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ABSTRACT 

 

Metal Catalyzed Formation of Aliphatic Polycarbonates Involving Oxetanes 

and Carbon Dioxide as Monomers. (May 2010) 

Adriana Inez Moncada, B.S., La Universidad del Zulia; 

M.S., Oklahoma State University 

Chair of Advisory Committee: Dr. Donald J. Darensbourg 

 

 Biodegradable aliphatic polycarbonates are important components of non-toxic 

thermoplastic elastomers, which have a variety of medical applications.  Industrially, 

aliphatic polycarbonates derived from six-membered cyclic carbonates such as 

trimethylene carbonate (TMC or 1,3-dioxan-2-one) are produced via ring-opening 

polymerization (ROP) processes in the presence of a tin catalyst.  It is worth mentioning 

that TMC is readily obtained by transesterification of 1,3-propanediol with various 

reagents including phosgene and its derivatives.  Therefore, it has been of great interest 

to investigate greener routes for the production of this important class of polymers.  

Toward this goal, the synthesis of aliphatic polycarbonates via the metal catalyzed 

alternative coupling of oxetanes and carbon dioxide represents an attractive alternative.  

The use of an abundant, inexpensive, non-toxic, and biorenewable resource, carbon 

dioxide, makes this method very valuable.  Furthermore, in this reaction, the six-

membered cyclic carbonate byproduct, TMC, can also be ring-opened and transformed 

into the same polycarbonate.  For over a decade, the Darensbourg research group has 



 iv

successfully utilized metal salen complexes as catalysts for the epoxide/CO2 

copolymerization process.  Hence, this dissertation focuses on the examination of these 

complexes as catalysts for the oxetane/CO2 copolymerization reaction and the further 

elucidation of its mechanism. 

Chromium(III) salen derivatives in the presence of an azide ion initiator were 

determined to be very effective catalysts for the coupling of oxetanes and carbon dioxide 

providing polycarbonates with minimal amounts of ether linkages.  Kinetic and 

mechanistic investigations performed on this process suggested that copolymer 

formation proceeded by two routes.  These are the direct enchainment of oxetane and 

CO2, and the intermediacy of trimethylene carbonate, which was observed as a minor 

product of the coupling reaction.  Anion initiators which are good leaving groups, e.g. 

bromide and iodide, are effective at affording TMC, and hence, more polycarbonate can 

be formed by the ROP of preformed trimethylene carbonate.  Research efforts at tuning 

the selectivity of the oxetane/CO2 coupling process for TMC and/or polycarbonate 

produced from the homopolymerization of preformed TMC have been performed using 

cobalt(II) salen derivatives along with anion initiators.  Lastly, investigations of this 

process involving 3-methoxy-methyl-3-methyloxetane will be presented. 
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CHAPTER I 

 

INTRODUCTION 

 

Utilization of Carbon Dioxide as a C1 Feedstock 

 The utilization of renewable resources is an important requirement for a 

sustainable society.  One easily available example of a renewable resource is carbon 

dioxide (CO2) (Scheme I-1), which has the advantages of being abundant, non-toxic, 

non-corrosive, non-flammable, inexpensive, and has an easily reachable supercritical 

point.1  The critical point of carbon dioxide lies at 31.1ºC and 72.9 atm, where it behaves 

as a supercritical fluid.2  Carbon dioxide has found uses as a fluid in refrigerators, dry-

cleaning, air conditioners, fire-extinguishers, separation techniques, water treatments, 

and in the agro- and food-industries.3  Recently, carbon dioxide also known as a 

greenhouse gas, has been receiving much attention from the scientific community as its 

atmospheric concentrations are rising, and the approaching threat of global warming.3,4  

For these reasons, there has been a great interest from multinational research laboratories 

in utilizing CO2 for a variety of applications.  However, few industrial processes utilize 

CO2 as a raw chemical.  This is in part due to the stability of carbon dioxide, which is in 

the most oxidized state of carbon, and hence, in a low energy level.  In other words, in 

other to activate CO2 a large energy input is required.1   

____________ 
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Four ways to transform CO2 into useful chemicals have been reported in the literature 

and these are:1 

i) To use high-energy starting chemicals, e.g., hydrogen, unsaturated  

compounds such as acetylene and dienes, small-membered ring compounds 

such as epoxides and oxetanes, and organometallics. 

ii) To shift the equilibrium of the reaction to the product side by removing a 

particular compound from the reaction mixture. 

iii) To supply physical energy such as light or electricity. 

iv) To choose oxidized low-energy synthetic targets such as organic carbonates.  

 
 
 

 

 
 
 
 A significant amount of research has been devoted to the incorporation of CO2 

into organic molecules.1, 3,4  For example, the synthesis of carboxylated products such as 

acids, esters, lactones, carbamates, and isocyanates, cyclic and linear carbonates, and 

Scheme I-1.  CO2 as a C1 Feedstock.  Adapted From Reference 1. 
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polycarbonates.  One particular process that this dissertation will focus on is the 

production of useful polycarbonates obtained from renewable carbon dioxide and small-

membered ring-compounds, oxetanes.   

Industrial Route to Polycarbonates 

Polycarbonates are a class of engineering thermoplastics of high quality with a 

unique combination of outstanding properties including strength, lightness, durability, 

high transparency, thermal stability, and good electrical insulation.  Because of these 

excellent properties, polycarbonates are currently used in a variety of applications 

providing a wide range of benefits to consumers.5,6  These can be found in numerous 

everyday products such as CDs, DVDs, cell phones, automotive interiors, plastic water 

bottles, food storage containers, household appliances, electronics, and optical 

instruments among others.  Another important application of polycarbonates exists in 

biomedical areas due to their stability and biological inertness.  Polycarbonates are both 

environmentally friendly and readily degradable. 

The current industrial route for the production of polycarbonates involves the 

polycondensation of phosgene and diols (Bisphenol A in case of General Electric 

Lexan®) (Scheme I-2A).  However, phosgene is highly toxic, large amounts of organic 

solvents are required for this process, and thus, a costly cleanup.5,6  Another industrial 

route to polycarbonates involves the melt polymerization of diphenyl carbonate and diols 

such as Bisphenol A (Scheme I-2B).  This process requires very high temperatures (180-

300°C) in comparison with 40°C for the polycondensation process, which results in an 

increase in the probability of side reactions, along with the difficulty of removing phenol 
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byproduct completely.  In addition, diphenyl carbonate is normally synthesized from 

highly toxic phosgene.5,6  Hence, it has been of great importance to investigate 

alternative routes for the production of this important class of thermoplastics.  

Furthermore, understanding of the mechanistic aspects of such processes could greatly 

assist in improving the methodology employed for the production of these polymeric 

materials.  

 
 
 

 

 
 
 
Polycarbonates from Epoxides and Carbon Dioxide 

 In 1969, Inoue and coworkers were the first to report a more environmentally 

benign route for the production of polycarbonates, which involved the copolymerization 

of carbon dioxide and epoxides in the presence of a heterogeneous catalyst made from 

the mixture of diethyl zinc and water.7  This copolymerization process is illustrated in 

(B) 

(A) 

Scheme I-2.  Industrial Routes to Polycarbonates5,6 
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eq. I-1, and in general, is accompanied by varying amounts of both ether linkages and 

the thermodynamically stable five-membered cyclic carbonate byproduct.  Ether 

linkages have been shown to alter the thermal and physical properties of the polymers, 

and are the result of consecutive epoxide ring-opening by the catalyst.  Additionally, 

five-membered cyclic carbonates are observable byproducts in these reactions, which are 

formed via a backbiting mechanism, thus shortening the polymer chain by one unit each 

occurrence.  Cyclohexene oxide (CHO) and propylene oxide (PO) are the most widely 

utilized monomers to date with other epoxides investigated more sparingly. 

 
 
 

 
 
 
 

Subsequent to Inoue’s early discovery significant advances have been made from 

multinational research programs in the design of a wide variety of well-defined metal 

catalysts for this important transformation.8  Among the most effective, and importantly 

most robust, catalysts for these processes involve metal(III) salen complexes (where M = 

Cr, Co, or Al).8a, b, 8f  These studies have led to greatly improved catalytic activity, 

selectivity, and importantly a better understanding of the mechanistic aspects of this 

process for both alicyclic and aliphatic epoxides.  Nevertheless, the production of 

Propylene Oxide, PO: R1, R2 = -CH3, -H
Cyclohexene Oxide, CHO: R1, R2 = -(CH2)4-

Carbonate
linkages

Ether
linkages

Cyclic
Carbonate

O

R1 R2

+ CO2
catalyst

R1 R2

O O

O

O

n

OO

O

R1 R2

+
R1 R2m

(I-1) 
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polycarbonates from aliphatic epoxides and CO2 has suffered from the tendency of this 

coupling reaction to generally favor production of the corresponding five-membered 

cyclic carbonate byproduct.9  This general propensity of aliphatic epoxides and CO2 for 

selectively affording cyclic carbonates is somewhat unfortunate because their 

corresponding copolymers are biodegradable materials which possess a wide variety of 

potential applications, including those in biomedical areas such as drug delivery devices 

and tissue engineering.10  Notwithstanding, recent investigations of cobalt(III) and 

chromium(III) complexes have demonstrated these derivatives to greatly enhance the 

catalytic activity and selectivity for copolymer formation from the coupling of propylene 

oxide and CO2 under mild reaction conditions.8g, 8j, 11  Hopefully, in the future these 

catalysts will be useful for copolymer synthesis from a wide variety of functionalized 

aliphatic epoxides. 

Aliphatic Polycarbonate Synthesis via Ring-Opening Polymerization 

 An optional synthetic methodology for the production of aliphatic polycarbonates 

involves the ring-opening polymerization of 6- and 7-membered cyclic carbonates.  Six- 

and higher membered cyclic carbonates such as trimethylene carbonate can produce 

aliphatic polycarbonates with complete retention of their CO2 contents under certain 

catalytic conditions (eq. I-2).12  That is, the ΔHp < 0 and ΔSp > 0, and thus the 

polymerization process is thermodynamically allowed at all temperatures.  Additionally, 

the increased ring-strain of six- and higher membered cyclic carbonates also promotes 

the ROP reaction.13  On the other hand, the ROP of five-membered cyclic carbonates is 
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thermodynamically unfavored.  Nevertheless, five-membered cyclic carbonates have 

undergone ROP processes at high temperatures (T > 100°C), resulting in the production 

of polycarbonates with significant amounts of ether linkages that are the consequence of 

CO2 loss (eq. I-3).  Researchers exploring this area have postulated that when the 

reactions are performed at these high temperatures the loss of carbon dioxide makes the 

ΔSp > 0, and hence the polymerization process becomes thermodynamically allowed.14 

The advantage however, of producing polycarbonates with none or at least reduced ether 

linkages is that the physical properties of the resulting polymers are greatly improved.   

 
 
 

 
 
 
 
It is noteworthy that trimethylene carbonate is readily achieved by 

transesterification of 1,3-propanediol with various reagents including phosgene and its 

derivatives (di- and tri-phosgene), dialkylcarbonates, and ethylchloroformate.15  

Although, 1,3-propanediol is currently produced industrially from petroleum derivatives, 

O O

O

ROP
O

n

O

O

O

m
+ CO2

T > 100°C

m >> n

(I-2) 

(I-3) 
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in the context of sustainability it can also be synthesized by microbiological or 

biochemical routes.16 

Catalysts for Ring-Opening Polymerization of Six-Membered Cyclic Carbonates 

Aliphatic polycarbonates are an interesting class of biodegradable polymers.  In 

particular, poly(TMC) can be utilized to modify the properties of brittle and stiff 

biodegradable polyesters such as poly(glycolide) and poly(lactide).17  Moreover, 

poly(TMC) can be hydrolyzed both in vivo and in vitro.10a, 18  Hence, these resulting 

biodegradable thermoplastic elastomers have a variety of potential medical applications 

including sutures, drug delivery systems, body and dental implants, and tissue 

engineering.10b, 19  The formation of aliphatic polycarbonates via ring-opening 

polymerization of six-membered cyclic carbonates has been investigated utilizing a 

variety of catalysts.  This section will summarize the most widely used catalysts that 

have been reported in the literature for this process. 

Prior to reviewing the most widely employed catalysts reported for ROP 

reactions of six-membered cyclic carbonates, it is beneficial to define two terms which 

will be referred to in further discussions throughout this dissertation, namely, turnover-

frequency (TOF) and polydispersity (PDI).  TOF is the moles of monomer 

consumed/(moles of catalyst-h).  It is important to note that TOFs are highly dependent 

on the time period reactions are monitored.  That is, the highest TOF values are obtained 

during the initial period of the polymerization process.  The molecular weight 

distribution is referred to as polydispersity and is defined as 
nw M/M , where 

wM  is the 

weight-average molecular weight ቀ
ஊN೔M೔

మ

ஊN೔M೔
ቁ and nM  is the number average molecular 



 9

weight ቀஊN೔M೔

ஊN೔
ቁ.  N௜ equals the number of chains containing mass M௜, and M௜ equals the 

mass of the chain.  The value of wM is always > nM . 

Cationic and anionic initiators have both been shown to be effective for the ROP 

of six-membered cyclic carbonates.  Strong Lewis acids such as methyl triflate and 

boron halogenides undergo cationic initiation providing the corresponding 

polycarbonates with ether linkages resulting from decarboxylation side reactions.20  On 

the contrary, weaker Lewis acids such as alkoxide-, alkyllithium- and alcoholate-based 

initiators undergo anionic ROP processes providing in general the corresponding 

polycarbonates with 100% carbonate linkages.21  Because of their Lewis acidic 

characteristics aluminum and tin salts have been widely employed for the ROP of 

trimethylene carbonate. 

An alternative mechanism for the ROP of six-membered cyclic carbonates is the 

coordination-insertion pathway.  When metal alkoxides containing catalysts having free 

p-, d- or f-orbitals of favorable energy are used a two step coordination-insertion 

mechanism takes place (eq. I-4).13  The first step has been postulated to involve 

complexation of the monomer via the carbonyl oxygen of the cyclic carbonate.  This 

complexation improves the electrophilicity of the monomer and is followed by cleavage 

of the acyl-oxygen bond of the cyclic carbonate monomer.13   
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A very effective catalyst for the metal-catalyzed ROP of six-membered cyclic 

carbonates is tin(II)bis(2-ethyl-hexanoate) or tin(II)octoate (Figure I-1).  For example, 

the ROP of TMC catalyzed by tin(II)octoate in bulk at 90, 120 and 150°C produced 

polycarbonates with no ether units and with Mw’s up to approximately 22 000.  Based on 

1H NMR mechanistic studies, the ring-opening mechanism was suggested to involve the 

cleavage of the acyl-O bond of the cyclic carbonate.22  Aluminum-based complexes have  

also been effectively employed as catalysts for ROP of six-membered cyclic carbonates 

(Figure I-2).  Early reports on the ROP of 2,2-dimethyltrimethylene carbonate (DTC) 

catalyzed by tetraphenylporphyrin-aluminum compounds, demonstrated that a halide (-

Cl) or alkyl (-CH3) groups attached to the aluminum center were inactive for 

polymerization.  Only alkoxy nucleophile groups bound to the aluminum center proved 

effective.  The polymerization reaction in methylene chloride was slow at ambient 

temperature (100 h) where only an 85% conversion was obtained.   

 

 

 

O O

O O O

OMXn

OR

R
O O

O

O

O

O O MXn (I-4) 



 11

 
 
 
 

As expected, in non- coordinating solvents such as toluene at 50°C, the reaction time 

was considerably reduced.23  On the other hand, our group as well as Cao and coworkers 

reported on the use of aluminum complexes bearing salen ligands as very effective 

catalysts for the ROP of trimethylene carbonate.  For example, Cao reported the ROP of 

TMC by a monomeric aluminum complex in anisole at 100°C for 3 h, which led to the 

formation of poly(TMC) with a PDI of 1.41, > 95% conversion and Mn = 13 400.24  

Similarly, an aluminum salen complex containing tert-butyl groups in the 3,5 positions 

of the phenolate rings, an ethylene backbone for the diimine, and an ethoxy initiator 

bound to the aluminum center was used by our group for the ROP of TMC, displaying 

an activity of TOF = 105 h-1, Mw  = 24 000 and PDI = 1.61.25  

More recently, we have also demonstrated the effective application of biometal 

derivatives as catalysts for the ring-opening polymerization of TMC, showing a high 

control of the level of polymerization (Figure I-3).  These catalytic systems are of 

particular importance because the use of biocompatible metals, such as calcium, 

magnesium, and zinc, eliminates the difficulty of removing trace amounts of metal 

residues from the produced polycarbonates.26  Similarly, Guillaume and coworkers  

O

O
Sn

O

O

Figure I-1.  Structure of tin(II)bis(2-ethyl-hexanoate), 
or tin(II)octoate. 
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reported on the application of an “immortal” solvent-free polymerization process 

catalyzed by a zinc complex supported by a β-diiminate ligand in conjunction with 

benzyl alcohol as a transfer agent.  This approach allows the growth of several polymer 

chains per metal center while keeping the control of the polymerization reaction through 

the presence of protic sources that acts as chain-transfer agents (Figure I-3).27  With the 

same respect, the utilization of low toxic acetylacetonates of iron, zinc, and zirconium  

Figure I-2.  Examples of Höcker’s, Darensbourg’s, and  
Cao’s aluminum-based catalysts. 
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have been reported as active catalysts for ROP of six-membered cyclic carbonates, 

where the zinc-based complex was found to be the more effective.28  The attractiveness 

of acetylacetonates as ligands is attributed to their availability, low price, and stability.   

Other catalysts such as homoleptic lanthanide amidinate complexes,29 samarium 

borohydride complexes,30 lanthanide aryloxide complexes,31 and 2,2-dibutyl-2-stanna-

1,3-oxepane32 have also recently been investigated as catalysts for the ring-opening 

polymerization of trimethylene carbonate.  In addition, organocatalysts in the presence 

of benzyl alcohol as initiator were reported by the Waymouth group as catalytic systems 

for the ROP of TMC, where high polymerization control, low polydispersities and high 

end group fidelity could be achieved.33  Likewise, Bowden and coworkers have utilized 

2-(dimethylamino)ethanol as an efficient catalyst for the ring-opening polymerization of 

TMC.34 

 
 
 

 

 
 
 

Figure I-3.  Examples of biometal-based catalysts employed for 
the ROP of TMC. 

N N

t-Bu t -BuO O
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 A summary of the available catalysts for the ring-opening polymerization of six-

membered cyclic carbonates cannot be completed without mentioning the available 

enzymatic-based catalysts.  The use of enzymes as catalysts for the synthesis of 

biodegradable polymers is gaining increased attention in the last few years.  In contrast 

to metal-based catalysis that often requires the use of pure monomers, anhydrous 

conditions, and the need of catalyst removal from the final polymer, enzymatic catalysis 

requires milder reaction conditions, and the enzyme catalysts are safe and often 

recyclable.35   

As an example on the use on enzymes as catalysts for the production of aliphatic 

polycarbonates, the Gross research group reported a comprehensive study on the lipase-

catalyzed ring-opening polymerization of TMC in bulk.36  Commercially available 

lipases from different sources were screened for the ROP of TMC at 70°C.  The lipase 

from Candida Antarctica gave the highest rate.  After 120 h, 97% conversion, and 

poly(TMC) with Mn = 15 000 and a PDI = 2.2 with no ether linkages resulting from 

decarboxylation was achieved.  Interestingly, increasing the water content in these 

lipases resulted in an enhancement in polymerization rates but decreased molecular 

weights.  This is most likely due to an increase in the propagating chain ends as well as 

an improve in enzyme activity.  Additionally, the molecular weights decreased as the 

reaction temperatures were increased from 55 to 85°C.  This behavior was explained to 

be caused to the presence of side reactions such as hydrolysis, chain initiation, and 

depolymerizations.  There is quite an extensive variety of lipases that have been tested 

for their catalytic efficiency for the ROP of six-membered cyclic carbonates including 
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immobilized lipases, which have the added advantage of having thermal activity and 

stability and can be recycled.35, 37  However, current research efforts are concentrating on 

improving the yield of the polymer and molecular weights. 

Aliphatic Polycarbonates from Oxetanes and Carbon Dioxide 

 Another alternative route to aliphatic polycarbonates involves the 

copolymerization of four-membered cyclic ethers, such as oxetane and carbon dioxide 

(eq. I-5).  Surprisingly, this reaction has not been widely studied, but it is of particular 

interest, since in this case the cyclic carbonate byproduct, TMC, can be ring-opened and 

transformed into the same polycarbonate by means of the reaction defined in eq I-2.  The 

 
 
 

 
 
 
 
starting point of the metal catalyzed copolymerization of oxetane and carbon dioxide can 

be traced back to the early research efforts of Professors Koinuma and Hirai at the 

University of Tokyo, who were motivated by their earlier results on the 

copolymerization of oxiranes (epoxides) and CO2 catalyzed by organoaluminum-based 

catalysts to produce polycarbonates.38  Hence, they hypothesized that it might be 

possible to synthesize aliphatic polycarbonates not only from three-membered cyclic 

ethers, but also from four-membered cyclic ethers such as oxetane.  Poly(trimethylene 

carbonate) was initially prepared employing a ternary catalyst system composed of 

(I-5) 
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triethylaluminium, water, and acetylacetone in a ratio of 2:1:1.  This catalytic system 

however, was plagued by poor yields of copolymers with significant quantities of ether 

linkages.39  In this case, an anionic coordination mechanism was postulated for the 

formation of polycarbonate.  In 1984, Baba at Osaka University reported the use of 

organotin halides (halides = Cl, Br, I) and Lewis bases e.g. phosphines and amines as 

catalytic systems, yielding low molecular weight polycarbonates from the coupling of 

oxetane and CO2.
40  Additionally, tetraphenylstibonium iodide was also employed by 

Baba to selectively synthesize trimethylene carbonate from oxetane and carbon dioxide 

(Figure I-4).41 

 
 
 

 

 
 
 

 In 1985, Baba reported a more comprehensive study on the coupling reaction of 

oxetane and carbon dioxide catalyzed by organotin iodides with phosphines or 

phosphine oxides as catalytic systems.42  It was demonstrated in this instance that the 

Figure I-4.  Examples of catalytic systems employed by Baba for the coupling 
of oxetane and CO2. 
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choice of the ligand that coordinated to the organotin iodides was crucial, and affected 

the catalytic activity and selectivity of the reaction.  For example, complexes formed by 

coordination of an organotin compound with Bu3P produced polycarbonate exclusively.  

However, the combination of Bu3SnI with Bu3P=O yielded only trimethylene carbonate 

in good yields.  A reaction mechanism was proposed by Baba and coworkers and is 

illustrated in Scheme I-3.   

 
 
 

 
 
 
 

In the first step oxetane is ring-opened by an organotin iodide complex producing 

an organotin iodopropoxide intermediate, which undergoes CO2 insertion into the Sn-O 

bond, generating an organotin carbonate adduct.  Trimethylene carbonate was proposed 

to be formed by a backbiting reaction, regenerating the organotin complex.  

Coordination of phosphine or phosphine oxide ligands to organotin iodide compounds 

Scheme I-3.  Reaction Mechanism for Copolymer Formation Proposed by Baba.   
Adapted From Reference 42. 
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was proposed to activate the Sn-I bond by enhancing the nucleophilicity of the halide-

based initiator, allowing the oxetane ring to be opened.  Polymerization of preformed 

TMC was proposed to occur by free organotin iodide complexes in solution.  This 

conclusion was supported by the fact that in the presence of a large excess of Bu3P=O, 

dissociation of this phosphine oxide from Bu3SnI was suppressed and no polymerization 

reaction took place.  On the contrary, complexes of Bu3P and Bu3SnI were found to be 

too unstable to suppress polymerization, even in the presence of a large excess of 

phosphine.   

Of importance, these early reports on the coupling reaction of oxetane and carbon 

dioxide suggested that a full understanding of the mechanistic details of this process was 

lacking.  Hence, the main objective of this dissertation will be to provide a strong 

chemical background for the following questions: 

i) What would be a suitable catalytic system for this reaction?  

ii) What are the mechanistic details of this process?  In other words, does the 

copolymerization reaction proceed by the direct enchainment of oxetane and 

carbon dioxide or by the intermediate formation of TMC? 

iii) Can the selectivity for one product over the other be tuned? 

iv) Can this chemistry be extended to other oxetane derivatives that could afford 

copolymers with different properties? 

Metal Salen Complexes as Catalysts  

 Metal salen complexes are one of the most popular and fundamental class of 

complexes in coordination chemistry today.  The first salen complexes were synthesized 
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in 1933 by a condensation reaction of a salicylaldehyde and ethylene diamine with 

various metal-based salts.43  Currently, there is an extensive array of metal salen 

complexes that have been synthesized and fully characterized.  The most important 

advantage of the salen ligands is its ease of preparation, which involves the condensation 

of a salicylaldehyde and a diamine (Figure I-5).  Moreover, the sterics and electronics of 

the ligand architecture can be fine tuned by varying the R1, R2 and R3 groups.  A 

fundamental reaction that intensified the use of metal salen complexes was the 

enantioselective epoxidation of unfunctionalized alkenes catalyzed by manganese salen 

complexes.44  Metal salen complexes are utilized for a variety of catalytic reactions 

including asymmetric ring-opening of epoxides, enantioselective intramolecular 

openings of oxetanes, ring-expansions of epoxide and CO2 to form five-membered 

cyclic carbonates, and epoxide/CO2 copolymerization processes among others.   

 
 
 

 

 
 
 

In particular, the Darensbourg research group has been investigating for a decade 

a variety of catalytic systems based on metal salen complexes in the presence of onium 

Figure I-5.  Skeletal representation of the synthesis of salen ligands. 
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salts as cocatalysts for the copolymerization of cyclohexene oxide or propylene oxide 

and carbon dioxide.  An emphasis on chromium(III) salen complexes has been made due 

to their greater catalytic activity for these processes compared to main group elements 

containing salen complexes.  Furthermore, the employment of chromium salen 

complexes in conjunction with anionic-based cocatalysts of the type n-Bu4NX or PPNX  

 
 
 

 

 
 
 
(PPN+ = (Ph3P)2N

+) have proved to increase their catalytic activity and selectivity 

towards copolymer formation from the epoxide (CHO or PO)/CO2 copolymerization 

Figure I-6.  Skeletal representation of (salen)Cr(III)Cl complex and anionic-based cocatalysts used in 
epoxide/CO2 copolymerization processes. 



 21

processes (Figure I-6).  That is, copolymers with greater than 99% carbonate linkages, 

low polydispersities and high molecular weights have been obtained.8b, 8d  Additional 

benefits arising from the use of chromium salen complexes as catalysts is their stability, 

robustness, and ease of synthesis.  The synthesis of chromium salen complexes have 

been fully described in the literature by two methods.45  The treatment of the 

corresponding salen ligand with CrCl2 in THF under an argon atmosphere, followed by 

oxidation in air (Figure I-7).  Another methodology involves prior deprotonation of the 

salen ligand with NaH or KH, followed by treatment of the corresponding formed salt 

with CrCl3(THF)3 under an argon atmosphere. 

 
 
 

 
 
 
 

 Given the success achieved by our group on the application of metal salen 

complexes as catalysts for the copolymerization of cyclohexene oxide or propylene 

oxide and carbon dioxide, a clear issue to investigate was the efficiency of these 

complexes as catalysts for the copolymerization of four-membered cyclic ethers such as 

oxetanes and CO2.  Because the ring-strain energy of propylene oxide and oxetane do 
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Figure I-7.  Skeletal representation of the synthesis of chromium salen complexes from CrCl2. 
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not differ significantly, 114.2 vs 106.7 kJ/mol, respectively, it would be expected that 

metal salen complexes in the presence of anionic-based cocatalysts would serve as 

effective catalytic systems for the oxetane and CO2 coupling process.  This is an issue 

that will be tackled in the following pages of this dissertation. 

Physical Methods for the Characterization of the Coupling Reaction of Oxetane 

and CO2 

A detailed analysis of the products resulting from the copolymerization of oxetane 

and carbon dioxide can readily be done by 1H NMR and IR spectroscopies.  The 

molecular weights and polydispersities of the purified copolymers is generally 

performed by gel permeation chromatography in tetrahydrofuran solution.  Purification 

of the copolymers is normally achieved by precipitation from a dichloromethane solution 

of the copolymer with 1 M HCl in methanol, followed by vacuum drying.  As seen in 

Figure I-8, the presence of possible coupling products from the oxetane/CO2 coupling 

reaction, namely, poly(TMC) and TMC, can easily be assigned using 1H NMR 

spectroscopy.  The percent conversion to polymer can be monitored based on the amount 

of oxetane monomer left in the reaction solution.  Furthermore, the quantities of 

poly(TMC), TMC, and ether linkages in the copolymer can be determined by integrating 

the peak area of the corresponding resonances at 4.23, 4.43, and 3.50 ppm, respectively. 

Another spectroscopy technique that has been extremely useful for monitoring the 

copolymerization reactions of oxetane and CO2 is in situ Attenuated Total Reflectance 

Infrared Spectroscopy (Figure I-9).46  By utilizing a high-pressure stainless steel Parr 



 23

autoclave modified with a silicon composite ATR crystal located at the bottom of the 

reactor, high-pressure reaction kinetic measurements can be performed.  We have been  

able to examine the growth of copolymer and cyclic carbonate as a function of time 

under the temperature and pressure conditions required.  Infrared stretching bands of the 

carbonyl groups of poly(TMC) and TMC, in CH2Cl2 both appeared at 1750 cm-1.  On the 

other hand, in a mixture of toluene and oxetane they are separated by 20 cm-1.  That is, 

the carbonyl group of TMC is seen at 1770 cm-1 and that of poly(TMC) at 1750 cm-1 

(Figure I-10).  Due to the close proximity of the carbonyl stretching bands of copolymer 

and cyclic carbonate, deconvolution of selected IR spectra was carried out when 

necessary, in order to get accurate reaction profiles.  Figure I-11 shows an example of a 

deconvoluted spectrum.  
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B 

C 

Figure I-8.  1H NMR in CDCl3 of (A) oxetane, (B) poly(TMC) obtained from oxetane 
and CO2, and (C) trimethylene carbonate. 

A 
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Figure I-10.  Three-dimensional stack plot of the IR spectra collected every 3 min for the 
copolymerization reaction of oxetane and carbon dioxide, displaying the C=O stretches for 

poly(TMC) at 1750 cm-1 and trimethylene carbonate at 1770 cm-1. 

Figure I-9.  ASI ReactIR 1000 system modified for ATR with a high-pressure Parr autoclave used for 
monitoring high-pressure reaction systems (left), and a diagram illustrating ATR-FTIR (right). 
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In the reminder of this dissertation, the application of metal salen complexes 

along with anionic-based cocatalysts for the copolymerization of oxetanes and CO2 will 

be discussed.  The topics covered will range from catalyst system optimization to 

detailed kinetic and mechanistic investigations on this transformation.  Lastly, the 

exploration of the copolymerization of 3-methoxy-methyl-3-methyloxetane and CO2 will 

be presented. 

 

 

 

 

 

 

 

Figure I-11.  Selected IR spectrum of a reaction solution obtained from the reaction between 
oxetane and CO2. (A) Undeconvoluted IR spectrum, (B) Deconvoluted IR spectrum 

corresponding to poly(TMC), (C) Deconvoluted IR spectrum corresponding to TMC. 

B

A

C
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CHAPTER II 

 

MECHANISTIC STUDIES OF THE COPOLYMERYZATION REACTION OF 

OXETANE AND CARBON DIOXIDE TO PROVIDE ALIPHATIC 

POLYCARBONATES CATALYZED BY (SALEN)CrX COMPLEXES* 

 

Introduction 

In 2006, the Darensbourg group began research efforts to examine the efficiency 

of metal salen complexes for the copolymerization of oxetane and carbon dioxide.  

Initially, the catalytic activity of the (salen)M(III)Cl derivatives (where M = Cr, Al) 

towards the copolymerization of oxetane and CO2 in the presence of n-Bu4NCl as 

cocatalyst was investigated.  It was demonstrated that the (salen)Cr(III)Cl complex, was 

more active (TOF = 41.2 h-1) than its aluminum salen analog (TOF = 8.59 h-1) to 

catalyze this coupling reaction.  In all the instances, high selectivity for copolymer 

formation was obtained even at high temperatures (110ºC).  Based on circumstantial 

evidence, it was suggested that formation of copolymer did not proceed via the 

intermediacy of TMC which was observed as a minor product of the coupling reaction.47 

 Herein, we have extended these investigations by further optimizing the 

(salen)CrCl catalytic system for this reaction (Figure II-1).  Efforts have been made to 

____________ 
*Reproduced in part with permission from: “Mechanistic Studies of the 
Copolymerization Reaction of Oxetane and Carbon Dioxide to Provide Aliphatic 
Polycarbonates Catalyzed by (Salen)CrX Complexes.”  Darensbourg, D. J.; Moncada, A. 
I.; Choi, W.; Reibenspies, J. H. J. Am. Chem. Soc. 2008, 130, 6523-6533.  Copyright 
2008 American Chemical Society. 
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gain a greater insight into the mechanistic aspects of this important reaction based on 

kinetic and copolymer end-group analysis studies performed utilizing in situ infrared and 

1H NMR spectroscopies. 

 
 
 

 
 
 
 
Experimental Section 

Reagents and Methods.  Unless otherwise specified, all syntheses and 

manipulations were carried out on a double-manifold Schlenk vacuum line under an 

atmosphere of argon or in an argon filled glove box.  Toluene and tetrahydrofuran were 

freshly distilled from sodium/benzophenone.  Ethanol and methanol were freshly 

distilled from Mg/I2.  1,1,2,2-tetrachloroethane (TCE) was freshly distilled over CaH2.  

Diethyl ether, dichloromethane, and pentane, were purified by an MBraun Manual 

Solvent Purification System packed with Alcoa F200 activated alumina desiccant.  

Oxetane (Alfa Aesar) was freshly distilled over CaH2 and stored in the freezer of the 

glove box.  Trimethylene carbonate (Boehringer Ingelheim) was recrystallized from 

Figure II-1.  Structures of the (salen)Cr(III) chloride complexes utilized as 
catalysts for the copolymerization of oxetane and CO2. 
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tetrahydrofuran and diethyl ether, dried under vacuo and stored in the glove box.  

Tricyclohexylphosphine (Alfa Aesar) was recrystallized from distilled ethanol before 

use.  PPNCl (PPN+ = (Ph3P)2N
+ ) (Aldrich) was recrystallized from 

dichloromethane/ether before use, and PPNN3 was synthesized according to a published 

procedure.48  Tetra-n-butylammonium bromide (Aldrich) was recrystallized from 

acetone/diethyl ether before use.  Tetra-n-butylammonium azide (TCI) was stored in the 

freezer of the glove box upon arrival.  Ethylenediamine (Aldrich), 1,2-phenylenediamine 

(ACROS), chromium(II) chloride (Alfa Aesar) and sodium sulfate (EMD) were used as 

received.  Bone-dry carbon dioxide supplied in a high-pressure cylinder and equipped 

with a liquid dip tube was purchased from Scott Speciality Gases.  The corresponding 

salen ligands and chromium complexes were synthesized as previously described.45  

 1H NMR spectra were acquired on Unity+ 300 MHz and VXR 300 MHz 

superconducting NMR spectrometers.  IR spectra were recorded on a Mattson 6021 

Fourier Transform (FT) IR spectrometer with a MCT detector.  TGA measurements 

were performed with SDT Q600 V7.0 Build 84.  Analytical elemental analysis was 

provided by Canadian Microanalytical Services Ltd.  Molecular weight determinations 

(Mn and Mw) were carried out with a Viscotek Modular GPC apparatus equipped with 

ViscoGELTM I-series columns (H + L) and Model 270 dual detector comprised of 

Refractive Index and Light Scattering detectors.  High-pressure reaction kinetic 

measurements were performed using an ASI ReactIR 1000 reaction analysis system with 

stainless steel Parr autoclave modified with a permanently mounted ATR crystal 

(SiComp) at the bottom of the reactor (purchased from Mettler Toledo). 
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Optimization of the Cocatalyst for the Copolymerization Reactions of Oxetane 

and Carbon Dioxide.  In a typical experiment, 17 mg of catalyst (N,N’-bis(3,5-di-tert-

butylsalicylidene)-1,2-ethylenediimine chromium(III) chloride), the appropriate amount 

of cocatalyst, and 1.15 g of oxetane were dissolved in 10 mL of toluene.  This solution 

was then delivered via the injection port into a 300-mL stainless steel Parr autoclave 

reactor that was previously dried in vacuo overnight at 80C.  The autoclave was then 

pressurized with 35 bar of CO2 and the temperature was increased to 110C.  The 

monomer:catalyst:cocatalyst ratio was maintained at 675:1:2, and the reaction was run 

for 24 hours.  In the case of PPNCl and PPNN3, the catalyst and cocatalyst were 

previously premixed in a 4:1 benzene:methanol solution, dried overnight and then 

dissolved into 1.15 g of oxetane and 10 mL of toluene.  After the reaction was stopped, 

the autoclave was put into ice, cooled down to 10°C, and vented in a fume hood.  The 

percent conversion to products was determined based on the amount of oxetane 

monomer left in the reaction solution.  1H NMR (300 MHz, CDCl3), oxetane: δ 4.75 (t, 

4H, OCH2) and 2.70 (quintet, 2H, CH2).  Furthermore, the quantities of poly(TMC), 

TMC, and ether linkages in the copolymer were determined by integrating the peak area 

of the corresponding resonances.  1H NMR (300 MHz, CDCl3), poly(TMC): δ 4.23 (t, 

4H, OCH2) and 2.05 (quintet, 2H, CH2).  
1H NMR (300 MHz, CDCl3), TMC: δ 4.45 (t, 

4H, OCH2) and 2.14 (quintet, 2H, CH2).  
1H NMR (300 MHz, CDCl3), ether linkages: δ 

3.50 (t, 4H, OCH2) and 1.90 (quintet, 2H, CH2).   
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Optimization of the (salen)Cr(III)Cl Catalyst for the Copolymerization 

Reactions of Oxetane and Carbon Dioxide.  In a typical experiment, 4 g of oxetane, 

and the appropriate amount of catalyst and cocatalyst (n-Bu4NN3 ), were delivered via 

the injection port into a 300-mL stainless steel Parr autoclave reactor that was previously 

dried in vacuo overnight at 80C.  The autoclave was pressurized with 35 bar of CO2 and 

the temperature was increased to 110C.  The monomer:catalyst:cocatalyst ratio was 

maintained at 1292:1:2, and the reaction was run for 24 hours.  After the reaction was 

stopped, the autoclave was put into ice, cooled down to 10°C, and vented in a fume 

hood.  The reaction solution was analyzed by 1H NMR spectroscopy in the same manner 

as above, to determine the percent conversion to products, and the percentages of 

poly(TMC), TMC, and ether linkages.  The resulting polymer was purified by 

precipitation from dichloromethane and 1 M HCl solution in methanol and then dried in 

vacuo.  Turnover frequencies (mol of oxetane consumed/mol of catalyst-h) were 

calculated following weight of the vacuum dried polymer. 

Substrate Binding and Ring-Opening Steps Examined by Infrared 

Spectroscopy.  Substrate binding and ring-opening step studies were examined by 

solution infrared spectroscopy.  The catalytic system used in these studies was a 

(salen)Cr(III)Cl (50 mg) complex (N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-

ethylenediimine chromium(III) chloride) in the presence of n-Bu4NN3  as cocatalyst and 

using TCE as the solvent (4 mL). 
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X-ray Structural Studies.  Single crystals of a hydroxo-bridge 

(salen)2(Cr(III))2ClOHoxetane (complex II-5) were obtained by layering pentane into 

a saturated dichloromethane solution of the corresponding (salen)Cr(III)Cl complex 

(N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediimine chromium(III) chloride) 

containing 20 equivalents of oxetane.  Anal. Calcd for C80H111ClCr2N4O6: C, 70.43; H, 

8.20; N, 4.10.  Found: C, 68.50; H, 7.85; N, 4.06. 

Single crystals of a (salen)Cr(III)Cloxetane (complex II-6) were obtained at 

5C by layering pentane into a saturated dichloromethane solution of the corresponding 

(salen)Cr(III)Cl complex (N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-phenylenediimine 

chromium(III) chloride) containing 20 equivalents of oxetane.  Anal. Calcd for 

C47H70Cl7CrN2O3: C, 55.82; H, 6.97; N, 2.77.  Found: C, 57.21; H, 6.72; N, 3.84. 

For both structures, a Bausch and Lomb 10 microscope was used to identify 

suitable crystals.  Each crystal was coated in paratone, affixed to a nylon loop, and 

placed under streaming nitrogen (110K) in a Bruker - AXS Apex II three-circle X-ray 

diffractometer.  Space group determinations were made on the basis of systematic 

absences and intensity statistics.  Both crystal structures were solved by direct methods 

and were refined by full-matrix least-squares on F2.  All hydrogen atoms were placed in 

idealized positions and refined with fixed isotropic displacements parameters equal to 

1.2 (1.5 for methyl protons), times the equivalent isotropic displacements parameters of 

the atoms to which they were attached.  All non-hydrogen atoms were refined with 

anisotropic displacement parameters. 
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The following are the programs that were used: data collection and cell 

refinements; APEX II data collection software, data reduction; APEX II data reduction 

software, absorption correction; SADABS,49 program used to solve structures; 

SHELXS-97,50 program used to refine the structures; SHELXL-97,51 molecular graphics 

and preparation of material for publication; SHELXTL, version 6.14,52 X-Seed, version 

1.5.53  

Copolymerization Reactions Monitored by in situ IR Spectroscopy.  In a 

typical experiment, the catalyst (N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexelynediimine chromium(III) chloride), cocatalyst (n-Bu4NN3),and oxetane (4 g) 

were dissolved in 10 mL of toluene and delivered via the injection port into a 300-mL 

stainless steel Parr autoclave reactor that was previously dried in vacuo overnight at      

80C.  The autoclave is modified with a 30 bounce SiComp window to allow for the use 

of an ASI ReactIR 1000 system equipped with a MCT detector.  In this manner a 128-

scan background spectrum was collected after the reaction mixture was heated to the 

temperature of the corresponding experiment, the autoclave was then pressurized to the 

appropriate CO2 pressure, and the infrared spectrometer was set to collect one spectrum 

every 3 min over a 12 or 24 h period.  Profiles of the absorbance at 1750 cm-1 (polymer) 

with time were recorded after base line correction, and analyzed to provide initial 

reaction rates.  In some cases, after the reaction was stopped the autoclave was cooled 

down to room temperature, and a 1H NMR spectrum in CDCl3 of the reaction mixture 

was taken to determine the percent conversion to polymer.  (Note: catalyst loading, 
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cocatalyst loading, and temperature varied within each experiment and are described in 

the Results and Discussion section). 

Kinetic Studies for the Ring-Opening Polymerization of Trimethylene 

Carbonate.  For kinetic studies of the ring-opening polymerization of TMC, the catalyst 

(N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexelynediimine chromium(III) 

chloride) and the cocatalyst (n-Bu4NN3) were weighed out in a Schlenk flask in the 

desired monomer:catalyst:cocatalyst ratio followed by the addition of dry TCE (5 mL).  

The reaction vessel was placed into a preheated oil bath.  The percent conversion of the 

monomer with time was calculated by manually sampling a small aliquot of the solution, 

quenching it, and analyzing it by 1H NMR spectroscopy. (Note, catalyst loading, 

cocatalyst loading, and temperature varied within each experiment and are described in 

the Results and Discussion section). 

Copolymerization Reaction of Oxetane and Carbon Dioxide Monitored by 

1H NMR Spectroscopy.  12 g of oxetane, 373 mg of catalyst (N,N’-bis(3,5-di-tert-

butylsalicylidene)-1,2-cyclohexelynediimine chromium(III) chloride), and 335 mg of 

cocatalyst (n-Bu4NN3) were dissolved in 30 mL of toluene and delivered via the 

injection port into a 300-mL stainless steel Parr autoclave reactor that was previously 

dried in vacuo overnight at 80C.  The reactor was pressurized with 35 bar of CO2 and 

the temperature was increased to 110C.  The monomer:catalyst:cocatalyst ratio used 

was 350:1:2, and the reaction was run for 28 hours.  The percent conversion to polymer, 

the percentages of TMC, and polycarbonate were calculated with time, by manually 
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sampling a small aliquot of the reaction mixture, which was first cooled down to 10C 

and then analyzed by 1H NMR spectroscopy. 

Results and Discussion 

 Initially we chose to employ the (salen)CrCl catalyst, complex II-1 in Figure II-

1, in the presence of various cocatalysts to optimize the selectivity for copolymer 

formation from the coupling of oxetane and carbon dioxide.  The copolymerization 

reactions were performed under identical reaction conditions, i.e., 110ºC and 35 bar CO2 

pressure.  The results are summarized in Table II-1, where the counterions of the anionic 

initiators were either PPN+[(Ph3P)2N
+] or n-Bu4N

+.  The product mixtures were analyzed 

by 1H NMR spectroscopy, with the quantities of poly(TMC), TMC, and ether linkages in 

the poly(TMC) determined by integrating the resonances at 4.23, 4.43, and 3.50 ppm, 

respectively.  As is readily seen in Table II-1, the yield of poly(TMC) is much greater 

than the cyclic product, TMC, at the end of a 24 h reaction period in all instances.  Of 

importance here, the azide salts are slightly better than their chloride analogs, with little 

difference between the PPN+ and n-Bu4N
+ salts being observed.  The bromide anion was 

shown to be significant less selective for copolymer formation than the chloride anion,  

and tricyclohexylphosphine displayed the lowest selectivity towards copolymer 

formation of the cocatalysts studied.54 
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Table II-1.  Selectivity for Copolymer Formation using Complex II-1 in the 
Presence of Various Cocatalysts.a 

Entry Cocatalyst % TMCb % Poly(TMC)b % Ether 
Linkagesb 

1 n-Bu4NClc 0 100 3.0 

2 n-Bu4NN3
c 0 100 2.9 

3 n-Bu4NBr 11.7 88.2 7.2 

4 PPNCl 5.9 94 3.6 

5 PPNN3 2.3 97.6 1.4 

6 P(Cy)3 21.1 79 21.5 
a Copolymerization conditions: 17 mg of catalyst (0.15 mol%), 1.15 g of 
oxetane, M:I = 675:1, 2 equiv. of cocatalyst, 10 mL of toluene, 35 bar of CO2, 
at 110C for 24 h.  b Product distributions were determined by 1H NMR 
spectroscopy.  c Previous published results.25  Note for the first entry in Table 
II-1 in reference 47, the % TMC is incorrectly reported due to missassigned 
1H NMR resonances. 

 
 
 
 Subsequent studies were carried out to interrogate the effects of changing the 

nature of (i) the substituents on the phenolate rings, and (ii) the diimine backbone of the 

salen ligand in the (salen)CrCl derivative.  In this instance the copolymerization 

reactions were performed at a monomer:catalyst:cocatalyst ratio of 1292:1:2, with a CO2 

pressure of 35 bar at 110ºC for 24 h.  The results of this inquiry are provided in Table II-

2, where the TOFs (mol of oxetane consumed/mol of initiator-h) were determined from 

the isolated copolymer obtained upon precipitation from dichloromethane with a 1 M 

HCl solution in methanol.  It is important to note here that a minimal quantity of ether 

linkages were observed in the copolymer samples resulting from consecutive oxetane 

ring-opening processes, however, in all cases the CO2 content was very high (> 95%).  

Note that 100% carbon dioxide incorporation defines a completely alternating 

copolymer of oxetane and CO2.  The molecular weights of the copolymers were 
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determined in THF solution by gel permeation chromatography using RI and light 

scattering detectors and polystyrene standards.  In general, the observed Mn values were 

found to be much lower than the theoretical values, e.g., in entry 4 of Table II-2 the 

observed Mn of 11 050 is considerably lower than the theoretical value of 85 000.  This 

is most likely due to a chain transfer mechanism arising from the presence of trace 

quantities of water in the system.11b, 55  The PDI was in general about 1.5, and a 

copolymer with Mn of 11 050 was found to be stable up to 260ºC by TGA.  A more 

comprehensive compilation of molecular weights as a function of the monomer:initiator 

ratio, along with polydispersities, can be found in Table II-3.  Included in Table II-3 is a 

catalytic run done under super anhydrous conditions, i.e., no solvent and in the presence  

 
 
 

Table II-2.  Copolymerization of Oxetane and CO2 Catalyzed by (salen)Cr(III)Cl Complexes.a 

Entry Complex R1 R2 R3 R4 TONb TOFc % CO2 
contentd 

% 
Conversiond

1 II-2 -C4H4-  tert-butyl tert-butyl 588 24.5 97.1 54.6 

2 II-3 -C4H4-  OCH3 tert-butyl 382 15.9 97.5 33.3 

3 II-1 H H tert-butyl tert-butyl 775 32.3 95.5 67.9 

4 II-4 
(1R,2R)-

C4H8- 
 tert-butyl tert-butyl 835 34.8 95.9 71.6 

a Copolymerization conditions: Catalyst loading = 0.077 mol %, 4 g of oxetane, 2 equiv. of n-Bu4NN3,  
M/I =1292, 35 bar of CO2, at 110°C for 24 h.   b mol of oxetane consumed/mol of initiator.  c mol of 
oxetane consumed/(mol of catalyst-h).  d Estimated by 1H NMR spectroscopy. 
 
 
 
of the less hydroscopic PPNN3 salt.  As is evident under these conditions the molecular 

weight more closely tracks the predicted value. 
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Table II-3.  Molecular Weights and Polydispersities of Poly(TMC).a 

Entry M/I 
%  

Conversionb 
Mn  

(GPC) 
Mn (Theoretical)c Mw/Mn 

(GPC) 

1 150 99.5 11 200 15 200 1.26 

2 275 90.7 9 500 25 500 1.45 

3 350 48.5 6 700 17 300 1.43 

4 475 29.7 7 050 14 400 1.60 

5d 150 100.0 14 500 15 300 1.30 
 a Copolymerization conditions: Reactions carried out in toluene at 110C using (salen)Cr(III)Cl 
catalyst, 2 equivalents of n-Bu4NN3 as cocatalyst at 35 bar CO2 pressure.  b Estimated by 1H NMR 
spectroscopy.  c Mn(theoretical) = M/I×mol.wt.(oxetane + CO2)  % conversion.  d Done in the absence 
of solvent using PPNN3 as cocatalyst. 

 
 
 

Retaining the salen ligand with the phenylene backbone while changing the 

substituents in the 3,5-positions of the phenolate rings (entries 1 and 2, Table II-2) 

reveals the Cr(III) salen derivative containing the bulky di-tert-butyl groups to be the 

more active.  This is consistent with previous observations reported for the ROP of TMC 

catalyzed by aluminum and calcium salen complexes.25-26, 56  On the other hand, for the 

copolymerization of cyclohexene oxide and CO2 catalyzed by chromium salen 

complexes, higher catalytic activity was obtained in complexes containing methoxy and 

tert-butyl groups in the 3 and 5 positions of the phenolate rings.45  We have also studied 

the effects of altering the diimine backbone of the Cr(III) salen complex while 

maintaining the di-tert-butyl groups in the 3,5-positions of the phenolate moiety (entries 

3 and 4, Table II-2).  As can be seen in Table II-2, the catalytic behavior of the 

chromium salen complexes is not much affected by changing the diimine backbone from 

ethylene to cyclohexylene, with the chromium salen complex with the cyclohexylene 

backbone displaying slightly higher catalytic activity. 
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Substrate Binding and Ring-Opening Steps Examined by Infrared 

Spectroscopy.  Fundamental to a better understanding of the mechanism of the coupling 

reaction of oxetane and carbon dioxide is an investigation of the initiation step of this 

process.  Since it is known that oxetane has less ring strain compared to epoxides, e.g., 

the heat of polymerization of ethylene oxide (-ΔHp = 104 kJ/mol) differ from that of 

oxetane by 23 kJ/mol,57 its ease of ring-opening should depart significantly from that of 

epoxides.  In order to address this issue we have conducted cocatalyst, oxetane binding, 

and subsequent ring-opening studies via infrared spectroscopy using the (salen)CrN3 

complex containing di-tert-butyl substituents in the 3,5-positions of the phenolate rings, 

and an ethylene backbone for the diimine.  We have employed the azide derivatives for 

these studies because the νN3
 stretching vibration provides accessible probes for both 

cocatalyst binding and anion ring-opening steps.  The results of these studies are 

depicted in Scheme II-1 and Figure II-2. 
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Figure II-2.  Spectra of TCE solutions of chromium salen azide complex with 1 equivalent of n-Bu4NN3 

(A), after addition of 100 equivalents of oxetane at room temperature 
(B), after heating the reaction solution at 110C for 3 h (C). 

 
 
 

As indicated in Scheme II-1, upon addition of one equivalent of n-Bu4NN3 to 

(salen)CrN3, the anionic six-coordinate bis-azide species (salen)Cr(N3)2
- readily forms at 

ambient temperature.  This is apparent in the νN3
 stretching region where the infrared 

band of (salen)CrN3 shifts from 2083 cm-1 to a band at 2047 cm-1 with a shoulder at 

2057 cm-1 upon addition of n-Bu4NN3.  It should be noted here that the n-Bu4N
+ salts of 

numerous (salen)CrX2
- anions have been fully characterized by X-ray crystallography 

and these studies will be reported in Chapter III.  For example, Figure II-3 illustrates the 

solid-state structure of the bis-azide anion of one such derivative.  Addition of 100-fold 

excess of oxetane to the bis-azide complexes displaces some of the azide ligand as can 

be seen by an increase in the free azide ion concentration by its νN3
 band at 2009 cm-1 

with a concomitant decrease in the concentration of (salen)Cr(N3)2
- (spectrum B).  

Moreover, a new νN3
 stretching band appears at 2061 cm-1 which is assigned to 

(salen)Cr(N3)•oxetane.  Upon stirring this reaction mixture for 24 h at ambient 
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temperature no changes in the infrared spectrum resulted, indicative of the ring-opening 

process of oxetane requiring higher temperatures.  Indeed, heating the reaction mixture 

for three hours at 110ºC led to oxetane ring-opening by azide as indicated by the organic 

azide band at 2100 cm-1.  It should be recalled that an analogous experiment carried out 

with cyclohexene oxide results in epoxide ring-opening by azide at ambient temperature, 

although the equilibrium between (salen)Cr(N3)2
- and cyclohexene oxide lies much 

farther to the left.45  That is, cyclohexene oxide has less of a penchant for displacing the 

azide from the chromium(III) center than the more basic oxetane monomer.  

 
 
 

 
 
 
 

 
 X-ray crystallography was utilized in conjunction with the νN3

 infrared spectral 

data (vide supra) to verify that oxetane binding to the chromium center occurs without 

ring-opening at ambient temperature.  Two (salen)CrCl complexes with oxetane bound 

to the chromium centers were successfully characterized by X-ray crystallography.  To 

Figure II-3.  Ball-and-stick representation of the X-ray defined structure of the anion of the 
[n-Bu4N][(salen)Cr(N3)2] complex, where the salen ligand contains –OMe and –t-Bu 

substituents in the 3,5-positions of the phenolates respectively, with a phenylene diimine 
backbone.
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the best of our knowledge these represent the only crystal structures of oxetane bound to 

a metal center thus far reported in the literature. Crystallographic data pertaining to these 

two crystal structures are provided in Table II-4. 

In our first attempt at isolating single crystals of a (salen)CrCl complex with an 

axially coordinated oxetane, the presence of trace quantities of water led to hydrolysis of 

the Cr–Cl bond.  Nevertheless, crystals of a hydroxo-bridged structure with oxetane 

bound to one of the chromium centers were obtained which were suitable for X-ray 

analysis (Figure II-4 and Table II-5).  Similar solid-state structures of hydroxo-bridged  

 
 
 

Table II-4.  Crystallographic Data for Complexes II-5 and II-6. 
 II-5 II-6 
empirical formula C80H110ClCr2N4O6 C34.40H48.80Cl3.20Cr0.80N1.60O2.40 
fw 1364.17 678.19 
temperature (K) 110(2) K 110(2) K 
crystal system triclinic triclinic 
space group P-1 P-1 
a (Å) 12.266(5) 16.175(5) 
b (Å) 14.702(5) 16.394(5) 
c (Å) 21.630(5) 17.126(5) 
α (deg) 102.839(5) 89.781(4) 
β (deg) 95.784(5) 88.053(4) 
γ (deg) 100.245(5) 79.249(4) 
V (Å3) 3702(2) 4459(2) 
Dc (Mg/m3) 1.223 1.263 
Z 2 5 
abs coeff (mm-1) 0.384 0.535 
reflections collected 10087 41341 
independent reflections 10392 [R(int) = 0.0755] 15610 [R(int) = 0.0612] 
restrains/parameters 51/856 48/979 
GOF on F2 1.029 1.077 
final R indices  [I > 2(I)] 
 

aR1 = 0.0755 
bRw = 0.1995 

aR1 = 0.0579 
bRw = 0.1433 

final R indices (all data) 
aR1 = 0.1239 
bRw = 0.2321 

aR1 = 0.0908 
bRw = 0.1643 

a R = Fo   Fc/Fo.  b Rw  = {[w(Fo
2  Fc

2)2]/[ w(Fo
2)2]}1/2

w = 1/[2(Fo
2) + (aP)2  + bP], where P = [(max(Fo

2), 0) + 2(Fc
2)]/3 
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chromium(III) derivatives have been reported by us resulting from the complete 

hydrolysis of (acacen)CrCl or (salen)CrOMe derivatives.58  Complex II-5 clearly shows 

that oxetane is capable of binding to the (salen)Cr(III) center without undergoing ring-  

 
 
 

 
 
 
 

Table II-5.  Selected Bond Distances and Angles for Complex 
II-5.a 

Cr(1A)-Cl(1) 2.342(3) 

Cr(1A)-O(1) 2.007(6) 

Cr(1B)-O(1) 1.949(6) 

Cr(1B)-O(11) 2.054(9) 

O(11)-C(11)-C(21) 90.5(8) 

O(11)-C(31)-C(21) 90.5(8) 

C(11)-O(11)-C(31) 91.1(7) 

C(31)-C(21)-C(11) 87.6(8) 
a Units of bond angles and bond distances are (º) and (Å), 
respectively. 

Figure II-4. Thermal ellipsoid plot of complex II-5.  Ellipsoids are at the 50 % level. 
H atoms are omitted for clarity.  One pentane molecule was crystallized in the unit cell and is omitted 

for clarity. 
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opening at ambient temperature.  The oxetane molecule is disordered in complex II-5. 

Upon modeling the disorder two different positions for the oxetane ligand were found, 

where the dihedral angles of the plane C–O–C and C–C–C were determined to be 4.5º  

and 10.8º at 110K.  That is, the oxetane molecule is not planar, which is in good 

agreement with the structure of free oxetane reported by Luger and Buschmann where 

the dihedral angle was found to be 10.7º at 90K and 8.7º at 140K.59 

A successful isolation of single crystals of an oxetane adduct as depicted in 

Scheme II-1 was achieved upon utilizing super dry conditions and low temperature.  

Complex II-6 was fully characterized by X-ray crystallography and a thermal ellipsoid 

representation of this derivative is shown in Figure II-5, with selected bond distances 

and bond angles listed in Table II-6.  Two molecules crystallized in the unit cell, where 

the sum of the angles in the oxetane ligands is 359.6º and 357.4º, respectively.  The 

dihedral angles of the planes C–O–C and C–C–C in the oxetane ligands were found to be 

10.5º and 11.8º at 110K, which clearly demonstrates that the oxetane molecule when 

bound to the metal center maintains its degree of nonplanarity.  Metric parameters for 

free oxetane and bound oxetane in complex II-6 are quite comparable as seen in Table 

II-7. 
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Table II-6.  Selected Bond Distances and Angles for Complex II-6.a 

Cr(1)-Cl(1) 2.3167(6) 

Cr(2)-Cl(2) 2.3036(7) 

Cr(1)-O(3) 2.0456(10) 

Cr(2)-O(6) 2.0528(11) 

O(6)-C(76)-C(77) 90.75(11) 

O(6)-C(78)-C(77) 90.88(12) 

C(78)-C(77)-C(76) 85.72(12) 

C(78)-O(6)-C(76) 90.08(11) 
a Units for bond distances and bond angles are (Å) and (º), 
respectively. 

 
 
 

Figure II-5.  Thermal ellipsoid plot of complex II-6.  Ellipsoids are at the 50 % level.  
H atoms are omitted for clarity.  Three dichloromethane and one pentane molecules 

were crystallized in the unit cell and are omitted for clarity. 
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Table II-7.  Selected Bond Distances and Angles for Oxetane Molecules.a 

 
 

Oxetane molecule(1) from complex II-6. 
 

 
 

Free oxetane molecule from reference 59. 
 

C(39)-O(3) 1.458(17) O(3)-C(37)-C(38) 90.54(11) C(1)-O(1) 1.433(2) O(1)-C(1)-C(2) 91.89(9) 

C(37)-O(3) 1.482(18) O(3)-C(39)-C(38) 91.55(11) C(3)-O(1) 1.433(2) O(1)-C(3)-C(2) 91.89(9) 

C(37)-C(38) 1.516(2) C(39)-O(3)-C(37) 90.13(10) C(1)-C(2) 1.517(2) C(1)-O(1)-C(3) 90.5(1) 

C(38)-C(39) 1.514(2) C(39)-C(38)-C(37) 86.79(11) C(2)-C(3) 1.517(2) C(1)-C(2)-C(3) 85.0(1) 

C(37)-H(37B) 0.99   C(1)-H(2) 0.99(2)   

C(38)-H(38B) 0.99   C(2)-H(4) 0.97(3)   

Dihedral angle of the plane C-O-C and C-C-C: 10.5 Dihedral angle of the plane C-O-C and C-C-C: 10.7 

aUnits for bond distances and bond angles are (Å) and (º), 
respectively. 

 

 
 
 

Kinetic Studies of the Copolymerization of Oxetane and Carbon Dioxide.  

Kinetic measurements of the coupling reaction of oxetane and carbon dioxide were 

performed in toluene solution in the presence of complex II-4 along with two 

equivalents of n-Bu4NN3.  These reactions were monitored by in situ infrared 

spectroscopy by observing the growth of the copolymer’s νC=O band at 1750 cm-1 as a 

function of time.  A typical reaction profile of the absorbance of the 1750 cm-1 infrared 

band with time is illustrated in Figure II-6.  It should be noted as well in Figure II-6 that 

at the early stages of the coupling reaction a νC=O band at ~1770 cm-1 assigned to TMC 

was observed which subsequently disappeared.  Furthermore, the presence of the 

induction period seen in Figure II-6 can be attributed to the drop in temperature of ~20ºC 
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observed following the addition of carbon dioxide to the 110ºC reaction mixture, as 

well as a slow initiation step. 

The copolymerization reactions were demonstrated to be first-order in oxetane 

and catalyst (complex II-4) concentrations in the presence of two equivalents of n-

Bu4NN3.  This is shown in a representative case in Figure II-7 where a plot of ln[(A∞-

At)/(A∞-Ao)] vs. time for the formation of copolymer is found to be linear, for A∞ and At 

being the absorbance of the νC=O band of the copolymer at t = ∞ and t = time.  It is 

important to note here that the data plotted in Figure II-7 is for the early portion of the 

reaction because at higher levels of conversion (>65%) the reaction solution becomes 

more viscous.55  Similarly, the order of the reaction with regard to complex II-4 was 

observed to be first-order based on the linear relationship between initial rate vs. 

complex II-4 concentration (Figure II-8).  As is readily seen in Figure II-8, the linear 

plot has a non- zero intercept of the x-axis of ~0.005 M, suggesting that a small quantity 

of the catalyst is degraded in the copolymerization process.  Relevant to this latter point, 

when the copolymerization reaction is carried out under identical conditions except in 

neat oxetane at a catalyst concentration of 0.005 M the system is active for copolymer 

formation. 
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Figure II-6.  Three-dimensional stack plot and reaction profile of the IR spectra collected 
every 3 min during the copolymerization reaction of oxetane and carbon dioxide. 

Reaction carried out at 110ºC in toluene at 35 bar CO2 pressure, in the presence of complex II-4 and 2 
equiv. of n-Bu4NN3. 

 
 
 

The dependence of the coupling of oxetane and carbon dioxide on the 

concentration of the anionic initiator (cocatalyst) was examined in the instance of n-

Bu4NN3.  As is evident in Figure II-9 the copolymerization rate was found to be first-

order in [cocatalyst] up to approximately two equivalents of n-Bu4NN3.  Hence, in the 

range of [n-Bu4NN3] investigated between 0.5 and 2.0 equivalents the copolymerization 
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process can be described as being first-order in oxetane, (salen)CrX, and cocatalyst 

concentrations, with zero-order dependence on [cocatalyst] greater than 8-10 

equivalents.  This latter behavior is to be expected for a reaction where the initiation step 

is not significantly faster than the propagation step. 

 
 
 

 

Figure II-7.  First-order plot of the conversion of oxetane and CO2 to poly(TMC).  Reaction carried out in 
toluene at 110C with complex II-4 (0.0327 M), 2 equivalents of n-Bu4NN3 at 35 bar CO2 pressure. 

Oxetane concentration = 4.92 M.  Slope = -0.0183, y intercept = 0.6525 with R2 = 0.9946. 
 
 
 

The copolymerization of oxetane and CO2 was performed at several temperatures 

between 80-110ºC and the rate constants for the process kp, where rate = 

kp[oxetane][catalyst][cocatalyst], were determined.  These kp values as a function of 

temperature are listed in Table II-8, with the corresponding Eyring plot depicted in 

Figure II-10.  The calculated activation parameters, ΔH‡ and ΔS‡, were 45.6  3 kJ/mol 

and -161.9  8.2 J/mol-deg, respectively.  In this instance the enthalpy of activation 

(ΔH‡) is very similar to that observed for the copolymerization of cyclohexene oxide and 
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Figure II-8.  Dependence of copolymerization reaction on [catalyst].  Reactions carried out in toluene at 
110C with complex II-4, 2 equivalents of n-Bu4NN3 at 35 bar CO2 pressure.  Oxetane concentration = 

4.92 M.  Initial rate vs. [complex II-4] provided a y intercept of -2.10-5 with R2 = 0.9931. 
 
 
 

 

Figure II-9.  Initial rates for production of poly(TMC) as a function of number of equivalents of 
cocatalyst.  Reactions carried out in toluene at 110C with complex II-4 (0.014 M) and n-Bu4NN3 as 

cocatalyst, at 35 bar CO2 pressure, oxetane concentration = 4.92 M. 
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Table II-8.  Variable Temperature Rate Constants for the 
Copolymerization Reaction.a 

T(K) kp (L2/mol2-s) 

353 0.00449 

363 0.00741 

373 0.0103 

383 0.0171 
a Each experiment was performed in toluene with 0.014 M 
of complex II-4 and 2 equivalents of n-Bu4NN3 at 35 bar 
CO2 pressure.  Oxetane concentration = 4.92 M. 

 
 
 

 

Figure II-10.  Eyring plot for the formation of poly(TMC) in the presence of 
complex II-4/n-Bu4NN3 catalyst system in toluene.  Slope = -5502.5 with R2 = 0.992. 

 
 
 
CO2 (45.5 kJ/mol), and lower than that for the process involving the monomers 

propylene oxide and CO2 (66.2 kJ/mol) employing a similar catalyst system.60 

Solution Kinetic Studies of the Ring-Opening Polymerization of 

Trimethylene Carbonate.  Herein we wish to describe in detail kinetic measurements 

for the ring-opening polymerization of trimethylene carbonate to poly(TMC), equation 

(I-2), under comparable conditions to that reported above for the copolymerization of 
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oxetane and CO2 leading to poly(TMC).  In this instance the use of 1,1,2,2-

tetrachloroethane was found to be advantageous because of its high boiling point, and 

the high solubility of both monomer and polymer in a chlorinated solvent.  These 

reactions were monitored by 1H NMR spectroscopy. Figure II-11a displays a typical 

monomer consumption vs. time plot, whereas the semilogarithmic plot of –

ln([monomer]0/[monomer]t) vs. time is displayed in Figure II-11b, and as might be 

expected the polymerization reaction was found to be first-order with respect to [TMC].  

Table II-9 summarizes the determined rate constants (kobsd) for the ROP of TMC as a 

function of [catalyst] and [cocatalyst].  Log-log plots of the rate constants (kobsd) vs. 

[catalyst] and [cocatalyst] reveal relationships between ln kobsd vs. ln[catalyst] or 

ln[cocatalyst] with slopes close to unity, thus, indicative of the polymerization reaction 

being first-order in [catalyst] and first-order with respect to [cocatalyst] up to 1 

equivalent of cocatalyst. 

Figures II-12 and II-13 illustrate the effect of excess quantities of cocatalyst (n-

Bu4NN3) on the rate constant of the ring-opening polymerization process.  As can be 

readily seen, the ROP reaction ultimately becomes independent of [cocatalyst] loadings 

as would be expected.  A double reciprocal plot of these data reveals a linear relationship 

with a limiting rate constant (kobsd) of 0.059 h-1 at 120ºC. 
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Figure II-11.  (A) Plot of monomer conversion vs. time.  (B)  First-order plot of the conversion of TMC to 
poly(TMC).  Reaction carried out in TCE at 120C with complex II-4 (0.00506 M) and 2 equivalents of n-

Bu4NN3 (0.0098 M).  TMC concentration = 0.98 M.  Slope = 0.0366, y intercept = -0.0092 with R2 =  
0.9975. 
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Table II-9. Rate Constant Dependence on the Concentrations of Catalyst and Cocatalyst for the ROP of TMC.a 

Entry [catalyst](mol/L) 
Equiv. of n-

Bu4NN3 
Temperature (C) kobsd (h-1) 

1 0.00253 2 120 0.0169 

2 0.00380 2 120 0.0295 

3 0.00506 2 120 0.0366 

4 0.01010 2 120 0.071 

5 0.00506 0 120 0.0055 

6 0.00506 0.5 120 0.0168 

7 0.00506 0.75 120 0.0225 

8 0.00506 1 120 0.0275 

9 0.00506 2 120 0.0366 

11 0.00506 3 120 0.0414 

12 0.00506 6 120 0.0473 

13 0.00506 8 120 0.0530 
a Monomer concentration held at 0.98 M.  Reactions carried out in 1,1,2,2,-tetrachloroethane. 
 
 
 

The ring-opening polymerization of TMC was carried out over the temperature range 

of 105-130ºC in order to obtain the activation parameters for this process.  The rate constants 

of the ring-opening reaction, kp, are listed in Table II-10.  The activation parameters ΔH‡ and 

ΔS‡ calculated from the Erying plot shown in Figure II-14 were determined to be 74.1  3.0 

kJ/mol and -72.3  8.3 J/mol-K, respectively.  These parameters are consistent with a reaction 

pathway involving the attack of a nucleophilic center (polymer chain end) to a metal-bound 

cyclic carbonate (vide infra).  The ΔG‡ value of 101.9 kJ/mol at 110ºC for the ROP of TMC is 

quite similar to the comparable ΔG‡ found for the copolymerization of oxetane and CO2 of  

107.6 kJ/mol.  This small difference in ΔG≠ for oxetane/CO2 copolymerization and ring-opening 

polymerization of TMC clearly demonstrates that the two processes are energetically quite 

similar.  Hence, the formation of polycarbonate from the oxetane and CO2 coupling reaction 

could be occurring via two different or concurrent pathways, i.e., the intermediacy of TMC  
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Figure II-12.  Rate constant for production of poly(TMC) as a function of number of  
equivalents of cocatalyst (n-Bu4NN3).  Data taken from Table II-9. 

 
 
 

 

Figure II-13.  Double reciprocal plot of the rate constant dependence of the ROP process with 
[cocatalyst].  Data taken from Table II-9.  Slope = 0.1044 and y intercept = 16.792 with R2 = 0.9966. 

 
 
 
formation and subsequent polymerization and/or the direct enchainment of oxetane and 

CO2.  Indeed, in situ infrared spectroscopic monitoring of the copolymerization reaction 

suggest both pathways are operative (vide supra).  Further studies detailed below based 
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on monitoring of the coupling of oxetane and CO2 by 1H NMR spectroscopy, 

accompanied by end-group analysis of the low molecular weight copolymers produced, 

are designed to more definitively address this issue. 

 
 

 
Table II-10.  Variable Temperature Rate Constants for the 
Polymerization Reaction.a 

T(K) kp(L2/mol2-s) 

378 0.07621 

383 0.10469 

393 0.19854 

403 0.34825 

a Each experiment was performed in TCE with complex II-
4 (0.00506 M) and n-Bu4NN3 as cocatalyst (0.0098 M), 
TMC concentration = 0.98 M. 

 
 
 

 
Figure II-14. Eyring plot for the formation of poly(TMC) in the presence of 

complex II-4/n-Bu4NN3 catalyst system in TCE.  Slope = -8910.7 with R2 = 0.9997. 
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Further Mechanistic Insight into the Oxetane and Carbon Dioxide Coupling 

Process.  As mentioned above, an inquiry of the mechanistic aspects of the oxetane and 

carbon dioxide coupling reaction was undertaken utilizing 1H NMR spectroscopy studies 

which should provide a better assessment of the role of trimethylene carbonate in this 

process.  The copolymerization reactions were performed under identical conditions as 

previously described herein, i.e., complex II-4/2 equivalents of n-Bu4NN3, 35 bar CO2, 

110ºC and catalyst loading of 0.28 mol%.  For these investigations, analysis of the 

reaction mixture was done by manually sampling a small aliquot withdrawn from the 

stainless steel reactor with subsequent quenching of the reaction’s progress by cooling 

the solution to 10ºC.  As was observed during this process by in situ infrared 

spectroscopic monitoring, formation of TMC was detected prior to poly(TMC) 

formation.  That is, the initial formation of TMC was detected within 30 min by the 

appearance of a triplet at 4.43 ppm and a quintet at 1.98 ppm, with its consequent 

consumption to produce polycarbonate.  After four hours of reaction no TMC was 

observed in the reaction mixture.  Hence, it is apparent that in the early stages of the 

reaction a portion of the polycarbonate results from the ring-opening of trimethylene 

carbonate.  This observation, coupled with the presence of some ether linkages in the 

copolymer, strongly supports the conclusions that both oxetane/CO2 enchainment and 

TMC ring-opening are occurring simultaneously.  End-group analyses of the 

polycarbonates produced from oxetane/CO2 copolymerization and ROP of TMC were 

carried out in an effort to further corroborate these claims. 
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 Figure II-15 illustrates the 1H NMR spectrum of a purified polycarbonate sample 

obtained from the copolymerization of oxetane and carbon dioxide.  Purification of the 

copolymer was achieved by precipitation from a dichloromethane solution with 1 M HCl 

in methanol, followed by vacuum drying.  In CDCl3 the copolymer exhibits two major 

signals at 4.23 ppm (t, 4H, 3JHH = 6.3 Hz, –OCH2) and 2.05 ppm (quint, 2H, 3JHH = 5.9 

Hz, –CH2).  Ether linkages were observed in the copolymer at 3.50 ppm (t, 4H, 3JHH = 

5.9 Hz, –OCH2) and 1.90 ppm (quint, 2H, 3JHH = 5.9 Hz, –CH2).  A –CH2OH end group 

was observed before and after purification of the copolymer sample.  These latter proton 

resonances appeared at 4.29 ppm (t, 2H, 3JHH = 6.0 Hz, –CH2),  

3.73 ppm (t, 2H, 3JHH = 6.3 Hz, –CH2), and 1.90 ppm (quint, 2H, 3JHH = 5.9 Hz, –

CH2).
30, 34, 61  The presence of an organic azide end group (–CH2N3) was also seen in the 

1H NMR spectrum of the copolymer at 3.43 ppm (t, 2H, 3JHH = 6.3 Hz, –CH2), with the 

other two resonances being obscured by the intense polymer signals at 4.23 and 2.05 

ppm.  This assignment was made based on the 1H NMR spectrum in CDCl3 of a model 

compound (3-azido-propan-1-ol), which showed signals at 3.74 ppm (t, 2H, 3JHH = 6.0 

Hz, –CH2OH), 3.47 ppm (t, 2H, 3JHH = 6.6 Hz, –CH2N3), 1.83 ppm (quint, 2H, 3JHH = 

5.9 Hz, –CH2CH2CH2), and 1.77 ppm (s, 1H, –OH).  In addition, the infrared spectrum 

of this copolymer exhibited an organic azide νN3
 mode at 2100 cm-1 in TCE.  Finally, the 

polycarbonate displayed a 1H NMR resonance a 3.79 ppm (s, 3H) attributed to the –

OC(O)OCH3 end group resulting from methanolysis of the original –OC(O)N3 end 

group following copolymer purification from MeOH.61 
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 Based on the above observations we can conclude that two initiation pathways 

are operative following the initial generation of some trimethylene carbonate via a back-

biting process involving the carbonate species afforded from Pathway 1 (Scheme II-2). 

In a similar fashion, a low molecular weight polycarbonate obtained from the 

ring-opening polymerization of trimethylene carbonate was analyzed by 1H NMR 

spectroscopy.  Figure II-16 illustrates the 1H NMR spectrum of the resulting poly(TMC) 

 
 
 

 
 
 
 

Figure II-15.  1H NMR spectrum in CDCl3 of poly(TMC) obtained by way of oxetane/CO2, 
in the presence of (salen)Cr(III)Cl /n-Bu4NN3 as the catalytic system. 

Polymer was purified from dichloromethane and 1 M HCl solution in methanol. 
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sample in CDCl3, which exhibits as expected, two major resonances at 4.23 ppm (t, 4H, 

3JHH = 6.0 Hz, –OCH2) and 2.05 ppm (quint, 2H, 3JHH = 6.3 Hz, –CH2).  Importantly, no 

ether linkages were observed in this polycarbonate.  A –CH2OH end group was 

observed before and after polymer purification, with 1H NMR resonances appearing at 

4.29 ppm (t, 2H, 3JHH = 6.0 Hz, –CH2), 3.73 ppm (t, 2H, 3JHH = 6.0 Hz, –CH2), and 1.90 

ppm (quint, 2H, 3JHH = 6.3 Hz, –CH2).  The presence of an organic azide end group was 

also seen in the polymer sample at 3.43 ppm (t, 2H, 3JHH = 6.3 Hz, –CH2N3) and 2100 

cm-1 in the 1H NMR and infrared spectra, respectively.  Similarly, the presence of an  

Scheme II-2.  Proposed Initiation Pathways. 
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–OC(O)OCH3 end group at 3.79 ppm (s, 3H) was observed following polymer 

purification from methanol.  The latter observations, i.e., the presence of –CH2N3 and – 

OC(O)OCH3 end groups in the polymer produced from TMC, established that the ring- 

opening of TMC under these catalytic conditions occurs via both acyl-oxygen and alkyl- 

oxygen bond cleavage modes (Scheme II-3).  Previously, we and others have reported 

that the mechanism for ring-opening polymerization of TMC occurs exclusively by acyl- 

oxygen bond cleavage.25, 29, 62  However, the presence of an organic azide end group in 

the poly(TMC) sample obtained by this route utilizing the (salen)CrCl/n-Bu4NN3 

catalytic system, suggests that under these higher temperatures the ring-opening 

polymerization of TMC could also be initiated by an alkyl-oxygen bond cleavage. 

 
 
 

 

Figure II-16.  1H NMR spectrum in CDCl3 of poly(TMC) sample obtained by ROP of TMC 
in the presence of (salen)Cr(III)Cl/n-Bu4NN3 as the catalytic system. 

Polymer was purified from dichloromethane and 1 M HCl solution in methanol. 
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 Scheme II-4 summarizes the proposed mechanistic aspects for the 

copolymerization of oxetane and carbon dioxide based on our current experimental 

findings.  Although we have indicated only one of the chromium bound azide ligands 

taking part in the reaction, both are most likely involved.  It is felt that only one 

copolymer chain grows from a single chromium center.  In other words, the second azide 

ligand in the anionic chromium species is probably displaced by oxetane following the 

ring-opening process, with subsequent incorporation into the copolymer as an end group.  

Evidence for this is seen in Figure II-2, where upon complete ring-opening of oxetane 

(spectrum C) there is not metal bound or free azide present in the spectrum.  As pointed 

out in the transition state illustrated in Scheme II-4 of the initiation step, the azide ion 

has some association with the chromium center during the ring-opening process, as 

would be expected for the growing copolymer chain.  Following the initial ring-opening 

step and CO2 insertion into the resultant chromium-oxygen bond, two pathways are open 

for the intermediate.  Route (1) involves consecutive additions of oxetane and CO2 to 

yield the alternating copolymer, where route (2) leads to TMC formation by a back-

biting proce ss with ring closure.  Once TMC is formed it can enter the copolymer chain.  

O O

O

Cr

N3
-

N3
-

Cr O O C N3

O

N3OCO

O

Cr

MeOH
Cr O O C OCH3

O

Scheme II-3.  Proposed Initial TMC Ring-Opening Pathways. 
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Initiation Step 

Scheme II-4.  Proposed Reaction Mechanism. 

Chain Propagation  

Chain Termination 
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by a coordination-insertion mechanism.  The portion of route (2) shown in red should be 

highly dependent on the nature of the anionic leaving group.  Indeed, we have noted for 

the bromide ion that this pathway is competitive with oxetane enchainment, and may 

provide a means for tuning the selectivity of the two pathways for poly(TMC) formation.  

An advantage of proceeding exclusively via route (2) is the absence of ether linkages in 

the afforded polycarbonate. 

Concluding Remarks 

 In summary, we have shown that chromium(III) salen complexes along with 

anionic initiators are effective catalysts for the copolymerization of oxetane and carbon 

dioxide.  Optimization of the chromium catalyst was achieved utilizing a salen ligand 

with tert-butyl substituents in the 3,5-positions of the phenolate rings and a 

cyclohexylene backbone in the diimine, along with an azide ion as an initiator.  

Structural studies showed that oxetane binding to the chromium center occurred with 

little changes in its metric parameters as compared with the free cyclic ether.  In 

particular, it remained nonplanar with the dihedral angle of the planes  

C–O–C and C–C–C being 10.5º at 110K.  Kinetic measurements performed employing 

in situ infrared monitoring showed the oxetane/CO2 coupling reaction to be first-order in 

oxetane, metal catalyst, and anionic initiator; with the latter exhibiting zero-order 

dependence at high concentrations.  Furthermore, both infrared and 1H NMR 

spectroscopy demonstrated the production of trimethylene carbonate in the early stages 

of the copolymerization process.  Nevertheless, the presence of ether linkages in the 

copolymer clearly revealed that direct enchainment of oxetane and CO2 into the growing 
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polymer chain occurs.  The similarity of the free energy of activation of the 

copolymerization reaction of CO2 and oxetane and the ring-opening polymerization of 

trimethylene carbonate supports these findings.  In the following Chapers studies 

focused at tuning the selectivity of the oxetane and CO2 coupling process for cyclic 

carbonate or copolymer by altering the anionic initiator or by using metal salen 

derivatives in oxidation state +2 will be presented. 
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CHAPTER III 

 

MECHANISTIC INSIGHT INTO THE INITIATION STEP OF THE COUPLING 

REACTION OF OXETANE OR EPOXIDES AND CO2 CATALYZED BY 

(SALEN)CrX COMPLEXES* 

 

Introduction 

As previously discussed in Chapter I, metal(III) salen complexes (where M = Cr, 

Co, or Al) have demonstrated to be the most effective and importantly most robust 

catalysts for the epoxide/CO2 copolymerization process.8a, b, 8f  Jacobsen and coworkers 

have clearly shown that an intermolecular bimetallic pathway for asymmetric 

nucleophilic ring-opening of epoxides catalyzed by (salen)CrX derivatives is operative 

(Scheme III-1).63  However, in the absence of an added or endogenous source of 

cocatalyst these five-coordinate complexes are not effective catalysts for the 

copolymerization of CO2 and epoxides.  This is presumably a consequence of the metal 

center being too electrophilic to facilitate the CO2 insertion reaction.64  Relevant to this 

latter point, the Darensbourg group has recently demonstrated the ring-opening reaction 

of epoxides to be second-order in the five- coordinate Schiff base complex of 

manganese(III), (tfacacen)MnN3 (tfacacen = N,N'-bis(trifluoroacetylacetone)-1,2- 

____________ 
*Reproduced in part with permission from “Mechanistic Insight into the Initiation Step 
of the Coupling Reaction of Oxetane or Epoxides and CO2 Catalyzed by (Salen)CrX 
Complexes.”  Darensbourg, D. J.; Moncada, A. I. Inorg. Chem. 2008, 47, 10000-10008.  
Copyright 2008 American Chemical Society. 
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ethylenediamine), and at the same time to be ineffective at catalyzing the 

copolymerization of epoxide and CO2.
65 

 In the presence of various cocatalysts, e.g., heterocyclic amines and anionic 

nucleophiles, however, (salen)M(III)X (M = Cr and Co) are very reactive catalysts for 

the coupling of epoxides and CO2.
8b  As shown in the previous Chapter, the chromium 

catalytic system has demonstrated to be active for the copolymerization of oxetane and 

CO2 via a closely related mechanistic pathway to that of epoxides and CO2.  Anions 

derived from PPN+((Ph3P)2N
+) and tetraalkylammonium+ salts are the most active 

cocatalysts discovered to date. 

 
 
 

 

 
 
 
 Herein, we wish to report on the structural characterization of complexes 

resulting from the reaction of (salen)CrX complexes with PPNX or n-Bu4NX salts which 

serve as catalysts for the copolymerization processes described in equations I-1 and I-5.  

Scheme III-1.  Bimetallic Pathway for Asymmetric Nucleophilic Ring-Opening of Epoxides. 
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In addition, comparative monomer binding to the chromium center and subsequent ring-

opening steps of epoxides and oxetanes will be discussed. 

Experimental Section 

Reagents and Methods.  Unless otherwise specified, all syntheses and 

manipulations were carried out on a double-manifold Schlenk vacuum line under an 

atmosphere of argon or in an argon filled glove box.  Toluene and tetrahydrofuran were 

freshly distilled from sodium/benzophenone.  Ethanol and methanol were freshly 

distilled from Mg/I2.  1,1,2,2-tetrachloroethane was freshly distilled over CaH2.  Diethyl 

ether, dichloromethane, pentane, and hexanes, were purified by an MBraun Manual 

Solvent Purification System packed with Alcoa F200 activated alumina desiccant.  Other 

chemicals employed in these studies, and their origin in parentheses, are provided below.  

Oxetane (Alfa Aesar) was freshly distilled over CaH2 and stored in the freezer of the 

glove box.  Cyclohexene oxide (TCI) and propylene oxide (Aldrich) were freshly 

distilled over CaH2 before use.  PPNN3, PPNCN, and PPNNCO (PPN+ = (Ph3P)2N
+ ) 

were synthesized according to a published procedure for the synthesis of PPNN3.
48  

Tetra-n-butylammonium bromide (Aldrich), tetra-n-butylammonium iodide (Eastman) 

and tetra-n-butylammonium chloride (TCI) were recrystallized from acetone/diethyl 

ether before use.  Tetra-n-butylammonium azide (TCI) was stored in the freezer of the 

glove box upon arrival.  Ethylenediamine (Aldrich), 1,2-phenylenediamine (ACROS), 

chromium(II) chloride (Alfa Aesar), and sodium sulfate (EMD) were used as received.  

Bone-dry carbon dioxide supplied in a high-pressure cylinder and equipped with a liquid 
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dip tube was purchased from Scott Speciality Gases.  The corresponding salen ligands 

and chromium complexes were synthesized as previously described.45 

IR spectra were recorded on a Mattson 6021 Fourier Transform (FT) IR 

spectrometer with a MCT detector.  Analytical elemental analysis was provided by 

Canadian Microanalytical Services Ltd.  High-pressure reaction measurements were 

performed using an ASI ReactIR 1000 reaction analysis system with a stainless steel 

Parr autoclave modified with a permanently mounted ATR crystal (SiComp) at the 

bottom of the reactor (purchased from Mettler Toledo). 

Cocatalyst, Substrate Binding, and Ring-Opening Steps Examined by 

Infrared Spectroscopy.  Cocatalyst, substrate binding, and ring-opening step studies 

were examined by solution infrared spectroscopy.  The catalytic system used in these 

studies was a (salen)CrCl complex III-1 (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-

ethylenediamino chromium(III) chloride) (50 mg) or a (salen)CrN3 complex III-2 (N,N'-

bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamino chromium(III) azide) (50 mg) in 

the presence of n-Bu4NN3  or n-Bu4NCl as cocatalysts, and using TCE as the solvent (4 

mL). 

Statistical Deconvolution of FTIR Spectra.  Where noted FTIR spectra were 

deconvoluted using Peakfit, version 4.12 (Peakfit for Windows, v. 4.12; SYSTAT 

Software Inc: San Jose, CA, 2003).  Statistical treatment was a residuals method 

utilizing a combination Gaussian-Lorentzian summation of amplitudes with a linear 

baseline and Savitsky-Golay smoothing. 
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 X-ray Structural Studies.  Single crystals of (salen)Cr(Cl)2
-n-Bu4N

+ (complex 

III-3) were obtained by layering hexanes into a saturated dichloromethane solution of 

the corresponding (salen)CrCl complex (N,N'-bis(3-tert-butyl-5-methoxysalicylidene)-

1,2-phenylenediamino chromium(III) chloride) containing two equivalents of n-Bu4NCl.  

Anal. Calcd for C47H72Cl4CrN3O4: C, 60.25; H, 7.15; N, 4.49.  Found: C, 60.73; H, 7.91; 

N, 4.45. 

 Single crystals of (salen)Cr(N3)2
-n-Bu4N

+ (complex III-4) were obtained in a 

similar manner as above employing 2 equivalents of n-Bu4NN3.  Anal. Calcd for 

C46H70CrN9O4: C, 63.86; H, 8.16; N, 14.57.  Found: C, 61.84; H, 7.96; N, 12.20.  IR 

(TCE, cm-1): 2057 (sh) and 2047 (s, N3
-).  Single crystals of (salen)Cr(CN)2

-PPN+ 

(complex III-5) were obtained in a similar manner as above employing 2 equivalents of 

PPNCN.  Anal. Calcd for C68H64CrN5O4P2: C, 72.33; H, 5.71; N, 6.20.  Found: C, 70.31; 

H, 6.01; N, 5.80.  IR (TCE, cm-1): 2118 (w, CN-).   Single crystals of (salen)Cr(NCO)2
-

PPN+ (complex III-6) were obtained in a similar manner as above employing 2 

equivalents of PPNNCO.  Anal. Calcd for C70H68Cl4CrN5O6P2: C, 63.16; H, 5.15; N, 

5.26.  Found: C, 63.12; H, 5.14; N, 5.20.  IR (TCE, cm-1): 2211 (s, NCO-).  Single 

crystals of (salen)Cr(Cl)x(N3)y
-PPN+ (complex III-7) were obtained in a similar manner 

as above employing 1 equivalent of PPNN3.  ESI-MS: m/z 608.18 [(salen)Cr(Cl2)
-], 

615.23 [(salen)Cr(Cl)(N3)
-], 622.2 [(salen)Cr(N3)2

-] and 632.23 ([(salen)Cr(Cl)(OAc)-].  

IR (TCE, cm-1): 2051 (b, N3
-). 
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 For all crystal structures, a Bausch and Lomb 10 microscope was used to 

identify suitable crystals.  Each crystal was coated in paratone, affixed to a nylon loop, 

and placed under streaming nitrogen (110K) on a Bruker - AXS Apex II three-circle, a 

Bruker-D8 Adv GADDS or on a Bruker SMART 1000 CCD X-ray diffractometer.  

Space group determinations were made on the basis of systematic absences and intensity 

statistics.  All crystal structures were solved by direct methods and were refined by full-

matrix least-squares on F2.  All hydrogen atoms were placed in idealized positions and 

refined with fixed isotropic displacements parameters equal to 1.2 (1.5 for methyl 

protons), times the equivalent isotropic displacements parameters of the atoms to which 

they were attached.  All non-hydrogen atoms were refined with anisotropic displacement 

parameters. 

 The following are the programs that were used: data collection and cell 

refinements; APEX II data collection software, FRAMBO Version 4.1.05 (GADDS)66 or 

SMART WNT/2000 Version 5.632,67 data reductions; APEX II data reduction software 

or SAINTPLUS Version 6.63,68 absorption correction; SADABS,49 structural solutions; 

SHELXS-97,50 structural refinement; SHELXL-97;51 molecular graphics and preparation 

of material for publication; SHELXTL, version 6.14,52 and X-Seed, version 1.5.53 

Copolymerization reactions monitored by in situ IR Spectroscopy.  In a 

typical experiment, the catalyst (N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexylenediamino chromium(III) chloride), (complex III-8), (124.4 mg), cocatalyst, 

and oxetane (4 g) were dissolved in 10 mL of toluene and delivered via the injection port 

into a 300-mL stainless steel Parr autoclave reactor that was previously dried in vacuo 
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overnight at 80C.  The autoclave is modified with a 30 bounce SiComp window to 

allow for the use of an ASI ReactIR 1000 system equipped with a MCT detector.  In this 

manner a 128-scan background spectrum was collected after the reaction mixture was 

heated to the temperature of the corresponding experiment, the autoclave was then 

pressurized with 35 bar of CO2, and the infrared spectrometer was set to collect one 

spectrum every 3 min over a 12 or 24 h period.  Profiles of the absorbance at 1750 cm-1 

(polymer) with time were recorded after base line correction.  (Note: cocatalyst, 

cocatalyst loading, and temperature varied within each experiment and are described in 

the Result and Discussion section). 

Results and Discussion 

 Our first concern was to examine in detail the nature of the soluble catalytic 

species resulting from the addition of the salt containing the anionic initiator to the 

(salen)CrX complex.  In a typical copolymerization experiment the (salen)CrCl complex 

is dissolved in neat epoxide or oxetane in the presence of 1-2 equivalents of a salt 

cocatalyst.  Anions derived from either the very bulky and less interacting PPN+ cation 

or the more interacting n-Bu4N
+ cation have been shown to be very effective initiators 

for these copolymerization processes.54  Although, the PPNX salts have the added 

desirable feature of being readily available in an anhydrous form, these salts are 

generally insoluble or very sparingly soluble in low polarity cyclic ethers.  Hence, in 

these instances pretreatment of the (salen)CrX complex with PPNX is required to assure 

maximum catalytic activity.  This is achieved by dissolving the (salen)CrX complex and 
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PPNX salt in a compatible solvent such as methylene chloride, followed by vacuum 

removal of the solvent prior to introducing the cyclic ether monomer. 

 The identity of the chromium derivative resulting from the addition of n-Bu4NX 

to (salen)CrX was initially investigated by solution infrared spectroscopy for X = azide 

ion, where azide is strongly absorbing in the infrared region around 2000 cm-1.  The 

titration of (salen)CrCl (complex III-1) with n-Bu4NN3 proceeded in a stepwise fashion 

as illustrated in Scheme III-2 via monitoring the νN3
 stretching vibration as depicted in 

Figure III-1.  As noted the reaction proceeds all the way to the right, eventually forming 

an anionic bis-azide complex, (salen)Cr(N3)2
-.  That is, the chloride ligand is easily 

displaced by an azide ligand in tetrachloroethane solution.55a  Furthermore, the process is 

irreversible upon subsequent addition of excess n-Bu4NCl.  It should also be pointed out 

that, as expected, the identical diazide complex can be prepared by the reaction of 

(salen)CrN3 with one equivalent of n-Bu4NN3. 

 
 
 

 

 
 
 

The generality of Scheme III-2 involving the reaction of (salen)CrCl in the 

presence of two equivalents of X- ligands other than azide (eq. III-1) was also noted as 

Scheme III-2.  Treatment of (salen)CrCl with n-Bu4NN3. 
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revealed by infrared spectral data, and more importantly X-ray crystallography.  Four 

such six- coordinate anionic chromium(III) complexes have been isolated and 

characterized as their PPN+ or n-Bu4N
+ salts, where X- = Cl-, N3

-, CN-, and NCO-  

 
 
 

 

 
 
 
(Figure III-2).54  Crystallographic data pertaining to these crystal structures are provided 

in Table III-1, with selected bond distances listed in Table III-2.  As anticipated, strong 

field ligands such as N3
-, CN-, and NCO- easily displace chloride at ambient temperature 

due to their greater trans effect. 

 
 
 

Figure III-1.  Overlay of infrared spectra illustrating azide based cocatalyst dependence. 
0.5 equivalents of n-Bu4NN3 (A), 1 equivalent of n-Bu4NN3 (B), 
2 equivalents of n-Bu4NN3, (C) 3 equivalents of n-Bu4NN3 (D). 
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Pertinent to the copolymerization reaction it was of interest to determine the 

characteristics of the anionic species which forms upon treating (salen)CrCl with only 

Figure III-2.  Thermal ellipsoid representations of (salen)CrX2
- anions, where the salen ligand 

contains –OMe and –t-Bu substituents in the 3,5-positions of the phenolates, respectively, with a 
phenylene diamino-backbone.  H atoms omitted for clarity.  Ellipsoids are at the 50% level.  (a) n-

Bu4N
+ salt, X = Cl.  One molecule of dichloromethane was crystallized in the unit cell.  (b) n-

Bu4N
+ salt, X = N3.  (c) PPN+ salt, X = CN.  Three molecules of dichloromethane were 

crystallized in the unit cell.  (d) PPN+ salt, X = NCO.  Two molecules of dichloromethane were 
crystallized in the unit cell. 

(b) 

(c) 
(d) 

(a) 

(III-1) 
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one equivalent of PPNN3.  That is, we have demonstrated for cyclohexene oxide/CO2 

copolymerization processes that the rate of copolymer formation is the same whether we 

employ (salen)CrCl and one equivalent of PPNN3 or (salen)CrN3 and one equivalent of 

PPNCl as catalysts.  This observation suggests the differently derived catalyst systems 

are equivalent.  To more definitively address this issue we first examined the infrared 

data observed in the νN3
 region upon treating (salen)CrCl with one equivalent of             

n-Bu4N3.  As seen in Figure III-1, a broad absorption at 2051 cm-1 was observed which 

shifts to lower frequency upon addition of another equivalent of azide.  At this point it is 

also noted that there is no free azide in solution as evident by the lack of a band at 2009  

 
 
 

Table III-1.  Crystallographic Data for Complexes III-3, III-4, III-5, III-6, and III-7. 
 III-3(CH2Cl2) III-4 III-5[3(CH2Cl2)] III-6[2(CH2Cl2)] III-7[2(CH2Cl2)] 
empirical formula C47H72Cl4CrN3O4 C46H70CrN9O4 C71H70Cl6CrN5O4P2 C70H68Cl4CrN5O6P2 C67.50H67Cl3CrN6O4P2 
fw 936.88 865.11 1383.96 1331.03 1215.59 
temperature (K) 110(2) K 110(2) K 110(2) K 110(2) K 110(2) K 
crystal system Triclinic Orthorhombic Triclinic Triclinic Triclinic 
space group P-1 Pnna P-1 P-1 P-1 
a (Å) 13.039(3) 10.622(10) 12.104(3) 11.961(2) 12.447(2) 
b(Å) 13.372(3) 25.105(2) 16.019(4) 15.876(3) 15.076(2) 
c(Å) 14.703(3) 17.256(17) 19.970(7) 18.842(4) 18.509(3) 
α(deg) 93.050(3) 90 66.377(15) 68.179(10) 70.026(8) 
β(deg) 101.587(3) 90 80.31(2) 79.346(12) 82.558(9) 
γ(deg) 104.698(3) 90 79.034(17) 88.643(11) 79.978(9) 
V(Å)3 2414.4(9) 4602.0(7) 3464.4(18) 3260.5 3205.3(9) 
Dc(Mg/m3) 1.289 1.249 1.327 1.356 1.260 
Z 2 4 2 2 2 
abs coeff(mm-1) 0.502 0.301 4.33 3.867 3.261 
reflections 
collected 

28288 42139 24726 25681 21367 

independent 
reflections 

11323 [R(int) = 
0.0454] 

5632 [R(int) = 
0.0986] 

9069 [R(int) =  
0.0606] 

9249 [R(int) = 
0.0409] 

8449 [R(int) = 
0.0965] 

Data/restrains/ 
parameters 

11323/0/544 5632/0/278 9069/0/810 9249/0/801 8449/565/821 

GOF on F2 1.001 1.000 1.000 1.000 1.001 
final R indices 
[I>2σ(I)] 

aR1 = 0.0452 
bRw = 0.1152 

aR1 = 0.0822 
bRw = 0.2018 

aR1 = 0.0843 
bRw  = 0.2478 

aR1 = 0.0504 
bRw = 0.1663 

aR1 = 0.0894 
bRw = 0.2131 

final R indices  
(all data) 

aR1 = 0.0706 
bRw = 0.1311 

aR1 = 0.2139 
bRw = 0.2536 

aR1 = 0.1344 
bRw = 0.3210 

aR1 = 0.0657 
bRw = 0.2110 

aR1 = 0.1747 
bRw = 0.2716 

      

  



 77

cm-1.  X-ray quality crystals were grown upon layering a concentrated dichloromethane 

solution of (salen)CrCl and one equivalent of PPNN3 with hexanes.  Surprisingly, four 

different anionic species were detected by X-ray crystallography, i.e., (salen)CrCl2
-, 

(salen)Cr(N3)2
-, and two different forms of (salen)Cr(N3)Cl- (see Table III-1, and Figure  

 
 
 

Table III-2.  Selected Bond Lengths for Complexes III-3, III-4, III-5, and III-6.a 
 III-3 III-4 III-5 III-6 

Cr-Osalen ligand 
1.9245(15) 
1.9220(15) 

1.915(3) 
1.907(5) 
1.919(4) 

1.926(3) 
1.928(3) 

Cr-Nsalen ligand 
2.0016(17) 
2.0189(17) 

2.007(4) 
2.017(6) 
2.026(5) 

2.020(3) 
2.023(3) 

Cr-Napical ligand  2.050(4)  
2.016(4) 
2.025(3) 

N-Napical ligand  
1.174(5) 
1.168(6) 

  

Cr-Clapical ligand 
2.3236(7) 
2.3959(7) 

   

Cr-Capical ligand   
2.104(9) 

2.126(10) 
 

C-Napical ligand   
1.155(10) 
1.144(10) 

 

C-Oapical ligand    
1.210(5) 
1.206(5) 

 
 
 
III-3).  The two forms of the mixed ligand complex results from the fact that the salen 

ligand is not completely planar.  These crystals were further analyzed by electron-spray 

ionization mass spectrometry.  The parent ions of (salen)CrCl2
-, (salen)Cr(N3)Cl-, and 

(salen)Cr(N3)2
- were observed in the negative mode of the ESI-mass spectrum at 608.18, 

615.23, and 622.20 m/z, respectively.  In addition the parent ion of (salen)Cr(Cl)(OAc)- 

was also detected which resulted from the reaction of (salen)CrCl2
- with acetic acid 

which is used in the mass spectral analysis experiment.  These results from infrared 

spectroscopy, X-ray crystallography, and mass spectral analysis all suggest that when 
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(salen)CrCl is treated with one equivalent of azide a Schlenk (ligand redistribution) 

equilibrium as shown in equation III-2 is most likely formed. 

 
 
 

 

 
 
 

 

 
 
 

Substrate Binding and Ring-Opening Step Studies as Examined by Solution 

Infrared Spectroscopy and in situ Infrared Techniques.  Subsequent to examining the 

nature of the catalyst system employed in these copolymerization reactions, our next 

challenge was to investigate in depth the monomer binding to the metal center and its 

consequent ring-opening via the anionic initiator.  This was accomplished by adding X- 

Figure III-3.  Thermal ellipsoid plot of complex III-7.  Ellipsoids are at the 50 % level.  The salen 
ligand contains –OMe and -t-Bu substituents in the 3,5 positions of the phenolates respectively, with a 

phenylene diamino backbone.  H atoms and PPN+ cation are omitted for clarity.  Two 
dichloromethane molecules were crystallized in the unit cell and are omitted for clarity.  Selected 

bond lengths (Å):  Cr(1)-Cl(1A) = 2.319(8); Cr(1)-Cl(1B) = 2.363(7); Cr(1)-N(1A) = 2.01(2), Cr(1)-
N(1B) = 2.04(3); N(1A)-N(2A) = 1.212(15); N(2A)-N(3A) = 1.218(12); N(1B)-N(2B) = 1.232(15); 

N(2B)-N(3B) = 1.201(13). 

(III-2) 
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to the five-coordinate chromium(III) complex in TCE to yield trans-(salen)CrX2
-.  Upon 

adding an excess of the cyclic ether monomers an equilibrium process was established as 

depicted in Scheme III-3. 

 
 
 

 

 
 
 
 The equilibrium position and subsequent ring-opening reaction differ 

significantly with the nature of the monomer.  For example, comparing propylene oxide 

and oxetane, these monomers have similar steric requirements, but the ring-strain 

energies of propylene oxide and oxetane have been calculated to be 27.3 and 25.5 

kcal/mol, and their pKb values are 6.94 and 3.13, respectively.69  To illustrate how these 

differences affect the binding of these monomers to the metal center and subsequent 

ring-opening step, we have examined cyclohexene oxide, propylene oxide, and oxetane 

as substrates for these processes by solution infrared spectroscopy and by in situ infrared 

techniques. 

 For the solution infrared spectroscopy studies we utilized the (salen)CrX 

complexes (X = Cl or N3), where the salen ligand contained di-tert-butyl substituents in 

the 3,5-positions of the phenolate rings and an ethylene backbone for the diamine 

Scheme III-3.  Equilibrium Process Between Chromium Salen Catalyst and Monomer at Room  
Temperature. 
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(complexes III-1 and III-2).  The azide anion derived from the very soluble n-Bu4NN3 

was employed in these studies since the νN3
 stretching vibration provides accessible 

probes for both anion binding and ring-opening steps.  The results of studies involving 

oxetane as the monomer are presented first as depicted in Scheme III-4 and Figure III-4. 

 
 
 

 
 
 
 

As indicated in Scheme III-4 and revealed by the infrared spectrum A in Figure 

III-4, upon addition of slightly more than one equivalent of n-Bu4NN3 to (salen)CrN3, 

the six-coordinate bis-azide complex (salen)Cr(N3)2
- forms at ambient temperature.  

Subsequent addition of 100-fold excess of oxetane displaces some of the azide ligand as 

seen by an increase in the absorption at 2009 cm-1 due to free azide with a concomitant  

Scheme III-4.  Ring-Opening Step of Oxetane Catalyzed by (salen)Cr(N3)2
-. 
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Figure III-4.  I. Spectra of TCE solutions of chromium salen azide complex with 1 equivalent of n-
Bu4NN3 (A), after addition of 100 equivalents of oxetane at ambient temperature (B), after heating the 
reaction solution at 110C for 3 h (C).  Data taken from Chapter II.  II. Deconvoluted spectrum of A.  

III. Deconvoluted spectrum of B. 
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decrease in the infrared band at 2047 cm-1 of the (salen)Cr(N3)2
- species.  In addition, a 

new νN3
 stretching band appears at 2061 cm-1 which was assigned to 

(salen)Cr(N3)•oxetane, spectrum B in Figure III-4.  Confirmation of this assignment was 

made by the isolation of single crystals of the oxetane adduct suitable for analysis by X-

ray crystallography (Figure III-5).  The ring-opening of the metal bound oxetane  

 
 
 

 

 
 
 
monomer by azide was not observed at ambient temperature.  Indeed, only after heating 

the reaction solution for 3 hrs at 110ºC did the metal azide species disappear 

accompanied by the appearance of an organic azide infrared band at 2100 cm-1 

(spectrum C in Figure III-4).  That is, following the oxetane ring-opening process, the 

only νN3
 band present in the infrared spectrum C is that of the organic azide, with no 

observable free or metal bound azide νN3
 vibrations. 

Figure III-5.  Ball and stick representation of the X-ray defined structure of (salen)CrCloxetane 
adduct, where the salen ligand contains -t-Bu substituents in the 3,5 positions of the phenolates 

respectively, with a phenylene diimine backbone.  Data taken from Chapter II. 
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 A similar series of experiments were carried out to further investigate the initial 

ring-opening step of oxetane employing the (salen)CrN3 complex in the presence of one 

equivalent of n-Bu4NCl.  The results of this inquiry are shown in Scheme III-5 and 

Figure III-6.  Consistent with our earlier observations, upon addition of n-Bu4NCl to 

(salen)CrN3, a mixed anionic six-coordinate species is formed at ambient temperature 

which displays a νN3
 absorption  at 2051 cm-1.  Further addition of 100-fold excess of 

oxetane leads to displacement of the chloride ligand as revealed by the appearance of a 

νN3
 band at 2061 cm-1 corresponding to the (salen)Cr(N3)•oxetane adduct, as well as no 

νN3
 vibration for the free azide ion.  Hence, the chloride ligand is selectively and 

quantitatively displaced by oxetane at an oxetane concentration where the azide ligand is 

only partially displaced in the (salen)Cr(N3)2
- species (see Figure III-4, spectrum B).  

Oxetane ring-opening was detected in this instance after heating the reaction solution for 

3 h at 110ºC, which lead to the appearance of an organic azide band at 2100 cm-1 (Figure 

III-6, spectrum D).  Of importance to note here, is that oxetane ring-opening occurs by 

the azide ligand, which as stated before supports the fact that the azide ligand in 

(salen)Cr(N3)(O-(CH2)3-N3)
- also ring-opens an oxetane monomer. 

 
 
 

 

 

Scheme III-5.  Ring-Opening of Oxetane Catalyzed by (salen)Cr(N3)(Cl)-. 
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Additional studies of the initiation step for the coupling reaction of oxetane and 

carbon dioxide were undertaken using in situ infrared techniques.46  In these studies a 

slightly modified (salen)CrCl complex was employed, that is one, containing di-tert-

butyl substituents in the 3,5-positions of the phenolates with a cyclohexylenediamino 

backbone, along with n-Bu4NN3 as anion source.  We have previously shown this to be 

the most active catalyst system we have thus far investigated for this copolymerization  

process.  As evident in Figure III-4, upon the addition of 100-fold excess of oxetane to 

the catalyst system in solution an equilibrium is established between the bis-azide 

complex, (salen)Cr(N3)2
-, and the oxetane adduct, (salen)Cr(N3)•oxetane.  This 

equilibrium process greatly favors the neutral oxetane adduct in pure oxetane solution.  

On the other hand, in the presence of a large excess of azide ion initiator it favors the 

bis-azide species, and hence should retard the initial ring-opening step of the 
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Figure III-6.  Spectra of TCE solutions of chromium salen azide complex with 1 equivalent of n-
Bu4NCl (A), after addition of 100 equivalents of oxetane at ambient temperature (B), after 

stirring the reaction solution for 24 h at ambient temperature (C), and after heating the reaction 
solution for 3 h at 110ºC (D). 
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copolymerization process.  Figure III-7 depicts the reaction profiles for copolymer 

formation during the copolymerization of oxetane and CO2 utilizing (salen)CrCl in the 

presence of varying quantities of n-Bu4NN3.  As is readily observed in Figure III-7, an 

induction period is evident for the copolymerization process which increases as the 

numbers of equivalents of n-Bu4NN3 increases (see insert).  This induction period is  

 
 
 

 

 
 

Figure III-7.  Cocatalyst dependent reaction profiles depicting the growth of the copolymer at 1750 cm-

1 with time for the copolymerization of oxetane and CO2, utilizing (salen)CrCl with different 
equivalents of n-Bu4NN3 at 110ºC:  2 equivalents of n-Bu4NN3 (blue line), 3 equivalents of n-Bu4NN3 

(red line), 6 equivalents of n-Bu4NN3 (green line), 8 equivalents of n-Bu4NN3 (purple line). 
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attributed to an inhibition of oxetane binding in the presence of excess azide ions which 

preferentially coordinate to the chromium(III) center thereby retarding the ring-opening 

process. 

 A brief induction period of several minutes is generally observed for the 

copolymerization of oxetane and CO2 carried out at 110ºC during the addition of carbon 

dioxide where the temperature temporarily drops by 20ºC.  This would be anticipated 

since we have demonstrated earlier that the oxetane ring-opening step is relatively slow 

at 110ºC (Figure III-4).  We have further investigated the temperature dependence of this 

initial oxetane ring-opening step during the copolymerization reaction employing 

(salen)CrCl and two equivalents of n-Bu4NN3 in the temperature range 80-110ºC.  As 

observed in Figure III-8, the induction period is lengthened as the reaction temperature is 

lowered, being most significant in the 80-90º temperature range.  The induction period is 

not greatly different in the temperature range 100-110ºC.  Nevertheless, it must be 

pointed out at this time that the selectivity for cyclic carbonate vs copolymer formation 

is also temperature dependent; hence, the difference noted in Figure III-8 cannot be 

ascribed to temperature alone. 
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 In an analogous manner we have examined the initial ring-opening steps for 

cyclohexene oxide and propylene oxide in the presence of the (salen)CrCl/n-Bu4NN3 

catalyst system.  This study was designed to provide a semi-quantitative comparison of 

processes involving three- and four-membered cyclic ethers.  Scheme III-6, along with 

Figures III-9 and III-10 summarize our findings.  As expected, based on their relative 

ring strain energies the three-membered cyclic ethers, cyclohexene oxide and propylene 

oxide, undergo ring-opening under much milder conditions than their four-membered 

counterpart, oxetane.  A bit more unanticipated was the significantly greater ease with 

which propylene oxide was ring-opened by azide compared to cyclohexene oxide. 
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Figure III-8.  Temperature dependent reaction profiles depicting the growth of the copolymer at 
1750 cm-1 with time for the copolymerization of oxetane and CO2, utilizing (salen)CrCl with 2 
equivalents of n-Bu4NN3:  Reaction temperature = 80C (red line), reaction temperature = 90C 

(green line), reaction temperature = 100C (purple line), reaction temperature = 110C  
(blue line). 
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Other information apparent from these experiments (Figures III-4 and III-9) is 

that the equilibrium reaction between (salen)Cr(N3)2
- and 100-fold excess of oxetane 

proceeded further to completion than the comparable process involving cyclohexene 

oxide with formation of (salen)Cr(N3)•cyclohexene oxide (νN3
 at 2058 cm-1).  That is, the  

 
 
 

 

-0.01

0.04

0.09

0.14

0.19

0.24

0.29

0.34

0.39

195020002050210021502200

Wavenumbers (cm-1)

A
b

s
o

rb
a

n
c

e

A 

B 

D 

E C 

Figure III-9.  Spectra of TCE solutions of chromium salen chloride complex with 2 equivalents 
of n-Bu4NN3 (A), after addition of 100 equivalents of cyclohexene oxide at ambient temperature 

(B), after stirring the reaction solution for 2 h at ambient temperature (C), after stirring the 
reaction solution for 4 h at ambient temperature (D), and after stirring the reaction solution for 24 

h at ambient temperature (E). 

Scheme III-6.  Ring-Opening of Cyclohexene Oxide Catalyzed by (salen)Cr(N3)2
-. 
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infrared spectra in Figure III-9 reveal a smaller decrease in the bis-azide complex at 

2047 cm-1 than seen in Figure III-4, as well as a lack of initial formation of free azide 

ions at 2009 cm-1.  This is consistent with the lower basicity of three-membered vs four-

membered cyclic ethers.  As previously noted for the oxetane ring-opening process, both 

inorganic azide ligands are converted to organic azides. 

In a similar manner the initial ring-opening step of the cyclohexene oxide/CO2 

copolymerization process was investigated employing a (salen)CrN3 complex and one 

equivalent of n-Bu4NCl.  The results of this study are quite comparable to that for the 

oxetane/CO2 process as seen in Scheme III-7, with the only difference being that ring-

opening of cyclohexene oxide occurs at ambient temperature. 
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Figure III-10.  Spectra of TCE solutions of (salen)CrCl with 2 equivalent of n-Bu4NN3 

(A).  Immediately after addition of 100 equivalents of propylene oxide at ambient 
temperature (B).  Reaction solution stirred for 15 min at ambient temperature (C).   
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Nature of Anionic Initiator (Cocatalyst) on the Initial Ring-Opening Step of 

the Copolymerization Process.  As previously noted, the formation of the anionic six-

coordinate species of the form trans-(salen)CrX2
- readily occurs upon treating 

(salen)CrCl with two equivalents of a salt of X- (equation III-1).  The next step in the 

process involves binding and subsequent ring-opening of the cyclic ether monomer, 

which in the case of oxetane is highly energetic process.  Hence, based on the nature of 

the anion X-, there should be a significant variation in the initiation step which is a 

function of both its binding ability to chromium(III) and propensity for ring-opening 

monomer.  In order to investigate this dependence the copolymerization of oxetane/CO2 

was examined by in situ infrared spectroscopy utilizing (salen)CrCl and two equivalents 

of n-Bu4NX.  Figure III-11 depicts the reaction profiles for the formation of 

poly(trimethylene carbonate) involving either two equivalents of n-Bu4NN3 or n-

Bu4NCl.  As evident in Figure III-11 a short induction period is seen when using n-

Bu4NN3, and no induction period was detected when employing n-Bu4NCl as cocatalyst.  

This observation is consistent with our earlier findings where oxetane more easily 

replaces a chloride ligand from chromium(III) than an azide ligand.  The following 

Scheme III-7.  Ring-Opening of Cyclohexene Oxide Catalyzed by (salen)Cr(N3)(Cl)-. 
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copolymerization reaction (monomer enchainment) processes as expected are not 

affected. 

The initiation step for the copolymerization of oxetane and carbon dioxide was 

also examined in the presence of (salen)CrCl and other anions containing intense 

absorptions in infrared, namely, CN- and NCO-.  These anions, like azide, exhibit 

induction periods for copolymer formation (see Figure III-11).  This is consistent with 

the observation that CN- and NCO- readily displace Cl- from (salen)CrCl, and at the 

same time are more difficult to be replaced by oxetane.  Finally, it should be noted here 

that because of the ease of cyclohexene oxide ring-opening, no induction period is 

observed for the copolymerization reaction of cyclohexene oxide and CO2 employing 

either PPNX or n-Bu4NX (X = Cl or N3) as cocatalyst along with (salen)CrX complexes. 

 
 
 

 

 

Figure III-11.  Reaction profiles depicting the growth of the copolymer at 1750 cm-1 with time for 
the copolymerization of oxetane and CO2 at 110ºC, utilizing (salen)CrCl with 2 equiv of n-Bu4NN3 
(red line), 2 equiv of n-Bu4NCl (blue line), 2 equiv of n-Bu4NNCO (green line) and 2 equiv of n-

Bu4NCN (purple line). 
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Concluding Remarks 

 The addition of salts of PPNX or n-Bu4NX to (salen)CrX complexes yield [trans-

(salen)CrX2][PPN or n-Bu4N] complexes which have been crystallographically defined 

for salen = N,N'-bis(3-tert-butyl-5-methoxysalicylidene)-1,2-phenylenediamino) and X = 

Cl, N3, CN, and NCO.  The latter three derivatives are readily synthesized by the 

addition of two-equivalents of PPN+ or n-Bu4N
+ salts of N3

-, CN-, and NCO- to 

(salen)CrCl.  On the other hand, the addition of one-equivalent of n-Bu4NN3 to 

(salen)CrCl leads initially to trans-(salen)Cr(N3)Cl- which exists in TCE solution in a 

Schlenk equilibrium with the corresponding symmetric trans-(salen)CrX2
- anions as 

revealed by X-ray crystallography and ESI-mass spectrometry.  For all anions examined 

the displacement of X in trans-(salen)CrX2
- with the cyclic ethers (propylene oxide, 

cyclohexene oxide, or oxetane) to provide trans-(salen)CrX•cyclic ether adducts in TCE 

solution greatly favored the anionic complexes.  The ring-opening of bound epoxides by 

X- readily occurred at ambient temperature, with propylene oxide being ring-opened by 

azide at a significantly faster rate than the corresponding process involving cyclohexene 

oxide.  On the contrary the ring-opening of bound oxetane occurred readily at 

temperatures near 100ºC and greater, with this process being retarded in the presence of 

excess X- anions such as N3
-, CN-, or NCO- which strongly bind to the chromium(III) 

center.  It was further shown that both inorganic azides are involved in epoxide or 

oxetane ring-opening leading to formation of the similar organic azides. 
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CHAPTER IV 

 

(SALEN)Co(II)/n-Bu4NX CATALYSTS FOR THE COUPLING OF CO2 AND 

OXETANE: SELECTIVITY FOR CYCLIC CARBONATE FORMATION IN 

THE PRODUCTION OF POLY(TRIMETHYLENE CARBONATE)* 

 

Introduction 

 As discussed in Chapter I, the copolymerization of epoxides and CO2 process is 

often accompanied by the formation of varying amounts of ether linkages, which are the 

result of consecutive epoxide ring-opening.  Additionally, five-membered cyclic 

carbonates are observable byproducts in these reactions, which are formed by a 

backbiting mechanism, thus shortening the polymer chain by one unit each occurrence.  

This latter event can be a major reaction pathway when utilizing aliphatic epoxides such 

as ethylene oxide, propylene oxide, and styrene oxide.  Both polymeric and monomeric 

products obtained from the coupling of epoxides and carbon dioxide have important 

industrial applications.  Polycarbonates as previously discussed have wide-scale uses in 

electronics, optical media, automotive, and medical industry.  On the other hand, five-

membered cyclic carbonates have numerous applications as high boiling and flash point  

solvents, and also as reactive intermediates.12 

____________ 
*Reproduced in part with permission from “(Salen)Co(II)/n-Bu4NX Catalysts for the 
Coupling of CO2 and Oxetane: Selectivity for Cyclic Carbonate Formation in the 
Production of Poly(trimethylene carbonate).”  Darensbourg, D. J.; Moncada, A. I. 
Macromolecules 2009, 42, 4063-4070.  Copyright 2009  American Chemical Society. 
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 The formation of five-membered cyclic carbonates derived from the coupling 

reaction of epoxides and CO2 has been extensively investigated using various types of 

catalysts.  Homogeneous metal salen based catalysts of aluminum,70 chromium,71 

cobalt,72 zinc,72d manganese,73 and tin,74 have shown to have high catalytic activities.  

Similarly, aluminum complexes of phthalocyanines and porphyrins are also highly active 

catalysts.75  Ionic liquids such as imidazolium salts have also been reported as catalysts 

for the formation of cyclic carbonates from epoxides and carbon dioxide.76  Moreover, 

the reaction of epoxides and CO2 in molten quaternary ammonium bromide has been 

shown to afford cyclic carbonates.77  Furthermore, other metal complexes of nickel,78 

ruthenium,79 zinc,80 and copper73b have been similarly reported to be active catalysts for 

this transformation.  Organic based catalysts such as phenols,81 and 4-(N,N-

dialkylamino)pyridines82 have also been investigated.  Recently, CO2 adducts of N-

heterocyclic carbenes were also demonstrated to be effective organic catalysts for these 

processes.83  In addition, heterogeneous based materials such as Al-Mg mixed oxides,84 

magnesium oxide,85 and Cs-modified zeolites,86 have been shown to be interesting 

catalysts for this reaction, not only because of their high activity but also because these 

catalysts can be easily separated from the reaction solution, and in most cases recycled. 

As previously mentioned in Chapter I, five-membered cyclic carbonates are 

thermodynamically stable toward polycarbonate formation without loss of carbon 

dioxide.  However, six-membered cyclic carbonates such as trimethylene carbonate can 

under certain catalytic conditions undergo ring-opening polymerization to provide the 

corresponding polycarbonate, in this case poly(TMC), with complete retention of its CO2 
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contents (eq. I-2).12  Of Importance, this strategy is industrially desirable because it can 

be performed as a melt process. 

As mentioned in Chapter I, trimethylene carbonate can be readily obtained via 

transesterification of 1,3-propanediol with various reagents including phosgene and its 

derivatives (di- and tri-phosgene), dialkylcarbonates, and ethylchloroformate.15  

Therefore, it is of great interest to investigate greener routes for the production of this 

six-membered cyclic carbonate monomer.  Conforming to this objective, the coupling of 

oxetane and carbon dioxide represents an attractive alternative (eq I-5).  

In Chapter II, mechanistic and kinetic studies on this reaction as catalyzed by 

(salen)Cr(III)Cl/n-Bu4NN3 demonstrated that the formation of copolymer proceeded in 

part by way of the intermediacy of trimethylene carbonate, and by the direct 

enchainment of oxetane and CO2.  As a consequence of our findings with the 

(salen)Cr(III)Cl derivatives, we surmised that a decrease in the electrophilicity of the 

metal center, in conjunction with the appropriate anionic initiator should tune the 

selectivity of the oxetane and CO2 coupling process for cyclic carbonate formation 

and/or for polycarbonate produced directly from the homopolymerization of preformed 

TMC (Scheme IV-1).  To examine this hypothesis the commercially available catalyst, 

(salen)Co(II)87 ((1R, 2R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butyl-

salicylidene)cobalt(II)) (Figure IV-1) was employed in the presence of anionic based 

cocatalysts derived from n-Bu4NX (X = Cl, N3, Br, I) salts.  Included in this 

investigation is a mechanistic study of this process as monitored by in situ infrared 
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spectroscopy.  This correspondence encompasses an examination of cocatalyst 

dependence, substrate binding, and oxetane ring-opening. 

 
 
 

 

 
 
 

 

 
 
 
Experimental Section 

Reagents and Methods.  Unless otherwise specified, all manipulations were 

carried out on a double-manifold Schlenk vacuum line under an atmosphere of argon or 

in an argon filled glove box.  (1R, 2R)-(-)-1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

Figure IV-1.  The (salen)Co(II) complex IV-1 employed in the present studies, (1R, 2R)-(-)-1,2-
cyclohexanediamino-N,N'-bis(3,5-di-tert-butyl-salicylidene)cobalt(II). 
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Scheme IV-1.  General Reaction Scheme of the Coupling of Oxetane and CO2. 
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butyl-salicylidene)cobalt(II) was purchased from Strem Chemical.  (Salen)CoBr was 

synthesized following the procedure published for the preparation of (salen)CoCl by 

Jacobsen and coworkers.88  Toluene was freshly distilled from sodium/benzophenone.  

1,1,2,2-tetrachloroethane was freshly distilled over CaH2.  Oxetane (Alfa Aesar) was 

freshly distilled over CaH2 and stored in the freezer of the glove box. Tetra-n-

butylammonium bromide (Aldrich), tetra-n-butylammonium iodide (Eastman), and tetra-

n-butylammonium chloride (TCI) were recrystallized from acetone/diethyl ether before 

use.  Tetra-n-butylammonium azide (TCI) was stored in the freezer of the glove box 

upon arrival.  4-(dimethylamino)pyridine (DMAP, Aldrich) was recrystallized from 

ethanol/diethyl ether, and triethylamine (Fisher Scientific) was freshly distilled over 

CaH2 before use.  Bone-dry carbon dioxide supplied in a high-pressure cylinder and 

equipped with a liquid dip tube was purchased from Scott Specialty Gases. 

 1H NMR spectra were acquired on Unity+ 300 MHz and VXR 300 MHz 

superconducting NMR spectrometers.  IR spectra were recorded on a Mattson 6021 

Fourier Transform (FT) IR spectrometer with a MCT detector.  Molecular weight 

determinations (Mn and Mw) were carried out with a Viscotek Modular GPC apparatus 

equipped with ViscoGELTM I-series columns (H + L) and Model 270 dual detector 

comprised of Refractive Index and Light Scattering detectors.  High-pressure reaction 

measurements were performed using an ASI ReactIR 1000 reaction analysis system with 

stainless steel Parr autoclave modified with a permanently mounted ATR crystal 

(SiComp) at the bottom of the reactor (purchased from Mettler Toledo). 
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Optimization of the Cocatalyst for the Copolymerization Reactions of Oxetane 

and Carbon Dioxide.  In a typical experiment, 119 mg of complex IV-1, the appropriate 

amount of cocatalyst, and 4 g of oxetane, were delivered via the injection port into a 

300-mL stainless steel Parr autoclave reactor that was previously dried in vacuo 

overnight at 80C.  The autoclave was then pressurized with 35 bar of CO2 and the 

temperature was increased to 110C.  The monomer:catalyst:cocatalyst ratio was 

maintained at 350:1:2, and the reaction was run for 24 hours.  After the reaction was 

stopped, the autoclave was put into ice, cooled down to 10C, and vented in a fume 

hood.  The percent converion to products was determined based on the amount of 

oxetane monomer left in the reaction solution.  1H NMR (300 MHz, CDCl3), oxetane: δ 

4.75 (t, 4H, OCH2) and 2.70 (quintet, 2H, CH2).  Furthermore, the quantities of 

poly(TMC), TMC, and ether linkages in the copolymer were determined by integrating 

the peak area of the corresponding resonances.  1H NMR (300 MHz, CDCl3), 

poly(TMC): δ 4.23 (t, 4H, OCH2) and 2.05 (quintet, 2H, CH2).  1H NMR (300 MHz, 

CDCl3), TMC: δ 4.45 (t, 4H, OCH2) and 2.14 (quintet, 2H, CH2).  
1H NMR (300 MHz, 

CDCl3), ether linkages: δ 3.50 (t, 4H, OCH2) and 1.90 (quintet, 2H, CH2).   

Copolymerization Reactions Monitored by in situ IR Spectroscopy.  In a typical 

experiment, complex IV-1 (277 mg), the appropriate amount of n-Bu4NBr, and oxetane 

(4 g) were dissolved in 10 mL of toluene and delivered via the injection port into a 300-

mL stainless steel Parr autoclave reactor that was previously dried in vacuo overnight at 

80C.  The autoclave is modified with a 30 bounce SiComp window to allow for the use 

of an ASI ReactIR 1000 system equipped with a MCT detector.  In this manner a 128-
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scan background spectrum was collected after the reaction mixture was heated to 110°C.  

The autoclave was pressurized with 35 bar of CO2 and the infrared spectrometer was set 

to collect one spectrum every 3 min over a 24 h period.  Profiles of the absorbance at 

1750 cm-1 (polymer) and at 1770 cm-1(TMC) with time were recorded after base line 

correction.  After the reaction was stopped, the autoclave was cooled down to room 

temperature, and vented in a fume hood.  The reaction solution was analyzed by 1H 

NMR spectroscopy in the same manner as above, to determine the percent conversion to 

products, and the percentages of poly(TMC), TMC, and ether linkages.   

Cocatalyst, Substrate Binding, and Ring-Opening Step Examined by 

Infrared Spectroscopy.  Cocatalyst, substrate binding, and ring-opening step studies 

were examined by solution infrared spectroscopy.  The catalytic system used in these 

studies was complex IV-1 (50 mg) in the presence of n-Bu4NN3 as cocatalyst, and using 

TCE as the solvent (4 mL). 

Statistical Deconvolution of FTIR Spectra.  Where noted FTIR spectra were 

deconvoluted using Peakfit, version 4.12 (Peakfit for Windows, v. 4.12; SYSTAT 

Software Inc: San Jose, CA, 2003).  Statistical treatment was a residuals method 

utilizing a combination Gaussian-Lorentzian summation of amplitudes with a linear 

baseline and Savitsky-Golay smoothing. 

Control Experiments for the Ring-Opening Polymerization of Trimethylene 

Carbonate.  In a typical experiment, the appropriate amounts of TMC, complex IV-1, 

and/or n-Bu4NBr were weighted out in a Schlenk flask in a monomer:catalyst:cocatalyst 

ratio of 300:1:2 followed by the addition of 30 mL of toluene.  The reaction vessel was 
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placed into a preheated oil bath at 110ºC and stirred for the corresponding reaction time.  

The percent conversion to polymer was obtained by analyzing the reaction solution by 

1H NMR spectroscopy. 

X-ray Structural Study.  Single crystals of trimethylene carbonate were grown 

and isolated from a reaction solution as it will be explained later in the Results and 

Discussion section, and these were analyzed by ESI mass spectral analysis and X-ray 

crystallography.  For the crystal structure a Bausch and Lomb 10 microscope was used 

to identify suitable crystals.  Each crystal was coated in paratone, affixed to a nylon 

loop, and placed under streaming nitrogen (110K) in a Bruker - AXS Apex II three-

circle X-ray diffractometer.  The space group determination was made on the basis of 

systematic absences and intensity statistics.  The crystal structure was solved by direct 

methods and was refined by full-matrix least-squares on F2.  All hydrogen atoms were 

placed in idealized positions and refined with fixed isotropic displacements parameters 

equal to 1.2 (1.5 for methyl protons), times the equivalent isotropic displacements 

parameters of the atoms to which they were attached.  All non-hydrogen atoms were 

refined with anisotropic displacement parameters. 

The following are the programs that were used: data collection and cell 

refinements; APEX II data collection software, data reduction; APEX II data reduction 

software, absorption correction; SADABS,49 program used to solve the structure; 

SHELXS-97,50 program used to refine the structure; SHELXL-97,51 molecular graphics 

and preparation of material for publication; SHELXTL, version 6.14,52 X-Seed, version 

1.5.53  
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Results and Discussion 

 Our initial study was to employ the (salen)Co(II) catalyst, complex IV-1, in the 

presence of various cocatalysts to investigate the catalytic activity and selectivity for 

cyclic carbonate vs copolymer formation from the coupling of oxetane and carbon 

dioxide.  The chiral version of complex IV-1 was employed in this study because of its 

commercial availability.  Since there is not an opportunity for asymmetry in the 

copolymer produced, a racemic catalyst would suffice.  The copolymerization reactions 

were performed under identical reaction conditions, i.e., 110C and 35 bar of CO2 

pressure, and the monomer:catalyst:cocatalyst ratio was maintained at 350:1:2.  The 

results are summarized in Table IV-1.  The product mixtures were analyzed by 1H NMR 

spectroscopy, with the quantities of poly(TMC), TMC, and ether linkages in poly(TMC) 

determined by integrating the resonances at 4.23, 4.43, and 3.50 ppm, respectively.  As 

is readily seen in Table IV-1, both products poly(TMC) and TMC were obtained with 

the use of bromide and iodide based cocatalysts, and the yield of poly(TMC) was much 

greater than that of the cyclic product (entries 1 and 2, Table IV-1). Among the ionic 

based cocatalysts examined, the bromide anion displayed the highest catalytic activity 

(entry 1, Table IV-1).  The iodide, chloride, and azide anions were found to be 

significantly less effective (entries 2-4, Table IV-1).  The catalytic activity of this system 

largely depended on the counter anion of the cocatalyst used, and the order of decreasing 

activity was Br- > I- > Cl- > N3
-.  A similar trend has been observed by Endo for the 

coupling of carbon dioxide or carbon disulfide and aziridines, employing alkali metal 

halides or tetraalkylammonium halides as catalysts.89  In addition, Caló reported the 
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coupling of oxiranes and CO2 to produce cyclic carbonates in the presence of molten 

tetra-n-butylammonium bromide as catalyst.77 

 
 
 

Table IV-1. Copolymerization of Oxetane and CO2 Catalyzed by Complex IV-1 in the 
Presence of Various Cocatalysts.a 

Entry Cocatalyst 
% 

Conversionb 
% 

Poly(TMC)b 
% 

TMCb 
% CO2  

Contentb 

1 n-Bu4NBrc 68.4 93.3 6.7 98.4 
2 n-Bu4NI 13.9 93.0 7.0 97.6 
3 n-Bu4NCl 6.4 100 0 >99 
4 n-Bu4NN3 1.4 100 0 >99 
5 DMAP 0.44 0 100 >99 
6 Triethylamine 1.06 0 100 >99 

aCopolymerization conditions: 119 mg of catalyst, 4 g of oxetane, M/I = 350:1, 2 
equivalents of cocatalyst, 35 bar of CO2, at 110 C for 24 h.  b % Conversion to products, 
product distributions, and % of CO2 content were determined by 1H NMR spectroscopy. 
cMn (GPC)  = 7 560, PDI = 1.56, Mn(theoretical) = 22 852. 

 
 
 
 It was also of interest to investigate the catalytic activity of amine-based 

cocatalysts such as DMAP and triethylamine for this process.  It has been reported in the 

literature that these types of initiators in the presence of cobalt, zinc, copper, chromium 

and tin based catalysts, are active for the formation of cyclic carbonates from the 

coupling of propylene oxides and CO2.
71b, 72c, 74, 90  In contrast, triethylamine and DMAP 

were found to be ineffective for the coupling of oxetane and CO2 in the presence of 

complex IV-1 (entries 5 and 6, Table IV-1), most likely due to the difficulty of these 

amine-based cocatalysts to ring-open oxetane. 

 In Chapter III, we showed that oxetane ring-opening is a higher energy process 

than the corresponding reaction involving epoxides as catalyzed by (salen)CrX 

complexes along with anionic-based cocatalysts.  Thus, a good nucleophile would be 
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required for this step.  On the other hand, the formation of TMC, which is most likely 

caused by a backbiting mechanism, needs a good leaving group (Scheme IV-2).  It is 

worth mentioning at this point that in the case of the tetraalkylammonium halide-based 

cocatalysts studied, the tetraalkylammonium cation is weakly interacting, and hence the 

anions are freer for ring-opening the monomer.  The order of decreasing nucleophilicity 

of the anions, in a polar aprotic media (neat oxetane) and in a nonpolar solvent (such as 

toluene, as it will be shown later) is N3
- ~ Cl- > Br- > I-.  The bromide anion, being in the 

middle of the series, is promoting the formation of the cyclic product better than the 

iodide, chloride and azide ions.  The iodide anion is the best leaving group among the 

series, but at the same time it is a poorer nucleophile and does not as readily facilitate the 

ring-opening reaction.  On the contrary, the azide and chloride anions are the better 

nucleophiles but are the poorer leaving groups of the series, and as a result they do not 

drive the reaction to the formation of the cyclic carbonate product.  Of importance to 

point out at this time, is that the formation of copolymer is evident with the use of the 

bromide anion, and its mechanism of formation will be discussed vide infra. 
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Cocatalyst, Substrate Binding, and Ring-Opening Step Examined by 

Solution Infrared Spectroscopy.  Fundamental to a better understanding of the 

mechanism of the coupling reaction of oxetane and carbon dioxide catalyzed by 

(salen)Co(II)/n-Bu4NBr, is an investigation of the initiation step of this process.  For this 

purpose, cocatalyst/substrate binding, and ring-opening step studies carried out using 

solution infrared spectroscopy in TCE were designed to address this issue.  For the 

solution infrared spectroscopy studies we utilized (salen)Co(II), complex IV-1, along 

with the azide anion derived from the very soluble n-Bu4NN3, since the N3
 stretching 

vibration provides accessible probes for both anion metal binding and ring-opening 

steps.   

Scheme IV-2.  General Proposed Reaction Pathway for the Coupling of Oxetane and CO2 Catalyzed by 
(salen)Co(II) Along with an Anion X-. 
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 The infrared spectrum of complex IV-1 in the presence of two equivalents of n-

Bu4NN3 revealed that most of the azide anion remained uncoordinated to the metal 

center.  That is, a large absorbance of free N3
- at 2009 cm-1 was observed with only a 

weak absorbance at 2052 cm-1 assignable to (salen)CoN3
- being seen.  Similarly, upon 

addition of three equivalents of n-Bu4NN3, there was an increase in the extent of azide 

binding to cobalt(II) as indicated by an increase in the absorbance at 2052 cm-1 with a 

concomitant decrease in the N3
 mode at 2009 cm-1 due to free azide.  Subsequent 

addition of an 100-fold excess of oxetane to the solution resulted in an increase intensity 

of the metal bound azide vibrational mode at ~2052 cm-1, presumably due to 

(salen)CoN3•oxetane-.  Upon heating the solution at 110ºC an organic azide vibration 

was noted at 2100 cm-1 which grew in intensity as the free and metal bound azide 

frequencies decreased in intensity.  These observations are best summarized in Scheme 

IV-3. 

 
 
 

 

 
 
 
 On the other hand, upon changing the cyclic ether to tetrahydrofuran, at an 100-

fold excess to (salen)Co, the extent of formation of (salen)CoN3•THF- was seen to be 

Scheme IV-3.  Ring-Opening of Oxetane Catalyzed by (salen)Co(II)/n-Bu4NN3. 
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significantly lower than in the oxetane analogous process.  This is consistent with the 

lower basicity of tetrahydrofuran compared to that of oxetane (pKb of tetrahydrofuran = 

5.00, pKb of oxetane = 3.13).69b  That is, in the presence of a less basic ether ligand, the 

formation of a stable octahedral (salen)Co(II)(N3)(THF)- adduct is diminished. 

Cocatalyst Dependence on the Copolymerization of Oxetane and CO2 

Catalyzed by (salen)Co(II)/n-Bu4NBr.  After examining the initiation step of the 

copolymerization process, we have undertaken an investigation into the cocatalyst 

(anion) concentration dependence of the copolymerization process in order to further 

optimize the catalytic system.  These reactions were performed in toluene solution in the 

presence of complex IV-1 along with varying amounts of n-Bu4NBr.  The reactions were 

monitored by in situ infrared spectroscopy by observing the growth of the copolymer’s 

C=O band at 1750 cm-1, as well as the growth and/or consumption of the TMC’s C=O 

band at 1770 cm-1.  The three dimensional plots for poly(TMC) formation, and TMC 

formation and consumption, along with their corresponding reaction profiles are shown 

in Figures IV-2-4.  It can be seen that the rate for the production of poly(TMC) is the 

highest when two equivalents of n-Bu4NBr are utilized (Figure IV-2).  The product 

distributions for the copolymerization reactions performed using varying amounts of n-

Bu4NBr are shown in Table IV-2.  Consistent with the in situ IR data, the best catalytic 

activity is obtained when two equivalents of n-Bu4NBr are employed (entry 2, Table IV-

2).  The use of one equivalent of cocatalyst was found to be detrimental to the overall 

process (entry 1, Table IV-2), where just an 8.2% conversion was obtained.  The use of 

more than two equivalents of cocatalyst enhanced the production of TMC over that of 
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poly(TMC), but the catalytic activity is decreased.  (entries 3 and 4, Table IV-2).  The 

decrease in rate of oxetane conversion upon increasing the bromide ion concentration is  

 
 
 

 

 
 
 
likely due to competitive binding of bromide vs the oxetane monomer to the cobalt 

center.  At this time it is not clear why five equivalents of bromide ion result in higher 

conversion as compared to three equivalents.  Further studies, including attempts to 

kinetically model these consecutive reactions will be explored.  Unfortunately, this 

A 

B 

Figure IV-2.  (A) Three dimensional stack plot of the IR spectra collected every 3 min during the 
copolymerization reaction of oxetane and CO2.  Reaction carried out at 110C in toluene at 35 bar CO2 

pressure, in the presence of complex IV-1 along with 2 equiv. of n-Bu4NBr. (B) Reaction profiles 
obtained after deconvolution of selected IR spectra, indicating poly(TMC) and TMC formation with time.
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process is complicated by difficulties in measuring the disappearance of oxetane at high 

pressures and hydrolysis of bromide end groups in the polymer resulting from ROP of 

TMC by adventitious water.  The reactions depicted in Figures IV-3 and IV-4 with 3 and 

5 equivalents of n-Bu4NBr, respectively, were carried out for an additional 24 hours 

resulting in an increase in the ratio of poly(TMC) to TMC as would be anticipated. 

 
 
 

 

Figure IV-3.  (A) Three dimensional stack plot of the IR spectra collected every 3 min during the 
copolymerization reaction of oxetane and CO2.  Reaction carried out at 110C in toluene at 35 bar CO2

pressure, in the presence of complex IV-1 along with 3 equiv. of n-Bu4NBr. (B) Reaction profiles 
obtained after deconvolution of selected IR spectra, indicating poly(TMC) and TMC formation with 

time. 

A 

B 
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Table IV-2. Copolymerization of Oxetane and CO2 Catalyzed by Complex 
IV-1 in the Presence of Varying Quantities of n-Bu4NBra 

Equiv. of 
Cocatalyst 

%  
Conversionb 

%  
Poly(TMC)b 

%  
TMCb 

% 
CO2 Contentb 

1 8.2 53.5 46.5 >99 
2c 64.0 95.2 4.8 97.3 
3 28.8 32.2 67.8 >99 
5 46.7 20.9 79.1 >99 

aCopolymerization conditions:  277 mg of catalyst, 4 g of oxetane, 10 mLs of 
toluene, M/I = 150:1, 35 bar of CO2, at 110 C for 24 h.  b % Conversion to 
products, product distributions, and % of CO2 content were determined by 1H 
NMR spectroscopy.  cMn (GPC)  = 4 215, PDI = 1.64, Mn(Theoretical) = 9 
344. 

 

Figure IV-4.  (A) Three dimensional stack plot reaction profile of the IR spectra collected every 3 
min during the copolymerization reaction of oxetane and CO2.  Reaction carried out at 110C in 

toluene at 35 bar CO2 pressure, in the presence of complex IV-1 along with 5 equiv. of n-Bu4NBr. (B) 
Reaction profiles obtained after deconvolution of selected IR spectra, indicating poly(TMC) and 

TMC formation with time.

A 

B 
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 The reaction solution obtained from the experiment performed employing 

(salen)Co(II) with 5 equivalents of n-Bu4NBr was further analyzed by electron-spray 

ionization mass spectrometry.  The parent ions of (TMC + Li)+ and (2TMC + Li)+ 

(Figure IV-5) were observed in the positive mode of the ESI-mass spectrum at 109.04 

and 211.07 m/z, respectively.  This result strongly suggests that larger size cyclic 

backbiting products are possible during the reaction.  Pertinent to this point, single 

crystals of trimethylene carbonate were isolated from the reaction solution and 

characterized by X-ray crystallography (Figure IV-6).  The structure of trimethylene 

carbonate has been reported by Kataeva and coworkers in the gas phase by electron 

diffraction, and in solution using the Kerr effect and dipole moments.91  The metric 

parameters for TMC are similar to those previously reported but are of greater accuracy 

with R1 = 0.0277, Rw = 0.0753 and a goodness-of-fit of 1.017.  Crystallographic data 

pertaining to this crystal structure are provided in Table IV-3, with selected bond 

distances and angles provided in Table IV-4. 

 
 
 

 

 

 

Figure IV-5.  Lithium adducts of TMC and dimeric TMC. 
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Table IV-3.  Crystallographic Data for Trimethylene 
Carbonate. 
empirical formula C4H6O3

fw 102.09 
temperature (K) 110(2) K 
crystal system Monoclinic 
space group P21/n 
a (Å) 6.097(6) 
b (Å) 11.306(11) 
c (Å) 6.734(7) 
α (deg) 90.0 
β (deg) 102.259(11) 
γ (deg) 90.0 
V (Å3) 453.6(8) 
Dc (Mg/m3) 1.495 
Z 4 
abs coeff (mm-1) 0.130 
reflections collected 3668 
independent reflections 708 [R(int) = 0.0277] 
restrains/parameters 0/64 
GOF on F2 1.017 

final R indices  [I > 2(I)] 
aR1 = 0.0277 
bRw = 0.0753 

final R indices (all data) 
aR1 = 0.0286 
bRw = 0.0762 

 
 
 
 
 
 
 
 

Figure IV-6.  Thermal ellipsoid plot of trimethylene carbonate. 
Ellipsoids are at the 50 % level.  H atoms are omitted for clarity. 
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Table IV-4.  Selected Bond Distances and Angles for 
Trimethylene Carbonate.a 

O(1)-C(1) 1.3296(18) 

O(1)-C(2) 1.4545(17) 

O(3)-C(1) 1.2056(15) 

C(2)-C(3) 1.4910(19) 

C(1)-O(2)-C(4) 120.97(10) 

O(3)-C(1)-O(2) 119.73(12) 

O(1)-C(1)-O(2) 120.44(9) 

O(1)-C(2)-C(3) 110.91(11) 

C(2)-C(3)-C(4) 107.47(10) 
a Units of bond angles and bond distances are (º) and 
(Å), respectively. 

 
 
 
 Polymer Characterization.  Relevant to our mechanistic studies for copolymer 

formation was the characterization of the polymers by 1H NMR spectroscopy, and their 

molecular weight determinations by gel permeation chromatography.  In general, the 

observed Mn values of the copolymers obtained from the coupling of oxetane and CO2 in 

the presence of (salen)Co(II)/n-Bu4NBr were found to be much lower than the expected 

theoretical values.  This is most likely due to a chain transfer mechanism arising from 

the presence of trace quantities of water in the system.11b, 55a 

 It was of interest to carefully analyze the copolymers obtained from oxetane/CO2 

by 1H NMR spectroscopy to determine if the copolymers contained ether linkages.  We 

have previously shown that polycarbonates obtained from the ring-opening 

polymerization of TMC catalyzed by (salen)CrCl complexes in the presence of n-

Bu4NN3 contained no ether linkages.  On the other hand, by utilizing the same catalyst 
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system copolymers obtained from oxetane/CO2 showed minimal amounts of ether 

linkages (Chapter II).  Figure IV-7 illustrates the 1H NMR spectrum of a purified 

polycarbonate sample obtained from the copolymerization of oxetane and carbon 

dioxide.  Purification of the copolymer was achieved by precipitation from a 

dichloromethane solution with 1 M HCl in methanol, followed by vacuum drying.  In 

general, a small amount of ether linkages are observed in the copolymers (~1.1%), which 

strongly suggests, that oxetane is ring-opened during polymer chain growth.   

 The presence of ether linkages was further confirmed by treatment of the 

polymer with trifluoroacetic anhydride in CDCl3 (Figure IV-8).  Trifluoroacetic 

anhydride reacts rapidly with –OH end groups of the polymers, with the signal of the 

resulting –CH2O-C(O)CF3 end groups showing up around 0.5 ppm downfield relative to 

the –CH2OH end groups.  In a similar manner, a downfield shift of about 0.1-0.15 ppm 

of the ether linkages is expected, and indeed, it was observed after addition of 

trifluoroacetic anhydride.  Kricheldorf has reported this method as a way to identify –

CH2OH end groups, and ether linkages in poly(TMC) samples.  The downfield shift of 

the ether linkages was attributed to hydrogen bonding between the oxygen of ether 

linkages and the liberated trifluroacetic acid byproduct.  In good accordance with this 

interpretation was the increase of the downfield shift of the ether linkages with higher 

concentrations of trifluoroacetic acid observed by Kricheldorf.61  Ether linkages which 

are observed at 3.50 ppm may be overlapping with –CH2Br end groups in the copolymer 
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Figure IV-8.  1H NMR spectrum in CDCl3 of poly(TMC) obtained by way of oxetane/CO2, in the 
presence of (salen)Co(II)/n-Bu4NBr as the catalytic system.  Polymer was purified from 

dichloromethane and 1 M HCl solution in methanol, and treated with trifluoroacetic anhydride. 
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Figure IV-7.  1H NMR spectrum in CDCl3 of poly(TMC) obtained by way of oxetane/CO2, in the 
presence of (salen)Co(II)/n-Bu4NBr as the catalytic system.  Polymer was purified from 

dichloromethane and 1 M HCl solution in methanol.
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which are expected to show at 3.5 ppm as well. However, –CH2Br end groups were not 

detectable by 1H NMR. 

 Mechanistic Insight into the Oxetane and Carbon Dioxide Coupling Process.  

At this point it is beneficial to summarize our findings on the copolymerization reaction.  

Firstly, trimethylene carbonate production via a backbiting mechanism is evident as 

definitively shown by in situ infrared spectroscopy.  Furthermore, although ring-opening 

polymerization of preformed trimethylene carbonate accounts for much of the 

copolymer production under certain conditions, at least some copolymer formation 

results from direct oxetane incorporation into the growing polymer chain.  Prior to 

putting forth a complete mechanistic scheme for copolymer formation it remains for us 

to assess the conditions for trimethylene carbonate ring-opening to polycarbonate.  A 

series of control experiments were designed to address this issue, and these are found in 

Table IV-5. 

 Initially, a copolymerization run was performed under identical conditions as 

described before but in the absence of the (salen)Co(II) complex, i.e., 4 g of oxetane, 35 

bars of CO2, 110C, and n-Bu4NBr as the catalyst.  Under these conditions no copolymer 

was produced after a 24 h period (entry 1, Table IV-5).  In addition, two control 

experiments were performed for the ring-opening polymerization of TMC, utilizing 0.5 g 

of TMC, 2 equiv. of n-Bu4NBr, in the presence and absence of complex IV-1, and 

reaction temperature 110C (Table IV-5, entries 2 and 3).  As readily seen on Table IV-

5, the percent conversion to polymer obtained from the reaction where complex IV-1/n-

Bu4NBr was employed as the catalyst system was slightly higher than that where n-
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Bu4NBr was employed alone (entries 2 and 3).  Similarly, longer reaction times (4 h) 

produced closer percent conversion to polymer (entries 4 and 5).  Importantly, after only 

4 hours of reaction TMC is converted to polymer in high percent conversions in both 

instances.  On the other hand, the coupling of oxetane and CO2 catalyzed by 

(salen)Co(II)/n-Bu4NBr requires a much longer reaction time (24 h) under similar 

reaction conditions to obtain around 64% conversion to polymer.  This reaction time 

difference further supports the role of (salen)Co(II) on the coupling reaction.  Therefore, 

(salen)Co(II) complex catalyzes the formation of TMC by a backbiting mechanism, and 

the resultant TMC undergoes ring-opening polymerization by an anionic mechanism 

with the bromide anions in solution. 

 
 
 

Table IV-5. Control Experiments to Examine Copolymer Formation.a 

Entry Monomer 
% 

Conversionb 
Mn 

(GPC) 
Mn 

(Theoretical) 
PDI 

1 Oxetane/CO2 - - - - 
2 TMCc 78.11 29 512 23 902 1.68 
3 TMCc 87.23 28 917 26 692 1.68 
4 TMCd 89.78 25 025 27 473 1.63 
5 TMCd 88.14 22 053 26 971 1.66 

aReaction conditions:  Oxetane/CO2 run:  4 g of oxetane,  M/I = 350:1, 2 equiv of n-
Bu4NBr, 35 bar of CO2, at 110C for 24 h. TMC runs (entries 2 and 4): 0.5 g TMC, M/I = 
300:1, 2 equiv. of n-Bu4NBr, 30 mLs of toluene, at 110 C.  TMC runs (entries 3 and 5): 
0.5 g TMC, M/I = 300:1, 10 mg of complex IV-1, 2 equiv. n-Bu4NBr, 30 mLs of toluene, 
at 110C.  b% Conversion to polymer was determined by 1H NMR spectroscopy.  cReaction 
time = 1 h.  dReaction time = 4 h. 

 
 
 
 Scheme IV-4 summarizes the proposed mechanistic aspects for the coupling 

reaction of oxetane and carbon dioxide catalyzed by (salen)Co(II)/n-Bu4NBr catalyst,  
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based on our current experimental findings.  In the initiation step, treatment of 

(salen)Co(II) with two equivalents of n-Bu4NBr, and in the presence of oxetane 

monomer, a (salen)Co(II)Br(oxetane)- adduct is formed.  Following the initial ring-

opening of oxetane by bromide and CO2 insertion into the resultant cobalt-oxygen bond, 

the formation of TMC by a backbiting process with ring closure is evident.  

Regeneration of a (salen)CoBr-  species is then followed by oxetane binding to the cobalt 

center and the catalytic cycle starts over.  Moreover, ring-opening polymerization of 

preformed TMC may be carried out by an anionic mechanism in the presence of bromide 

anion in solution, to yield poly(TMC).  Furthermore, it is important to note that oxetane 

Scheme IV-4.  Proposed Mechanism for the Coupling of Oxetane and CO2 Catalyzed by  
(salen)Co(II)/n-Bu4NBr. 
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insertion into the polymer chain occurs, which generates small amounts of ether linkages 

in the copolymer. 

 Since (salen)CoX complexes in the presence of quaternary organic salts have 

been shown to be effective catalyst systems under mild reaction conditions for the 

epoxide/CO2 coupling process, it was of interest to examine this catalyst for the 

copolymerization of oxetane and CO2.
8b, 11a, 11d  For this study the (salen)Co(III)Cl 

complex along with anionic initiators from n-Bu4NX or PPNX (X = Cl or N3) was 

utilized.  The polymerization reactions were performed under identical reaction 

conditions to those employed in the (salen)Co(II) investigation, i.e., 110ºC and 35 bar 

CO2 pressure.  Under these conditions no copolymer was obtained after 24 h, and upon 

lowering the reaction temperature to 50ºC no improvement in catalytic activity was 

noted.  However, upon changing to (salen)Co(III)Br in the presence of n-Bu4NBr 

catalytic activity was observed, with the results indicated in Table IV-6. 

 
 
 

Table IV-6.  Selectivity for Poly(TMC) and TMC Formation Using (Salen)CoBr Complex in the 
Presence of n-Bu4NBr as Cocatalyst.a 

Salen 
Cobalt(III)Complex 

Cocatalyst 
(Equivalents) 

% 
Conversionb 

% 
Poly(TMC)b 

% 
TMCb 

% 
CO2 Contentb 

(salen)CoBr 
n-Bu4NBr 
(1 equiv.) 

34.37 32.93 67.02 >99 

(salen)CoBrc 
n-Bu4NBr 
(2 equiv.) 

62.28 41.52 58.47 >99 

aCopolymerization conditions: 157 mg of catalyst, 2 g of oxetane, M/I = 150:1, 35 bar of CO2, at 
110C for 24 h.  b% Conversion to products, product distributions, and % of CO2 content were 
determined by 1H NMR spectroscopy. cMn (GPC) = 6 284, PDI = 1.68, Mn(Theoretical) = 3 960. 
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 As noted in Table IV-6, the percent conversion to products, poly(TMC) and 

TMC, increases upon increasing the number of equivalents of n-Bu4NBr from one to two 

equivalents.  This observation, coupled with the lack of catalytic activity seen for the 

chloride and azide catalyst analogs, is consistent with what is observed when utilizing 

(salen)Co(II) complexes as catalysts.  Indeed, upon quenching the copolymerization 

process, a red solid precipitates which was identified as (salen)Co(II).  Recall, 

(salen)CoX complexes are a deep green in color.  This behavior of (salen)CoX 

complexes operating at elevated temperatures has been previously observed numerous 

times.2c  Hence, copolymerization reactions of oxetane and CO2 at 110ºC employing 

(salen)CoX/n-Bu4NX catalyst systems proceed via the mechanism described in Scheme 

IV-4 for the (salen)Co(II) complex. 

Concluding Remarks 

 We initially chose the (salen)Co(II) catalyst for the coupling of oxetanes and 

carbon dioxide because of its reduced electrophilicity and substitutional lability relative 

to (salen)CrX complexes.  That is, (salen)Co(II) should have less of a tendency to bind 

the growing polymer chain, thus leading to an enhanced rate of cyclization of the free 

anionic CO2 inserted ring-opened monomer or oligomer.  As has been documented, the 

metal center in (salen)CoX is also less electrophilic than that in (salen)CrX, however 

noted herein and elsewhere, (salen)CoX complexes are unstable with regard to reduction 

to (salen)Co under the required reaction conditions of elevated temperatures.  An 

unanswered issue in this study is whether the metal’s only involvement is to activate the 

oxetane for ring-opening.  In other words, does CO2 insertion occur at the metal center 
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or does CO2 simply react with the dissociated alkoxide resulting from ring-opened 

oxetane? 
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CHAPTER V 

 

TUNING THE SELECTIVITY OF THE OXETANE AND CO2 COUPLING 

PROCESS CATALYZED BY (SALEN)CrCl/n-Bu4NX:  CYCLIC CARBONATE 

FORMATION VS ALIPHATIC POLYCARBONATE PRODUCTION 

 

Introduction 

 In Chapter II, detailed mechanistic and kinetic studies on the copolymerization of 

oxetane and CO2 catalyzed by a (salen)Cr(III)Cl complex, namely, 1,2-

cyclohexanediamino-N,N’-bis-(3,5-di-tert-butylsalicylidene)chromium(III) chloride, 

(complex II-4), along with an anionic-based cocatalyst, n-Bu4NN3, were presented 

(Figure V-1).  Our studies have demonstrated that this catalytic system allows for two 

operative pathways responsible for polycarbonate formation.  These are the direct 

enchainment of oxetane and CO2, and the ring-opening polymerization of preformed 

trimethylene carbonate via a coordination-insertion mechanism (Scheme V-1).  

Complex II-4 was employed in this investigation because it was found to be the more 

active towards copolymer formation, among a series of (salen)CrCl catalysts screened 

for this reaction.  As a consequence of our experimental findings with the (salen)CrCl/n-

Bu4NN3 catalytic system, we first hypothesized that by reducing the electrophilicity of 

the metal salen complex in conjunction with the appropriate anionic-based cocatalyst, 

should modulate the selectivity of the oxetane/CO2 coupling reaction.  Indeed, in 

Chapter IV we showed that a (salen)Co(II) complex in the presence of anions that are 
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good leaving groups such as bromide, forms a very active catalyst system for the ring 

expansion of oxetane with CO2 forming trimethylene carbonate.  Subsequently, TMC is 

polymerized by an anionic ring-opening polymerization mechanism in the presence of 

bromide ions in the reaction solution. 

These results inspired us to further explore the activity and selectivity of the 

(salen)Cr(III)Cl catalyst in the presence of anions that are better leaving groups than the 

azide anion, i.e., bromide and iodide.  We surmised that this catalytic system should 

more effectively tune the selectivity of the oxetane/CO2 coupling process for cyclic 

carbonate formation, and/or for polycarbonate produced from the homopolymerization 

of preformed TMC (Scheme V-1, route (2)).  The isolation of trimethylene carbonate 

from this process is also of interest because it could be used in melt polymerization 

processes with other monomers such as lactides or caprolactones, for the production of 

important copolymers.  In addition, the polycarbonate obtained from the ROP of 

preformed TMC would have no ether linkages, as we have previously demonstrated for 

the ROP of TMC in the presence of the (salen)CrCl catalyst, along with an anionic-based 

cocatalyst (Chapter II).  This would result in a polycarbonate with better physical 

properties. 

Herein, we wish to report further studies on this transformation as it pertains to 

the effects of a variety of anionic-based cocatalysts on the selectivity of the oxetane and 

CO2 coupling reaction catalyzed by complex II-4.  An investigation of the nature of the 

catalytic species involved in the reaction will be described.  Additionally, the  
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Figure V-1.  The (salen)CrCl complex II-4, and anionic-based cocatalyst employed in mechanistic 
and kinetic studies performed on the copolymerization of oxetane and CO2 (Chapter II). 

Scheme V-1.  Proposed Reaction Mechanism (Chapter II). 
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dependence of reaction temperature on the selectivity of the coupling of oxetane and 

CO2 as monitored by high-pressure in situ IR spectroscopy will be presented.  Lastly, the 

effects of temperature and pressure on the selective synthesis of TMC from the coupling 

of oxetane and CO2 will be discussed. 

Experimental Section 

Reagents and Methods.  Unless otherwise specified, all syntheses and 

manipulations were carried out on a double-manifold Schlenk vacuum line under an 

atmosphere of argon or in an argon filled glove box.  Toluene and tetrahydrofuran were 

freshly distilled from sodium/benzophenone.  Ethanol was freshly distilled from Mg/I2.  

Diethyl ether, dichloromethane, and hexanes were purified by an MBraun Manual 

Solvent Purification System packed with Alcoa F200 activated alumina desiccant.  

Oxetane (Alfa Aesar) was freshly distilled over CaH2 and stored in the freezer of the 

glove box.  Tetra-n-butylammonium bromide (Eastman), tetra-n-butylammonium iodide 

(Eastman), and tetra-n-butylammonium chloride (TCI) were recrystallized from 

acetone/diethyl ether before use.  Tetra-n-butylammonium azide (TCI), and tetra-n-

butylammonium cyanate (Fluka) were stored in the freezer of the glove box upon arrival.  

Chromium(II) chloride (Alfa Aesar) and sodium sulfate (EMD) were used as received.  

Bone-dry carbon dioxide supplied in a high-pressure cylinder and equipped with a liquid 

dip tube was purchased from Scott Specialty Gases.  PPNBr (PPN+ = (Ph3P)2N
+ ) was 

synthesized following the procedure reported in the literature for the synthesis of 

PPNN3.
48  The syntheses of N,N’-bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediimine, N,N'-bis(3-tert-butyl-5-methoxysalicylidene)-1,2-phenylene 
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diimine, 1,2-cyclohexanediamino-N,N’-bis-(3,5-di-tert-butylsalicylidene)chromium(III) 

chloride (complex II-4), and 1,2-phenylenediamino-N,N'-bis(3-tert-butyl-5-

methoxysalicylidene)chromium(III) chloride (complex V-1) were performed as 

described in the literature.45  Single crystals of (salen)Cr(Cl)x(Br)y
-PPN+ (complex V-2) 

were obtained by layering hexanes into a saturated dichloromethane solution of the 

corresponding (salen)CrCl complex (1,2-phenylenediamino-N,N'-bis(3-tert-butyl-5-

methoxysalicylidene)chromium(III) chloride) containing two equivalents of PPNBr.  

ESI-MS: m/z 608.05 [(salen)Cr(Cl2)
-], 698.04 [(salen)Cr(Br2)

-], 653.99, 

[(salen)Cr(Cl)(Br)-], 632.09 [(salen)Cr(Cl)(OAc)-], and 678.03 ([(salen)Cr(Br)(OAc)-]. 

1H NMR spectra were acquired on Unity+ 300 MHz and VXR 300 MHz 

superconducting NMR spectrometers.  Molecular weight determinations (Mn and Mw) 

were carried out with Viscotek Modular GPC apparatus equipped with ViscoGELTM I-

series columns (H + L), and Model 270 dual detector comprised of RI and Light 

Scattering detectors.  High-pressure reactions were performed using an ASI ReactIR 

1000 reaction analysis system with stainless steel Parr autoclave modified with a 

permanently mounted ATR crystal (SiComp) at the bottom of the reactor (purchased 

from Mettler Toledo). 

Copolymerization Reactions Monitored by in situ IR Spectroscopy.  In a 

typical experiment, complex II-4 (124.4 mg), the appropriate amount of cocatalyst, n-

Bu4NX, (X = Br, I, Cl, N3, NCO), and oxetane (4 g) were dissolved in 10 mL of toluene 

and delivered via the injection port into a 300-mL stainless steel Parr autoclave reactor 

that was previously dried in vacuo overnight at 80C.  The monomer:catalyst:cocatalyst 
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ratio was maintained at 350:1:2.  The autoclave is modified with a 30 bounce SiComp 

window to allow for the use of an ASI ReactIR 1000 system equipped with a MCT 

detector.  In this manner a 128-scan background spectrum was collected after the 

reaction mixture was heated to the temperature of the corresponding experiment.  The 

autoclave was pressurized with the appropiate CO2 pressure, and the infrared 

spectrometer was set to collect one spectrum every 3 min over a 24 h period.  Profiles of 

the absorbance at 1750 cm-1 (polymer) and at 1770 cm-1 (TMC) with time were recorded 

after base line correction.  After the reaction was stopped, the autoclave was cooled 

down to room temperature, and vented in a fume hood.  The percent conversion to 

products was determined based on the amount of oxetane monomer left in the reaction 

solution.  1H NMR (300 MHz, CDCl3), oxetane: δ 4.75 (t, 4H, OCH2) and 2.70 (quintet, 

2H, CH2).  Furthermore, the quantities of poly(TMC), TMC, and ether linkages in the 

copolymer were determined by integrating the peak area of the corresponding 

resonances.  1H NMR (300 MHz, CDCl3), poly(TMC): δ 4.23 (t, 4H, OCH2) and 2.05 

(quintet, 2H, CH2).  
1H NMR (300 MHz, CDCl3), TMC: δ 4.45 (t, 4H, OCH2) and 2.14 

(quintet, 2H, CH2).  
1H NMR (300 MHz, CDCl3), ether linkages: δ 3.50 (t, 4H, OCH2) 

and 1.90 (quintet, 2H, CH2).  (Note: cocatalyst, temperature, and pressure varied within 

each experiment, and are described in the Results and Discussion section).  
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Statistical Deconvolution of FTIR Spectra.  When noted FTIR spectra were 

deconvoluted using Peakfit, version 4.12 (Peakfit for Windows, v. 4.12; SYSTAT 

Software Inc., San Jose, CA, 2003).  Statistical treatment was a residuals method 

utilizing a combination Gaussian-Lorentzian summation of amplitudes with a linear 

baseline and Savitsky-Golay smoothing. 

Results and Discussion  

Effects of Various Anionic-Based Cocatalysts on the Coupling of Oxetane 

and CO2.  Our initial efforts were directed at employing complex II-4, along with 

various n-Bu4NX (X = Br, I, Cl, N3, NCO) salts as cocatalysts, to examine the catalytic 

activity and selectivity for cyclic carbonate vs copolymer formation from the oxetane 

and CO2 coupling reaction.  The copolymerization reactions were all carried out under 

identical reaction conditions. i.e., 110ºC, 35 bar of CO2 pressure in toluene solution, and 

were monitored by in situ IR spectroscopy.  The growth of the copolymer was monitored 

by observing its C=O band at 1750 cm-1, and the growth and/or consumption of the 

cyclic product, TMC, by observing its C=O band at 1770 cm-1.  Due to the close 

proximity of the carbonyl stretching bands of copolymer and cyclic carbonate, it was 

necessary to deconvolute selected IR spectra employing the band parameters for the pure 

components, in order to get accurate reaction profiles.  The reaction profiles for 

copolymer formation as a function of various n-Bu4NX cocatalysts present in two 

equivalents relative to complex II-4 are shown in Figure V-2.  It can be readily seen that 

the rates for copolymer formation differ slightly from each other, and the order of 

decreasing reaction rate was Br-, I- > Cl-, N3
- > NCO-.  As we have previously noted in 
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Chapter III, a more remarkable induction period is observed when utilizing the anion 

NCO- as cocatalyst.  This is consistent with this anion being a stronger field ligand, and 

thus displacing the Cl- from (salen)CrCl more easily forming the corresponding [trans-

(salen)CrX2][n-Bu4N
+] (X = NCO) complex.  Concomitantly, this ligand is more 

difficult to be displaced by the oxetane monomer, hence retarding the initial stage of the 

ring-opening reaction. 

 Relative to the initiation step of the copolymerization process, in Chapter III we 

showed that the ring-opening of oxetane in the presence of (salen)Cr(III)Cl complexes 

by n-Bu4NX (X = Cl, N3) salts, is a higher energy process compared to the 

corresponding reaction involving epoxides.  Recently, Jacobsen and coworkers have 

reported the enantioselective intramolecular openings of oxetanes-containing O-centered 

nucleophiles catalyzed by (salen)Co(III) complexes, producing good yields of 

enantioenriched tetrahydrofurans under mild reaction conditions.92  However, under the 

catalytic conditions utilized for the copolymerization reaction of oxetane and CO2 a 

good nucleophile (X) is required for the ring-opening step (Scheme V-2).  On the 

contrary, the formation of trimethylene carbonate which is due to a backbiting process 

would need a good leaving group (X) (Scheme V-2).  Figure V-3 illustrates the reaction 

profiles for the series of reactions performed at 110ºC utilizing complex II-4, in the 

presence of the various anionic-based cocatalysts.  Among the cocatalysts examined, the 

bromide anion displayed the highest catalytic activity towards trimethylene carbonate 

formation at the early stages of the coupling reaction, followed by the iodide, chloride, 

azide, and cyanate anions.  The bromide anion under these catalytic conditions  
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Figure V-2.  Reaction profiles obtained after deconvolution of selected IR spectra, indicating 
copolymer formation with time for the copolymerization of oxetane and CO2 in the presence of 

complex II-4 and 35 bar of CO2 at 110ºC employing various n-Bu4NX salts as cocatalysts. 

n-Bu4NBr 

n-Bu4NI 

n-Bu4NCl 

n-Bu4NN3 

n-Bu4NNCO 

Scheme V-2.  Initial Ring-Opening of Oxetane and Formation of TMC via a Backbiting Pathway. 
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is better promoting the formation of TMC by a backbiting mechanism.  In Chapter IV, 

we observed a similar catalytic tendency for the formation of TMC from the coupling of 

oxetane and CO2 utilizing a (salen)Co(II) complex along with anionic-based cocatalysts 

of the type described here, n-Bu4NX (X = N3, Cl, Br, I).  Subsequently, TMC 

polymerizes by an anionic pathway.  Others have reported analogous trends for the 

coupling of CO2 or CS2 and aziridines employing alkali metal halides or 

tetraalkylammonium halides as catalysts.89  Moreover, Caló reported the formation of 

five-membered cyclic carbonates from the coupling of oxiranes and CO2 utilizing molten 

n-Bu4NBr as catalyst.77  More recently, North and coworkers reported a detailed 

mechanistic study on the formation of five-membered cyclic carbonates from the 

Figure V-3.  Reaction profiles obtained after deconvolution of selected IR spectra, indicating 
trimethylene carbonate formation with time for the copolymerization of oxetane and CO2 in the 

presence of complex II-4 and 35 bar of CO2 at 110ºC employing various n-Bu4NX salts as 
cocatalysts. 

n-Bu4NNCO 

n-Bu4NN3 

n-Bu4NCl 

n-Bu4NI 

n-Bu4NBr 
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coupling of epoxides and CO2 catalyzed by a bimetallic aluminum salen complex along 

with n-Bu4NBr as cocatalyst.93 

 Figure V-4 shows the reaction profiles of both, copolymer and TMC formation 

for the copolymerization reaction of oxetane and CO2 carried out in the presence of 

complex II-4 along with 2 equivalents of n-Bu4NBr as cocatalyst.  It is clearly observed 

that when using this catalytic system and conditions the formation of TMC is enhanced 

at the early stages of the coupling reaction and its concentration is rapidly decreased 

over time.  On the other hand, the concentration of poly(TMC) is initially inhibited 

followed by rapidly increasing over the course of the reaction.  The product distribution 

for the copolymerization reactions carried out using various anionic-based cocatalysts is 

shown in Table V-1, as determined by 1H NMR spectroscopy.  All the cocatalysts 

examined displayed good to high activity for copolymer formation, and the percentages 

of poly(TMC) were found to be ≥ 98% with trace quantities of TMC detected after 24 h 

of reaction.  Consistent with the in situ IR data, these results strongly suggest that there 

is an equilibrium process between the cyclic carbonate byproduct and the polycarbonate, 

as the percentages of poly(TMC) did not reach 100% after a 24 h reaction period.  

Relevant to this point, anionic equilibrium polymerizations of six-membered cyclic 

carbonates have been documented in the literature.21a, 94  In this respect, monomers that 

undergo equilibrium polymerization processes are very useful, because this property of 

reversibility can be utilized in the recycling of polymeric materials.95  It should be 

pointed out that we have noted more remarkable equilibrium processes between the 

cyclic carbonate byproduct and the corresponding polycarbonate, upon using four- 
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Table V-1.  Copolymerization of Oxetane and CO2 Catalyzed by Complex II-4 in the Presence of Various 
n-Bu4NX Salts as Cocatalysts.a 

Cocatalyst % 
Conversionb 

% 
Poly(TMC)b 

% 
TMCb 

% 
CO2 

Contentb 

Mn 

(GPC) 
PDI 

n-Bu4NBr 100 98.2 1.8 99 7 100 1.42 
n-Bu4NI 100 98.3 1.7 99 7 000 1.43 

n-Bu4NCl 75.4 >99 <1.0 97.9 7 600 1.20 
n-Bu4NN3 74.4 >99 <1.0 97.6 5 800 1.48 

n-Bu4NNCO 67.6 >99 <1.0 98.2 4 700 1.41 
aReaction conditions: 124.4 mg of complex II-4, 2 equiv. of cocatalyst, 4 g of oxetane, 10 mL of toluene, 
M/I = 350:1, 35 bar of CO2 at 110 ºC for 24 h.  bPercent conversion to products, product distributions, and 
% of CO2 content were determined by 1H NMR spectroscopy. 
 

TMC 

Poly(TMC) 

A 

B 

Figure V-4.  (A) Three-dimensional stack plot of IR spectra collected every 3 min during the 
copolymerization reaction of oxetane and CO2. (B) Reaction profiles obtained after 

deconvolution of selected IR spectra, indicating copolymer and trimethylene carbonate formation 
with time.  Reaction carried out at 110ºC in toluene, at 35 bar of CO2 pressure, in the presence of 

complex II-4 and 2 equiv. of n-Bu4NBr. 
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membered cyclic ethers containing two substituents in the 3-position of trimethylene 

oxide, i.e., 3-methoxy-methyl-3-methyloxetane, and these studies will be reported in the 

following Chapter.   

  Importantly, the highest percentages of CO2 incorporation were observed for the 

reactions where n-Bu4NBr and n-Bu4NI were used as cocatalysts.  This result is 

consistent with the observation that in these reactions there was more TMC formed and 

thus, more polycarbonate produced by the ring-opening polymerization of preformed 

trimethylene carbonate via a coordination-insertion pathway.  It should be recalled that 

we have independently shown that the ROP of TMC by these catalytic systems occurs 

with no CO2 loss during the copolymerization reaction (Chapter II). 

   The molecular weight and polydispersities of the polycarbonates were measured 

in THF by gel permeation chromatography.  Under these reaction conditions the typical 

Mn value ranged from 4 700 to 7 100 with polydispersities of 1.20 to 1.60 (Table V-1).  

A more detailed presentation of Mn as a function of the [monomer]/[initiator] ratio on 

this catalytic process may be found in Chapter II. 

 Examination of the Catalytic Species Involved in the Copolymerization 

Reaction.  Subsequent studies were focused on determining the characteristics of the 

catalytic species formed upon treating a (salen)CrCl with two equivalents of a bromide-

based cocatalyst.  This catalytic system was demonstrated to have the highest activity 

towards TMC formation at the initial stages of the reaction at 110°C.  Additionally, the 

polycarbonate produced displayed a high fixation of carbon dioxide (>99%).  To 

investigate the nature of the initial catalytic species involved in the reaction a (salen)CrCl 
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complex, 1,2-phenylenediamino-N,N’-bis(3-tert-butyl-5-methoxysalicylidene)- 

chromium(III) chloride, (complex V-1), was treated with two equivalents of PPNBr, and 

analyzed by electron-spray ionization mass spectrometry.  The parent ions of 

(salen)CrCl2
-, (salen)CrClBr-, and (salen)CrBr2

- were observed in the negative mode of 

the ESI-MS spectrum at 608.05, 653.99, and 698.04 m/z, respectively.  Moreover, the 

parent ions of (salen)Cr(Cl)(OAc)- and (salen)Cr(Br)(OAc)- were also detected, which 

resulted from the reaction of (salen)CrCl2
- and (salen)CrBr2

- with acetic acid, which is 

used during the mass spectral analysis experiment.  Because of the presence of excess 

bromide, the complexes (salen)CrBr2
- and (salen)CrClBr- are expected to be the most 

abundant in solution.  These results suggested that when (salen)CrCl is treated with two 

equivalents of bromide, a Schlenk equilibrium is produced (eq V-1.)  Pertinent to this 

point, we have isolated and fully characterized the n-Bu4N
+ salt of the (salen)CrCl2

- anion 

by X-ray crystallography (Figure V-5). 

 
 
 

 

 
 
 

(V-1) 
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Temperature Dependence on the Coupling of Oxetane and CO2 Catalyzed 

by (salen)CrCl/n-Bu4NBr.  Subsequently, temperature dependence studies were 

performed in order to examine the selectivity of the oxetane and CO2 coupling process 

utilizing the (salen)CrCl/n-Bu4NBr catalytic system.  We previously showed that in the 

presence of n-Bu4NBr as cocatalyst a higher catalytic activity towards trimethylene 

carbonate formation is obtained at the early stages of the coupling reaction performed at 

110ºC.  It would be anticipated that lowering the reaction temperature would enhance the 

formation of TMC throughout the course of the reaction.  The coupling reactions were 

carried out under identical reaction conditions. i.e., 35 bar of CO2 pressure, utilizing 

complex II-4 and 2 equiv. of n-Bu4NBr as cocatalyst, at various reaction temperatures.  

 

 
 
 

Figure V-5.  Ball and stick representation of the X-ray defined structure of (salen)CrCl2
- anion, where 

the salen ligand contains –OMe and –t-Bu substituents in the 3,5 positions of the phenolates 
respectively, with a phenylene diimine backbone.  Tetrabutylammonium cation omitted for clarity.  

Data taken from Chapter III. 
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  Figure V-6 depicts the reaction profiles for copolymer formation with time for a 

series of reactions performed at various reaction temperatures.  As anticipated the 

reaction rate for copolymer formation is decreased as the reaction temperature is lowered 

from 110 to 60ºC.  Figure V-7 illustrates the reaction profiles for trimethylene carbonate 

formation for the series of reactions carried out at this same temperature range of 110 to 

60ºC.  It can be clearly observed that upon lowering the temperature from 110 to 60ºC 

the selectivity for the formation of trimethylene carbonate by a backbiting mechanism is 

enhanced during the course of the coupling reaction.  This is the result of the higher 

temperatures needed to ROP TMC than those required to couple oxetane and CO2 to 

form TMC in the presence of bromide ions.  The product distribution for the 

copolymerization reactions is presented in Table V-2 as determined by 1H NMR 

spectroscopy. 

Figure V-6.  Reaction profiles obtained after deconvolution of selected IR spectra, indicating 
poly(TMC) formation with time for the copolymerization of oxetane and CO2 in the presence of 

complex II-4, 2 equiv. of n-Bu4NBr, and 35 bar of CO2 at various reaction temperatures. 

° ° ° °
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Table V-2 clearly illustrates that lowering the reaction temperature from 110 to 

60ºC drives the selectivity of the oxetane and CO2 coupling reaction for TMC production 

in the presence of complex II-4/n-Bu4NBr.  As it was expected a decrease in catalytic 

activity is observed as the temperature is decreased, where the ring-opening of oxetane is 

more difficult.  Nevertheless, under these catalytic conditions the formation of TMC and 

the production of polycarbonate through the ROP of preformed TMC via a coordination- 

insertion mechanism are favored.  Furthermore, the highest percentages of CO2 fixation 

are observed in the thus produced polycarbonates (Table V-2).  It is important to note that 

although ring-opening polymerization of preformed trimethylene carbonate accounts for 

most of the polycarbonate production at lower reaction temperatures (< 80°C), we cannot 

rule out that at least some polycarbonate formation results from the direct enchainment of 

oxetane and CO2. 

Figure V-7.  Reaction profiles obtained after deconvolution of selected IR spectra, indicating TMC 
formation with time for the copolymerization of oxetane and CO2 in the presence of complex II-4, 2 

equiv. of n-Bu4NBr, and 35 bar of CO2 at various reaction temperatures. 

° ° ° °
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Table V-2.  Copolymerization of Oxetane and CO2 Catalyzed by Complex II-4/n-Bu4NBr at Various 
Reaction Temperatures.a 

Temperature 
(ºC)  

% 
Conversionb 

% 
Poly(TMC)b 

% 
TMCb 

% 
CO2 Contentb 

110 100 98.2 1.8 99 
80 100 93.3 6.7 99.3 
70 73.7 62.6 37.4 >99 
60 33.9 13.3 86.7 >99 

aReaction conditions: 124.4  mg of complex II-4, 2 equiv. of n-Bu4NBr, 4 g of oxetane, 10 mL of toluene, 
M/I = 350:1, 35 bar of CO2 at 110 ºC for 24 h.  bPercent conversion to products, product distributions, and 
% of CO2 content were determined by 1H NMR spectroscopy. 
 
 
 

  It is evident from our recent experimental results that the formation of 

trimethylene carbonate is enhanced with the employment of the (salen)CrCl catalyst 

along with a bromide-based cocatalyst.  Additionally, it is suggested that formation of 

TMC by a backbiting process occurring via a metal-carbonate intermediate is favored at 

lower reaction temperatures (< 80C) (Scheme V-3A).  By way of contrast, in the chain 

propagation step the ring-opening of oxetane by a metal-carbonate intermediate is favored 

at higher reaction temperatures (≥ 80C) (Scheme V-3B).  As a result, enhancing the 

process shown in Scheme V-3B minimizes the ability of backbiting via a terminal 

bromide anion (Scheme V-3A) forming TMC.  Although a dimer of TMC has been 

observed by us in a related process catalyzed by (salen)Co(II)/n-Bu4NBr (Chapter IV), 

larger carbonate rings have not been observed thus far utilizing the (salen)CrCl/n-Bu4NBr 

catalytic system.   
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  It is important to mention that we have performed a cocatalyst dependence study 

on the coupling reaction using complex II-4/n-Bu4NBr as catalytic system at 110°C.  As 

expected the initial formation of TMC was found to be increased as the number of 

equivalents of cocatalyst utilized increased.  This was consistent with the formation of 

cyclic carbonate by a backbiting mechanism not only aided but the metal catalyst, but 

also but the free anionic polymer chain.  The latter process is thought to have a lower 

barrier and to be assisted in the presence of excess of ionic-based cocatalysts, which serve 

to displace the growing polymer chain from the metal catalyst.96  

A 

B 

Scheme V-3.  (A)  Formation of TMC by a Backbiting Mechanism Through a Metal Carbonate 
Intermediate.  (B)  Ring-Opening of Oxetane by a Metal Carbonate Intermediate. 
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Further Optimization of the Oxetane and CO2 Coupling Process for 

Trimethylene Carbonate Formation.  In an effort to tune the selectivity of the oxetane 

and CO2 coupling process exclusively for trimethylene carbonate formation, we have 

designed a series of experiments where the temperature was kept at 60 or 50C, and the 

CO2 pressure was varied between 35 and 10 bar as shown in Table V-3 and Figures V-8 

and V-9. 

The ring expansion of oxetane with CO2 catalyzed by complex II-4 along with n-

Bu4NBr as cocatalyst was found to be most favored at lower reaction temperatures and 

CO2 pressures (50C, 10 bar of CO2), even though a low conversion could only be 

achieved under these reaction conditions (Table V-3, Figure V-8).  This result is 

consistent with the formation of cyclic carbonate occurring mostly via a metal-alkoxide  

 
 
 

Table V-3. Coupling of Oxetane and CO2 to Afford Trimethylene Carbonate.a 

T(C) CO2  
Pressure (bar) 

% 
Conversionb 

% 
Poly(TMC)b 

%  
TMCb 

50 35 9.4 0 100 
50 
60 
60 

10 
35 
10 

20.3 
33.9 
46.6 

0 
13.3 
46.5 

100 
86.7 
53.5 

aReaction conditions: complex II-4 (124.4 mg), 2 equiv. of n-Bu4NBr, 4 g of oxetane, 10 mL of toluene, 
M/I = 350:1 for 24 h. bPercent conversion to products and product distributions were determined by 1H 
NMR spectroscopy. 
 
 
 

intermediate (Scheme V-4A) rather than by a metal-carbonate intermediate (Scheme V-

4B).  Previously, we have determined an E‡
act of 105 kJ/mol for the formation of trans-

cyclohexylene carbonate in the absence of comonomers from the metal bound polymer 

chain.97  On the contrary, the activation barrier for the formation of cyclic carbonate 
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during the copolymerization of cyclohexene oxide and CO2 at 55 bar, was found to be 

133 kJ/mol.  In this case, cyclic carbonate formation was suggested to occur by way of a 

metal-carbonate (polymer chain) intermediate.98  Interestingly, the effect of lowering the 

reaction pressure from 35 to 10 bar is slightly different when the coupling reaction is 

performed at 60C (Table V-3, Figure V-9).  In this instance, a higher conversion to 

products was achieved, and the product distribution differed significantly, with almost 

equivalent quantities of poly(TMC) and TMC obtained after 24 h of reaction.  This is 

most likely due to an enhancement on the formation of TMC via a backbiting mechanism 

through a metal-alkoxide intermediate (Scheme V-4A).  However, TMC produced could 

undergo ring-opening polymerization by a coordination-insertion pathway more readily at 

60C than at 50C. 
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Figure V-8.  Reaction profiles indicating trimethylene carbonate formation with time for 
the coupling of oxetane and CO2.  Reactions carried out at 50ºC in toluene in the 

presence of complex II-4 and 2 equiv. of n-Bu4NBr at the indicated CO2 pressures. 

10 bar CO2

35 bar CO2

Scheme V-4.  Formation of Trimethylene Carbonate via Backbiting Pathways. 
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Concluding Remarks 

  We have shown that the (salen)CrCl complex along with n-Bu4NX (X = Br, I) is 

an effective catalyst system for the selective coupling of oxetane and CO2, providing the 

corresponding polycarbonate with minimal amounts of ether linkages at 110C.  The 

Figure V-9.  Reaction profiles obtained after deconvolution of selected IR spectra, indicating 
poly(TMC) and TMC formation with time for the copolymerization of oxetane and CO2.  (A)  
Reaction carried out at 60ºC in toluene, at 35 bar of CO2 pressure, in the presence of complex 
II-4 and 2 equiv. of n-Bu4NBr. (B)  Reaction carried out at 60ºC in toluene, at 10 bar of CO2 

pressure, in the presence of complex II-4 and 2 equiv. of n-Bu4NBr. 

A 

B 
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selectivity of the oxetane and CO2 coupling process can be tuned by altering the nature 

of the anionic-based cocatalyst.  Anions that are good leaving groups such as bromide 

and iodide are more effective at yielding trimethylene carbonate by a backbiting process 

at the early stages of the coupling reaction.  Furthermore, at lower reaction temperatures 

(T < 80C) the catalyst system (salen)CrCl/n-Bu4NBr is capable of producing 

polycarbonate directly from the ROP of preformed TMC via a coordination-insertion 

pathway.  Treatment of the (salen)CrCl with two equivalents of n-Bu4NBr forms [trans-

(salen)CrClBr-] which exits in solution in a Schlenk equilibrium with the corresponding 

symmetric [trans-(salen)CrX2
-] complexes as demonstrated by ESI-MS.  Additional 

attempts at tuning the selectivity of the coupling reaction for trimethylene carbonate 

formation were achieved by utilizing the aforementioned catalytic system under lower 

reaction temperatures and CO2 pressures, where the formation of TMC by a backbiting 

mechanism is enhanced via a metal-alkoxide intermediate.  Fundamental studies of the 

type described in this Chapter should provide us with the knowledge to develop 

catalyzed methods to synthesize trimethylene carbonate via the ring-expansion of 

oxetane and carbon dioxide under mild reaction conditions. 
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CHAPTER VI 

 

EXPLORATION OF THE COPOLYMERIZATION OF 3-METHOXY-METHYL-

3-METHYLOXETANE AND CO2 TO AFFORD ALIPHATIC 

POLYCARBONATES CATALYZED BY (SALEN)CrCl COMPLEXES 

 

Introduction 

 A continuing theme in this research area is the exploration of other monomers 

that can be activated in a similar manner to oxetane and thus, the generation of new 

aliphatic polycarbonates with different and hopefully improved properties.  One of the 

drawbacks about this chemistry is the availability of the oxetane monomers.  There are 

few commercially available and these are in general expensive.  Our initial interest was 

to explore monomers with substituents in the 3-position of trimethylene oxide such as 3-

methoxy-methyl-3-methyloxetane (MMO).  This monomer can be easily synthesized 

from 3-methyl-3-oxetanemethanol, which is a relatively inexpensive and commercially 

existing oxetane derivative.  

 Herein, we wish to report preliminary investigations on the copolymerization of 

3-methoxy-methyl-3-methyloxetane and CO2 catalyzed by the (salen)CrCl catalytic 

system (Figure II-1), along with n-Bu4NN3 as cocatalyst. 

Experimental Section 

Reagents and Methods.  Unless otherwise specified, all syntheses and 

manipulations were carried out on a double-manifold Schlenk vacuum line under an 
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atmosphere of argon or in an argon filled glove box.  Toluene and tetrahydrofuran were 

freshly distilled from sodium/benzophenone.  Ethanol and methanol were freshly 

distilled from Mg/I2.  Diethyl ether, dichloromethane, and hexanes were purified by an 

MBraun Manual Solvent Purification System packed with Alcoa F200 activated alumina 

desiccant.  1,1,2,2-tetrachlotoethane (TCI) was freshly distilled over CaH2.  3-methyl-3-

oxetanemethanol (Alfa Aesar) was used as received.  Triethylamine was freshly distilled 

over CaH2 before use.  Ethyl chloroformate (Aldrich), diethyl methylmalonate (Alfa 

Aesar), n-butyllithium (Aldrich), lithium aluminum hydride (Alfa Aesar), chloromethyl 

methyl ether (Aldrich), sodium hydride (60% in mineral oil) (Alfa Aesar), dimethyl 

sulfate (Alfa Aesar), potassium hydroxide (EMD), ethylenediamine (Aldrich), 1,2-

phenylenediamine (ACROS), chromium(II) chloride (Alfa Aesar), sodium hydroxide 

(EMD), sodium sulfate (EMD), and magnesium sulfate (EMD) were used as received.  

Tetra-n-butylammonium azide was stored in the freezer of the glove box upon arrival.  

Bone-dry carbon dioxide supplied in a high-pressure cylinder and equipped with a liquid 

dip tube was purchased from Scott Specialty Gases.  The corresponding salen ligands 

and chromium complexes were synthesized as described in the literature.45 

1H NMR spectra were acquired on Unity+ 300 MHz and VXR 300 MHz 

superconducting NMR spectrometers.  Molecular weight determinations (Mn and Mw) 

were carried out with Viscotek Modular GPC apparatus equipped with ViscoGELTM I-

series columns (H + L), and Model 270 dual detector comprised of RI and Light 

Scattering detectors.  High-pressure reaction measurements were performed using an 

ASI ReactIR 1000 reaction analysis system with stainless steel Parr autoclave modified 
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with a permanently mounted ATR crystal (SiComp) at the bottom of the reactor 

(purchased from Mettler Toledo). 

Synthesis of 3-methoxy-methyl-3-methyloxetane.  It was prepared according to 

the procedure reported by McAlees with some modifications.99  Sodium hydride (23.5 g, 

60% in mineral oil) was added to a solution of 3-methyl-3-oxetanemethanol (50 g, 0.489 

mol) in THF (1 L), and the resulting mixture was stirred for 24 h.  Dimethyl sulfate (86.4 

g, 0.685 mol) was then added dropwise (exothermic reaction), and the mixture was 

stirred for 24 h at room temperature.  A solution of sodium hydroxide (30 g in 50 mL of 

water) was added, and most of the THF was disttiled out.  The residue was extracted 

with ether, and the ether extract was dried over Na2SO4 and vacuum distilled to give 3-

methoxy-methyl-3-methyloxetane (36 g, 63.3%).  1H NMR (300 MHz, CDCl3): δ 4.45 

(d, 2H, J = 6.8 Hz, OCH2), 4.30 (d, 2H, J = 6.8 Hz, OCH2), 3.40 (s, 2H, CH2), 3.35 (s, 

3H, OCH3), 1.26 (s, 3H, CH3).   

Synthesis of 2-methoxy-methyl-2-methyl malonic acid diethyl ester.  It was 

prepared according to the procedure reported by Doherty.100  A tetrahydrofuran solution 

(40 mL) of diethyl methylmalonate (5 g, 0.0287 mol) was cooled to -78°C and treated 

with a 1.64 M solution of n-butyllithium in hexanes (17.5 mL, 0.0287 mol).  The 

resulting mixture was stirred rapidly and after warming to room temperature, was 

transferred dropwise a tetrahydrofuran solution (30 mL) of chloromethyl methyl ether 

(2.9 g, 0.0287 mol).  After stirring the reaction solution overnight the solvent was 

removed under vacuum and the residue extracted into diethyl ether (2 × 30 mL), washed 

with water (2 × 30 mL), dried over MgSO4, and filtered, and the solvent was removed to 
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afford the desired ester as a pale yellow/colorless oil in 80% yield (5.02 g).  1H NMR 

(300 MHz, CDCl3): δ 4.13 (quart, 4H, J = 6.9 Hz CH2CH3), 3.66 (s, 2H, CH2), 3.28 (s, 

3H, OCH3), 1.42 (s, 3H, CH3), 1.19 (t, 6H, J = 7.1 Hz CH2CH3). 

Synthesis of 2-methoxy-methyl-2-methyl-1,3-propanediol.  It was prepared 

according to the procedure reported by Doherty.100  A solution of 2-methoxy-methyl-2-

methyl malonic acid diethyl ester (5 g, 0.0229 mol) in tetrahydrofuran (20 mL) was 

added dropwise via canula to a stirred suspension of LiAlH4 (4.36 g, 0.115 mol) in 

tetrahydrofuran (80 mL), at 0°C.  The reaction mixture was allowed to warm to room 

temperature and stirred for a further 4 h.  After cooling to 0°C, the resulting suspension 

was diluted with diethyl ether (100 mL) and quenched by addition of water (10 mL), 

followed by KOH (2.8 g in 10 mL of water), and finally water (10 mL), and stirred for a 

further 1 h.  After hydrolysis was complete, the resulting mixture was filtered and the 

solids were washed with diethyl ether (2 × 25 mL).  The organic fractions were 

combined, and dried over MgSO4, and the solvent was removed to afford 2-methoxy-

methyl-2-methyl-1,3-propanediol as a colorless oil in 90% yield.  1H NMR (300 MHz, 

CDCl3): δ 3.65 (d, 2H, J = 10.7 Hz, OCH2), 3.54 (d, 2H, J = 10.7 Hz, OCH2), 3.37 (s, 

2H, CH2), 3.33 (s, 3H, OCH3), 0.79 (s, 3H, CH3). 

Synthesis of 5-methoxy-methyl-5-methyl-1,3-dioxan-2-one.  It was 

synthesized according to the procedure reported by Endo for the synthesis of 

trimethylene carbonate with a slight modification.15a  Triethylamine (21.4 g, 0.211 mol) 

was added dropwise to a solution of 2-methoxy-methyl-2-methyl-1,3-propanediol (13.5 

g, 0.100 mol) and ethyl chloroformate (21.7 g, 0.201 mol) in 700 mL of THF at 0°C over 
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a period of 30 min.  The reaction mixture was stirred overnight at room temperature.  

Precipitated triethylamine hydrochloride salt was filtered off, and the filtrate was 

concentrated under vacuum.  The oily residue was vacuum distilled to afford 5-methoxy-

methyl-5-methyl-1,3-dioxan-2-one as colorless oil.  After a period of several months 

colorless crystals grew and were successfully analyzed by X-ray crystallography.  1H 

NMR (300 MHz, CDCl3): δ 4.27 (d, 2H, J = 10.7 Hz OCH2), 4.02 (d, 2H, J = 10.7 Hz 

OCH2), 3.31 (s, 3H, OCH3), 3.28 (s, 2H, CH2), 1.03 (s, 3H, CH3). 

Substrate Binding and Ring-Opening Step Examined by Infrared 

Spectroscopy.  3-methoxy-methyl-3-methyloxetane binding and ring-opening step 

studies were examined by solution infrared spectroscopy.  The catalytic system used in 

these studies was a (salen)Cr(III)Cl (50 mg) complex (N,N’-bis(3,5-di-tert-

butylsalicylidene)-1,2-ethylenediimine chromium(III) chloride) in the presence of n-

Bu4NN3  as cocatalyst and using TCE as the solvent (4 mL). 

X-ray Structural Studies.  Single crystals of (salen)Cr(III)Cl·oxetane (complex 

VI-1) were obtained by layering hexanes into a saturated dichloromethane solution of 

the corresponding (salen)Cr(III)Cl complex (N,N’-bis(3-methoxy-5-tert-

butylsalicylidene)-1,2-phenylenediimine chromium(III) chloride) containing 20 

equivalents of MMO.   

Single crystals of 5-methoxymethyl-5-methyl-1,3-dioxan-2-one were grown after 

several months.  

For both structures, a Bausch and Lomb 10 microscope was used to identify 

suitable crystals.  Each crystal was coated in paratone, affixed to a nylon loop, and 
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placed under streaming nitrogen (110K) in a Bruker-D8 Adv GADDS X-ray 

diffractometer.  Space group determinations were made on the basis of systematic 

absences and intensity statistics.  Both crystal structures were solved by direct methods 

and were refined by full-matrix least-squares on F2.  All hydrogen atoms were placed in 

idealized positions and refined with fixed isotropic displacements parameters equal to 

1.2 (1.5 for methyl protons), times the equivalent isotropic displacements parameters of 

the atoms to which they were attached.  All non-hydrogen atoms were refined with 

anisotropic displacement parameters. 

The following are the programs that were used: data collection and cell 

refinements; FRAMBO Version 4.1.05 (GADDS),66 data reductions; SAINTPLUS 

Version 6.63,68 absorption correction; SADABS,49 structural solutions; SHELXS-97,50 

structural refinement; SHELXL-97;51 molecular graphics and preparation of material for 

publication; SHELXTL, version 6.14,52 and X-Seed, version 1.5.53 

General Procedure for Copolymerization Reactions of 3-methoxy-methyl-3-

methyloxetane and CO2.  In a typical experiment, the appropiate amount of catalyst, 

cocatalyst (n-Bu4NN3), and 4 g of MMO were delivered via the injection port into a 300-

mL stainless steel Parr autoclave reactor that was previously dried in vacuo overnight at 

80C.  The autoclave was then pressurized with 35 bar of CO2 and the temperature was 

increased to 110C.  The monomer:catalyst:cocatalyst ratio was maintained at 275:1:2, 

and the reaction was run for the corresponding reaction time.  After the reaction was 

stopped, the autoclave was put into ice, cooled down to 10°C, and vented in a fume 

hood.  The percent conversion to products was determined based on the amount of 
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oxetane monomer left in the reaction solution.  1H NMR (300 MHz, CDCl3), MMO: δ 

4.45 (d, 2H, OCH2), 4.30 (d, 2H, OCH2), 3.40 (s, 2H, CH2), 3.35 (s, 3H, OCH3), 1.26 (s, 

3H, CH3).  Furthermore, the quantities of 5-methoxy-methyl-5-methyl-1,3-dioxan-2one 

(MTC), poly(MTC), and ether linkages in the copolymer were determined by integrating 

the peak area of the corresponding resonances.  1H NMR (300 MHz, CDCl3), 

poly(MTC): δ 4.07 (s, 4H, OCH2), 3.31 (s, 3H, OCH3), 3.26 (s, 2H, CH2), 1.0 (s, 3H, 

CH3).  
1H NMR (300 MHz, CDCl3), MTC: δ 4.27 (d, 2H, OCH2), 4.02 (d, 2H, OCH2), 

3.31 (s, 3H, OCH3), 3.28 (s, 2H, CH2), 1.03 (s, 3H, CH3).  
1H NMR (300 MHz, CDCl3), 

ether linkages: δ 0.9 (s, 3H, CH3), other resonances corresponding to ether linkages are 

overlapping with the more intense polymer signals. 

Copolymerization Reaction Monitored by in situ IR Spectroscopy.  In a 

typical experiment, the appropiate amount of complex II-1, cocatalyst, (n-Bu4NN3), and 

oxetane monomer (8 g) were dissolved in 6 mL of toluene and delivered via the injection 

port into a 300-mL stainless steel Parr autoclave reactor that was previously dried in 

vacuo overnight at 80C.  The monomer:catalyst:cocatalyst ratio was maintained at 

150:1:2.  The autoclave is modified with a 30 bounce SiComp window to allow for the 

use of an ASI ReactIR 1000 system equipped with a MCT detector.  In this manner a 

128-scan background spectrum was collected after the reaction mixture was heated to 

110°C.  The autoclave was pressurized with 35 bar of CO2, and the infrared spectrometer 

was set to collect one spectrum every 3 min over a 48 h period.  Profiles of the 

absorbance at 1750 cm-1 (polymer) and at 1770 cm-1 (cyclic carbonate) with time were 

recorded after base line correction.  After the reaction was stopped, the autoclave was 
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cooled down to room temperature and vented in a fume hood.  The reaction solution was 

analyzed by 1H NMR spectroscopy in the same manner as above, to determine the 

percent conversion to products, and the percentages of polycarbonate, cyclic carbonate 

and ether linkages.  

Statistical Deconvolution of FTIR Spectra.  FTIR spectra were deconvoluted 

using Peakfit, version 4.12 (Peakfit for Windows, v. 4.12; SYSTAT Software Inc., San 

Jose, CA, 2003).  Statistical treatment was a residuals method utilizing a combination 

Gaussian-Lorentzian summation of amplitudes with a linear baseline and Savitsky-Golay 

smoothing. 

Results and Discussion 

The monomer, 3-methoxy-methyl-3-methyloxetane, was prepared according to 

the published procedure reported by McAlees.99  The synthesis involves the prior 

deprotonation of 3-methyl-3-oxetanemethanol with NaH in mineral oil, followed by 

treatment with dimethyl sulfate to generate 3-methoxy-methyl-3-methyloxetane in 63% 

yield.  The corresponding cyclic carbonate, 5-methoxy-methyl-5-methyl-1,3-dioxan-2-

one, was prepared according to the published procedure reported by Endo for the 

synthesis of trimethylene carbonate.15a  The synthesis involves the treatment of 5-

methoxy-methyl-5-methyl-1,3-propanediol with ethylchloroformate in the presence of 

stoichiometric amounts of triethylamine.  The crystal structure of MTC was successfully 

confirmed by X-ray crystallography (Figure VI-1 and Table VI-1).  Prior to a discussion  
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Table VI-1.  Selected Bond Distances and Angles for 
5-Methoxy-methyl-5-methyl-1,3-dioxan-2-one.a 

O(1)-C(1) 1.357(12) 

O(3)-C(1) 1.187(12) 

O(1)-C(4) 1.460(12) 

O(4)-C(6) 1.418(13) 

O(3)-C(1)-O(1) 118.3(10) 

O(2)-C(1)-O(1) 119.7(9) 

C(2)-C(3)-C(4) 105.6(8) 

C(5)-O(4)-C(6) 111.4(8) 
a Units of bond angles and bond distances are (º) and 
(Å), respectively. 

 
 

 
on the copolymerization of 3-methoxy-methyl-3-methyloxetane and CO2 as catalyzed by 

the (salen)CrCl catalytic system, it is beneficial to mention how the product distributions 

of the copolymerization reactions are analyzed by 1H NMR and IR spectroscopies.  As 

seen in Figure VI-2, the presence of possible coupling products from the MMO/CO2 

coupling reaction, namely, poly(MTC) and MTC, can easily be assigned using 1H NMR  

Figure VI-1.  Thermal ellipsoid plot of 5-methoxy-methyl-5-methyl-1,3-dioxan-2-
one.  Ellipsoids are at the 50 % level.  H atoms are omitted for clarity. 



 154

 

O OM e

O O

O

OMe

A 

B 

C 

Figure VI-2.  1H NMR in CDCl3 of (A) MMO, (B) poly(MTC) obtained from MMO 
and CO2, and (C) MTC. 
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spectroscopy.  The percent conversion to polymer can be monitored based on the amount 

of oxetane monomer left in the reaction solution.  Furthermore, the quantities of 

poly(MTC), MTC, and ether linkages in the copolymer can be determined by integrating 

the peak area of the corresponding resonances at 1.0, 1.03, and 0.9 ppm, respectively.  

Infrared stretching bands of the carbonyl groups of the corresponding copolymer and  

cyclic carbonate in a mixture of toluene and oxetane monomer are observed at 1750 cm-1 

and 1770 cm-1, respectively.  

Studies Related to the Copolymerization of 3-methoxy-methyl-3-

methyloxetane and CO2 Catalyzed by (salen)CrCl Complexes.  Initially we chose to 

employ the (salen)CrCl catalyst, complex II-1 in Figure II-1, in the presence of n-

Bu4NN3 to examine the selectivity and catalytic activity for copolymer formation from 

the coupling of MMO and carbon dioxide.  The copolymerization reactions were 

performed under identical reaction conditions, i.e., 110ºC, 35 bar CO2 pressure, at 

various reaction times, and the monomer:catalyst:cocatalyst ratio was maintained at 

275:1:2.  The results are summarized in Table VI-2.  The product mixtures were 

analyzed by 1H NMR spectroscopy, with the quantities of poly(MTC), MTC, and ether 

linkages in the poly(MTC) determined by integrating the resonances at 1.0, 1.03, and 0.9 

ppm, respectively.  As is readily seen in Table VI-2, the yield of poly(MTC) is greater 

than the cyclic product, MTC, in all instances.  It can be noted that the copolymerization  
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Table VI-2.  Copolymerization of 3-Methoxy-methyl-3-methyloxetane and CO2 Catalyzed by Complex 
II-1 in the Presence of n-Bu4NN3 at Various Reaction Times.a 

Time  
(days) 

%  
Poly(MTC) 

% 
(MTC) 

% CO2  
content

% 
Conversion 

1  77.6 22.4 75.4 23.3 
2 85.4 14.5 73.6 52.7 
3 85.7 14.2 87.6 76.7 

aCopolymerization conditions: Catalyst loading = 0.012 mol %, 4 g of MMO, 2 equiv. of n-Bu4NN3,  
M/I = 275, 35 bar of CO2, at 110°C.   bPercent conversion to products, product distributions, and % of CO2 
content were determined by 1H NMR spectroscopy. 

 
 
 

reactions undergo considerably slower compared to those employing oxetane as 

monomer.  Only a percent conversion to products of 76.7 was obtained after 3 days of 

reaction time.  Additionally, a greater amount of cyclic carbonate was detected after a 

period of 3 days.   

Subsequent studies were carried out to interrogate the effects of changing the 

nature of (i) the substituents on the phenolate rings, and (ii) the diimine backbone of the 

salen ligand in the (salen)CrCl derivative.  The copolymerization reactions were 

performed at a monomer:catalyst:cocatalyst ratio of 275:1:2, with a CO2 pressure of 35 

bar at 110ºC for 3 days.  The results of this inquiry are provided in Table VI-3.  

Retaining the salen ligand with the phenylene backbone while changing the substituents 

in the 3,5-positions of the phenolate rings (entries 1 and 2, Table VI-3) reveals the 

Cr(III) salen derivative containing the bulky di-tert-butyl groups to be the more active.  

This is consistent with previous observations reported for the copolymerization of 

oxetane and CO2 catalyzed by the (salen)CrCl catalyst system (Chapter II).  On the other 

hand, for the copolymerization of cyclohexene oxide and CO2 catalyzed by chromium 

salen complexes, higher catalytic activity was obtained in complexes containing 
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methoxy and tert-butyl groups in the 3 and 5 positions of the phenolate rings.45  We have 

also studied the effects of altering the diimine backbone of the Cr(III) salen complex 

while maintaining the di-tert-butyl groups in the 3,5-positions of the phenolate moiety 

(entries 3 and 4, Table VI-3).  As can be seen in Table VI-3, the catalytic behavior of the 

chromium salen complexes is greatly affected by changing the diimine backbone from 

cyclohexylene to ethylene, with the chromium salen complex with the ethylene 

backbone displaying higher catalytic activity.  This is most likely due to the flexibility 

imparted to the chromium salen complex by the ethylene backbone compared to the 

cyclohexylene backbone.  Hence, binding of a bulkier oxetane to the chromium center  

 
 
 

Table VI-3.  Copolymerization of 3-Methoxy-methyl-3-methyl oxetane and CO2 Catalyzed by 
(salen)Cr(III)Cl Complexes.a 

Entry Complex R1 R2 R3 R4 
% 

Poly 
(MTC)b 

% 
MTCb 

% CO2 
contentb 

% 
Conversionb 

1 II-2 -C4H4-  
tert- 
butyl 

tert- 
butyl 

87.3 12.7 80.5 42.4 

2 II-3 -C4H4-  OCH3 
tert- 
butyl 

85.1 14.9 64.3 38.3 

3 II-1 H H 
tert- 
butyl 

tert- 
butyl 

85.7 14.2 87.6 76.7 

4 II-4 
(1R,2R)-

C4H8- 
 

tert- 
butyl 

tert- 
butyl 

84.1 15.9 81.6 37.2 

aCopolymerization conditions: Catalyst loading = 0.012 mol %, 4 g of MMO, 2 equiv. of n-Bu4NN3,  
M/I = 275, 35 bar of CO2, at 110°C for 3 days.   bPercent conversion to products, product distributions, and 
% of CO2 content were determined by 1H NMR spectroscopy. 

 
 
 

would be more feasible.  It is important to point out that the percentage of CO2 

incorporation in the copolymers was lower than the typical CO2 fixation observed in 

polycarbonates obtained from oxetane and CO2 catalyzed by the (salen)CrCl catalytic 

system.   
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In general, the observed Mn values were found to be much lower than the 

theoretical values, e.g., Mn of 11 370 is considerably lower than the theoretical value of 

58 650.  This is most likely due to a chain transfer mechanism arising from the presence 

of trace quantities of water in the system.11b, 55  The PDI was in general about 1.3.  

Substrate Binding and Ring-Opening Steps Examined by Infrared 

Spectroscopy.  Fundamental to a better understanding of the mechanism of the coupling 

reaction of 3-methoxy-methyl-3-methyloxetane and carbon dioxide is an investigation of 

the initiation step of this process.  In order to address this issue we have conducted 

cocatalyst, oxetane monomer binding, and subsequent ring-opening studies via infrared 

spectroscopy using the (salen)CrCl complex containing di-tert-butyl substituents in the 

3,5-positions of the phenolate rings, and an ethylene backbone for the diimine, along 

with n-Bu4NN3 as cocatalyst.  We have employed an azide-based cocatalyst for these 

studies because the νN3
 stretching vibration provides accessible probes for both cocatalyst 

binding and anion ring-opening steps.  The results of these studies are depicted in 

Scheme VI-1 and Figure VI-3. 

As indicated in Scheme VI-1, upon addition of two equivalents of n-Bu4NN3 to 

(salen)CrCl, the anionic six-coordinate bis-azide species (salen)Cr(N3)2
- readily forms at 

ambient temperature.  This is apparent in the νN3
 stretching region with the appearance of 

 
 
 



 159

 
 
 
 

 
 
 
 

an infrared band at 2047 cm-1 with a shoulder at 2057 cm-1 upon addition of n-Bu4NN3.  

It should be noted here that the n-Bu4N
+ salt of (salen)Cr(N3)2

- anion has been fully 

characterized by X-ray crystallography and these studies are reported in Chapter III.  

Addition of 100-fold excess of 3-methoxy-methyl-3-methyloxetane to the bis-azide 

Figure VI-3.  Spectra of TCE solutions of chromium salen chloride complex with 2 equivalents 
of n-Bu4NN3 (blue line), after addition of 100 equivalents of MMO at ambient temperature and 
stirred for 3 h (pink line), and after stirring the reaction solution at 110°C for 24 h (green line). 

Scheme VI-1.  Ring-Opening Step of MMO Catalyzed by (Salen)Cr(N3)2
-. 
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complexes displaces some of the azide ligand as can be seen by an increase in the free 

azide ion concentration by its νN3
 band at 2009 cm-1 with a concomitant decrease in the 

concentration of (salen)Cr(N3)2
- (yellow line, Figure VI-3).  Moreover, a new νN3

 

stretching band appears at 2061 cm-1 which is assigned to (salen)Cr(N3)•oxetane.  Upon 

stirring this reaction mixture for 24 h at ambient temperature no significant changes in 

the infrared spectrum resulted, indicative of the ring-opening process of MMO requiring 

higher temperatures.  Indeed, heating the reaction mixture at 110ºC led to oxetane ring-

opening by azide as indicated by the organic azide band at 2100 cm-1.  After heating the 

reaction solution for 24 h at 110°C, the main infrared stretching band observed was that 

of organic azide.  It should be noted that an analogous experiment employing oxetane as 

monomer, led to oxetane ring-opening by azide at 110°C after only 3 h (Chapters II and 

III).  Hence, these results suggest that the ring-opening of MMO by azide requires longer 

reaction times.  This is consistent with 3-methoxy-methyl-3-methyloxetane being more 

sterically hindered than oxetane.  Additionally, the presence of electron donating 

substituents on the 3-position of trimethylene oxide could drive the ring-opening step to 

undergo slower. 

 X-ray crystallography was utilized in conjunction with the νN3
 infrared spectral 

data (vide supra) to verify that MMO binding to the chromium center occurs without 

ring-opening at ambient temperature, in an analogous manner to oxetane.  A successful 

isolation of single crystals of an oxetane adduct as depicted in Scheme VI-1 was 

achieved.  Complex VI-1 was fully characterized by X-ray crystallography and a thermal 

ellipsoid representation of this derivative is shown in Figure VI-4, with selected bond 



 161

distances and bond angles listed in Table VI-4.  Complex VI-1 clearly shows that 3-

methoxy-methyl-3-methyloxetane is capable of binding to the (salen)Cr(III) center 

without undergoing ring-opening at ambient temperature. 

 
 
 

 

 
 
 

Table VI-4.  Selected Bond Distances and Angles for Complex VI-
1.a 

Cr(1)-Cl(1) 2.297(3) 

Cr(1)-O(1) 2.056(8) 

Cr(1)-O(5) 1.920(6) 

O(1)-C(1)-C(2) 94.5(8) 

O(1)-C(3)-C(2) 94.4(8) 

C(3)-C(2)-C(1) 78.9(9) 

C(3)-O(1)-C(1) 89.6(10) 
a Units for bond distances and bond angles are (Å) and (º), 
respectively. 

 
 
 

Figure VI-4.  Thermal ellipsoid plot of complex VI-1.  Ellipsoids are at the 50 % level. 
H atoms are omitted for clarity. 
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 Copolymerization Reaction Monitored by in situ IR Spectroscopy.  Figure 

VI-5 shows the reaction profiles of both, copolymer and cyclic carbonate formation for 

the copolymerization reaction of MMO and CO2 carried out at 110°C in the presence of 

complex II-1 along with 2 equivalents of n-Bu4NN3 as cocatalyst.  It is clearly observed 

that when using this catalytic system and conditions the formation of MTC is enhanced  

 
 
 

 

Poly(MTC) 

Cyclic Carbonate 

Figure VI-5.  (A) Three-dimensional stack plot of IR spectra collected every 3 min during 
the copolymerization reaction of MMO and CO2.  (B) Reaction profiles obtained after 

deconvolution of selected IR spectra, indicating copolymer and cyclic carbonate formation 
with time.  Reaction carried out at 110ºC in toluene, at 35 bar of CO2 pressure, in the 

presence of complex II-1 and 2 equiv. of n-Bu4NN3. 

A 

B 
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at the early stages of the coupling reaction and its concentration is slowly decreased over 

time.  On the other hand, the concentration of poly(MTC) is initially inhibited followed 

by rapidly increasing over the course of the reaction.  These results are consistent with 

the presence of an equilibrium between the cyclic carbonate byproduct and the 

polycarbonate, as the percentages of poly(MTC) did not reach 100% after a 3 days of 

reaction period.  It is important to point out that the polycarbonate produced from the 

ring-opening polymerization of preformed MTC, might be a more difficult process 

compared to that involving TMC.  Hence, the higher percentages of ether linkages 

observed could also be the result of decarboxylation from the thus produced 

polycarbonates. 

Concluding Remarks 

 In summary, we have demonstrated that chromium(III) salen complexes along 

with n-Bu4NN3 have moderate activity for the copolymerization of 3-methoxy-methyl-3-

methyloxetane and carbon dioxide.  Optimization of the chromium catalyst was achieved 

utilizing a salen ligand with tert-butyl substituents in the 3,5-positions of the phenolate 

rings and an ethylene backbone in the diimine, along with an azide ion as an initiator.  

This catalytic system provided the corresponding polycarbonate with ~13% of ether 

linkages.  In general, the copolymerization reactions catalyzed by the (salen)CrCl/n-

Bu4NN3 catalytic system undergo slower than those involving oxetane as monomer.  

This is most likely due to the steric hindrance imparted by 3-methoxy-methyl-3-

methyloxetane monomer.  Solution IR spectroscopy in conjunction with X-ray 

crystallography showed that MMO binds to the chromium center at ambient temperature 
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without undergoing ring-opening.  Instead, the ring-opening step of MMO by azide ion 

was found to be a high energy process requiring high temperatures (110°C).  

Additionally, the ring-opening step took longer reaction times than the analogous 

process employing oxetane as monomer.  A copolymerization reaction monitored by in 

situ IR spectroscopy suggested that there is an equilibrium process between the cyclic 

carbonate, MTC, and the polycarbonate produced.  However, further investigations on 

the mechanism involved in this case are needed.  Of importance here, is that the 

copolymerization of a bulkier oxetane and CO2 catalyzed by the (salen)CrCl/n-Bu4NN3 

was successfully performed.  This in turn should establish a foundation for a multitude 

of applications of this methodology for the synthesis of polycarbonates with different 

properties. 
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CHAPTER VII 

 

SUMMARY AND CONCLUSIONS 

 

   Due to the many advantages on utilizing CO2 as a chemical feedstock, there is 

quite an extensive interest for the scientific community in investigating a variety of 

chemical transformations involving carbon dioxide as a reagent.  One such process that 

has received a lot of attention is the production of polycarbonates from the 

copolymerization of epoxides and CO2 in the presence of a metal based catalyst, a field 

pioneered by Inoue in 1969.  Inspired by the early efforts of Inoue and others, our 

research group has been investigating a variety of catalytic systems based on metal salen 

complexes as catalysts for this reaction.  Research efforts have focused on understanding 

and developing the mechanism for copolymer formation involving the aforementioned 

catalytic systems.  A related process for the production of useful polycarbonates involves 

the copolymerization of oxetane and CO2, a transformation that has received little 

attention, most likely due to the lower reactivity and commercial availability of oxetane 

monomers.  Of importance, in this case the cyclic carbonate byproduct obtained in this 

reaction, namely, trimethylene carbonate, is thermodynamically unstable relative to the 

copolymer.  Thus, it can be ring-opened and transformed into the same polycarbonate.  

Importantly, the copolymers produced by this methodology are biodegradable and are 

important components of thermoplastic elastomers, which have a variety of potential 

applications in the medical industry. 



 166

   This dissertation has covered detailed mechanistic investigations on the 

copolymerization of oxetanes and CO2 catalyzed by metal salen complexes of 

chromium(III) and cobalt(II) along with anionic-based cocatalysts.  Efforts have been 

made to understand and elucidate a mechanism for this important process. 

 In Chapter II, optimization of the catalytic system was first carried out.  

Chromium salen derivatives in the presence of anionic initiators were shown to be very 

effective catalytic systems for the selective coupling of oxetane and carbon dioxide to 

provide the corresponding polycarbonate with minimal amount of ether linkages.  

Molecular weights of the copolymers produced were as high as 14 500, with 

polydispersities ranging from 1.2 to 1.6.  Optimization of the chromium(III) system was 

achieved utilizing a salen ligand with tert-butyl groups in the 3,5-positions of the 

phenolate rings, and a cyclohexylene backbone for the diimine along with an azide ion 

initiator.  The mechanism for the coupling reaction of oxetane and carbon dioxide was 

studied by means of infrared spectroscopy, 1H NMR spectroscopy, and X-ray 

crystallography, utilizing the optimized (salen)CrCl/n-Bu4NN3 catalytic system.  The 

copolymerization reaction was found to be first-order in oxetane, catalyst, and 

cocatalyst, with the latter exhibiting zero-order dependence at high concentrations.  The 

formation of copolymer was shown to proceed in part by way of the intermediacy of 

trimethylene carbonate, which was observed as a minor product of the coupling reaction, 

and by the direct enchainment of oxetane and CO2.  The parity of the determined free 

energies of activation for these two processes, namely 101.9 kJ-mol-1 for ring-opening 
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polymerization of trimethylene carbonate and 107.6 kJ-mol-1 for copolymerization of 

oxetane and carbon dioxide supported this conclusion. 

 In Chapter III, a detailed investigation of the initiation step of the coupling of 

oxetane and CO2 catalyzed by (salen)CrX/(n-Bu4NX or PPNX) was done by means of 

solution infrared spectroscopy and X-ray crystallography.  These studies were compared 

to the related process involving epoxides (cyclohexene oxide or propylene oxide) as 

monomers.  The species formed upon treatment of (salen)CrX with PPNX (PPN+ = 

(Ph3P)2N
+) or n-Bu4NX (X = Cl, N3, CN, NCO) cocatalysts was fully investigated both 

in solution by infrared spectroscopy, and in the solid state by X-ray crystallography.  All 

anions (X) afford six-coordinate chromium(III) PPN+ or n-Bu4N
+ salts composed of 

trans-(salen)CrX2
- species.  Of the X groups investigated in (salen)CrX, chloride is 

easily displaced by the others, that is, the reaction of (salen)CrCl with two-equivalents of 

N3
-, CN- or NCO- quantitatively provide (salen)Cr(N3)2

-, (salen)Cr(CN)2
-, and 

(salen)Cr(NCO)2
-, respectively.  On the other hand, addition of less than two-equivalents 

of azide to (salen)CrCl leads to a Schlenk equilibrium of the three possible anions both 

in solution and in the solid-state as shown by X-ray crystallography and ESI mass 

spectrometry.  It was further demonstrated that all trans-(salen)CrX2
- anions react with 

the epoxide or oxetane monomers in TCE solution to afford an equilibrium mixture 

containing (salen)CrX•monomer, with the oxetane adduct being thermodynamically 

more favored.  The ring-opening steps of the bound cyclic ether monomers by X- was 

examined, revealing the rate of ring-opening of the epoxides (cyclohexene oxide and 

propylene oxide) to be much faster than oxetane, with propylene oxide faster than 
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cyclohexene oxide.  Furthermore, both X anions in (salen)CrX2
- were shown to be 

directly involved in the monomer ring-opening step. 

 Based on the results obtained in Chapter II, it was of interest to investigate how 

the selectivity of the oxetane and CO2 coupling process could be tuned for trimethylene 

carbonate formation and/or for polycarbonate obtained from the homopolymerization of 

preformed trimethylene carbonate.  The advantage of proceeding exclusively via ring-

opening polymerization of TMC is the complete absence of ether linkages in the 

afforded polycarbonates, which would result in a polymer with improved physical 

properties.  We first surmised that a decrease in the electrophilicity of the metal center, 

in conjunction with the appropriate anionic initiator should modulate the selectivity of 

coupling process for TMC or polycarbonate produced via ROP of preformed TMC.  In 

Chapter IV, the commercially available (salen)Co(II) complex  ((1R, 2R)-(-)-1,2-

cyclohexanediamino-N,N'-bis(3,5-di-tert-butyl-salicylidene)cobalt(II)) in the presence of 

anion initiators was employed as catalytic system for the oxetane and CO2 coupling 

process.  This catalyst system in the presence of an anion initiator, e.g. bromide, was 

shown to be very effective for the coupling of oxetane and carbon dioxide, providing the 

corresponding polycarbonate with minimal amount of ether linkages.  The mechanism of 

the coupling of oxetane and carbon dioxide was studied by in situ infrared spectroscopy, 

where the first formed product was demostrated to be trimethylene carbonate.  TMC was 

proposed to be formed by a backbiting mechanism following ring-opening of oxetane by 

the anion initiator, subsequent to CO2 insertion into the cobalt-oxygen bond.  The 

formation of the copolymer was suggested to proceed mostly by way of the anionic ring-
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opening polymerization of preformed trimethylene carbonate in the presence of an anion 

in the reaction solution.  Anions which are good leaving groups, i.e., bromide and iodide 

were most effective at affording polycarbonate via this route.  In the presence of greater 

than two equivalents of anions the overall rate of copolymer production was decreased, 

presumably due to inhibition of oxetane monomer binding to the cobalt center.  

However, under these conditions copolymer formation through ROP of TMC was 

enhanced, with mass spectral evidence found for the formation of a dimer of TMC. 

Inspired by the same idea of tuning the selectivity of the oxetane and CO2 

coupling process for TMC formation and/or polycarbonate produced from the ROP of 

preformed TMC, we further explored the activity and selectivity of the (salen)Cr(III)Cl 

catalyst in the presence of anions that are better leaving groups than the azide anion, i.e., 

bromide and iodide.  The isolation of trimethylene carbonate from this process is also of 

interest because it could be used in melt polymerization processes with lactides or 

caprolactones, for the production of important thermoplastic elastomers.  In Chapter V, 

the (salen)Cr(III)Cl complex (1,2-cyclohexanediamino-N,N’-bis-(3,5-di-tert-

butylsalicylidene)chromium(III) chloride), in the presence of n-Bu4NX (X = Br, I, Cl, 

N3, NCO) as cocatalyst was revealed to be an effective catalytic system for the coupling 

of oxetane and CO2 to provide the corresponding aliphatic polycarbonate with small 

quantities of ether linkages at 110C.  The selectivity of the oxetane and CO2 coupling 

process was effectively tuned for the formation of copolymer produced directly from the 

homopolymerization of preformed trimethylene carbonate, by employing the previously 

mentioned (salen)CrCl complex along with n-Bu4NBr as cocatalyst, at reaction 
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temperatures lower than 80C.  Notably, under these conditions the amount of carbonate 

linkages obtained was remarkably high (>99%).  An investigation of the initial catalytic 

species involved in the coupling reaction was performed by ESI mass spectral analysis, 

revealing a Schlenk equilibrium of the three possible anions formed after treatment of 

the (salen)CrCl with two equivalents of n-Bu4NBr cocatalyst.  Remarkably, this catalytic 

system afforded trimethylene carbonate exclusively from the coupling of oxetane and 

CO2 at mild reaction conditions (50°C and 10 bar of CO2) via a backbiting process 

involving mostly a metal-alkoxide intermediate. 

 In Chapter VI, the exploration of the copolymerization of 3-methoxy-methyl-3-

methyloxetane and carbon dioxide catalyzed by the (salen)CrCl catalytic system was 

examined.  In general, chromium(III) salen complexes along with n-Bu4NN3 as 

cocatalyst revealed moderate activity for this process.  Optimization of the chromium 

catalyst was achieved utilizing a salen ligand with tert-butyl substituents in the 3,5-

positions of the phenolate rings and an ethylene backbone in the diimine, along with an 

azide ion as an initiator.  This catalytic system provided the corresponding polycarbonate 

with ~13% of ether linkages.  Molecular weights of the copolymers produced were as 

high as 11 370, with polydispersities around 1.3.  In general, the copolymerization 

reactions catalyzed by the (salen)CrCl/n-Bu4NN3 catalytic system were slower than 

those involving oxetane as monomer.  This is most likely due to the steric hindrance 

offered by 3-methoxy-methyl-3-methyloxetane monomer.  In situ IR spectroscopy 

suggested the presence of an equilibrium process between the cyclic carbonate 

byproduct and the polycarbonate formed.  Nevertheless, investigations to further clarify 
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these preliminary experimental findings will be needed.  However, it could be shown 

from these studies that the application of this strategy could provide a way to synthesize 

a variety of aliphatic polycarbonates with different and hopefully improved properties. 

In summary, it is with hope that the studies presented in this dissertation has 

demonstrated the mechanistic details and understanding into the copolymerization of 

oxetanes and CO2 catalyzed by (salen)CrX complexes to afford aliphatic polycarbonates.  

The field of the metal catalyzed copolymerization of oxetanes and carbon dioxide has 

and will continue to flourish, not only because of the versatility of the reaction but also 

because the afforded aliphatic polycarbonates are important components of 

biodegradable thermoplastic elastomers.  The exploration of other oxetane monomers 

opens the door to a multitude of applications of this method for the production of 

aliphatic polycarbonates with diverse properties and/or aliphatic polycarbonates that can 

be post-polymerization modified. 
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Table B-1.  Crystal Data and Structure Refinement for Complex II-5. 

Identification code  dd  

Empirical formula  C80 H110 Cl Cr2 N4 O6 

Formula weight  1363.17  

Temperature  120(2) K  

Wavelength  0.71073 Å  

Crystal system  Triclinic  

Space group  P-1  

Unit cell dimensions a = 12.266(5) Å = 102.839(5)°.
   b = 14.702(5) Å = 95.784(5)°.
   c = 21.630(5) Å  = 100.245(5)°.
Volume 3702(2) Å3  

Z 2  

Density (calculated) 1.223 Mg/m3  

Absorption coefficient 0.384 mm-1  

F(000) 1462  

Crystal size 0.20 x 0.20 x 0.10 mm3 

Theta range for data collection 2.41 to 25.00°.  

Index ranges -14<=h<=14, -17<=k<=17, 0<=l<=25 

Reflections collected 10087  

Independent reflections 10392 [R(int) = 0.0000] 

Completeness to theta = 25.00° 72.30%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 
0.9627 and 
0.9272  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10392 / 51 / 856  

Goodness-of-fit on F2 1.029  

Final R indices [I>2sigma(I)] R1 = 0.0755, wR2 = 0.1995 

R indices (all data) R1 = 0.1239, wR2 = 0.2321 

Largest diff. peak and hole 0.440 and -0.428 e.Å-3 
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Table B-2.  Bond Distances (Å) and Bond Angles (deg) for Complex II-5. 
Cl(1)-Cr(1A)  2.343(3) C(10A)-C(7A)-C(8A) 109.4(8) 

O(1)-Cr(1B)  1.950(6) C(3A)-C(7A)-C(8A) 109.4(8) 

O(1)-Cr(1A)  2.002(6) C(10A)-C(7A)-C(9A) 107.5(8) 

Cr(1A)-O(1A)  1.909(6) C(3A)-C(7A)-C(9A) 108.2(9) 

Cr(1A)-O(2A)  1.927(6) C(8A)-C(7A)-C(9A) 106.9(8) 

Cr(1A)-N(2A)  1.973(8) C(13A)-C(11A)-C(12A) 105.9(15) 

Cr(1A)-N(1A)  2.021(7) C(13A)-C(11A)-C(14A) 108.5(15) 

O(1A)-C(2A)  1.309(11) C(12A)-C(11A)-C(14A) 108.2(14) 

O(2A)-C(24A)  1.302(11) C(13A)-C(11A)-C(5A) 112.7(10) 

N(1A)-C(15A)  1.300(12) C(12A)-C(11A)-C(5A) 110.5(11) 

N(1A)-C(16A)  1.403(11) C(14A)-C(11A)-C(5A) 110.9(10) 

N(2A)-C(22A)  1.359(11) N(1A)-C(15A)-C(1A) 127.3(10) 

N(2A)-C(17A)  1.422(11) N(1A)-C(16A)-C(21A) 125.4(9) 

C(1A)-C(15A)  1.393(13) N(1A)-C(16A)-C(17A) 117.1(8) 

C(1A)-C(6A)  1.419(12) C(21A)-C(16A)-C(17A) 117.5(9) 

C(1A)-C(2A)  1.441(13) C(18A)-C(17A)-C(16A) 120.4(9) 

C(2A)-C(3A)  1.410(13) C(18A)-C(17A)-N(2A) 126.2(9) 

C(3A)-C(4A)  1.385(13) C(16A)-C(17A)-N(2A) 113.3(8) 

C(3A)-C(7A)  1.518(12) C(19A)-C(18A)-C(17A) 119.8(10) 

C(4A)-C(5A)  1.434(13) C(18A)-C(19A)-C(20A) 120.4(10) 

C(5A)-C(6A)  1.360(13) C(21A)-C(20A)-C(19A) 119.8(9) 

C(5A)-C(11A)  1.520(13) C(20A)-C(21A)-C(16A) 122.1(10) 

C(7A)-C(10A)  1.471(13) N(2A)-C(22A)-C(23A) 125.2(9) 

C(7A)-C(8A)  1.560(12) C(24A)-C(23A)-C(22A) 123.9(9) 

C(7A)-C(9A) 1.577(13) C(24A)-C(23A)-C(28A) 121.1(9) 

C(11A)-C(13A)  1.434(17) C(22A)-C(23A)-C(28A) 114.9(9) 

C(11A)-C(12A)  1.473(18) O(2A)-C(24A)-C(23A) 123.0(9) 

C(11A)-C(14A)  1.493(17) O(2A)-C(24A)-C(25A) 118.6(9) 

C(16A)-C(21A)  1.409(11) C(23A)-C(24A)-C(25A) 118.4(9) 

C(16A)-C(17A)  1.411(13) C(26A)-C(25A)-C(24A) 116.1(9) 

C(17A)-C(18A)  1.390(13) C(26A)-C(25A)-C(29A) 123.7(9) 

C(18A)-C(19A)  1.373(12) C(24A)-C(25A)-C(29A) 120.2(8) 

C(19A)-C(20A)  1.404(13) C(25A)-C(26A)-C(27A) 127.0(9) 

C(20A)-C(21A)  1.341(13) C(28A)-C(27A)-C(26A) 117.0(9) 

C(22A)-C(23A)  1.418(11) C(28A)-C(27A)-C(33A) 121.2(10) 

C(23A)-C(24A)  1.417(13) C(26A)-C(27A)-C(33A) 121.7(9) 

C(23A)-C(28A)  1.438(12) C(27A)-C(28A)-C(23A) 120.2(9) 

C(24A)-C(25A)  1.443(12) C(25A)-C(29A)-C(32A) 112.0(8) 

C(25A)-C(26A)  1.377(12) C(25A)-C(29A)-C(31A) 110.7(8) 
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C(25A)-C(29A)  1.493(13) C(32A)-C(29A)-C(31A) 107.2(8) 

C(26A)-C(27A)  1.398(13) C(25A)-C(29A)-C(30A) 112.2(8) 

C(27A)-C(28A)  1.361(12) C(32A)-C(29A)-C(30A) 105.4(8) 

C(27A)-C(33A)  1.521(13) C(31A)-C(29A)-C(30A) 109.1(8) 

C(29A)-C(32A)  1.522(11) C(35A)-C(33A)-C(34A) 107.5(10) 

C(29A)-C(31A)  1.531(12) C(35A)-C(33A)-C(27A) 113.9(9) 

C(29A)-C(30A)  1.552(14) C(34A)-C(33A)-C(27A) 111.1(9) 

C(33A)-C(35A)  1.497(14) C(35A)-C(33A)-C(36A) 109.5(10) 

C(33A)-C(34A)  1.516(13) C(34A)-C(33A)-C(36A) 105.0(9) 

C(33A)-C(36A)  1.528(14) C(27A)-C(33A)-C(36A) 109.4(9) 

Cr(1B)-O(1B)  1.896(7) O(1B)-Cr(1B)-O(2B) 94.5(3) 

Cr(1B)-O(2B)  1.905(6) O(1B)-Cr(1B)-O(1) 92.3(3) 

Cr(1B)-N(2B)  1.990(8) O(2B)-Cr(1B)-O(1) 90.3(3) 

Cr(1B)-N(3B)  2.018(8) O(1B)-Cr(1B)-N(2B) 91.0(3) 

Cr(1B)-O(1O)  2.068(6) O(2B)-Cr(1B)-N(2B) 173.1(3) 

O(1B)-C(2B)  1.331(10) O(1)-Cr(1B)-N(2B) 93.7(3) 

O(2B)-C(24B)  1.310(10) O(1B)-Cr(1B)-N(3B) 171.6(3) 

N(2B)-C(15B)  1.323(11) O(2B)-Cr(1B)-N(3B) 92.3(3) 

N(2B)-C(16B)  1.426(12) O(1)-Cr(1B)-N(3B) 92.6(3) 

N(3B)-C(22B)  1.338(11) N(2B)-Cr(1B)-N(3B) 81.8(3) 

N(3B)-C(17B)  1.410(12) O(1B)-Cr(1B)-O(1O) 88.0(3) 

C(1B)-C(15B)  1.374(13) O(2B)-Cr(1B)-O(1O) 89.4(3) 

C(1B)-C(2B)  1.421(13) O(1)-Cr(1B)-O(1O) 179.6(3) 

C(1B)-C(6B)  1.428(13) N(2B)-Cr(1B)-O(1O) 86.6(3) 

C(2B)-C(3B)  1.418(13) N(3B)-Cr(1B)-O(1O) 87.1(3) 

C(3B)-C(4B)  1.397(12) C(2B)-O(1B)-Cr(1B) 130.1(6) 

C(3B)-C(7B)  1.524(14) C(24B)-O(2B)-Cr(1B) 129.3(6) 

C(4B)-C(5B)  1.407(14) C(15B)-N(2B)-C(16B) 123.6(8) 

C(5B)-C(6B)  1.337(14) C(15B)-N(2B)-Cr(1B) 123.2(7) 

C(5B)-C(11B)  1.545(13) C(16B)-N(2B)-Cr(1B) 113.3(6) 

C(7B)-C(8B)  1.513(13) C(22B)-N(3B)-C(17B) 123.2(9) 

C(7B)-C(10B)  1.549(13) C(22B)-N(3B)-Cr(1B) 123.6(7) 

C(7B)-C(9B)  1.558(13) C(17B)-N(3B)-Cr(1B) 113.2(6) 

C(11B)-C(14B)  1.487(14) C(15B)-C(1B)-C(2B) 125.0(9) 

C(11B)-C(13B)  1.515(15) C(15B)-C(1B)-C(6B) 117.8(10) 

C(11B)-C(12B)  1.559(15) C(2B)-C(1B)-C(6B) 117.2(10) 

C(16B)-C(21B)  1.377(13) O(1B)-C(2B)-C(1B) 119.6(9) 

C(16B)-C(17B)  1.394(13) O(1B)-C(2B)-C(3B) 119.3(9) 

C(17B)-C(18B)  1.374(13) C(1B)-C(2B)-C(3B) 121.0(9) 

C(18B)-C(19B)  1.400(13) C(4B)-C(3B)-C(2B) 116.2(10) 
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C(19B)-C(20B)  1.365(13) C(4B)-C(3B)-C(7B) 121.2(10) 

C(20B)-C(21B)  1.365(14) C(2B)-C(3B)-C(7B) 122.5(9) 

C(22B)-C(23B)  1.412(13) C(3B)-C(4B)-C(5B) 124.7(11) 

C(23B)-C(28B)  1.388(12) C(6B)-C(5B)-C(4B) 116.7(10) 

C(23B)-C(24B)  1.422(13) C(6B)-C(5B)-C(11B) 124.2(10) 

C(24B)-C(25B)  1.424(12) C(4B)-C(5B)-C(11B) 119.0(10) 

C(25B)-C(26B)  1.392(13) C(5B)-C(6B)-C(1B) 124.0(10) 

C(25B)-C(29B)  1.532(14) C(8B)-C(7B)-C(3B) 108.9(9) 

C(26B)-C(27B)  1.384(14) C(8B)-C(7B)-C(10B) 108.5(9) 

C(27B)-C(28B)  1.397(13) C(3B)-C(7B)-C(10B) 111.9(8) 

C(27B)-C(33B)  1.565(13) C(8B)-C(7B)-C(9B) 112.8(9) 

C(29B)-C(31B)  1.508(13) C(3B)-C(7B)-C(9B) 108.3(8) 

C(29B)-C(32B)  1.541(13) C(10B)-C(7B)-C(9B) 106.5(9) 

C(29B)-C(30B)  1.582(14) C(14B)-C(11B)-C(13B) 110.0(10) 

C(33B)-C(34B)  1.495(14) C(14B)-C(11B)-C(5B) 111.5(9) 

C(33B)-C(35B)  1.506(15) C(13B)-C(11B)-C(5B) 109.9(9) 

C(33B)-C(36B)  1.511(17) C(14B)-C(11B)-C(12B) 107.8(10) 

O(1O)-C(1O)  1.431(11) C(13B)-C(11B)-C(12B) 109.8(10) 

O(1O)-C(3O)  1.471(10) C(5B)-C(11B)-C(12B) 107.8(9) 

C(1O)-C(2O)  1.505(13) N(2B)-C(15B)-C(1B) 127.6(9) 

C(2O)-C(3O)  1.499(14) C(21B)-C(16B)-C(17B) 119.2(10) 

C(1P)-C(2P)  1.425(16) C(21B)-C(16B)-N(2B) 124.9(9) 

C(2P)-C(3P)  1.356(17) C(17B)-C(16B)-N(2B) 115.6(8) 

C(3P)-C(4P)  1.432(16) C(18B)-C(17B)-C(16B) 119.8(10) 

C(4P)-C(5P)  1.401(15) C(18B)-C(17B)-N(3B) 124.5(9) 

    C(16B)-C(17B)-N(3B) 115.5(9) 

Cr(1B)-O(1)-Cr(1A) 156.5(4) C(17B)-C(18B)-C(19B) 120.2(10) 

O(1A)-Cr(1A)-O(2A) 95.1(3) C(20B)-C(19B)-C(18B) 118.9(11) 

O(1A)-Cr(1A)-N(2A) 172.9(3) C(21B)-C(20B)-C(19B) 121.1(11) 

O(2A)-Cr(1A)-N(2A) 91.6(3) C(20B)-C(21B)-C(16B) 120.6(10) 

O(1A)-Cr(1A)-O(1) 85.3(3) N(3B)-C(22B)-C(23B) 125.5(10) 

O(2A)-Cr(1A)-O(1) 88.7(3) C(28B)-C(23B)-C(22B) 114.9(10) 

N(2A)-Cr(1A)-O(1) 92.7(3) C(28B)-C(23B)-C(24B) 121.0(9) 

O(1A)-Cr(1A)-N(1A) 91.3(3) C(22B)-C(23B)-C(24B) 124.0(9) 

O(2A)-Cr(1A)-N(1A) 173.4(3) O(2B)-C(24B)-C(25B) 117.8(9) 

N(2A)-Cr(1A)-N(1A) 81.9(3) O(2B)-C(24B)-C(23B) 123.9(9) 

O(1)-Cr(1A)-N(1A) 90.4(3) C(25B)-C(24B)-C(23B) 118.3(9) 

O(1A)-Cr(1A)-Cl(1) 91.6(2) C(26B)-C(25B)-C(24B) 117.8(10) 

O(2A)-Cr(1A)-Cl(1) 93.0(2) C(26B)-C(25B)-C(29B) 121.9(9) 

N(2A)-Cr(1A)-Cl(1) 90.2(2) C(24B)-C(25B)-C(29B) 120.3(9) 
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O(1)-Cr(1A)-Cl(1) 176.6(2) C(27B)-C(26B)-C(25B) 124.4(10) 

N(1A)-Cr(1A)-Cl(1) 88.3(2) C(26B)-C(27B)-C(28B) 117.4(9) 

C(2A)-O(1A)-Cr(1A) 130.8(6) C(26B)-C(27B)-C(33B) 120.7(10) 

C(24A)-O(2A)-Cr(1A) 129.8(6) C(28B)-C(27B)-C(33B) 121.9(10) 

C(15A)-N(1A)-C(16A) 124.1(8) C(23B)-C(28B)-C(27B) 120.9(10) 

C(15A)-N(1A)-Cr(1A) 123.7(7) C(31B)-C(29B)-C(25B) 109.2(9) 

C(16A)-N(1A)-Cr(1A) 112.2(6) C(31B)-C(29B)-C(32B) 107.3(8) 

C(22A)-N(2A)-C(17A) 120.3(8) C(25B)-C(29B)-C(32B) 112.3(8) 

C(22A)-N(2A)-Cr(1A) 124.8(6) C(31B)-C(29B)-C(30B) 109.7(9) 

C(17A)-N(2A)-Cr(1A) 114.9(6) C(25B)-C(29B)-C(30B) 111.6(8) 

C(15A)-C(1A)-C(6A) 115.8(9) C(32B)-C(29B)-C(30B) 106.6(9) 

C(15A)-C(1A)-C(2A) 124.8(9) C(34B)-C(33B)-C(35B) 110.8(11) 

C(6A)-C(1A)-C(2A) 119.2(9) C(34B)-C(33B)-C(36B) 110.4(11) 

O(1A)-C(2A)-C(3A) 121.1(9) C(35B)-C(33B)-C(36B) 106.9(11) 

O(1A)-C(2A)-C(1A) 120.5(9) C(34B)-C(33B)-C(27B) 110.1(9) 

C(3A)-C(2A)-C(1A) 118.4(9) C(35B)-C(33B)-C(27B) 105.8(9) 

C(4A)-C(3A)-C(2A) 119.1(9) C(36B)-C(33B)-C(27B) 112.7(9) 

C(4A)-C(3A)-C(7A) 119.3(9) C(1O)-O(1O)-C(3O) 91.3(7) 

C(2A)-C(3A)-C(7A) 121.5(9) C(1O)-O(1O)-Cr(1B) 128.3(6) 

C(3A)-C(4A)-C(5A) 123.9(10) C(3O)-O(1O)-Cr(1B) 130.6(6) 

C(6A)-C(5A)-C(4A) 115.9(9) O(1O)-C(1O)-C(2O) 91.2(8) 

C(6A)-C(5A)-C(11A) 125.6(10) C(3O)-C(2O)-C(1O) 87.4(8) 

C(4A)-C(5A)-C(11A) 118.4(10) O(1O)-C(3O)-C(2O) 89.9(8) 

C(5A)-C(6A)-C(1A) 123.3(10) C(3P)-C(2P)-C(1P) 124(2) 

C(10A)-C(7A)-C(3A) 115.2(9) C(2P)-C(3P)-C(4P) 121(2) 

    C(5P)-C(4P)-C(3P) 117.2(16) 
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Table B-3. Crystal Data and Structure Refinement for Complex II-6. 

Identification code  oxetane3   

Empirical formula  C34.40 H48.80 Cl3.20 Cr0.80 N1.60 O2.40   

Formula weight  678.19   

Temperature  110(2) K   

Wavelength  0.71073 Å   

Crystal system  Triclinic   

Space group  P-1   

Unit cell dimensions a = 16.175(5) Å = 89.781(4)°.
   b = 16.394(5) Å = 88.053(4)°.
   c = 17.126(6) Å  = 79.249(4)°.
Volume 4459(2) Å3   

Z 5   

Density (calculated) 1.263 Mg/m3   

Absorption coefficient 0.535 mm-1   

F(000) 1796   

Crystal size 0.30 x 0.10 x 0.10 mm3   

Theta range for data collection 1.62 to 25.00°.   

Index ranges -19<=h<=19, -19<=k<=19, -20<=l<=20   

Reflections collected 41341   

Independent reflections 15610 [R(int) = 0.0612]   

Completeness to theta = 25.00° 99.20%   

Absorption correction None   

Max. and min. transmission 0.9485 and 0.8560   

Refinement method Full-matrix least-squares on F2   

Data / restraints / parameters 15610 / 48 / 979   

Goodness-of-fit on F2 1.077   

Final R indices [I>2sigma(I)] R1 = 0.0579, wR2 = 0.1433   

R indices (all data) R1 = 0.0908, wR2 = 0.1643   

Largest diff. peak and hole 0.965 and -0.667 e.Å-3   
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Table B-4.  Bond Distances (Å) and Bond Angles (deg) for Complex II-6. 

Cr(1)-O(1)  1.9055(10) C(11)-C(13)-H(13B) 109.5 

Cr(1)-O(2)  1.9129(10) H(13A)-C(13)-H(13B) 109.5 

Cr(1)-N(1)  2.0063(12) C(11)-C(13)-H(13C) 109.5 

Cr(1)-N(2)  2.0120(11) H(13A)-C(13)-H(13C) 109.5 

Cr(1)-O(3)  2.0456(10) H(13B)-C(13)-H(13C) 109.5 

Cr(1)-Cl(1)  2.3167(6) C(11)-C(14)-H(14A) 109.5 

Cr(2)-O(4)  1.9053(11) C(11)-C(14)-H(14B) 109.5 

Cr(2)-O(5)  1.9129(10) H(14A)-C(14)-H(14B) 109.5 

Cr(2)-N(3)  2.0070(12) C(11)-C(14)-H(14C) 109.5 

Cr(2)-N(4)  2.0096(13) H(14A)-C(14)-H(14C) 109.5 

Cr(2)-O(6)  2.0528(11) H(14B)-C(14)-H(14C) 109.5 

Cr(2)-Cl(2)  2.3036(7) N(1)-C(15)-C(1) 125.99(12) 

Cl(3)-C(79)  1.7395(19) N(1)-C(15)-H(15) 117 

Cl(4)-C(79)  1.7495(19) C(1)-C(15)-H(15) 117 

Cl(5)-C(81)  1.738(3) C(21)-C(16)-C(17) 119.39(11) 

Cl(6)-C(80)  1.7550(18) C(21)-C(16)-N(1) 125.27(12) 

Cl(7)-C(80)  1.7480(18) C(17)-C(16)-N(1) 115.33(11) 

Cl(9)-C(81)  1.736(3) C(18)-C(17)-C(16) 119.53(12) 

O(1)-C(2)  1.3081(16) C(18)-C(17)-N(2) 124.75(12) 

O(2)-C(24)  1.3160(16) C(16)-C(17)-N(2) 115.72(10) 

O(3)-C(39)  1.4581(17) C(19)-C(18)-C(17) 120.57(13) 

O(3)-C(37)  1.4826(18) C(19)-C(18)-H(18) 119.7 

O(4)-C(41)  1.3091(16) C(17)-C(18)-H(18) 119.7 

O(5)-C(63)  1.3037(15) C(18)-C(19)-C(20) 119.47(12) 

O(6)-C(78)  1.445(2) C(18)-C(19)-H(19) 120.3 

O(6)-C(76)  1.4558(18) C(20)-C(19)-H(19) 120.3 

N(1)-C(15)  1.3034(17) C(21)-C(20)-C(19) 120.84(13) 

N(1)-C(16)  1.4206(15) C(21)-C(20)-H(20) 119.6 

N(2)-C(22)  1.2942(18) C(19)-C(20)-H(20) 119.6 

N(2)-C(17)  1.4112(17) C(20)-C(21)-C(16) 120.06(13) 

N(3)-C(54)  1.3050(18) C(20)-C(21)-H(21) 120 

N(3)-C(55)  1.4203(18) C(16)-C(21)-H(21) 120 

N(4)-C(61)  1.2983(17) N(2)-C(22)-C(23) 126.55(11) 

N(4)-C(56)  1.4259(17) N(2)-C(22)-H(22) 116.7 

C(1)-C(6)  1.4126(19) C(23)-C(22)-H(22) 116.7 

C(1)-C(15)  1.4242(17) C(28)-C(23)-C(22) 116.12(11) 

C(1)-C(2)  1.4265(19) C(28)-C(23)-C(24) 120.11(12) 

C(2)-C(3)  1.4260(18) C(22)-C(23)-C(24) 123.75(12) 

C(3)-C(4)  1.381(2) O(2)-C(24)-C(25) 120.00(11) 
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C(3)-C(7)  1.544(2) O(2)-C(24)-C(23) 121.56(12) 

C(4)-C(5)  1.402(2) C(25)-C(24)-C(23) 118.42(12) 

C(4)-H(4)  0.95 C(26)-C(25)-C(24) 117.98(11) 

C(5)-C(6)  1.3665(18) C(26)-C(25)-C(29) 121.73(12) 

C(5)-C(11)  1.525(2) C(24)-C(25)-C(29) 120.23(12) 

C(6)-H(6)  0.95 C(25)-C(26)-C(27) 125.27(13) 

C(7)-C(10)  1.520(2) C(25)-C(26)-H(26) 117.4 

C(7)-C(8)  1.524(2) C(27)-C(26)-H(26) 117.4 

C(7)-C(9)  1.528(2) C(28)-C(27)-C(26) 116.06(13) 

C(8)-H(8A)  0.98 C(28)-C(27)-C(33) 121.56(12) 

C(8)-H(8B)  0.98 C(26)-C(27)-C(33) 122.34(13) 

C(8)-H(8C)  0.98 C(27)-C(28)-C(23) 122.14(12) 

C(9)-H(9A)  0.98 C(27)-C(28)-H(28) 118.9 

C(9)-H(9B)  0.98 C(23)-C(28)-H(28) 118.9 

C(9)-H(9C)  0.98 C(31)-C(29)-C(32) 107.66(12) 

C(10)-H(10A)  0.98 C(31)-C(29)-C(30) 110.30(12) 

C(10)-H(10B)  0.98 C(32)-C(29)-C(30) 107.12(12) 

C(10)-H(10C)  0.98 C(31)-C(29)-C(25) 108.90(12) 

C(11)-C(12)  1.518(2) C(32)-C(29)-C(25) 111.70(12) 

C(11)-C(13)  1.523(2) C(30)-C(29)-C(25) 111.10(12) 

C(11)-C(14)  1.529(2) C(29)-C(30)-H(30A) 109.5 

C(12)-H(12A)  0.98 C(29)-C(30)-H(30B) 109.5 

C(12)-H(12B)  0.98 H(30A)-C(30)-H(30B) 109.5 

C(12)-H(12C)  0.98 C(29)-C(30)-H(30C) 109.5 

C(13)-H(13A)  0.98 H(30A)-C(30)-H(30C) 109.5 

C(13)-H(13B)  0.98 H(30B)-C(30)-H(30C) 109.5 

C(13)-H(13C)  0.98 C(29)-C(31)-H(31A) 109.5 

C(14)-H(14A)  0.98 C(29)-C(31)-H(31B) 109.5 

C(14)-H(14B)  0.98 H(31A)-C(31)-H(31B) 109.5 

C(14)-H(14C)  0.98 C(29)-C(31)-H(31C) 109.5 

C(15)-H(15)  0.95 H(31A)-C(31)-H(31C) 109.5 

C(16)-C(21)  1.3866(19) H(31B)-C(31)-H(31C) 109.5 

C(16)-C(17)  1.4023(18) C(29)-C(32)-H(32A) 109.5 

C(17)-C(18)  1.3922(17) C(29)-C(32)-H(32B) 109.5 

C(18)-C(19)  1.375(2) H(32A)-C(32)-H(32B) 109.5 

C(18)-H(18)  0.95 C(29)-C(32)-H(32C) 109.5 

C(19)-C(20)  1.387(2) H(32A)-C(32)-H(32C) 109.5 

C(19)-H(19)  0.95 H(32B)-C(32)-H(32C) 109.5 

C(20)-C(21)  1.3779(18) C(36)-C(33)-C(35) 109.56(14) 

C(20)-H(20)  0.95 C(36)-C(33)-C(27) 111.67(13) 
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C(21)-H(21)  0.95 C(35)-C(33)-C(27) 112.19(12) 

C(22)-C(23)  1.4287(19) C(36)-C(33)-C(34) 107.19(13) 

C(22)-H(22)  0.95 C(35)-C(33)-C(34) 108.58(16) 

C(23)-C(28)  1.4057(19) C(27)-C(33)-C(34) 107.46(12) 

C(23)-C(24)  1.4298(17) C(33)-C(34)-H(34A) 109.5 

C(24)-C(25)  1.4178(19) C(33)-C(34)-H(34B) 109.5 

C(25)-C(26)  1.377(2) H(34A)-C(34)-H(34B) 109.5 

C(25)-C(29)  1.5353(18) C(33)-C(34)-H(34C) 109.5 

C(26)-C(27)  1.4074(18) H(34A)-C(34)-H(34C) 109.5 

C(26)-H(26)  0.95 H(34B)-C(34)-H(34C) 109.5 

C(27)-C(28)  1.377(2) C(33)-C(35)-H(35A) 109.5 

C(27)-C(33)  1.531(2) C(33)-C(35)-H(35B) 109.5 

C(28)-H(28)  0.95 H(35A)-C(35)-H(35B) 109.5 

C(29)-C(31)  1.519(2) C(33)-C(35)-H(35C) 109.5 

C(29)-C(32)  1.531(2) H(35A)-C(35)-H(35C) 109.5 

C(29)-C(30)  1.531(2) H(35B)-C(35)-H(35C) 109.5 

C(30)-H(30A)  0.98 C(33)-C(36)-H(36A) 109.5 

C(30)-H(30B)  0.98 C(33)-C(36)-H(36B) 109.5 

C(30)-H(30C)  0.98 H(36A)-C(36)-H(36B) 109.5 

C(31)-H(31A)  0.98 C(33)-C(36)-H(36C) 109.5 

C(31)-H(31B)  0.98 H(36A)-C(36)-H(36C) 109.5 

C(31)-H(31C)  0.98 H(36B)-C(36)-H(36C) 109.5 

C(32)-H(32A)  0.98 O(3)-C(37)-C(38) 90.54(11) 

C(32)-H(32B)  0.98 O(3)-C(37)-H(37A) 113.5 

C(32)-H(32C)  0.98 C(38)-C(37)-H(37A) 113.5 

C(33)-C(36)  1.498(2) O(3)-C(37)-H(37B) 113.5 

C(33)-C(35)  1.515(3) C(38)-C(37)-H(37B) 113.5 

C(33)-C(34)  1.552(3) H(37A)-C(37)-H(37B) 110.8 

C(34)-H(34A)  0.98 C(39)-C(38)-C(37) 86.79(11) 

C(34)-H(34B)  0.98 C(39)-C(38)-H(38A) 114.2 

C(34)-H(34C)  0.98 C(37)-C(38)-H(38A) 114.2 

C(35)-H(35A)  0.98 C(39)-C(38)-H(38B) 114.2 

C(35)-H(35B)  0.98 C(37)-C(38)-H(38B) 114.2 

C(35)-H(35C)  0.98 H(38A)-C(38)-H(38B) 111.3 

C(36)-H(36A)  0.98 O(3)-C(39)-C(38) 91.55(11) 

C(36)-H(36B)  0.98 O(3)-C(39)-H(39A) 113.4 

C(36)-H(36C)  0.98 C(38)-C(39)-H(39A) 113.4 

C(37)-C(38)  1.516(2) O(3)-C(39)-H(39B) 113.4 

C(37)-H(37A)  0.99 C(38)-C(39)-H(39B) 113.4 

C(37)-H(37B)  0.99 H(39A)-C(39)-H(39B) 110.7 
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C(38)-C(39)  1.514(2) C(54)-C(40)-C(45) 116.23(12) 

C(38)-H(38A)  0.99 C(54)-C(40)-C(41) 124.18(12) 

C(38)-H(38B)  0.99 C(45)-C(40)-C(41) 119.55(13) 

C(39)-H(39A)  0.99 O(4)-C(41)-C(40) 122.12(12) 

C(39)-H(39B)  0.99 O(4)-C(41)-C(42) 119.42(12) 

C(40)-C(54)  1.417(2) C(40)-C(41)-C(42) 118.44(12) 

C(40)-C(45)  1.4184(19) C(43)-C(42)-C(41) 118.01(13) 

C(40)-C(41)  1.4229(19) C(43)-C(42)-C(46) 121.73(13) 

C(41)-C(42)  1.431(2) C(41)-C(42)-C(46) 120.25(12) 

C(42)-C(43)  1.372(2) C(42)-C(43)-C(44) 124.81(14) 

C(42)-C(46)  1.545(2) C(42)-C(43)-H(43) 117.6 

C(43)-C(44)  1.404(2) C(44)-C(43)-H(43) 117.6 

C(43)-H(43)  0.95 C(45)-C(44)-C(43) 116.88(13) 

C(44)-C(45)  1.361(2) C(45)-C(44)-C(50) 123.90(13) 

C(44)-C(50)  1.525(2) C(43)-C(44)-C(50) 119.16(13) 

C(45)-H(45)  0.95 C(44)-C(45)-C(40) 122.26(13) 

C(46)-C(49)  1.527(2) C(44)-C(45)-H(45) 118.9 

C(46)-C(48)  1.529(2) C(40)-C(45)-H(45) 118.9 

C(46)-C(47)  1.531(2) C(49)-C(46)-C(48) 107.82(13) 

C(47)-H(47A)  0.98 C(49)-C(46)-C(47) 107.62(12) 

C(47)-H(47B)  0.98 C(48)-C(46)-C(47) 109.82(12) 

C(47)-H(47C)  0.98 C(49)-C(46)-C(42) 111.42(12) 

C(48)-H(48A)  0.98 C(48)-C(46)-C(42) 108.96(12) 

C(48)-H(48B)  0.98 C(47)-C(46)-C(42) 111.13(13) 

C(48)-H(48C)  0.98 C(46)-C(47)-H(47A) 109.5 

C(49)-H(49A)  0.98 C(46)-C(47)-H(47B) 109.5 

C(49)-H(49B)  0.98 H(47A)-C(47)-H(47B) 109.5 

C(49)-H(49C)  0.98 C(46)-C(47)-H(47C) 109.5 

C(50)-C(53)  1.509(3) H(47A)-C(47)-H(47C) 109.5 

C(50)-C(51)  1.521(3) H(47B)-C(47)-H(47C) 109.5 

C(50)-C(52)  1.528(3) C(46)-C(48)-H(48A) 109.5 

C(51)-H(51A)  0.98 C(46)-C(48)-H(48B) 109.5 

C(51)-H(51B)  0.98 H(48A)-C(48)-H(48B) 109.5 

C(51)-H(51C)  0.98 C(46)-C(48)-H(48C) 109.5 

C(52)-H(52A)  0.98 H(48A)-C(48)-H(48C) 109.5 

C(52)-H(52B)  0.98 H(48B)-C(48)-H(48C) 109.5 

C(52)-H(52C)  0.98 C(46)-C(49)-H(49A) 109.5 

C(53)-H(53A)  0.98 C(46)-C(49)-H(49B) 109.5 

C(53)-H(53B)  0.98 H(49A)-C(49)-H(49B) 109.5 

C(53)-H(53C)  0.98 C(46)-C(49)-H(49C) 109.5 
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C(54)-H(54)  0.95 H(49A)-C(49)-H(49C) 109.5 

C(55)-C(60)  1.3905(19) H(49B)-C(49)-H(49C) 109.5 

C(55)-C(56)  1.3978(19) C(53)-C(50)-C(51) 107.28(15) 

C(56)-C(57)  1.382(2) C(53)-C(50)-C(44) 111.49(13) 

C(57)-C(58)  1.372(2) C(51)-C(50)-C(44) 111.96(13) 

C(57)-H(57)  0.95 C(53)-C(50)-C(52) 109.46(15) 

C(58)-C(59)  1.381(2) C(51)-C(50)-C(52) 108.46(15) 

C(58)-H(58)  0.95 C(44)-C(50)-C(52) 108.14(14) 

C(59)-C(60)  1.387(2) C(50)-C(51)-H(51A) 109.5 

C(59)-H(59)  0.95 C(50)-C(51)-H(51B) 109.5 

C(60)-H(60)  0.95 H(51A)-C(51)-H(51B) 109.5 

C(61)-C(62)  1.4197(19) C(50)-C(51)-H(51C) 109.5 

C(61)-H(61)  0.95 H(51A)-C(51)-H(51C) 109.5 

C(62)-C(67)  1.4099(19) H(51B)-C(51)-H(51C) 109.5 

C(62)-C(63)  1.4322(19) C(50)-C(52)-H(52A) 109.5 

C(63)-C(64)  1.4185(19) C(50)-C(52)-H(52B) 109.5 

C(64)-C(65)  1.3779(19) H(52A)-C(52)-H(52B) 109.5 

C(64)-C(68)  1.542(2) C(50)-C(52)-H(52C) 109.5 

C(65)-C(66)  1.410(2) H(52A)-C(52)-H(52C) 109.5 

C(65)-H(65)  0.95 H(52B)-C(52)-H(52C) 109.5 

C(66)-C(67)  1.370(2) C(50)-C(53)-H(53A) 109.5 

C(66)-C(72)  1.525(2) C(50)-C(53)-H(53B) 109.5 

C(67)-H(67)  0.95 H(53A)-C(53)-H(53B) 109.5 

C(68)-C(70)  1.522(2) C(50)-C(53)-H(53C) 109.5 

C(68)-C(71)  1.527(2) H(53A)-C(53)-H(53C) 109.5 

C(68)-C(69)  1.533(2) H(53B)-C(53)-H(53C) 109.5 

C(69)-H(69A)  0.98 N(3)-C(54)-C(40) 126.58(13) 

C(69)-H(69B)  0.98 N(3)-C(54)-H(54) 116.7 

C(69)-H(69C)  0.98 C(40)-C(54)-H(54) 116.7 

C(70)-H(70A)  0.98 C(60)-C(55)-C(56) 118.88(13) 

C(70)-H(70B)  0.98 C(60)-C(55)-N(3) 124.74(12) 

C(70)-H(70C)  0.98 C(56)-C(55)-N(3) 116.38(12) 

C(71)-H(71A)  0.98 C(57)-C(56)-C(55) 120.46(13) 

C(71)-H(71B)  0.98 C(57)-C(56)-N(4) 124.47(12) 

C(71)-H(71C)  0.98 C(55)-C(56)-N(4) 115.07(12) 

C(72)-C(75)  1.469(3) C(58)-C(57)-C(56) 120.16(14) 

C(72)-C(74)  1.469(3) C(58)-C(57)-H(57) 119.9 

C(72)-C(73)  1.499(3) C(56)-C(57)-H(57) 119.9 

C(73)-H(73A)  0.98 C(57)-C(58)-C(59) 119.93(15) 

C(73)-H(73B)  0.98 C(57)-C(58)-H(58) 120 
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C(73)-H(73C)  0.98 C(59)-C(58)-H(58) 120 

C(74)-H(74A)  0.98 C(58)-C(59)-C(60) 120.58(14) 

C(74)-H(74B)  0.98 C(58)-C(59)-H(59) 119.7 

C(74)-H(74C)  0.98 C(60)-C(59)-H(59) 119.7 

C(75)-H(75A)  0.98 C(59)-C(60)-C(55) 119.82(14) 

C(75)-H(75B)  0.98 C(59)-C(60)-H(60) 120.1 

C(75)-H(75C)  0.98 C(55)-C(60)-H(60) 120.1 

C(76)-C(77)  1.505(2) N(4)-C(61)-C(62) 126.08(13) 

C(76)-H(76A)  0.99 N(4)-C(61)-H(61) 117 

C(76)-H(76B)  0.99 C(62)-C(61)-H(61) 117 

C(77)-C(78)  1.512(2) C(67)-C(62)-C(61) 116.26(13) 

C(77)-H(77A)  0.99 C(67)-C(62)-C(63) 119.87(12) 

C(77)-H(77B)  0.99 C(61)-C(62)-C(63) 123.84(12) 

C(78)-H(78A)  0.99 O(5)-C(63)-C(64) 120.07(12) 

C(78)-H(78B)  0.99 O(5)-C(63)-C(62) 121.76(12) 

C(79)-H(79A)  0.99 C(64)-C(63)-C(62) 118.14(12) 

C(79)-H(79B)  0.99 C(65)-C(64)-C(63) 118.23(13) 

C(80)-H(80A)  0.99 C(65)-C(64)-C(68) 122.07(13) 

C(80)-H(80B)  0.99 C(63)-C(64)-C(68) 119.69(12) 

C(81)-H(81A)  0.99 C(64)-C(65)-C(66) 125.14(14) 

C(81)-H(81B)  0.99 C(64)-C(65)-H(65) 117.4 

C(83)-C(84)  1.328(5) C(66)-C(65)-H(65) 117.4 

C(83)-H(83A)  0.98 C(67)-C(66)-C(65) 115.96(13) 

C(83)-H(83B)  0.98 C(67)-C(66)-C(72) 122.15(14) 

C(83)-H(83C)  0.98 C(65)-C(66)-C(72) 121.85(14) 

C(84)-C(85)  1.685(6) C(66)-C(67)-C(62) 122.57(14) 

C(84)-H(84A)  0.99 C(66)-C(67)-H(67) 118.7 

C(84)-H(84B)  0.99 C(62)-C(67)-H(67) 118.7 

C(85)-C(86)  1.295(8) C(70)-C(68)-C(71) 107.66(14) 

C(85)-H(85A)  0.99 C(70)-C(68)-C(69) 109.97(12) 

C(85)-H(85B)  0.99 C(71)-C(68)-C(69) 107.08(12) 

C(86)-C(87)  1.666(9) C(70)-C(68)-C(64) 109.58(12) 

C(86)-H(86A)  0.99 C(71)-C(68)-C(64) 112.16(12) 

C(86)-H(86B)  0.99 C(69)-C(68)-C(64) 110.32(13) 

C(87)-H(87A)  0.98 C(68)-C(69)-H(69A) 109.5 

C(87)-H(87B)  0.98 C(68)-C(69)-H(69B) 109.5 

C(87)-H(87C)  0.98 H(69A)-C(69)-H(69B) 109.5 

C(68)-C(69)-H(69C) 109.5 

O(1)-Cr(1)-O(2) 95.58(4) H(69A)-C(69)-H(69C) 109.5 

O(1)-Cr(1)-N(1) 91.43(4) H(69B)-C(69)-H(69C) 109.5 
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O(2)-Cr(1)-N(1) 170.39(4) C(68)-C(70)-H(70A) 109.5 

O(1)-Cr(1)-N(2) 171.74(4) C(68)-C(70)-H(70B) 109.5 

O(2)-Cr(1)-N(2) 90.88(4) H(70A)-C(70)-H(70B) 109.5 

N(1)-Cr(1)-N(2) 81.59(4) C(68)-C(70)-H(70C) 109.5 

O(1)-Cr(1)-O(3) 88.80(4) H(70A)-C(70)-H(70C) 109.5 

O(2)-Cr(1)-O(3) 87.23(4) H(70B)-C(70)-H(70C) 109.5 

N(1)-Cr(1)-O(3) 86.33(5) C(68)-C(71)-H(71A) 109.5 

N(2)-Cr(1)-O(3) 86.38(4) C(68)-C(71)-H(71B) 109.5 

O(1)-Cr(1)-Cl(1) 94.82(3) H(71A)-C(71)-H(71B) 109.5 

O(2)-Cr(1)-Cl(1) 93.55(4) C(68)-C(71)-H(71C) 109.5 

N(1)-Cr(1)-Cl(1) 92.42(4) H(71A)-C(71)-H(71C) 109.5 

N(2)-Cr(1)-Cl(1) 89.89(4) H(71B)-C(71)-H(71C) 109.5 

O(3)-Cr(1)-Cl(1) 176.20(3) C(75)-C(72)-C(74) 108.5(2) 

O(4)-Cr(2)-O(5) 95.62(4) C(75)-C(72)-C(73) 107.6(3) 

O(4)-Cr(2)-N(3) 91.49(4) C(74)-C(72)-C(73) 107.92(19) 

O(5)-Cr(2)-N(3) 171.08(5) C(75)-C(72)-C(66) 110.86(15) 

O(4)-Cr(2)-N(4) 171.61(4) C(74)-C(72)-C(66) 112.73(15) 

O(5)-Cr(2)-N(4) 90.36(5) C(73)-C(72)-C(66) 109.15(16) 

N(3)-Cr(2)-N(4) 82.03(5) C(72)-C(73)-H(73A) 109.5 

O(4)-Cr(2)-O(6) 89.11(4) C(72)-C(73)-H(73B) 109.5 

O(5)-Cr(2)-O(6) 87.34(4) H(73A)-C(73)-H(73B) 109.5 

N(3)-Cr(2)-O(6) 87.39(5) C(72)-C(73)-H(73C) 109.5 

N(4)-Cr(2)-O(6) 85.29(4) H(73A)-C(73)-H(73C) 109.5 

O(4)-Cr(2)-Cl(2) 94.88(3) H(73B)-C(73)-H(73C) 109.5 

O(5)-Cr(2)-Cl(2) 93.72(4) C(72)-C(74)-H(74A) 109.5 

N(3)-Cr(2)-Cl(2) 91.04(4) C(72)-C(74)-H(74B) 109.5 

N(4)-Cr(2)-Cl(2) 90.59(3) H(74A)-C(74)-H(74B) 109.5 

O(6)-Cr(2)-Cl(2) 175.75(3) C(72)-C(74)-H(74C) 109.5 

C(2)-O(1)-Cr(1) 131.13(8) H(74A)-C(74)-H(74C) 109.5 

C(24)-O(2)-Cr(1) 128.71(8) H(74B)-C(74)-H(74C) 109.5 

C(39)-O(3)-C(37) 90.13(10) C(72)-C(75)-H(75A) 109.5 

C(39)-O(3)-Cr(1) 128.35(9) C(72)-C(75)-H(75B) 109.5 

C(37)-O(3)-Cr(1) 126.95(7) H(75A)-C(75)-H(75B) 109.5 

C(41)-O(4)-Cr(2) 130.85(9) C(72)-C(75)-H(75C) 109.5 

C(63)-O(5)-Cr(2) 129.90(8) H(75A)-C(75)-H(75C) 109.5 

C(78)-O(6)-C(76) 90.08(11) H(75B)-C(75)-H(75C) 109.5 

C(78)-O(6)-Cr(2) 127.32(8) O(6)-C(76)-C(77) 90.75(11) 

C(76)-O(6)-Cr(2) 130.93(10) O(6)-C(76)-H(76A) 113.5 

C(15)-N(1)-C(16) 121.62(11) C(77)-C(76)-H(76A) 113.5 

C(15)-N(1)-Cr(1) 124.81(8) O(6)-C(76)-H(76B) 113.5 
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C(16)-N(1)-Cr(1) 113.57(8) C(77)-C(76)-H(76B) 113.5 

C(22)-N(2)-C(17) 122.61(10) H(76A)-C(76)-H(76B) 110.8 

C(22)-N(2)-Cr(1) 123.74(9) C(76)-C(77)-C(78) 85.72(12) 

C(17)-N(2)-Cr(1) 113.41(8) C(76)-C(77)-H(77A) 114.4 

C(54)-N(3)-C(55) 122.75(11) C(78)-C(77)-H(77A) 114.4 

C(54)-N(3)-Cr(2) 124.30(9) C(76)-C(77)-H(77B) 114.4 

C(55)-N(3)-Cr(2) 112.94(8) C(78)-C(77)-H(77B) 114.4 

C(61)-N(4)-C(56) 122.11(12) H(77A)-C(77)-H(77B) 111.5 

C(61)-N(4)-Cr(2) 124.10(10) O(6)-C(78)-C(77) 90.88(12) 

C(56)-N(4)-Cr(2) 113.20(8) O(6)-C(78)-H(78A) 113.5 

C(6)-C(1)-C(15) 115.77(12) C(77)-C(78)-H(78A) 113.5 

C(6)-C(1)-C(2) 119.80(11) O(6)-C(78)-H(78B) 113.5 

C(15)-C(1)-C(2) 124.22(12) C(77)-C(78)-H(78B) 113.5 

O(1)-C(2)-C(3) 119.67(12) H(78A)-C(78)-H(78B) 110.8 

O(1)-C(2)-C(1) 121.94(11) Cl(3)-C(79)-Cl(4) 111.74(9) 

C(3)-C(2)-C(1) 118.39(12) Cl(3)-C(79)-H(79A) 109.3 

C(4)-C(3)-C(2) 117.65(13) Cl(4)-C(79)-H(79A) 109.3 

C(4)-C(3)-C(7) 122.29(12) Cl(3)-C(79)-H(79B) 109.3 

C(2)-C(3)-C(7) 120.06(12) Cl(4)-C(79)-H(79B) 109.3 

C(3)-C(4)-C(5) 125.44(12) H(79A)-C(79)-H(79B) 107.9 

C(3)-C(4)-H(4) 117.3 Cl(7)-C(80)-Cl(6) 110.63(10) 

C(5)-C(4)-H(4) 117.3 Cl(7)-C(80)-H(80A) 109.5 

C(6)-C(5)-C(4) 116.16(13) Cl(6)-C(80)-H(80A) 109.5 

C(6)-C(5)-C(11) 123.68(13) Cl(7)-C(80)-H(80B) 109.5 

C(4)-C(5)-C(11) 120.06(12) Cl(6)-C(80)-H(80B) 109.5 

C(5)-C(6)-C(1) 122.55(13) H(80A)-C(80)-H(80B) 108.1 

C(5)-C(6)-H(6) 118.7 Cl(9)-C(81)-Cl(5) 111.48(15) 

C(1)-C(6)-H(6) 118.7 Cl(9)-C(81)-H(81A) 109.3 

C(10)-C(7)-C(8) 107.31(13) Cl(5)-C(81)-H(81A) 109.3 

C(10)-C(7)-C(9) 108.12(13) Cl(9)-C(81)-H(81B) 109.3 

C(8)-C(7)-C(9) 109.84(13) Cl(5)-C(81)-H(81B) 109.3 

C(10)-C(7)-C(3) 111.65(13) H(81A)-C(81)-H(81B) 108 

C(8)-C(7)-C(3) 111.25(12) C(84)-C(83)-H(83A) 106.8 

C(9)-C(7)-C(3) 108.62(12) C(84)-C(83)-H(83B) 114.2 

C(7)-C(8)-H(8A) 109.5 H(83A)-C(83)-H(83B) 109.5 

C(7)-C(8)-H(8B) 109.5 C(84)-C(83)-H(83C) 107.4 

H(8A)-C(8)-H(8B) 109.5 H(83A)-C(83)-H(83C) 109.5 

C(7)-C(8)-H(8C) 109.5 H(83B)-C(83)-H(83C) 109.5 

H(8A)-C(8)-H(8C) 109.5 C(83)-C(84)-C(85) 95.1(3) 

H(8B)-C(8)-H(8C) 109.5 C(83)-C(84)-H(84A) 112.7 
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C(7)-C(9)-H(9A) 109.5 C(85)-C(84)-H(84A) 112.7 

C(7)-C(9)-H(9B) 109.5 C(83)-C(84)-H(84B) 112.7 

H(9A)-C(9)-H(9B) 109.5 C(85)-C(84)-H(84B) 112.7 

C(7)-C(9)-H(9C) 109.5 H(84A)-C(84)-H(84B) 110.2 

H(9A)-C(9)-H(9C) 109.5 C(86)-C(85)-C(84) 124.9(5) 

H(9B)-C(9)-H(9C) 109.5 C(86)-C(85)-H(85A) 106.1 

C(7)-C(10)-H(10A) 109.5 C(84)-C(85)-H(85A) 106.1 

C(7)-C(10)-H(10B) 109.5 C(86)-C(85)-H(85B) 106.1 

H(10A)-C(10)-H(10B) 109.5 C(84)-C(85)-H(85B) 106.1 

C(7)-C(10)-H(10C) 109.5 H(85A)-C(85)-H(85B) 106.3 

H(10A)-C(10)-H(10C) 109.5 C(85)-C(86)-C(87) 110.0(5) 

H(10B)-C(10)-H(10C) 109.5 C(85)-C(86)-H(86A) 109.7 

C(12)-C(11)-C(13) 108.62(13) C(87)-C(86)-H(86A) 109.7 

C(12)-C(11)-C(5) 111.21(13) C(85)-C(86)-H(86B) 109.7 

C(13)-C(11)-C(5) 111.07(12) C(87)-C(86)-H(86B) 109.7 

C(12)-C(11)-C(14) 108.58(12) H(86A)-C(86)-H(86B) 108.2 

C(13)-C(11)-C(14) 108.72(15) C(86)-C(87)-H(87A) 111.7 

C(5)-C(11)-C(14) 108.58(13) C(86)-C(87)-H(87B) 113.2 

C(11)-C(12)-H(12A) 109.5 H(87A)-C(87)-H(87B) 109.5 

C(11)-C(12)-H(12B) 109.5 C(86)-C(87)-H(87C) 103.4 

H(12A)-C(12)-H(12B) 109.5 H(87A)-C(87)-H(87C) 109.5 

C(11)-C(12)-H(12C) 109.5 H(87B)-C(87)-H(87C) 109.5 

H(12A)-C(12)-H(12C) 109.5 H(12B)-C(12)-H(12C) 109.5 

C(11)-C(13)-H(13A) 109.5 
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Table B-5. Crystal Data and Structure Refinement for Complex III-3. 

Identification code  sadm   

Empirical formula  C47 H72 Cl4 Cr N3 O4   

Formula weight  936.88   

Temperature  110(2) K   

Wavelength  0.71073 Å   

Crystal system  Triclinic   

Space group  P-1   

Unit cell dimensions a = 13.039(3) Å = 93.050(3)°.
   b = 13.372(3) Å = 101.587(3)°.
   c = 14.703(3) Å  = 104.698(3)°.
Volume 2414.4(9) Å3   

Z 2   

Density (calculated) 1.289 Mg/m3   

Absorption coefficient 0.502 mm-1   

F(000) 998   

Crystal size 0.14 x 0.08 x 0.06 mm3   

Theta range for data collection 1.66 to 28.72°.   

Index ranges 
-17<=h<=17, -
17<=k<=17, -19<=l<=19   

Reflections collected 28288   

Independent reflections 11323 [R(int) = 0.0454]   

Completeness to theta = 28.72° 90.60%   

Absorption correction 
Semi-empirical from 
equivalents   

Max. and min. transmission 0.9705 and 0.9330   

Refinement method 
Full-matrix least-squares 
on F2   

Data / restraints / parameters 11323 / 0 / 544   

Goodness-of-fit on F2 1.001   

Final R indices [I>2sigma(I)] 
R1 = 0.0452, wR2 = 
0.1152   

R indices (all data) 
R1 = 0.0706, wR2 = 
0.1311   

Largest diff. peak and hole 0.736 and -0.663 e.Å-3   
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Table B-6.  Bond Distances (Å) and Bond Angles (deg) for Complex III-3. 

Cr(1)-O(1)  1.9145(15) C(12)-O(1)-Cr(1) 130.03(13) 

Cr(1)-O(2)  1.9220(15) C(21)-O(2)-Cr(1) 129.58(13) 

Cr(1)-N(1)  2.0016(17) C(4)-O(3)-C(5) 115.91(17) 

Cr(1)-N(2)  2.0189(17) C(28)-O(4)-C(29) 116.67(18) 

Cr(1)-Cl(1)  2.3236(7) C(1)-N(1)-C(18) 121.60(17) 

Cr(1)-Cl(2)  2.3959(7) C(1)-N(1)-Cr(1) 124.58(14) 

Cl(3)-C(47)  1.749(3) C(18)-N(1)-Cr(1) 113.68(13) 

Cl(4)-C(47)  1.763(3) C(19)-N(2)-C(13) 122.59(18) 

O(1)-C(12)  1.302(2) C(19)-N(2)-Cr(1) 124.41(14) 

O(2)-C(21)  1.293(2) C(13)-N(2)-Cr(1) 112.98(13) 

O(3)-C(4)  1.380(3) C(31)-N(3)-C(39) 106.83(16) 

O(3)-C(5)  1.414(3) C(31)-N(3)-C(35) 110.14(17) 

O(4)-C(28)  1.381(3) C(39)-N(3)-C(35) 111.01(17) 

O(4)-C(29)  1.389(3) C(31)-N(3)-C(43) 111.46(17) 

N(1)-C(1)  1.305(3) C(39)-N(3)-C(43) 110.31(17) 

N(1)-C(18)  1.421(2) C(35)-N(3)-C(43) 107.15(16) 

N(2)-C(19)  1.290(3) N(1)-C(1)-C(2) 126.32(19) 

N(2)-C(13)  1.428(3) C(1)-C(2)-C(3) 115.37(18) 

N(3)-C(31)  1.514(3) C(1)-C(2)-C(12) 123.91(19) 

N(3)-C(39)  1.518(3) C(3)-C(2)-C(12) 120.72(18) 

N(3)-C(35)  1.520(3) C(4)-C(3)-C(2) 119.83(19) 

N(3)-C(43)  1.520(3) C(3)-C(4)-O(3) 125.45(19) 

C(1)-C(2)  1.421(3) C(3)-C(4)-C(6) 119.6(2) 

C(2)-C(3)  1.422(3) O(3)-C(4)-C(6) 114.92(18) 

C(2)-C(12)  1.423(3) C(7)-C(6)-C(4) 123.20(19) 

C(3)-C(4)  1.362(3) C(6)-C(7)-C(12) 118.38(19) 

C(4)-C(6)  1.405(3) C(6)-C(7)-C(8) 121.60(19) 

C(6)-C(7)  1.372(3) C(12)-C(7)-C(8) 120.01(18) 

C(7)-C(12)  1.439(3) C(7)-C(8)-C(9) 111.87(18) 

C(7)-C(8)  1.532(3) C(7)-C(8)-C(11) 109.03(18) 

C(8)-C(9)  1.536(3) C(9)-C(8)-C(11) 108.48(18) 

C(8)-C(11)  1.537(3) C(7)-C(8)-C(10) 111.18(17) 

C(8)-C(10)  1.540(3) C(9)-C(8)-C(10) 106.91(18) 

C(13)-C(14)  1.392(3) C(11)-C(8)-C(10) 109.29(19) 

C(13)-C(18)  1.401(3) O(1)-C(12)-C(2) 122.92(18) 

C(14)-C(15)  1.383(3) O(1)-C(12)-C(7) 118.85(18) 

C(15)-C(16)  1.386(3) C(2)-C(12)-C(7) 118.21(18) 

C(16)-C(17)  1.377(3) C(14)-C(13)-C(18) 120.14(19) 

C(17)-C(18)  1.403(3) C(14)-C(13)-N(2) 124.40(19) 
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C(19)-C(20)  1.441(3) C(18)-C(13)-N(2) 115.44(17) 

C(20)-C(30)  1.415(3) C(15)-C(14)-C(13) 119.8(2) 

C(20)-C(21)  1.426(3) C(14)-C(15)-C(16) 120.2(2) 

C(21)-C(22)  1.437(3) C(17)-C(16)-C(15) 120.7(2) 

C(22)-C(27)  1.383(3) C(16)-C(17)-C(18) 119.8(2) 

C(22)-C(23)  1.538(3) C(13)-C(18)-C(17) 119.20(18) 

C(23)-C(26)  1.532(3) C(13)-C(18)-N(1) 115.80(18) 

C(23)-C(24)  1.539(3) C(17)-C(18)-N(1) 125.00(19) 

C(23)-C(25)  1.541(3) N(2)-C(19)-C(20) 126.0(2) 

C(27)-C(28)  1.401(3) C(30)-C(20)-C(21) 120.45(19) 

C(28)-C(30)  1.364(3) C(30)-C(20)-C(19) 115.13(19) 

C(31)-C(32)  1.518(3) C(21)-C(20)-C(19) 124.27(19) 

C(32)-C(33)  1.521(3) O(2)-C(21)-C(20) 122.87(19) 

C(33)-C(34)  1.516(4) O(2)-C(21)-C(22) 119.18(18) 

C(35)-C(36)  1.521(3) C(20)-C(21)-C(22) 117.95(19) 

C(36)-C(37)  1.521(3) C(27)-C(22)-C(21) 119.00(19) 

C(37)-C(38)  1.515(3) C(27)-C(22)-C(23) 121.55(19) 

C(39)-C(40)  1.516(3) C(21)-C(22)-C(23) 119.39(18) 

C(40)-C(41)  1.520(3) C(26)-C(23)-C(22) 111.74(18) 

C(41)-C(42)  1.517(3) C(26)-C(23)-C(24) 107.00(18) 

C(43)-C(44)  1.512(3) C(22)-C(23)-C(24) 110.51(18) 

C(44)-C(45)  1.523(3) C(26)-C(23)-C(25) 107.97(18) 

C(45)-C(46)  1.514(3) C(22)-C(23)-C(25) 110.00(17) 

  C(24)-C(23)-C(25) 109.52(19) 

O(1)-Cr(1)-O(2) 94.33(6) C(22)-C(27)-C(28) 122.4(2) 

O(1)-Cr(1)-N(1) 91.69(6) C(30)-C(28)-O(4) 117.35(19) 

O(2)-Cr(1)-N(1) 173.75(6) C(30)-C(28)-C(27) 119.7(2) 

O(1)-Cr(1)-N(2) 173.59(6) O(4)-C(28)-C(27) 122.88(19) 

O(2)-Cr(1)-N(2) 92.05(7) C(28)-C(30)-C(20) 120.5(2) 

N(1)-Cr(1)-N(2) 81.91(7) N(3)-C(31)-C(32) 115.54(18) 

O(1)-Cr(1)-Cl(1) 92.63(5) C(31)-C(32)-C(33) 111.2(2) 

O(2)-Cr(1)-Cl(1) 92.19(5) C(34)-C(33)-C(32) 113.4(2) 

N(1)-Cr(1)-Cl(1) 89.21(5) N(3)-C(35)-C(36) 116.01(18) 

N(2)-Cr(1)-Cl(1) 87.70(5) C(37)-C(36)-C(35) 110.97(19) 

O(1)-Cr(1)-Cl(2) 91.60(5) C(38)-C(37)-C(36) 112.8(2) 

O(2)-Cr(1)-Cl(2) 89.05(5) C(40)-C(39)-N(3) 116.21(18) 

N(1)-Cr(1)-Cl(2) 89.10(5) C(39)-C(40)-C(41) 110.66(19) 

N(2)-Cr(1)-Cl(2) 87.92(5) C(42)-C(41)-C(40) 114.1(2) 

Cl(1)-Cr(1)-Cl(2) 175.49(2) C(44)-C(43)-N(3) 115.27(18) 

C(46)-C(45)-C(44) 110.7(2) C(43)-C(44)-C(45) 111.0(2) 
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Cl(3)-C(47)-Cl(4) 111.74(15)     
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Table B-7. Crystal Data and Structure Refinement for Complex III-4. 

Identification code  am3  

Empirical formula  C46 H70 Cr N9 O4  

Formula weight  865.11  

Temperature  110(2) K  

Wavelength  0.71073 Å  

Crystal system  Orthorhombic  

Space group  Pnna  

Unit cell dimensions a = 10.6226(10) Å = 90°.
   b = 25.105(2) Å = 90°.
   c = 17.2567(17) Å  = 90°.
Volume 4602.0(7) Å3  

Z 4  

Density (calculated) 1.249 Mg/m3  

Absorption coefficient 0.301 mm-1  

F(000) 1860  

Crystal size 0.12 x 0.06 x 0.03 mm3  

Theta range for data collection 2.39 to 28.34°.  

Index ranges -14<=h<=13, -33<=k<=33, -21<=l<=23 

Reflections collected 42139  

Independent reflections 5632 [R(int) = 0.0986]  

Completeness to theta = 28.34° 97.90%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9919 and 0.9648  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5632 / 0 / 278  

Goodness-of-fit on F2 1  

Final R indices [I>2sigma(I)] 
R1 = 0.0822, wR2 = 
0.2018  

R indices (all data) 
R1 = 0.2139, wR2 = 
0.2536  

Largest diff. peak and hole 0.819 and -0.262 e.Å-3  
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Table B-8.  Bond Distances (Å) and Bond Angles (deg) for Complex III-4. 

Cr(1)-O(1)#1  1.915(3) N(4)-Cr(1)-N(1)#1 91.24(16) 

Cr(1)-O(1)  1.915(3) O(1)#1-Cr(1)-N(1) 89.49(15) 

Cr(1)-N(4)#1  2.007(4) O(1)-Cr(1)-N(1) 91.86(15) 

Cr(1)-N(4)  2.007(4) N(4)#1-Cr(1)-N(1) 91.24(16) 

Cr(1)-N(1)#1  2.050(4) N(4)-Cr(1)-N(1) 87.24(16) 

Cr(1)-N(1)  2.050(4) N(1)#1-Cr(1)-N(1) 178.0(2) 

O(1)-C(12)  1.309(4) C(12)-O(1)-Cr(1) 130.3(3) 

O(2)-C(4)  1.383(5) C(4)-O(2)-C(5) 117.9(5) 

O(2)-C(5)  1.403(7) N(2)-N(1)-Cr(1) 128.8(3) 

N(1)-N(2)  1.174(5) N(3)-N(2)-N(1) 177.0(4) 

N(2)-N(3)  1.168(6) C(1)-N(4)-C(13) 122.0(4) 

N(4)-C(1)  1.294(6) C(1)-N(4)-Cr(1) 124.5(3) 

N(4)-C(13)  1.418(5) C(13)-N(4)-Cr(1) 113.3(3) 

N(5)-C(20)#2  1.509(5) C(20)#2-N(5)-C(20) 111.1(5) 

N(5)-C(20)  1.509(5) C(20)#2-N(5)-C(16) 112.6(2) 

N(5)-C(16)  1.525(5) C(20)-N(5)-C(16) 105.4(2) 

N(5)-C(16)#2  1.525(5) C(20)#2-N(5)-C(16)#2 105.4(2) 

C(1)-C(2)  1.432(6) C(20)-N(5)-C(16)#2 112.6(2) 

C(2)-C(3)  1.405(6) C(16)-N(5)-C(16)#2 109.8(5) 

C(2)-C(12)  1.429(6) N(4)-C(1)-C(2) 126.3(4) 

C(3)-C(4)  1.375(7) C(3)-C(2)-C(12) 120.5(5) 

C(4)-C(6)  1.385(6) C(3)-C(2)-C(1) 115.4(5) 

C(6)-C(7)  1.379(5) C(12)-C(2)-C(1) 123.9(4) 

C(7)-C(12)  1.440(5) C(4)-C(3)-C(2) 119.5(5) 

C(7)-C(8)  1.527(5) C(3)-C(4)-O(2) 123.2(5) 

C(8)-C(9)  1.533(5) C(3)-C(4)-C(6) 120.4(4) 

C(8)-C(10)  1.535(5) O(2)-C(4)-C(6) 116.3(5) 

C(8)-C(11)  1.550(5) C(7)-C(6)-C(4) 123.2(5) 

C(13)-C(13)#1  1.386(9) C(6)-C(7)-C(12) 117.7(4) 

C(13)-C(14)  1.388(6) C(6)-C(7)-C(8) 122.9(4) 

C(14)-C(15)  1.393(7) C(12)-C(7)-C(8) 119.3(3) 

C(15)-C(15)#1  1.314(13) C(7)-C(8)-C(9) 111.4(3) 

C(16)-C(17)  1.499(6) C(7)-C(8)-C(10) 110.0(3) 

C(17)-C(18)  1.529(6) C(9)-C(8)-C(10) 107.1(4) 

C(18)-C(19)  1.497(7) C(7)-C(8)-C(11) 111.3(3) 

C(20)-C(21)  1.511(6) C(9)-C(8)-C(11) 107.6(3) 

C(21)-C(22)  1.432(9) C(10)-C(8)-C(11) 109.3(3) 

C(22)-C(23)  1.393(8) O(1)-C(12)-C(2) 122.4(4) 

     O(1)-C(12)-C(7) 118.8(4) 
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O(1)#1-Cr(1)-O(1) 95.22(16) C(2)-C(12)-C(7) 118.7(4) 

O(1)#1-Cr(1)-N(4)#1 91.68(14) C(13)#1-C(13)-C(14) 119.2(3) 

O(1)-Cr(1)-N(4)#1 172.46(13) C(13)#1-C(13)-N(4) 115.8(2) 

O(1)#1-Cr(1)-N(4) 172.46(13) C(14)-C(13)-N(4) 124.9(5) 

O(1)-Cr(1)-N(4) 91.67(14) C(13)-C(14)-C(15) 120.0(6) 

N(4)#1-Cr(1)-N(4) 81.6(2) C(15)#1-C(15)-C(14) 120.7(3) 

O(1)#1-Cr(1)-N(1)#1 91.86(15) C(17)-C(16)-N(5) 117.2(3) 

O(1)-Cr(1)-N(1)#1 89.49(15) C(16)-C(17)-C(18) 109.4(4) 

N(4)#1-Cr(1)-N(1)#1 87.24(16) C(19)-C(18)-C(17) 114.2(4) 

C(22)-C(21)-C(20) 112.6(5) N(5)-C(20)-C(21) 115.0(4) 

      C(23)-C(22)-C(21) 113.7(7) 
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Table B-9. Crystal Data and Structure Refinement for Complex III-5. 

Identification code  salencrcn2  

Empirical formula  C71 H70 Cl6 Cr N5 O4 P2  

Formula weight  1383.96  

Temperature  110(2) K  

Wavelength  1.54178 Å  

Crystal system  Triclinic  

Space group  P-1  

Unit cell dimensions a = 12.104(3) Å = 66.377(15)°.
   b = 16.019(4) Å = 80.31(2)°.
   c = 19.970(7) Å  = 79.034(17)°.
Volume 3464.4(18) Å3  

Z 2  

Density (calculated) 1.327 Mg/m3  

Absorption coefficient 4.330 mm-1  

F(000) 1438  

Crystal size 0.32 x 0.07 x 0.03 mm3  

Theta range for data collection 2.43 to 58.93°.  

Index ranges -13<=h<=13, -17<=k<=17, -22<=l<=22 

Reflections collected 24726  

Independent reflections 9069 [R(int) = 0.0606]  

Completeness to theta = 58.93° 91.10%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8811 and 0.3379  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9069 / 0 / 810  

Goodness-of-fit on F2 1  

Final R indices [I>2sigma(I)] 
R1 = 0.0843, wR2 = 
0.2478  

R indices (all data) 
R1 = 0.1344, wR2 = 
0.3210  

Largest diff. peak and hole 1.346 and -1.077 e.Å-3  
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Table B-10.  Bond Distances (Å) and Bond Angles (deg) for Complex III-5. 

Cr(1)-O(2)  1.907(5) N(4)-P(2)-C(38) 111.3(3) 

Cr(1)-O(1)  1.919(4) N(4)-P(2)-C(32) 108.6(3) 

Cr(1)-N(2)  2.017(6) C(38)-P(2)-C(32) 107.1(3) 

Cr(1)-N(3)  2.026(5) N(4)-P(2)-C(44) 113.6(3) 

Cr(1)-C(1A)  2.104(9) C(38)-P(2)-C(44) 109.0(3) 

Cr(1)-C(1B)  2.126(10) C(32)-P(2)-C(44) 107.0(4) 

P(1)-N(4)  1.564(6) C(13)-O(1)-Cr(1) 130.8(5) 

P(1)-C(62)  1.786(8) C(22)-O(2)-Cr(1) 130.1(4) 

P(1)-C(50)  1.796(9) C(5)-O(3)-C(6) 116.5(5) 

P(1)-C(56)  1.806(7) C(29)-O(4)-C(30) 117.1(6) 

P(2)-N(4)  1.595(6) C(2)-N(2)-C(19) 121.9(6) 

P(2)-C(38)  1.791(8) C(2)-N(2)-Cr(1) 124.8(5) 

P(2)-C(32)  1.802(9) C(19)-N(2)-Cr(1) 113.1(4) 

P(2)-C(44)  1.808(7) C(20)-N(3)-C(14) 122.5(6) 

Cl(1)-C(69)  1.765(10) C(20)-N(3)-Cr(1) 123.5(5) 

Cl(2)-C(69)  1.775(10) C(14)-N(3)-Cr(1) 113.9(4) 

Cl(3)-C(68)  1.759(9) P(1)-N(4)-P(2) 140.3(4) 

Cl(4)-C(68)  1.738(10) N(1A)-C(1A)-Cr(1) 177.8(6) 

Cl(5)-C(70)  1.767(9) N(1B)-C(1B)-Cr(1) 176.9(7) 

Cl(6)-C(70)  1.756(9) N(2)-C(2)-C(3) 125.8(7) 

O(1)-C(13)  1.308(9) C(4)-C(3)-C(13) 122.1(6) 

O(2)-C(22)  1.313(7) C(4)-C(3)-C(2) 113.7(7) 

O(3)-C(5)  1.377(8) C(13)-C(3)-C(2) 124.0(6) 

O(3)-C(6)  1.420(9) C(5)-C(4)-C(3) 119.0(7) 

O(4)-C(29)  1.385(8) C(4)-C(5)-O(3) 125.8(7) 

O(4)-C(30)  1.426(9) C(4)-C(5)-C(7) 119.6(7) 

N(1A)-C(1A)  1.155(10) O(3)-C(5)-C(7) 114.6(6) 

N(1B)-C(1B)  1.144(10) C(8)-C(7)-C(5) 123.0(6) 

N(2)-C(2)  1.308(8) C(7)-C(8)-C(13) 118.4(7) 

N(2)-C(19)  1.425(9) C(7)-C(8)-C(9) 121.8(6) 

N(3)-C(20)  1.307(9) C(13)-C(8)-C(9) 119.7(6) 

N(3)-C(14)  1.410(9) C(12)-C(9)-C(10) 108.3(7) 

C(2)-C(3)  1.447(10) C(12)-C(9)-C(11) 110.0(7) 

C(3)-C(4)  1.413(10) C(10)-C(9)-C(11) 107.2(7) 

C(3)-C(13)  1.418(11) C(12)-C(9)-C(8) 109.9(7) 

C(4)-C(5)  1.367(10) C(10)-C(9)-C(8) 111.4(6) 

C(5)-C(7)  1.421(11) C(11)-C(9)-C(8) 110.0(6) 

C(7)-C(8)  1.369(10) O(1)-C(13)-C(3) 122.9(6) 

C(8)-C(13)  1.443(10) O(1)-C(13)-C(8) 119.5(7) 
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C(8)-C(9)  1.544(11) C(3)-C(13)-C(8) 117.7(7) 

C(9)-C(12)  1.533(11) C(19)-C(14)-C(15) 119.8(7) 

C(9)-C(10)  1.537(10) C(19)-C(14)-N(3) 115.4(6) 

C(9)-C(11)  1.540(12) C(15)-C(14)-N(3) 124.8(6) 

C(14)-C(19)  1.393(9) C(16)-C(15)-C(14) 118.9(7) 

C(14)-C(15)  1.409(9) C(17)-C(16)-C(15) 120.8(7) 

C(15)-C(16)  1.382(11) C(18)-C(17)-C(16) 121.7(8) 

C(16)-C(17)  1.379(10) C(17)-C(18)-C(19) 118.7(7) 

C(17)-C(18)  1.362(10) C(14)-C(19)-C(18) 120.0(6) 

C(18)-C(19)  1.418(11) C(14)-C(19)-N(2) 116.3(6) 

C(20)-C(21)  1.444(11) C(18)-C(19)-N(2) 123.6(6) 

C(21)-C(31)  1.402(10) N(3)-C(20)-C(21) 127.3(6) 

C(21)-C(22)  1.434(10) C(31)-C(21)-C(22) 122.0(6) 

C(22)-C(23)  1.436(10) C(31)-C(21)-C(20) 115.0(6) 

C(23)-C(28)  1.379(9) C(22)-C(21)-C(20) 123.1(6) 

C(23)-C(24)  1.541(10) O(2)-C(22)-C(21) 123.0(6) 

C(24)-C(25)  1.526(11) O(2)-C(22)-C(23) 119.8(6) 

C(24)-C(27)  1.534(11) C(21)-C(22)-C(23) 117.2(6) 

C(24)-C(26)  1.547(11) C(28)-C(23)-C(22) 118.7(7) 

C(28)-C(29)  1.398(10) C(28)-C(23)-C(24) 121.0(7) 

C(29)-C(31)  1.370(11) C(22)-C(23)-C(24) 120.3(6) 

C(32)-C(37)  1.373(11) C(25)-C(24)-C(27) 108.0(6) 

C(32)-C(33)  1.403(10) C(25)-C(24)-C(23) 109.9(7) 

C(33)-C(34)  1.351(11) C(27)-C(24)-C(23) 111.7(6) 

C(34)-C(35)  1.401(11) C(25)-C(24)-C(26) 110.4(6) 

C(35)-C(36)  1.388(11) C(27)-C(24)-C(26) 107.3(7) 

C(36)-C(37)  1.376(12) C(23)-C(24)-C(26) 109.5(6) 

C(38)-C(39)  1.362(11) C(23)-C(28)-C(29) 122.9(7) 

C(38)-C(43)  1.387(12) C(31)-C(29)-O(4) 123.9(6) 

C(39)-C(40)  1.370(14) C(31)-C(29)-C(28) 120.0(6) 

C(40)-C(41)  1.367(14) O(4)-C(29)-C(28) 116.1(7) 

C(41)-C(42)  1.347(12) C(29)-C(31)-C(21) 119.2(6) 

C(42)-C(43)  1.389(12) C(37)-C(32)-C(33) 119.9(8) 

C(44)-C(45)  1.378(11) C(37)-C(32)-P(2) 121.2(6) 

C(44)-C(49)  1.392(10) C(33)-C(32)-P(2) 118.8(6) 

C(45)-C(46)  1.405(11) C(34)-C(33)-C(32) 119.8(8) 

C(46)-C(47)  1.390(12) C(33)-C(34)-C(35) 121.0(7) 

C(47)-C(48)  1.379(13) C(36)-C(35)-C(34) 118.8(8) 

C(48)-C(49)  1.390(11) C(37)-C(36)-C(35) 120.3(8) 

C(50)-C(55)  1.375(12) C(32)-C(37)-C(36) 120.2(7) 
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C(50)-C(51)  1.411(11) C(39)-C(38)-C(43) 118.2(8) 

C(51)-C(52)  1.390(12) C(39)-C(38)-P(2) 122.4(7) 

C(52)-C(53)  1.355(13) C(43)-C(38)-P(2) 119.4(6) 

C(53)-C(54)  1.389(13) C(38)-C(39)-C(40) 120.4(9) 

C(54)-C(55)  1.402(12) C(41)-C(40)-C(39) 120.7(9) 

C(56)-C(61)  1.366(11) C(42)-C(41)-C(40) 120.8(9) 

C(56)-C(57)  1.390(10) C(41)-C(42)-C(43) 118.5(9) 

C(57)-C(58)  1.396(11) C(38)-C(43)-C(42) 121.4(8) 

C(58)-C(59)  1.371(13) C(45)-C(44)-C(49) 121.4(7) 

C(59)-C(60)  1.385(12) C(45)-C(44)-P(2) 117.5(5) 

C(60)-C(61)  1.395(11) C(49)-C(44)-P(2) 121.1(6) 

C(62)-C(67)  1.379(11) C(44)-C(45)-C(46) 119.7(7) 

C(62)-C(63)  1.408(11) C(47)-C(46)-C(45) 118.5(8) 

C(63)-C(64)  1.378(12) C(48)-C(47)-C(46) 121.6(8) 

C(64)-C(65)  1.384(13) C(47)-C(48)-C(49) 119.8(7) 

C(65)-C(66)  1.371(12) C(48)-C(49)-C(44) 119.0(8) 

C(66)-C(67)  1.392(12) C(55)-C(50)-C(51) 118.5(8) 

  C(55)-C(50)-P(1) 121.5(6) 

O(2)-Cr(1)-O(1) 95.0(2) C(51)-C(50)-P(1) 119.6(7) 

O(2)-Cr(1)-N(2) 173.5(2) C(52)-C(51)-C(50) 119.5(9) 

O(1)-Cr(1)-N(2) 91.5(2) C(53)-C(52)-C(51) 120.3(8) 

O(2)-Cr(1)-N(3) 92.3(2) C(52)-C(53)-C(54) 122.2(8) 

O(1)-Cr(1)-N(3) 172.7(2) C(53)-C(54)-C(55) 117.1(10) 

N(2)-Cr(1)-N(3) 81.2(2) C(50)-C(55)-C(54) 122.3(8) 

O(2)-Cr(1)-C(1A) 90.4(3) C(61)-C(56)-C(57) 120.6(7) 

O(1)-Cr(1)-C(1A) 92.9(2) C(61)-C(56)-P(1) 119.6(6) 

N(2)-Cr(1)-C(1A) 89.6(3) C(57)-C(56)-P(1) 119.8(6) 

N(3)-Cr(1)-C(1A) 87.4(2) C(56)-C(57)-C(58) 120.0(8) 

O(2)-Cr(1)-C(1B) 92.1(2) C(59)-C(58)-C(57) 119.1(8) 

O(1)-Cr(1)-C(1B) 90.3(2) C(58)-C(59)-C(60) 120.9(7) 

N(2)-Cr(1)-C(1B) 87.5(2) C(59)-C(60)-C(61) 119.9(8) 

N(3)-Cr(1)-C(1B) 89.1(2) C(56)-C(61)-C(60) 119.5(8) 

C(1A)-Cr(1)-C(1B) 175.8(3) C(67)-C(62)-C(63) 119.6(8) 

N(4)-P(1)-C(62) 113.0(4) C(67)-C(62)-P(1) 118.5(6) 

N(4)-P(1)-C(50) 114.8(3) C(63)-C(62)-P(1) 121.6(7) 

C(62)-P(1)-C(50) 108.0(4) C(64)-C(63)-C(62) 119.5(8) 

N(4)-P(1)-C(56) 106.1(3) C(63)-C(64)-C(65) 119.9(8) 

C(62)-P(1)-C(56) 105.9(3) C(66)-C(65)-C(64) 121.4(9) 

C(50)-P(1)-C(56) 108.7(4) C(65)-C(66)-C(67) 118.9(9) 

Cl(1)-C(69)-Cl(2) 111.0(5) C(62)-C(67)-C(66) 120.7(8) 
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Cl(6)-C(70)-Cl(5) 111.4(5) Cl(4)-C(68)-Cl(3) 113.0(5) 
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Table B-11. Crystal Data and Structure Refinement for Complex III-6. 

Identification code  data0m  

Empirical formula  C70 H68 Cl4 Cr N5 O6 P2  

Formula weight  1331.03  

Temperature  110(2) K  

Wavelength  1.54178 Å  

Crystal system  Triclinic  

Space group  P-1  

Unit cell dimensions a = 11.961(2) Å = 68.179(10)°.
   b = 15.876(3) Å = 79.346(12)°.
   c = 18.842(4) Å  = 88.643(11)°.
Volume 3260.5(11) Å3  

Z 2  

Density (calculated) 1.356 Mg/m3  

Absorption coefficient 3.867 mm-1  

F(000) 1386  

Crystal size 0.44 x 0.03 x 0.02 mm3  

Theta range for data collection 2.57 to 61.32°.  

Index ranges -13<=h<=12, -17<=k<=17, -21<=l<=21 

Reflections collected 25681  

Independent reflections 9249 [R(int) = 0.0409]  

Completeness to theta = 61.32° 91.80%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9267 and 0.2810  

Refinement method 
Full-matrix least-squares on 
F2  

Data / restraints / parameters 9249 / 0 / 801  

Goodness-of-fit on F2 1  

Final R indices [I>2sigma(I)] R1 = 0.0504, wR2 = 0.1663  

R indices (all data) R1 = 0.0657, wR2 = 0.2110  

Largest diff. peak and hole 0.736 and -0.791 e.Å-3  
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Table B-12.  Bond Distances (Å) and Bond Angles (deg) for Complex III-6. 

Cr(1)-O(2)  1.926(3) C(56)-P(2)-C(50) 108.47(17) 

Cr(1)-O(3)  1.928(3) N(4)-P(2)-C(62) 111.63(17) 

Cr(1)-N(1B)  2.016(4) C(56)-P(2)-C(62) 106.24(17) 

Cr(1)-N(3)  2.020(3) C(50)-P(2)-C(62) 107.74(17) 

Cr(1)-N(2)  2.023(3) C(13)-O(2)-Cr(1) 129.7(2) 

Cr(1)-N(1A)  2.025(3) C(22)-O(3)-Cr(1) 131.1(2) 

P(1)-N(4)  1.586(3) C(5)-O(4)-C(6) 115.9(3) 

P(1)-C(44)  1.802(4) C(29)-O(5)-C(30) 117.4(3) 

P(1)-C(32)  1.804(4) C(1A)-N(1A)-Cr(1) 162.1(3) 

P(1)-C(38)  1.805(4) C(1B)-N(1B)-Cr(1) 162.4(3) 

P(2)-N(4)  1.579(3) C(2)-N(2)-C(19) 122.0(3) 

P(2)-C(56)  1.806(4) C(2)-N(2)-Cr(1) 124.5(3) 

P(2)-C(50)  1.808(4) C(19)-N(2)-Cr(1) 113.4(2) 

P(2)-C(62)  1.813(4) C(20)-N(3)-C(14) 122.2(3) 

Cl(1)-C(68)  1.763(5) C(20)-N(3)-Cr(1) 124.6(2) 

Cl(2)-C(68)  1.755(5) C(14)-N(3)-Cr(1) 113.2(2) 

Cl(3)-C(69)  1.759(6) P(2)-N(4)-P(1) 139.7(2) 

Cl(4)-C(69)  1.775(5) N(1A)-C(1A)-O(1A) 177.0(5) 

O(1A)-C(1A)  1.210(5) N(1B)-C(1B)-O(1B) 176.6(5) 

O(1B)-C(1B)  1.206(5) N(2)-C(2)-C(3) 126.5(3) 

O(2)-C(13)  1.317(4) C(4)-C(3)-C(2) 114.9(3) 

O(3)-C(22)  1.297(4) C(4)-C(3)-C(13) 120.4(3) 

O(4)-C(5)  1.388(4) C(2)-C(3)-C(13) 124.6(3) 

O(4)-C(6)  1.426(5) C(5)-C(4)-C(3) 120.1(3) 

O(5)-C(29)  1.394(5) C(4)-C(5)-O(4) 124.8(3) 

O(5)-C(30)  1.411(5) C(4)-C(5)-C(7) 119.5(3) 

N(1A)-C(1A)  1.173(5) O(4)-C(5)-C(7) 115.6(3) 

N(1B)-C(1B)  1.164(5) C(8)-C(7)-C(5) 123.2(3) 

N(2)-C(2)  1.296(5) C(7)-C(8)-C(13) 118.1(3) 

N(2)-C(19)  1.432(5) C(7)-C(8)-C(9) 121.2(3) 

N(3)-C(20)  1.308(5) C(13)-C(8)-C(9) 120.7(3) 

N(3)-C(14)  1.431(5) C(10)-C(9)-C(8) 111.7(3) 

C(2)-C(3)  1.423(5) C(10)-C(9)-C(12) 108.0(3) 

C(3)-C(4)  1.422(5) C(8)-C(9)-C(12) 109.1(3) 

C(3)-C(13)  1.424(5) C(10)-C(9)-C(11) 107.0(3) 

C(4)-C(5)  1.360(5) C(8)-C(9)-C(11) 111.2(3) 

C(5)-C(7)  1.406(5) C(12)-C(9)-C(11) 109.8(3) 

C(7)-C(8)  1.379(5) O(2)-C(13)-C(3) 122.6(3) 

C(8)-C(13)  1.435(5) O(2)-C(13)-C(8) 118.8(3) 
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C(8)-C(9)  1.540(5) C(3)-C(13)-C(8) 118.5(3) 

C(9)-C(10)  1.532(6) C(15)-C(14)-C(19) 119.3(3) 

C(9)-C(12)  1.542(6) C(15)-C(14)-N(3) 124.6(3) 

C(9)-C(11)  1.549(6) C(19)-C(14)-N(3) 116.1(3) 

C(14)-C(15)  1.390(5) C(16)-C(15)-C(14) 119.9(3) 

C(14)-C(19)  1.411(5) C(15)-C(16)-C(17) 120.7(3) 

C(15)-C(16)  1.382(5) C(16)-C(17)-C(18) 119.9(3) 

C(16)-C(17)  1.391(5) C(19)-C(18)-C(17) 119.5(3) 

C(17)-C(18)  1.396(5) C(18)-C(19)-C(14) 120.6(3) 

C(18)-C(19)  1.380(5) C(18)-C(19)-N(2) 124.1(3) 

C(20)-C(21)  1.429(5) C(14)-C(19)-N(2) 115.3(3) 

C(21)-C(31)  1.424(5) N(3)-C(20)-C(21) 126.7(3) 

C(21)-C(22)  1.435(5) C(31)-C(21)-C(20) 116.0(3) 

C(22)-C(23)  1.439(5) C(31)-C(21)-C(22) 120.4(3) 

C(23)-C(28)  1.377(5) C(20)-C(21)-C(22) 123.6(3) 

C(23)-C(24)  1.537(6) O(3)-C(22)-C(21) 122.6(3) 

C(24)-C(27)  1.535(6) O(3)-C(22)-C(23) 119.0(3) 

C(24)-C(26)  1.537(6) C(21)-C(22)-C(23) 118.3(3) 

C(24)-C(25)  1.554(6) C(28)-C(23)-C(22) 117.9(4) 

C(28)-C(29)  1.399(6) C(28)-C(23)-C(24) 122.6(3) 

C(29)-C(31)  1.358(6) C(22)-C(23)-C(24) 119.4(3) 

C(32)-C(37)  1.386(5) C(27)-C(24)-C(23) 111.2(3) 

C(32)-C(33)  1.402(5) C(27)-C(24)-C(26) 109.2(3) 

C(33)-C(34)  1.369(6) C(23)-C(24)-C(26) 108.5(3) 

C(34)-C(35)  1.371(6) C(27)-C(24)-C(25) 107.3(3) 

C(35)-C(36)  1.381(6) C(23)-C(24)-C(25) 110.9(3) 

C(36)-C(37)  1.393(5) C(26)-C(24)-C(25) 109.8(4) 

C(38)-C(43)  1.393(5) C(23)-C(28)-C(29) 123.6(4) 

C(38)-C(39)  1.396(5) C(31)-C(29)-O(5) 125.5(4) 

C(43)-C(42)  1.387(6) C(31)-C(29)-C(28) 119.9(4) 

C(42)-C(41)  1.388(6) O(5)-C(29)-C(28) 114.5(3) 

C(41)-C(40)  1.378(6) C(29)-C(31)-C(21) 119.9(4) 

C(40)-C(39)  1.385(6) C(37)-C(32)-C(33) 119.4(4) 

C(44)-C(45)  1.383(5) C(37)-C(32)-P(1) 118.3(3) 

C(44)-C(49)  1.392(5) C(33)-C(32)-P(1) 121.6(3) 

C(49)-C(48)  1.391(6) C(34)-C(33)-C(32) 119.9(4) 

C(48)-C(47)  1.377(6) C(33)-C(34)-C(35) 120.8(4) 

C(47)-C(46)  1.407(6) C(34)-C(35)-C(36) 120.2(4) 

C(46)-C(45)  1.387(6) C(35)-C(36)-C(37) 119.9(4) 

C(62)-C(63)  1.390(5) C(32)-C(37)-C(36) 119.8(4) 
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C(62)-C(67)  1.395(5) C(43)-C(38)-C(39) 119.4(4) 

C(67)-C(66)  1.384(6) C(43)-C(38)-P(1) 120.0(3) 

C(66)-C(65)  1.375(6) C(39)-C(38)-P(1) 120.5(3) 

C(65)-C(64)  1.392(6) C(42)-C(43)-C(38) 120.2(4) 

C(64)-C(63)  1.394(6) C(43)-C(42)-C(41) 119.5(4) 

C(50)-C(55)  1.388(5) C(40)-C(41)-C(42) 121.0(4) 

C(50)-C(51)  1.399(5) C(41)-C(40)-C(39) 119.5(4) 

C(55)-C(54)  1.398(6) C(40)-C(39)-C(38) 120.4(4) 

C(54)-C(53)  1.374(6) C(45)-C(44)-C(49) 120.8(3) 

C(53)-C(52)  1.382(6) C(45)-C(44)-P(1) 118.4(3) 

C(52)-C(51)  1.385(6) C(49)-C(44)-P(1) 120.4(3) 

C(56)-C(61)  1.384(6) C(48)-C(49)-C(44) 118.8(4) 

C(56)-C(57)  1.392(5) C(47)-C(48)-C(49) 121.5(4) 

C(57)-C(58)  1.377(6) C(48)-C(47)-C(46) 118.9(4) 

C(58)-C(59)  1.388(6) C(45)-C(46)-C(47) 120.2(4) 

C(59)-C(60)  1.388(6) C(44)-C(45)-C(46) 119.7(4) 

C(60)-C(61)  1.385(5) C(63)-C(62)-C(67) 120.7(4) 

C(63)-C(62)-P(2) 120.0(3) 

O(2)-Cr(1)-O(3) 95.15(11) C(67)-C(62)-P(2) 119.4(3) 

O(2)-Cr(1)-N(1B) 89.58(12) C(66)-C(67)-C(62) 119.2(4) 

O(3)-Cr(1)-N(1B) 90.73(13) C(65)-C(66)-C(67) 120.2(4) 

O(2)-Cr(1)-N(3) 173.62(11) C(66)-C(65)-C(64) 121.3(4) 

O(3)-Cr(1)-N(3) 91.11(12) C(65)-C(64)-C(63) 118.8(4) 

N(1B)-Cr(1)-N(3) 89.14(12) C(62)-C(63)-C(64) 119.9(4) 

O(2)-Cr(1)-N(2) 91.76(12) C(55)-C(50)-C(51) 119.8(4) 

O(3)-Cr(1)-N(2) 173.08(12) C(55)-C(50)-P(2) 122.8(3) 

N(1B)-Cr(1)-N(2) 88.87(13) C(51)-C(50)-P(2) 117.1(3) 

N(3)-Cr(1)-N(2) 81.98(12) C(50)-C(55)-C(54) 119.8(4) 

O(2)-Cr(1)-N(1A) 92.26(12) C(53)-C(54)-C(55) 119.6(4) 

O(3)-Cr(1)-N(1A) 90.26(12) C(54)-C(53)-C(52) 121.1(4) 

N(1B)-Cr(1)-N(1A) 177.83(13) C(53)-C(52)-C(51) 119.7(4) 

N(3)-Cr(1)-N(1A) 88.90(13) C(52)-C(51)-C(50) 119.9(4) 

N(2)-Cr(1)-N(1A) 89.92(13) C(61)-C(56)-C(57) 119.7(4) 

N(4)-P(1)-C(44) 108.51(17) C(61)-C(56)-P(2) 118.7(3) 

N(4)-P(1)-C(32) 114.84(17) C(57)-C(56)-P(2) 121.3(3) 

C(44)-P(1)-C(32) 110.00(17) C(58)-C(57)-C(56) 120.6(4) 

N(4)-P(1)-C(38) 110.15(17) C(57)-C(58)-C(59) 119.5(4) 

C(44)-P(1)-C(38) 105.97(16) C(58)-C(59)-C(60) 120.0(4) 

C(32)-P(1)-C(38) 107.00(17) C(61)-C(60)-C(59) 120.3(4) 

N(4)-P(2)-C(56) 107.98(17) C(56)-C(61)-C(60) 119.8(4) 
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N(4)-P(2)-C(50) 114.43(17) Cl(2)-C(68)-Cl(1) 110.9(3) 

Cl(3)-C(69)-Cl(4) 111.8(3) 
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Table B-13. Crystal Data and Structure Refinement for Complex III-7. 

Identification code  dda  

Empirical formula  C67.50 H67 Cl3 Cr N6 O4 P  

Formula weight  1215.59  

Temperature  110(2) K  

Wavelength  1.54184 Å  

Crystal system  Triclinic  

Space group  P-1  

Unit cell dimensions a = 12.447(2) Å = 70.026(8)°.
   b = 15.076(2) Å = 82.558(9)°.
   c = 18.509(3) Å  = 79.978(9)°.
Volume 3205.3(9) Å3  

Z 2  

Density (calculated) 1.260 Mg/m3  

Absorption coefficient 3.261 mm-1  

F(000) 1272  

Crystal size 0.46 x 0.12 x 0.02 mm3  

Theta range for data collection 4.66 to 59.99°.  

Index ranges -12<=h<=13, -16<=k<=16, -19<=l<=20 

Reflections collected 21367  

Independent reflections 8449 [R(int) = 0.0965]  

Completeness to theta = 60.00° 89.00%  

Absorption correction 
Semi-empirical from 
equivalents  

Max. and min. transmission 0.9376 and 0.3154  

Refinement method 
Full-matrix least-squares on 
F2  

Data / restraints / parameters 8449 / 565 / 821  

Goodness-of-fit on F2 1.001  

Final R indices [I>2sigma(I)] R1 = 0.0894, wR2 = 0.2131  

R indices (all data) R1 = 0.1747, wR2 = 0.2716  

Largest diff. peak and hole 1.109 and -0.703 e.Å-3  
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Table B-14.  Bond Distances (Å) and Bond Angles (deg) for Complex III-7. 

Cr(1)-O(1)  1.906(6) Cl(1A)-Cr(1)-Cl(1B) 172.9(3) 

Cr(1)-O(2)  1.909(5) N(6)-P(1)-C(61) 110.9(4) 

Cr(1)-N(5)  2.001(7) N(6)-P(1)-C(55) 107.5(4) 

Cr(1)-N(1A)  2.01(2) C(61)-P(1)-C(55) 109.7(4) 

Cr(1)-N(4)  2.011(7) N(6)-P(1)-C(49) 113.7(4) 

Cr(1)-N(1B)  2.04(3) C(61)-P(1)-C(49) 107.9(4) 

Cr(1)-Cl(1A)  2.319(8) C(55)-P(1)-C(49) 107.0(4) 

Cr(1)-Cl(1B)  2.363(7) N(6)-P(2)-C(31) 107.6(4) 

P(1)-N(6)  1.565(7) N(6)-P(2)-C(37) 114.6(4) 

P(1)-C(61)  1.793(10) C(31)-P(2)-C(37) 107.7(4) 

P(1)-C(55)  1.796(9) N(6)-P(2)-C(43) 111.3(4) 

P(1)-C(49)  1.806(9) C(31)-P(2)-C(43) 107.2(4) 

P(2)-N(6)  1.574(7) C(37)-P(2)-C(43) 108.2(4) 

P(2)-C(31)  1.777(9) C(12)-O(1)-Cr(1) 130.4(5) 

P(2)-C(37)  1.797(9) C(21)-O(2)-Cr(1) 130.6(5) 

P(2)-C(43)  1.802(9) C(5)-O(3)-C(4) 117.1(7) 

Cl(2)-C(67)  1.73(2) C(28)-O(4)-C(29) 116.7(6) 

Cl(3)-C(67)  1.68(2) N(2A)-N(1A)-Cr(1) 128.0(19) 

Cl(4)-C(68)  1.678(17) N(2B)-N(1B)-Cr(1) 119(2) 

Cl(5)-C(68)  1.54(2) N(1A)-N(2A)-N(3A) 173.6(16) 

O(1)-C(12)  1.304(9) N(3B)-N(2B)-N(1B) 174(3) 

O(2)-C(21)  1.327(9) C(1)-N(4)-C(18) 123.4(7) 

O(3)-C(5)  1.410(10) C(1)-N(4)-Cr(1) 124.7(6) 

O(3)-C(4)  1.412(10) C(18)-N(4)-Cr(1) 111.8(5) 

O(4)-C(28)  1.380(10) C(19)-N(5)-C(13) 122.5(7) 

O(4)-C(29)  1.424(10) C(19)-N(5)-Cr(1) 125.2(5) 

N(1A)-N(2A)  1.212(15) C(13)-N(5)-Cr(1) 112.2(5) 

N(1B)-N(2B)  1.232(15) P(1)-N(6)-P(2) 142.8(5) 

N(2A)-N(3A)  1.218(12) N(4)-C(1)-C(2) 126.6(8) 

N(2B)-N(3B)  1.201(13) C(12)-C(2)-C(3) 121.5(8) 

N(4)-C(1)  1.303(10) C(12)-C(2)-C(1) 122.1(7) 

N(4)-C(18)  1.444(10) C(3)-C(2)-C(1) 116.4(7) 

N(5)-C(19)  1.310(10) C(4)-C(3)-C(2) 119.1(8) 

N(5)-C(13)  1.450(10) C(3)-C(4)-C(6) 122.0(8) 

C(1)-C(2)  1.456(11) C(3)-C(4)-O(3) 125.7(8) 

C(2)-C(12)  1.412(11) C(6)-C(4)-O(3) 112.2(7) 

C(2)-C(3)  1.426(12) C(7)-C(6)-C(4) 121.5(8) 

C(3)-C(4)  1.320(12) C(6)-C(7)-C(12) 118.2(7) 

C(4)-C(6)  1.397(11) C(6)-C(7)-C(8) 121.2(7) 
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C(6)-C(7)  1.396(11) C(12)-C(7)-C(8) 120.6(7) 

C(7)-C(12)  1.439(11) C(9)-C(8)-C(7) 112.1(7) 

C(7)-C(8)  1.541(11) C(9)-C(8)-C(11) 109.4(7) 

C(8)-C(9)  1.524(12) C(7)-C(8)-C(11) 109.7(7) 

C(8)-C(11)  1.541(12) C(9)-C(8)-C(10) 107.0(7) 

C(8)-C(10)  1.549(12) C(7)-C(8)-C(10) 110.1(7) 

C(13)-C(18)  1.384(11) C(11)-C(8)-C(10) 108.4(7) 

C(13)-C(14)  1.395(11) O(1)-C(12)-C(2) 124.5(7) 

C(14)-C(15)  1.385(11) O(1)-C(12)-C(7) 117.8(7) 

C(15)-C(16)  1.370(12) C(2)-C(12)-C(7) 117.7(7) 

C(16)-C(17)  1.405(12) C(18)-C(13)-C(14) 120.2(7) 

C(17)-C(18)  1.397(11) C(18)-C(13)-N(5) 116.0(7) 

C(19)-C(20)  1.422(10) C(14)-C(13)-N(5) 123.7(7) 

C(20)-C(21)  1.419(11) C(15)-C(14)-C(13) 118.7(8) 

C(20)-C(30)  1.444(11) C(16)-C(15)-C(14) 121.8(8) 

C(21)-C(22)  1.441(11) C(15)-C(16)-C(17) 119.8(8) 

C(22)-C(27)  1.376(11) C(18)-C(17)-C(16) 118.7(8) 

C(22)-C(23)  1.541(12) C(13)-C(18)-C(17) 120.7(8) 

C(23)-C(25)  1.507(12) C(13)-C(18)-N(4) 116.7(7) 

C(23)-C(24)  1.537(12) C(17)-C(18)-N(4) 122.7(7) 

C(23)-C(26)  1.538(12) N(5)-C(19)-C(20) 125.5(7) 

C(27)-C(28)  1.387(11) C(21)-C(20)-C(19) 125.0(7) 

C(28)-C(30)  1.352(11) C(21)-C(20)-C(30) 118.4(7) 

C(31)-C(32)  1.391(12) C(19)-C(20)-C(30) 116.6(7) 

C(31)-C(36)  1.419(12) O(2)-C(21)-C(20) 121.6(7) 

C(32)-C(33)  1.371(12) O(2)-C(21)-C(22) 118.6(7) 

C(33)-C(34)  1.377(12) C(20)-C(21)-C(22) 119.7(7) 

C(34)-C(35)  1.395(12) C(27)-C(22)-C(21) 116.9(7) 

C(35)-C(36)  1.374(12) C(27)-C(22)-C(23) 123.3(7) 

C(37)-C(38)  1.402(12) C(21)-C(22)-C(23) 119.8(7) 

C(37)-C(42)  1.426(12) C(25)-C(23)-C(24) 111.2(7) 

C(38)-C(39)  1.391(12) C(25)-C(23)-C(26) 106.9(7) 

C(39)-C(40)  1.375(13) C(24)-C(23)-C(26) 108.4(7) 

C(40)-C(41)  1.393(13) C(25)-C(23)-C(22) 110.5(7) 

C(41)-C(42)  1.378(12) C(24)-C(23)-C(22) 109.5(7) 

C(43)-C(48)  1.367(13) C(26)-C(23)-C(22) 110.3(7) 

C(43)-C(44)  1.399(12) C(22)-C(27)-C(28) 124.7(8) 

C(44)-C(45)  1.375(13) C(30)-C(28)-O(4) 126.1(8) 

C(45)-C(46)  1.351(14) C(30)-C(28)-C(27) 118.8(8) 

C(46)-C(47)  1.395(14) O(4)-C(28)-C(27) 115.1(7) 
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C(47)-C(48)  1.437(13) C(28)-C(30)-C(20) 121.3(8) 

C(49)-C(54)  1.373(13) C(32)-C(31)-C(36) 118.0(8) 

C(49)-C(50)  1.414(12) C(32)-C(31)-P(2) 120.5(7) 

C(50)-C(51)  1.387(12) C(36)-C(31)-P(2) 121.3(6) 

C(51)-C(52)  1.347(13) C(33)-C(32)-C(31) 120.8(9) 

C(52)-C(53)  1.396(13) C(32)-C(33)-C(34) 121.0(8) 

C(53)-C(54)  1.419(13) C(33)-C(34)-C(35) 119.6(8) 

C(55)-C(60)  1.378(11) C(36)-C(35)-C(34) 119.9(9) 

C(55)-C(56)  1.394(12) C(35)-C(36)-C(31) 120.7(8) 

C(56)-C(57)  1.373(13) C(38)-C(37)-C(42) 119.9(8) 

C(57)-C(58)  1.322(12) C(38)-C(37)-P(2) 118.1(6) 

C(58)-C(59)  1.405(12) C(42)-C(37)-P(2) 121.7(7) 

C(59)-C(60)  1.371(12) C(39)-C(38)-C(37) 119.8(8) 

C(61)-C(66)  1.385(13) C(40)-C(39)-C(38) 120.7(9) 

C(61)-C(62)  1.399(12) C(39)-C(40)-C(41) 119.4(9) 

C(62)-C(63)  1.420(13) C(42)-C(41)-C(40) 122.3(8) 

C(63)-C(64)  1.357(14) C(41)-C(42)-C(37) 117.9(9) 

C(64)-C(65)  1.368(14) C(48)-C(43)-C(44) 119.2(9) 

C(65)-C(66)  1.409(13) C(48)-C(43)-P(2) 120.0(7) 

  C(44)-C(43)-P(2) 120.7(8) 

O(1)-Cr(1)-O(2) 93.4(2) C(45)-C(44)-C(43) 120.9(10) 

O(1)-Cr(1)-N(5) 174.8(2) C(46)-C(45)-C(44) 119.9(10) 

O(2)-Cr(1)-N(5) 91.6(2) C(45)-C(46)-C(47) 122.4(10) 

O(1)-Cr(1)-N(1A) 96.8(7) C(46)-C(47)-C(48) 116.9(10) 

O(2)-Cr(1)-N(1A) 90.9(7) C(43)-C(48)-C(47) 120.6(10) 

N(5)-Cr(1)-N(1A) 84.4(7) C(54)-C(49)-C(50) 119.7(8) 

O(1)-Cr(1)-N(4) 91.6(3) C(54)-C(49)-P(1) 120.7(7) 

O(2)-Cr(1)-N(4) 175.0(3) C(50)-C(49)-P(1) 119.5(7) 

N(5)-Cr(1)-N(4) 83.4(3) C(51)-C(50)-C(49) 119.1(9) 

N(1A)-Cr(1)-N(4) 88.7(7) C(52)-C(51)-C(50) 121.3(9) 

O(1)-Cr(1)-N(1B) 93.9(8) C(51)-C(52)-C(53) 121.1(9) 

O(2)-Cr(1)-N(1B) 90.0(9) C(52)-C(53)-C(54) 118.5(10) 

N(5)-Cr(1)-N(1B) 84.8(8) C(49)-C(54)-C(53) 120.2(9) 

N(1A)-Cr(1)-N(1B) 169.2(10) C(60)-C(55)-C(56) 118.9(8) 

N(4)-Cr(1)-N(1B) 89.5(9) C(60)-C(55)-P(1) 121.7(7) 

O(1)-Cr(1)-Cl(1A) 86.8(3) C(56)-C(55)-P(1) 119.2(7) 

O(2)-Cr(1)-Cl(1A) 91.2(3) C(57)-C(56)-C(55) 119.7(9) 

N(5)-Cr(1)-Cl(1A) 94.4(3) C(58)-C(57)-C(56) 121.6(9) 

N(1A)-Cr(1)-Cl(1A) 10.0(7) C(57)-C(58)-C(59) 120.0(9) 

N(4)-Cr(1)-Cl(1A) 89.2(3) C(60)-C(59)-C(58) 119.4(8) 
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N(1B)-Cr(1)-Cl(1A) 178.5(10) C(59)-C(60)-C(55) 120.4(8) 

O(1)-Cr(1)-Cl(1B) 87.8(3) C(66)-C(61)-C(62) 119.2(9) 

O(2)-Cr(1)-Cl(1B) 93.6(3) C(66)-C(61)-P(1) 119.2(7) 

N(5)-Cr(1)-Cl(1B) 90.6(3) C(62)-C(61)-P(1) 121.5(7) 

N(1A)-Cr(1)-Cl(1B) 173.4(8) C(61)-C(62)-C(63) 119.6(10) 

N(4)-Cr(1)-Cl(1B) 86.4(3) C(64)-C(63)-C(62) 119.7(10) 

N(1B)-Cr(1)-Cl(1B) 6.9(8) C(63)-C(64)-C(65) 121.5(10) 

Cl(3)-C(67)-Cl(2) 115.3(13) C(64)-C(65)-C(66) 119.8(10) 

Cl(5)-C(68)-Cl(4) 123.7(13) C(61)-C(66)-C(65) 120.1(10) 
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Table B-15. Crystal Data and Structure Refinement for Trimethylene Carbonate. 

Identification code  d  

Empirical formula  C4 H6 O3  

Formula weight  102.09  

Temperature  110(2) K  

Wavelength  0.71073 Å  

Crystal system  Monoclinic  

Space group  P2(1)/n  

Unit cell dimensions a = 6.097(6) Å = 90°.
   b = 11.306(11) Å = 102.259(11)°.
   c = 6.734(7) Å  = 90°.
Volume 453.6(8) Å3  

Z 4  

Density (calculated) 1.495 Mg/m3  

Absorption coefficient 0.130 mm-1  

F(000) 216  

Crystal size 0.20 x 0.10 x 0.05 mm3  

Theta range for data collection 3.58 to 24.99°.  

Index ranges -7<=h<=7, -13<=k<=13, -7<=l<=7 

Reflections collected 3668  

Independent reflections 708 [R(int) = 0.0277]  

Completeness to theta = 24.99° 88.90%  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9935 and 0.9745  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 708 / 0 / 64  

Goodness-of-fit on F2 1.017  

Final R indices [I>2sigma(I)] R1 = 0.0277, wR2 = 0.0752 

R indices (all data) R1 = 0.0286, wR2 = 0.0761 

Largest diff. peak and hole 0.172 and -0.145 e.Å-3  
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Table B-16.  Bond Distances (Å) and Bond Angles (deg) for Trimethylene Carbonate. 

O(1)-C(1)  1.3296(18) C(1)-O(1)-C(2) 122.39(10) 

O(1)-C(2)  1.4545(17) C(1)-O(2)-C(4) 120.97(10) 

O(2)-C(1)  1.3297(18) O(3)-C(1)-O(1) 119.81(11) 

O(2)-C(4)  1.4575(16) O(3)-C(1)-O(2) 119.73(12) 

O(3)-C(1)  1.2056(15) O(1)-C(1)-O(2) 120.44(9) 

C(2)-C(3)  1.4910(19) O(1)-C(2)-C(3) 110.91(11) 

C(2)-H(2A)  0.99 O(1)-C(2)-H(2A) 109.5 

C(2)-H(2B)  0.99 C(3)-C(2)-H(2A) 109.5 

C(3)-C(4)  1.5073(18) O(1)-C(2)-H(2B) 109.5 

C(3)-H(3A)  0.99 C(3)-C(2)-H(2B) 109.5 

C(3)-H(3B)  0.99 H(2A)-C(2)-H(2B) 108 

C(4)-H(4A)  0.99 C(2)-C(3)-C(4) 107.47(10) 

C(4)-H(4B)  0.99 C(2)-C(3)-H(3A) 110.2 

C(2)-C(3)-H(3B) 110.2 C(4)-C(3)-H(3A) 110.2 
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Table B-17. Crystal Data and Structure Refinement for Complex VI-1. 

Identification code  dda   

Empirical formula  C36 H46 Cl Cr N2 O6   

Formula weight  690.2   

Temperature  110(2) K   

Wavelength  1.54184 Å   

Crystal system  Monoclinic   

Space group  P2(1)/c   

Unit cell dimensions a = 17.268(9) Å = 90°.
   b = 18.138(10) Å = 106.48(2)°.
   c = 11.499(5) Å  = 90°.
Volume 3453(3) Å3   

Z 4   

Density (calculated) 1.327 Mg/m3   

Absorption coefficient 3.820 mm-1   

F(000) 1460   

Crystal size 0.10 x 0.10 x 0.001 mm3   

Theta range for data collection 2.44 to 60.00°.   

Index ranges -18<=h<=19, -19<=k<=20, -10<=l<=12 

Reflections collected 16688   

Independent reflections 4447 [R(int) = 0.2681]   

Completeness to theta = 60.00° 86.90%   

Absorption correction Semi-empirical from equivalents   

Max. and min. transmission 0.9962 and 0.7013   

Refinement method Full-matrix least-squares on F2   

Data / restraints / parameters 4447 / 5 / 426   

Goodness-of-fit on F2 0.782   

Final R indices [I>2sigma(I)] R1 = 0.0852, wR2 = 0.1070   

R indices (all data) R1 = 0.2433, wR2 = 0.1445   

Largest diff. peak and hole 0.119 and -0.097 e.Å-3   
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Table B-18.  Bond Distances (Å) and Bond Angles (deg) for Complex VI-1. 

Cr(1)-O(3)  1.880(5) O(1)-C(3)-C(1) 45.2(5) 

Cr(1)-O(5)  1.920(6) C(2)-C(3)-C(1) 50.5(5) 

Cr(1)-N(2)  2.012(7) O(1)-C(3)-H(3A) 111.6 

Cr(1)-N(1)  2.029(7) C(2)-C(3)-H(3A) 114 

Cr(1)-O(1)  2.056(8) C(1)-C(3)-H(3A) 133.8 

Cr(1)-Cl(1)  2.297(3) O(1)-C(3)-H(3B) 114.1 

O(1)-C(1)  1.397(9) C(2)-C(3)-H(3B) 111.9 

O(1)-C(3)  1.398(8) C(1)-C(3)-H(3B) 115.9 

O(2)-C(5)  1.278(15) H(3A)-C(3)-H(3B) 110.2 

O(2)-C(4)  1.279(15) O(2)-C(4)-C(2) 116.9(18) 

O(3)-C(18)  1.425(9) O(2)-C(4)-H(4A) 108.1 

O(4)-C(10)  1.368(13) C(2)-C(4)-H(4A) 108.1 

O(4)-C(11)  1.373(9) O(2)-C(4)-H(4B) 108.1 

O(5)-C(27)  1.333(10) C(2)-C(4)-H(4B) 108.1 

O(6)-C(34)  1.383(11) H(4A)-C(4)-H(4B) 107.3 

O(6)-C(35)  1.441(10) O(2)-C(5)-H(5A) 109.5 

N(1)-C(7)  1.292(9) O(2)-C(5)-H(5B) 109.5 

N(1)-C(24)  1.413(9) H(5A)-C(5)-H(5B) 109.5 

N(2)-C(25)  1.320(8) O(2)-C(5)-H(5C) 109.5 

N(2)-C(19)  1.392(10) H(5A)-C(5)-H(5C) 109.5 

C(1)-C(2)  1.549(10) H(5B)-C(5)-H(5C) 109.5 

C(1)-C(3)  1.969(18) C(2)-C(6)-H(6A) 109.5 

C(1)-H(1A)  0.9599 C(2)-C(6)-H(6B) 109.5 

C(1)-H(1B)  0.9601 H(6A)-C(6)-H(6B) 109.5 

C(2)-C(6)  1.518(16) C(2)-C(6)-H(6C) 109.5 

C(2)-C(3)  1.550(10) H(6A)-C(6)-H(6C) 109.5 

C(2)-C(4)  1.551(10) H(6B)-C(6)-H(6C) 109.5 

C(3)-H(3A)  0.9599 N(1)-C(7)-C(8) 127.5(10) 

C(3)-H(3B)  0.9601 N(1)-C(7)-H(7) 116.3 

C(4)-H(4A)  0.99 C(8)-C(7)-H(7) 116.3 

C(4)-H(4B)  0.99 C(18)-C(8)-C(9) 120.3(9) 

C(5)-H(5A)  0.98 C(18)-C(8)-C(7) 122.8(9) 

C(5)-H(5B)  0.98 C(9)-C(8)-C(7) 116.4(10) 

C(5)-H(5C)  0.98 C(10)-C(9)-C(8) 120.5(10) 

C(6)-H(6A)  0.98 C(10)-C(9)-H(9) 119.8 

C(6)-H(6B)  0.98 C(8)-C(9)-H(9) 119.8 

C(6)-H(6C)  0.98 C(9)-C(10)-O(4) 125.0(10) 

C(7)-C(8)  1.441(10) C(9)-C(10)-C(12) 116.8(12) 

C(7)-H(7)  0.95 O(4)-C(10)-C(12) 118.1(11) 
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C(8)-C(18)  1.343(12) O(4)-C(11)-H(11A) 109.5 

C(8)-C(9)  1.406(11) O(4)-C(11)-H(11B) 109.5 

C(9)-C(10)  1.361(12) H(11A)-C(11)-H(11B) 109.5 

C(9)-H(9)  0.95 O(4)-C(11)-H(11C) 109.5 

C(10)-C(12)  1.424(13) H(11A)-C(11)-H(11C) 109.5 

C(11)-H(11A)  0.98 H(11B)-C(11)-H(11C) 109.5 

C(11)-H(11B)  0.98 C(13)-C(12)-C(10) 124.6(10) 

C(11)-H(11C)  0.98 C(13)-C(12)-H(12) 117.7 

C(12)-C(13)  1.348(11) C(10)-C(12)-H(12) 117.7 

C(12)-H(12)  0.95 C(12)-C(13)-C(18) 115.0(9) 

C(13)-C(18)  1.430(11) C(12)-C(13)-C(14) 120.5(9) 

C(13)-C(14)  1.620(14) C(18)-C(13)-C(14) 124.0(9) 

C(14)-C(17)  1.500(15) C(17)-C(14)-C(15) 108.0(11) 

C(14)-C(15)  1.512(12) C(17)-C(14)-C(16) 110.6(11) 

C(14)-C(16)  1.603(13) C(15)-C(14)-C(16) 105.4(9) 

C(15)-H(15A)  0.98 C(17)-C(14)-C(13) 115.4(10) 

C(15)-H(15B)  0.98 C(15)-C(14)-C(13) 113.1(10) 

C(15)-H(15C)  0.98 C(16)-C(14)-C(13) 104.0(10) 

C(16)-H(16A)  0.98 C(14)-C(15)-H(15A) 109.5 

C(16)-H(16B)  0.98 C(14)-C(15)-H(15B) 109.5 

C(16)-H(16C)  0.98 H(15A)-C(15)-H(15B) 109.5 

C(17)-H(17A)  0.98 C(14)-C(15)-H(15C) 109.5 

C(17)-H(17B)  0.98 H(15A)-C(15)-H(15C) 109.5 

C(17)-H(17C)  0.98 H(15B)-C(15)-H(15C) 109.5 

C(19)-C(24)  1.364(9) C(14)-C(16)-H(16A) 109.5 

C(19)-C(20)  1.456(10) C(14)-C(16)-H(16B) 109.5 

C(20)-C(21)  1.342(12) H(16A)-C(16)-H(16B) 109.5 

C(20)-H(20)  0.95 C(14)-C(16)-H(16C) 109.5 

C(21)-C(22)  1.342(11) H(16A)-C(16)-H(16C) 109.5 

C(21)-H(21)  0.95 H(16B)-C(16)-H(16C) 109.5 

C(22)-C(23)  1.411(11) C(14)-C(17)-H(17A) 109.5 

C(22)-H(22)  0.95 C(14)-C(17)-H(17B) 109.5 

C(23)-C(24)  1.362(11) H(17A)-C(17)-H(17B) 109.5 

C(23)-H(23)  0.95 C(14)-C(17)-H(17C) 109.5 

C(25)-C(26)  1.426(11) H(17A)-C(17)-H(17C) 109.5 

C(25)-H(25)  0.95 H(17B)-C(17)-H(17C) 109.5 

C(26)-C(36)  1.354(10) C(8)-C(18)-O(3) 124.3(9) 

C(26)-C(27)  1.451(12) C(8)-C(18)-C(13) 122.0(9) 

C(27)-C(28)  1.400(13) O(3)-C(18)-C(13) 113.7(8) 

C(28)-C(33)  1.369(12) C(24)-C(19)-N(2) 121.1(8) 
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C(28)-C(29)  1.556(14) C(24)-C(19)-C(20) 117.4(8) 

C(29)-C(30)  1.493(14) N(2)-C(19)-C(20) 121.6(8) 

C(29)-C(31)  1.507(15) C(21)-C(20)-C(19) 119.6(8) 

C(29)-C(32)  1.585(14) C(21)-C(20)-H(20) 120.2 

C(30)-H(30A)  0.98 C(19)-C(20)-H(20) 120.2 

C(30)-H(30B)  0.98 C(22)-C(21)-C(20) 122.3(9) 

C(30)-H(30C)  0.98 C(22)-C(21)-H(21) 118.8 

C(31)-H(31A)  0.98 C(20)-C(21)-H(21) 118.8 

C(31)-H(31B)  0.98 C(21)-C(22)-C(23) 119.2(9) 

C(31)-H(31C)  0.98 C(21)-C(22)-H(22) 120.4 

C(32)-H(32A)  0.98 C(23)-C(22)-H(22) 120.4 

C(32)-H(32B)  0.98 C(24)-C(23)-C(22) 120.0(9) 

C(32)-H(32C)  0.98 C(24)-C(23)-H(23) 120 

C(33)-C(34)  1.369(13) C(22)-C(23)-H(23) 120 

C(33)-H(33)  0.95 C(23)-C(24)-C(19) 121.6(8) 

C(34)-C(36)  1.328(12) C(23)-C(24)-N(1) 126.7(8) 

C(35)-H(35A)  0.98 C(19)-C(24)-N(1) 111.7(8) 

C(35)-H(35B)  0.98 N(2)-C(25)-C(26) 127.9(9) 

C(35)-H(35C)  0.98 N(2)-C(25)-H(25) 116 

C(36)-H(36)  0.95 C(26)-C(25)-H(25) 116 

  C(36)-C(26)-C(25) 117.2(9) 

O(3)-Cr(1)-O(5) 94.5(3) C(36)-C(26)-C(27) 120.0(8) 

O(3)-Cr(1)-N(2) 171.7(3) C(25)-C(26)-C(27) 122.6(8) 

O(5)-Cr(1)-N(2) 92.8(3) O(5)-C(27)-C(28) 119.8(11) 

O(3)-Cr(1)-N(1) 91.9(3) O(5)-C(27)-C(26) 123.1(8) 

O(5)-Cr(1)-N(1) 169.6(3) C(28)-C(27)-C(26) 117.1(10) 

N(2)-Cr(1)-N(1) 80.4(3) C(33)-C(28)-C(27) 118.1(11) 

O(3)-Cr(1)-O(1) 86.2(3) C(33)-C(28)-C(29) 125.0(11) 

O(5)-Cr(1)-O(1) 88.4(3) C(27)-C(28)-C(29) 116.9(10) 

N(2)-Cr(1)-O(1) 89.9(3) C(30)-C(29)-C(31) 110.4(10) 

N(1)-Cr(1)-O(1) 83.9(3) C(30)-C(29)-C(28) 114.6(10) 

O(3)-Cr(1)-Cl(1) 93.9(2) C(31)-C(29)-C(28) 110.1(10) 

O(5)-Cr(1)-Cl(1) 94.5(2) C(30)-C(29)-C(32) 107.8(11) 

N(2)-Cr(1)-Cl(1) 89.7(2) C(31)-C(29)-C(32) 105.0(10) 

N(1)-Cr(1)-Cl(1) 93.3(2) C(28)-C(29)-C(32) 108.5(10) 

O(1)-Cr(1)-Cl(1) 177.2(2) C(29)-C(30)-H(30A) 109.5 

C(1)-O(1)-C(3) 89.6(10) C(29)-C(30)-H(30B) 109.5 

C(1)-O(1)-Cr(1) 129.3(8) H(30A)-C(30)-H(30B) 109.5 

C(3)-O(1)-Cr(1) 127.6(7) C(29)-C(30)-H(30C) 109.5 

C(5)-O(2)-C(4) 127.0(19) H(30A)-C(30)-H(30C) 109.5 
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C(18)-O(3)-Cr(1) 127.6(5) H(30B)-C(30)-H(30C) 109.5 

C(10)-O(4)-C(11) 118.8(8) C(29)-C(31)-H(31A) 109.5 

C(27)-O(5)-Cr(1) 128.1(6) C(29)-C(31)-H(31B) 109.5 

C(34)-O(6)-C(35) 113.8(8) H(31A)-C(31)-H(31B) 109.5 

C(7)-N(1)-C(24) 120.8(8) C(29)-C(31)-H(31C) 109.5 

C(7)-N(1)-Cr(1) 123.7(6) H(31A)-C(31)-H(31C) 109.5 

C(24)-N(1)-Cr(1) 115.2(6) H(31B)-C(31)-H(31C) 109.5 

C(25)-N(2)-C(19) 125.5(7) C(29)-C(32)-H(32A) 109.5 

C(25)-N(2)-Cr(1) 122.9(6) C(29)-C(32)-H(32B) 109.5 

C(19)-N(2)-Cr(1) 111.6(6) H(32A)-C(32)-H(32B) 109.5 

O(1)-C(1)-C(2) 94.5(8) C(29)-C(32)-H(32C) 109.5 

O(1)-C(1)-C(3) 45.2(5) H(32A)-C(32)-H(32C) 109.5 

C(2)-C(1)-C(3) 50.6(5) H(32B)-C(32)-H(32C) 109.5 

O(1)-C(1)-H(1A) 111.2 C(34)-C(33)-C(28) 123.8(11) 

C(2)-C(1)-H(1A) 109.8 C(34)-C(33)-H(33) 118.1 

C(3)-C(1)-H(1A) 111.9 C(28)-C(33)-H(33) 118.1 

O(1)-C(1)-H(1B) 113.6 C(36)-C(34)-C(33) 118.6(10) 

C(2)-C(1)-H(1B) 116.7 C(36)-C(34)-O(6) 128.5(10) 

C(3)-C(1)-H(1B) 137.8 C(33)-C(34)-O(6) 112.8(10) 

H(1A)-C(1)-H(1B) 110.2 O(6)-C(35)-H(35A) 109.5 

C(6)-C(2)-C(1) 123.5(12) O(6)-C(35)-H(35B) 109.5 

C(6)-C(2)-C(3) 111.8(11) H(35A)-C(35)-H(35B) 109.5 

C(1)-C(2)-C(3) 78.9(9) O(6)-C(35)-H(35C) 109.5 

C(6)-C(2)-C(4) 91.3(12) H(35A)-C(35)-H(35C) 109.5 

C(1)-C(2)-C(4) 114.3(11) H(35B)-C(35)-H(35C) 109.5 

C(3)-C(2)-C(4) 141.5(13) C(34)-C(36)-C(26) 122.2(9) 

O(1)-C(3)-C(2) 94.4(8) C(34)-C(36)-H(36) 118.9 

      C(26)-C(36)-H(36) 118.9 
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Table B-19. Crystal Data and Structure Refinement for 5-Methoxy-methyl-5-methyl-1,3-dioxan-
2-one. 

Identification code  dtt-14   

Empirical formula  C7 H12 O4   

Formula weight  160.17   

Temperature  110(2) K   

Wavelength  1.54178 Å   

Crystal system  Monoclinic   

Space group  P2(1)/c   

Unit cell dimensions a = 6.446(2) Å = 90°.
   b = 5.5780(19) Å = 101.943(19)°.
   c = 22.186(7) Å  = 90°.
Volume 780.4(4) Å3   

Z 4   

Density (calculated) 1.363 Mg/m3   

Absorption coefficient 0.950 mm-1   

F(000) 344   

Crystal size 0.20 x 0.20 x 0.01 mm3   

Theta range for data collection 7.02 to 57.98°.   

Index ranges 
-7<=h<=7, -6<=k<=5, -
24<=l<=23   

Reflections collected 4639   

Independent reflections 1023 [R(int) = 0.0762]   

Completeness to theta = 57.98° 94.00%   

Absorption correction 
Semi-empirical from 
equivalents   

Max. and min. transmission 0.9953 and 0.8328   

Refinement method Full-matrix least-squares on F2   

Data / restraints / parameters 1023 / 0 / 101   

Goodness-of-fit on F2 1.214   

Final R indices [I>2sigma(I)] R1 = 0.1500, wR2 = 0.3127   

R indices (all data) R1 = 0.1702, wR2 = 0.3205   

Extinction coefficient 0.019(4)   

Largest diff. peak and hole 0.554 and -0.455 e.Å-3   
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Table B-20.  Bond Distances (Å) and Bond Angles (deg) for 5-Methoxy-methyl-5-methyl-1,3-
dioxan-2-one. 

O(1)-C(1)  1.357(12) C(2)-C(3)-C(7) 108.2(9) 

O(1)-C(4)  1.460(12) C(4)-C(3)-C(7) 108.6(8) 

O(2)-C(1)  1.322(13) C(5)-C(3)-C(7) 110.8(8) 

O(2)-C(2)  1.481(13) O(1)-C(4)-C(3) 113.0(8) 

O(3)-C(1)  1.187(12) O(1)-C(4)-H(4A) 109 

O(4)-C(5)  1.416(13) C(3)-C(4)-H(4A) 109 

O(4)-C(6)  1.418(13) O(1)-C(4)-H(4B) 109 

C(2)-C(3)  1.510(15) C(3)-C(4)-H(4B) 109 

C(2)-H(2A)  0.99 H(4A)-C(4)-H(4B) 107.8 

C(2)-H(2B)  0.99 O(4)-C(5)-C(3) 110.7(9) 

C(3)-C(4)  1.516(15) O(4)-C(5)-H(5A) 109.5 

C(3)-C(5)  1.529(14) C(3)-C(5)-H(5A) 109.5 

C(3)-C(7)  1.543(14) O(4)-C(5)-H(5B) 109.5 

C(4)-H(4A)  0.99 C(3)-C(5)-H(5B) 109.5 

C(4)-H(4B)  0.99 H(5A)-C(5)-H(5B) 108.1 

C(5)-H(5A)  0.99 O(4)-C(6)-H(6A) 109.5 

C(5)-H(5B)  0.99 O(4)-C(6)-H(6B) 109.5 

C(6)-H(6A)  0.98 H(6A)-C(6)-H(6B) 109.5 

C(6)-H(6B)  0.98 O(4)-C(6)-H(6C) 109.5 

C(6)-H(6C)  0.98 H(6A)-C(6)-H(6C) 109.5 

C(7)-H(7A)  0.98 H(6B)-C(6)-H(6C) 109.5 

C(7)-H(7B)  0.98 C(3)-C(7)-H(7A) 109.5 

C(7)-H(7C)  0.98 C(3)-C(7)-H(7B) 109.5 

C(1)-O(1)-C(4) 121.7(8) H(7A)-C(7)-H(7B) 109.5 

C(1)-O(2)-C(2) 121.2(8) C(3)-C(7)-H(7C) 109.5 

C(5)-O(4)-C(6) 111.4(8) H(7A)-C(7)-H(7C) 109.5 

O(3)-C(1)-O(2) 122.0(10) H(7B)-C(7)-H(7C) 109.5 

O(3)-C(1)-O(1) 118.3(10) C(3)-C(2)-H(2B) 109.4 

O(2)-C(1)-O(1) 119.7(9) H(2A)-C(2)-H(2B) 108 

O(2)-C(2)-C(3) 111.1(8) C(2)-C(3)-C(4) 105.6(8) 

O(2)-C(2)-H(2A) 109.4 C(2)-C(3)-C(5) 111.8(9) 

C(3)-C(2)-H(2A) 109.4 C(4)-C(3)-C(5) 111.6(9) 

O(2)-C(2)-H(2B) 109.4      
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