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 ABSTRACT 

 

Generating Tensor Representation from Concept Tree in 

 Meaning Based Search. (May 2010) 

Jagannath Panigrahy, B.Tech., 

 National Institute of Technology, Tiruchirapalli, India 

Chair of Advisory Committee: Dr. Rabi N Mahapatra 

 

  

 Meaning based search retrieves objects from search index repository based on 

user’s search Meanings and meaning of objects rather than keyword matching. It 

requires techniques to capture user’s search Meanings and meanings of objects, 

transform them to a representation that can be stored and compared efficiently on 

computers. Meaning of objects can be adequately captured in terms of a hierarchical 

composition structure called concept tree. This thesis describes the design and 

development of an algorithm that transforms the hierarchical concept tree to a tensor 

representation using tensor algebra theory. These tensor representations can capture the 

information need of a user in a better way and can be used for similarity comparisons in 

meaning based search. A preliminary evaluation showed that the proposed framework 

outperforms the TF-IDF vector model in 95% of the cases and vector based conceptual 

search model in 92% of the cases in adequately comparing meaning of objects. The 

tensor conversion tool also was used to verify the salient properties of the meaning 
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comparison framework.  The results show that the salient properties are consistent with 

the tensor similarity values of the meaning comparison framework. 
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1. INTRODUCTION 

 

 

 In today’s world internet has become the biggest resource for providing 

information on various topics. Search applications have become widespread and 

frequently used. A study has shown that an estimated 13 billion internet searches are 

being performed per month and it is growing at a rate of 38 percent annually [1]. With 

the increase in use of search applications there is also an increase in the expectations of 

users for better search performance. There is a continuous demand for meaning based 

search capabilities that can understand user query semantics. Today users look for a 

small set of precise results on a broad range of topics and they are more concerned with 

the precision of the search results compared to its recall [2]. Users also want search 

engines to provide different kinds of objects in query results like audio files, video files 

image files along with text files. The current Information retrieval technologies have 

several limitations to satisfy the current expectations of users. So there is a need for a 

new framework that can address the limitations of current Information Retrieval (IR) 

technologies. A meaning based search-framework [3, 4] can be a solution to address 

some of the limitations mentioned above. 

 The meaning based framework tries to address two key challenges of a meaning 

based search engine; they are Meaning Representation and Meaning Comparison. It 

describes a method that can be used to adequately capture the meaning of objects in  

____________ 

This thesis follows the style of IEEE Journal of Solid State Circuits. 
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terms of a hierarchical composition structure called concept tree [3, 4]. This thesis 

describes the design and development of an algorithm based on a Tensor algebra theory 

that converts a concept tree to a Tensor representation which can be stored and used for 

similarity comparison on computers. Two tensor representations can be used for 

similarity comparison by taking the inner dot product of the basis vectors which is 

analogous to the vector model approach. As part of the thesis work a Java based concept 

tree to tensor conversion application is developed using the proposed algorithm and used 

for simulations to carry out experiments and evaluate the Meaning based framework.  

 This thesis is organized as follows. In the next section, we present a brief 

introduction to the Tensor Algebra theory and the proposed algorithm to convert a 

concept tree to a tensor representation. We then follow up with a brief discussion on the 

salient properties of the proposed Tensor Algebra and simulations that verifies the 

properties. Then we conclude by discussing some implications of our results and 

possible future work ideas. 

In this section, we first present a brief introduction to our meaning based search 

framework and provide description about concept trees. We then talk about the 

motivation behind the problem and summarize some of the related research work in this 

area. Finally, we include a section that enlists the notation used in the rest of the thesis. 

 

1.1 Meaning Based Search 

 Before going into details of a meaning based search engine, let’s explore the 

traditional search engine system. A search engine is a system that collects and organizes 
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content from all over the internet. Those wishing to locate something would enter a 

query about what they'd like to find and the engine provides links to content that matches 

the user need. An abstract view of the above idea can be thought of by imagining the 

internet as a collection that stores objects and each object is associated with a key that 

can uniquely identify the object in the collection as shown in Figure 1. The search 

system matches the user query against all the keys and retrieves the matched documents. 

To make this comparison efficient and fast, an index data structure is build which stores 

the Key-object mappings and can be used for fast and accurate information retrieval. [5]  

 

 

 

 

Figure1 Overview of search process 
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 Meaning based search system is a system Search system that identify objects 

based on user’s search intention and object’s meaning rather than simple keyword 

matching. 

 Such a system can capture the user information need in a batter way and can give 

better results to end user with higher precision [2]. The meaning based search process 

can be viewed as below. Here we require some transformation techniques that can 

transform the object descriptions and user intentions to an appropriate key for 

comparisons as shown in Figure 2. 

 

 

 

 

Figure 2 Transformations involved in meaning based search 

 

 There are many challenges involved in realizing a meaning based search system. 

Two of the key challenges are Meaning Representation and Meaning Comparison. 
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 Two descriptions can have the same set of keywords but the meanings can be 

completely different [3, 4]. If keyword set will be used to represent the two descriptions 

then it is not a good technique for meaning based comparison. So there is a need for a 

new technique that can represent meaning appropriately. Adequate meaning 

representation determines search system efficiency in terms of accurate information 

retrieval. 

 We also require techniques that can compare the meaning representations 

efficiently as it is the core process of any information retrieval process that determines 

its efficiency in terms of computation speed. 

 Meaning based search framework proposes a new technique for meaning based 

searching. This framework describes a meaning based comparison model [5, 7]. The 

model proposes a technique to capture the meaning from textual descriptions of objects. 

It creates a semantic key called semantic descriptor from the object description and 

builds a search index repository [1, 3, 4]. Similarly it constructs a search key semantic 

descriptor for the user query and uses it for searching. This technique allows users to 

successfully retrieve results based on object descriptions and not merely through 

keyword matching as done by most vector based search models. The generation of 

semantic descriptor is a multi-step process. The object description is captures by a 

hierarchical composition structure called a Concept Tree [3, 4]. The concept tree 

represents the complex meaning [8] of the user Meanings (or objects in index repository) 

though a hierarchical composition of concepts. The higher level complex concepts are 

represented in terms of a hierarchy of simpler concepts. Thus the leaf nodes of the 



 

concept tree are elementary concepts in the domain ontology which requires no further 

decomposition. A detailed description of 

given later in the section. 

 

 

 

 Figure 3

 

1.2. Motivation & Related Work

 To realize the Meaning

technique to store and compare 

they are. We need a meaning representation technique to 

concept tree structure on computers and a comparison algorithm to compare two 

trees. There are some meaning representation and 

earlier. Some of the existing techniques are listed below. None of the proposed 

concept tree are elementary concepts in the domain ontology which requires no further 

etailed description of concept tree design and rationale behind it 

Figure 3 Meaning based search model 

Motivation & Related Work 

Meaning based search model as shown in Figure 3

and compare the concept trees on computers to find out how similar 

We need a meaning representation technique to successfully 

on computers and a comparison algorithm to compare two 

meaning representation and tree comparison techniques 

. Some of the existing techniques are listed below. None of the proposed 
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concept tree are elementary concepts in the domain ontology which requires no further 

design and rationale behind it is 

 

as shown in Figure 3 we need a 

to find out how similar 

successfully represent the 

on computers and a comparison algorithm to compare two concept 

tree comparison techniques proposed 

. Some of the existing techniques are listed below. None of the proposed 
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techniques support the concept composibility factor [3, 4] when comparing two concept 

trees.  

1.2.1 Existing Meaning Representation Technologies 

 There are several search engine frameworks exist today. They are based on the 

following meaning representation models. Some of them are shown below. 

1.2.1.1 Boolean Model 

 Boolean search model are designed using Boolean algebra. It uses exact 

matching to match documents to user queries. The inability to identify partial matches 

leads to poor performance. Variations of Boolean search models like “Fuzzy Boolean 

engines” are derived which are based on fuzzy logic but this model still suffers from the 

problem that it cannot capture complex meanings. This model also cannot address two 

common problems of information retrieval process synonymy and polysemy. [2, 3, 6, 7]. 

1.2.1.2 Vector Space Model 

 This framework uses the vector space model developed by Gerard Salton [6, 10]. 

This model transforms text documents into numeric vectors and matrices then employ 

matrix analysis techniques to classify, retrieve, rank documents. The documents and 

query are represented by vectors as below 

 

dj = (v1,j,v2,j,...,vt,j)  q = (v1,q,v2,q,...,vt,q)    (1.1) 

 

 

 To compute similarity, cosine of the angle between the query vector and the 

document vector is computed. A cosine value of zero indicates no match and a value of 

one indicates exact match. Different weight assigning schemes (e.g. td-idf) [6,7] are used 
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for assigning weights to the individual basis vectors of the document/query vectors. This 

model can not address the semantic sensitivity of documents because it used a bag of 

words approach. [6]  

 Advanced vector space models like Latent Semantic Indexing (LSI) [11] address 

the problems of synonymy and polysemy and also can access the semantic structure in a 

document collection. 

 This method still cannot address the problem of capturing complex ideas of 

documents and unsuitable for meaning based search framework. 

1.2.1.3 Probabilistic Model 

 Probabilistic models [7] rank documents by their odds of relevance, the ratio of 

the probability that the document is relevant to the probability that the document is not 

relevant to the query. This model operates recursively and requires that the underlying 

algorithm guess at initial parameters, then iteratively try to improve this initial guess to 

obtain a final rankings. 

 This model is very complex and has scalability issues and is not suitable for 

Meaning based search framework. 

1.2.1.4 Graph Based Model 

 Graphs [13] can be used to represent concept relations in a document. Each 

concept can be represented using a node and the concept relations can be represented 

using links between nodes. This technique can successfully represent the meaning of 

documents. This technique suffers from the fact that building and using such structures 

for computations is very expensive and non realistic. [3,14] 
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 Accurate meaning comparison techniques require accurate meaning 

representation techniques. Before exploring the possible ways of representing a meaning 

lets discuss the notion of meaning briefly. 

1.2.2 Meaning 

 Meaning is what humans think in mind when they hear some description of an 

object, or when they try to describe an object [8, 9]. For example to describe an object 

say a “car”, it can be done using a set of attributes of the object car, say the wheels, the 

engine, transportation means etc; each such description represents a concept. Human 

beings convey and comprehend meaning using concepts which are the mental 

representation of meaning. The complex description of car is represented using concepts 

wheels, engine, transportation etc. So comparison of meaning actually means 

comparison of concepts of the descriptions. 

 To capture the meaning of descriptions using concept trees we can represent the 

complex idea of the description using simpler hierarchical constructs of elementary 

concepts which require no further decomposition [3, 4 ]. An example is shown in Figure 

4. 

 



10 

 

 

Figure 4 Concept tree to capture complex meaning 

 

 This concept tree structure can adequately represent the meaning of the 

description. For example the following two descriptions can be represented using the 

concept tree structures as shown in Figure 5. 

 

 

 

 

Figure 5 Concept tree distinguishing meanings 
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 The next key challenge involved in Meaning based search is how to compare two 

concept trees. The comparison technique should consider the meaning compatibility 

factor of concepts when doing the comparison of two concept trees. Let’s analyze if any 

existing tree comparison technique can be used for comparison. 

1.2.3 Existing Tree Comparison Algorithms 

 These techniques are used to compute similarity between concept trees generated 

through classifiers, where concept refers to classes or categories in document collection 

or ontology. The classical tree similarity measuring approaches focus on the structural 

and geometrical characteristics of the trees. The degree of similarity between two trees is 

measured by the minimal cost of editing sequences that convert one tree into the other 

one from pure structural perspective. Some other techniques also take into account the 

knowledge information at concept tree nodes when doing a comparison. 

1.2.3.1 Edit Cost (or Edit Distance)  

 Edit distance [14, 15] from one tree with reference to other tree is used to 

measure similarity of two trees. This technique mainly focuses on finding matches based 

on the pure structure or geometry perspective, without considering the conceptual 

semantics of the tree nodes in a knowledge context. This will not give accurate 

estimation of the similarity between two concept trees in our model. 

1.2.3.2 Concept Taxonomy Modeling 

 Ontology has a tree structure that is modeling concept taxonomy [16]. A method 

was developed to measure the similarity between ontologies based on the notions of 

lexicon, reference functions, and semantic cotopy [16]. This method is based on an 
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assumption that the same terms are used in different ontologies for concepts but their 

relative positions may vary. This research did not take the structural characteristics of 

trees into consideration. 

1.2.3.3 Tree Structure Mapping 

 It is another one of the often used methods. It proposes a mapping method that 

combines the similarity of the inner structure of concepts in different ontologies and the 

language similarity of concepts using lexical databases like WordNet [17]. This work did 

not handle cases of cross-layer mappings, which is common in tree mapping where 

similar terms may be placed in various layers within the trees and definitely a key 

requirement in our proposed model. 

1.2.3.4 Tree Transformation 

 It is another technique that extends the classical tree editing operation based 

similarity measuring method to make it more applicable to compare trees that are 

representing concept structures [18]. Again this method is not suitable because meaning 

composibility factor [3, 4] is not taken into account. 

 Summarizing, to the best of our knowledge, no existing concept tree similarity 

computation technique exists that take into consideration tree structure of concepts and 

the composition of the concepts. Existing meaning representation models also cannot be 

used for the similarity computation.  

 

 

 



 

1.3 Our Approach 

 So a new Tensor Model is proposed based on a new algebra theory that 

the concept tree into a Tensor 

Meaning based search- retrieval 

scalar weighted polyads of basic basis vectors

concept tree. A two level concept tree containing

represented as below in Hilbert space

 

 

 

Figure 6 Tensor r

  The tensor representation can be used for similarity computation by using the 

cosine similarity method analogous to the vector based model which is fast and efficient

[3, 4]. Two normalized tensor represen

taking the inner dot product of the tensors.

 

So a new Tensor Model is proposed based on a new algebra theory that 

Tensor representation [3, 4, 19]. This is the core 

retrieval framework. The Tensor representation 

scalar weighted polyads of basic basis vectors which are elements at leaf nodes of the 

level concept tree containing two child leaf concepts can be 

in Hilbert space as shown in Figure 6. 

 

Tensor representation in Hilbert space for a concept t

The tensor representation can be used for similarity computation by using the 

cosine similarity method analogous to the vector based model which is fast and efficient

Two normalized tensor representations can be used for similarity computation by 

taking the inner dot product of the tensors. 
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So a new Tensor Model is proposed based on a new algebra theory that converts 

the core process of the 

Tensor representation is a sum of 

which are elements at leaf nodes of the 

two child leaf concepts can be 

 

for a concept tree  

The tensor representation can be used for similarity computation by using the 

cosine similarity method analogous to the vector based model which is fast and efficient 

tations can be used for similarity computation by 
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1.4 The Problem 

 This thesis explores the design of an algorithm to convert the Concept Tree into a 

Tensor representation using the proposed Tensor algebra theory. This thesis concentrates 

on designing and developing a tool in java using the proposed algorithm to generate 

Tensor representations from concept trees. This tool can be used for experiments to 

evaluate the Tensor model against vector space models. Our preliminary study showed 

that this approach outperforms the TF-IDF in 95% of the cases and Vector model in 92% 

of the cases [3, 4].  

 The thesis also describes the salient properties of the proposed Tensor Model 

based composition framework. The salient properties of the Tensor Model are 

represented as below. 

Property I: Composition Information is included (Conjunction) 

Property II: An incomplete set of elementary meanings can identify the composite 

meaning 

Property III: Higher level compositions are more important 

 These properties are verified through simulations using an in house developed 

tool. 

 

1.5 Notations 

 A Concept Tree (CT) is acyclic and directed n ary tree. For any two nodes u,v If 

(u, v)∈E (set of edges of CT), we call u a parent of v and v a child of u, denoted as u = 

parent(v) or v = child(u). The set of all children of node u is denoted as C(u).  The 
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intermediate nodes of the tree represent intermediate tensors of the sub-tree rooted at that 

node. 

 

The following conditions are satisfied by any concept tree: 

1. The root node does not have parent node. 

2. Any node in CT other than the root has one and only one parent node. 

3. There is a unique directed path composed by a sequence of elements in E from the 

root to each of the other elements in CT. 

4. Each intermediate node has an associated co-occurrence set H, which defines the 

composition rules of the child nodes. 
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2. CONCEPT TREE TO TENSOR CONVERSION PROBLEM 

 

 

 In this section, we introduce the problem of finding a suitable algorithm for 

converting a concept tree structure to a Tensor representation. The goal of this 

conversion algorithm is to convert the concept tree into a tensor that can retain the 

compositions of the concepts in the concept tree and at the same time can be used 

effectively in similarity computations. This algorithm is developed from the Tensor 

algebra theory which addresses the above design rationales. In this section, we will 

explain details of Tensor algebra theory; follow it up with the algorithm and its 

implementation.  

 

2.1 Tensor Algebra 

 The tensor algebra theory is designed to address the conjunction, disjunction 

compositions of the concepts of the concept tree. The tensor algebra theory [3, 4] 

expresses a concept tree as a Tensor in Hilbert space. The Tensor is represented by set of 

basis vectors, which comprises of the basic basis vectors (elementary concepts at leaf 

nodes) and polyadic combinations of the basic basis vectors (composite concepts at non-

leaf nodes) [3,4]. These polyadic combinations represent the conjunction of basic basis 

vectors. The final Tensor representation of the concept tree is a sum of scalar weighted 

polyadic combination of basic basis vectors which are elementary concepts in the 

domain ontology.  
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 The semantic similarity between two concept trees is given by the cosine product 

of their tensors representations. This technique is similar to what is used to find 

document similarity in Vector space models. A higher cosine product value indicates 

higher similarity between concept trees and thus the objects represented by the concept 

trees are semantically more close to each other. 

  To retain the compositions of concepts during Tensor generation two binders and 

a co-occurrence set is defined to carry out the transformation of concept tree to Tensor 

representation. A brief description of the binder algebra and co-occurrence set is given 

as below.[3,4]. 

2.1.1 Definition of  Binder  

 For case of one, two and three arguments we define:  

 

AA ≡][           
 

BAABBA +≡],[          
 

CBABCACABBACACBABCCBA +++++≡],,[
   

 

 

AB denotes a dyadic tensor product, ABC denotes a triadic tensor and a polyadic tensor 

[2,5] is denoted by juxtaposition (e.g., ABCD...). In general, AB ≠ BA. This definition 

can be expanded for a general case of “n” arguments, where the sum of product form has 

all permutations of arguments: A, B, C, etc. 

2.1.2 Definition of  Binder 

  For one, two and three arguments: 

[ ],..,••

{ },..., ••
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BAAB

BAAB

++

++
≡

    

 

 

])[*][*][*],[*2],[*2],[*2],,[*6(
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ChBhAhCAhCBhBAhCBAh
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CBAACBCABABC

CBAACBCABABC

++++++

++++++
≡

 

This binder encompasses all possible combinations and permutations of arguments. The 

resultant tensor is also normalized and used as an elementary tensor to be incorporated 

for next higher level of composition. 

2.1.3 Co-occurrence Set “H” 

 Each instance of  binder has a corresponding set of co-occurring 

coefficients “H”, having real valued scalar elements. A tensor having three child 

concepts “A”, “B”, “C” will have seven coefficients  (e.g. H = set { hABC, hAB, hBC, hAC, 

hA, hB, hC}), each of which indicates the importance of the corresponding polyad to 

represent the meaning of the composed concept.  

 For example, when only hABC = 1 and all other scalars hAB = hBC ….= hC = 0, 

then the composed concept is the one which is given by a strict conjunction of A,B and 

C. Whereas the set hA = hB = hC = 1 and hABC = hAB = hBC = hAC = 0 represents 

disjunction composition. A mix of all these extremes is possible by suitable choice of co-

occurring coefficients. Rules that guide assignment of these values can be codified and 

made accessible along with composition templates. These parameters are normalized by 

(n!)
1/2

, where “n” is the number of arguments in { },..., ••  binder. [3,4]  

{ },..., ••
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 Delimiter vectors “>” and “<” are introduced between tensors which are at 

different tree levels. The delimiter vectors point toward the tensor which belongs to a 

lower tree level. For example, instead of “CAB” and “ABC” we write “C>AB” and 

“AB<C”. The use of delimiter vectors ensure that trees having same leaves but different 

composition do not have similarity beyond which is contributed by the individual leaves 

as shown in Figure  7. The ordering and combination of the leaf tensors and the delimiter 

vectors “>” and “<” in the polyadic products retains the information about the tree 

structure [3,4]. 

 

 

 

Figure 7 Tensor representations with delimiters “>” and “<” 

 

 

2.2 Modified Tensor Algebra 

 A modified Tensor Algebra theory is developed to improve the performance of 

the Tensor model. The modified algebra will generate fewer basic vectors for final 

tensor representation. 
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2.2.1 Modified Binder Algebra & Co-occurrence set 

 Two modified algebraic binder connectives are proposed to improve the tensor 

generation process and generate fewer basis vectors in final tensor representation [3]. 

The new binders are (1) ; and (2) , with following notations 

1. Basic basis vectors with lower case alphabets with arrow on top e.g a  

2. Scalar co-efficient with lower case alphabets with no arrows si 

3. Tensors as capital letters 

4. hsh( a ) is hash value of the string representation of basic basis vector a  

2.2.1.1 Definition of  Binder  

 For case of one, two and three arguments we define:  

 

aa ≡][  

 

<
r

>
r

baba ≡],[ , if hsh( a ) > hsh ( b
r

) 

  <
r

> ab≡ ,   if hsh (b
r

) > hsh( a )    

 

<
rrr

>
rrr

cbacb ≡],,a[  if, hsh( a
r

) > hsh ( b
r

) > hsh ( c
r

) 

      <
rrr

> cab≡  , if hsh(b
r

) > hsh( a
r

) > hsh( c
r

) 

      . 

                 . 

  

AB denotes a dyadic tensor product, ABC denotes a triadic tensor and a polyadic tensor 

[A,B,C,…] is denoted by juxtaposition (e.g., ABCD...). In general, AB ≠ BA. This 

definition can be expanded for a general case of “n” arguments, where the sum of 

product form has all permutations of arguments: A, B, C, etc. 

[A,B,C,…..] = ∑ sa,i sb,j …..[ a
r

i , b
r

j, c
r

k,……] 

 

[ ],..,•• { },..., ••

[ ],..,••



21 

 

2.2.1.2 Definition of  Binder 

  For one, two and three arguments: 

A
h

Ah
A

A

A
=≡

][*
}{

   

 

BAAB

BAAB

hhh

BhAhBAh
BA

++

++
≡

][*][*],[*
},{  

 

CBACABCABABC

CBAACBCABABC

hhhhhhh

ChBhAhCAhCBhBAhCBAh
CBA

++++++

++++++
≡

])[*][*][*],[*],[*],[*],,[*(
},,{

 
 

This binder encompasses all possible combinations and permutations of arguments. The 

resultant tensor is also normalized and used as an elementary tensor to be used for next 

higher level of composition as shown in Figure 8. The “h” values indicate the 

importance of a composition in the final tensor representation. 

 Polyadic combination of basis vectors are represented as concatenated strings, 

each of which represents individual basic basis vectors. hsh( a ) represent the hash value 

of the string that represent the basis vector a . For implementation 128 bit MD5 hashing 

is used. [3] 

 

 

 

Figure 8 Tensor representations with delimiters “>” and “<” using new binder 

{ },..., ••
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 The use of new binder generated fewer number of basis vectors as shown in 

Table 1 in the final tensor representation and requires fewer iterations. The table below 

shows a comparison of the number of basis vectors generated using the old binder and 

new binder. For our experiment analysis the Tensor representation algorithm uses the 

modified new binder functions for generating tensors. 

 

Table 1 Superior performance of new binder 

Sl. No Tensor # of leaves Basic vectors 

(New Binder) 

Basic vectors 

(Old Binder) 

1 {{a,b},{c,d}} 4 15 40 

2 {{a,b,c},{d,e,f},{g,h.i}} 9 511 21645 

3 { {a,b},{{c,d},{e,f}}} 6 63 364 

4 { {{a,b,c},{d,e,f},{g,h}}} 8 255 5598 

 

 

2.3 Concept Tree to Tensor Generation Algorithm 

 To solve the problem of concept tree to Tensor transformation, we need to 

precisely define the concept tree structure and break it down to simpler problems.  We 

can express a concept tree in terms of an N-ary tree where each node in the tree can have 

zero or more concepts. If a node is a leaf node, it will have one elementary concept 

representing the leaf node. If it’s a non-leaf node, it will have links to multiple nodes, 

some of them could be elementary concepts or composite concepts (sub trees). This 
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concept tree structure can be defined using an abstract n ary tree. So from an algorithmic 

perspective the problem here is to transform the n-ary abstract tree using the binder 

functions in bottom up or top down manner and express the tree as a linear combination 

of the leaf node concepts and their compositions. 

2.3.1 Approach 

 The tree expansion algorithm uses a bottom up approach to transform the n-ary 

abstract tree, i.e. for any level Ln, expand its child tensors at level Ln+1 using the binder 

before expanding the concepts at nodes in level n. Since each intermediate node 

represents an intermediate tensor for the concept sub-tree at that node, this recursive 

algorithm can be used to generate the Tensors at higher level nodes in the tree as shown 

in Figure 9.   

 

 

 

   Figure 9 Tree to tensor expansion in bottom up fashion 
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 In general, an N-ary concept tree structure is shown as above. Each node is a data 

structure that contains two kinds of information: the data for that node (tensor) and a 

collection of references to the next nodes in that sub-tree. If we closely observe the 

structure of the concept tree, each internal node in the tree represents an intermediate 

tensor of the sub concept-tree rooted at that node. Each leaf node can be thought of as a 

tensor having only one basis vector. This intuition gives an idea about the algorithm to 

compute the tensor representation using a recursive function which is ideal for a tree like 

data structure. 

 To define the steps involved in the recursion, and to hold the intermediate 

Tensors we define some useful data structures.\ 

2.3.2 Useful Data Structures 

 We defined some data structures for developing our tree expansion algorithm. 

They are listed below. 

2.3.2.1 Product Container 

   P = X: A, B, C      

 This container used to hold the individual basis vectors in the tensor 

representations corresponding to the [..] binder. This container has two components, one 

to hold the normalized scalar weight (X) associated with the basis vector and second one 

to hold the elementary concept tensors (A, B, C). 

2.3.2.2 Sum Container 

   S = P1, P2, P3… Pn 
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 This container will hold the composite tensor representations at intermediate 

nodes during expansion which will be used in the next higher level expansion. Each sum 

container corresponds to the {..} binder connective in Tensor conversion. The sum 

container at the root of the concept tree will store the final Tensor representation of the 

Concept tree.  

2.3.2.3 Expansion List 

   L = P1, P2, P3… Pn 

 This list will hold the intermediate set of child tensors to be used for expansion in 

next higher level tensors. The details about how to use this data structure is given in 

detail with algorithm. 

2.3.3 Algorithms 

 Let the concept tree be represented by a rooted n-ary tree CT. For any node w 

Let Child(w) and CT(w) represent the set of child nodes and the root of the concept tree 

rooted at w respectively. The co-occurrence set for any node w is given by Hset(w) 

which will store the composition factors for child tensors. 

The pseudo code for the expansion algorithm is given as below. 

2.3.3.1 Algorithm 1 

ExpansionAlgorithm()  

Algorithm: Tree Expansion Algorithm  

Input: Concept Tree node w 

Output: Tensor at node w  

1. If node w is a leaf node  
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   construct the leaf tensor 

   w.sumT.add(w)  

   return  

2. Else  prepExpansionList(w) of all tensors of child(w)  

3. Normalize the final scalar weights of the tensor in the set.  

4. Put the tensor set on w.sumT  

5. End if  

6. Return ct(w)  

 

 The algorithm for preparing expansion list can be extended from the idea of 

binders defined before [3,4]. To realize the expansion algorithm, we need to look into 

the detailed steps to see what is happening in each step of the algorithm. To generate a 

composed Tensor for a node at Level L, we need to list all possible compositions of 

Tensors at level L+1 of the concept tree. Now each Tensor is nothing but a set which 

contains a set of basis vectors, each having an associated scalar weight and a value that 

represents the basis vector concept of the Tensor. To find all possible compositions of n 

child tensor, we need to compute all possible combinations of all elements in n sets but 

not containing more than one elements of same set. To explain it in simple terms, we 

need to build an expansion list of size n, when there are n child tensors for any node. 

Each element in the list will belong to one of the child tensor sets and not two elements 

should be from the same set. The algorithm for building such a list can be explained 
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using the following examples. Here each term in the right hand side represent an 

expansion list. Examples: 

{{AB}, {C}} = {[AB], C}} + {[A],{C}} + {[B],{C}} 

{{AB}, {CD}} = {[AB], [CD]} + {[AB], [C]} + {[AB], [D]} + ….. + {[B], [D]} 

To find the Tensor of the composition of tensors we need to prepare a list of possible 

compositions and expand the elements in the list using the binder defined in our algebra 

theory. 

2.3.3.2 Algorithm2 

prepExpansionList()  

Algorithm Prepare Expansions List algorithm  

Input: A concept tree node w, List L, currentChildCtr C  

Output: Void  

1. If C == w.ChildCount()-1  

    Call ExpandList with L  

2. For count= 0 to child(w)[C].TensorCount() -1  

3. L.add(child(w[C].Tensor(count))  

4. C� C+1  

5. Call prepExpansionList with w,L,C+1  

 

 Algorithm to expand the list implements the functionalities of the binders of the 

tensor algebra. It uses the combination generation logic and generates all possible 

combinations of the elementLists of the expansion list. Every element of the expansion 
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list contains a set of basis vectors which needs to be expanded in tensor generation for 

next level tensor. The expandList algorithm operates on each of the elementLists of the 

expansion list and generates the final tensor. The tensor is normalized to set the proper 

scalar weights.   

2.3.3.3 Algorithm3 

Algorithm ExpandList  

Input: List of compositions L  

Output: w, concept tree node with Tensor basis vector terms  

1.For every tensor composition  in the List  

2.Generate all possible combination basis vector Vt of elements in the List L using  

[binder { . .}]  

 a. List all possible combination of terms in L { . .} (Appendix A)  

 b. Get their MD5 hash values and sort using the value (system sort)  

 c. Append “<” and “>”terms  

3. Compute the scalar co-efficient tensor terms Vt’s in T by using Hsets  

4. Add Vt to Tensor T  

5. End - for  

6. Return w  

 

 To compute the Tensor representation of the concept tree, the tree nodes are 

visited in post order traversal manner and generated the Tensor expression in a bottomup 
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fashion. The binder functions are implemented using tree visitor pattern so that future 

changes to binders can be incorporated easily. 

 

2.4 Performance Evaluation 

2.4.1 Space Requirement 

 Consider a node in the concept tree having “n” child concepts. The number of 

terms in the final Tensor for this node will have: 

n
C1 + 

n
C2+ ……..+ 

n
Cn = 2

n
 -1      (2.1) 

Consider an intermediate tensor having two sets of Tensors containing elements 

n1 and n2. The composition according to the binder functions will generate elements in 

the final tensor equal to: 

n1
C1 + 

n2
C1 + 

n1
C1*

n2
C1 = 2

n1+n2 
-1     (2.2) 

 So for a complete N-ary concept tree, the final tensor will have              , nodes, 

where d is the number of levels in the concept tree. The space requirement for the 

algorithm will be Θ (          ) for holding the final tensor and the intermediate stack for 

Depth First Traversal. 

 Space requirement to hold the expansion list is n. So the upper bound on the 

memory requirement is Θ (         ) + Θ (n) for a “d” level complete n-ary tree. 

2.4.2 Time Complexity 

 The timing requirements for the above algorithm will be dominated by the 

function that generates the binder {..}, i.e. generating the combinations. Here for 

generating the combinations the algorithm proposed by Kenneth H. Rosen is used [20]. 

12 −
dn

12 −
dn

12 −
dn
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Complexity of the algorithm is given by Θ (           )
n 

 + 2
n
 for a complete n-ary tree of 

depth d. 

2.4.3 Scalability Analysis: 

  With controlled vocabulary, with leaves that represent composite meanings 

used, the concept tree size can be limited with number of leaves can be less than 15. 

These trees can be used for representing meaning properly and will generate Tensors 

with basis vectors (< 10
4
).  We know that an n-ary tree T of depth d >=0. The maximum 

number of leaf nodes in T is n
d
[21]. A value of n

d
 <=15 indicates that expected values 

for both n and d will be in the range less than equal to 4. 

2.5 Experimental Setup 

 The proposed Tree to tensor algorithm is implemented in Java. The reason for 

choosing java over other languages is the advantages it has over other languages in terms 

of speed of implementation and the portability. The garbage collection is also effective 

as the algorithm here is quite memory intensive. 

 The application consists of a backend that does the tree to tensor conversion, and 

the front end supports user interaction. The backend system expands the in memory 

concept tree in a bottom up fashion and generates the final tensor expression .The 

frontend reads a concept tree in a specified format and output the final tensor expression 

to user. 

 The backend system runs the core tree expansion algorithm on the input concept 

tree to generate the final tensor representation. The design of the backend system creates 

an n-ary generic tree to hold the concept tree structure and runs the expansion algorithm 

12 −
dn
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on this generic tree.  A tree visitor pattern us used to implement the expansion algorithm. 

 The tree visitor pattern [22] visits the nodes of the concept tree in a post order 

traversal manner and expands the concepts using the algorithms above. During the 

expansion a threshold value is used to select tensor terms for next level of expansion. If 

the scalar weights fall below the threshold value, they are not used for expansion in the 

next level. This approach reduces the memory requirements for storing tensors 

considerably. The application does not store the intermediate node Tensors once the next 

level tensor is computed by forming the expansion list to remove memory overheads. 

There is an option to write the intermediate Tensors to output files which can be used for 

debugging purpose. The use of tree designer pattern makes the easy integration of new 

approaches and enhancements of the algorithm to be implemented seamlessly without 

affecting the other programming pieces like input/output.  

 For simulations, the final Tensors are stored in output files and compared using 

another algorithm which computes the inner dot product of two tensors. The basis vector 

values are matched by comparing their converted MD5 values. We demonstrated that the 

proposed tensor based model can represent meaning more precisely compared to existing 

techniques. The success of meaning representation model is evaluated against TF-IDF 

model. 

 We took four publications from Pubmed [23, 24] on gene-diabetes interaction 

studies, which are the objects in consideration and denoted by Oi in Table 2. The object 

pairs are ranked based on three schemes:  

1. Human interpretation (ideal case)  
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2. Semantic similarity values from Tensor Model and  

3. Similarity values given by the TF-IDF vector based approach. 

 The concept trees are generated manually for the four objects. Initially the 

objects are ranked based on human interpretation and considered the ideal case for 

similarity comparisons. The tensors are generated from these concept trees and 

compared for similarity. For TF-IDF implementation we used the PMC collection 

[23,24] for generating the weighted term-document matrix and ranked our objects based 

on weights obtained from the TF –IDF model based cosine similarity computations. 

Table 2 gives the object similarity ranks and the Kendal tau [25] correlation of the 

models. 

 

 

Table 2 Superior performance of tensor based approach for object similarity 

rankings 

 

Object 

pairs 

Semantic similarity rankings and (similarity values) 

Human 

ranking  

Tensor 

approach 

TF-IDF 

approach 

Conceptual 

Vector 

approach 

P1 Rank 1 Rank 1 (0.864) Rank 1 (0.278) Rank 4 (0.442) 

P2 Rank 2 Rank 2 (0.689) Rank 2 (0.226) Rank 1 (0.653) 

P3 Rank 3 Rank 3 (0.557) Rank 4 (0.208) Rank 5 (0.395) 

P4 Rank 4 Rank 5 (0.443) Rank 6 (0.203) Rank 3 (0.521) 

P5 Rank 5 Rank 4 (0.525) Rank 3 (0.162) Rank 6 (0.376) 

P6 Rank 6 Rank 6 (0.317) Rank 5 (0.130) Rank 2 (0.608) 

Kendall’s τ  1 0.867 -0.333 0.067 

Difference   

Tensor-

TF_IDF corr. 

diff.. = 1.2 

Tensor-C_V 

corr. diff.. = 0.8 
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 The normalized cumulative frequency distributions of tensor-TF_IDF correlation 

difference (“tensor-TF_IDF corr. diff.”) and tensor-conceptual_vector correlation 

difference (“tensor-C_V corr. diff.”) are presented in Fig. 10. This clearly shows that in 

95% of the cases the tensor-TF_IDF correlation difference is greater than zero. Similarly 

in 92% of the cases the tensor-conceptual correlation difference is greater than zero as 

shown in Figure 10. This indicates that tensor based rankings follow human ranking with 

greater fidelity than the TF-IDF and conceptual vector based ones. Hence we can 

deductively conclude that tensor based descriptor represents meaning more precisely 

than TF-IDF and conceptual vector based descriptors.[3,4] 

 

 

 

 

 

 

 

Figure 10 Cumulative freq. distribution of corr. diff. 
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3. VERIFICATION OF SALIENT PROPERTIES OF  

TENSOR MODEL 

 

 

 In this section, we describe the salient properties of a Tensor model framework. 

We built a simulation tool to generate synthesized concept trees and used these for 

verifying the tree properties and draw conclusions. In this section, first we will explain 

the properties of the Tensor model, follow it up with the design of the simulation tool 

with the algorithms used, and finally will give the simulation results that verifies the 

properties hold true. 

  

3.1 Salient Properties of Meaning Based Framework 

The Tensor based model has some useful properties: 

Property I: Composition information is included (conjunction) 

Property II: An incomplete set of elements can identify the composite meaning 

Property III: Higher level compositions are more important   

 

 Details of these individual properties are given below: 

3.1.1 Property I: Composition Information is Included (Conjunction) 

 This property indicates that tensor similarity measure can distinguish trees with 

similar leaves having different compositions, but vector based similarity cannot. These 
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properties infer that tensors should do a better job in discerning dissimilar compositions 

(trees) and meanings. 

3.1.2 Property II: An Incomplete Set of Elements Can Identify the Composite 

Meaning 

 Two similar composite meanings may be expressed by two different but 

overlapping set of elementary meanings (i.e. they share many common elements) and yet 

they will be recognized as similar ones by the tensor model, as in case of vector model. 

This property is useful to identify similarity between contexts which are described by a 

slightly different set of elementary meanings. 

3.1.3 Property III: Higher Level Compositions are More Important  

 The differences or similarities of elements at higher level compositions in a tree 

have larger impact on the similarity of the entire tree. All compositions are uniform mix 

of conjunction and disjunction compositions. The real world analogy of this property is 

that two objects will be considered similar if the big picture meanings of objects are 

similar even though the finer detailed meanings may be somewhat different. 

 To explain/verify these properties three metrics are used in the comparison of 

two concept trees. 

3.2 Terminologies of Tree Comparison 

3.2.1 Noise Ratio 

  The count of leaves not common between two concept trees CT1 and CT2 is 

called the “Noise”. The ratio is defined by the following formula 

  Noise/ |Leaves in CT1 U Leaves in CT2|   (3.1) 
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3.2.2 Overlap Ratio 

  The count of leaves present in similar locations in both concept trees is called 

“Overlap”. The ratio is defined by the following formula 

  Overlap/ | Leaves in CT1 U Leaves in CT2|   (3.2) 

3.2.3 Displace Ratio 

 The number of leaves which are same in both trees but present in different 

locations is called “Displace”. The ratio is given by  

  Displace/ | Leaves in CT1 U Leaves in CT2|   (3.3) 

 

 

 

Figure 11 Noise, displacement, overlap in concept tree 

 The ratios defined here are analogous to the “Jaccard similarity” [26] measure 

used to compare two sets. Figure 11 shows the how the different ratios are computed. 

3.3 Experimental Setup 

 To prove the properties of tensor model we designed a simulation tool to 

generate synthesized concept trees. We used these trees to generate tensors and used the 
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tensor representations to compute the similarity metric. We generated conceptual vectors 

for corresponding tensors by taking the basic basis vectors and then normalizing the 

scalar weights and by using random values for the vectors. Finally we did simulations 

and compared the vector similarity and tensor similarity with different 

noise/displacement/overlap factors. The design of the simulation tool and the results of 

simulations are explained below. 

3.3.1 Simulation Tool to Generate Trees 

 A java based simulation tool is designed that can generate concept trees with a 

desired degree of randomness. This tree can be used as a reference tree and another tree 

can be generated from this reference tree by introducing noise/displacement/overlap. The 

algorithms for both the functionalities are explained below. 

 

Algorithm GenerateRandomTree 

Input: Tree Node “N” node , depth “d” , max possible degree range “r” for tree nodes, 

Co-occurrence set H 

Output: Concept Tree “T” 

1. If depth d == 0 and T is not null return T 

2. If N equals to root node create object T 

3. Generate a random value C (child nodes) in the range of 2 to r ( to avoid 

 chaining in concept trees) 

4. Call function to allocate C objects 

5. For each child object C call GenerateRandomTree with d = d-1 
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6. Decrement d = d-1 

7. Else ( N is child node) 

8. Check if N is a leaf node i.e if (d==0) assign node flag to Leaf L 

9. Else generate Random children node C, 

10. If C == 0, set depth =1, else if C==1 Merge Parent Child, call 

 GenerateRandomTree with d = d 

11. Else for each child object C call GenerateRandomTree with d = d-1 

12. Decrement d = d-1 

 

 Above algorithm will return a concept tree for a given depth range provided with 

nodes in the concept tree having a certain node degree. Before explaining the algorithm 

to generate concept tree with noise/displacement/overlap values we can look into the 

different kind of co-occurrence sets considered for this approach in our simulations. In 

the next section we are going to list the different kinds of co-occurrence sets considered 

for our experiments. 

 For generating concept trees, we need to provide co-occurrence sets for the 

concepts at different tree levels, which will describe the composition factors among the 

concepts in the concept tree. These co-occurrence sets will form the templates to 

generate concept trees in the simulator. The simulator is designed in such a way that the 

co-occurrence set to be used for experiments can be given as input to our Tree 

generation algorithm or the simulator can pick one of the available options randomly to 

generate concept trees. Both approaches is significant to run experiments which can be 
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tailored for particular scenarios. Here we are using six types of co-occurrence sets for 

our experiments. 

3.3.2 Composition Templates 

 Six types of composition templates used for experiments 

3.3.2.1 Pure Conjunction 

 This template set states that the conjunction of child concepts/tensors can only 

describe the meaning of object precisely. The individual concept tensors have no 

contribution to the final Tensor composition. For two concepts A and B, { hab =1, ha =0, 

hb =0 }. 

3.3.2.2 Skewed Conjunction 

 This template set states that, the final composition of tensor is more skewed 

towards the conjunction of child concepts/ tensors. The individual elements of the set 

have some contribution to the final composed Tensor. For two concepts A and B, { hab 

=0.8, ha =0.2, hb =0.2 }. 

3.3.2.3 Pure Disjunction 

 This template set states that the conjunction of child concepts/tensors cannot 

describe the meaning of object precisely. The individual concepts should be used for 

describing the object. For two concepts A and B, { hab =0, ha =1, hb =1 }.This template is 

very close to the way conceptual vector model generates vector of elementary leaves of a 

concept tree. 
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3.3.2.4 Skewed Disjunction 

 This template states that the conjunction of child concepts/tenors has a small 

significant contribution to the description of the final object. For two concepts A and B, 

{ hab =0, ha =1, hb =1 }. 

3.3.2.5 Uniform 

 This template is used to give equal weights to the compositions and to the 

individual child tensors. Thus the final tensor can have significant contributions from the 

individual concepts/tensors and from their compositions. 

3.3.2.6 Random 

 This template gives random weights to the composition and to the individual 

concepts. 

 In our simulator we are generating trees using the above templates. When 

generating the tree with noise/displacement/overlap we use the first generated tree as 

reference, so both trees use the same template.  

 To implement the noise/displace/overlap tree generation algorithm, we have used 

a map container that will hold mappings of each leaf node and its parent node. This map 

is maintained for leaf nodes at each level. Because in concept tree we only deal with leaf 

nodes which will hold concepts this approach has a memory overhead to store mappings 

for all leaf nodes. 

 To generate a tree with noise, there can be three kinds of operations possible on 

the reference tree. Addition of a node, deletion of a node, or replacement of a node by 

another node. Addition and deletion operations introduce a single noise to the tree 
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whereas a replacement of a node by new node will introduce a double noise. So to 

generate a noise tree, one or more of the above mentioned operation is done on the input 

tree. The leaf node map is used to select a node at a tree level as victim node and 

operations are performed on its parent node. In some cases if a parent node contains only 

a single child node, the parent and child are merged to maintain the tree structure and 

avoid node chaining. The merge parent algorithm merges the child node with the parent 

node. 

 Similarly to compute a displaced tree, there can be two kinds of operations 

possible, swap of a node with another node belonging to two different sub trees or just a 

move of a node from one sub tree to another sub tree. Both operations can be done at any 

level of the tree. Again the leaf node map and merge parent child technique is used for 

generating the displaced tree. 

3.3.3 Tree transformation Operations for Noise 

3.3.3.1 Deletion Operation 

 Deletion operation of a leaf node will create a noise of one as shown below. The 

initial tree structure and the final tree structure after delete transformation shown in 

Figure 12. 

 

 



 

Figure 12 Deletion operation on a concept tree

3.3.3.2 Addition Operation

 Adding a new leaf node to the tree will generate a noise value of one. The 

addition operation on a tree node is shown in Figure 13

 

Figure 13

3.3.3.3 Replace Operation

 A node replace operation will 

on a tree node is shown in Figure 14

Deletion operation on a concept tree node for noise

 

Addition Operation 

Adding a new leaf node to the tree will generate a noise value of one. The 

on on a tree node is shown in Figure 13. 

Figure 13 Addition operation on a concept tree node for noise

 

Replace Operation 

A node replace operation will generate a noise of two. The node replace operati

on a tree node is shown in Figure 14. 
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for noise 

Adding a new leaf node to the tree will generate a noise value of one. The 

 

for noise 

generate a noise of two. The node replace operation 



 

Figure 14

3.3.4 Tree Transformation T

3.3.4.1 Addition Operation

 A leaf node is added to a different parent node of the tree. The node add 

operation is shown below.

Figure 15. 

 

Figure 15 Addition operation on a concept tree

 

Figure 14 Replace operation on a concept tree node for noise

 

Tree Transformation Technique for Displacement 

Addition Operation 

added to a different parent node of the tree. The node add 

operation is shown below. It will generate a displacement value of one as shown in 

Addition operation on a concept tree node for displacement
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for noise 

added to a different parent node of the tree. The node add 

ate a displacement value of one as shown in 

 

for displacement 



 

3.3.4.2 Swap Operation 

 Two leaf nodes having different parent nodes swapped. This operation will 

generate displacement value equals to two as shown in Figure 16.

 

Figure 16 Swap

 Overlap will be computed by checking number of leaf 

affected by noise or displacement.

 Using the above techniques 

Noise/Displacement/Overlap values and compare them to see how these factors affect 

the Tensor similarity computations.

 

3.4 Results & Evaluation 

 For our experiments we generated random 

4 and node degree(n) in the range 2 to 

concept tree size [3,4

displacement/noise) and used the Tree to Tensor application to generate Tensor 

f nodes having different parent nodes swapped. This operation will 

isplacement value equals to two as shown in Figure 16. 

Swap operation on a concept tree node for displacement

 

Overlap will be computed by checking number of leaf nodes which did not get 

affected by noise or displacement.  

Using the above techniques we can generate pairs of trees with 

Noise/Displacement/Overlap values and compare them to see how these factors affect 

the Tensor similarity computations. 

 

For our experiments we generated random trees with depth(d) in the range of 

) in the range 2 to 4 in accordance with our assumption about the 

3,4] . We generated concept tree pairs 

and used the Tree to Tensor application to generate Tensor 
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f nodes having different parent nodes swapped. This operation will 

 

for displacement 

nodes which did not get 

we can generate pairs of trees with 

Noise/Displacement/Overlap values and compare them to see how these factors affect 

trees with depth(d) in the range of 2 to 

ordance with our assumption about the 

 (introducing 

and used the Tree to Tensor application to generate Tensor 
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representations for concept trees and computed tree similarity dot product value. For the 

co-occurrence set option, each of the six available templates is used. The conclusions are 

drawn using hypothesis testing techniques. [27, 28]  

Pure Conjunction 

 From the description of the templates provided earlier, the pure conjunction 

template is the one that deviates the most from the vector model. So during simulations, 

it is expected that for Pure conjunction template the similarity values will always be 

zero, because two descriptions with different structures will always give an absolute 

mismatch for this template. For operations of noise and displacement mentioned in 

section 3.4.4.1 and 3.4.4.2, the final tensors generated will not have any common terms, 

so the similarity value falls to zero. A sample size of 100 trees is chosen for the 

simulation. When there is a noise or displacement present and concept tree similarity is 

computed, it always gave a perfect mismatch as expected. This supports the property I 

hypothesis. For experiments we have taken sample size of 100 with the other five 

templates. 

3.4.1 Property I 

 Property I claims that Tensor model captures the internal composition of the 

concepts in the trees. In other words, two descriptions though have the same concepts; if 

the tree structures (compositions) are different then Tensor model indentifies this by 

giving a similarity metric less than 1. But vector model cannot identify the compositions 

and will always give an absolute match of the two descriptions.  
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 For proving the property I, all the six tree templates are used to generate concept 

tree pairs. The paired concept tree is generated using only displacement and no noise. 

All leaf concepts are given equal weights, and corresponding vectors of leaves are 

generated for the concept tree pairs. Similarity value is computed using the Tensor dot 

product of the concept tree tensor representations and vector similarity is computed by 

taking dot product of the normalized vectors. Single sample two tailed t-test is used for 

evaluation here. The hypnotized mean is chosen to be µ0 = 1 which indicates absolute 

similarity. The test proves tensor model similarities significantly deviate from this mean 

value. The proposed hypotheses are 

 

    H0 : µx = µ0.     (3.4) 

    Ha : µx ≠ µ0.     (3.5) 

 

 

Table 3 T-test statistics for property I 

Template (Mean (M), SD, Sample Size(N))  t statistic P-Value(two tail) 

Skew 

Conjunction 

(M=0.272, SD =0.0931, N= 100) -78.23 8x10
-91

 

Skew 

disjunction 

(M=0.8831, SD =0.0734, N= 100) -15.94 4x10
-29

 

Pure 

Disjunction 

(M=0.9557, SD =0.0665, N= 100) -6.66  2x10
-9

 

Uniform (M=0.6501, SD =0.0839, N= 100)  -41.71 1x10
-64 

Random (M=0.5307, SD =0.1206, N= 100)  -38.39  9X10
-62 
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 The results from Table 3 show that the null hypothesis can be rejected (t < -1.98) 

at 0.05 significant level. So there is a significant difference between the mean of the 

sample and the hypnotized mean. The similarity value decreases with displacement. This 

is because, the structure change is been captured using compositions by Tensor model 

which successfully identifies two contexts with same elements but different meanings. 

Vector model gives an absolute match for all templates. 

3.4.2 Property II 

 Property II states, similarity between contexts can be identified which are 

described by a slightly different set of elementary meanings. In other words small 

change in noise ratio has a small effect on the similarity between two contexts. To prove 

this property simulations are done using the above templates but keeping the 

displacement value to zero and introducing only noise. The similarity values by tensor 

model are measured against the noise ratio present in the concept tree structures. Noise 

ratio is an indicator of differences in the set of elementary concepts in the two concept 

tree. To verify the effect of noise ratio on similarity values of contexts, regression 

analysis is done to see the how the tensor similarity depends on the noise ratios. The 

following table shows the result of the analysis. The noise ratio is chosen as the 

independent variable and the tensor similarity as dependent variable. Noise ratio is in the 

range of (0, 0.8) used. 

  The results of regression for all the templates are shown in Figures 17-21. 
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Figure 17 Regression Line for similarity and noise ratio for skew conjunction 

 

 

 

Figure 18 Regression Line for similarity and noise ratio for skew disjunction 
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Figure 19 Regression Line for similarity and noise ratio for pure conjunction 

 

 

 

Figure 20 Regression Line for similarity against noise ratio with uniform 

 

y = -0.4996x + 1.009

R² = 0.6274

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8

Pure Disjunction

y = -0.497x + 0.7352

R² = 0.5875

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8

Uniform

Similarity 

Noise 

Ratio 

Similarity 

Noise  

Ratio 



50 

 

 

Figure 21 Regression Line for similarity against noise ratio with random 

 

 The results of the simulation showed that, with increase in noise ratio, similarity 

value decreases slowly. The line of regression for all the six templates has a very small 

slope with supports the property II of tensor model that small changes to noise ratio has 

very little effect on the similarity value. So tensor model can identify contexts with 

similar meaning but having slightly different elements in the concept tree. 

3.4.3 Property III 

 Property III identifies the relative importance of higher level and lower level 

compositions in Tensor model. For verifying the property III, simulations are carried out 

with making displacement value to zero and noise is introduced at lower level nodes and 

higher level nodes. The similarity values are computed and evaluated for effect of noise 

at different levels. A noise at lower level means, overlap at higher level leaves and vice 
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template as expected gives an absolute similarity value of zero if noise is present so the 

other models are used for evaluation purpose. The results are shown below. A paired t-

test with one sided tail is chosen for this simulation.  

 A paired t-test was performed to determine if higher level compositions are 

important. 

3.4.3.1 Skew Conjunction 

 The mean similarity difference (M=0.08712, SD =0.0753, N= 100) was 

significantly greater than zero, t (99) =11.563, one-tail p = 2.21x10
-20

, providing 

evidence that the noise at lower tree level gives more similarity (t > 1.66).  

 3.4.3.2 Pure Disjunction 

 The mean similarity difference (M=0.09289, SD =0.001562, N= 100) was 

significantly greater than zero, t (99) =59.479, one-tail p = 2.74x10
-79

, providing 

evidence that the noise at lower tree level gives more similarity (t > 1.66).  

3.4.3.3 Skew Disjunction 

 The mean similarity difference (M=0.12263, SD =0.02424, N= 100) was 

significantly greater than zero, t (99) =50.590, one-tail p = 7.51x10
-73

, providing 

evidence that the noise at lower tree level gives more similarity (t > 1.66).  

3.4.3.4 Uniform 

 The mean similarity difference (M=0.12643, SD =0.008706, N= 100) was 

significantly greater than zero, t (99) =145.2134, one-tail p = 1.8x10
-117

, providing 

evidence that the noise at lower tree level gives more similarity (t > 1.66).  
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3.4.3.5 Random
 

 The mean similarity difference (M=0.22503, SD =0.11831, N= 100) was 

significantly greater than zero, t (99) =19.0203, one-tail p = 3.93x10
-35

, providing 

evidence that the noise at lower tree level gives more similarity (t > 1.66).  

 From the results obtained in section 3.4.3.1 – 3.4.3.5 we can reject the null 

hypothesis (t >= 1.66) at 0.05 significant level. So the difference between the means of 

the two groups is significant. In other words, the results indicate that the observations 

clearly show that there is strong evidence in favor of the alternate hypothesis that the 

difference in means of the similarity values of the two groups is significant. Thus 

introducing a noise at higher level has a greater impact, or conversely the higher level 

compositions are more important. 
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4. CONCLUSIONS 

 

 

 This thesis explores the design and implementation of an algorithm to convert a 

concept tree to a Tensor representation which is amenable for similarity computation in 

Meaning based search model framework. The research also explores the various 

properties of the Tensor based model and a simulation tool is developed for verifying 

those properties. A heuristic evaluation of the algorithm indicated that the application 

developed based on the algorithm can support the necessary requirements but can be 

improved further. 

 

4.1 Future Work 

4.1.1 Concept Tree from Text 

 To get more accurate estimate of the performance of the Tensor model approach 

we need an efficient algorithm to automate the process of generating concept trees from 

textual descriptions. The efficiency of this algorithm will have a stronger impact on the 

overall performance of the Tensor model in giving more accurate results. 

4.1.2 Salient properties 

 The salient properties needs to be verified though other hypothesis testing 

methods [28,29] to draw more concrete conclusions and compare the effect of noise, 

displacement and overlap on the tensor model 
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APPENDIX A 

PROGRAM FOR GENERATING COMBINATIONS 

 

 

This program is developed from the algorithm proposed by Kenneth H. Rosen. The 

implementation of the algorithm which will generate the next combination from a set of 

n elements taking r elements at a time is implemented as below. The implementation is 

in Java[30]. 

A certain k-combination from the set S = {1, 2, 3, ... , n} can be represented as a 

subset of numbers from S in increasing order. These k-combinations can be enumerated 

using lexicographic order. The next combination after {c1, c2, ... , ck} can be obtained 

as follows:  

 

1. Find the last element ci in the given k-combination such that ci does not equal n-

k+i. If no such element exists (anymore), you're done;  

2. If such a ci exists as described in step 1, replace it with ci+1 and cj with ci+j-i+1, 

for j = i+1, i+2, ... , k.  

 

For example, let S = {1, 2, 3, 4, 5} and the combination c = {1, 4, 5}. Now c1 = 1, c2 = 4 

and c3 = 5. The last term ci such that it does not equal n-k+i, is c1 = 1. Increment it to 

obtain 2 and let c2 = c1+1 = 2+1 = 3 and c3 = c2+1 = 3+1 = 4 resulting in the next 

combination cnext = {2, 3, 4}.  
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public int[] getNext () { 

 

    if (numLeft.equals (total)) { 

      numLeft = numLeft.subtract (BigInteger.ONE); 

      return a; 

    } 

    int i = r - 1; 

    while (a[i] == n - r + i) { 

      i--; 

    } 

    a[i] = a[i] + 1; 

    for (int j = i + 1; j < r; j++) { 

      a[j] = a[i] + j - i; 

    } 

    numLeft = numLeft.subtract (BigInteger.ONE); 

    return a; 

} 

} 
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