

CIRCUIT OPTIMIZATION USING EFFICIENT PARALLEL PATTERN SEARCH

A Thesis

by

SRINATH SUDHARSHAN NARASIMHAN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2010

Major Subject: Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4285068?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CIRCUIT OPTIMIZATION USING EFFICIENT PARALLEL PATTERN SEARCH

A Thesis

by

SRINATH SUDHARSHAN NARASIMHAN

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Peng Li

Committee Members, Sivakumar Natarajan

 Sebastian Hoyos

 Seong Choi

Head of Department, Costas Georghiades

May 2010

Major Subject: Electrical Engineering

http://www.ece.tamu.edu/People/bios/bgeorghi.html

 iii

ABSTRACT

Circuit Optimization Using Efficient Parallel Pattern Search.

(May 2010)

Srinath Sudharshan Narasimhan, B.E., College of Engineering Guindy, Anna University

Chair of Advisory Committee: Dr. Peng Li

Circuit optimization is extremely important in order to design today’s high performance

integrated circuits. As systems become more and more complex, traditional optimization

techniques are no longer viable due to the complex and simulation intensive nature of

the optimization problem. Two examples of such problems include clock mesh skew

reduction and optimization of large analog systems, for example Phase locked loops.

Mesh-based clock distribution has been employed in many high-performance

microprocessor designs due to its favorable properties such as low clock skew and

robustness. However, such clock distributions can become quite complex and may

consist of hundreds of nonlinear drivers strongly coupled via a large passive network.

While the simulation of clock meshes is already very time consuming, tuning such

networks under tight performance constraints is an even daunting task. Same is the case

with the phase locked loop. Being composed of multiple individual analog blocks, it is

an extremely challenging task to optimize the entire system considering all block level

trade-offs.

 iv

In this work, we address these two challenging optimization problems i.e.; clock mesh

skew optimization and PLL locking time reduction. The expensive objective function

evaluations and difficulty in getting explicit sensitivity information make these problems

intractable to standard optimization methods. We propose to explore the recently

developed asynchronous parallel pattern search (APPS) method for efficient driver size

tuning. While being a search-based method, APPS not only provides the desirable

derivative-free optimization capability, but also is amenable to parallelization and

possesses appealing theoretically rigorous convergence properties.

In this work it is shown how such a method can lead to powerful parallel optimization of

these complex problems with significant runtime and quality advantages over the

traditional sequential quadratic programming (SQP) method. It is also shown how

design-specific properties and speeding-up techniques can be exploited to make the

optimization even more efficient while maintaining the convergence of APPS in a

practical sense. In addition, the optimization technique is further enhanced by

introducing the feature to handle non-linear constraints through the use of penalty

functions. The enhanced method is used for optimizing phase locked loops at the system

level.

 v

DEDICATION

This thesis is dedicated to my parents and grandparents, especially to my late

beloved grandfather Mr. N.S. Srinivasan.

 vi

ACKNOWLEDGEMENTS

I would like to thank my committee chair, Dr. Peng Li, and my committee members, Dr.

Hoyos, Dr. Choi, and Dr. Sivakumar, for their guidance and support throughout the

course of this research. I am especially thankful to Dr. Peng Li for providing me with

such an excellent opportunity to be able to do something novel during my master’s

program and also for providing me with financial support during the course of my stay

here. I am also very thankful to Dr. Sivakumar for helping me in settling down in

College Station in addition to his guidance for my research.

Thanks also go to my colleagues and the department faculty and staff for making my

time at Texas A&M University a great experience. I am also thankful to Dr. Tamara G.

Kolda of Sandia National Laboratories for her guidance. I am also extremely thankful to

my room-mates at College Station and my friends for making my stay an unforgettable

experience.

Finally, thanks to my parents and grandparents for their encouragement, support and

patience.

 vii

NOMENCLATURE

APPS Asynchronous Parallel Pattern Search

CAD Computer Aided Design

CPPLL Chare Pump Based PLL

CS&E Computer Science and Engineering

EDA Electronic Design Automation

PLL Phase Locked Loop

PRIMA Passive Reduced Order Interconnect Macro Modeling Algorithm

SQP Sequential Quadratic Programming

SVM Support Vector Machine

VLSI Very Large Scale Integration

.

 viii

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

DEDICATION... v

ACKNOWLEDGEMENTS ... vi

NOMENCLATURE .. vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... x

LIST OF TABLES ... xi

CHAPTER

 I INTRODUCTION ... 1

 II ASYNCHRONOUS PARALLEL PATTERN SEARCH 9

A. Algorithm Flow.. 9

III QUICK ESTIMATION ... 14

A. Purpose of Quick Estimation .. 15

B. Procedure of Quick Estimation ... 17

1. Driver Merging .. 17

2. Harmonic Weighted Model Order Reduction 21

 IV ADDITIONAL SEARCH DIRECTIONS .. 25

A. Selection of Additional Search Directions 27

B. Flow of Modified APPS ... 28

 ix

CHAPTER Page

 V CLOCK MESH OPTIMIZATION RESULTS 29

A. Quick Estimation .. 30

B. Comparison of Optimization Methods 31

C. Delay Surfaces .. 34

 VI NON-LINEAR OPTIMIZATION USING APPS 37

 VII ALGORITHMIC FRAMEWORK .. 41

 VIII PHASE LOCKED LOOP OPTIMIZATION 44

A. Hierarchical Optimization .. 45

B. PLL Basics and Modeling ... 47

C. PLL Optimization Setup.. 51

 IX PLL OPTIMIZATION RESULTS .. 53

 X CONCLUSION .. 56

REFERENCES .. 57

VITA ... 59

 x

LIST OF FIGURES

FIGURE Page

 1 Mesh Based Clock Distribution Network ... 3

 2 APPS Illustration ... 13

 3 Driver Merging When Modified Clock Driver Is Retained 20

 4 Driver Merging When Modified Driver Is Not Retained 21

 5 Quick Estimation Flow .. 24

 6 Advantage of Adding Additional Direction.. 26

 7 Modified APPS Algorithm .. 28

 8 Clock Arrival Time Distribution before Optimization for Smooth Load

 Variation .. 35

 9 Clock Arrival Time Distribution after Optimization for Smooth Load

 Variation ... 35

 10 Clock Arrival Time Distribution before Optimization for Random Load

 Variation ... 36

 11 Clock Arrival Time Distribution after Optimization for Random Load

 Variation ... 36

 12 PLL Block Diagram .. 47

 13 Charge Pump ... 48

 14 Loop Filter .. 49

 15 Voltage Controlled Oscillator .. 49

 16 PLL Block Level Pareto Curves .. 51

 xi

LIST OF TABLES

TABLE Page

 1 Quick Estimation Results .. 31

 2 Quick Estimation Results Showing Trade-off .. 31

 3 APPS and Modified APPS Results .. 33

 4 DONLP2 Results ... 34

 5 PLL Optimization Results ... 53

 6 Non-Linear Optimization Parameters... 54

 1

CHAPTER I

INTRODUCTION

There are many kinds of circuit optimization problems. Some of them can be solved by

traditional optimization techniques like SQP, Linear programming, etc since there exist

closed form expressions for the objective function of these problems. But there are some

circuit optimization problems which are so complex that it is impossible to obtain a

closed form expression for the objective function. The objective function can only be

evaluated through complex and time consuming simulations for those circuits. In such

cases, it is necessary to look at non-traditional optimization techniques which do not

require any closed form expression for the objective function as input. In most cases,

such techniques are heuristics which may or may not converge to an optimum solution.

Otherwise, it might be a traditional technique but the derivative information is computed

internally through multiple time consuming simulations. It thus makes sense to look at

optimization techniques which are guaranteed to converge but do not need to waste time

on computing the derivative information either. This work mainly looks at such an

optimization technique called Asynchronous Parallel Pattern Search (APPS). It has the

advantage of being derivative free and having theoretically rigorous convergence

properties apart from being inherently parallel. Two complex circuit optimization

problems which have been very difficult to solve using traditional techniques are

targeted in this work – clock mesh skew optimization and PLL locking time reduction.

The journal model is IEEE Transactions on Automatic Control.

 2

Mesh based clock distribution networks have been used in high performance

microprocessor designs as the global clock distribution strategy [1], [2] because of their

low local skew and immunity to on chip variation. A three dimensional view of the mesh

based clock network is illustrated in Fig. 1. In Fig. 1, a central chip buffer drives a tree

whose leaves are the sector buffers, also known as clock drivers. Each sector buffer

drives a lower level tree which is connected to the grid. Therefore, the grid is driven by

multiple trees whose roots are sector buffers. The wiring redundancy of the grid not only

enhances design robustness but also has the effect of smoothing out delay differences

between clock sink nodes, which helps minimize clock skew.

Despite their favorable properties, mesh-based clock distributions present significant

CAD challenges. An accurate clock mesh model considering full coupling effects with

power/ground network may consist of up to millions of linear elements and up to

hundreds of clock drivers. Simulating the circuit model alone could take up to hours of

runtime. Tuning/optimizing such networks at a desirable accuracy level requires even

longer time since multiple simulations are needed during the optimization. Compared to

many other areas of physical design automation, clock mesh optimization has been

researched to a much less extent. To alleviate design complexity, in [1], a divide-and-

conquer approach is employed to tune the clock distribution network. First, the grid is

cut into smaller independent linear networks. Each smaller linear network is then

optimized in parallel. To compensate for the loss of accuracy induced by cutting the

grid, capacitive loads are smoothed or spread out on the grid.

 3

Figure 1: Mesh Based Clock Distribution Network

Although the efficiency of the optimization can be improved by this approach, there is

no systematic way of controlling the error. In [3], very fast combinatorial techniques are

proposed for clock mesh optimizations. These techniques are heuristics in nature. While

previous work about the clock mesh optimization focus on the clock driver placement or

wire sizing, it appears that sizing the clock drivers is also important since for very non-

uniform clock load distribution, if changing the clock driver placement is impossible due

to blockage or other constraints, changing the sizes of clock drivers can achieve the same

or even better results. Moreover the number of clock mesh drivers is relatively less

compared to the size of the mesh. And tuning the tree driving the mesh is a lot easier if

only the sizes of the drivers are changed and not the location. However, significant

challenges arise from the need to size a potentially large set of nonlinear clock drivers

 4

that are coupled through the large mesh network. To this end, the choice of optimization

methods is critical.

Similar problems exist for phase locked loop optimization. Being composed of many

smaller subsystems, the performance measures of the PLL are complex functions of the

block level parameters. Again it is impossible to obtain a closed form relationship

between the block level parameters and the performance measure of the overall system.

The performance objective has to be computed through complex time consuming

simulations. Most of the time, a hierarchical approach is employed in optimizing such

large systems. The block level performance trade-offs or pareto fronts are first obtained

before-hand. The pareto fronts represent the best block level performances. The entire

system is then optimized across these block level performances. In other words, the

block level performance measures are now the variables in the optimization. Once the

best block level performances measures are determined from the system optimization,

they are later translated into circuit level parameters. Still, it is an extremely challenging

problem which cannot be solved by traditional optimization techniques.

In many fields of science and engineering, there are a lot of optimization problems

similar to the clock mesh optimization problem and PLL system level optimization

characterized by objective function evaluations through expensive computer simulations

and lack of explicit derivative information. Standard continuous optimization methods

such as sequential quadratic programming method have many disadvantages in solving

 5

this kind of optimization problems. Due to the lack of explicit derivative information,

continuous optimization methods compute the derivative internally by using inefficient

numerical differentiation. Furthermore, these methods usually have small incremental

step sizes which slow down the progress. On the other hand, simulated annealing

converges to good final solution given sufficiently long time. And it has been

parallelized for CAD problems before [4]. However, the runtime required by simulated

annealing to reach a good final solution is often considered to be extreme long, and is

thus impractical.

This work proposes to use the recent asynchronous parallel pattern search (APPS)

method [5], [6] for the clock driver sizing problem. To the best of our knowledge, this is

the first attempt to use APPS for circuit optimization. Based on a manager worker

paradigm, the APPS method spawns off a set of trial points from the predefined search

directions. These trial points are sent by the manager processor to available worker

processors for objective function value evaluation via direct simulation. Then, in an

asynchronous fashion, evaluated trial points (not necessarily all trial points) are collected

and checked for objective function value. Depending upon completed objective function

evaluations, new trial points are generated or the search step length is altered. The

process repeats till convergence. The APPS method has many advantages over the

aforementioned optimization methods in solving the two specific optimization problems

– clock mesh skew reduction and PLL system level optimization. First, no derivative

information is needed in APPS. Furthermore, the pattern search based approach is fully

 6

parallelizable. In our experiments, we observed that running the APPS method in

parallel mode gives close to linear speedup over the serial mode. It is noteworthy that as

a search-based method, APPS has an appealing theoretical convergence property. Under

certain mild conditions, APPS is guaranteed to converge to a local optimum [5], [6] and

hence it is well suited for tuning of clock driver sizes.

Although the original APPS method is significantly more efficient compared to other

alternative optimization methods, two domain-specific enhancements are proposed to

further extend its applicability to the challenging clock mesh optimization task. By

exploring specific clock mesh circuit topologies, efficient mesh modeling and simulation

techniques are developed to provide quick evaluation of the objective function. The

quick estimation is employed to pre-screen and preorder trial points before committing

to much more expensive full simulation based evaluations. Once the estimated function

values are obtained for all new trial points, they are ranked by their estimated function

values. Trial points with smallest estimated function values are sent to available

processors for full simulations first. In this way, the modified APPS method can find a

successful trial point much faster every iteration thus speeding up the entire optimization

procedure. The second enhancement is adding additional search directions. By exploring

the theoretical convergence properties of APPS, it is found that one or more additional

promising search directions can be introduced that can potentially accelerate the

optimization process. These additional search directions are estimated by the proposed

efficient modeling and simulation techniques. These directions are subjected to mild

 7

convergence requirements such that they can be aggressively estimated without

interfering with the theoretical APPS convergence. Experimental results show that for

the clock driver sizing problem, the proposed method significantly outperform the

traditional sequential quadratic programming (SQP) based method [7]. It achieves much

better final solution in less time compared with the SQP method. Furthermore, the

application-specific enhancements can achieve more than two times speedup over the

original APPS method for a set of clock meshes.

In the case of the PLL system level optimization, there are non-linear constraints

enforced by the block-level performance trade-offs. The default APPS package does not

have the feature to handle non-linear constraints. In order to solve the PLL optimization

problem, we can use some techniques to make APPS handle these constraints. The use

of penalty functions is one such technique which may be employed to make APPS

handle non-linear constraints. It transfers the non-linear constraint into the objective

function through a penalty parameter transforming the original non-linearly constrained

probably into a linearly constrained one. A series of such linearly constrained problems

are sequentially solved with progressively increasing penalty parameter values. The

method progresses in this fashion until the constraints do not violate.

The rest of the thesis is organized as follows. In Chapter II, the basic algorithm of APPS

is introduced. In Chapters III and IV, the two proposed improvements to the APPS

algorithm are explained. The results of applying APPS to clock mesh optimization are

 8

presented in Chapter V. In Chapters VI and VII, techniques for handling non-linear

constraints are introduced followed by the enhanced APPS optimization algorithm with

the non-linear constraint handling feature. In Chapter VIII, the phase locked loop and its

optimization technique is explained. In Chapter IX, the PLL optimization results are

presented. The thesis is concluded in Chapter X.

 9

CHAPTER II

ASYNCHRONOUS PARALLEL PATTERN SEARCH

APPS is a derivative free search based optimization method which is best suited for

solving problems whose objective functions are evaluated by complex simulations and

also lack explicit derivative information [5], [6]. APPS solves unconstrained, bound or

linearly constrained nonlinear optimization problems. The bound constrained problem is

given by

min𝑥∈𝑅𝑛 𝑓 𝑥 (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙 ≤ 𝑥 ≤ 𝑢

Here 𝑓 ∶ 𝑅𝑛 → 𝑅 , 𝑥 ∈ 𝑅𝑛 , 𝑙 is a size n vector with entries in 𝑅 ∪ −∞ and 𝑢 is a size

n vector with entries in 𝑅 ∪ {+∞}. APPS can also handle linear constraints.

A. Algorithm flow

The complete algorithm is described in Algorithm 1. Notations used in Algorithm 1 are

explained as follows: 𝐷𝑘 = 𝐷𝑘
 1

, 𝐷𝑘
 2

,… , 𝐷𝑘

 𝑝𝑘 is the set of search directions at

iteration k, superscripts denote the direction index, which ranges from 1 to 𝑝𝑘 at iteration

k. ∆𝑘
(𝑖)

 the step length along the 𝑖𝑡 direction. 𝐴𝑘 contains the indices of search

directions that have an associated trial point in the evaluation queue at the start of

iteration k, it may be reset or modified in Step 3 or 4. 𝐴𝑘 is also called the “active” set.

 10

𝑞𝑚𝑎𝑥 is the max size of the evaluation queue.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 𝐀𝐬𝐲𝐧𝐜𝐡𝐫𝐨𝐧𝐨𝐮𝐬 𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥 𝐩𝐚𝐭𝐭𝐞𝐫𝐧 𝐬𝐞𝐚𝐫𝐜𝐡 𝐚𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦

𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧:
Choose initial solution 𝑥0
Choose initial step length Δ0 and step length tolerance Δtol .
Choose initial search directions: ±e1 , ±e2 ,… , ±en .
𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧: For 𝑘 = 0,1,…
1: Generate new trial points:

 𝑋𝑘 = 𝑥𝑘 + Δ𝑘
 𝑖

𝑑𝑘
 𝑖

∶ 1 ≤ 𝑖 ≤ 𝑝𝑘 , 𝑖 ∉ 𝐴𝑘, and Δ𝑘
 𝑖

> Δ𝑡𝑜𝑙 .

 Sent all trial points in 𝑋𝑘 to the evaluation queue.

 Set Ak+1 = 𝑖: Δk
 i < Δtol .

2: Collect a nonempty set of evaluated points 𝑌𝑘 . If ∃𝑦𝑘 ∈ 𝑌𝑘 such that 𝑦𝑘 satisfies the sufficient
 decrease condition, then go to Step 3; else go to Step 4.

3: The iteration is successful.
 Set 𝑥𝑘+1 = 𝑦𝑘 .
 Choose new search directions 𝐷𝑘+1 .

 Set Δ𝑘+1
 𝑖 = Δ 𝑓𝑜𝑟 𝑖 = 1,… ,𝑝𝑘+1where Δ is the step length that produced 𝑦𝑘 .

 Reset 𝐴𝑘+1 = ∅.
 Prune the evaluation queue to 𝑞𝑚𝑎𝑥 − 𝑝𝑘+1 or fewer entries.
 Go to Step 1.
4: The iteration is unsuccessful.
 Set 𝑥𝑘+1 = 𝑥𝑘 .
 Set 𝐷𝑘+1 = 𝐷𝑘 .
 Let 𝐼𝑘 = direction 𝑦 : 𝑦 ∈ 𝑌𝑘 and parent 𝑦 = 𝑥𝑘 i. e, directions of evaluated trial points
 whose parent is 𝑥𝑘 .
 Update 𝐴𝑘+1 ← 𝐴𝑘+1\𝐼𝑘 , where 𝐴𝑘+1 is defined in Step 1.

 For 𝑖 = 1,… . . ,𝑝𝑘+1: 𝑖𝑓 𝑖 ∈ 𝐼𝑘 , set Δ𝑘+1
(𝑖)

= 0.5Δ𝑘
(𝑖)

; else if 𝑖 ∉ 𝐼𝑘 , set Δ𝑘+1
(𝑖)

= Δ𝑘
(𝑖)

 If Δ𝑘+1
 𝑖 < Δtol for 𝑖 = 1, … ,𝑝𝑘+1 , terminate. Else, go to Step 1.

During the initialization phase, the user provides the initial trial point 𝑥0, step length ∆0

and search directions 𝐷0. The algorithm generates a set of trial points 𝑋𝑘 along the set of

search directions to begin with. The search directions should satisfy a few conditions in

order to guarantee the convergence of the algorithm. Firstly, they should positively span

𝑅𝑛 , where 𝑛 is the number of variables and their cosine measure should be uniformly

 11

bounded. Secondly, they should be uniformly bounded. In the original implementation

of APPS [5], the search directions are only along axial directions. This choice of search

directions satisfies the above two conditions. APPS has a manager-worker paradigm and

uses MPI to manage the parallel tasks. There is a single manager processor controlling

the optimization flow while worker processors are doing objective function evaluations.

At the beginning of every iteration, once the trial points are generated they are sent by

the manager processor to the evaluation queue to be evaluated. Trial points are evaluated

in parallel by worker processors. In the synchronous PPS method, the algorithm waits

for all the trial points to be evaluated. On the other hand, in APPS, the algorithm waits

for only a subset of trial points 𝑌𝑘 to be evaluated. If there is a successful trial point

among this subset, there is no need to wait for the rest of the trial points to be evaluated

thus saving time. The asynchronous behavior of the APPS method makes it more

efficient than the synchronous pattern search because no synchronization is needed at the

end of each iteration which avoids waste of computing resources in the case of uneven

computing power or task load distribution among processors.

A successful trial point is judged based on either the simple decrease condition or

sufficient decrease condition. For the simple decrease condition, a successful trial point

only needs to give smaller objective function value than the current best point. For the

sufficient decrease condition, a successful trial point should be lower than the current

best point by a certain margin set by a forcing function 𝜌 [5].

 12

The sufficient decrease condition relaxes the convergence conditions on search

directions. Among the subset of evaluated trial points, if there exists one trial point

which minimizes the objective function value by satisfying the sufficient decrease

condition, the current iteration is successful and this successful trial point is chosen as

the starting point for the next iteration. The successful trial point will be used to generate

new trial points around it in the next iteration with the same step length with which it

was generated. Any or all trial points still in the evaluation queue waiting to be

simulated are pruned so that the number of trial points in the evaluation queue is no

more than the maximum queue limit. If no evaluated trial point satisfies the sufficient

decrease condition, the current iteration is unsuccessful and starting point for the next

iteration is unchanged. If the parent of an evaluated unsuccessful trial point is from an

earlier iteration, such trial point is discarded.

The step size is reduced by half along directions corresponding to other evaluated and

unsuccessful trial points. New trial points along these directions with the reduced step

length are generated in the next iteration. No new trial points will be generated along

directions for which a trial point is still in the evaluation queue.

The algorithm proceeds in this fashion until when all directions have step length smaller

than the step length tolerance ∆𝑡𝑜𝑙 . Fig. 2 is an illustrative example of APPS for a 2

dimensional case. The number of worker processors is assumed to be three. In the first

iteration, we begin with an initial point and generate four trial points along the four axial

 13

directions. Only two of those four points get evaluated in iteration one. Since there is a

trial point which provides sufficient decrease of the objective value, it becomes the

starting point of iteration 2. In the second iteration, four more points are generated.

Unlike the previous iteration, we find that no evaluated trial point decreases the

objective function value. Hence, the unsuccessful direction from the current iteration is

step reduced and re-evaluated in iteration 3.

Figure 2: APPS Illustration

 14

CHAPTER III

QUICK ESTIMATION

This chapter and the next chapter focus mainly on techniques to speed up APPS. While

the techniques basically can be applied to any kind of problem for which APPS may be

employed, they also make use of some domain specific knowledge. The following two

chapters explain the two proposed enhancements to APPS in the context of clock mesh

optimization.

For the clock driver sizing problem, since the objective is to minimize clock skew, we

define 𝑓(𝑥) as a performance metric for clock skew:

 𝑓 𝑥 = Tj − μ
2

𝑗 ∈𝑆 (2)

where 𝑥 is the vector containing the sizes of all clock drivers, 𝑇𝑖 is the clock arrival

time at sink node 𝑗, 𝑆 is the set contains all sink nodes, 𝜇 = (𝑇𝑗)𝑗 ∈𝑆 / 𝑆 is the

average of all 𝑇𝑠. The purpose of the optimization is to find an optimal set of clock

driver sizes to minimize 𝑓(𝑥). Since there are only axial search directions in the original

APPS method, this means each direction either sizes up or down only one clock driver.

Apart from providing the initial clock driver sizes, we also provide an initial step length

∆0. A large initial step length will result in large change in driver sizes. For the purpose

of fine local tuning, it is better to have well controlled initial step size.

 15

A. Purpose of quick estimation

In the original asynchronous parallel pattern search (APPS) method [5], once a set of

trial points are generated at the beginning of an iteration they are sent out by the master

processor to available worker processors for the cost function value evaluation. The

sequence of the trial points being sent out to worker processors is random. So the master

processor does not control which trial point will be evaluated first and which trial point

will be evaluated later. In the clock driver sizing problem, in order to evaluate the

objective function 𝑓(𝑥) for a trial point 𝑥′, we have to do an accurate transient

simulation for the entire clock mesh using driver sizes in the vector 𝑥′. The transient

simulation of the clock mesh is the most time consuming part in the entire optimization

flow. There are some disadvantages with the above process. First of all some trial points

or most of the trial points in an iteration cannot satisfy the sufficient decrease condition.

Therefore, it is worthless to spend processor resources and time on these “bad” points.

Second, for trial points which satisfy the sufficient decrease condition, some of them are

better than others. In other words, some trial points may give larger objective function

value decrease than others. But the original optimization flow cannot identify those

better points since the order in which the trial points are evaluated is random. However,

if we can identify a smaller set of good trial points before we commit processor

resources to do costly evaluation for all trial points, we can find a successful trial point

much faster in an iteration, thereby making the entire optimization flow faster.

Identifying the smaller set of good trial points should be done quickly, otherwise this

extra step may slow down the entire optimization flow. We propose to use a quick

 16

estimation method for this step. Before we run the accurate simulation, all trial points are

going through a quick estimation step. This quick estimation step is like a “virtual

evaluation” step in which we estimate the objective function value for all trial points

quickly. After the estimated objective function value for all trial points are obtained, we

sort them. Trial points with smaller estimated objective function values will be placed

before trial points with larger estimated objective function values in the evaluation

queue. So, trial points will be sent to available worker processors in the ascending order

of the estimated objective function value. In this way, we make sure we always evaluate

potentially successful points are given preference over the other trial points, and we

always evaluate potentially “better” trial points first. Since the original APPS method

only has axial search directions, we need to evaluate large number of trial points quickly

and still capture the effect of individual gate change. Since we rank trial points after

quick estimation, capturing the relative difference in the objective function value

between trial points is important. And after the quick estimation step, we pick the top 10

or 20 with the smallest estimated objective function values instead of only 1 trial points

for the accurate evaluation. In this way, despite the fact that the estimated objective

function values for those top 10 or 20 points have some error, the chance that the best

trial point is among them is very high.

 17

B. Procedure of quick estimation

As explained in the beginning of this chapter, the quick estimation is a general technique

which can be applied to any kind of optimization problem which can solved using APPS.

But what is important is the fact that we need to make use of critical domain specific

knowledge to realize it. This section mainly explains the quick estimation techniques

which are used for the clock driver sizing problem.

The quick estimation method is similar to the driver merging method and harmonic-

weighted model order reduction method proposed in [8]. For fast clock mesh simulation,

we want to use model order reduction to reduce the size of the linear mesh. A multi-

input multi-output (MIMO) passive interconnect network can be described using the

following circuit equations

𝐶 𝑑𝑥

𝑑𝑡
+ 𝐺𝑥 = 𝐵𝑢, 𝑦 = 𝐿𝑇𝑥 (3)

where 𝐺, 𝐶 ∈ 𝑅𝑛𝑥𝑛 describe the resistive and energy storage elements in the circuit,

𝑢 ∈ 𝑅𝑚 is the input vector, 𝑥 ∈ 𝑅𝑛 is the vector of unknown voltages and currents,

and 𝐵,𝐿 ∈ 𝑅𝑛𝑥𝑚 are the input and output matrices, respectively.

1. Driver merging

The widely used passive model reduction algorithm PRIMA [9] generates a reduced

order model of (3) by computing an ortho-normal basis 𝑉 of the Krylov subspace

 18

spanned by 𝑐𝑜𝑙𝑠𝑝𝑎𝑛{𝑅, 𝐴𝑅,𝐴2𝑅,… }, where 𝐴 ≡ −𝐺−1𝐶 and 𝑅 ≡ 𝐺−1𝐵, and 𝐴𝑖𝑅 is

the 𝑖𝑡 order block transfer function moment.

The reduced order model is given by a set of system matrices of a smaller dimension

𝐺 = 𝑉𝑇𝐺𝑉, 𝐶 = 𝑉𝑇𝐶𝑉, 𝐵 = 𝑉𝑇𝐵, 𝐿 = 𝑉𝑇𝐿

where the order of the reduced order model is determined by the column dimension of 𝑉

denoted as 𝑞. The bottleneck in the standard model order reduction is the large number

of ports of the linear part. Assuming a clock mesh has 50 clock drivers and 20 moments

are matched for each driver port, then a reduced order model with size 𝑞 = 1000 will be

computed. The factorization cost of such dense model is 𝑂(10003). The generation and

simulation of such a dense reduced order model can be even more time-consuming than

simulation of the original clock mesh. This is why we need to aggressively reduce the

number of ports of the linear part of the clock mesh by using the driver merging method.

After the number of drivers is drastically reduced, we can then apply the harmonic

weighted model order reduction [8] to simulate the simplified clock mesh. As a result,

two orders of magnitude of speedup and certain level of accuracy are achieved by the

quick estimation routine. The driver merging is done by exploiting the locality in the

clock mesh. In the driver merging step, the modified driver is retained as is so that the

effect of its size change is captured. All the other drivers are merged into less number of

super drivers according to their geometric locations on the clock mesh. For example, if 5

drivers are close together, we merge them into one super driver whose size is the sum of

all 5 drivers. The geometrical location of this super driver is the weighted center location

 19

of those 5 drivers. More specifically, if the sizes of all 5 drivers are the same, the super

driver will be placed in their geometric center. If their sizes are unequal, the super driver

will be placed closer to larger drivers to reflect their relatively larger influence in the

original clock mesh. The driver merging scheme is formulated in (5). In (5), S is the size

of a driver; L is the location of a driver, which can be represented by its coordinates in

the X-Y coordinate system. Driver j through driver k are merged into a new driver with

size 𝑆𝑛𝑒𝑤 and location𝐿𝑛𝑒𝑤 .

𝑆𝑛𝑒𝑤 = 𝑆𝑖
𝑘
𝑖=𝑗 (4)

𝐿𝑛𝑒𝑤 = 𝑆𝑖/𝑆𝑛𝑒𝑤
𝑘
𝑖=𝑗 𝐿𝑖 (5)

This driver merging approach is illustrated in Fig 3. Our objectives are met: first,

simulating the simplified clock mesh is much faster; second, the effect of individual gate

change is kept.

 20

Figure 3: Driver Merging When Modified Clock Driver Is Retained

Another more aggressive driver merging approach can also be used. In this approach,

there will be only one merging scheme for one clock mesh no matter which driver is

modified. This approach is illustrated in Fig. 4. The effect of individual gate change can

still be kept. For example, if two adjacent drivers are modified in two trial points

respectively, since their sizes are different, the location of super driver into which these

two drivers are merged will be different in these two cases. So the relative difference

between trial points is captured. In the driver merging, there is a tradeoff between the

speedup and accuracy. If there are more super drivers in the resulting simplified clock

mesh, the accuracy of the estimated objective function value will be better, but the

runtime of simulating the simplified clock mesh will be longer. On the other hand, if

lesser number of super drivers are kept in the resulting simplified clock mesh, accuracy

will become worse and runtime will become shorter.

 21

Figure 4: Driver Merging When Modified Clock Driver Is Not Retained

2. Harmonic weighted model order reduction

Once the number of drivers is drastically reduced by the driver merging method, we can

use harmonic weighted model order reduction to simulate the resulting simplified clock

mesh. Since the clock signal changes periodically with a known frequency 𝑓0 in the

clock mesh, a model order reduction technique where the frequency responses at a set of

harmonic frequencies are matched would be better than the generic model order

reduction technique PRIMA where frequency responses of the network over a

continuous frequency range are matched. In the harmonic weighted model order

reduction, a multi-point expansion based model order reduction where the transfer

functions at each harmonic (corresponding to the expansion point 𝑠 = 𝑗2𝜋𝑘𝑓0) are

computed and included into the projection matrix V to facilitate projection-based model

order reduction. It can be shown that the resulting model will match the system transfer

 22

functions at all these harmonic frequencies considered [10]. Transfer function vectors at

these harmonic frequencies can be computed by building SIMO (single input multiple

output) based model on a per port basis. Such choice leads to only one LU factorization

of the system conductance matrix G. Since each harmonic frequency has different

impact on the time-domain performance of the clock mesh, we apply weights on transfer

function at different frequencies to reflect their relative important. This leads to further

reduction of the size of the reduced order model. The entire harmonic weighted model

order reduction algorithm is shown in Algorithm 2. The entire quick estimation step is

illustrated in Fig. 5. “TFs: port i” in Fig. 5 should be interpreted as contributions from

transfer functions at port i instead of the actual transfer functions at port i since there will

be weighting and SVD based compression applied on transfer functions. Fig. 6 shows

the comparison of waveforms computed by the quick estimation routine and the accurate

transient simulation. The starting point of an iteration and a trial point generated from it

are evaluated by both quick estimation routine and accurate transient simulation.

The trial point has single clock driver change. We can see that quick estimation routine

captures the effect of single driver change very well. More experimental results for the

quick estimation method are included in results section.

An important feature of this enhancement is that the quick estimation procedure need not

be accurate or physically relevant. For example, the clock mesh drivers are physically

not just a single buffer rather each driver is usually realized by a tree of buffers. So, they

 23

are very bulky circuits. In such a case it is physically impossible to merge all these bulky

drivers into one super driver. But that is not a cause for concern since for quick

estimation the circuit does not have to be physically relevant but should be good enough

for a quick approximation.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟐 𝐇𝐚𝐫𝐦𝐨𝐧𝐢𝐜 − 𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐦𝐨𝐝𝐞𝐥 𝐨𝐫𝐝𝐞𝐫 𝐫𝐞𝐝𝐮𝐜𝐭𝐢𝐨𝐧

𝐈𝐧𝐩𝐮𝐭: Full Model:𝐺,𝐶 ,𝐵, 𝐿: fundamental frequency 𝑓0 , Control factor:𝜅,
Reduced order model size:𝑆𝑅
𝐎𝐮𝐭𝐩𝐮𝐭: Reduced order model: 𝐺 ,𝐶 , 𝐵 , 𝐿

1: Compute weight 𝑊𝑘 for each harmonic frequency.
2:𝑉 ← .
3:𝐅𝐨𝐫 each input 𝑖 𝐝𝐨
4: Compute the transfer function at dc:𝑉𝑖 ← 𝑇𝐹 0, 𝑖 .
5: 𝐅𝐨𝐫 each harmonic 𝑘, 𝑘 = 1,… , 𝑁𝐝𝐨
6: Compute the transfer function:𝑇𝐹 𝑘, 𝑖 .
7: 𝑉𝑖 ← 𝑉𝑖 ,𝑅𝑒 𝑇𝐹 𝑘, 𝑖 , 𝐼𝑚 𝑇𝐹 𝑘, 𝑖 .
8: 𝐄𝐧𝐝 𝐟𝐨𝐫
9: Normalize each column in 𝑉𝑖and multiply each column using the
 corresponding weight 𝑊𝑘 .
10: Perform SVD on the weighted 𝑉𝑖 matrix:𝑉𝑖 ,𝑤 = 𝑃𝑖Σ𝑖𝑄𝑖

𝑇 .

11: Keep the first 𝜅 dominant singular vectors in 𝑃𝑖 .
V ← [𝑉 𝑝𝑖 , 1, … ,𝑝𝑖 , 𝜅].
12:𝐄𝐧𝐝 𝐟𝐨𝐫
13: Perform SVD on 𝑉:𝑉 = 𝑃𝛴𝑄𝑇
14: Keep the first SRdominant singular vectors 𝑋 of 𝑃

𝑋 = 𝑝1, … ,𝑃𝑆𝑅
 for model reduction:

𝐺 = 𝑋𝑇𝐺𝑋, 𝐶 = 𝑋𝑇𝐶𝑋, 𝐵 = 𝑋𝑇𝐵,𝐿 = 𝑋𝑇𝐿

 24

Figure 5: Quick Estimation Flow

 25

CHAPTER IV

ADDITIONAL SEARCH DIRECTIONS

In the APPS method [6], search directions 𝐷𝑘 are the union of two subsets 𝐺𝑘 and 𝐻𝑘 .

The subset 𝐺𝑘 is the core set of search directions and the subset 𝐻𝑘 is a possibly empty

set of additional search directions which might accelerate the search. 𝐺𝑘 is the key to the

convergence analysis and must satisfy Condition 1 for the bound constrained

optimization problem defined as

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1.𝐹𝑜𝑟 𝑎𝑙𝑙 𝑘,𝐺𝑘 = ±𝑒1, ±𝑒2,… , ±𝑒𝑛

The set of additional directions 𝐻𝑘 is subject to different convergence conditions under

different decrease conditions. If simple decrease condition is used, an additional

condition is required to ensure 𝐻𝑘 does not interfere with convergence. If sufficient

decrease condition is used, the additional condition is not required while Condition 2 is

required for the step length of any search directions. Since the implementation of APPS

uses sufficient decrease condition, only Condition 2 is required. The additional direction

can be a linear combination of any axial directions. And the step length of the additional

direction should not exceed ∆𝑘 at iteration k. Condition 2 guarantees that the trial point

associated with the additional direction is in the feasible region.

 26

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2.

max ∆

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 < ∆ < ∆𝑘 ,

𝑥𝑘 + ∆ 𝑑𝑘
 𝑖 ∈ Ω,

𝑤𝑒𝑟𝑒 Ω 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡𝑒 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡𝑒

𝑏𝑜𝑢𝑛𝑑𝑠.

Fig. 6 illustrates the benefits of adding additional search directions. The trajectory

marked by the solid line only takes axial directions while the trajectory marked by the

dashed line takes non-axial directions, the step length is the same for both trajectories.

We can see that to reach the same final point, solid line takes 4 steps while dashed lines

takes only 3 steps.

Figure 6: Advantage of Adding Additional Direction

 27

A. Selection of additional directions

In the modified APPS method, additional search directions are not along axial direction,

therefore, their corresponding trial points have multiple drivers change. In the modified

APPS method, we select additional directions according to the sensitivity of each driver

size with respect to the objective function value. At the beginning of 𝑘𝑡 iteration, trial

points corresponding to 𝐺𝑘 (axial directions) are first generated and sent to available

worker processors for the quick estimation. In each trial point, there is only one driver

size change ∆𝑘 with respect to the starting point 𝑥𝑘 of the current iteration. Since the

corresponding objective function value of 𝑥𝑘 is available from the last iteration and

objective function values for trial points are estimated by the quick estimation routine,

the sensitivity of each driver size with respect to the function value can be computed as

𝑠𝑖 =
𝑓𝑖,𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑓(𝑥𝑘)

∆ 𝑘
(𝑖)

𝑑𝑘
(𝑖) . (6)

In (7), 𝑓𝑖, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the objective function value of the 𝑖𝑡 trial point computed by

the quick estimation routine, 𝑓(𝑥𝑘) is the objective function value of the starting point

𝑥𝑘 at the 𝑘𝑡 iteration, ∆ 𝑘
(𝑖)

𝑑𝑘
(𝑖)

 is the change in size of the 𝑖𝑡 driver in the 𝑘𝑡

iteration. Once the sensitivity for each individual driver is computed, the additional

direction is computed as follows: Let 𝑆𝑣𝑒𝑐 = (. . . −𝑠𝑖 . . . , 0, . . . , −𝑠𝑗) be the size n vector

whose entries are either negative of the sensitivity if the driver provides smaller

objective function value (either size down or size up), or zero if the driver provides

larger objective function value (both size down and size up). The vector of size change

associated with the additional direction is

 28

𝑘
(𝑙)

=
𝑆𝑣𝑒𝑐

 𝑆𝑣𝑒𝑐
 ∆ (7)

where ∆ is the step length value which satisfies Condition 2. The main benefit of using

additional search directions is to reduce the number of iterations and the total runtime.

B. Flow of modified APPS

The complete flow of modified APPS method is shown in Fig. 7. Quick estimation is

after Step 1 in Algorithm 1. Adding additional direction is after quick estimation since it

needs the estimated objective function values to compute sensitivities.

Figure 7: Modified APPS Algorithm

 29

CHAPTER V

CLOCK MESH OPTIMIZATION RESULTS

In this section, the results of the proposed modified APPS method are shown for the

clock driver sizing problem. Since the quick estimation routine is the deciding factor for

the speedup of the modified APPS method over the original APPS method, we conduct

experiments to verify the accuracy and speedup of the quick estimation routine. The

tradeoff between accuracy and speedup is also carefully studied. For the overall

optimization, we use a set of clock meshes with different number of clock drivers and

circuit elements as test cases. These examples with varying characteristics and sizes

allow us to understand how the modified APPS method works for a wide range of

problems. We also run the original APPS method [5] and the sequential quadratic

programming based optimization method called DONLP2 [7] for these example circuits

as comparison reference. The clock skew improvement, number of iterations and the

runtime for the modified APPS method are compared against the original APPS method.

We also record the final objective function value and clock skew, and runtime for

DONLP2. Experimental results show that the modified APPS method has on average

about 2 times speedup over the original APPS method while DONLP2 only works for

very small clock meshes. The driver merging step in the quick estimation routine is

implemented using the Perl scripting language. The model order reduction and transient

circuit simulation program is implemented in C++. The software package of the original

APPS method is freely available. It is based on MPI. We add the quick estimation and

 30

additional directions modifications to the original APPS implementation. All

experiments are conducted on a Linux server with 8GB memory and two 2.33GHz

quad-core processors. We use 7 processors for the original and modified APPS methods.

1 processor is the manager and 6 other processors are the workers.

A. Quick estimation

As mentioned in Chapter III, the quick estimation routine needs to provide a fairly

accurate estimation of the objective function value for a trial point in much shorter time

compared with the full evaluation. We achieved this purpose by using the driver merging

and model order reduction techniques. The results of verifying the quick estimation

routine are included in Table 1. We do both the quick estimation and full evaluation for

three clock mesh examples. Their corresponding runtimes, speedup of the quick

estimation routine, error of the quick estimation in objective function value are included.

We can see that for all three clock mesh examples, quick estimation routine achieves

good accuracy in objective function value in much shorter time compared with the full

simulation. In this way, it helps the modified APPS method to identify potential

successful trial points before the full evaluations and provides estimated sensitivities

which are needed to decide the additional direction.

There is tradeoff between the accuracy and runtime in the quick estimation routine. In

Table 2, we do the quick estimation for the same three clock mesh examples. But we

 31

keep more drivers after the driver merging step. We can see that the runtime of quick

estimation is increased while the accuracy becomes better.

Table 1: Quick estimation results

Mesh

ID
#drivers

#drivers

(after

merging)

#linear

elements

Runtime

Speedup Error% Full

sim(s)

Quick

est(s)

1 15 5 2370 7.37 0.95 7.76 4.75

2 20 5 16000 160.23 2.92 54.87 4.89

3 25 5 25000 292.56 3.11 94.07 10.68

Table 2: Quick estimation results showing trade-off

Mesh

ID
#drivers

#drivers

(after

merging)

#linear

elements

Runtime

Speedup Error%
Full

sim(s)

Quick

est(s)

1 15 8 2370 7.37 1.93 3.82 3.17

2 20 10 16000 160.23 8.05 19.90 0.98

3 25 13 25000 292.56 19.95 14.66 4.52

B. Comparison of optimization methods

In this subsection, we present the results of applying the original APPS method, our

modified APPS method and DONLP2 to the clock driver sizing problem. We have 6

different clock mesh examples with varying complexities and clock load distribution.

For every clock mesh example, we start the three optimization methods with the same

initial clock driver sizes. Original APPS method and modified APPS method use the

 32

same initial step length and stopping criteria. In Table 3, we include the results of

applying DONLP2 for the optimization. We run DONLP2 for much longer time than

APPS method for every example. DONLP2 only reduces the objective function value for

the smallest clock mesh. For all the other larger ones, it does not effectively reduce the

objective function value within the time frame. The reason for the poor performance of

DONLP2 is that DONLP2 needs to approximate the Hessian matrix of the Lagrangian

internally, which requires multiple full simulations of the clock mesh. For the clock

driver sizing problem where n is in the range of 20 to 50 and one simulation takes a few

minutes at least, approximating the Hessian matrix could take days.

Table 4 summarizes the runtime and the number of iterations spent by the original APPS

method and the modified APPS method to reach the same objective function value. For

mesh1 and mesh2, the optimization process is carried to the convergence. For the other

larger clock mesh examples, we stop the optimization when it reaches a satisfying

objective function value and clock skew. This is due to practical considerations. At the

later stages of the optimization, the APPS method needs to spend much more time to

find a successful trial point than it does in the earlier stages. If the objective function

value is already good enough, it would be better to stop the optimization than carrying

out the optimization for one or two more days for a small improvement in objective

function value. We can see that the modified APPS method gets 2x speedup over the

original APPS method on average. Also the modified APPS method uses less number of

iterations. The performance improvement is due to the incorporation of the quick

 33

estimation step and additional directions. From this comparison we can see that for this

practical optimization problem which is characterized by expensive objective function

value evaluation and lack of explicit derivative information, parallel pattern search based

methods are much more effective than sequential quadratic programming based method.

In Figs. 8 to 11, we show the relative clock arrival time distribution for a clock mesh

before and after the optimization for different loading conditions. Here the relative clock

arrival time at each sink node is defined as Tj −μ, where Tj is the actual clock arrival

time at node j, μ is the average clock arrival time among all sink nodes. We can see that

after the clock driver size optimization, the clock arrival time at sink nodes across the

chip become much closer.

Table 3: APPS and modified APPS results

Mesh

ID

Driver

count

Linear

elements

Clock Skew

(ps)
APPS Runtime

Speedup

APPS Iterations

Initial Final Original Modified Original Modified

1 15 2370 12.91 2.82 6 mins 3 mins 2 48 35

2 20 16000 91.82 7.5 9 hrs 8 hrs 1.125 166 119

3 25 25000 100.98 21.7 25.7 hrs 11 hrs 2.34 225 76

4 25 27000 159.74 59.8 10.5 hrs 5.5 hrs 1.91 84 34

5 30 30000 103.88 38.6 27.5 hrs 12.5 hrs 2.2 158 62

6 50 40000 114.97 44 41 hrs 20 hrs 2.05 164 37

 34

Table 4: DONLP2 results

Mesh

ID

Driver

count

Linear

elements

Function

Value

Clock Skew

(ps)
DONLP

Runtime

APPS

Runtime
Initial Final Initial Final

1 15 2370 1.16e1 6.04 12.91 9.83 20 hrs 3 mins

2 20 16000 8.52e1 8.49e2 91.82 90.78 47 hrs 8 hrs

3 25 25000 7.02e2 7.01e2 100.98 100.95 48 hrs 11 hrs

4 25 27000 1.68e3 1.68e3 159.74 159.72 48 hrs 5.5 hrs

5 30 30000 5.07e2 5.07e2 103.88 104.84 58 hrs 12.5 hrs

6 50 40000 1.07e3 1.07e3 114.97 114.96 58 hrs 20 hrs

C. Delay surfaces

The below surface charts show the delay distribution across the mesh nodes before and

after optimization for different kinds of loading patterns. The delay surfaces represent

the arrival time of the clock signal at different output nodes of the mesh also taking into

account the placement information. Two different loading patterns are considered – a

smooth loading distribution in which the load varies uniformly from one side of the

mesh to the other (figures 8 and 9) and a random loading distribution (figures 10 and

11).

 35

1. Smooth Load Distribution

Figure 8: Clock Arrival Time Distribution before Optimization for Smooth Load Variation

Figure 9: Clock Arrival Time Distribution after Optimization for Smooth Load Variation

3.90E-10

4.10E-10

4.30E-10

4.50E-10

4.70E-10

4.90E-10

5.10E-10
5.10E-10-5.10E-10

4.90E-10-5.10E-10

4.70E-10-4.90E-10

4.50E-10-4.70E-10

4.30E-10-4.50E-10

4.10E-10-4.30E-10

3.90E-10-4.10E-10

3.90E-10

4.10E-10

4.30E-10

4.50E-10

4.70E-10

4.90E-10

5.10E-10

4.90E-10-5.10E-10

4.70E-10-4.90E-10

4.50E-10-4.70E-10

4.30E-10-4.50E-10

4.10E-10-4.30E-10

3.90E-10-4.10E-10

 36

2. Non-Uniform Load Distribution

Figure 10: Clock Arrival Time Distribution before Optimization for Random Load Variation

Figure 11:Clock Arrival Time Distribution after Optimization for Random Load Variation

Series1

Series5
7.50E-10

8.00E-10

8.50E-10

9.00E-10

9.50E-10

1.00E-09

1.05E-09

1.10E-09

1.15E-09

1 2 3 4 5 6 7 8 9

1.15E-09-1.15E-09

1.10E-09-1.15E-09

1.05E-09-1.10E-09

1.00E-09-1.05E-09

9.50E-10-1.00E-09

9.00E-10-9.50E-10

8.50E-10-9.00E-10

8.00E-10-8.50E-10

7.50E-10-8.00E-10

Series1

Series5
7.50E-10

8.00E-10

8.50E-10

9.00E-10

9.50E-10

1.00E-09

1.05E-09

1.10E-09

1.15E-09

1 2 3 4 5 6 7 8 9

1.10E-09-1.15E-09

1.05E-09-1.10E-09

1.00E-09-1.05E-09

9.50E-10-1.00E-09

9.00E-10-9.50E-10

8.50E-10-9.00E-10

8.00E-10-8.50E-10

7.50E-10-8.00E-10

 37

CHAPTER VI

NON-LINEAR OPTIMIZATION USING APPS

The default APPS algorithm cannot handle non-linear constraints. But many VLSI

optimization problems have important trade-offs which appear as non-linear constraints

in optimization problems. This chapter and the next few chapters present ways of

including non-linear constraints into the APPS method and using it for large VLSI

optimization problems specifically PLL system level optimization for locking time

reduction.

A few options exist in practice to extend APPS to non-linear optimization. Approaches

like the Augmented Lagrangian method or a filter-like method for handling constraints

have been proposed based on pattern search and later based on GSS[9]. It works well but

is expensive in terms of the number of function evaluations. Augmented Lagrangian

methods have many parameters to tune. This work makes use of a penalty based

approach that solves a sequence of linearly constrained sub-problems using APPS.

The nonlinear programming problem is defined as follows

 min
𝑥∈ 𝑅𝑛

𝑓 𝑥 (8)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝐸 (𝑥) = 0

 𝐶𝐼 𝑥 ≤ 0,

 𝑙 ≤ 𝐴𝑥 ≤ 𝑢.

 38

Here, 𝑓 ∶ 𝑅𝑛 → 𝑅 is the objective function, , 𝑐 ∶ 𝑅𝑛 → 𝑅𝑚 includes both the 𝑚𝑒

equality and 𝑚𝑖 inequality nonlinear constraints with 𝐼 ∪ 𝐸 = 1, . . . ,𝑚 = 𝑚𝑒 + 𝑚𝑖 .

The matrix 𝐴 ∈ 𝑅𝑝𝑥𝑛 contains all linear constraints and we require only that 𝑙 ≤ 𝑢

(permitting equality constraints). Penalty methods transform constrained optimization

problems into a sequence of unconstrained (or linearly constrained) sub-problems whose

solutions converge to a solution of the original optimization problem. Consequently, (8)

is transformed into a linearly constrained problem of the following form:

min𝑥∈ 𝑅𝑛 𝑓 𝑥 + 𝑃(𝑥, 𝜌𝑘) (9)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑙 ≤ 𝐴𝑥 ≤ 𝑢.

A sequence of such linearly constrained sub-problems is solved with progressively

increasing penalty parameter values 𝜌.

The penalty function 𝑃 ∶ 𝑅𝑛 → 𝑅 enforces feasibility in the limit, i.e.,

lim
𝜌→∞

𝑃 𝑥, 𝜌 =
+∞ 𝑖𝑓 𝑎𝑛𝑦 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑
 0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

The parameter 𝜌 is referred to as the penalty parameter and determines the severity of the

penalty.

To simplify descriptions of the penalty functions, the following standard transformation

to all nonlinear equality constraints is used by defining

𝑐𝑖
+ 𝑥 =

𝑐𝑖 𝑥 𝑖𝑓 𝑖 ∈ ℰ

max{0, 𝑐𝑖 𝑥 } 𝑖𝑓 𝑖 ∈ ℐ
 (10)

 39

A commonly used penalty function is based on the squared 𝑙2 norm:

𝒫𝑙2
2 𝑥,𝜌 = 𝜌 𝑐+(𝑥) 2

2 (11)

The 𝑙2
2 penalty function has the advantage of being smooth and having “simple”

derivatives. More complex penalty functions mean that the relationship between 𝑐(𝑥)

and the corresponding 𝜆(𝑥) would necessarily be nonlinear because the derivatives are

no longer “simple”[9].

APPS theoretically requires the existence of derivatives for the convergence theory to

apply; however, the specific structure of the derivatives is irrelevant because they are not

used explicitly. Still, smoothness is important because non-smooth penalty functions

have been shown to cause APPS to converge to a non-differentiable point rather than a

KKT point. Unfortunately, a major drawback to the 𝑙2
2 penalty function is the uneven

way that it penalizes constraints. It places extreme emphasis on constraint violations

larger than one and little emphasis on violations less than one. This means that 𝜌𝑘 has to

be very large to enforce asymptotic feasibility. But larger values of 𝜌𝑘 force APPS to

tick-tack down steep constraint valleys using very small steps.

 To overcome the above problem, there are other exact penalty functions based on

𝑙1, 𝑙2, and 𝑙∞ for which there exists a finite penalty parameter 𝜌 such that a minimum of

(9) coincides with the minimum of (8). A difficulty with exact penalty functions is their

inherit non-smoothness. Hence, the APPS may converge to a point of non-

differentiability. In order to “fix” the non-smoothness of exact penalty functions, many

 40

authors have proposed smoothed variants based on 𝑙1, 𝑙2, 𝑎𝑛𝑑 𝑙∞ norms. The smoothed

exact penalty functions are mid-way between the 𝑙2
2 penalty function and the exact

penalty functions. While the 𝑙2
2 penalty function has the advantage of being smooth and

simple, exact penalty function converge much faster to an optimal solution but has the

disadvantage of being non-smooth. The smoothed exact penalty functions solve the

smoothness problem of exact penalty function but converge slower than the exact

penalty functions.

 41

CHAPTER VII

ALGORITHMIC FRAMEWORK

The basic framework in Algorithm 3 is the same for all kinds of penalty functions. At

each iteration, a linearly-constrained sub-problem of the form in (9) is solved. The

accuracy requirement of the sub-problem is progressively increases as the iterations

progress. Also, the penalty parameter is progressively increased thereby penalizing the

constraints more as the iterations progress. The method continues until either the

constraint violation is reduced to the desired level and the sub-problem is solved to the

desired accuracy, or the budget of function evaluations is exhausted.

The penalty function in Algorithm 3 takes three parameters: 𝑃(𝑥, 𝜌,𝛼). The parameter 𝜌

controls the constraint penalization. The new additional parameter 𝛼 controls the degree

of smoothing for the smoothed exact penalty functions. For penalty functions that do not

require it, the parameter can be ignored by initializing 𝛼0 = 0. At each iteration, a

linearly-constrained sub-problem of the form in (9) is solved using APPS for linearly-

constrained problems. As inputs, it takes the solution of the previous solved sub-problem

(𝑥𝑘), the penalty-based objective function with 𝜌 = 𝜌𝑘 𝑎𝑛𝑑 𝛼 = 𝛼𝑘, the stopping

tolerance (𝛿𝑘), and the maximum number of function evaluations allocated for the

subproblem (𝑆𝑚𝑎𝑥). The subproblem continues until it converges or exhausts the function

evaluations. It returns the best point found 𝑥𝑘 + 1; the number of function evaluations

used, 𝑆; and a flag indicating whether or not the sub-problem solver exited successfully,

 42

𝑠𝑡𝑎𝑡𝑒. The parameters to be used are flexible. But the basic idea behind the algorithm is

to initially arrive a reasonable solution for the unconstrained problem and then use that

as the starting point to reduce the constraint violation. In other words, the first few

iterations are aimed at solely reducing the objective function value while the subsequent

iterations are aimed at reducing the constraint violation.

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟑 𝐆𝐞𝐧𝐞𝐫𝐢𝐜 𝐩𝐞𝐧𝐚𝐥𝐭𝐲 𝐦𝐞𝐭𝐡𝐨𝐝

Require: 𝜌(·,·,·) . Choose penalty function
Require: 𝑥0 satisfying 𝑙 ≤ 𝐴𝑥0 ≤ 𝑢 . Initial starting point
Require: 𝑆𝑚𝑎𝑥 > 0 . Max evaluations per subproblem
Require: 𝑇𝑚𝑎𝑥 ≫ 𝑆𝑚𝑎𝑥 . Max evaluations overall
Require: 𝜌𝑚𝑎𝑥 ≫ 1 . Maximum allowable penalty parameter
Require: 0 < 𝜌0 < 𝜌𝑚𝑎𝑥 . Initial value for penalty parameter
Require: 𝛼0 > 0 (𝛼0 = 0 if not smoothed) . Initial value for smoothing parameter
Require: 0 < 𝛼𝑚𝑖𝑛 < 𝛼0 . Minimum value for the smoothing parameter
Require: 𝛿∗ > 0 . Final subproblem stopping tolerance
Require: 0 < 𝛿𝑚𝑖𝑛 < 𝛿∗ . Minimum subproblem stopping tolerance
Require: 𝛿0 > 𝛿∗ . Initial subproblem stopping tolerance
Require: 𝜂∗ > 0 . Final constraint tolerance
1: k ← 0
2: T ← 0

3: while not converged do
4: (𝑥𝑘+1 ,𝑆, state) ← APPS(𝑥𝑘 ,𝒫(·, 𝜌𝑘, 𝛼𝑘), 𝛿𝑘, 𝑆𝑚𝑎𝑥) . Solve subproblem
5: if δk < δ∗, state is successful, and 𝜂 xk + 1 < 𝜂∗ then
6: exit (successfully)
7: end if
8: 𝑇 ← 𝑇 + 𝑆 . Update total number of evaluations
9: if 𝑇 > 𝑇𝑚𝑎𝑥 then
10: exit (unsuccessfully)
11: end if

12: if 𝜂(𝑥𝑘 + 1) > 𝑚𝑎𝑥{𝜂∗,
𝑚

5
 𝛼𝑘} then

13: 𝜌𝑘 + 1 𝑚𝑖𝑛{2𝜌𝑘,𝜌𝑚𝑎𝑥} . Increase penalty parameter
14: end if
15: 𝛼𝑘 + 1 𝑚𝑎𝑥{𝛼𝑘/2,𝛼𝑚𝑖𝑛} . Reduce smoothing parameter
16: 𝛿𝑘 + 1 𝑚𝑎𝑥{𝛿𝑘/2,𝛿𝑚𝑖𝑛} . Reduce subproblem stopping tolerance
17: 𝑘 ← 𝑘 + 1

18: 𝑒𝑛𝑑 𝑤𝑖𝑙𝑒

 43

An important factor is reducing the overall constraint violation, which is measured in

terms of the maximum violation given by

𝜂(𝑥) = 𝑚𝑎𝑥{ | 𝑐 𝑖
+(𝑥) | , 𝑖 = 1, . . . , 𝑚}. (12)

Consequently, 𝜂(𝑥) plays a role in the convergence of the algorithm. Algorithm 3 is

considered to have exited successfully if the following three criteria are satisfied[9]:

1. The sub-problem stopping tolerance is less than the desired final tolerance 𝛿∗. Note

that δk is allowed to drop below 𝛿∗
 but not below 𝛿min.

2. The sub-problem is solved successfully, meaning that APPS successfully exited with a

step length tolerance of 𝛿𝑘 ≤ 𝛿∗

3. The penalty parameter is large enough so that the maximum constraint violation,

𝜂(𝑥𝑘 + 1), is less than the specified threshold, 𝜂∗.

Note also that the penalty parameter 𝜌 is not increased if 𝜂(𝑥𝑘 + 1) is sufficiently small.

 44

CHAPTER VIII

PHASE LOCKED LOOP OPTIMIZATION

Phase locked loops play an important role in many applications ranging from frequency

synthesis to clock recovery in wireless receivers. It is made up of many individual circuit

blocks – both analog and digital. As most communication systems and integrated circuits

get faster, the performance of the phase locked loop becomes more critical in those

applications which makes use of it. But as explained in the introduction, it is not an

ordinary task optimizing the performance of phase locked loops. Lack of closed form

expression for the objective function means we need to evaluate the same through time

consuming simulations. Due to their complexity, the simulation of phase locked loops is

extremely time-consuming. To overcome the same, hierarchical techniques have been

proposed which make use of behavioral models of the building blocks to quicken the

simulation at the system level. The behavioral models are performance based models.

The best performance trade-offs of each block are represented using pareto-curves.

Hence the goal of the system level optimization is to achieve the best overall system

performance along the block level pareto fronts. Mathematically, these pareto fronts can

be modeled using non-linear equations. Hence the optimization problem is a non-linear

one in both objective function and constraints.

The rest of the chapter is organized as follows. The first sub-section of this chapter

explains about the hierarchical optimization framework. Then the basics operation of the

 45

phase locked loop and its modeling is covered followed by the APPS non-linear

optimization setup.

A. Hierarchical optimization

For large analog circuits with multiple building blocks, hierarchical optimization is a

well established approach for optimization [10], [11]. It uses a top-down methodology in

which the optimization of a complex analog system is decomposed into that of

optimizing several but smaller building blocks. Such an approach alleviates optimization

cost and provides significant run time reduction.

One approach to hierarchical analog optimization is to model the best performance

trade-offs or pareto fronts of the building blocks beforehand. The pareto fronts represent

the best block level performance trade-offs. When there are multiple competing

performance measures, one performance measure can only be improved at the cost of the

other. Pareto fronts contain those performance/design points such that no single

performance can be improved without degrading the other performance parameters.

Once we have the pareto-fronts of the block level performance parameters, it is just a

matter of doing optimization at the system level within these pareto fronts.

To get the best overall system performance, it is obvious to find the design points which

result in best building block performances. Since most building blocks have competing

performance objectives, it is impossible to find a design point which gives the best

 46

performance of all objectives. The design task then becomes a multi-objective

optimization problem which is to find the best performance trade-offs (pareto fronts). In

multi-objective optimization, performance pa dominates performance pb (supposing

smaller value is better) when,

 𝑝𝑎 ≺ 𝑝𝑏 ∶ ∀ 𝑝𝑎𝑖 ≤ 𝑝𝑏𝑖 ∧ ∃ 𝑝𝑎𝑖 < 𝑝𝑏𝑖 , 𝑖 = 1,… , 𝑛 (13)

where 𝑝𝑎𝑖 and 𝑝𝑏𝑖 are the i-th performances of interest, and there are totally n

performances. The above relation means that for a design point 𝑝𝑎 to be dominant to 𝑝𝑏,

all individual performances 𝑝𝑎𝑖 should be less than or equal to 𝑝𝑏𝑖 and there exists at

least one performance measure 𝑝𝑎𝑖 which is strictly less than 𝑝𝑏𝑖 . A set of performances

is considered as pareto-optimal if it is not dominated by any other set of performances.

The obtained pareto fronts represent the best performance tradeoffs the circuit blocks

can achieve.

The system level optimization is carried out by searching in the space constrained by

block-level pareto fronts. There exist two key benefits for this hierarchical optimization.

First, since the number of performances in the block level is much smaller than that of

the original design space, the search space can be reduced significantly, leading to

improved optimization efficiency. Another important benefit is that performance based

behavioral models for the building blocks can be used for the system level simulations.

Hence the simulation time can be significantly improved thereby reducing the overall

optimization cost. Behavioral modeling using hardware description languages (HDL)

like verilog-A has been developed for large analog designs. It is then just a matter of

 47

realistically transforming the block level specifications to behavioral level models for the

building blocks.

B. PLL basics and modeling

The CPPLL architecture is considered as a simple and effective design platform with

advantages such as zero phase error and an extended frequency range of operation, and

is widely adopted in many PLL systems.

Figure 12: PLL Block Diagram

A CPPLL consisting of five building blocks, namely phase frequency detector (PFD),

charge pump (CP), loop filter (LF), voltage controlled oscillator (VCO) and divider (D)

is shown in Fig. 12. The output frequency can be set to multiples of the reference input

frequency by changing the ratio N of the divider: Fout = N·Fref.

The analog blocks CP, LF and VCO are only considered for the optimization while the

digital blocks (PFD&D) are assumed as ideal. The CP shown in figure 13 consists of two

current sources: source and sink currents. When the up (down) signal is active, the

 48

source current flows into (out of) the loop filter shown in figure 14, so that the output

voltage of the loop filter rises up (drops down), which forces a higher (lower) oscillation

frequency. Note that the up and down signals cannot be active at the same time.

The VCO can either be a ring oscillator or an LC tuned oscillator shown in figure 15. In

the ring oscillator, input voltage controls the current through the delay elements which

determines the delay of each stage and the output oscillation frequency. In an LC

oscillator, the input voltage fine tunes the capacitance of a varactor thereby modifying

the output resonant frequency of the VCO. An ideal VCO generates a periodic signal

whose frequency is a linear function of the controlling voltage. The output frequency fout

is given by:

𝑓𝑜𝑢𝑡 = 𝑓𝑚𝑖𝑛 + 𝐾𝑉𝐶𝑂 ⋅ (𝑉𝑖𝑛 − 𝑉𝑚𝑖𝑛) (14)

fmin is the minimum output frequency at the corresponding minimum input voltages

Vmin. Vin is the output controlling voltage of the loop filter.

Figure 13: Charge Pump

 49

Figure 14: Loop Filter

Figure 15: Voltage Controlled Oscillator

There are many important performance parameters for the CPPLL system: locking time,

jitter, power consumption, unity gain-bandwidth, phase margin and output frequency. In

this work we mainly consider the locking time of the PLL system. The locking time is

defined as the time taken by the CPPLL to synchronize with or to lock onto a new

frequency. In other words, it is the time required for the PLL to go into capture state.

The performances shall be considered at the worst case. Therefore the locking time is

 50

defined as the time for the output frequency directly jumping from 𝑓𝑚𝑖𝑛 to 𝑓𝑚𝑎𝑥 . Jitter

or phase noise is the random deviation of the PLL output frequency. Though only the

locking time is considered as the objective function, the addition of jitter and power into

the objective function is trivial.

At the block level, as mentioned before we use performance based behavioral models to

specify the operation. Each building block has its own set of performance parameters

which are used to model it at the block level.

For the VCO, three main performance measures are considered: gain, phase noise and

power. In addition, the performance trade-offs or the pareto fronts are also modeled

before-hand. For the charge pump, the up and down currents are the performance

parameters while for the loop filter, they are the filter parameters themselves

(Rp,Cp1,Cp2) .

The pareto fronts represent the optimal performance trade-offs at the block level. For

instance as the VCO gain varies inversely with the phase noise, the pareto front captures

the best VCO gain for a given phase noise and vice versa. An example of the pareto

curves for the PLL building blocks is shown in figure 16. As it can be seen, the pareto

surface for the VCO is a 3-D hyper-surface with gain, phase noise and power as the

dimensions. . The VCO gain and phase noise are inversely related; and for a given gain,

the phase noise decreases as the power increases.

 51

Figure 16: PLL Block Level Pareto Curves

C. PLL optimization setup

The lock time of the PLL is considered to be the objective function for the system level

optimization. The optimization variables are the block level performance measures. The

constraints are the block level trade-offs represented as pareto-fronts. For the charge

pump, there are only two conflicting performance measures and hence it is modeled as a

2 D curve while for the VCO, the pareto-fronts form a 3 D hyper-surface. The limits of

the block level performance measures in the pareto-fronts are the bounds for the

optimization variables. The mathematical representation of the optimization problem is

given by

min𝑥∈ 𝑅𝑛 𝑓 𝑥 (15)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐶𝐸 (𝑥) = 0

𝑙 ≤ 𝐴𝑥 ≤ 𝑢.

 52

Here 𝑓(𝑥) represents the PLL locking time as a function of 𝑥, the block level

performance measures. The performance measures considered are VCO gain, power and

phase noise, Charge pump up and down currents, and loop filter element values. As

explained in the section on hierarchical optimization, the number of optimization

variables is significantly reduced if we use performance models for the individual

building blocks. The equality constraints 𝐶𝐸 (𝑥) represent the non-linear block-level

performance trade-offs or pareto-fronts. The main trade-offs considered are those

involving the VCO. For example, the VCO gain and phase noise are inversely related;

and the relationship also varies with the power. The pareto-fronts are modeled using a

regression engine called SVM (support vector machine). The optimization is done using

APPS and the non-linear constraints are handled using the modified flow described in

Chapter VII.

 53

CHAPTER IX

PLL OPTIMIZATION RESULTS

The PLL block level performance measures and the lock time before and after

optimization are given in Table 5. The parameters chosen for the non-linear APPS

algorithm are given in Table 6.

Table 5: PLL optimization results

VCO Gain

VCO

Noise

VCO

Power

CP

up(uA)

CP

down(uA)

LPF

(R,C1,C2)

PLL

Locktime
(µs)

Initial
1.57e+9

1.187e-
11

7.92e-
6

1.0985 1.1656
120k,

3.125p,0.75p
1.99

Final
1.9e+9

1.069e-
11

1.01e-
5

1.0885 1.1695
188k,

3.125p,0.8p
0.65

The initial scaled constraint violation was 1.27637 for the VCO and the final constraint

violation after all the optimization iterations was found to be 0.0092 showing a 99%

reduction in constraint violation. In relative terms, the deviation of the VCO gain from

the pareto curves reduced from 20.92 % to just 0.14%. Thus the enhanced optimization

flow reduces the objective function without violating the constraints. The results also

show that the locking time was also reduced from 1.99 micro-seconds to 0.65 micro-

seconds, a 67 percent reduction. The result was reached in just three iterations of APPS

with increasing penalty parameter values. The final solution also conforms to intuitive

reasoning that locking time can be reduced by increasing the loop gain which is achieved

by increasing VCO gain.

 54

Table 6: Non-linear optimization parameters

𝜌(·,·,·) penalty function 𝑙2
2

𝜌𝑚𝑎𝑥 . Maximum allowable penalty parameter 1e8

𝜌0 . Initial value for penalty parameter 1

𝛿∗ > 0 . Final subproblem stopping tolerance 10e-3

𝛿𝑚𝑖𝑛 Minimum subproblem stopping tolerance 1e-6

𝛿0 Initial subproblem stopping tolerance 1e-1

𝜂∗ Final constraint tolerance 1e-3

The experiments were done using 𝑙2
2 penalty functions since they are smooth and

guaranteed to converge. Though their penalization is low for small constraint violations,

they were preferred over other penalty functions due to their simplicity. Also, it is not

clear why we should penalize small constraint violations more. Support vector machine

(SVM) was used to model the non-linear constraints representing the pareto fronts. The

models were generated prior to simulation and were used to get the difference between

the predicted values and optimization variables. It should be noted that for the VCO,

SVM is used to model the hyper-surface representing the various performance trade-

offs. But if we are modeling two performance parameters as independent variables, there

is bound to be a small error since they are not exactly uncorrelated. But this should not

cause any problem to the final objective function value as the optimization should bring

the variables to within the hyper-surface. One more observation is regarding the speed of

the method. Initially it might appear that we need to run the optimization for multiple

iterations and run time grows linearly with the number of iterations. But it should be

noted that at the end of each APPS iteration the objective function value gets closer and

closer to the optimum value. Hence the number of inner loop or the actual APPS

iterations keeps progressively reducing as the algorithm proceeds. It is also advisable to

 55

progressively reduce the step size as the penalty parameter is increased. This is to speed

up the first few iterations in which we are having a low penalty parameter and the main

intention is to get a feasible starting point for the future iterations. But it does not hurt to

have the same step length from the beginning with regard to the final function value.

This is because, if we have a fine step length in the first iteration itself, the algorithm

will spend a long time in reducing the constraint violation right from the start. The run

time will increase at the cost of lesser number of APPS iterations.

 56

CHAPTER X

CONCLUSION

Thus, a modified asynchronous parallel pattern search for clock mesh skew optimization

is presented in this thesis. The proposed method is shown to achieve desirable results in

terms of skew reduction and runtime. The method is further extended to be able to

incorporate non-linear constraints. The enhanced algorithm is then applied to PLL

system level behavioral optimization to reduce the locking time of the system. Desirable

results are achieved on that front too.

The future course of work is to incorporate more advanced penalty functions to make the

algorithm suitable for any kind of non-linear constraints. Also, generalized speeding up

techniques can be developed to make the algorithm more efficient for any kind of VLSI

optimization problem.

 57

REFERENCES

[1] P.J. Restle, T.G. McNamara, D.A. Webber, P.J. Camporese, K.F. Eng, et al., “A

clock distribution network for microprocessors,” in IEEE Journal of Solid-State Circuits,

vol. 36, pp. 792–799, May 2001.

[2] R. Heald, K. Aingaran, C. Amir, M. Ang, M. Boland, et al., “Implementation of a

3rd-generation SPARC V9 64b microprocessor,” in Proceeding of the ISSCC Digest of

Technical Papers, San Francisco, California, Feb. 2000, pp. 412-413.

[3] G. Venkataraman, Z. Feng, J. Hu, and P. Li, “Combinatorial algorithms for fast clock

mesh optimization,” in Proc.IEEE/ACM Intl. Conf. on CAD, San Jose, California,

November 2006, pp. 563 – 567.

[4] T. G. Kolda, “Revisiting asynchronous parallel pattern search for nonlinear

optimization,” SIAM Journal of Optimization., vol. 16, no. 2, pp. 563–586, 2005.

[5] G. A. Gray and T. G. Kolda, “Algorithm 856: Appspack 4.0: Asynchronous parallel

pattern search for derivative-free optimization,” ACM Trans. Math. Softw., vol. 32, no. 3,

pp. 485–507, 2006.

[6] X. Ye, P. Li, M. Zhao, R. Panda, and J. Hu, “Analysis of large clock meshes via

harmonic-weighted model order reduction and port sliding,” in Proc. IEEE/ACM Intl.

Conf. on CAD, San Jose, California, November 2007, pp. 627-631.

[7] A. Ruhe, “The rational Krylov algorithm for nonsymmetric eigenvalue problems. III:

Complex shifts for real matrices,” BIT Numerical Mathematics, vol. 34, pp. 165–176,

1994.

 58

[8] P. Spellucci, “An SQP method for general nonlinear programs using only equality

constrained subproblems,” Mathematical Programming, vol. 82, pp. 413–448, 1993.

[9] J.D. Griffin and T.G. Kolda, “Nonlinearly-constrained optimization using

asynchronous parallel generating set search,” SAND 2007-3257, Sandia National

Laboratories, Albuquerque, NM and Livermore, CA, May 2007.

[10] G. Yu and P. Li, “Yield-aware hierarchical optimization of large analog integrated

circuits,” in Proc. of IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose,

California, November 2008, pp. 79-84.

[11] J. Zou, D. Mueller, H. Graeb, and U. Schlichtmann, “A CPPLL hierarchical

optimization methodology considering jitter, power and locking time,” in Proc. of

IEEE/ACM DAC, San Francisco, California, July 2006, pp. 19–24.

http://csmr.ca.sandia.gov/~tgkolda/ref#SAND2007-3257
http://csmr.ca.sandia.gov/~tgkolda/ref#SAND2007-3257

 59

VITA

Srinath Sudharshan Narasimhan received his Bachelor of Engineering degree in

electronics and communication from College of Engineering Guindy, Anna University in

2005. He entered the Master of Science program at Texas A&M University in August

2007. His research interests include Circuit Design and EDA. Mr. Srinath may be

reached at D-33 Bay View Apartments, Kalakshetra Colony, Besant Nagar, Chennai

600090, India. His email is srinath1984@gmail.com.

