standard transformation 

to all nonlinear equality constraints is used by defining  

𝑐𝑖
+ 𝑥 =   

𝑐𝑖 𝑥                              𝑖𝑓 𝑖 ∈ ℰ

max{0, 𝑐𝑖 𝑥 }             𝑖𝑓 𝑖 ∈ ℐ
                                    (10) 
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A commonly used penalty function is based on the squared 𝑙2  norm: 

𝒫𝑙2
2 𝑥,𝜌 =  𝜌 𝑐+(𝑥) 2

2                                                  (11) 

The 𝑙2
2 penalty function has the advantage of being smooth and having “simple” 

derivatives.  More complex penalty functions mean that the relationship between 𝑐(𝑥) 

and the corresponding  𝜆(𝑥) would necessarily be nonlinear because the derivatives are 

no longer “simple”[9].  

 

APPS theoretically requires the existence of derivatives for the convergence theory to 

apply; however, the specific structure of the derivatives is irrelevant because they are not 

used explicitly. Still, smoothness is important because non-smooth penalty functions 

have been shown to cause APPS to converge to a non-differentiable point rather than a 

KKT point. Unfortunately, a major drawback to the 𝑙2
2  penalty function is the uneven 

way that it penalizes constraints. It places extreme emphasis on constraint violations 

larger than one and little emphasis on violations less than one. This means that 𝜌𝑘  has to 

be very large to enforce asymptotic feasibility. But larger values of 𝜌𝑘  force APPS to 

tick-tack down steep constraint valleys using very small steps. 

 

 To overcome the above problem, there are other exact penalty functions based on 

𝑙1, 𝑙2, and 𝑙∞  for which there exists a finite penalty parameter 𝜌 such that a minimum of 

(9) coincides with the minimum of (8). A difficulty with exact penalty functions is their 

inherit non-smoothness. Hence, the APPS may converge to a point of non-

differentiability. In order to “fix” the non-smoothness of exact penalty functions, many 



 40 

authors have proposed smoothed variants based on 𝑙1, 𝑙2, 𝑎𝑛𝑑 𝑙∞  norms. The smoothed 

exact penalty functions are mid-way between the 𝑙2
2 penalty function and the exact 

penalty functions. While the 𝑙2
2 penalty function has the advantage of being smooth and 

simple, exact penalty function converge much faster to an optimal solution but has the 

disadvantage of being non-smooth. The smoothed exact penalty functions solve the 

smoothness problem of exact penalty function but converge slower than the exact 

penalty functions.  
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CHAPTER VII 

ALGORITHMIC FRAMEWORK 

 

The basic framework in Algorithm 3 is the same for all kinds of penalty functions. At 

each iteration, a linearly-constrained sub-problem of the form in (9) is solved. The 

accuracy requirement of the sub-problem is progressively increases as the iterations 

progress. Also, the penalty parameter is progressively increased thereby penalizing the 

constraints more as the iterations progress. The method continues until either the 

constraint violation is reduced to the desired level and the sub-problem is solved to the 

desired accuracy, or the budget of function evaluations is exhausted. 

 

The penalty function in Algorithm 3 takes three parameters: 𝑃(𝑥, 𝜌,𝛼). The parameter 𝜌 

controls the constraint penalization. The new additional parameter 𝛼 controls the degree 

of smoothing for the smoothed exact penalty functions. For penalty functions that do not 

require it, the parameter can be ignored by initializing 𝛼0 = 0. At each iteration, a 

linearly-constrained sub-problem of the form in (9) is solved using APPS for linearly-

constrained problems. As inputs, it takes the solution of the previous solved sub-problem 

(𝑥𝑘), the penalty-based objective function with 𝜌 =  𝜌𝑘 𝑎𝑛𝑑 𝛼 =  𝛼𝑘, the stopping 

tolerance (𝛿𝑘), and the maximum number of function evaluations allocated for the 

subproblem (𝑆𝑚𝑎𝑥). The subproblem continues until it converges or exhausts the function 

evaluations. It returns the best point found 𝑥𝑘 + 1; the number of function evaluations 

used, 𝑆; and a flag indicating whether or not the sub-problem solver exited successfully, 
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𝑠𝑡𝑎𝑡𝑒. The parameters to be used are flexible. But the basic idea behind the algorithm is 

to initially arrive a reasonable solution for the unconstrained problem and then use that 

as the starting point to reduce the constraint violation. In other words, the first few 

iterations are aimed at solely reducing the objective function value while the subsequent 

iterations are aimed at reducing the constraint violation. 

 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝐆𝐞𝐧𝐞𝐫𝐢𝐜 𝐩𝐞𝐧𝐚𝐥𝐭𝐲 𝐦𝐞𝐭𝐡𝐨𝐝                                                                                                                  

 

Require: 𝜌(·,·,·) .                                                                                                               Choose penalty function 
Require: 𝑥0  satisfying 𝑙 ≤ 𝐴𝑥0 ≤  𝑢 .                                                                              Initial starting point 
Require: 𝑆𝑚𝑎𝑥 >  0 .                                                                                    Max evaluations per subproblem 
Require: 𝑇𝑚𝑎𝑥 ≫  𝑆𝑚𝑎𝑥 .                                                                                           Max evaluations overall 
Require: 𝜌𝑚𝑎𝑥 ≫  1 .                                                                      Maximum allowable penalty parameter 
Require: 0 <  𝜌0  <  𝜌𝑚𝑎𝑥 .                                                                    Initial value for penalty parameter 
Require: 𝛼0  >  0 (𝛼0  =  0 if not smoothed) .                              Initial value for smoothing parameter 
Require: 0 <  𝛼𝑚𝑖𝑛 <  𝛼0  .                                                Minimum value for the smoothing parameter 
Require: 𝛿∗  >  0 .                                                                                   Final subproblem stopping tolerance 
Require: 0 <  𝛿𝑚𝑖𝑛 < 𝛿∗ .                                                         Minimum subproblem stopping tolerance 
Require: 𝛿0  >  𝛿∗ .                                                                                Initial subproblem stopping tolerance 
Require: 𝜂∗  >  0 .                                                                                                          Final constraint tolerance 
1: k ←  0 
2: T ←  0 

 
3: while not converged do 
4: (𝑥𝑘+1 ,𝑆, state) ←    APPS(𝑥𝑘 ,𝒫(·, 𝜌𝑘, 𝛼𝑘), 𝛿𝑘, 𝑆𝑚𝑎𝑥) .                                                Solve subproblem 
5: if δk <  δ∗, state is successful, and 𝜂 xk + 1 <  𝜂∗ then 
6: exit (successfully) 
7: end if 
8: 𝑇  ←  𝑇 +  𝑆 .                                                                                         Update total number of evaluations 
9: if 𝑇 >  𝑇𝑚𝑎𝑥 then 
10: exit (unsuccessfully) 
11: end if 

12: if 𝜂(𝑥𝑘 + 1)  >  𝑚𝑎𝑥{𝜂∗,
𝑚 

5
 𝛼𝑘} then 

13: 𝜌𝑘 + 1   𝑚𝑖𝑛{2𝜌𝑘,𝜌𝑚𝑎𝑥} .                                                                              Increase penalty parameter 
14: end if 
15: 𝛼𝑘 + 1   𝑚𝑎𝑥{𝛼𝑘/2,𝛼𝑚𝑖𝑛} .                                                                        Reduce smoothing parameter 
16: 𝛿𝑘 + 1   𝑚𝑎𝑥{𝛿𝑘/2,𝛿𝑚𝑖𝑛} .                                                       Reduce subproblem stopping tolerance 
17: 𝑘 ←   𝑘 +  1 
 

18: 𝑒𝑛𝑑 𝑤𝑖𝑙𝑒                                                                                                                                                                       
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An important factor is reducing the overall constraint violation, which is measured in 

terms of the maximum violation given by  

𝜂(𝑥)  =  𝑚𝑎𝑥{ | 𝑐 𝑖
+(𝑥) | , 𝑖 =  1, . . . , 𝑚}.                                (12) 

Consequently, 𝜂(𝑥) plays a role in the convergence of the algorithm. Algorithm 3 is 

considered to have exited successfully if the following three criteria are satisfied[9]: 

1. The sub-problem stopping tolerance is less than the desired final tolerance 𝛿∗. Note 

that δk is allowed to drop below 𝛿∗
 but not below 𝛿min. 

2. The sub-problem is solved successfully, meaning that APPS successfully exited with a 

step length tolerance of 𝛿𝑘 ≤  𝛿∗ 

3. The penalty parameter is large enough so that the maximum constraint violation, 

𝜂(𝑥𝑘 + 1), is less than the specified threshold, 𝜂∗. 

 

Note also that the penalty parameter 𝜌 is not increased if 𝜂(𝑥𝑘 + 1) is sufficiently small.  
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CHAPTER VIII 

PHASE LOCKED LOOP OPTIMIZATION 

 

Phase locked loops play an important role in many applications ranging from frequency 

synthesis to clock recovery in wireless receivers. It is made up of many individual circuit 

blocks – both analog and digital. As most communication systems and integrated circuits 

get faster, the performance of the phase locked loop becomes more critical in those 

applications which makes use of it. But as explained in the introduction, it is not an 

ordinary task optimizing the performance of phase locked loops. Lack of closed form 

expression for the objective function means we need to evaluate the same through time 

consuming simulations. Due to their complexity, the simulation of phase locked loops is 

extremely time-consuming.  To overcome the same, hierarchical techniques have been 

proposed which make use of behavioral models of the building blocks to quicken the 

simulation at the system level. The behavioral models are performance based models. 

The best performance trade-offs of each block are represented using pareto-curves. 

Hence the goal of the system level optimization is to achieve the best overall system 

performance along the block level pareto fronts. Mathematically, these pareto fronts can 

be modeled using non-linear equations. Hence the optimization problem is a non-linear 

one in both objective function and constraints.  

 

The rest of the chapter is organized as follows. The first sub-section of this chapter 

explains about the hierarchical optimization framework. Then the basics operation of the 
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phase locked loop and its modeling is covered followed by the APPS non-linear 

optimization setup. 

 

A. Hierarchical optimization 

For large analog circuits with multiple building blocks, hierarchical optimization is a 

well established approach for optimization [10], [11]. It uses a top-down methodology in 

which the optimization of a complex analog system is decomposed into that of 

optimizing several but smaller building blocks. Such an approach alleviates optimization 

cost and provides significant run time reduction. 

 

One approach to hierarchical analog optimization is to model the best performance 

trade-offs or pareto fronts of the building blocks beforehand. The pareto fronts represent 

the best block level performance trade-offs. When there are multiple competing 

performance measures, one performance measure can only be improved at the cost of the 

other. Pareto fronts contain those performance/design points such that no single 

performance can be improved without degrading the other performance parameters. 

Once we have the pareto-fronts of the block level performance parameters, it is just a 

matter of doing optimization at the system level within these pareto fronts.  

 

To get the best overall system performance, it is obvious to find the design points which 

result in best building block performances. Since most building blocks have competing 

performance objectives, it is impossible to find a design point which gives the best 



 46 

performance of all objectives. The design task then becomes a multi-objective 

optimization problem which is to find the best performance trade-offs (pareto fronts). In 

multi-objective optimization, performance pa dominates performance pb (supposing 

smaller value is better) when, 

            𝑝𝑎 ≺ 𝑝𝑏 ∶  ∀  𝑝𝑎𝑖  ≤  𝑝𝑏𝑖    ∧  ∃ 𝑝𝑎𝑖  <  𝑝𝑏𝑖   , 𝑖 = 1,… , 𝑛      (13) 

where 𝑝𝑎𝑖  and 𝑝𝑏𝑖   are the i-th performances of interest, and there are totally n 

performances. The above relation means that for a design point 𝑝𝑎 to be dominant to 𝑝𝑏,  

all individual performances 𝑝𝑎𝑖  should be less than or equal to 𝑝𝑏𝑖   and there exists at 

least one performance measure 𝑝𝑎𝑖  which is strictly less than 𝑝𝑏𝑖  . A set of performances 

is considered as pareto-optimal if it is not dominated by any other set of performances. 

The obtained pareto fronts represent the best performance tradeoffs the circuit blocks 

can achieve. 

 

The system level optimization is carried out by searching in the space constrained by 

block-level pareto fronts. There exist two key benefits for this hierarchical optimization. 

First, since the number of performances in the block level is much smaller than that of 

the original design space, the search space can be reduced significantly, leading to 

improved optimization efficiency. Another important benefit is that performance based 

behavioral models for the building blocks can be used for the system level simulations. 

Hence the simulation time can be significantly improved thereby reducing the overall 

optimization cost. Behavioral modeling using hardware description languages (HDL) 

like verilog-A has been developed for large analog designs.  It is then just a matter of 
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realistically transforming the block level specifications to behavioral level models for the 

building blocks. 

 

B. PLL basics and modeling 

The CPPLL architecture is considered as a simple and effective design platform with 

advantages such as zero phase error and an extended frequency range of operation, and 

is widely adopted in many PLL systems. 

 

 

Figure 12: PLL Block Diagram 
 

A CPPLL consisting of five building blocks, namely phase frequency detector (PFD), 

charge pump (CP), loop filter (LF), voltage controlled oscillator (VCO) and divider (D) 

is shown in Fig. 12. The output frequency can be set to multiples of the reference input 

frequency by changing the ratio N of the divider: Fout = N·Fref. 

 

The analog blocks CP, LF and VCO are only considered for the optimization while the 

digital blocks (PFD&D) are assumed as ideal. The CP shown in figure 13 consists of two 

current sources: source and sink currents. When the up (down) signal is active, the 
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source current flows into (out of) the loop filter shown in figure 14, so that the output 

voltage of the loop filter rises up (drops down), which forces a higher (lower) oscillation 

frequency. Note that the up and down signals cannot be active at the same time. 

 

The VCO can either be a ring oscillator or an LC tuned oscillator shown in figure 15. In 

the ring oscillator, input voltage controls the current through the delay elements which 

determines the delay of each stage and the output oscillation frequency. In an LC 

oscillator, the input voltage fine tunes the capacitance of a varactor thereby modifying 

the output resonant frequency of the VCO. An ideal VCO generates a periodic signal 

whose frequency is a linear function of the controlling voltage. The output frequency fout 

is given by:  

𝑓𝑜𝑢𝑡 =  𝑓𝑚𝑖𝑛 +  𝐾𝑉𝐶𝑂  ⋅  (𝑉𝑖𝑛 − 𝑉𝑚𝑖𝑛 )                               (14) 

fmin is the minimum output frequency at the corresponding minimum input voltages 

Vmin. Vin is the output controlling voltage of the loop filter. 

 

 

 

 

 

 

 

 
Figure 13: Charge Pump 
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Figure 14: Loop Filter 

 

 

Figure 15: Voltage Controlled Oscillator 

 

 

There are many important performance parameters for the CPPLL system: locking time, 

jitter, power consumption, unity gain-bandwidth, phase margin and output frequency. In 

this work we mainly consider the locking time of the PLL system. The locking time is 

defined as the time taken by the CPPLL to synchronize with or to lock onto a new 

frequency. In other words, it is the time required for the PLL to go into capture state. 

The performances shall be considered at the worst case. Therefore the locking time is 
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defined as the time for the output frequency directly jumping from 𝑓𝑚𝑖𝑛  to 𝑓𝑚𝑎𝑥  . Jitter 

or phase noise is the random deviation of the PLL output frequency. Though only the 

locking time is considered as the objective function, the addition of jitter and power into 

the objective function is trivial. 

 

At the block level, as mentioned before we use performance based behavioral models to 

specify the operation. Each building block has its own set of performance parameters 

which are used to model it at the block level.  

 

For the VCO, three main performance measures are considered: gain, phase noise and 

power. In addition, the performance trade-offs or the pareto fronts are also modeled 

before-hand.  For the charge pump, the up and down currents are the performance 

parameters while for the loop filter, they are the filter parameters themselves 

(Rp,Cp1,Cp2) .  

 

The pareto fronts represent the optimal performance trade-offs at the block level. For 

instance as the VCO gain varies inversely with the phase noise, the pareto front captures 

the best VCO gain for a given phase noise and vice versa. An example of the pareto 

curves for the PLL building blocks is shown in figure 16. As it can be seen, the pareto 

surface for the VCO is a 3-D hyper-surface with gain, phase noise and power as the 

dimensions. . The VCO gain and phase noise are inversely related; and for a given gain, 

the phase noise decreases as the power increases. 
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Figure 16: PLL Block Level Pareto Curves 

 

C. PLL optimization setup 

The lock time of the PLL is considered to be the objective function for the system level 

optimization. The optimization variables are the block level performance measures. The 

constraints are the block level trade-offs represented as pareto-fronts. For the charge 

pump, there are only two conflicting performance measures and hence it is modeled as a 

2 D curve while for the VCO, the pareto-fronts form a 3 D hyper-surface. The limits of 

the block level performance measures in the pareto-fronts are the bounds for the 

optimization variables. The mathematical representation of the optimization problem is 

given by  

min𝑥∈ 𝑅𝑛 𝑓 𝑥                                                         (15) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝐸 (𝑥) = 0 

𝑙 ≤ 𝐴𝑥 ≤ 𝑢. 
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Here 𝑓(𝑥) represents the PLL locking time as a function of 𝑥, the block level 

performance measures. The performance measures considered are VCO gain, power and 

phase noise, Charge pump up and down currents, and loop filter element values. As 

explained in the section on hierarchical optimization, the number of optimization 

variables is significantly reduced if we use performance models for the individual 

building blocks. The equality constraints 𝐶𝐸 (𝑥) represent the non-linear block-level 

performance trade-offs or pareto-fronts. The main trade-offs considered are those 

involving the VCO. For example, the VCO gain and phase noise are inversely related; 

and the relationship also varies with the power. The pareto-fronts are modeled using a 

regression engine called SVM (support vector machine). The optimization is done using 

APPS and the non-linear constraints are handled using the modified flow described in 

Chapter VII. 
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CHAPTER IX 

PLL OPTIMIZATION RESULTS 

 

The PLL block level performance measures and the lock time before and after 

optimization are given in Table 5. The parameters chosen for the non-linear APPS 

algorithm are given in Table 6.  

 

Table 5: PLL optimization results 

 
VCO Gain 

VCO 

Noise 

VCO 

Power 

CP 

up(uA) 

CP 

down(uA) 

LPF 

(R,C1,C2) 

PLL 

Locktime 
(µs) 

Initial 
1.57e+9 

1.187e-
11 

7.92e-
6 

1.0985 1.1656 
120k, 

3.125p,0.75p 
1.99 

Final 
1.9e+9 

1.069e-
11 

1.01e-
5 

1.0885 1.1695 
188k, 

3.125p,0.8p 
0.65 

 

The initial scaled constraint violation was 1.27637 for the VCO and the final constraint 

violation after all the optimization iterations was found to be 0.0092 showing a 99% 

reduction in constraint violation. In relative terms, the deviation of the VCO gain from 

the pareto curves reduced from 20.92 % to just 0.14%. Thus the enhanced optimization 

flow reduces the objective function without violating the constraints. The results also 

show that the locking time was also reduced from 1.99 micro-seconds to 0.65 micro-

seconds, a 67 percent reduction. The result was reached in just three iterations of APPS 

with increasing penalty parameter values. The final solution also conforms to intuitive 

reasoning that locking time can be reduced by increasing the loop gain which is achieved 

by increasing VCO gain.  
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Table 6: Non-linear optimization parameters 

𝜌(·,·,·)  penalty function 𝑙2
2 

𝜌𝑚𝑎𝑥  .   Maximum allowable penalty parameter 1e8 

𝜌0  .  Initial value for penalty parameter 1 

𝛿∗  >  0 .    Final subproblem stopping tolerance 10e-3 

𝛿𝑚𝑖𝑛  Minimum subproblem stopping tolerance 1e-6 

𝛿0 Initial subproblem stopping tolerance 1e-1 

𝜂∗ Final constraint tolerance 1e-3 

 

The experiments were done using 𝑙2
2 penalty functions since they are smooth and 

guaranteed to converge. Though their penalization is low for small constraint violations, 

they were preferred over other penalty functions due to their simplicity. Also, it is not 

clear why we should penalize small constraint violations more. Support vector machine 

(SVM) was used to model the non-linear constraints representing the pareto fronts. The 

models were generated prior to simulation and were used to get the difference between 

the predicted values and optimization variables. It should be noted that for the VCO, 

SVM is used to model the hyper-surface representing the various performance trade-

offs. But if we are modeling two performance parameters as independent variables, there 

is bound to be a small error since they are not exactly uncorrelated. But this should not 

cause any problem to the final objective function value as the optimization should bring 

the variables to within the hyper-surface. One more observation is regarding the speed of 

the method. Initially it might appear that we need to run the optimization for multiple 

iterations and run time grows linearly with the number of iterations. But it should be 

noted that at the end of each APPS iteration the objective function value gets closer and 

closer to the optimum value. Hence the number of inner loop or the actual APPS 

iterations keeps progressively reducing as the algorithm proceeds. It is also advisable to 
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progressively reduce the step size as the penalty parameter is increased. This is to speed 

up the first few iterations in which we are having a low penalty parameter and the main 

intention is to get a feasible starting point for the future iterations. But it does not hurt to 

have the same step length from the beginning with regard to the final function value. 

This is because, if we have a fine step length in the first iteration itself, the algorithm 

will spend a long time in reducing the constraint violation right from the start. The run 

time will increase at the cost of lesser number of APPS iterations. 
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CHAPTER X 

CONCLUSION 

 

Thus, a modified asynchronous parallel pattern search for clock mesh skew optimization 

is presented in this thesis. The proposed method is shown to achieve desirable results in 

terms of skew reduction and runtime. The method is further extended to be able to 

incorporate non-linear constraints. The enhanced algorithm is then applied to PLL 

system level behavioral optimization to reduce the locking time of the system. Desirable 

results are achieved on that front too. 

 

The future course of work is to incorporate more advanced penalty functions to make the 

algorithm suitable for any kind of non-linear constraints. Also, generalized speeding up 

techniques can be developed to make the algorithm more efficient for any kind of VLSI 

optimization problem. 
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