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ABSTRACT 

 

Validation of a Novel Expressed Sequence Tag (EST) Clustering Method and 

Development of a Phylogenetic Annotation Pipeline for Livestock Gene Families. 

(December 2008) 

Anand Venkatraman, B.Pharm., The Tamil Nadu Dr. MGR Medical University; 

M.Tech., Jadavpur University 

Co-Chairs of Advisory Committee: Dr. James C. Hu  
     Dr. Christine G. Elsik 

 

 Prediction of functions of genes in a genome is a key step in all genome 

sequencing projects. Sequences that carry out important functions are likely to be 

conserved between evolutionarily distant species and can be identified using cross-

species comparisons. In the absence of completed genomes and the accompanying high-

quality annotations, expressed sequence tags (ESTs) from random cDNA clones are the 

primary tools for functional genomics. EST datasets are fragmented and redundant, 

necessitating clustering of ESTs into groups that are likely to have been derived from the 

same genes. EST clustering helps reduce the search space for sequence homology 

searching and improves the accuracy of function predictions using EST datasets. This 

dissertation is a case study that describes clustering of Bos taurus and Sus scrofa EST 

datasets, and utilizes the EST clusters to make computational function predictions using 

a comparative genomics approach.  
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We used a novel EST clustering method, TAMUClust, to cluster bovine ESTs 

and compare its performance to the bovine EST clusters from TIGR Gene Indices (TGI) 

by using bovine ESTs aligned to the bovine genome assembly as a gold standard. This 

comparison study reveals that TAMUClust and TGI are similar in performance. 

Comparisons of TAMUClust and TGI with predicted bovine gene models reveal that 

both datasets are similar in transcript coverage.  

We describe here the design and implementation of an annotation pipeline for 

predicting functions of the Bos taurus (cattle) and Sus scrofa (pig) transcriptomes. EST 

datasets were clustered into gene families using Ensembl protein family clusters as a 

framework. Following clustering, the EST consensus sequences were assigned predicted 

function by transferring annotations of the Ensembl vertebrate protein(s) they are 

grouped to after sequence homology searches and phylogenetic analysis. The 

annotations benefit the livestock community by helping narrow down the gamut of direct 

experiments needed to verify function. 
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

Identifying the genes in a genome and predicting their functions are key steps in 

all genomic sequencing projects. These processes are very important in interpreting 

genome sequence data and guiding future experimental work [1]. Functional annotations 

of genes from genome-wide experimental characterization are not yet scaled to match 

the rapid pace at which genomes are sequenced. This holds true despite the development 

of new advances in experimental techniques such as DNA microarrays [2, 3], yeast two-

hybrid system [4], RNA interference (RNAi) [5, 6] or large-scale systematic deletions 

[7] and therefore, the annotation of newly sequenced genomes relies mostly on 

computational methods [8, 9].  In the absence of availability of completed genomes and 

the accompanying high-quality annotations, expressed sequence tags (ESTs) [8] from 

random cDNA clones serve as an invaluable and cost-efficient resource for functional 

genomics in a variety of organisms [9-11]. EST datasets are fragmented and redundant; 

hence ESTs need to be clustered into groups that are likely to have been derived from 

the same genes. This dissertation is a case study that describes clustering of Bos taurus 

and Sus scrofa EST datasets, and utilizes the EST clusters to make computational 

function predictions using a comparative genomics approach. 

 

 

____________ 
This dissertation follows the style of BMC Genomics. 



 2

Overview of work in this dissertation 

The work in this dissertation uses ESTs in order to determine what genes are 

there in an organism and what roles they play. To achieve this task, EST datasets from 

Bos taurus (cattle) and Sus scrofa (pig) were grouped into gene families using the 

protein family clusters generated by a clustering algorithm developed in our lab to 

cluster the different vertebrate proteomes in the Ensembl [9] database. These protein 

families served as a framework to cluster and assemble the ESTs, and resulted in EST 

consensus sequences (contigs/singletons) representing putative genes. Anonymous ESTs 

are of limited value unless connected to function; hence, these EST consensus sequences 

were annotated by transferring annotations of the Ensembl vertebrate protein(s) 

following sequence homology searches and phylogenetic analysis.  The annotation 

pipeline developed provides function predictions for Bos taurus (cattle) and Sus scrofa 

(pig) using EST datasets. These annotations would benefit the livestock community by 

serving as a guide that helps narrow down the gamut of direct experiments needed to 

verify function.  

Bos taurus (cattle) and Sus scrofa (pig) are good candidate animal models for 

biomedical research due to parallels with humans [10-12] and represent evolutionary 

clades distinct from primates, rodents, and fishes (Figure 1.1).  The genome sequences 

for these species are in different stages of completion. The Bos taurus genome is in the 

final draft  assembly (7.1 fold coverage) [10, 11]; a 6 fold coverage of the Sus scrofa has 

been proposed [12],  with the current Pre-Ensembl [13] release of the Sus scrofa genome 

featuring the preliminary assemblies for 15 of the 19 pig chromosomes.  



 3

The completed genome and the accompanying high-quality annotations for Bos 

taurus and Sus scrofa were unavailable when this study started; hence, EST datasets 

from these species were used to obtain insights about the functions encoded in the 

organism.  

 

 
 
 
Figure 1.1: Evolutionary distances of the different species being compared in this 
study.  
A phylogenetic tree depicting the evolutionary relationships and divergence times (in 
million year timescale) for Sus scrofa (pig), Bos taurus (cattle), and the seven species 
whose proteomes were used to generate protein family clusters. Sus scrofa (pig) and Bos 
taurus (cattle) are shown in bold to convey the fact that EST datasets from these species 
are utilized to obtain functional insights using a comparative genomics approach 
involving the other seven proteomes. Figure adapted from [14]. 
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Chapter I 

 The remaining portion of Chapter I is tailored to provide the relevant background 

information about the different topics that are discussed in Chapters II, III and IV 

limited, but not restricted to, concepts in comparative genomics, homology, orthology, 

paralogy, functional annotations, Expressed Sequence Tags (ESTs), and EST clustering.  

Chapter II 

Chapter II of this dissertation evaluates the performance of a novel EST 

clustering method, TAMUClust, developed in our lab; this method clusters ESTs using a 

protein framework. Using bovine ESTs as an example, evaluation of this clustering 

method was performed by comparing it with existing EST clustering methods and 

bovine genome aligned EST clusters.  

Chapter III 

Chapter III describes the design and implementation of a “Livestock EST Gene 

Family Database” which houses the annotations for Bos taurus (bovine) and Sus scrofa 

(porcine) ESTs. Bovine and porcine ESTs were clustered and assembled using the 

Ensembl vertebrate protein families as a framework, and resulted in EST consensus 

sequences which were assigned the function of the ‘best match’ Ensembl vertebrate 

protein following FASTX [15] searches.  

Chapter IV 

 Chapter IV describes the design and implementation of a phylogenomic 

annotation pipeline for Bos taurus (bovine) and Sus scrofa (porcine) ESTs.  The ESTs 

were grouped into gene families using the Ensembl vertebrate protein families as a 
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framework, subject to a phylogenetic analysis, and the uncharacterized bovine/porcine 

EST gene family members were assigned predicted functions based on their positions in 

the phylogenetic tree involving other protein(s) of the subgroup/subfamily. 

Chapter V 

 Chapter V of this dissertation summarizes the findings from this study and puts 

into perspective future avenues that can be explored utilizing these findings. 

 

Intersection of evolution and comparative genomics 

“Nothing in biology makes sense, except in the light of evolution” [16] is a 

famous quote of Theodosius Dobzhansky. Comparative genomics is a relatively new 

field that complements a long history of comparison-based disciplines in biology [17]. 

Comparative genomics is the analysis and comparison of genomes with the purpose of 

gaining a better understanding of how species have evolved, and helps obtaining insights 

into the biology of the organisms being compared [14]. According to Ureta-Vidal et. al 

[14], “genome sequence comparison is a good example of the application of  modern 

evolutionary theory advocated by Kimura and others [18-20]”.  

Evolutionary analysis is a powerful tool that aids in the studies of genome 

sequences and helps to place comparative genomics studies in perspective [21]. 

Conserved genetic information in the form of DNA sequence forms the foundation of the 

evolutionary relationships and the underlying functional and anatomical similarities 

between species [17, 22]. Cross-species comparisons in comparative genomics studies 

help identify biologically active regions; this is based on the premise that sequences 
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which carry out important functions are likely to be conserved between evolutionarily 

distant species [22, 23]. The assumption that underlies all comparative genomics studies 

is that whenever significant sequence conservation is detected in species separated by a 

long span of evolution, one can be sure that this conservation is driven by constraints 

associated with function [24].  

Cross-species sequence analyses requires flexibility as no single pairwise 

comparison can capture all biologically functional sequences based on conservation [17]. 

A very important decision in the process of designing a comparative genomics based 

study is to identify which two (or more) species are the most appropriate for comparison 

in order to address the question under investigation. Given below are the different kinds 

of questions that can be addressed by comparing genomes at different phylogenetic 

distances: 

1. Comparing DNA sequences between evolutionary distantly related species, such 

as humans and pufferfish, which diverged approximately 450 million years ago, 

reveals that the coding sequences are conserved [25]. This is due to the fact that 

protein coding sequences are tightly constrained to retain function and thus 

evolve slowly, resulting in readily detectable sequence homology over large 

evolutionary distances [26]. Therefore, the addition of distantly related organisms 

(450 million years) to a multi-species sequence comparison improves the ability 

to classify conserved elements into coding sequences and non-coding sequences. 

2. By comparing multiple species that diverged approximately 40–80 million years 

ago, such as humans with mice and humans with cows, one can determine  the 
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conserved  noncoding sequences in several species which is more likely due to 

active conservation rather than shared ancestry [26]. 

3. Comparison of DNA sequences between pairs of species that diverged 40–80 

million years ago from a common ancestor, such as two species of nematodes 

(Caenorhabditis elegans with Caenorhabditis briggsae) [27] or Escherichia coli 

with Salmonella species [28], reveals conservation in both coding sequences and 

a significant number of noncoding sequences. 

4. The comparative analysis of very closely related species like human-chimpanzee 

(separated by 5 million years of evolution) is apt for finding the key sequence 

differences that may account for the differences in the organisms [23, 29]. 

 

Figure 1.2 summarizes the different types of questions that can be addressed by 

comparing genomes at different evolutionary distances. 
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Figure 1.2: Different kinds of comparative genomics questions that can be 
addressed at different evolutionary distances.  
A generalized phylogenetic tree is shown, leading to four present day operational 
taxonomic units (OTUs), with A and D being the most distantly related pairs. Examples 
of the different questions that can be addressed are shown in the boxes. Figure adapted 
from [22]. 



 9

Developments in the field of comparative genomics 

Comparative genomics was born as soon as there were two genomes to compare.  

The first genome to be sequenced was that of RNA bacteriophage MS2 in 1976 [29], and 

this was followed by the genome sequence of the bacteriophage phi X174 in 1977 [30].  

The complete genome sequence of the bacterium Haemophilus influenza [31] signaled 

the beginning of a new era in biological research [32] as it became clear that genome 

sequences provide a wealth of information not only about the organism but also the 

genes encoded. 

However, comparative genomics of cellular life forms is a “by-product” of the 

human genome project [33, 34] and took off [24] after the publication of the human 

genome in 2001. The increasing awareness of the immense benefits of genome scale 

sequence comparisons have resulted in a rapid increase in the number of genomes being 

sequenced post 2001. Figure 1.3 gives a year-by-year distribution of the number of 

completely sequenced eukaryotic and prokaryotic genomes from the Entrez Genome 

Project Database [35] as of September 2008.  
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Figure 1.3: Annual genome release statistics from 1995 to 2007. 
Year wise distribution of the number of completely sequenced eukaryotic and 
prokaryotic genomes in the Entrez Genome Database [35] as of September 2008. 
 
 
 

Sequence comparisons of human-mouse [36] , human-chicken [37], human-fish 

[25, 38] have led to the identification of new genes and gene regulatory sequences, and 

highlighting the benefits of comparative genomics studies. Comparative genomics 

analyses reveal important information about the functions and evolutionary relationships 

of great majority of genes in any genome [24]. The number of cross-species sequence 

comparisons has increased as additional genomes got sequenced. Initial comparative 

genomics analyses focused on pairwise comparisons to annotate and explore a single 

species of interest (such as humans), but as genomic data accumulates, simultaneous 
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analysis from numerous species is needed [17] to catalogue the evolutionary extent of 

sequence conservation and divergence.  

 
Need for functional annotations 

Biologists need tools and annotated databases to deal with the volume of 

genomic and proteome data. The ability to accurately predict function based on sequence 

is an important tool in biological research as these predictions are useful in gaining a 

first-order approximation of the molecular function encoded and help in prioritizing 

experimental investigation [39] . 

Function assignment for proteins identified in genome sequencing projects is a 

major problem in post-genomic biology as there is no clear function prediction for at 

least 30-40% of the sequences, and for many of the rest, only general predictions can be 

made [40, 41]. Until functions are assigned to the unknown genes, the organism’s 

capabilities cannot be completely described as there might be sequences that are species-

specific and determine the unique characteristics of the organism; thus, the promise of 

post-genomic biology will remain elusive until function assignments are complete [41]. 

Different classes of computational function prediction methods  

Many computational methods have been developed to predict function from 

sequences. These methods can be broadly grouped into two main classes [1] – the 

homology methods and the non-homology methods.  

1. Homology methods: Sequences that share a common ancestor are called 

homologs. Homology methods rely on the identification, characterization and 

quantification of sequence similarity. This sequence similarity can exist at 
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different levels [1]: motifs, domains, entire genes/proteins.  The function of the 

unknown sequence is inferred based on the known (or presumed) function of a 

statistically significant database hit. Database search programs like BLAST [42, 

43], FASTA [44], BLOCKS [45] have revolutionized the role of biological 

sequence comparisons. Sequence comparison methods are becoming more 

sensitive (increased number of true positives) and more selective (fewer false 

positives); improvements in these programs have made the identification of 

putative homologs much faster, easier and more reliable.  

2. Non-homology methods: Here, properties of a gene other than its similarity to 

other genes are used to aid in function predictions [1]. These include distance 

from origins of replication, analysis of neighboring genes [46-48], domain 

patterns [49], and codon usage or nucleotide composition [50-52]. In the non-

homology methods, genes in a genome or genes across genomes are grouped by 

these properties and the function of the unknowns can be predicted if they get 

grouped with genes of known function [1]. 

 

In the subsequent sections, I will be examining homology methods in more detail 

and discussing the pros and cons of using different approaches for predicting function.  

 

Function predictions using homology based approach 

 As sequence is the prime determining factor of function, sequence homology 

based function prediction methods operate on the premise that homology implies 
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function similarity. In these methods, inference of homology is usually based on finding 

levels of sequence similarity that are thought to be statistically significant and too high 

to be arising because of chance or convergence [53]. This similarity can be detected at 

any or all of these levels [1]: primary structure of DNA or protein, secondary or three-

dimensional structure [54, 55]. If statistically significant similarity is detected to a 

sequence of known function, the sequence with unknown function is tentatively assigned 

the function of the known sequence.  

Popular similarity based function prediction methods 

The available homology based function prediction methods differ in the way they 

choose the homolog whose function is most relevant to an uncharacterized sequence. 

The different methods available are: 

1. Best Hit Method: The uncharacterized sequence is tentatively assigned the 

function of the database sequence which was identified as the highest hit by a 

similarity search program [56]. 

2. Top Hits: The top 10+ hits for the uncharacterized sequence are identified, and 

depending on the consensus of the functions of the top hits, the query sequence is 

assigned a specific function or a general activity with unknown specificity or no 

function [57]. 

3.  Clusters of Orthologous Groups (COG) [58]: In this method, sequences are 

divided into groups of orthologs based on a cluster analysis of pairwise similarity 

scores between sequences from different species and the uncharacterized 

sequences are assigned the functions of characterized orthologs. Although this 
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method is a major advancement in identifying orthologous groups, it relies on 

similarity scores and not phylogeny [59] to cluster orthologous groups. 

 

The “best hit” and the “top hits” methods are very fast, can be easily automated, 

and are accurate in most instances. If no homology is detected and/or if homology is 

detected to sequences with no known function, no function prediction can be made. 

However, they do not take advantage of information about how sequences and their 

functions evolve [39, 53].   

Errors associated with homology based function predictions 

 The errors associated with homology based function prediction methods can be 

broadly classified into: 

1. Gene duplication and neofunctionalization: When gene duplication occurs, one 

copy retains the original function and the other is free to evolve new functions. 

Gene duplication and subsequent divergence of function of the duplicates is the 

single greatest contributor to errors in function prediction by homology [39, 53].  

Very often the top database hit may have a different function to the query due to 

neofunctionalization arising from gene duplication [60].  

2. Changes in function due to speciation: Function changes due to speciation are 

also a contributing factor to errors in function prediction. The proteins can share 

a common ancestor and be orthologous but can have different function 

specificities [61, 62]. 
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3. Differences in protein domain architecture between query and database protein: 

Domain shuffling [63, 64] is also one of the major contributors to errors in 

function prediction by homology. Standard methods of homology detection by 

similarity methods ignore whether two proteins align globally or locally, and this 

leads to errors in function prediction as presence/absence of a domain can have a 

dramatic impact on the molecular function of the protein. This problem is 

compounded by the fact that roughly 65% of the eukaryotic proteins and 40% of 

prokaryotic proteins are composed of multiple domains [65, 66] .  Domain fusion 

and domain fission events produce protein families that may only share a single 

common domain, and it is also known that some domains are promiscuous [67, 

68] in that they are present in combination with other domains, thereby leading to 

many different domain combinations. Figure 1.4 depicts a scenario where the 

query sequences have a different domain architecture compared to the top 

database hit following a database homology search. In automated function 

inference approaches, these individual domains of a multi-domain protein are the 

“local” partial homologs often identified as top hits by the database search 

program. BLAST [42] and PSI-BLAST [43] are commonly used methods for 

clustering homologous proteins. As these methods are optimized for homolog 

detection based on local similarity, the clusters are not screened to remove 

proteins with different domain architectures. Since the function of a multi-

domain protein is a composite of all the constituent domains, annotation transfer 

based on local homology can be misleading. Function prediction is most reliable 
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using “homeomorphic” proteins [69] – proteins sharing similar domain 

architecture. 

 

 

 

 

 

 

 

 

 

 
Figure 1.4: Different domain architectures for query and database sequences. 
Cartoon depicting a scenario where the three query sequences (1, 2, 3) have different 
architectures compared to the top database hit following a database similarity search. 
 
 
 

In my next section, I am going to introduce the two types of homologs: orthologs 

and paralogs, and going to talk about: 

1. the different evolutionary pressures that orthologs and paralogs are subject to 

when it comes to preserving function; 

2. the need to discriminate between orthologs and paralogs; and  

3. the need for identifying and using orthologs for function predictions and 

annotation transfer.  
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Homologs: orthologs and paralogs 

Homologs are of two types: orthologs and paralogs [70, 71]. Orthologs are 

homologs that have arisen because of speciation events whereas paralogs are homologs 

hat have arisen because of gene duplication events. Figure 1.5 depicts a simplified 

diagram of homolog subtypes showing orthologous and paralogous genes in two species 

‘1’ and ‘2’. These definitions were first introduced by Walter Fitch in 1970. Orthologs 

are evolutionary counterparts derived from a single ancestral gene in the last common 

ancestor of the species being compared; paralogs are homologous genes evolved through 

duplication within the same (perhaps ancestral too) genome. 

Function constraints for orthologs and paralogs 

Orthologs are under strict evolutionary constraints and this makes them perform 

the same function as long as the function remains essential for survival or at least confers  

a substantial selective advantage to its bearers [24, 72]. On the other hand, once paralogs 

emerge as a result of gene duplication, the pressure of purifying selection decreases for 

the paralog(s), and they acquire new functions [73]. In some sequenced genomes, 

substantial fractions (25 to 80%) of genes belong to families of paralogs [74-76] which 

reflects diversification of function via duplications at different stages of evolution.  

The greater likelihood of orthologs retaining the same ancestral function makes a 

strong case for identifying and using orthologs for function predictions and annotation 

transfer. Doing so increases the reliability of the transferred functional annotations. The 

advent of genomics has reinforced the fact that distinction between the two types of 
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homologs is crucial for understanding evolutionary relationships between genomes and 

gene functions [24]. 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 1.5: Different homolog subtypes - orthologs and paralogs. 
Simplified diagram of homolog subtypes showing orthologous and paralogous genes in 
two species ‘1’ and ‘2’. The panel of the left shows the direct vertical descent of the 
ancestral gene ‘X’ is species ‘1’ and ‘2’ following speciation. The panel on the right 
depicts the duplication of the ancestral gene ‘X’ into ‘XA’ and ‘XB’ in the ancestral 
genome followed by subsequent speciation leading to the genes ‘XA’ and ‘XB’ in 
species ‘1’ and ‘2’. 
 
 
 
Identifying orthologs – complex evolutionary scenarios 

 Since orthology is defined based on phylogeny, it would make more sense to use 

phylogenetic tools to identify orthologs [1]. However, identification of orthologs is not a 

simple task because of these complex evolutionary scenarios [72]: 
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1. when duplication precedes speciation, each of the paralogs gives rise to a distinct 

line of orthologous descent;  

2. when duplication occurs in one or both lineages independently after speciation, 

this is referred to as lineage-specific gene expansion, and leads to a situation 

where one-to-one orthologous relationship cannot be delineated; 

3. when genes in certain lineages are lost during evolution, this phenomenon is 

referred to as lineage-specific gene loss. In such cases, genes which appear to be 

orthologs might actually be paralogs. 

 

Complete phylogenetic analysis of all groups of homologous genes helps 

decipher true orthologous relationships [24]; however, phylogenetic analysis is 

extremely labor-intensive and time-consuming.   

It becomes imperative that methods need to be developed to make the distinction 

between orthologs and paralogs. The problem gets confounded with large gene families 

that have many paralogous members within a species. In such a scenario, the difficulty 

lies in identifying the orthologs which are more likely to have conserved function.  

In the next section, I describe how phylogenetic analysis can be used to predict 

function, and discuss the pros and cons of this approach. 

 

Function prediction using phylogenetic methods 

Incorporating an evolutionary perspective to comparative biology involves going 

beyond cataloguing similarities and differences between sequences and trying to 
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understand why those similarities and differences came to be [1]. Phylogenomics  

combines evolutionary and genomic analysis into a single composite approach [1]. 

Phylogenomic inference of protein function involves inferring the function of a protein 

in the larger context of a protein family [1, 39, 53, 77].  

Margaret Dayhoff [78], defines protein family as a group of proteins that perform 

similar biochemical functions; the pairwise identity between any two proteins in a 

protein family is >50%. However, it is now accepted that all detectable homologs are 

members of the same protein family. Coding portions of the genome are organized 

hierarchically as gene/protein families [79, 80]; these families are further subdivided into 

groups representing distinct subfamilies that have similar functions [32, 53, 60, 77, 81, 

82]. A protein family comprises proteins with the same function in different organisms 

but may also include proteins derived from gene duplications and rearrangements [83] in 

the same organism. Function prediction methods that utilize the protein family approach 

include the PANTHER system [84, 85], TIGRfams [86], and some models in PFAM 

[87]. 

To most reliably infer the function of a protein in the larger context of protein 

family, protein families should be divided into groups containing orthologs and paralogs 

representing distinct subfamilies. In the phylogenomic approach, a phylogenetic tree 

involving the different members of the protein family is obtained; the tree topology is 

then analyzed and the phylogenetic information encoded in the subfamily (or subtree) 

structure is used to infer likely functions for the uncharacterized members of the protein 

family. Uncharacterized genes can be assigned predicted function based on the 
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subfamily in which they are placed as function is conserved within orthologous 

subfamilies [32, 39, 53, 77, 82]. It is only recently that methods have been developed to 

allow high throughput placement of query genes into phylogenetic groups [88-90].  

With the growing recognition that homology-based methods of function 

classification are prone to systematic error [54, 60, 61], it has been shown that 

phylogenomic analysis addresses the deficiencies of function prediction by homology 

and improves the accuracy of prediction [39, 53]. Phylogenomic inference of protein 

molecular function has been applied to the detailed analysis of individual protein 

families [81, 91, 92], in comparative genomics [93, 94], and in reconstructing the 

evolutionary history of a segment of the human genome [95]. 

Pros and cons of phylogenomic analysis 

 Phylogenomic inference has its own share of pros and cons. The problem of 

annotation transfer from paralogous sequences is prevented by identifying orthologous 

sequences through phylogenetic tree analysis [60]. The disadvantages with this method 

lie in the fact that inherent technical and computational complexities make it laborious 

and difficult to automate [60]; in addition, the method cannot be applied to predict 

function for every sequence [53].   

 

Utility of Expressed Sequence Tag (EST) datasets 

Although it is well-known that whole genome sequencing projects are advancing 

rapidly, it is unlikely [96] that complete genome sequencing will be finished in the 

foreseeable future for many organisms of scientific, economic or agricultural interest. 
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For most eukaryotic organisms, the complete genome sequence is not available [97], and 

sequencing of Expressed Sequence Tags (ESTs) remains the primary tool for functional 

genomics approaches.  

An EST is a tiny portion of an entire gene [8, 98]; usually about 200 to 500 

nucleotides long and is representative of the genes expressed in the tissue at the point of 

cDNA library construction. ESTs are obtained by random sequencing of cDNA copies of 

mRNA sequences available (Figure 1.6); the utility of EST projects comes by repeatedly 

sequencing clones from a given library to generate many sequence tags as they provide 

an opportunity to understand the diversity of genes and the roles they play [99, 100]. The 

utility of ESTs is illustrated by the phylogenetic diversity of organisms represented in 

dbEST [101, 102], the NCBI’s EST database. As of Sep 2008, there are 55, 796, 748 

ESTs deposited in dbEST from thousands of organisms. 

EST analysis is a highly cost effective gene discovery method [8, 97, 98, 103] 

and EST datasets represent an important resource for comparative and functional 

genomics studies [104-106].  In the absence of completed genomes, ESTs help address 

these questions: 

1. What genes are there in the organism?  and  

2. What roles do they play? 
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Figure 1.6: Steps involved in obtaining ESTs. 
Cartoon depicting how expressed sequence tags (ESTs) are generated. 
 
 
 
EST sequence analysis  

In the case of sequencing of full-length cDNAs, multiple sequencing runs are 

made for purposes of verification, thereby producing cDNA sequences of high quality. 

In contrast, ESTs are sequenced only once, and without any verification. Errors arise 

from substitutions, insertions and deletions in the original mRNA, and from the 

experimental procedure. This presents a special set of problems for bioinformatics 

analysis [107]; ESTs are partial and error-prone, resulting in large fragmented datasets 
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with significant internal redundancy (Figure 1.7). Moreover, they are not curated in a 

highly annotated form and do not have a defined protein product.  

 

 

 

 

 

 

Figure 1.7: Fragmented and redundant nature of ESTs. 
Cartoon illustrating the fragmented and redundant nature of EST datasets. A protein 
coding gene with 13 ESTs spanning 3 exons is shown. 
 
 
 
Need for clustering ESTs 

Regardless of whether ESTs are used for gene identification or genomic 

annotation, maximum utilization of the information they encode can be obtained only by 

reconstructing a high-fidelity set of non-redundant transcripts. EST collections can be 

organized in the following different ways: 

1. Clustering – group ESTs that are derived from the same genes 

2. Assembling – derive consensus sequence from clustered ESTs 

3. Mapping – associate ESTs with exons in genomic sequences 

4. Translating – finding coding regions and identify reading frame 
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In the clustering step, ESTs are grouped on the basis of sequence similarity into 

clusters; the similarity threshold is set very high (>95%) and the comparisons are made 

over a specified window size. The clustered ESTs are then assembled where the 

assembly program aligns the EST sequences within a cluster and generates a contiguous 

overlapping sequence (or EST contig), or a singleton might arise when the EST(s) could 

not be grouped owing to their low similarity to other ESTs. The singletons may represent 

genes from rare mRNAs where only a single mRNA is available for the expressed gene, 

or may be a result of contamination or poor quality sequence. The contig is a consensus 

sequence of several ESTs and is more reliable than the individual ESTs, thereby 

reducing the effects of errors. The contigs are consensus sequences having improved 

sequence quality [100]. Clustering and assembly of ESTs has numerous advantages, 

including, but not limited to, the following: 

1. function predictions are significantly improved [97] using the EST consensus 

sequences coming from the clustering and assembly pipeline; and 

2. clustered EST consensus sequences reduce the search space for similarity 

searches and help obtain an accurate estimate of the number of genes. 

What is an EST cluster? 

 An EST cluster contains fragmented EST and (if known) gene sequence data that 

has been consolidated and indexed by gene(s) or transcript isoform. In doing so, all 

expressed data pertaining to a single gene or isoform exists within a single index class 

[100]. Accurate clustering of ESTs requires a strategy that clusters members based on 

verifiable information – sequence similarity often being the method of choice.   
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Different steps involved in EST clustering 

EST clustering and assembly is illustrated in Figure 1.8, and involves the 

following steps: 

1. Pre-processing: The sequences are screened for low-quality regions, bacterial 

DNA and other contaminants. The sequences are then masked for vectors, 

repeats and low-complexity sequences. The ‘pre-processed’ sequence is referred 

to as ‘high-quality’ sequence. 

2. Initial Clustering: ESTs by their nature have erroneous sequence data caused by 

base-calling problems. The goal of this ‘initial clustering’ step is to incorporate 

overlapping ESTs into the same cluster and is usually achieved by using a 

sequence similarity metric over a specified window size (e.g. >95% identity over 

100 bp window). This ‘initial clustering’ can be loose or stringent [108], and 

either can be either supervised or unsupervised. A loose clustering schema results 

in larger clusters and a greater inclusion of alternate expressed forms within each 

cluster. Loose clustering provides for greater coverage at a cost of lower cluster 

reliability. Stringent clustering provides greater initial fidelity at a cost of lower 

coverage of expressed gene data and a lower inclusion rate of alternate expressed 

gene forms; the stringent clustering method results in fewer, shorter consensus 

sequences. Stringent clustering and assembly results in more singletons while 

also generating more high-quality contigs [100]. In the supervised clustering 

methodology, ESTs are grouped with respect to known reference sequences or 

templates such as full-length mRNAs, protein sequences, and genomic 
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sequences. In unsupervised clustering, ESTs are grouped without using any 

reference sequences. 

3. EST Assembly:  Once the ‘initial clustering’ is done, a multiple sequence 

alignment for each cluster is generated to obtain a ‘consensus sequence’ and/or 

singletons. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.8: Cartoon illustrating EST clustering and assembly. 
In the figure, clustering of 11 ‘High quality’ EST sequences results in 11 ESTs getting 
grouped into 3 clusters and the remaining 2 ESTs are singletons. The assembly process 
results in 5 EST consensus sequences - 3 EST contigs and 2 singletons. 
 
 
 
Comparison of the existing EST clustering systems  

The aim of EST clustering is to generate a cluster of ESTs that share a transcript 

or the gene parent. Systems that are commonly used and have broad acceptance include 
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TGI (TIGR Gene Indices) [109], NCBI’s UniGene [110, 111] and Sequence Tag 

Alignment Consensus Knowledgebase (STACK) [112] from South African National 

Bioinformatics Institute (SANBI). (Note: TGI is now known as DFCI Gene Indices or 

DGI; DFCI denotes the Dana-Farber Cancer Institute). These three systems share an 

overall approach, but differ in the choice of algorithms used, reconstruction aims and 

coverage of transcript diversity. The three systems perform a similar pre-processing step 

that screens out vector, repeat, and low-complexity sequences. Each system differs in the 

way the ‘initial clustering’ and ‘EST Assembly’ is done. Figure 1.9 characterizes the 

similarities and differences in EST clustering and assembly between the three methods 

(TGI, UniGene and STACK). 

TIGR Gene Indices (TGI) 

ESTs from dbEST are processed to remove vector, poly A/T tails, adaptor 

sequences and contaminating bacterial sequences. Gene sequences are parsed from the 

Coding Sequences (CDSs) and CDS-join features in GenBank protein records pertaining 

to the species in question [96]; additional Expressed Transcript (ET) sequences are 

obtained from the TIGR EGAD database [113].  For construction of the gene indices, 

TGI uses Expressed Transcripts (ETs), Tentative Consensus Sequences (TCs) from 

previous build (if available) and CDSs as templates. Using these templates, pairwise 

comparisons of previously unclustered sequences (singletons) and new ESTs are 

performed to identify overlaps and generate initial clusters using NCBI’s Megablast 

[114].  
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Figure 1.9: Comparison of the EST clustering steps of UniGene, TIGR and 
STACK. 
Cartoon depicting the different steps in the EST clustering pipeline used by existing EST 
clustering systems like UniGene, TIGR and STACK. Used with permission from Dr. 
Lorenzo Cerutti [115], Swiss Institute of Bioinformatics. UniGene does not perform an 
assembly of the initial ‘EST clusters’; instead each cluster is represented by the longest 
sequence. STACK concentrates on human sequences and differs from TIGR and 
UniGene by not using sequence similarity to cluster ESTs. Both STACK and TIGR 
assemble the initial EST clusters to generate consensus sequences and singletons. 
 
 
 

Sequences are grouped into the same cluster if they have ≥ 95% identity over 

lengths greater than 40 bases and have < 20 bases mismatch at either end [116]. The 

resulting clusters are assembled by Paracel Transcript Assembler [117] to obtain 

Tentative Consensus Sequences, which represent the underlying mRNA transcripts. 
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These TCs are then annotated using information in GenBank and/or protein homology 

[116].   

The TGI clustering methodology results in shorter consensus sequences [115] 

compared to UniGene and STACK. TGI tightly groups highly related sequences, 

separates splice variants into different clusters and discards under-represented or 

divergent sequences. 

UniGene 

 Clusters are built from genes and mRNAs in GenBank. ESTs are initially 

clustered using GenBank CDSs and mRNAs as ‘seed’ sequences. ESTs that join two 

clusters of mRNA/genes are discarded. To minimize the frequency of multiple clusters 

being identified for a single gene, UniGene clusters are required to contain at least one 

sequence carrying readily identifiable evidence of having reached the 3′ terminus. In 

other words, UniGene clusters must be anchored at the 3′ end of a transcription unit. 

Hence, any resulting cluster without a polyadenylation signal or not having at least two 

3’ ESTs is discarded [111].  

UniGene clusters ESTs similar to the ‘seed’ sequence and categorizes the clusters 

into “highly similar” to the seed (defined as >90% identity in the aligned region), 

“moderately similar” (70-90% identity), or “weakly similar” (<70% identity) [118]. 

UniGene uses pairwise comparisons at varying levels of stringency to group sequences, 

placing closely related and alternatively spliced transcripts into one cluster [115]. 

UniGene per se does not perform an ‘EST cluster assembly’ of the generated clusters 

and consensus sequences are not made; instead each cluster is represented by the longest 
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sequence. In summary, UniGene does not actually reconstruct transcripts but instead 

attempts to define their cluster membership based on NCBI data.  

A common error in UniGene is incorrect clone joining, where irrespective of 

sequence overlap, 5’ and 3’ ESTs are placed in the same cluster if they share a parent 

clone. Another drawback of the sequence comparison method in UniGene results in 

unrelated clusters being joined together by chimerism and other artifacts. 

STACK  

 STACK concentrates on human data and an initial sub-partitioning step is 

performed where human ESTs from GenBank are grouped in tissue-based categories. 

After masking for repeats, vectors and other contaminants, the resulting ‘high quality’ 

ESTs are subject to a ‘loose’ clustering approach using d2_cluster [119]. The 

‘d2_cluster’ approach is not based on alignments; instead it performs comparisons via 

non-contextual assessment of the compositions and multiplicity of words within each 

sequence. The ‘d2_cluster’ looks for the co-occurrence of n-length words (n=6) within 

window sizes of 150 bases having at least 96% identity.  

 In a stringent assembly process, the clusters from ‘d2_cluster’ are initially 

assembled by PHRAP [120]. CRAW [121] is used to generate consensus sequences with 

maximized length and CRAW partitions a cluster into sub-ensembles if ≥50% of a 100 

base window differs significantly from the remaining sequences in the cluster. The 

different sub-ensembles are ranked according to the number of assigned sequences and 

number of called bases for each sub-ensemble. 
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 STACK places highly related sequences into the same cluster, as well as 

sequences related by rearrangements or alternate splicing. STACK generates longer 

consensus sequences and integrates 30% more ESTs than UniGene and produces longer 

consensus sequences compared to TGI [115].  

Figure 1.10 is a cartoon that depicts the differences in stringency levels in the 

EST clustering pipeline used by the existing EST clustering schemes like UniGene, 

TIGR and STACK. 

 
 
 

 

 

 

 

 

 

 
 
 
 
Figure 1.10: Comparison of the EST clustering stringency levels of TIGR, UniGene 
and STACK.  
Cartoon depicting the stringency differences between the three EST clustering methods -
TIGR, UniGene and STACK. Used with permission from Dr. Lorenzo Cerutti [115], 
Swiss Institute of Bioinformatics. TIGR, the most stringent amongst all the methods 
[115], tightly groups highly related sequences and separates splice variants into different 
clusters. Both UniGene and STACK place highly related and alternatively spliced 
transcripts in the same cluster. However, STACK [115] generates longer consensus 
sequences and integrates 30% more ESTs than UniGene and produces longer consensus 
sequences compared to TIGR Gene Indices. 
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Function predictions using EST datasets  

 In the absence of completely sequenced genomes and the accompanying high-

quality annotations, one can use Expressed Sequence Tag (EST) datasets to gain insights 

about the functions encoded in the genome by first determining what genes are there in 

the organism and then finding out what roles they play. Annotated EST datasets address 

the need of connecting ESTs with the functions they encode.  

Need for protein sequence comparisons using ESTs  

DNA sequences produced by single-pass EST sequencing are of lower quality 

than traditional “finished” GenBank sequences and the EST sequences are more likely to 

contain frameshifts when translated to protein. These frameshift errors are troublesome 

in searches with single-pass EST sequences as these regions are likely to be protein-

coding, which are much more effectively identified by protein sequence comparison than 

by DNA sequence comparison [15].  In addition, the evolutionary look-back time is 

more than doubled by protein sequence comparisons as against DNA sequence 

comparisons [122, 123]; hence it makes sense to compare protein sequences if the 

sequences encode proteins. One of the approaches that has been proved invaluable in 

comparative genomics and computational biology in general is that whenever distant 

relationships are involved and sensitivity is an issue, protein sequences rather than 

nucleotide sequences should be compared directly [24]. 

Function predictions with EST datasets using sequence homology based approach 

A common strategy for obtaining function annotations for EST datasets is to 

search well-annotated proteomes using BLASTX/FASTX (translated DNA query against 
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a protein database), obtain information about the homolog with the “best hit” and to 

transfer the annotations of the “best hit” match to the EST consensus sequence [104-

106].  

There are limitations of subjecting EST libraries to whole proteome searches due 

to the short length of the translated EST sequence (the equivalent of 30 to 150 amino 

acids) which would match only part of the protein; for example, a protein domain or part 

of it [97]. The accuracy of the computational function predictions is significantly 

improved [97] when EST consensus sequences  are used instead of the individual ESTs.  

Function predictions with EST datasets using a phylogeny based approach 

 ESTs can be coarsely grouped based on their matches to proteins, and subject to 

clustering and assembly to obtain EST gene families. The EST consensus sequences in 

these EST gene families can be grouped with other proteins in the family and subject to 

a phylogenomic inference pipeline. The topologies of the phylogenetic trees can be 

analyzed to infer likely functions for the EST consensus sequences based on orthologous 

proteins. 

 

Work in this dissertation  

In this dissertation, Bos taurus and Sus scrofa ESTs were clustered and 

assembled using vertebrate proteins from Ensembl as the framework. This clustering 

was performed as part of the TAMUClust pipeline, a new EST clustering method 

developed by Dr. Elsik. The performance of TAMUClust was compared to currently 

used EST clustering schemes (TGI/UniGene) by using Bos taurus EST clusters from the 
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respective data sources and designing cluster equivalence comparison studies (Chapter 

II).  The Bos taurus and Sus scrofa EST consensus sequences obtained were annotated 

by transferring annotations of the Ensembl vertebrate protein(s) following sequence 

homology searches and phylogenetic analysis (Chapter III and Chapter IV).   
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CHAPTER II 

VALIDATION OF TAMUClust - A NOVEL EST CLUSTERING METHODOLOGY 

SYNOPSIS 

 Expressed Sequence Tags (ESTs) are single pass sequence reads from randomly 

selected cDNA clone. They serve as a viable alternative to the genome sequencing of 

many organisms as they provide a high-throughput method to sample an organism’s 

transcriptome and identify expressed genes. ESTs contain high error rates, and the 

information encoded is often fragmented and redundant. Therefore, EST sequences are 

clustered into groups likely to have been derived from the same genes and this process 

improves the quality of meaningful information that can be derived from ESTs. 

Chimerism, the single largest contributor to EST misassemblies, can be avoided if ESTs 

are initially grouped into clusters based on their matches to proteins, and then subject to 

clustering and assembly. TAMUClust is a new EST clustering method that uses the 

protein framework to cluster ESTs. The TAMUClust Bos taurus EST clusters are 

compared with the Bos taurus EST clusters from TIGR Gene Indices (TGI), the current 

method of choice in EST clustering. Two types of comparisons are made: (i) 

determining cluster equivalence for TAMUClust/TGI using bovine genome aligned EST 

clusters as the reference and (ii) determining how many genes are represented in 

TAMUClust/TGI using predicted bovine transcripts as the reference. Results indicate 

that the TAMUClust method compares well with TGI.  
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BACKGROUND 

The utility of Expressed Sequence Tags (ESTs) 

 Expressed Sequence Tags (ESTs) are single pass sequence reads from randomly 

selected cDNA clones and provide a high-throughput cost-effective method to sample an 

organism’s transcriptome [8, 98]. ESTs are short (usually 200-500 bases in length), 

unedited sequence reads and represent a tiny portion of a protein coding gene. ESTs 

offer a rapid and inexpensive route to gene discovery [8], reveal expression and 

regulation data [124], and highlight gene sequence diversity and alternative splicing 

[125]. EST datasets have been utilized as an alternative to the genome sequencing of 

many organisms, earning the label, the ‘poor man’s genome’ [126]. 

 

Need for EST clustering  

ESTs are sequenced only once, and without any verification. The high-volume 

and the high-throughput nature of the EST datasets have a lot of downsides – ESTs 

contain high error rates with the errors arising from substitutions, insertions and 

deletions in the original mRNA, and from the experimental procedure. Maximum 

utilization of the information enoded in ESTs can be obtained by clustering ESTs into 

groups that have been derived from the same genes, resulting in a high-fidelity set of 

non-redundant transcripts. Sequence identity between the cluster members is the method 

of choice in clustering ESTs. 
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Need of EST clustering using a protein family framework and associated benefits 

Chimeric EST clusters are encountered when ESTs representing different genes 

get grouped together in a single cluster. Chimerism is the single largest contributor to 

generation of ‘incorrect EST assemblies’ (misassemblies). Chimeric EST clusters can be 

eliminated by performing an initial coarse level grouping of ESTs based on their 

matches to proteins. In a subsequent step, clustering and assembly of ESTs can be done 

to obtain EST gene families. By incorporating a protein framework to cluster ESTs, the 

cluster quality can be improved and misassemblies can be minimized.  

The need for clustering ESTs using a protein framework lead to the development 

of a new EST clustering method called TAMUClust. This method was developed in our 

lab by Dr. Elsik.  

 

Description of TAMUClust - a novel EST clustering system 

TAMUClust uses a protein framework to cluster and assemble ESTs in a two-

step clustering process.  

In the first step, vertebrate proteins are clustered into protein families using a 

combination of single-linkage and average-linkage clustering. The protein families 

generated are non-redundant, comprehensive set of full-length protein clusters with 

homogeneous domain architecture within clusters and the pairwise sequence identity 

between any two proteins within each cluster is at least 55%.  A total of 219,433 proteins 

from the proteomes for Homo sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, 
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Danio rerio, Takifugu rubripes and Tetraodon nigroviridis were obtained from Ensembl 

[9] in April 2005; these proteins were distributed across 10,992 protein families.  

In the second step, TAMUClust uses the protein families obtained in the previous 

step as a framework to group ESTs into gene families using a translated-DNA:protein 

search. For ESTs within each family, a DNA:DNA sequence identity metric is used to 

build consensus sequences. The protein comparison step incorporated before assembling 

ESTs helps identify coding regions and produce reliable protein translations. 

Other commonly used EST Clustering systems such as TGI (TIGR Gene 

Indices), UniGene, and STACK do not use a protein framework to cluster and assemble 

ESTs. 

 

Importance of generating the correct EST clusters 

 DNA microarrays (DNA chips) allow for simultaneous measurement of 

transcription levels for every gene. A DNA microarray is a slide on which an array of 

spots has been deposited. Each spot contains many copies of a specified DNA sequence 

that has been anchored chemically to the slide surface, with a different DNA sequence 

for each spot.  

In the long oligonucleotide array, the oligos are usually 60-70 bases long and are 

selected for their uniqueness. These are used to profile the gene expression in a genome, 

and the oligos may be designed such that there is only one oligo per gene or transcript.  

In the absence of completed genomes, ESTs are used to determine what genes 

are there in the organism and to design the oligonucleotide probes. In this scenario, it is 
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important to ensure that the transcript reconstruction from ESTs is accurate and non-

redundant. Inaccuracies with EST clustering would result in problems in selecting 

sequences for oligonucleotide design. Usually one EST per cluster is selected for oligo 

design. Overclustering (i.e. grouping unrelated ESTs) would result in lack of 

representation of some genes; underclustering (i.e. splitting same-gene ESTs into 

different clusters) would cause multiple oligos to be designed for one gene. Designing 

oligonucleotide probes by utilizing ESTs clustered using a protein framework could 

minimize probe redundancy and maximize representation of different genes.  

 

Overview of the work in this chapter 

 TAMUClust is a novel EST Clustering system developed in our lab by Dr. Chris 

Elsik. In this method, ESTs are clustered and assembled using a protein framework. 

Pilot study 

A pilot study was carried out in January 2004 using TAMUClust Bos taurus EST 

clusters generated using Ensembl human protein families as a framework. Using the 

Qsingle metric, the results of TAMUClust were compared to those obtained with other 

commonly used methods like TGI [127] and UniGene [110] for the same set of Bos 

taurus ESTs.  

For the purposes of our pilot study comparison analyses, the reference 

classification was either the Bos taurus Gene Indices (BTGI) obtained from TGI or the 

UniGene Bos taurus EST clusters whereas the query classification refers to the 

TAMUClust Bos taurus EST clusters. However, this is not to say that the TGI or 
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UniGene is “correct”. They were used as “references” in the pilot study as they are the 

existing methods of choice in EST clustering. 

Results from the pilot study indicated that TAMUClust performance compares 

well with TGI and UniGene. We chose not to include further comparisons of 

TAMUClust with UniGene as the clustering methodology of TAMUClust is similar to 

TGI than UniGene. 

Comparisons with assembled genome 

In August 2006, the third version of the bovine genome assembly, Btau_3.1 was 

released with a 7.15X coverage [10, 11]. The availability of this high quality bovine 

assembly came in handy to compare the performance of TAMUClust Bos taurus EST 

clusters against the Bos taurus Gene Indices (BTGI) obtained from TGI/DGI [128] by 

using bovine ESTs aligned to the bovine genome assembly 3.1 as the reference (gold 

standard). Results from this analysis indicated that the TAMUClust performance was 

comparable to TGI, and marginally better than TGI. 

Comparisons using predicted gene models 

In July 2008, the fourth version of the bovine genome assembly, Btau_4.0 was 

released. Two kinds of ‘megablast’ analyses were carried out by using transcripts from 

the Bos taurus Ensembl Release 50 [129] as the reference (Gold standard).  

In the first analysis, TAMUClust/BTGI bovine EST consensus sequences were 

used as the query and searched against the bovine transcripts in Ensembl Release 50 

(July 2008).  The performance of TAMUClust and BTGI was compared by obtaining 
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statistics on the Ensembl transcripts identified or missed by the respective EST 

clustering methods. More specifically, this analysis was designed to address the question  

“Does TAMUClust gain anything by including singletons in its gene indices”. Since 

TAMUClust used a protein framework to cluster and assemble ESTs, TAMUClust also 

included singletons in the gene indices (consensus sequences) it generated where these 

singletons had a statistically significant sequence similarity to a homologous protein. 

BTGI performs a nucleotide-nucleotide comparison to cluster and assemble ESTs, and 

discards ESTs that do not match the clustering criteria. As a result, the gene indices 

generated by BTGI were devoid of singletons. Based on the bovine transcripts identified 

by TAMUClust singletons and missed by BTGI consensus sequences, one can conclude 

that TAMUClust singletons were not clustering artifacts and TAMUClust singletons 

should be included in the final gene indices.  

 In the second analysis, the bovine transcripts in Ensembl Release 50 were used as 

the query and searched against TAMUClust/BTGI bovine EST consensus sequences. 

This analysis was designed to obtain an estimate of the transcript coverage in 

TAMUClust and BTGI by obtaining a count of the number of predicted transcripts that 

match TAMUClust/BTGI consensus sequences. Results from this study indicated that 

the number of predicted transcripts that match TAMUClust/BTGI consensus sequences 

were almost the same. 
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MATERIALS AND METHODS 

Qsingle - cluster equivalence comparison metric  

Gracy and Argos [130] have developed a method that helps evaluate the quality 

of a new classification scheme B in terms of a reference classification A for the same 

dataset X. Here, the number of True Positives (TP) is given by   (|a ∩ b|-1), that of False 

Positives (FP) is given by |b\a|, and that of False Negative (FN) is given by |a\b|. In this 

method, each class a ∈A is associated with the group b ∈B which maximizes the 

quantity TP-FP-FN. Quality is defined by the percentage of the true positives 

(100*TP/TP+FP+FN). The underlying meanings of the conventions used in the 

comparison metric described above are as follows: 

1. a ∩ b refers to the intersection of ‘a’ and ‘b’ – in other words, it refers to the 

number of members common to ‘a’ and ‘b’. 

2. b\a refers to members present in ‘b’ and absent from ‘a’. 

3. a\b refers to members present in ‘a’ and absent from ‘b’. 

 

This method of comparing the quality of a new classification in terms of a 

reference classification as indicated by the mutual agreement of the two classification 

schemes has been used in the ProtoMap [131] classification evaluation. The ProtoMap 

authors have termed this ‘Quality Index’ as ‘Qsingle’ and we also use the same term in our 

cluster equivalence comparison analyses. 
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Qsingle calculation 

The different statistical parameters (tp, fp, fn) and the Qsingle metric were obtained 

using the following steps: 

1. identify the common ESTs in both datasets – the new classification scheme ‘B’ 

and the reference classification scheme ‘A’. 

2. for every EST ‘E’ in ‘B’ do; 

3. obtain the cluster_id in A and B for the cluster that has ‘E’. Lets call them 

cluster_id_A and cluster_id_B 

4. obtain all the other ESTs in cluster_id_A and cluster_id_B. Lets denoted the 

members as cluster_id_A_members and cluster_id_B_members 

5. identify the cluster_id_A associated with cluster_id_B that maximizes the 

quantity TP-FP-FN 

6. Qsingle % TP  = (100* TP/TP+FP+FN) 

7. Qsingle % FP = (100* FP/TP+FP+FN) 

8. Qsingle % FN = (100* FN/TP+FP+FN) 

9. The different Qsingle indices (Qsingle %TP, Qsingle %FP and Qsingle %FN) are 

segregated into different bins, for e.g. (0 to 10%, 10 to 20%, and so on).  

 

Methods used in the pilot study 

Pilot study: TAMUClust Bos taurus EST clusters  

Bos taurus ESTs were downloaded from dbEST [101] in March 2003, and after 

quality control (removal of low quality sequence, untrimmed vector, linker, ribosomal, 
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mitochondrial, poly A/T tails),  313,503 ‘High Quality’ ESTs were obtained. These 

ESTs were passed through the TAMUClust pipeline which resulted in 37,025 EST 

consensus sequences (15,157 contigs and 21,868 singletons). 

Pilot study: Bos taurus EST clusters from TIGR Gene Indices 

In Sep 2003, Bos taurus EST clusters were obtained from Bos taurus Gene 

Indices (BTGI) Release 9 at The Institute of Genome Research (TIGR) Gene Indices 

database [127]. This BTGI release had 268,328 ESTs distributed in 34,976 clusters. 

Pilot study: Bos taurus EST clusters from UniGene 

In Sep 2003, Bos taurus EST clusters (UniGene Build 49) were obtained from 

UniGene [110]. This UniGene Build had 209,550 ESTs distributed in 18,153 clusters.  

Note: The individual ESTs and also the number of ESTs in BTGI/UniGene are 

different from what it is in TAMUClust because of the different dates on which the 

respective sources (TAMUClust/BTGI/UniGene) downloaded the ESTs from dbEST. 

Pilot study: Qsingle indices  

Qsingle quality comparisons as described above were performed by means of these 

two comparisons:  

i. TAMUClust Bos taurus EST clusters versus BTGI Bos taurus EST clusters using 

119,047 ESTs common to both datasets. 

ii. TAMUClust Bos taurus EST clusters versus UniGene Bos taurus EST clusters 

using 97,245 ESTs common to both datasets. 
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Methods used in comparisons with the assembled genome (Gold standard 

comparisons)  

Gold standard comparisons: TAMUClust Bos taurus EST clusters  

Bos taurus ESTs were downloaded from dbEST [101] in April 2005, and after 

quality control (removal of low quality sequence, untrimmed vector, linker, ribosomal, 

mitochondrial, poly A/T tails),  308,132 ‘High Quality’ ESTs were obtained. These 

ESTs were passed through the TAMUClust pipeline which resulted in 46,731 EST 

consensus sequences (24,665 contigs and 22,066 singletons). 

Gold standard comparisons: BTGI (Bos taurus Gene Indices) EST clusters 

In March 2007, the file “BTGI.release_12.zip” was obtained from the ftp site 

[132] of the Bos taurus Gene Indices at DGI [133]. The file was decompressed and the 

resulting files were parsed to obtain information on the BTGI clusters and the constituent 

ESTs. The BTGI dataset had 955,223 ESTs clustered into 90,392 EST clusters. 

Note: The individual ESTs and also the number of ESTs in BTGI would be 

different from what it is in TAMUClust depending on the dates on which the respective 

sources (TAMUClust/BTGI) downloaded the ESTs from dbEST. 

Gold standard comparisons: bovine genome aligned EST clusters  

Bos taurus ESTs (1,165,913 ESTs) were downloaded from the NCBI dbEST 

database [101] in April 2007. Using the Splign alignment and splice modeling tool [134] 

and %identity >95%, bovine ESTs were aligned to the third version of the bovine 

assembly (Assembly 3.1, 7.1X coverage [10, 11]). Alignments were stored as gff3 [135] 

files and perl scripts were written to parse the gff3 files to obtain ESTs that have only 
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one alignment location on the genome. Further perl processing was done to identify 

overlapping ESTs and grouped into clusters. The bovine genome aligned EST clusters 

constitute the reference classification (or the gold standard dataset); they comprised of 

975,728 ESTs in 44,579 clusters. 

Qsingle indices in the gold standard comparisons 

Qsingle quality comparisons as described above were performed by means of these 

comparisons:  

1. One to one comparison of TAMUClust Bos taurus EST clusters and gold 

standard dataset using 209,645 ESTs common to both datasets. 

2. One to one comparison of BTGI Bos taurus EST clusters and gold standard 

dataset using 702,128 ESTs common to both datasets. 

3. One to one comparisons of TAMUClust Bos taurus EST clusters vs gold 

standard dataset and BTGI Bos taurus EST clusters vs gold standard dataset 

using 198,438 ESTs common to all three datasets. 

 

To account for the fact that BTGI Bos taurus EST clusters did not include 

singletons whereas TAMUClust clusters included singletons, the above Qsingle analyses 

were repeated (henceforth referred to as ‘singleton minus’ analyses) by excluding 

singletons from the TAMUClust dataset. 

1. Singleton minus one to one comparison of TAMUClust Bos taurus EST clusters 

and gold standard dataset using 198,525 ESTs common to both datasets. 
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2. Singleton minus one to one comparisons of TAMUClust Bos taurus EST clusters 

vs gold standard dataset and BTGI Bos taurus EST clusters vs gold standard 

dataset using 192,920 ESTs common to all three datasets. 

 

Methods used in comparisons with the predicted gene models 

Predicted bovine transcripts 

The file ‘Bos_taurus.Btau_4.0.50.cdna.all.fa.gz’ was obtained from the Ensembl 

ftp site for Bos taurus Ensembl Release 50 [129]. Perl scripts were written to identify the 

longest transcript for each gene, and this transcript dataset served as the ‘reference’ 

dataset in the predicted transcript comparison study. The reference dataset had 21, 722 

transcripts.  

Megablast analysis I  

This analysis was designed to address the question “Does TAMUClust gain 

anything by including singletons in its gene indices”. To address this, we used Megablast 

[114], and the TAMUClust/BTGI consensus sequences were used as the query and 

searched against the ‘reference transcript dataset’ from the Bos taurus Ensembl Release 

50 as mentioned above.  

The Megablast results were filtered to include only those alignments which were 

longer than 100 bases in alignment length and had sequence identity ≥ 95%. Perl scripts 

were written to parse the Megablast results in order to obtain information on the 

Ensembl transcripts identified or missed by the respective EST clustering methods. We 

first determined if there were any Ensembl transcripts that aligned to TAMUClust 
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consensus sequences but were missed by BTGI consensus sequences; from these 

TAMUClust hits, we then identified the TAMUClust singletons.  

Megablast analysis II 

This analysis was designed to identify the extent of coverage of the predicted 

bovine transcripts in the TAMUClust and BTGI datasets. To address this, the ‘reference 

transcript dataset’ from the Bos taurus Ensembl Release 50 as mentioned above was 

used as the query and searched against the TAMUClust/BTGI consensus sequences.  

The Megablast results were filtered to include only those alignments which were 

longer than 100 bases in alignment length and had sequence identity ≥ 95%. Perl scripts 

were written to parse the Megablast results in order to obtain information on the extent 

of transcript coverage in the TAMUClust and BTGI datasets using the ‘reference 

transcript dataset’. 

 

RESULTS AND DISCUSSION 

As an aid to the reader, Table 2.1 details the datasets involved in the various 

Qsingle analyses performed in this study and the Table/Figure in which the corresponding 

Qsingle analysis is discussed. The gold standard dataset in the Qsingle analyses described 

below refers to the bovine genome aligned EST clusters (bovine ESTs aligned to the Bos 

taurus Assembly 3.1).  
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Table 2.1: Table detailing the various Qsingle analyses performed and the 

Table/Figure in which they appear in this chapter. 

 

Study Type of  Qsingle analysis EST datasets used Table/Figure 

Pilot study 

TAMUClust as query and BTGI 

as reference 

ESTs common to TAMUClust 

and BTGI 

Table 2.3,  

Figures 2.1 and 

2.2 

TAMUClust as query and 

UniGene as reference 

ESTs common to TAMUClust 

and UniGene 

Table 2.4,  

Figures 2.1 and 

2.2 

Gold standard 

(bovine genome 

aligned ESTs) study 

TAMUClust as query and 

bovine genome aligned ESTs 

as reference 

ESTs common to TAMUClust 

and bovine genome aligned 

EST clusters 

Table 2.7,  

Figures 2.3 and 

2.4 

BTGI as query and bovine 

genome aligned ESTs as 

reference 

ESTs common to BTGI and  

bovine genome aligned EST 

clusters 

Table 2.8,  

Figures 2.3 and 

2.4 

TAMUClust  or BTGI as query 

and bovine genome aligned 

ESTs as reference 

ESTs common to TAMUClust, 

BTGI and bovine genome 

aligned EST clusters 

Table 2.9, 

Figures 2.5 and 

2.6 

Singleton minus 

analysis I 

TAMUClust as query and  

bovine genome aligned ESTs  

as reference 

Excluding TAMUClust 

singletons and using ESTs 

common to TAMUClust and  

bovine genome aligned EST 

clusters 

Table 2.10, 

Figures 2.7 and 

2.8 

Singleton minus 

analysis II 

TAMUClust or BTGI as query 

and bovine genome aligned 

ESTs as reference 

Excluding TAMUClust 

singletons and using ESTs 

common to TAMUClust, BTGI 

and bovine genome aligned 

EST clusters 

Table 2.12, 

Figures 2.10 

and 2.11 
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A pilot study was carried out in 2004 using TAMUClust Bos taurus EST clusters 

generated using Ensembl human protein families as a framework. Using the Qsingle 

metric, the TAMUClust EST clusters (query classification) were compared with other 

commonly used methods (the reference classification) like BTGI and UniGene for the 

same set of Bos taurus ESTs.  

Table 2.2 compares the number of clusters and cluster size for the Bos taurus 

datasets being compared (TAMUClust vs BTGI and TAMUClust vs UniGene) in the 

pilot study carried out in Jan 2004 using ESTs common to the datasets being compared. 

TAMUClust has increased overall number of clusters by 60% compared to BTGI 

(27,183 vs 16,941) and by 156% compared to UniGene (19,943 vs 7,777). TAMUClust 

has far more singletons compared to both BTGI and UniGene (12,801 for TAMUClust 

vs 2640 for BTGI and 10,774 for TAMUClust vs 1203 for UniGene). TAMUClust has a 

~2 fold more clusters compared to UniGene for clusters with two to five members, while 

the numbers were comparable between TAMUClust and BTGI. The cluster sizes for 

clusters having >5 members were more or less comparable between the datasets being 

compared (TAMUClust vs BTGI, TAMUClust vs UniGene). The high number of 

singletons and the relatively higher number of clusters with two to five members for 

TAMUClust clusters reflects the stringent nature of the TAMUClust clustering process. 
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Table 2.2: Cluster size distribution for the Bos taurus ESTs from the pilot study 

using ESTs common to TAMUClust, BTGI and ESTs common to TAMUClust, 

UniGene.  

Size of cluster 

(number of 

sequences) 

TAMUClust  vs BTGI TAMUClust vs UniGene 

TAMUClust BTGI TAMUClust UniGene 

1 12,801 2,640 10,774 1,203 

2 – 5 9,579 9,085 5,114 2,541 

6 – 10 2,527 2.621 1,949 1,542 

11 – 20 1,505 1,654 1,357 1,350 

21 – 50 611 740 592 909 

51 – 100 102 134 101 144 

> 100 58 67 56 88 

Total 

27,183  

clusters from 

119,047 ESTs 

 16,941 

clusters from 

119,047 ESTs

19,943 

clusters from 

97,245 ESTs 

7,777 

clusters from 

97,245 ESTs 

 
 
 
It is important to understand that the cluster size versus abundance does not 

necessarily give information about the equivalence of clusters, i.e. whether or not the 

same cluster members exist in the datasets being compared. To elaborate, Classification 

Scheme A could have ESTs J and K in a cluster of size two, whereas Classification 
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Scheme B could have ESTs K and L in a cluster of size two or have ESTs M and N in a 

cluster of size two, with ESTs J and K existing in some other cluster of a different size. 

Hence, it is important to first identify the cluster in the different classification schemes 

housing the EST under comparison and then compare the members of the clusters 

between the two schemes to determine the degree of agreement. In this scenario, we use 

the Qsingle metric which evaluates the quality of a new classification scheme B by 

comparing it to a reference classification scheme A for the same dataset X.   

 

Interpreting the Qsingle metric  

The Qsingle index determines quality based on the percentage of True Positives 

(Qsingle %TP), percentage of False Positives (Qsingle %FP) and percentage of False 

Negatives (Qsingle %FN) obtained in the analysis. In this method which compares the 

performance of a new classification scheme B to a reference classification A, each class 

a ∈A is associated with the group b ∈B which maximizes the quantity TP - FP - FN. 

The Qsingle %TP, Qsingle %FP and Qsingle %FN values are determined as described in 

Materials and Methods.  

If the new classification scheme performs just as well as the reference 

classification scheme, this would result in 100% TP, 0% FP and 0% FN. However, such 

an idealistic situation is rarely encountered. Instead, what is seen is that the different 

Qsingle indices have values ranging from 0% to 100%. These indices are then segregated  
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into different bins, for e.g. 0 to 10%, 10 to 20%, and so on, where the cluster abundance 

across the different bins is an indicator of the performance of the new classification 

scheme when compared to the reference.  In such a scenario, interpretation of the 

different Qsingle indices give insights about how ‘close’ or ‘similar’ the new classification 

scheme is in comparison to the reference classification schemes. Given below are some 

of the indicators that signify a “very similar’ performance between the two schemes:  

1. A high percentage of clusters in the upper bins (>90%) for the Qsingle %TP 

parameter. 

2. A high percentage of clusters in the lower bins (<10%) for Qsingle %FP and Qsingle 

%FN parameters.  

 

The distribution of the Qsingle indices for the pilot study comparison between 

TAMUClust vs BTGI and TAMUClust vs UniGene are detailed in Tables 2.3 and 2.4 

respectively. 
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Table 2.3: Pilot study Qsingle analysis with TAMUClust as query and BTGI as 

reference for the same set of 119,047 Bos taurus ESTs. 

% Qsingle  bin 

TAMUClust vs BTGI pilot study 

Clusters in Qsingle 

True Positive Bins 

Clusters in Qsingle 

False Positive Bins 

Clusters in Qsingle 

False Negative Bins

= 0 0 14,147 10,882 

≥  0 and  ≤  10 185 14,533 11,707 

> 10 and  ≤  20 346 398 1,108 

> 20 and  ≤  30 388 307 733 

> 30 and  ≤  40 793 387 973 

> 40 and  ≤  50 1,929 368 1,546 

> 50 and  ≤  60 582 167 232 

> 60 and  ≤  70 1,102 213 364 

> 70 and  ≤  80 1,090 228 198 

> 80 and  ≤  90 961 193 68 

> 90 and  ≤  100 9,565 147 12 

= 100 8,973 0 0 
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Table 2.4: Pilot study Qsingle analysis with TAMUClust as query and UniGene as 

reference for the same set of 97,245 Bos taurus ESTs. 

% Qsingle  bin 

TAMUClust vs UniGene pilot study  

Clusters in Qsingle 

True Positive Bins 

Clusters in Qsingle 

False Positive Bins 

Clusters in Qsingle 

False Negative Bins

= 0 0 7,612 3,762 

≥  0 and  ≤  10 17 7,648 4,350 

> 10 and  ≤  20 37 24 834 

> 20 and  ≤  30 101 10 568 

> 30 and  ≤  40 264 22 679 

> 40 and  ≤  50 715 26 746 

> 50 and  ≤  60 423 5 280 

> 60 and  ≤  70 612 10 203 

> 70 and  ≤  80 712 10 94 

> 80 and  ≤  90 734 12 18 

> 90 and  ≤  100 4,162 10 5 

= 100 3,659 0 0 
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Pilot study  

In the one to one comparisons of TAMUClust with BTGI and TAMUClust with 

UniGene, there were 119, 047 ESTs common to TAMUClust and BTGI, and 97, 245 

ESTs common to TAMUClust and UniGene. Figure 2.1 depicts the distribution of the 

different clusters in the upper bins (>90%) for the Qsingle %TP parameter (from Tables 

2.3 and 2.4 above) in the pilot study comparison between TAMUClust vs BTGI and 

TAMUClust vs UniGene. 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            TP_TAMUClust_vs_BTGI                     TP_TAMUClust_vs_UniGene 

 
Figure 2.1:  Qsingle %TP for TAMUClust vs BTGI and TAMUClust vs UniGene in 
the pilot study using ESTs common to datasets being compared. 
Cluster abundance of the Qsingle %TP parameter in the upper bins (>90%) from the pilot 
study comparisons of bovine ESTs common to TAMUClust, BTGI and bovine ESTs 
common to TAMUClust, UniGene. 
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In the TAMUClust vs BTGI comparison, TAMUClust has 56.46% clusters in the 

90-100% TP bin and 52.97% clusters in the 100% TP bin. In terms of cluster 

equivalence comparisons, this means that 56.46% of the TAMUClust clusters have 

>90% of ESTs in the same cluster as it exists in BTGI.  The comparable cluster 

abundance numbers in the 90-100% TP bin and the 100% TP bin from the TAMUClust 

vs UniGene pilot study are 53.52% and 47.05% respectively.  

Figure 2.2 depicts the distribution of the different clusters in the lower bins 

(<10%) for the Qsingle %FP and Qsingle %FN parameters in the pilot study comparison 

between BTGI vs TAMUClust and UniGene vs TAMUClust. The Qsingle %FP metric for 

the TAMUClust vs BTGI comparison reveals that TAMUClust has 85.79% clusters in 

the 0-10% FP bin. This indicates that <10% of the ESTs in ~86% of the TAMUClust 

clusters have been grouped with unrelated members when compared with the 

corresponding BTGI clusters. The Qsingle %FN metric for the TAMUClust vs BTGI 

comparison reveals that TAMUClust has 69.1% clusters in the 0-10% FN bin. This 

metric indicates that <10% of the relatives (cluster members) for a particular EST are 

missing in 69.1% of the TAMUClust clusters when compared with the corresponding 

BTGI clusters. The comparable cluster abundance numbers in the 0-10% FP and the 0-

10% FN bins from the TAMUClust vs UniGene pilot study are 98.34% and 55.93% 

respectively.  
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Figure 2.2: Qsingle %FP, %FN for TAMUClust vs BTGI and TAMUClust vs 
UniGene in the pilot study using ESTs common to datasets being compared. 
Cluster abundance of the Qsingle %FP and %FN parameters in the lower bins (<10%) 
from the pilot study comparisons of bovine ESTs common to TAMUClust, BTGI and 
bovine ESTs common to TAMUClust, UniGene. 
 
 
 

For our pilot study, BTGI and UniGene were chosen as the reference sets 

because they are the most commonly used EST clustering methods. The cluster 

abundance (Table 2.2) from the pilot study highlights the stringency of TAMUClust 

(singletons, number of clusters with two to five members) compared to BTGI or 

UniGene. The Qsingle results (Tables 2.3 and 2.4, Figures 2.1 and 2.2) indicate that 

TAMUClust compares well with BTGI and UniGene, and is similar in performance. The 
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Qsingle metric was used as an indicator to determine how close or how similar the query 

classification (TAMUClust) was to the reference classification (BTGI or UniGene). 

However, disagreement between the query classification and reference classification in 

Qsingle analyses does not imply that the reference set is correct and the study set is 

incorrect.  

The clustering methodology of TAMUClust is more similar to BTGI than to 

UniGene with reference to the way splice variants are handled and consensus sequences 

are generated. TAMUClust and BTGI separate splice variants into different clusters 

[115] whereas UniGene places closely related and alternatively spliced transcripts in the 

same  cluster [115].  UniGene clusters often contain 5’ and 3’ reads from the same 

cDNA clone even if they do not overlap [115], and it does not perform an ‘EST cluster 

assembly’ of the generated clusters. In UniGene, consensus sequences are not made; 

instead each cluster is represented by the longest sequence [115]. Both TAMUClust and 

BTGI perform an ‘EST cluster assembly’ of the generated clusters to obtain consensus 

sequences. Based on this and in conjunction with the results from the pilot study, we 

chose to perform further comparisons of TAMUClust only with BTGI. We performed 

further studies to investigate the reasons for the high number of singletons and clusters 

having two to five members resulting from TAMUClust. To do so, we obtained the 

ESTs discarded by TAMUClust in the protein comparison step. The TAMUClust EST 

clustering statistics for Bos taurus ESTs obtained from dbEST in March 2003 are 

detailed in Table 2.5. 
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Table 2.5: TAMUClust EST clustering statistics in the pilot study using Bos taurus 

ESTs.  

Clustering Parameter Number of ESTs 

ESTs downloaded 317,390 

High Quality ESTs 313,503 

ESTs with protein match  142,741 

ESTs without protein match 170,762 

 
 
 

Of the 170, 762 ESTs discarded by TAMUClust in the protein comparison step, 

we found that 62, 832 ESTs were present in BTGI. We analyzed the reasons for rejection 

of ESTs by TAMUClust and the results for the same are detailed in Table 2.6. Our 

investigations reveal that that  ~77% of those ESTs did not have a protein match,  

whereas ~12% of the ESTs were removed in the sequence trimming step and ~11% of 

the ESTs were chimeric in nature. These further corroborated the highly stringent 

clustering nature of TAMUClust compared to BTGI. 

 
 
Table 2.6: Analysis of the Bos taurus ESTs in BTGI discarded by TAMUClust in 

the pilot study.  

Clustering Parameter Number of ESTs 

ESTs in BTGI ignored by TAMUClust 62,832 

ESTs without protein match 48,536 

Low quality ESTs  7,302 

Chimeric ESTs 6,994 



 62

Comparison with assembled genome (Gold standard comparisons) 

In August 2006, the third version of the bovine genome assembly, Btau_3.1 was 

released, which is a 7.1X coverage [10, 11]. This came in handy to compare the 

performance of the TAMUClust Bos taurus EST clusters against the Bos taurus Gene 

Indices (BTGI) clusters.  

For the purposes of these analyses, the ‘query’ classification is either 

TAMUClust or BTGI.  The bovine genome aligned EST clusters constitute the 

‘reference’ classification. These bovine genome aligned ESTs can be thought of as the 

gold standard dataset, and hence, we refer to the analyses using bovine genome aligned 

ESTs as the Gold standard comparisons.  

In the one to one comparisons of TAMUClust vs bovine genome aligned ESTs 

and BTGI vs bovine genome aligned ESTs using bovine ESTs common to the datasets 

being compared, 209,645 ESTs common to TAMUClust and the gold standard were 

identified, and 702,128 ESTs common to BTGI and gold standard were identified. Qsingle 

analyses as described in Materials and Methods were performed with these datasets. The 

distribution of the Qsingle indices for the comparisons between TAMUClust vs bovine 

genome aligned ESTs, and BTGI vs bovine genome aligned ESTs are detailed in Tables 

2.7 and 2.8 respectively. 
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Table 2.7: Qsingle analysis with TAMUClust as query and bovine genome aligned 

ESTs as reference for 209,645 Bos taurus ESTs common to both datasets. 

% Qsingle  bin 

TAMUClust ESTs vs bovine genome aligned ESTs  

Clusters in Qsingle 

True Positive Bins 

Clusters in Qsingle 

False Positive Bins 

Clusters in Qsingle 

False Negative Bins

= 0 0 13,680 7,426 

≥  0 and  ≤  10 72 13,786 8,240 

> 10 and  ≤  20 89 65 1,073 

> 20 and  ≤  30 215 43 1,001 

> 30 and  ≤  40 655 65 1,208 

> 40 and  ≤  50 1,466 94 1,472 

> 50 and  ≤  60 830 29 632 

> 60 and  ≤  70 1,097 57 444 

> 70 and  ≤  80 1,201 50 180 

> 80 and  ≤  90 966 35 32 

> 90 and  ≤  100 7,692 59 1 

= 100 6,975 0 0 
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Table 2.8: Qsingle analysis with BTGI as query and bovine genome aligned ESTs as 

reference for 702,128 Bos taurus ESTs common to both datasets. 

% Qsingle  bin 

BTGI vs bovine genome aligned ESTs  

Clusters in Qsingle 

True Positive Bins 

Clusters in Qsingle 

False Positive Bins 

Clusters in Qsingle 

False Negative Bins

= 0 0 23,519 13,877 

≥  0 and  ≤  10 188 23,784 14,552 

> 10 and  ≤  20 387 200 1,387 

> 20 and  ≤  30 899 151 1,354 

> 30 and  ≤  40 1,810 208 2,055 

> 40 and  ≤  50 2,891 503 2,323 

> 50 and  ≤  60 2,006 100 1,665 

> 60 and  ≤  70 1,857 175 1,423 

> 70 and  ≤  80 1,537 161 750 

> 80 and  ≤  90 1,236 194 138 

> 90 and  ≤  100 12,838 173 2 

= 100 12,221 0 0 
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Figure 2.3: Qsingle %TP for TAMUClust/BTGI vs bovine genome aligned ESTs 
using ESTs common to datasets being compared. 
Cluster abundance of the Qsingle %TP parameter in the upper bins (>90%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed using bovine ESTs common to TAMUClust, gold standard 
dataset and bovine ESTs common to BTGI, gold standard dataset.  
 
 
 

Figure 2.3 depicts the distribution of the different clusters in the upper bins 

(>90%) for the Qsingle %TP parameter (from Tables 2.7 and 2.8) for the TAMUClust vs 

bovine genome aligned ESTs and the BTGI vs bovine genome aligned ESTs 

comparisons. In the TAMUClust vs bovine genome aligned ESTs comparison, 

TAMUClust has 53.85% clusters in the 90-100% TP bin and 48.83% clusters in the 

100% TP bin. In terms of cluster equivalence comparisons, this means that 53.85% of 
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the TAMUClust clusters have >90% of ESTs in the same cluster as it exists in the gold 

standard dataset.  The comparable cluster abundance numbers in the 90-100% TP and 

the 100% TP bins from the BTGI vs gold standard comparisons are 50.05% and 47.65% 

respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Qsingle %FP, %FN for TAMUClust/BTGI vs bovine genome aligned 
ESTs using ESTs common to datasets being compared. 
Cluster abundance of the Qsingle %FP and %FN parameters in the lower bins (<10%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed using bovine ESTs common to TAMUClust, gold standard 
dataset and bovine ESTs common to BTGI, gold standard dataset. 
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Figure 2.4 depicts the distribution of the different clusters in the lower bins 

(<10%) for the Qsingle %FP and %FN parameters for the TAMUClust vs bovine genome 

aligned ESTs and the BTGI vs bovine genome aligned ESTs comparisons. The Qsingle 

%FP metric for the TAMUClust vs bovine genome aligned ESTs comparison reveals 

that TAMUClust has 96.52% clusters in the 0-10% FP bin. This indicates that <10% of 

the ESTs in ~97% of the TAMUClust clusters have been grouped with unrelated 

members when compared with the corresponding gold standard clusters. The Qsingle %FN 

metric for the TAMUClust vs bovine genome aligned ESTs comparison reveals that 

TAMUClust has 57.69% clusters in the 0-10% FN bin. This metric indicates that <10% 

of the relatives (cluster members) for a particular EST are missing in ~58% of the 

TAMUClust clusters when compared with the corresponding gold standard clusters. The 

comparable cluster abundance numbers in the 0-10% FP and the 0-10% FN bins from 

the BTGI vs bovine genome aligned ESTs comparison are 92.73% and 56.73% 

respectively.  
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One also needs to take into account the fact that the dataset in the BTGI-gold 

standard analysis is ~3.3 folds larger compared to the dataset in the TAMUClust-gold 

standard analysis. The major reason for the ~3.3 folds larger dataset is due to the large 

difference in the number of ESTs used to generate the clusters. 308, 132 Bos taurus 

ESTs were downloaded from dbEST in March 2005 to generate the TAMUClust EST 

clusters, whereas 955, 233 ESTs were present in the BTGI release of March 2007. This 

led us to ask the question “Does this difference in datasets being compared affect the 

cluster equivalence comparison analysis”. To address this, the above Qsingle analyses 

were repeated by using only those ESTs which are common to all 3 datasets. 198,438 

bovine ESTs common to all three datasets were identified in the one to one comparisons 

of TAMUClust vs bovine genome aligned ESTs and BTGI vs bovine genome aligned 

ESTs using bovine ESTs common to all datasets.  Qsingle analyses were performed for the 

TAMUClust vs bovine genome aligned ESTs and BTGI vs bovine genome aligned 

ESTs. The distributions of the Qsingle indices in the different bins and the number of ESTs 

in each of the Qsingle %TP, Qsingle %FP and Qsingle %FN bins are detailed in Table 2.9. 
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Table 2.9: Qsingle analysis with TAMUClust/BTGI as query and bovine genome 

aligned ESTs as reference for 198,438 Bos taurus ESTs common to all datasets. 

% Qsingle  

bin 

TAMUClust/BTGI vs bovine genome aligned ESTs 

Clusters and ESTs in 

Qsingle True Positive Bins 

Clusters and ESTs in

Qsingle  False Positive Bins 

Clusters and ESTs in Qsingle

False Negative Bins 

TAMU 

Clust 

# 

ESTs 

 

BTGI # 

ESTs 

TAMU 

Clust 

# 

ESTs 

BTGI # 

ESTs 

TAMU 

Clust 

#  

ESTs 

BTGI # 

ESTs 

= 0 0 0 0 0 11,861 0 11,729 0 6,589 0 5,667 0 

≥  0 and  ≤  10 55 60 35 37 11,937 90 11,784 113 7,247 1458 6,119 1018 

> 10 and  ≤  20 79 303 122 680 62 117 83 141 984 3288 938 3389 

> 20 and  ≤  30 159 1884 330 5194 35 138 46 167 869 4883 905 4858 

> 30 and  ≤  40 487 7064 813 9242 58 169 71 209 1,087 6668 1,327 7955 

> 40 and  ≤  50 1,171 11116 1,517 12426 94 232 165 292 1,209 10273 1,453 12449 

> 50 and  ≤  60 784 11043 1,009 13374 27 176 31 217 508 11041 742 12824 

> 60 and  ≤  70 979 11832 1,163 14119 47 230 62 216 340 12483 589 14899 

> 70 and  ≤  80 1,014 15458 1,030 14778 49 350 57 364 122 5166 288 15299 

> 80 and  ≤  90 902 18434 856 18353 34 335 65 512 25 1077 31 2720 

> 90 and  ≤  

100 
6,762 64891 5,517 34824 49 3978 28 804 1 16 0 0 

= 100 6,165 35585 5,136 19133 0 0 0 0 0 0 0 0 

 

 

 

 Results from Table 2.9 indicate that TAMUClust has ~50% of the ESTs (98,783 

ESTs out of 198,438 ESTs) in clusters with Qsingle %TP values >70%. In comparison, 

BTGI has ~34% of the ESTs (67955 ESTs out of 198,438 ESTs) in clusters with Qsingle 

%TP values >70%. 
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Figure 2.5: Qsingle %TP for TAMUClust/BTGI vs bovine genome aligned ESTs 
using ESTs common to all three datasets.  
Cluster abundance of the Qsingle %TP parameter in the upper bins (>90%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed using bovine ESTs common to TAMUClust, BTGI and gold 
standard dataset.  
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Figure 2.5 depicts the distribution of the different clusters in the upper bins 

(>90%) for the Qsingle %TP parameter (from Table 2.9) for the TAMUClust vs bovine 

genome aligned ESTs and the BTGI vs bovine genome aligned ESTs comparisons using 

ESTs common to all datasets. In the TAMUClust vs bovine genome aligned ESTs 

comparison, TAMUClust has 54.57% clusters in the 90-100% TP bin and 49.75% 

clusters in the 100% TP bin. The comparable cluster abundance numbers in the 90-100% 

true-positives and the 100% true-positives bins from the BTGI vs bovine genome 

aligned ESTs comparisons are 44.52% and 41.45% respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Qsingle %FP, %FN for TAMUClust/BTGI vs bovine genome aligned 
ESTs using ESTs common to all three datasets.  
Cluster abundance of the Qsingle %FP and %FN parameters in the lower bins (<10%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed using bovine ESTs common to TAMUClust, BTGI and gold 
standard dataset. 
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Figure 2.6 depicts the distribution of the different clusters in the lower bins 

(<10%) for the Qsingle %FP and %FN  parameters for the TAMUClust vs bovine genome 

aligned ESTs and the BTGI vs bovine genome aligned ESTs comparisons using ESTs 

common to all datasets. The Qsingle %FP metric for the TAMUClust vs bovine genome 

aligned ESTs comparison reveals that TAMUClust has 96.32% clusters in the 0-10% FP 

bin. The Qsingle %FN metric for the TAMUClust vs bovine genome aligned ESTs 

comparison reveals that TAMUClust has 58.48% clusters in the 0-10% FN bin. The 

comparable cluster abundance numbers in the 0-10% FP and the 0-10% FN bins from 

the BTGI vs bovine genome aligned ESTs comparison are 95.09% and 49.38% 

respectively. 

Figure 2.6 reveals that the cluster abundance in the lower bins (<10%) for the 

Qsingle %FP and %FN parameters is almost the same for both the TAMUClust vs bovine 

genome aligned ESTs and the BTGI vs bovine genome aligned ESTs comparisons.  

Based on the analysis so far, one can interpret that TAMUClust is comparable in 

performance to BTGI. From Figure 2.5, one can interpret that TAMUClust marginally 

outperforms BTGI on the basis of cluster abundance in the >90% Qsingle %TP bin (~55% 

clusters for TAMUClust vs ~45% clusters for BTGI). Results from Table 2.9 

(TAMUClust having ~50% ESTs in clusters with Qsingle %TP values >70% as against 

BTGI having ~34% ESTs) lend further support to the fact that TAMUClust performs 

better than BTGI.  
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Need for ‘singleton minus’ analyses 

TAMUClust uses a protein framework to cluster and assemble ESTs. FASTX is 

used to compare the ESTs to the vertebrate protein clusters and identify the most closely 

related vertebrate protein family for a given EST. For ESTs within each protein family, 

the Megablast [114] tool of the TGICL [136] package groups ESTs into clusters by 

including ESTs that are at least 95% identical over at least 40 nucleotides and having an 

overhang of less than 30 nucleotides. The CAP3 [137] tool assembles the clustered ESTs 

into Contigs/Singletons. In this process, TAMUClust also includes singletons in the gene 

indices (consensus sequences) it generates where these singletons have a significant 

sequence similarity to a homologous protein. BTGI performs a nucleotide-nucleotide 

comparison to cluster and assemble ESTs, and discards ESTs that do not match the 

clustering criteria. As a result, the gene indices generated by BTGI are devoid of 

singletons. 
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‘Singleton minus’ Qsingle analyses were performed by excluding singletons from 

the TAMUClust dataset and then comparing TAMUClust/BTGI clusters with the gold 

standard (bovine genome aligned ESTs). 

Singleton minus analysis I  

 In the one to one comparisons of TAMUClust vs bovine genome aligned ESTs 

and BTGI vs bovine genome aligned ESTs using bovine ESTs common to the datasets 

being compared, TAMUClust singletons were excluded and ESTs common to 

TAMUClust and the gold standard were identified. This resulted in 198,525 ESTs 

common to both datasets.  

This TAMUClust versus gold standard dataset Qsingle analysis (Table 2.10) was 

compared to the BTGI versus gold standard dataset Qsingle analysis (Table 2.8) using 

ESTs common to BTGI and gold standard (702,128 ESTs).  

 



 75

Table 2.10: Qsingle analysis excluding TAMUClust singletons and using TAMUClust 

as query with bovine genome aligned ESTs as reference for 198,525 Bos taurus 

ESTs common to both datasets. 

% Qsingle  bin 

TAMUClust vs bovine genome aligned ESTs  

(excluding TAMUClust singletons) 

Clusters in Qsingle 

True Positive Bins 

Clusters in Qsingle 

False Positive Bins 

Clusters in Qsingle 

False Negative Bins

= 0 0 10,405 6,454 

≥  0 and  ≤  10 70 10,507 6,903 

> 10 and  ≤  20 67 67 733 

> 20 and  ≤  30 142 42 732 

> 30 and  ≤  40 371 66 938 

> 40 and  ≤  50 897 105 934 

> 50 and  ≤  60 801 31 433 

> 60 and  ≤  70 812 63 273 

> 70 and  ≤  80 837 64 92 

> 80 and  ≤  90 685 39 8 

> 90 and  ≤  100 6,364 62 0 

= 100 5,932 0 0 
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Figure 2.7: Qsingle %TP for TAMUClust/BTGI vs bovine genome aligned ESTs after 
excluding TAMUClust singletons and using ESTs common to datasets being 
compared.  
Cluster abundance of the Qsingle %TP parameter in the upper bins (>90%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard after excluding TAMUClust singletons. Study performed using ESTs common 
to TAMUClust, gold standard dataset and ESTs common to BTGI and gold standard 
dataset. 
 
 
 

Figure 2.7 depicts the distribution of the different clusters in the upper bins 

(>90%) for the Qsingle %TP parameter for the TAMUClust vs bovine genome aligned 

ESTs and the BTGI vs bovine genome aligned ESTs comparisons after excluding 

singletons from TAMUClust and using ESTs common to the datasets being compared. 

In the TAMUClust vs bovine genome aligned ESTs comparison, TAMUClust has 
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57.61% clusters in the 90-100% TP bin and 53.7% clusters in the 100% TP bin. The 

comparable cluster abundance numbers in the 90-100% TP and the 100% TP bins from 

the BTGI vs bovine genome aligned ESTs are 50.05% and 47.65% respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.8: Qsingle %FP, %FN for TAMUClust/BTGI vs bovine genome aligned 
ESTs after excluding TAMUClust singletons and using ESTs common to datasets 
being compared. 
Cluster abundance of the Qsingle %FP and %FN parameters in the lower bins (<10%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard after excluding TAMUClust singletons. Study performed using ESTs common 
to TAMUClust, gold standard dataset and ESTs common to BTGI and gold standard 
dataset. 
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Figure 2.8 depicts the distribution of the different clusters in the lower bins 

(<10%) for the Qsingle %FP and %FN parameters for the TAMUClust vs bovine genome 

aligned ESTs and the BTGI vs bovine genome aligned ESTs comparisons after 

excluding TAMUClust singletons and using ESTs common to the datasets being 

compared. The Qsingle %FP metric for the TAMUClust vs bovine genome aligned ESTs 

comparison reveals that TAMUClust has 95.12% clusters in the 0-10% FP bin. The 

Qsingle %FN metric for the TAMUClust vs bovine genome aligned ESTs comparison 

reveals that TAMUClust has 62.49% clusters in the 0-10% FN bin. The comparable 

cluster abundance numbers in the 0-10% FP and the 0-10% FN bins from the BTGI vs 

bovine genome aligned ESTs comparison are 92.73% and 56.73% respectively. 

Interpretation of results will be difficult when there is a large difference in the 

size of datasets being compared. The ‘Singleton minus analysis I’ described above has a 

~3.5 fold larger dataset in the BTGI-gold standard analysis compared to TAMUClust-

gold standard dataset. As mentioned before, the ~3.5 fold larger dataset is due to the 

large difference in the number of ESTs used in the starting material, which arose because 

of the fact that ESTs for TAMUClust were obtained from dbEST in March 2005 

whereas the BTGI build was obtained in March 2007.  

Singleton minus analysis II 

This analysis was performed where the Qsingle indices were obtained by using 

only those ESTs which were common to all 3 datasets after excluding TAMUClust 

singletons. 192,920 bovine ESTs common to all three datasets were identified after 

excluding TAMUClust singletons.  Table 2.11 compares the number of clusters and the 
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cluster sizes for the three Bos taurus EST datasets (bovine ESTs aligned to bovine 

genome, bovine ESTs clustered by TAMUClust, bovine EST clusters from BTGI) using 

192,920 ESTs common to all datasets after excluding TAMUClust singletons.  

 
 
Table 2.11:  Cluster size versus number of clusters for the three datasets – bovine 

genome aligned ESTs, TAMUClust and BTGI – using 192,920 ESTs common to all 

datasets. 

Cluster Size 
bovine genome 

aligned ESTs 
TAMUClust BTGI 

1 655 1,254 5,989 

2 1,788 5,791 7,904 

3 910 2,570 3,550 

4 752 1,786 2,286 

5 573 1,218 1,547 

6 – 10 1,957 3,253 3,834 

11 – 20 1,871 2,402 2,518 

21 – 30 887 1,027 907 

31 – 40 488 477 393 

41 – 50  294 229 157 

51 – 100 559 308 248 

101 - 500 206 101 78 

> 500 8 8 4 

 Total = 14,283  Total = 20,424 Total = 29,415 
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Figure 2.9: Cluster numbers as a function of cluster size for the bovine genome 
aligned ESTs, TAMUClust and BTGI datasets using ESTs common to all datasets.   
Number of clusters versus cluster size for the three Bos taurus EST cluster datasets – 
bovine genome aligned ESTs (gold standard), TAMUClust and BTGI – using 192, 920 
ESTs common to all datasets. 
 
 
 

A plot of number of clusters vs cluster size (Figure 2.9) reveals that TAMUClust 

cluster size is closer to gold standard than the comparable BTGI versus gold standard 

statistic. As discussed before, it is important to realize that the cluster size metric does 

not give information about equivalence of clusters, i.e. the same cluster members being 

grouped together in all datasets. Hence, we use the Qsingle metric to compare the cluster 

equivalence of TAMUClust with gold standard and BTGI with gold standard. Table 

2.12 details the distributions of the Qsingle indices in the different bins and the number of 
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ESTs in each of the Qsingle %TP, Qsingle %FP and Qsingle %FN bins for the TAMUClust vs 

gold standard and the BTGI vs gold standard comparisons. 

 
 
 

Table 2.12: Qsingle analysis excluding TAMUClust singletons and using 

TAMUClust/BTGI as query and bovine genome aligned ESTs as reference for 

192,920 Bos taurus ESTs common to all datasets. 

% Qsingle  

bin 

TAMUClust/BTGI vs bovine genome aligned ESTs 

Clusters and ESTs in 

Qsingle True Positive Bins 

Clusters and ESTs in

Qsingle  False Positive Bins 

Clusters and ESTs in

Qsingle False Negative Bins 

TAMU 

Clust 

# 

ESTs 

 

BTGI # 

ESTs 

TAMU 

Clust 

# 

ESTs 

BTGI # 

ESTs 

TAMU 

Clust 

#  

ESTs 

BTGI # 

ESTs 

= 0 0 0 0 0 10400 0 10444 0 6407 0 4805 0 

≥  0 and  ≤  10 54 59 26 29 10476 90 10493 109 6843 1220 5236 995 

> 10 and  ≤  20 63 276 86 601 60 115 65 117 742 3012 849 3249 

> 20 and  ≤  30 128 1679 281 4880 35 138 38 152 729 4442 850 4777 

> 30 and  ≤  40 368 6573 722 8372 57 161 54 179 926 6713 1201 7264 

> 40 and  ≤  50 882 10241 1325 12340 101 241 116 243 917 9164 1307 12063 

> 50 and  ≤  60 780 10569 981 13139 28 182 30 213 416 10296 684 12812 

> 60 and  ≤  70 786 11420 1013 13326 50 242 45 170 278 11893 550 13833 

> 70 and  ≤  80 829 14242 962 14511 56 384 45 316 88 4538 242 14379 

> 80 and  ≤  90 687 16745 769 17387 36 359 38 350 9 933 29 2552 

> 90 and  ≤  

100 
6,371 68845 4783 36051 49 3978 24 589 0 0 0 0 

= 100 5,952 44263 4413 20151 0 0 0 0 0 0 0 0 
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Results from Table 2.12 indicate that TAMUClust has ~52% of the ESTs (99832 

ESTs out of 192920 ESTs) in clusters with Qsingle %TP values >70%. In comparison, 

BTGI has ~35% of the ESTs (67949 ESTs out of 192920 ESTs) in clusters with Qsingle 

%TP values >70%. 
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Figure 2.10: Qsingle %TP for TAMUClust/BTGI vs bovine genome aligned ESTs 
after excluding TAMUClust singletons and using ESTs common to all three 
datasets. 
Cluster abundance of the Qsingle %TP parameter in the upper bins (>90%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed after excluding TAMUClust singletons and using bovine 
ESTs common to TAMUClust, BTGI and gold standard dataset. 
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Figure 2.10 depicts the distribution of clusters in the 90-100% TP bin and the 

100% TP bin using the Qsingle parameter for the TAMUClust vs gold standard and the 

BTGI vs gold standard comparisons after excluding TAMUClust singletons and using 

ESTs common to all datasets. Figure 2.11 depicts the distribution of the different 

clusters in the lower bins (<10%) for the Qsingle %FP and %FN parameters for the 

TAMUClust vs gold standard and the BTGI vs gold standard comparisons after 

excluding TAMUClust singletons and using ESTs common to all datasets. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   FN 

TAMUClust_vs_Reference 
                     FP 
        BTGI_vs_Reference 

                     FP 
   TAMUClust_vs_Reference 

               FN 
    BTGI_vs_Reference  

 
 
 
Figure 2.11: Qsingle %FP, %FN for TAMUClust/BTGI vs bovine genome aligned 
ESTs after excluding TAMUClust singletons and using ESTs common to all three 
datasets.  
Cluster abundance of the Qsingle %FP and %FN parameters in the lower bins (<10%) for 
TAMUClust and BTGI using bovine ESTs aligned to the bovine genome as the gold 
standard. Study performed after excluding TAMUClust singletons and using bovine 
ESTs common to TAMUClust, BTGI and gold standard dataset. 
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Findings from the Qsingle %FP and %FN indices indicate that TAMUClust and 

BTGI perform very similarly. Hence, one can compare the cluster abundance of the 

>90% Qsingle percentage true-positives parameter for TAMUClust and BTGI using 

bovine genome aligned ESTs as the gold standard to determine which clustering method 

performs better.  

TAMUClust has 58.19% clusters in the 90-100% true-positives bin compared to 

43.69% for BTGI. Comparisons of the 100% true-positives bins reflect a value of 

54.37% for TAMUClust and 40.31% for BTGI. In other words, when compared to 

BTGI, TAMUClust has ~14-15% additional clusters that have the very same members as 

is seen in the gold standard dataset.  

The findings from Figure 2.10 taken in conjunction with the findings from 

Figure 2.7 and Table 2.12 (TAMUClust having ~52% ESTs in clusters with Qsingle %TP 

values >70% as against BTGI having ~35% ESTs) as discussed above illustrate that 

TAMUClust performs better than BTGI; removal of singletons from the analysis further 

improves the performance of TAMUClust compared to BTGI. 
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Summary of findings from the Qsingle analyses in the Gold standard comparisons 

 This study was performed to ask the question “Is TAMUClust comparable in 

performance to TIGR Gene Indices (TGI)”. Findings from the Qsingle analyses from the 

Gold standard comparisons as discussed above suggest that TAMUClust compares well 

to TGI and marginally outperforms it. 

 

Comparison with predicted gene models 

Megablast analysis I 

 The Qsingle metric from singleton minus analyses (I and II) using the gold 

standard dataset indicates that TAMUClust performs marginally better than BTGI. This 

led us to ask the question “Does TAMUClust gain anything by including singletons in its 

gene indices”. To address this, we used Megablast [114] to align the consensus 

sequences of TAMUClust and BTGI to the bovine transcripts in the Bos taurus Ensembl 

Release 50 (July 2008) [129]. For this analysis, we used only the longest transcript for 

each gene in the Ensembl dataset. The Megablast results were filtered to include only 

those alignments which were longer than 100 bases in alignment length and had 

sequence identity greater than 95%. Results from the Megablast analysis I are listed in 

Table 2.13.  
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Table 2.13: Megablast analysis I - TAMUClust/BTGI EST consensus sequences vs 

Ensembl Btau predicted transcripts. 

Criteria TAMUClust BTGI 

Number of ESTs 308,132 955,233 

Date on which ESTs were obtained March 2005 March 2007 

Number of EST consensus sequences  

46,731  

(24, 665 contigs +  

22, 066 singletons) 

90,  392  

Ensembl transcript hits 

34,199 

(22, 041 contigs +  

12, 158 singletons) 

51, 425 

Unique Ensembl transcript hits  14, 842 15, 451 

Common Ensembl transcript hits 14, 144 14, 144 

Ensembl Transcripts that align to 

TAMUClust consensus sequences but not 
to any BTGI consensus sequences 

698  

(57 contigs +  

641 singletons) 

 - 

Ensembl Transcripts that align to BTGI 

consensus sequences but not to any 
TAMUClust consensus sequences 

- 1, 307 

 

 

We first determined if there were any Ensembl transcripts that aligned to 

TAMUClust consensus sequences but were missed by BTGI consensus sequences; from 

these TAMUClust hits, we then identified the TAMUClust singletons. From Table 2.13, 
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we find that there are 698 Ensembl transcripts that are identified by TAMUClust but are 

missed by BTGI. Of these 698 Ensembl transcript hits from TAMUClust consensus 

sequences, 641 hits are from singletons.  

These results from Table 2.13 indicate that TAMUClust stands to gain by 

including singletons. Here are some factors that further reinforce this statement: 

1. Date difference in the TAMUClust and BTGI builds: ESTs in TAMUClust 

were obtained from GenBank in Mar 2005, whereas the ESTs in BTGI are from 

Mar 2007. Despite the fact that there is a ~2 year difference in the dates in favor 

of BTGI, Megablast analysis reveals that there are 762 Ensembl transcripts 

which align to TAMUClust consensus sequences but not to BTGI consensus 

sequences using the alignment filtering criteria (≥95% identity and ≥100 in 

alignment length). 641 of these 698 hits were from TAMUClust singletons. By 

the same criteria, there are 1,307 Ensembl transcripts that align to BTGI 

consensus sequences but not to TAMUClust consensus sequences. We believe 

that this is largely due to the difference in the dates of obtaining the ESTs to 

build the EST clusters. The only way to prove this beyond doubt would be to 

take all the ESTs from the BTGI build and pass it through the TAMUClust 

pipeline (vertebrate protein family clustering, ESTs vs protein family FASTX 

and EST assembly) – something that is beyond the scope of this project keeping 

in mind that the aim of this study is to study how well TAMUClust performs 

compared to existing EST clustering schemes and not to prove that TAMUClust 

can outdo those schemes.  
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2. Differences in the EST clustering methods: TIGR Gene Indices (TGI) starts off 

with gene sequences are parsed from the CDS and CDS-join features in GenBank 

protein records pertaining to the species in question [96]; additional Expressed 

Transcript (ET) sequences are obtained from the TIGR EGAD database. Coding 

Sequences (CDSs), Expressed Transcripts (ETs), and Tentative Consensus 

Sequences (TCs) from previous build (if available) are used as templates for the 

clustering process. Given the fact that TGI uses TCs from previous build and 

CDSs, the average length of the “tentative consensus (TC)” sequence from TGI 

is bound to be longer compared to de novo EST clustering methods like 

TAMUClust where clusters are built without using information from previous 

builds and without using CDSs. By including TCs from previous build and 

CDSs, TGI has “longer” starting sequences. Despite these differences in the 

EST cluster build with TAMUClust and TGI methodologies, 698 TAMUClust 

consensus sequences (of which 641 are singletons) align to Ensembl transcripts 

that are missed by BTGI. 

3. The TAMUClust singletons have statistically significant similarity to a 

homologous protein as determined by the coarse protein grouping performed 

prior to EST clustering and assembly. Therefore, the TAMUClust singletons are 

not trivial and not some artifacts of the EST clustering method.  
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Summary of findings from Megablast analysis I 

 This study was performed to ask the question “Does TAMUClust gain anything 

by including singletons in its gene indices”. Results from the Megablast analysis in 

conjunction with the singleton minus analyses lend further support to the fact that 

TAMUClust definitely stands to gain by including singletons in the gene indices 

(consensus sequences) it generates. 

 

Comparison with predicted gene models 

Megablast analysis II 

 This analysis was designed to determine how many of the predicted transcripts 

from the Bos taurus Ensembl Release 50 (July 2008) [129] have a match to a EST 

consensus sequence from the TAMUClust and BTGI Bos taurus EST clusters. Megablast 

[114] was used to address this question. The query file being the longest bovine 

transcript for each gene from the Bos taurus Ensembl Release 50 and the database was a 

file containing either TAMUClust or BTGI EST consensus sequences. There were 21, 

722 transcripts in the query file. The Megablast results were filtered to include only 

those alignments which were longer than 100 bases in alignment length and had 

sequence identity greater than 95%. Results from the Megablast analysis II are listed in 

Table 2.14.  

 



 90

Table 2.14: Megablast analysis II - Ensembl Btau predicted transcripts vs 

TAMUClust/BTGI EST consensus sequences. 

Criteria 
Ensembl Transcripts vs 

TAMUClust 

Ensembl Transcripts 

vs BTGI 

Number of ESTs 308,132 955,233 

Number of EST consensus 

sequences  

46,731  

(24, 665 contigs +  

22, 066 singletons) 

90,  392  

Hits 

16, 194 

(13, 282 contigs +  

2, 912 singletons) 

16, 853 

Unique hits  
14, 815 

(12, 143 contigs +  

2, 672 singletons) 

15, 459 

Number of Ensembl predicted 

transcripts in both analyses 

 

15, 559 

Ensembl transcripts that align 

to TAMUClust consensus 

sequences but not to any BTGI 

consensus sequences 

635  

(22 contigs +  

613 singletons) 

 - 

Ensembl transcripts that align 

to BTGI consensus sequences 

but not to any TAMUClust 

consensus sequences 

- 1, 294 
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Results from Table 2.14 indicate that 16194 (out of a total of 21722) predicted 

bovine transcripts have a hit to a TAMUClust EST consensus sequence, whereas 16853 

predicted bovine transcripts have a hit to a BTGI EST consensus sequence. Of the 16194 

predicted transcripts that had a hit to a TAMUClust EST consensus sequence, 2912 were 

to singletons. This further reinforces the point that we had made earlier - TAMUClust 

does gain by including singletons in the gene indices it generates. 

There are 635 predicted transcripts that align to a TAMUClust EST consensus 

sequence but do not align to a BTGI EST consensus sequence. Likewise, there are 1294 

predicted transcripts that align to a BTGI EST consensus sequence but do not align to a 

TAMUClust EST consensus sequence. 

 

Summary of findings from Megablast analysis II 

The overall findings from this analysis suggest that the transcript coverage in 

TAMUClust and BTGI is more or less same with the TAMUClust dataset reconstructing 

some transcripts that are missed by BTGI and the BTGI dataset reconstructing some 

transcripts that are missed by TAMUClust.  

 

CONCLUSIONS 

 Expressed Sequence Tags (ESTs) are single pass sequence reads from randomly 

selected cDNA clone. ESTs contain high error rates, and the information encoded is 

often fragmented and redundant. Therefore, ESTs need to be clustered into groups likely 

to have been derived from the same genes and this process improves the quality of 
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meaningful information that can be derived from ESTs. Chimeric EST clusters arise 

when ESTs representing unrelated genes are grouped together and chimerism is the 

single largest contributor to EST misassemblies. This can be avoided if ESTs are 

initially grouped into clusters based on their matches to proteins, and then subject to 

clustering and assembly. TAMUClust is a new clustering method developed in our lab 

which clusters ESTs using a protein framework. 

Accurate clustering of ESTs derived from the same genes is of utmost 

importance as ESTs are used to identify genes in an organism and in the design of 

oligonucleotide probes. Any inaccuracies in the EST clustering step would result in 

problems associated with improper oligonucleotide design. EST clustering using a 

protein framework is very handy in selecting the representative sets for oligonucleotide 

design and helps avoid many of the frequently encountered problems in oligo design - 

generating oligos with redundant information, and designing oligos based on chimeric 

ESTs.  

We conducted a pilot study using Bos taurus ESTs in Jan 2004 to compare the 

clustering performance of TAMUClust with existing EST clustering methods, Bos 

taurus Gene Indices (BTGI) clusters obtained from DGI/TIGR and UniGene from 

NCBI. The study was performed by determining cluster equivalence (Qsingle indices) for 

the datasets being compared after identifying common ESTs. The results from the pilot 

study indicate that the performance of TAMUClust is comparable to that of BTGI and 

UniGene. As the clustering methodology of TAMUClust and BTGI is very much similar 
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with reference to the stringency and the level of supervision, we chose to perform further 

comparisons of TAMUClust only with BTGI. 

In August 2006, the third version of the bovine genome assembly, Btau_3.1,  was 

released where the genome assembly has a 7.15X coverage [10, 11]. This came in handy 

to compare the performance of TAMUClust Bos taurus EST clusters against the Bos 

taurus Gene Indices (BTGI) clusters by using bovine ESTs aligned to the bovine 

genome assembly as a gold standard. Findings from the gold standard comparisons 

reveal that TAMUClust and BTGI are similar in performance.  

An ideal result/situation would have been TAMUClust performing as well as the 

gold standard; this not being the case means that there is scope for improvement in the 

TAMUClust clustering algorithm. However, one needs to keep in mind that while 

clustering ESTs aligned to the genome, it is not required to set a minimum overlap 

length due to the fact that two or more overlapping ESTs, irrespective of the overlap 

length should belong to the same transcript. This is the reason for the false negatives 

when TAMUClust/BTGI is compared to the gold standard dataset. The gold standard 

dataset did not include predicted transcripts. If the known coordinates of these predicted 

transcripts had been used in the gold standard datasets, the number of false negatives 

would have reduced significantly.  

When TAMUClust singletons are excluded to be on an even keel with BTGI, 

results from the Qsingle analyses suggest that TAMUClust performance is improved 

compared to BTGI. However, TAMUClust singletons are not clustering artifacts; these 

singletons are included in the gene indices because they have a statistically significant 
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match to a homologous protein used in the protein framework to cluster the ESTs. 

Findings from a Megablast analysis using predicted transcripts from the Bos taurus 

Ensembl Release 50 (July 2008) [129] suggest that TAMUClust stands to gain by 

including the singletons in the gene indices. A second Megablast analysis was designed 

to determine how many of the predicted transcripts from the Bos taurus Ensembl Release 

50 (July 2008) [129] have a match to a EST consensus sequence from the TAMUClust 

and BTGI Bos taurus EST clusters. Findings from this analysis suggest that the 

transcript coverage in TAMUClust and BTGI is more or less same with the TAMUClust 

dataset reconstructing some transcripts that are missed by BTGI and the BTGI dataset 

reconstructing some transcripts that are missed by TAMUClust. 

EST clustering methods not based on genome alignments need a framework to 

cluster and assemble the ESTs. The framework has to ensure that the clustering method 

is neither too rigid to generate very short consensus sequences nor too relaxed to 

generate long consensus sequences. Also, in the tradeoff between fewer clusters with 

longer consensus and larger clusters with short consensus sequences, the EST clustering 

schema has to decide on certain criteria like minimum pairwise sequence identity, 

overlap length and overhangs to generate the initial clusters to accurately model the 

biology behind the sequences being clustered while incorporating splice variants and 

avoiding chimeras.  
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Advantages of TAMUClust 

Clustering ESTs using a protein framework helps identify distantly related 

(rapidly diverging) protein homologs that might be missed out using DNA:DNA 

comparisons.  The biggest advantage with the TAMUClust method is that the ESTs are 

grouped into gene families as a result of the protein framework being used. This comes 

in handy to predict function for these ESTs on the basis of their similarity to the proteins 

in the protein family. Moreover, the ESTs in a family can be grouped with the proteins, 

subject to phylogenetic analysis and prediction of function by analyzing the tree 

topology. Function predictions made using a phylogenetic approach are expected to be 

more accurate. 

Removal of chimeric ESTs  

TAMUClust uses a protein framework to cluster and assemble the ESTs. The 

protein comparison step introduces a high level of stringency by removing chimeric 

ESTs and reduces the formation of chimeras in the EST assembly step, thereby 

preventing misassemblies.  

Utility with EST projects from next generation sequencing tools 

Sequencing projects are becoming much cheaper nowadays thanks to the use of 

the massively parallel 454 pyrosequencing technology [138], which is capable of 

sequencing 25 million bases in a four-hour period and is about 100 times faster than the 

current Sanger sequencing and capillary-based electrophoresis platform [139]. These 

next-generation sequencing tools produce large numbers of short DNA reads (80-120 

bases) [138], tend to have low error rates (<1%) arising because of homopolymer runs, 
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and these errors tend to be resolved [140-142] when there is sufficient coverage depth to 

allow assembly of overlapping reads. However, the short sequence reads make assembly 

of overlapping sequences problematic [143].   

EST projects are likely to become much cheaper in the very near future [144], 

thanks to next-generation sequencing tools that can sequence large numbers of cDNAs 

quickly and cheaply. Traditional EST sequencing projects produce sequences of 200–

500 bases, where each sequence is anchored at the 3' or 5' end of the mRNA transcript. 

Using next-generation technology, a form of EST sequencing sometimes referred to as 

transcriptome sequencing [145] (where each mRNA is sequenced in its entirety in 

random fragments and assembled computationally) is becoming a more feasible strategy 

[144] compared to traditional EST sequencing. As of date, published reports of 454 

pyrosequencing of transcriptomes are restricted to model species where genomic data or 

extensive Sanger EST data served as a reference for EST assembly [146-149]. A 

transcriptome study in wasp using 454 ESTs [150] accomplished annotation by 

comparisons with the honeybee genome, but did not report EST assembly.  Two studies 

[147, 149] that used the genome or Sanger EST sequences for mapping and annotation 

of 454 ESTs could not accomplish de novo assembly of the 454 EST reads due to the 

short sequence reads. 

The short sequence reads coming from next generation sequencing tools require 

shorter overlap criteria to be used in the assembly, and this increases the chance of 

chimeric assemblies. Assembling smaller groups is computationally tractable whereas 

lack of computational resources can be a problem with huge short read datasets. In this 
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scenario, the TAMUClust clustering method of using a protein framework is going to be 

even more beneficial in assembling short reads and reducing formation of chimeric 

assemblies. 

 

A brief on the work in Chapter III and Chapter IV 

Chapter III discusses the design and implementation of the Livestock Gene 

Family Database – this database has function predictions for bovine and porcine ESTs 

that were clustered and assembled using the TAMUClust pipeline using Ensembl 

vertebrate protein families as a framework. The resulting EST consensus sequences are 

assigned the function of the ‘best match’ Ensembl vertebrate protein following FASTX 

[15] searches. 

Chapter IV discusses the design and implementation of a phylogenetic annotation 

pipeline to predict function for the bovine and porcine ESTs. 
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CHAPTER III 

COMPUTATIONAL FUNCTION PREDICTIONS OF THE Bos taurus AND Sus 

scrofa TRANSCRIPTOMES USING THE BEST MATCH APPROACH 

SYNOPSIS 

Bos taurus (cattle) and Sus scrofa (pig) are important livestock species that 

occupy a large proportion of the meat industry and also serve as good candidate animal 

models for biomedical research due to parallels with humans. The genome sequences for 

these species are in far from being complete and hence, Expressed Sequence Tag (EST) 

datasets were used to determine what genes are there and what roles they play. Cattle 

and pig ESTs were first clustered into gene families using the vertebrate proteomes in 

the Ensembl database as a framework, and the resulting EST consensus sequences were 

electronically annotated with the function of the ‘best match’ Ensembl vertebrate 

protein. These annotations are housed in the ‘Livestock EST Gene Family Database’ 

(http://genomes.arc.georgetown.edu/cgi-bin/search_livestock_est_gene_family.cgi). The 

database currently hosts annotations for 46,731 bovine EST consensus sequences and 

39,641 porcine EST consensus sequences.  The database has a user-friendly web 

interface and can be searched in a number of ways: Cattle/Pig EST GenBank identifiers 

(GI or Accession), Gene Ontology Accession to obtain information about the vertebrate 

protein family, related EST members and other annotations. These annotations would 

guide the livestock community in helping narrow down the gamut of direct experiments 

needed to verify function.  
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BACKGROUND 

Utility of cattle and pigs in biomedical research 

Bos taurus (cattle) and Sus scrofa (pig) are important livestock species that not 

only occupy a large proportion of the meat industry, but also serve as candidate animal 

models for biomedical research. Bos taurus and Sus scrofa represent evolutionary clades 

distinct from the primates and the rodents, and serve as important model organisms for 

health research due to parallels with humans [151, 152]. The cattle genome is useful in 

comparative genomics for studies that benefit human health [151] in the areas of obesity, 

reproductive biology, lactation and infectious diseases. It is also useful in studies of 

endocrinology, physiology and reproductive techniques [151]. Similarities between 

humans and pigs exist in digestive physiology, renal function, vascular structure, and 

respiratory rates [152]. Pigs are also used as model organism in many areas of medical 

research including obesity, cardiovascular disease, endocrinology, alcoholism, diabetes, 

nephropathy, and organ transplantation [152]. The pig also serves as a possible candidate 

animal model for biomedical research addressing regenerative medicine or preclinical 

investigations in pharmacology [153]. The importance of cattle and pigs in agriculture 

and medicine demands that we have a sound knowledge of the molecular biology of the 

species and the functions they encode as represented by their genome sequences and 

gene expression data.  
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Connecting sequence to biology – function predictions using EST datasets 

Genome research requires developing resources like linkage maps, physical 

maps, and bacterial artificial chromosome (BAC) libraries to organize vast amounts of 

genetic information that can be easily accessed and characterized [154]. The availability 

of a high-quality annotated genome sequence is an invaluable tool for the biologist as it 

bridges the gap from the sequence to the biology of the organism [155], where the aim of 

high-quality annotation is to identify the key features of the genome – in particular, the 

genes and their products. The scientific community is becoming increasingly reliant on 

the tools and resources of annotation to derive information for most aspects of biological 

research [155]. 

Most eukaryotic organisms do not have a complete genome sequence available; 

instead, what is available is a large collection of expressed sequence tags (ESTs) 

obtained by random sequencing of cDNA copies of cell mRNA sequences. ESTs are 

short (200 to 500 bases), unedited single-pass sequence reads of cDNA clones, and 

provide a high-throughput means to sample an organism’s transcriptome [8, 98]  and 

identify expressed genes. EST projects provide a wealth of genetic information for a 

species as they often shorten the laborious process of gene isolation and also provide the 

raw material for expression profiling utilizing microarrays based on the transcript 

sequences [154].  One can use EST datasets to identify genes and obtain insights about 

the functions they encode by comparing the sequence against other sequences in a 

database, identifying a sequence whose similarity is statistically significant, and 

transferring the annotation of known (or presumed) function of the database hit to the 
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query sequence. This strategy of annotation transfer helps connect the ESTs to the 

‘putative’ functions they encode. A common strategy for detecting homologs and 

obtaining function annotations for EST datasets is to search well-annotated proteomes 

using BLASTX/FASTX (translated DNA query against a protein database), obtain 

information about the homolog with the “best hit” and to transfer the annotations of the 

“best hit” match to the EST sequence [104-106]. 

 

Describing biological knowledge using structured annotation vocabularies 

Extracting relevant biological information about genes and gene products is often 

confounded by the lack or incompleteness of annotations. In such a scenario, the 

controlled (or structured) vocabularies describing domains of molecular biology 

developed by the Gene Ontology (GO) Consortium [156, 157] can be used to describe 

gene products in any organism. These ontologies are expert-curated and describe gene 

products in terms of their associated biological processes, cellular components and 

molecular functions in a species-independent manner. Each term can have one or more 

relationships with other terms, reflecting the complexity of the underlying biology. 

Formally, the structure and the format [158] of GO is a directed acyclic graph (DAG) 

[159] wherein the terms are equivalent to nodes of the graph and the relationships are 

equivalent to edges.  

As part of a controlled vocabulary, the different terms in GO have precise 

definitions and precise relationships to other terms. GO represents the different 

vocabulary terms in a hierarchically structured format and the vocabulary terms are 
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linked to each other by "is a" and "part of" relationships, thus ensuring that very general 

terms as well as very precise terms are both represented. Doing so results in a set of 

parent-child relationships between different terms, where a child (more specialized term) 

is a subset of a parent’s (less specialized term) elements. Given this hierarchical nature 

of the GO, all child terms inherit the properties of their parents. This feature comes in 

handy to profile function at a coarser (parent) level and incorporating the function 

annotations at the finer (children) level by navigating the GO hierarchy. 

 

Overview of the work in this chapter 

This chapter is a case study that utilizes EST datasets and addresses the issue of 

obtaining insights of the function encoded in the Bos taurus and the Sus scrofa 

transcriptomes using computational predictions. The pipeline developed adopts a 

comparative genomics approach involving database similarity searches of the Bos taurus 

and the Sus scrofa EST datasets against well-annotated vertebrate proteomes, and the 

transfer of function annotations of the database sequence whose similarity was 

statistically significant. The Bos taurus genome is in the final draft assembly (7.1X 

coverage) [10, 11]; a 6X coverage of the Sus scrofa has been proposed [12] with the 

current assembly (as of Jun 2008) being available with a 3 fold coverage.  

Part I of this chapter discusses the design and implementation of the annotation 

pipeline of “The Livestock Gene Family Database” consisting of cattle and pig ESTs. 

These ESTs are grouped into gene families using the protein families obtained from an 

in-house clustering algorithm (described in Chapter II) following the clustering of the 
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different vertebrate proteomes in the Ensembl [9] database. The resulting EST gene 

families were electronically annotated using Gene Ontology terms (GO) of the ‘best 

match Ensembl vertebrate protein’ following FASTX [15] searches using a BLOSUM62 

[160] matrix and a E-value cutoff ≤ 1E-3. Methods described in Chapter II were used to 

select EST consensus sequences leading to the design of 70-mer oligonucleotide probes. 

These probes were used to profile the expression of the cattle and pig genomes as part of 

the Bovine Oligo Microarray Consortium [161] and the Swine Protein-Annotated 

Oligonucleotide Microarray [162] projects, respectively. Methods described in this 

chapter (‘Best Hit’ approach) were used to annotate the oligos.  

Part II of this chapter discusses the findings of a Gene Ontology function 

categorization on the cattle and pig transcriptomes performed using the generic GO Slim 

[163]. In this analysis, the distribution of the genes in each of the main ontology 

categories was examined and the percentages of the unique sequences in each of the 

assigned GO terms from the GO Slim were computed. This GO Slim analysis takes into 

consideration the directed acyclic graph (DAG) model of the GO schema and in doing 

so, it accounts for the fact that all child terms of a particular GO accession inherit the 

property of the parent.  

 

MATERIALS AND METHODS 

Clustering of cattle and pig ESTs  

ESTs were clustered into gene families using the TAMUClust algorithm as 

described in Chapter II. This clustering algorithm is a two-step process and uses the 
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vertebrate proteomes in the Ensembl database as a framework to assemble and translate 

the ESTs. ESTs were downloaded from dbEST [101] in March 2005 and were subject to 

cleaning and trimming as described in Chapter II to obtain 'high quality' ESTs. This 

resulted in 308,132 high quality ESTs from Bos taurus and 238,691 high quality ESTs 

from Sus scrofa. Ensembl vertebrate proteins were downloaded from the Ensembl site in 

April 2005. The different Ensembl vertebrate proteome datasets used were: Homo 

sapiens, Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio, Takifugu rubripes 

and Tetraodon nigroviridis.  

In the first step of the clustering process, vertebrate proteomes are grouped into 

protein families using a combination of single and average linkage clustering. This 

resulted in 10,092 clusters of protein families from a total of 219,433 proteins. In the 

second step of the clustering process, The Gene Indices Clustering tools or TGICL [136] 

was used to cluster and assemble the ESTs using the vertebrate protein families served 

as a framework. This resulted in EST consensus sequence (EST gene families) as 

described in Chapter II. In this process, 308,132 bovine ESTs were grouped into 46,731 

EST consensus sequences (24,665 contigs and 22,066 singletons); and the 238,691 

porcine ESTs were grouped into 39,641 EST consensus sequences (20,951 contigs and 

18,690 singletons).  

The EST contigs/singletons generated follow this naming convention: 

'Integer1_CLInteger2ContigInteger3', where Integer1 is the Protein Family ID assigned 

by the protein clustering algorithm, CLInteger2 refers to a particular Cluster ID 

(assigned by Megablast from the TGICL package) and ContigInteger3 refers to the 
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Contig ID (assigned by CAP3 from the TGICL package) for that cluster. As an example, 

for the EST Contig 6144_CL1Contig2, the integer 6144 denotes the Protein Family ID, 

CL1 represents the first EST Megablast cluster matching the Protein Family 6144 and 

Contig2 represents the second Contig generated by CAP3 assembly of the different 

ESTs belonging to ProteinFamily6144_Cluster1. Similarly, the singletons have this 

naming convention: 'Integer1_GI' where Integer1 is the Protein Family ID assigned by 

the protein clustering algorithm and GI is the GenBank GenInfo Identifier for the 

particular EST. 

 

Design of the ‘GBrowse EST Assembly Viewers’  

EST clustering results in contigs and singletons. The contig is a consensus 

sequence of several ESTs. The contig files for bovine and porcine ESTs generated by 

TAMUClust were parsed using Perl to obtain the different EST Contig alignment files. 

Each file consists of the EST Contig and the alignment of the constituent ESTs to the 

Contig. Further Perl processing was done to extract information underlying in these EST 

Contig alignment files to generate gff3 [135] and fasta files required for the design of the 

GBrowse [164] interface. The information pertaining to the EST Contig alignments for 

the Bos taurus and the Sus scrofa ESTs used in this study are accessible over the web:  

• “The Cattle EST Assembly Viewer” is available from 

http://genomes.arc.georgetown.edu/cgi-bin/gbrowse/cattle_ests_test/ 

• The Pig EST Assembly Viewer” is available from 

http://genomes.arc.georgetown.edu/cgi-bin/gbrowse/pig_ests/ 
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Annotation pipeline for the Livestock EST gene families 

The steps outlined below describe the annotation pipeline developed for 

annotating the cattle and porcine EST gene families obtained by clustering ESTs using 

the TAMUClust clustering pipeline (described in more detail in Chapter II).  

1. Determining the “best match” Ensembl vertebrate protein for an EST 

Contig/Singleton: The Ensembl vertebrate proteins were filtered for low-

complexity regions using the PSEG [165, 166] tool. The “best match” Ensembl 

vertebrate protein for a livestock EST Contig/Singleton was determined within a 

single species following a FASTX [15] search against the different Ensembl 

vertebrate proteomes using the BLOSUM62 scoring matrix and E-value cutoff 

≤10-3. Following the FASTX searches, the “best match” Ensembl vertebrate 

protein for an EST Contig/Singleton within a proteome was determined from 

amongst the various proteomes using this order of precedence: Homo sapiens, 

Mus musculus, Rattus norvegicus, Gallus gallus, Danio rerio, Takifugu rubripes 

and Tetraodon nigroviridis.   For example, if a livestock EST Contig/Singleton 

does not have a match in Homo sapiens, the best match is searched in the next 

species using the precedence order mentioned above till a best match in a species 

is found. This order of precedence used here is based on the evolutionary 

distance relative to bovine/porcine.   

2. Determining the “best match” Ensembl vertebrate protein having a Gene 

Ontology (GO) Annotation: The Gene Ontology cross-references and other 

database (NCBI, UniProt) protein cross-references for the Ensembl vertebrate 
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proteins were obtained from BioMart [167]. Information pertaining to the Gene 

Ontologies was obtained from the GO CVS repository at the Gene Ontology 

Consortium [156]. The above mentioned pipeline is used to determine the “best 

match” Ensembl vertebrate protein for a particular EST Contig/Singleton. If the 

“best match” Ensembl vertebrate protein does not have a GO Annotation, then 

the best match Ensembl protein (with GO annotation) is determined from the 

next species using the order of precedence mentioned above. 

 

Design and implementation of the ‘Livestock EST Gene Family Database’ 

 The electronic annotations for the cattle and pig EST gene families can be 

accessed over the web from “The Livestock EST Gene Family Database” available at: 

http://genomes.arc.georgetown.edu/cgi-bin/search_livestock_est_gene_family.cgi. The 

database web server was setup using a LAMPerl (Linux, Apache, MySQL, Perl CGI) 

environment. The Livestock EST Gene Family Database has two underlying components 

representing the species-specific webpages: 

• the Cattle EST Gene Family Database  available at 

http://genomes.arc.georgetown.edu/cgi-bin/search_cattle_est_gene_family.cgi 

• the Pig EST Gene Family Database available at 

http://genomes.arc.georgetown.edu/cgi-bin/search_porcine_est_gene_family.cgi 
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‘GO Slim’ analysis 

GO Slim [163] is a list of high level GO terms covering all three GO categories 

and the GO Slim terms provide biological meaning at a coarser level of resolution. The 

hierarchical classification of GO was utilized to obtain a broader function analysis of GO 

mapped annotations. To incorporate and encompass the fine-level (child level) gene 

annotations to arbitrary coarser levels (parent) found in the GO Slims, we first 

determined recursively all the descendants (parent-child relationships) for a given GO 

Slim term. In the next step, the complete descendant information of a given GO Slim 

term was used to map all the descendants associated with the GO Slim term to their 

respective gene products from the Livestock EST Gene Families. The steps detailed 

below outline the pipeline used in the GO Slim analysis of the Livestock EST Gene 

Families: 

1. The “go-term-db” tables were obtained from the Gene Ontology Archive [168]; 

these tables contain information on the GO terms and relationships. The “go-

term-db” tables were loaded into a local MySQL database (say DB1). A different 

MySQL database (say DB2) housed the information pertaining to the 

cattle/porcine EST contigs and singletons mapped to their respective “best 

match” Ensembl vertebrate proteins and GO Annotations associated with the 

Ensembl protein.  

2. A function analysis using Gene Ontology (GO) categories was performed on the 

cattle and porcine EST gene families using the GO Slim [163] developed and 

maintained by the Gene Ontology Consortium [156].  The generic GO Slim [169] 
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was obtained and was parsed using Perl to obtain a tab-delimited file containing 

the GO ID and GO terms. For every term in the GO Slim, Perl-DBI scripts were 

used to query the “go-term-db” tables in DB1 and obtain the complete 

descendant information.   

3. Once the complete descendant information for a particular GO Slim term is 

obtained, Perl-DBI scripts were used to query DB2 for each of the descendants 

and to obtain the cattle/porcine EST contigs and singletons mapped to it.  

 

RESULTS AND DISCUSSION 

The first part of this section describes the utility of the “Livestock EST Gene 

Family Database”. The different search tools allow the user to search by any attribute of 

a sequence (cattle/pig EST GI  or GenBank accession), sequence cluster (cattle/pig EST 

Contig or Protein Family ID), and Gene Ontology (GO)  accessions.  The Livestock EST 

Gene Family Database (Figure 3.1) has two underlying components representing the 

species-specific webpages: 

1. The Cattle EST Gene Family Database (Figure 3.2) available at: 

http://genomes.arc.georgetown.edu/cgi-bin/search_cattle_est_gene_family.cgi 

2. Pig EST Gene Family Database (Figure 3.3) available at: 

http://genomes.arc.georgetown.edu/cgi-bin/search_porcine_est_gene_family.cgi  
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Figure 3.1: Home page of the Livestock EST Gene Family Database. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Home page of the Cattle EST Gene Family Database. 



 111

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3.3: Home page of the Pig EST Gene Family Database. 
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The Livestock EST Gene Family Database provides a user-friendly interface for 

searching, browsing and retrieval of information. One can search the database in 

different ways as detailed below.  

 

Search by cattle/pig GenBank identifiers (GI or Accession)  

The search results page for this search would indicate if the EST is part of a EST 

Contig or a Singleton, and for EST Contigs, a GBrowse [164] link  depicting the 

alignment of the different ESTs to the EST Contig is provided. The search results page 

also has information regarding the ‘best match Ensembl vertebrate protein’ with/without 

GO Annotations for the EST Contig/Singleton, and the GO and the NCBI and UniProt 

protein cross-references for the Ensembl protein. The results page also provides 

information about other EST contigs and singletons constituting the protein family 

associated with the EST searched. Figure 3.4 is a screenshot showing the search results 

from the “Livestock EST Gene Family Database” upon searching for the Bos taurus EST 

GenBank GI 12123209.  

 



 113

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.4: Search results for the Cattle EST GenBank GI 12123209 from the 
Livestock EST Gene Family Database. 
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Search by cattle/pig ‘EST Contig or Singleton’  

If a user has prior information about a specific EST Contig or Singleton and is 

interested in getting further details about the same, one can search the “Livestock EST 

Gene Family Database” for the same. The search results would detail the annotations, 

database cross-references, protein family details, and in case of EST contigs a GBrowse 

[164] link is provided. The EST contigs follow this naming convention: 

'Integer1_CLInteger2ContigInteger3', where Integer1 is the Protein Family ID assigned 

by the protein clustering algorithm, CLInteger2 refers to a particular Cluster ID 

(assigned by Megablast from the TGICL package) and ContigInteger3 refers to the 

Contig ID (assigned by CAP3 from the TGICL package) for that cluster. In case of 

singletons, the names are of the type 'Integer1_GINumber', where Integer1 is the Protein 

Family ID assigned by the protein clustering algorithm, and GI Number is the GenBank 

GeneInfo Number for that EST. Figure 3.5 is a screenshot showing the search results 

from the “Livestock EST Gene Family Database” upon searching for the Sus scrofa EST 

Contig 10_CL4Contig1. 
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Figure 3.5: Search results for the Pig EST Contig 10_CL4Contig1 from the 
Livestock EST Gene Family Database. 
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Search by ‘Protein Family ID’ 

Searching by Protein Family ID would detail the different members of the Bos 

taurus and Sus scrofa EST gene families, and the different Ensembl vertebrate proteins 

belonging to that protein family. Links for the individual annotations for the different 

members of the Bos taurus and Sus scrofa EST gene families, and information 

pertaining to the different vertebrate proteins constituting the protein family are also 

provided. It is to be noted that the 'Protein Family ID' is a number internal to this 

database and denotes the ID assigned by the protein clustering algorithm.  

The salient feature of the “Protein Family” search is that one can get a listing of 

ESTs belonging to the same gene/protein family and represented in two different species 

(cattle and pig). This information is particularly useful in situations where a researcher, 

say from the pig community, is interested in the putative functions of a specific pig EST 

and would like to know the ESTs in cattle which perform a similar function. To obtain 

this information, the researcher would first search the “Livestock EST Gene Family 

Database” using the pig EST GenBank accession as a query, obtain the putative function 

annotations for that pig EST and note the “Protein Family ID” to which the pig EST 

belongs. In the second step, the researcher would search the “Livestock EST Gene 

Family Database” using the “Protein Family ID” as the query and obtain information 

about different cattle and pig ESTs in that protein family. Figure 3.6 is a screenshot of 

the search results from the “Livestock EST Gene Family Database” listing the Bos 

taurus and Sus scrofa EST gene families, and the different Ensembl vertebrate proteins 

upon searching for the Protein Family 15939. 
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Figure 3.6: Search results for Protein Family ID 15939 from the Livestock EST 
Gene Family Database. 
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Search by ‘Gene Ontology Accession’ 

This search will find all gene products (EST Contig/Singletons in this case) 

directly annotated to the GO accession as well as other gene products transitively 

annotated. To elaborate, this search functionality above takes into consideration the 

directed acyclic graph (DAG) model and the hierarchical classification of ontologies in 

the GO schema where a child (more specialized term) is a subset of a parent’s (less 

specialized term) elements. For example, if gene product GP is annotated to GO:X, and 

GO:X is beneath GO:Y, then GP is transitively annotated to GO:Y. Therefore, all child 

terms of a particular GO accession inherit the properties of the parent. Searching by GO 

accession on this database will retrieve its complete descendant information and the 

mapping of the different EST contigs/singletons associated with the complete GO 

descendant tree starting from that GO Accession. This search feature will come in handy 

for users who want to get a complete profile of gene products associated with a 

particular GO Accession. As an example, lets say a researcher was interested in finding 

cattle and pig EST gene products annotated to the GO accession “GO:0006110 – 

regulation of glycolysis”. GO:0006110 has two child terms; GO:0045821 – positive 

regulation of glycolysis and GO:0045820 – negative regulation of glycolysis. Given the 

hierarchical organization of GO, the child terms GO:0045820 and GO:0045821 inherit 

the properties of the parent GO:0006110. A search for GO:0006110 at the “Livestock 

EST Gene Family Database” would first identify its complete descendant tree and then 

map the different cattle and pig EST gene products to all of the GO accessions in the 

descendant tree. Doing it this way, the researcher can get a snapshot of all the cattle and 
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pig gene products associated with that property (in this case, regulation of glycolysis). 

Instead, if one were to do a one-to-one mapping of all the EST gene products associated 

only with the search term GO:0006110 and not its descendants, one would end up 

obtaining only the coarse level annotation (parent level) and therefore, miss out on the 

more specific fine-level (child level) annotations. The AmiGO [170] database 

incorporates a search strategy similar to the one described here. AmiGO however has 

gene product annotations from model organisms whose complete genome sequences are 

known and AmiGO does not house GO annotations for EST gene products. To the best 

of our knowledge, the “Livestock EST Gene Family Database” is the only database of its 

kind to have an AmiGO like GO term descendant mapping information catered for EST 

gene products – cattle and pig ESTs in this case. Figure 3.7 is a screenshot of the search 

results from the “Livestock EST Gene Family Database” upon searching for the Gene 

Ontology accession GO:0030295 – protein kinase activator activity. 
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Figure 3.7: Search results for the Gene Ontology Accession GO:0030295 from the 
Livestock EST Gene Family Database. 
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Search by microarray ‘Oligo Locus’ or ‘Oligo ID’ 

The EST clustering process resulted in a set of Unique Transcripts (UT) which 

includes EST Contigs and Singletons. Unique Transcripts overlapping the same 

vertebrate Ensembl protein were identified and these "groups of Unique Transcripts" are 

in effect "groups of genes". As part of the Bovine Oligo Microarray Consortium [161] 

and the Swine Protein-Annotated Oligonucleotide Microarray [162] projects, novel 70-

mer oligonucleotide probes were designed for profiling gene expression of the cattle and 

pig genomes with one oligo being designed per gene. The Cattle EST Gene Family 

Database has information pertaining to the 16,846 oligonucleotide sequences designed 

for the Bovine Oligo Microarray Consortium [161]; the Pig EST Gene Family Database 

has information pertaining to the 18,254 oligonucleotide probes designed for the Swine 

Protein-Annotated Oligonucleotide Microarray [162] project. On the specific EST Gene 

Family webpages (Figure 3.2 and Figure 3.3), searching for the Microarray Oligo 

Locus or ID retrieves information about the consensus oligo sequence it represents, the 

EST Contig or Singleton associated with the oligo sequence, and the annotations and 

other cross-references associated with EST Contig or Singleton. Figure 3.8 is a 

screenshot of the search results from the “Cattle EST Gene Family Database” upon 

searching for the Bovine Oligo Microarray Consortium (BOMC) Locus 11695. Figure 

3.9 is a screenshot of the search results from the “Pig EST Gene Family Database” upon 

searching for the Pig MicroArray Oligo ID 10033:7213_CL4Contig1:F. 
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Figure 3.8: Search results for Bovine Oligo Microarray Consortium Locus 11695 
from the Cattle EST Gene Family Database. 
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Figure 3.9: Search results for Pig MicroArray Oligo ID 10033:7213_CL4Contig1:F 
from the Pig EST Gene Family Database. 
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Cattle/Pig ‘EST Assembly Viewers’ in GBrowse 

Generic Genome Browser (GBrowse) is a web-based application for displaying 

genomic annotations that uses a combination of database and interactive web pages to 

manipulate and display sequence annotations. The “Cattle EST Gene Family Database” 

and the “Pig EST Gene Family Database” have outgoing links to the respective EST 

Assembly Viewers in GBrowse. The “Cattle EST Assembly Viewer” is available at: 

http://genomes.arc.georgetown.edu/cgi-bin/gbrowse/cattle_ests_test/ and the “Pig EST 

Assembly Viewer” is available at: http://genomes.arc.georgetown.edu/cgi-

bin/gbrowse/pig_ests/.  

The GBrowse back-end comprises a MySQL database housing information about 

the consensus sequence of EST Contigs, and the alignment coordinates and sequence 

information of the constituent ESTs. Integration of GBrowse with the main database(s) 

happens at the level of the web site with link rules to forge outgoing links (e.g., 

annotation information for the EST contig, GenBank link for the EST). Incoming links 

to GBrowse from the main database(s) use GBrowse’s standard URL calling 

conventions to specify the region of interest (e.g., EST Contig or coordinates of an EST 

on a particular EST Contig). Figure 3.10 is a screenshot showing results from the 

“GBrowse Cattle EST Assembly Viewer” upon searching for the Cattle EST Contig 

4944_CL2Contig2. Figure 3.11 is a screenshot of the search results from the “GBrowse 

Pig EST Assembly Viewer” upon searching for the Pig EST having GenBank GI 

34172655. 
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Figure 3.10: Search results for Cattle EST Contig 4944_CL2Contig2 from the 
Cattle EST Assembly Viewer. 
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Figure 3.11: Search results for Pig EST GI 34172655 from the Pig EST Assembly 
Viewer. 
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‘GO Slim’ analysis: function categorization of the cattle and pig transcriptomes 

The significance of this GO Slim analysis lies in the fact that it enables 

categorization of the function encoded in the cattle and pig transcriptomes within 

arbitrary coarser (parent) levels of the three independent gene ontologies - biological 

process, molecular function and cellular component. This categorization helps identify 

the putative functions of the different EST gene products using the structured 

vocabularies in the gene ontologies. By conveying biological meaning at a coarser level, 

it helps overcome any inconsistencies like categorization errors and/or incomplete 

coverage of certain GO categories.  

This analysis was carried out by first determining the ‘best match Ensembl 

vertebrate protein’ having a Gene Ontology (GO) Annotation for a EST 

Contig/Singleton using the pipeline described in Materials and Methods; subsequently, 

these EST Contigs/Singletons via their GO annotations were mapped to the different GO 

Slim terms in the generic GO Slim [169]. In this analysis, the fine-level (child level) 

gene annotations are encompassed within arbitrary coarser levels (parent) found in the 

GO Slims.  
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By first recursively determining the complete descendant information for a given 

GO Slim term and then mapping all the descendants associated with that GO Slim term 

to their respective gene products from the cattle/pig EST Gene Families, the percentages 

of the unique cattle/pig EST Contig/Singleton sequences for each of the assigned GO 

terms in the GO Slim were computed. These percentages were normalized based on the 

total number of gene products having GO annotations; i.e., the number of gene products 

assigned to a particular GO term was divided by the total number of sequences having 

GO annotations to obtain percentages of the unique cattle/pig EST Contig/Singleton 

sequences mapped to every GO Slim term. 

Tables 3.1, 3.2 and 3.3 provide a breakdown of the number of Bos taurus and 

Sus scrofa consensus sequences associated with the “Biological Process”, “Molecular 

Function” and “Cellular Component” namespaces of Gene Ontology annotations using 

the terms in the generic GO Slim.  
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Table 3.1: Biological Process Gene Ontology annotation statistics for cattle and pig 

EST consensus sequences using the GO Slim terms in the generic GO Slim. 

Gene Ontology ID Gene Ontology Term 

Number of 

 Bos taurus EST 

consensus 

sequences 

Number of 

 Sus scrofa  EST 

consensus 

sequences 

GO:0007582 Physiological Process  27, 477 23, 315 

GO:0008152 Metabolism 19, 374 16, 435 

GO:0044238 Primary Metabolism 17, 301 14, 777 

GO:0019538 Protein Metabolism 8, 178 7, 014 

GO:0006139 Nucleic Acid Metabolism 7, 987 6, 657 

GO:0050789 Regulation of Biological Process 8, 015 6, 859 

GO:0006810 Transport 7, 075 5, 804 

GO:0007154 Cell Communication 6, 089 5, 032 

GO:0007165 Signal Transduction 5, 599 4, 659 

GO:0006350 Transcription 4, 535 3, 833 

GO:0006464 Protein Modification 4, 016 3, 610 

GO:0016043 Cell Organization, Biogenesis 3, 985 3, 576 

GO:0007275 Development 3, 846 3, 139 

GO:0009058 Biosynthesis 3, 593 3, 006 

GO:0006950 Stress Response 2, 452 2, 065 

GO:0006996 Organelle Organization, Biogenesis 2, 290 2, 051 

GO:0009607 Biotic Stimulus Response 2, 289 2, 085 

GO:0006412 Protein Biosynthesis 2, 136 1, 667 
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Table 3.2: Molecular Function Gene Ontology annotation statistics for cattle and 

pig EST consensus sequences using the GO Slim terms in the generic GO Slim. 

Gene Ontology ID Gene Ontology Term 

Number of 

 Bos taurus EST 

consensus 

sequences 

Number of 

 Sus scrofa  EST 

consensus 

sequences 

GO:0005488 Binding 25, 749 22, 143 

GO:0003824 Catalytic Activity 14, 419 12, 272 

GO:0005515 Protein Binding 11, 499 9, 973 

GO:0003676 Nucleic Acid Binding 7, 555 6, 536 

GO:0000166 Nucleotide Binding 5, 731 4, 915 

GO:0016787 Hydrolase Activity 5, 454 4, 609 

GO:0004871 Signal Transducer Activity 4, 794 4, 355 

GO:0016470 Transferase Activity 4, 604 4, 102 

GO:0003677 DNA Binding 4, 181 3, 646 

GO:0005215 Transporter Activity 3, 490 2, 778 

GO:0004872 Receptor Activity 2, 864 2, 717 

GO:0030528 Transcription Regulator Activity 2, 627 2, 266 

GO:0005198 Structural Molecule Activity 2, 364 1, 751 

GO:0016301 Kinase Activity 2, 233 1, 988 

GO:0003723 RNA Binding 2, 094 1, 743 

GO:0005509 Calcium Ion Binding 1, 909 1, 642 

GO:0030234 Enzyme Regulator Activity 1, 763 1, 506 

GO:0003700 Transcription Factor Activity 1, 596 1, 396 
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Table 3.3: Cellular Component Gene Ontology annotation statistics for cattle and 

pig EST consensus sequences using the GO Slim terms in the generic GO Slim. 

Gene Ontology ID Gene Ontology Term 

Number of 

 Bos taurus EST 

consensus 

sequences 

Number of 

 Sus scrofa  EST 

consensus 

sequences 

GO:0005623 Cell 26, 772 22, 754 

GO:0005622 Intracellular 19, 802 16, 700 

GO:0043226 Organelle 16, 271 13, 788 

GO:0005737 Cytoplasm 10, 015 8, 239 

GO:0005634 Nucleus 8, 787 7, 581 

GO:0043234 Protein Complex 5, 389 4, 252 

GO:0005886 Plasma Membrane 3, 175 2, 668 

GO:0005576 Extracellular Region 2, 950 2, 461 

GO:0005856 Cytoskeleton 2, 192 1, 843 

GO:0005739 Mitochondrion 2, 058 1, 741 

GO:0005615 Extracellular Space 1, 583 1, 270 

GO:0005783 Endoplasmic Reticulum 1, 459 1, 217 

GO:0005829 Cytosol 1, 148 823 

GO:0005794 Golgi Apparatus 1, 090 1, 036 

GO:0005840 Ribosome 1, 038 720 

GO:0005654 Nucleoplasm 727 628 

GO:0005694 Chromosome 705 667 

GO:0005578 Extracellular Matrix 682 601 
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The findings from Tables 3.1, 3.2 and 3.3 after profiling the cattle and pig 

transcriptomes in the “Biological Process”, “Molecular Function” and “Cellular 

Component” namespaces of Gene Ontology are illustrated in Figures 3.12, 3.13 and 

3.14. Given below is a summary of the findings from Tables 3.1, 3.2 and 3.3. 

Biological Process profile 

Figure 3.12 depicts the Biological Process Gene Ontology profile for the cattle 

and the pig transcriptomes. The largest Biological Process GO category in both the 

transcriptomes was the ‘physiological process’ category with approximately 67% of both 

the cattle and pig EST gene products coming under it (27, 477 Cattle EST Consensus 

sequences and 23, 315 Pig EST Consensus sequences). The next largest categories in the 

Biological Process GO were the EST gene products pertaining to the ‘metabolism’ 

category with ~47% of cattle and pig EST gene products in it (19,374 Cattle EST 

Consensus sequences and 16,435 Pig EST Consensus sequences). The ‘metabolism’ 

category encompasses ‘primary metabolism’ (~42% of cattle and pig EST gene 

products), ‘protein metabolism’ (~20% of cattle and pig EST gene products), and 

‘nucleic acid metabolism’ (~20% of cattle and pig EST gene products). Among the other 

GO terms in the Biological Process namespace, the ‘transport’ category has 

approximately 17% of cattle and pig EST gene products, and the ‘stress response’ as 

well as the ‘biotic stimulus response’ categories having approximately 6% of cattle and 

pig EST gene products. 
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Figure 3.12: Biological Process Gene Ontology (GO) profiles for cattle and pig EST 
consensus sequences.  
Assignment to the different GO Slim terms for cattle (top panel) and pig (bottom 
panel) EST consensus sequences normalized on number of sequences having GO 
annotations. 
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Molecular Function profile 

Figure 3.13 depicts the Molecular Function Gene Ontology profile for the cattle 

and the pig transcriptomes. The largest Molecular Function GO category in both the 

transcriptomes was the ‘binding’ category with approximately 63% of both the cattle and 

pig EST gene products coming under it (25,749 Cattle EST Consensus sequences and 

22,143 Pig EST Consensus sequences). The ‘binding’ category encompasses the 

following categories: ‘protein binding’ (~28% of cattle and pig EST gene products), 

‘nucleic acid binding’ (~19% of cattle and pig EST gene products), ‘nucleotide binding’ 

(~14% of cattle and pig EST gene products), ‘DNA binding’ (~10% of cattle and pig 

EST gene products) and ‘RNA binding’ (~5% of cattle and pig EST gene products). The 

next largest category in the Molecular Function GO was the ‘catalytic activity’ category 

with ~35% of cattle and pig EST gene products in it (14,419 Cattle EST Consensus 

sequences and 12,272 Pig EST Consensus sequences). The ‘catalytic activity’ GO 

encompasses the ‘hydrolase activity’ (~13% of cattle and pig EST gene products) 

category and the ‘transferase activity’ (~11% of cattle and pig EST gene products) 

category. Among the other GO terms in the Molecular Function namespace, the ‘signal 

transducer activity’ category has ~12% of cattle and pig EST gene products, the 

‘transporter activity’ category has ~9% of cattle and pig EST gene products, and the 

‘receptor activity’ as well as the ‘transcription regulator activity’ categories mapping to 

approximately 6-8% of the cattle and pig EST gene products. 
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Figure 3.13: Molecular Function Gene Ontology (GO) profiles for cattle and pig 
EST consensus sequences.  
Assignment to the different GO Slim terms for cattle (top panel) and pig (bottom 
panel) EST consensus sequences normalized on number of sequences having GO 
annotations. 
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Cellular Component profile 

Figure 3.14 depicts the Cellular Component Gene Ontology profile for the cattle 

and the pig transcriptomes. The ‘cell’ category was the largest Cellular Component GO 

category in both the transcriptomes with approximately 65% of both the cattle and pig 

EST gene products coming under it (26,772 Cattle EST Consensus sequences and 

22,754 Pig EST Consensus sequences). The ‘cell’ category encompasses the following 

categories: ‘intracellular’ (~48% of cattle and pig EST gene products), ‘cytoplasm’ 

(~24% of cattle and pig EST gene products), ‘nucleus’ (~21% to ~22% of cattle and pig 

EST gene products), ‘plasma membrane’ (~8% of cattle and pig EST gene products) and 

‘cytoskeleton’ (~5% of cattle and pig EST gene products). The next largest categories in 

the Cellular Component GO was the ‘organelle’ category with ~39% to ~40% of cattle 

and pig EST gene products in it (16,271 Cattle EST Consensus sequences and 13,788 

Pig EST Consensus sequences) and the ‘protein complex’ category with ~12% to ~13% 

of cattle and pig EST gene products in it (5,389 Cattle EST Consensus sequences and 

4,252 Pig EST Consensus sequences).  
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Figure 3.14: Cellular Component Gene Ontology (GO) profiles for cattle and pig 
EST consensus sequences.  
Assignment to the different GO Slim terms for cattle (top panel) and pig (bottom 
panel) EST consensus sequences normalized on number of sequences having GO 
annotations. 
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Bovine transcriptome GO mappings from the ‘best match’ approach versus GO 

mappings for predicted bovine transcripts 

We compared the GO mappings identified by our ‘best match’ approach for the 

bovine EST consensus sequences with the GO mappings for the predicted bovine 

transcripts in the Bos taurus Ensembl Release 50 (July 2008) [129]. The GO mappings 

for the predicted bovine transcripts were obtained from BioMart [167]. The ‘best match’ 

approach mapped the bovine EST consensus sequences to 6,322 unique GO terms; the 

Ensembl approach mapped the bovine transcripts to 5,960 unique GO terms. Perl scripts 

were written to identify the GO terms common to both methods as well as the GO terms 

unique to the datasets. Figure 3.15 is a cartoon depicting how the two GO mapping 

methods compare. 

 

 

 

Figure 3.15: Comparison of the GO mappings for bovine EST consensus sequences 
using ‘best match’ approach and GO mappings for predicted bovine transcripts in 
Ensembl.  
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Figure 3.15 reveals that the two methods have 5113 GO terms in common and 

~1000 GO terms unique to either set. We believe that the ~1000 or so GO terms unique 

to either set could be due to the fact that the GO annotations for the Bovine Genome 

project are ongoing and not yet complete. The ‘best match’ approach of GO annotations 

for the bovine EST consensus sequences does not rely on GO mappings from the bovine 

genome; instead, GO annotations are transferred to the bovine EST consensus sequence 

based on the vertebrate protein match found using FASTX and using the species 

precedence order described earlier. In spite of the differences in the approach taken by 

the two methods for the GO mappings, the fact that there are 5113 GO terms are in 

common between the two methods signifies that the procedure of transferring GO 

annotations using the ‘best match’ approach can be relied upon for species that do not 

have complete genome sequences and/or do not have GO mappings derived from a 

complete genome sequence being available. 

 

CONCLUSIONS 

 Bos taurus (cattle) and Sus scrofa (pig) are important livestock species that serve 

as candidate animal models for biomedical research. In the absence of availability of 

completed genomes for the Bos taurus and Sus scrofa species, very less information 

exists about the genes and the gene products. In this scenario, EST datasets were utilized 

to obtain insights of the functions encoded in the cattle and the pig transcriptomes using 

computational predictions.  
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 Anonymous ESTs are of limited value unless connected to function, thereby 

necessitating the need for annotated datasets. The Livestock EST Gene Family Database 

consists of cattle and pig ESTs clustered into gene families using the vertebrate 

proteomes in the Ensembl database as a framework for assembly and translation. Cattle 

and Pig ESTs were electronically annotated making use of the rich annotations of the 

vertebrate proteomes; these annotated datasets would help researchers to deal with the 

volume of information, and to utilize the information embedded in the gene expression 

data gathered from assembling the EST datasets. These annotations would immensely 

aid the livestock community in narrowing down the gamut of direct experiments needed 

to verify function. The database has a user-friendly web interface and can be searched in 

a number of ways: Cattle/Pig EST GenBank identifiers (GI or Accession), Gene 

Ontology Accession to obtain information about the vertebrate protein family, related 

EST members and other annotations.  

The Livestock EST Gene Family Database is the first of its kind where ESTs 

with similar functions in more than one species are grouped together in the same gene 

family. This information comes in handy when one wants to get a listing of ESTs from 

different species performing the same function. To do so, one could search the database 

using an EST from species 1; obtain the Protein Family Id for that EST. Upon searching 

the database using the Protein Family Id as the query, one can get a listing of all the 

ESTs from different species belonging to that Protein Family Id.  

The Livestock EST Gene Family Database is also the first of its kind that 

incorporates an AmiGO [170] like search strategy to transitively annotate EST gene 
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products with a GO accession and all its descendants. The AmiGO database houses gene 

product annotations from model organisms whose complete genome sequences are 

known and AmiGO does not house GO annotations for EST gene products. Searching by 

GO accession on the Livestock EST Gene Family Database will retrieve the complete 

descendant information for the GO accession and give a mapping of the different  

livestock EST contigs/singletons associated with the complete GO descendant tree 

starting from that GO Accession. This search feature will come in handy for users who 

want to get a complete profile of the cattle and pig EST gene products associated with a 

particular GO Accession. 

The GO terms mapped to the bovine EST consensus sequences identified by the 

‘best match’ approach were compared to the GO terms mapped to the bovine transcripts 

by Ensembl. Despite the different strategies used by the two methods, the findings reveal 

that the ‘best match’ approach compares well with the Ensembl approach and can be 

used reliably for species that do not have complete genome sequences and/or do not 

have GO mappings derived from a complete genome sequence being available. 

A GO Slim analysis was performed to functionally categorize the cattle and pig 

transcriptomes within arbitrary coarser (parent) levels of the three independent 

ontologies - biological process, molecular function and cellular component - and helped 

in the identification of the roles of the different EST gene products. The GO Slim 

analysis helped profile the cattle and pig transcriptomes by conveying biological 

meaning at a coarser level, thereby making up for inconsistencies like categorization 

errors and/or incomplete coverage of certain categories.  
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 The work described in this chapter provides an invaluable resource to explore the 

orthologous relationships and evolutionary analysis of the genes and gene families in 

cattle and pig, and for functional genomics. The computational function predictions of 

the cattle and the pig transcriptomes would help in obtaining a first-order approximation 

of the molecular function of the proteins encoded and come in handy while prioritizing 

experimental investigations. 
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CHAPTER IV 

DESCRIPTION OF A PHYLOGENOMIC ANNOTATION PIPELINE FOR 

COMPUTATIONAL FUNCTION PREDICTIONS OF THE Bos taurus AND  

Sus scrofa TRANSCRIPTOMES 

SYNOPSIS 

In this chapter, EST consensus sequences, which had been generated from cattle 

and pig ESTs after grouping ESTs into gene families, were combined with proteins in 

their respective protein family, and subject to multiple sequence alignment and 

phylogenetic analysis. The phylogenetic trees obtained were then analyzed using a 

subtree neighbors approach to predict function of the cattle ad pig ESTs consensus 

sequences. This analysis was able to identify function for ~23% of the Livestock EST 

gene products. The remaining ~77% of the sequences were excluded due to various 

reasons that include, but are not restricted to: a) belonging to families with 50 or more 

members, b) ambiguous regions in the multiple sequence alignment, c) failure to match 

tree resolving criteria in the consensus phylogenetic tree reconstruction after 

bootstrapping, d) tree ambiguity problems. This work thus outlines the processes 

required for phylogenomic annotation and identifies the technical/biological pitfalls of 

the same. This work, to our knowledge, is the first of its kind where phylogenomic 

inference has been used in predicting functions for EST gene products, and the function 

predictions of the uncharacterized cattle/pig EST gene products using this approach 

would help reduce the number of direct experiments required to verify function. 
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BACKGROUND 

Orthologs are evolutionary counterparts derived from a single ancestral gene in 

the last common ancestor of species being compared [70-72] . Orthologs are likely to 

have equivalent or similar functions because of their phylogenetically close 

relationships; however, function is not part of the definition. The high level of function 

conservation between orthologs makes orthology relevant for protein function 

prediction.  

Phylogenetic analysis helps improve function predictions by incorporating an 

evolutionary perspective. Phylogenomics combines evolutionary and comparative 

genomic analysis into a single composite approach [1], and involves inferring function 

of a unknown sequence (protein) in the larger context of a protein family based on 

evolutionary relationships [32, 39, 53, 77]. In this approach, a phylogenetic tree is 

constructed following multiple sequence alignment of the different members of a protein 

family. As a result, the various members of the family are segregated into subfamilies; 

each subfamily representing a functionally and evolutionarily distinct group of 

homologous proteins with similar functions and activities. The tree topology is then 

analyzed and the phylogenetic information encoded in the subfamily (or subtree) 

structure is used to infer likely functions for the uncharacterized members of the protein 

family. Since function is conserved within orthologous subfamilies [82], uncharacterized 

genes can be assigned predicted function based on the subfamily in which they are 

placed. 
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Making accurate function predictions is a key step and these predictions have 

become increasingly important as numerous sequences are being generated with little or 

no accompanying experimentally determined information regarding the function they 

encode. Bos taurus (cattle) and Sus scrofa (pig) represent evolutionary clades distinct 

from the primates and rodents, and therefore are good candidate animal models for 

biomedical research due to parallels with humans. The genome sequences for these 

species are in different stages of completion [10, 12], and in this scenario Expressed 

Sequence Tags represent a good alternative to indentify the genes and the functions 

encoded in the genome.  

 

Overview of the work in this chapter 

In this chapter, we use a phylogenomic approach to predict the functions encoded 

in the Bos taurus (cattle) and Sus scrofa (pig) transcriptomes. Cattle and pig ESTs were 

first grouped into gene families using the vertebrate protein family clusters obtained 

from an in-house clustering algorithm developed in our lab. Phylogenetic analysis of the 

protein family clusters results in subdivisions of groups containing orthologs and 

paralogs, each group representing distinct subfamilies.  

As part of the TAMUClust EST clustering pipeline, cattle and pig ESTs were 

grouped into gene/protein families using the Ensembl protein families as the framework. 

The different proteins and the EST gene products in each protein family are passed 

through a multiple sequence alignment and phylogenetic analysis pipeline. The resulting 

phylogenetic trees were analyzed for their tree topology and the functions of the 
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uncharacterized EST gene family members were predicted by their positions on the 

phylogenetic tree involving other member(s) of the subgroup/subfamily.  

To our knowledge, this is the first time that phylogenomic analysis, and that too 

on a large scale, has been used in predicting functions for EST gene products. This 

analysis helps obtain improved function predictions of the uncharacterized EST gene 

family members in cattle and pig, and would thereby provide the livestock community 

with an invaluable resource to verify function of the EST gene products by designing 

experiments based on these predictions. 

 

MATERIALS AND METHODS 

Assembling a dataset 

 One of the preliminary requirements for constructing a phylogenetic tree is 

building the dataset. Given below are the steps used in assembling a protein family 

dataset comprising of Ensembl vertebrate proteomes and bovine/porcine translated EST 

Contig/Singleton sequences: 

1) Bos taurus and Sus scrofa ESTs were clustered into gene families using Dr. Elsik’s 

clustering algorithm as described in Chapter II. This clustering algorithm is a two 

step process and uses the vertebrate proteomes in the Ensembl database as a 

framework to assemble and translate the ESTs. A total of 219,433 Ensembl 

vertebrate proteins from Homo sapiens, Mus musculus, Rattus norvegicus, Gallus 

gallus, Danio rerio, Takifugu rubripes and Tetraodon nigroviridis were clustered 

into 10,092 protein families. The vertebrate protein families served as a framework 
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to group the Bos taurus and Sus scrofa ESTs into gene families using Dr. Elsik’s 

algorithm as described in Chapter II.  308,132 bovine ESTs were grouped into 

46,731 EST Clusters (24,665 contigs and 22,066 singletons); 238,691 porcine ESTs 

were grouped into 39,641 EST Clusters (20,951 contigs and 18,690 singletons). 

2)  The “best match” Ensembl vertebrate protein for every EST Contig/Singleton was 

determined using the pipeline mentioned in Chapter III. The ‘protein2dna’ model of 

the Exonerate [171, 172] program in conjunction with the “ryo” (roll your own) 

output option was used to translate the EST Contig/Singleton using the “best match” 

Ensembl vertebrate protein as the framework. The ‘protein2dna’ model compares a 

protein sequence to a DNA sequence while incorporating all the appropriate gaps 

and frameshifts. Perl scripts were written to automate the procedure and to parse the 

Exonerate outputs to generate a fasta file of the translated EST Contig/Singleton. 

3) Perl scripts were written to make directories of protein families generated by Dr. 

Elsik’s single-linkage and average-linkage clustering results of the Ensembl 

vertebrate proteins. Each directory (protein family) contains fasta files of the 

different Ensembl vertebrate proteins assigned to that protein family by Dr. Elsik’s 

clustering algorithm. 

4) Perl scripts were written to first identify the protein family to which a translated EST 

Contig/Singleton (from Step 2 above) belongs and then to assign it to its respective 

protein family directory (from Step 3 above). 
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The above mentioned steps resulted in different protein family directories (10092 

directories), each of which having fasta files of the vertebrate proteins and fasta files of 

the bovine/porcine translated EST Contig/Singleton. The different sequences in each 

protein family were subject to multiple sequence alignment (MSA) as described in detail 

below. 

 

Multiple Sequence Alignment (MSA) 

Molecular trees are based on multiple sequence alignments (MSA); these 

multiple sequence alignments form the heart of the matter when in comes to inferring 

relationships based on phylogenetic trees [173]. Earlier, these alignments were 

assembled by hand [173] as the exhaustive alignment of >8 sequences was 

computationally unfeasible. Nowadays, with advances in computing resources, MSAs 

can be performed with large number of sequences.  

With reference to our study, it was critical to understand the subtleties and 

nuances of the underlying dataset to determine the ideal MSA program that could answer 

our questions. In our dataset, each protein family had a mix of full-length vertebrate 

proteins along with bovine/porcine translated EST Contig/Singleton sequences. 

Moreover, each protein family was diverse in terms on total number of sequences range 

from 2 to 1593. Hence, it was of utmost importance to select a MSA program that could 

work with a mix of full-length as well as fragmented sequences.  
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Choice of the MSA program 

In a recent study [174] evaluating different MSA methods using four sets of 

reference alignments, three MSA methods – T-Coffee [175], MUSCLE [174, 176], and 

Multiple Alignment using Fast Fourier Transform (MAFFT) [177] – were found to be 

highly accurate. T-Coffee has a drawback that the number of sequences cannot exceed 

50 [178] and was hence unsuitable for our study. We evaluated the performance of 

MUSCLE (version 3.6) and MAFFT (version 5.861) with our dataset; we found 

MUSCLE to be crashing with certain protein families having large sizes whereas 

MAFFT would work well in those scenarios. Moreover, the MAFFT algorithm has 

different alignment options like (linsi, ginsi, einsi) [179]; each option being suitable for 

different types of sequences. The ‘linsi’ (l’ standing for local) option is suitable for 

aligning a set of sequences containing flanking sequences around one alignable domain. 

The ‘ginsi’ (‘g’ standing for global) options assumes that entire region can be aligned 

and tries to globally align them. The MAFFT ‘einsi’ option is suitable for MSAs which 

have large unalignable regions [179]; it is also the recommended option if the nature of 

sequences to be aligned is not clear.  

We decided to use MAFFT and the ‘einsi’ option to perform the multiple 

sequence alignments of the sequences in the different protein family directories as it was 

tailor-made for the nature of sequences that we had. We used the ‘clustalout’ option of 

MAFFT to generate ‘clustal-like’ MSAs.  
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Phylogenetic analysis 

There are three methods – maximum parsimony, maximum likelihood, and 

distance – to determine the evolutionary tree or trees that best account for the observed 

variation in a group of sequences.  

1) Maximum parsimony (MP) predicts the evolutionary tree that minimizes the number 

of steps required to generate the observed variation in the sequences from common 

ancestral sequences. Analysis is performed on every single column of the MSA and 

for each aligned position, phylogenetic trees that require smallest number of 

evolutionary changes are found. This is repeated for every position in the sequence 

alignment. Finally, only those trees that produce smallest amount of changes overall 

for all sequence positions are determined. Because the maximum parsimony method 

tries to fit all possible trees to the data, this method is best suited [97] for analysis 

involving sequences that are quite similar and is limited to small number (<12) of 

sequences in a MSA. The MP method is also not suitable for sequences from large 

evolutionary distances as it does not take into account a model of evolution. 

2) Maximum likelihood (ML) methods start with a simple model of rates of 

evolutionary changes in sequences and tree models that represent a pattern of 

evolutionary change, and then adjust the model until a best fit for the observed data 

is found. Similar to the MP method, ML methods also perform analysis on each 

column of the alignment. The ML method resembles the MP method in that trees 

with the least number of changes will be the most likely. However, the ML method 

allows one to evaluate tress with variations in mutation rates in different lineages, or 
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site-to-site variations within the MSA [97] – conditions that are not well handled by 

MP methods. Because all possible trees are considered by the ML method in its 

analysis, this method is feasible only for a small number of sequences. 

3) Distance methods are based on evolutionary distances between sequence pairs in a 

MSA. The goal of distance methods is to identify a tree that positions the neighbors 

correctly and that has branch lengths which, when added up between each sequence 

pair, closely reproduce the original distance measurements. Distance matrix 

programs use a substitution model to generate a table with the distances between all 

pairs of sequences in a MSA.  Distance analysis programs use the information in the 

distance matrices obtained from above to obtain a tree that best accounts for the 

observed variation in a group of sequences. The biggest advantage [97] that 

‘distance’ methods have over MP and ML is that the ‘distance’ methods can handle 

large numbers of sequences and usually are not significantly affected by variations in 

rates of mutation over evolutionary times. 

 

Given the large number of sequences in our analysis, we decided to use the 

‘distance’ method for phylogenetic analysis. We chose to use the phylogeny inference 

package (PHYLIP) [180] to generate phylogenetic trees of the different protein families 

in our dataset. 

Phylogeny inference package (PHYLIP) pipeline 

The PHYLIP pipeline requires the different PHYLIP programs in a sequential 

way; the output from Program 1 is used as input for Program 2, and the output of 
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Program 2 is used as input for Program 3, and so on. The perl modules Bio::AlignIO and 

Bio::SimpleAlign from the BioPerl toolkit [181] were used in perl scripts to convert the 

MSAs from a ‘clustal-like’ format to a ‘phylip infile’ format required by PHYLIP. This 

‘phylip infile’ was passed though a PHYLIP pipeline as detailed below: 

1. Seqboot: Seqboot is a general bootstrapping and data set translation tool which 

generates multiple data sets that are resampled versions of the input data set. The 

input dataset can be resampled in many ways: bootstrapped, jackknifed, or 

permuted. We used Seqboot with the default settings to generate 100 bootstrapped 

datasets. Bootstrapping tests whether the entire dataset is supporting the tree or if 

the tree is a marginal winner among many equally possible alternatives. 

Bootstrapping is done by taking random subsamples of the dataset. Building trees 

from these and calculating the frequency with which various parts of the tree are 

reproduced in each of the random subsamples. Seqboot requires the input file to be 

called ‘infile’ and produces an output file called ‘outfile’. The file called ‘outfile’ 

has to be renamed to ‘infile’ before it can be used as an input for ProtDist. 

2. ProtDist: ProtDist is a ‘distance matrix’ program which uses amino acid 

replacement models on protein sequences to compute a distance matrix. The 

distance for each pair of species is the estimated total branch length between the 

two species, and this distance can be used by ‘distance analysis’ programs like 

Fitch to generate trees.  We used the Jones-Taylor-Thornton (JTT) model [182] – 

the default model in this program. We changed the default settings on ProtDist 

using the ‘M’ option to analyze 100 datasets to account for the fact that we had 
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generated 100 bootstrapped datasets using Seqboot earlier. ProtDist requires the 

input file to be called ‘infile’ and produces an output file called ‘outfile’. The file 

called ‘outfile’ has to be renamed to ‘infile’ before it can be used as an input for 

Fitch. 

3. Fitch: Fitch is a ‘distance analysis’ program that estimates phylogenies from 

distance matrix data under the "additive tree model"; according to this model, the 

distances are expected to equal the sums of branch lengths between the species. 

Fitch uses the Fitch-Margoliash criterion [183] and does not assume an 

evolutionary clock. G is the Global search option. We used the Fitch-Margoliash 

method – the default method in this program. We changed the default settings on 

Fitch using the ‘M’ option to analyze 100 datasets to account for the fact that we 

had generated 100 bootstrapped datasets using Seqboot earlier. We also changed 

the default settings on Fitch using the ‘G’ option to do global rearrangements on 

the tree. The ‘G’ option causes, after the last species is added to the tree, each 

possible group to be removed and re-added. Using the ‘G’ option in Fitch 

approximately triples the run-time of the program but improves the result, since the 

position of every species is reconsidered. Fitch requires the input file to be called 

‘infile’ and produces two output files called ‘outtree’ and ‘outfile’. The file called 

‘outtree’ has to be renamed to ‘intree’ before it can be used as an input for 

Consense. 

4. Consense: Consense is a tree program that reads a file of computer-readable trees 

and prints out (and may also write out onto a file) a consensus tree. This consensus 
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tree serves as the consensus from amongst the different phylogenetic trees 

generated from the bootstrapped datasets (100 datasets in our case). Out of the four 

consensus methods used by this program, we chose to use the ‘majority rule 

extended’ (MRe) method – the default method in this program. The MRe method 

first includes all sequences that appear in more than 50% of the trees. The program 

then considers the other sets of sequences in order of the frequency with which 

they have appeared, adding to the consensus tree any which are compatible with it 

until the tree is fully resolved. Consense requires the input file to be called ‘intree’ 

and produces two output files called ‘outtree’ and ‘outfile’. The ‘outtree’ is a tree 

file where the trees are represented in a linear form by a series of nested 

parentheses, enclosing names and separated by commas. This type of 

representation is called the ‘Newick’ format [184] and the originator of this format 

was the English mathematician Arthur Cayley; the pattern of the parentheses in the 

‘Newick’ format indicates the tree topology. 

Making images of phylogenetic trees 

 The perl module Bio::Tree::Draw::Cladogram from the BioPerl toolkit [181] was 

used in perl scripts to parse the phylogenetic tree files and obtain a cladogram of the tree 

in postscript format. A cladogram is a tree that depicts the tree topology by means of 

ancestor-descendant relationships. The postscript cladogram files were converted to pdf 

using the unix utility ‘ps2pdf’. 
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RESULTS AND DISCUSSION 

Multiple Sequence Alignment (MSA) editing  

Most multiple sequence alignments are constructed by the ‘progressive sequence 

alignment’ method [185]; this method begins with the construction of a crude ‘guide 

tree’ which involves pairwise comparison of all sequences to determine the order in 

which sequences are progressively added to build the alignment. With this ‘guide tree’, 

the MSA program starts with the most similar sequences, builds an alignment and 

progressively adds more dissimilar sequences. Each alignment position is assumed to 

include residues that share common ancestry among species; hence it is important to edit 

the MSA to remove regions of ambiguous alignment from the MSAs before 

phylogenetic analysis.  

We edited the MSAs to exclude any ambiguous regions and include only the 

densest portions over a given window length, which is the larger of these two indices: 

(i) length of 100  

(ii) 90% of the length of the longest sequence in the MSA 

We then trim the alignment to include this window alone; in this process, the 

sequences which do not satisfy the above mentioned criteria are excluded from the 

phylogenetic analysis. The statistics pertaining to number of vertebrate proteins, 

bovine/porcine contigs/singletons that passed our MSA editing criteria are detailed in 

Table 4.1. 
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Entire dataset or large enough dataset  

Large datasets often bring up an interesting dilemma; whether to include all the 

data or to include data that is large and representative enough to answer the biological 

question being asked within a reasonable timeframe. In this tradeoff, we decided on the 

latter and we chose to run the PHYLIP pipeline only on those families which have ≤50 

sequences in the edited MSA. The entire process (MSA, PHYLIP pipeline on protein 

families having ≤50 sequences) took ~4-5 months with the different jobs running in 

parallel on a computer cluster having 12 worker nodes. 

 

Table 4.1: Comparative statistics of the number of sequences present in the original 

and final multiple sequence alignment. 

 
Present in 

original MSA 

Not Included in 

final (edited) MSA 

Included in final 

(edited) MSA 

Vertebrate proteins 133,874 11,543 122,331 

Translated bovine contigs 24, 665 8,778 15,887 

Translated bovine singletons 22, 006 10,636 11,370 

Translated porcine contigs 20, 951 7,211 13,740 

Translated porcine singletons 18,690 9,568 9,122 

Total number of sequences 220,186 47,736 172,450 
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Phylogenetic tree analysis  

 Phylogenetic analysis is a powerful tool for interpreting molecular data. 

Prediction of trees produced by ‘distance’ methods can be improved by rerooting the 

trees using an ‘outgroup’ sequence. The ‘outgroup’ sequence is one that is more 

distantly related to the other sequences than they are to each other; the ‘outgroup’ acts as 

an external reference and aids in correctly arranging the other sequences.  

Choosing an outgroup 

In our analysis, each protein family can have sequences from a maximum of nine 

species (translated EST Contig/Singleton sequences from cattle and pig, in addition to 

the protein sequences from the seven vertebrate species). The number of species in each 

tree would vary depending on the species represented in each protein family. In this 

scenario, each tree had to be first analyzed to determine the ‘outgroup’ and then rerooted 

using the ‘outgroup’.  Keeping in mind that our analysis focused on determining 

annotations using a phylogenomic pipeline for ‘cattle’ and ‘pig’ EST gene products, the 

‘outgroup’ was determined from amongst the various proteomes using this order of 

precedence: Takifugu rubripes, Tetraodon nigroviridis, Danio rerio, Gallus gallus, 

Rattus norvegicus, Mus musculus and Homo sapiens.   For example, if a phylogenetic 

tree has sequences from Takifugu rubripes, then Takifugu rubripes was used as the 

‘outgroup’. If the tree does not have Takifugu rubripes sequences, the next species using 

the order of precedence mentioned above was used as the ‘outgroup’.  

Perl scripts incorporating the perl module Bio::TreeIO from the BioPerl toolkit 

[181] were written to navigate the tree and to determine the ‘outgroup’ using the strategy 
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mentioned above. Outgroups were determined for every phylogenetic tree; in other 

words, outgroups were determined for every protein family that got included in the 

phylogeny analysis. With this knowledge of the ‘outgroup’, all the phylogenetic trees 

were rerooted, subject to a ‘subtree neighbors’ approach to determine orthologs and 

subsequent function annotation of the bovine/porcine EST gene products.  

 

Livestock EST gene products function classification using subfamily annotation 

Subtree neighbors approach for assigning predicted function 

In the subtree neighbors approach, multiple seqeunce alignment (MSA) of 

proteins in a protein family is performed in the lead up to phylogenetic tree construction. 

Following this, the tree topology is analyzed and sequences without known function can 

be assigned a predicted function on the basis of other sequences in the subtree containing 

the sequence with unknown function.  

We adopt this ‘subtree neighbors’ approach to identify the most recent diverging 

sequence from a different species with reference to the sequence (bovine/porcine) whose 

function we are predicting. In other words, by using the subtree neighbors approach, we 

are finding the best ortholog from amongst many possible orthologs. Using this 

approach, we end up identifying orthologs for a particular bovine/porcine EST gene 

product based on the subfamily the EST gene product gets grouped with in the 

phylogenetic tree. The EST gene product is then assigned predicted function from 

amongst one of the ortholog(s). Here is the pseudocode used in this study to determine 

the ortholog(s) for a bovine/porcine EST gene product: 
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1. in a given phylogenetic tree, for each leaf node which is a bovine or a porcine   

sequence, do; 

2. go one node toward root node and analyze the new branch; 

3. if all leaf nodes from step 2 are from same species; then repeat step 2; 

4. excluding the sequence(s) in question, if all leaf node(s) of the new branch are 

from a different species and do not include the ‘outgroup’ species, then report 

orthology and use the sequence(s) for function annotation and go to step 1; 

5. if the new branch contains at least one sequence of the ‘outgroup’ species OR at 

least one sequence of the same species as the sequence in question, it denotes 

ambiguity in the tree topology pertaining to the sequence in question; hence 

discard the sequence in question and go to step 1. 

 

Table 4.2 gives a breakdown of the Livestock EST Contigs/Singletons for which 

function could be predicted using the ‘subtree’ approach described above.  

 

Table 4.2: Breakdown of the Livestock EST gene products for which function could 

be predicted using the subtree approach. 

 Contigs Singletons Total 

Bos taurus 8156 2284 10440 

Sus scrofa 7274 2061 9335 

Total  10430 4345 19775 
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Given that orthologs are sequences derived from a single ancestral gene in the 

last common ancestor of the species being compared, there is no requirement for 

orthology to be a one-to-one relationship. In case of one or more duplication events 

happening after speciation, it can result in one-to-one, one-to-many, many-to-one and 

many-to-many orthologous relationships.  

 

Usage notes for the phrase ‘one-to-many orthologous relationship’ in this work 

In the ensuing discussions in this chapter, we would like to mention that the 

phrase ‘one-to-many orthologous relationship’ is not used in the evolutionary sense; 

instead, it is used in an algorithmic sense with reference to the subtree neighbors 

method.  From an evolutionary standpoint, the ‘one-to-many orthologous relationship’ 

would reflect a scenario where gene duplication in a family (say with members A, B, C) 

occurs after a speciation event in one lineage or in both lineages independently (lineage-

specific expansion); in these situations, the functional correspondence between the two 

orthologous families is less straightforward than it is between one-to-one orthologs [24]. 

Instead, one can only state the members (say A1, B1, C1) of a family in lineage 1 are co-

orthologous to the members (say A2, B2, C2) of the same family in lineage 2. 

From the subtree neighbors algorithmic standpoint, ‘one-to-many orthologous 

relationships’ encompass these three scenarios:  

1. the bovine/porcine EST gene product is orthologous to multiple splice isoforms 

produced by the same gene in a species as well as duplicated gene products in a 

species resulting from lineage specific expansions; 
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2. the bovine/porcine EST gene product is part of multiple one-to-one orthologous 

relationships with proteins in more than one species; and 

3. combination of the above-mentioned scenarios ‘1’ and ‘2’.  

 

The ‘subtree’ approach mentioned above was used to determine the best ortholog 

for the bovine/porcine EST gene product from amongst a set of orthologs. In cases 

where a one-to-one orthology relationship could not be detected because of one or more 

duplication events happening after speciation, we term the orthologous relationships as 

‘one-to-many’ from the algorithmic standpoint as specified above. We do not attempt to 

distinguish between these three scenarios: multiple splice isoforms produced by the same 

gene in a species, duplicated gene products in a species as a result of lineage specific 

expansions and multiple one-to-one orthologous relationship with proteins in more than 

one species. The most recent diverging sequence(s) from a different species with 

reference to the bovine/porcine EST gene product identified by the ‘subtree’ method was 

used for assigning predicted function and for annotation transfer. Using this approach, 

we were able to predict function for 19775 Livestock EST gene products and this 

resulted in a mix of gene products which were part of one-to-one orthologous 

relationships as well as one-to-many orthologous relationships from the ‘subtree 

neighbors’ algorithmic standpoint.  

From amongst the 19775 Livestock EST gene products for which function could 

be predicted using the above approach, 13895 of them had a one-to-one orthologous 

relationship. Figure 4.1 depicts the statistics pertaining to the different one-to-many 
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orthologous relationships found for the remaining 5880 Livestock EST gene products for 

which putative orthologs could be identified. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: One-to-many orthologous relationship statistics for Livestock EST gene 
products.  
One-to-many orthologous relationship statistics for 5880 of the 19775 Livestock EST 
gene products for which putative orthologs could be identified. 
 
 
 

As the algorithm is catered to determine predicted function for Livestock EST 

gene products using the subtree/orthology approach, it is worth mentioning that a 

fraction of the one-to-many orthologous relationships from the bovine/porcine 

perspective could in fact be a part of many-to-many orthologous relationships when the 

whole protein family is taken into consideration. 



 163

Table 4.3 serves as a guide to identify the different species to which the 

sequences belong for the different phylogenetic tree examples discussed here.  

 

 

Table 4.3: Key for identifying the different species using the prefix or suffix on the 

sequence identifiers of the vertebrate proteins and Livestock EST gene products. 

Prefix/Suffix Example sequence identifier prefix/suffix Species 

Suffix _Bt Bos taurus 

Suffix _Ss Sus scrofa 

Prefix ENSP Homo sapiens 

Prefix ENSMUSP Mus musculus 

Prefix ENSRNOP Rattus norvegicus 

Prefix ENSGALP Gallus gallus 

Prefix ENSDARP Danio rerio 

Prefix GSTENP 
Tetraodon 

nigroviridis 

Prefix SINFRUP Takifugu rubripes 
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Annotation transfer – one-to-one orthologous relationships 

For Livestock EST gene products having a one-to-one putative orthologous 

relationship, the Livestock EST gene product was annotated with the function of the 

‘putative’ ortholog.   

 
 
 
  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2: Phylogenetic tree for Protein Family 2 – a family comprised of ‘Ras 
related’ proteins.  
The tree is rooted using the fugu  protein (SINFRUP00000134982) as the outgroup. 
Orthology assignments for the three Livestock EST gene products (2_CL1Contig1_Ss, 
2_CL1Contig1_Bt, 2_CL3Contig1_Bt) shown in this tree are made as detailed in the 
text. 
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Figure 4.2 depicts the phylogenetic tree for protein family ‘2’ – a family 

comprised of ‘Ras related’ proteins. Protein Family 2 has three Livestock EST gene 

products (2_CL1Contig1_Ss, 2_CL1Contig1_Bt, 2_CL3Contig1_Bt), and proteins from 

all the other seven vertebrate species used in this study. The tree has been rooted using 

the fugu protein (SINFRUP00000134982) as the outgroup. 

From the phylogenetic tree for protein family ‘2’, the following orthologous 

relationships for the Livestock EST gene products were identified: 

• porcine EST gene product 2_CL1Contig1_Ss is orthologous to the human protein 

ENSP00000244040 (Ras-related protein Rab-22A), hence annotated as “putative 

Ras-related protein Rab-22A”. 

• bovine EST gene product 2_CL1Contig1_Bt is orthologous to the human protein 

ENSP00000304565 (Ras-related protein Rab-31), hence annotated as “putative 

Ras-related protein Rab-31”. 

• bovine EST gene product 2_CL3Contig1_Bt is orthologous to the human protein 

ENSP00000304565 (Ras-related protein Rab-31), hence annotated as “putative 

Ras-related protein Rab-31”. 

 

The tree topology for Protein Family ‘2’ (Figure 4.2) also highlights one of the 

salient aspects of the orthology assignment algorithm wherein it takes care of the 

scenario where there is duplication in one species after a speciation event. In such a 

scenario, the algorithm traverses an additional node toward the root in the phylogenetic 

tree and assigns orthology if other criteria are also met. This aspect is evident from the 
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subtree involving the two bovine EST gene products (2_CL1Contig1_Bt and 

2_CL3Contig1_Bt) where there is a duplication event in bovine after speciation; hence 

the two bovine EST gene products have been assigned as orthologs to the human protein 

ENSP00000304565. 

Bovine-porcine one-to-one orthologous combination 

Interestingly, 5420 of the 13895 one-to-one orthologous relationships comprised 

of a bovine-porcine one-to-one orthologous combination. An example illustrating this is 

evident from two of the three orthologous relationships depicted in the phylogenetic tree 

for Protein Family ‘15208’ (Figure 4.3). This is a protein family comprised of ‘nuclear 

transport factor’ like proteins; it is represented by three Livestock EST gene products 

and proteins from six of the other seven vertebrate species used in this study. The tree 

has been rooted using the fugu protein (SINFRUP00000135058) as the outgroup. From 

the bottom segment of phylogenetic tree for protein family ‘15208’, one can deduce the 

bovine-porcine one-to-one orthologous relationship between the bovine EST gene 

product 15208_CL1Contig1_Bt and the porcine EST gene product 

15208_CL1Contig1_Ss. (Note: The third Livestock EST gene product in this tree, 

15208_CL2Contig1_Bt, is involved in a one-to-many orthologous relationship as it is 

orthologous to the human proteins ENSP00000339705 and ENSP00000218004. 

Annotation transfer in one-to-many orthologous relationships is discussed later in the 

text). 
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Figure 4.3: Phylogenetic tree for Protein Family 15208 – a family comprised of 
‘nuclear transport factor’ like proteins.  
The tree is rooted using the fugu  protein (SINFRUP00000135058) as the outgroup. 
Orthology assignments for the three Livestock EST gene products 
(15208_CL2Contig1_Bt, 15208_CL1Contig1_Ss, 15208_CL1Contig1_Bt) shown in this 
tree are made as detailed in the text. 
 



 168

Annotation transfer – one-to-many orthologous relationships 

After identifying putative orthologs for a particular bovine/porcine EST gene 

product using the ‘subtree neighbors’ approach, 5880 Livestock EST gene products were 

part of different one-to-many orthologous relationships. We had to come up with a 

strategy to choose one ortholog, from amongst the many orthologs identified, for 

annotation transfer. To do so, we devised a strategy which relies on identifying the 

“source” database identifiers from the “Descriptions” of the different Ensembl proteins 

identified as putative orthologs. Whenever possible, the ‘Description’ field for a given 

Ensembl protein lists the “source” database identifier from which the Ensembl protein 

was derived. When information about the database identifier was available, we first 

made a note of the source database and we made a choice of which database identifier to 

use based on this database order of precedence: UniProtKB [186], RefSeq [187], 

Ensembl (when the source identifier was not UniProtKB or RefSeq). We give preference 

to UniProtKB for the following reasons: 

1. Whenever possible, all the protein products encoded by one gene in a given 

species are described within a single UniProtKB entry, including isoforms 

generated by alternative splicing, alternative promoter usage, and alternative 

translation initiation. In cases where some alternative splicing isoforms derived 

from the same gene share only a few exons, the isoforms have to be described in 

separate entries [188]. In our dataset, the isoform variants of the different 

Ensembl proteins are in the same protein family; hence, there might be instances 
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where an EST gene product involved in a one-to-many orthologous relationship 

might actually have the different orthologs mapped to the same UniProtKB entry. 

2. UniProtKB is a secondary database, in that it collects information from primary 

databases, curates the information if necessary and makes it available. 

Information in primary databases (GenBank, GenPept) contain information 

submitted by the experimenter and cannot be changed by anybody other the 

person who submitted the information. As a result, the primary databases are 

essentially archival in nature and cannot correct errors, if any, that are found 

later. In other words, annotations from secondary databases like UniProtKB are 

more reliable in nature. 

 

For the one-to-many orthologous relationship scenarios, the UniProtKB entry 

extracted from the ‘Source’ field of the Ensembl protein is used for annotating the 

Livestock EST gene product. Whenever the source database identifier for a given 

Ensembl protein was not UniProtKB, we would check to see if the Ensembl protein had 

a RefSeq identifier and then we use the Database Mapping tool [189] at UniProtKB to 

find the corresponding UniProt entry for the RefSeq identifier. If the RefSeq identifier 

did not map to a UniProt entry, we used the RefSeq entry for annotating the Livestock 

EST gene product. If we did not find a UniProt or a RefSeq cross-reference for the 

Ensembl protein, we ended up using the Ensembl protein itself for annotating the 

Livestock EST gene product.  
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The examples below illustrate how the above annotation transfer strategy was 

used for Livestock EST gene products involved in one-to-many orthologous 

relationships.  

Example I: ‘Protein Family 15208’ – nuclear transport factor like proteins 

Figure 4.3 depicts the phylogenetic tree for Protein Family ‘15208’, comprised 

of ‘nuclear transport factor’ like proteins, and represented by three Livestock EST gene 

products and proteins from six of the other seven vertebrate species used in this study. 

One of the Livestock EST gene products, 15208_CL2Contig1_Bt, is involved in a one-

to-many orthologous relationship as it is orthologous to the human proteins 

ENSP00000339705 and ENSP00000218004, which are isoforms. Table 4.4 lists the 

descriptions of these two human proteins. 

 
 
Table 4.4: Descriptions of Ensembl proteins identified as orthologs for 

15208_CL2Contig1_Bt. 

Ensembl protein Description 

ENSP00000339705 NTF2-related export protein 2. [Source: UniProtKB Q9NPJ8] 

ENSP00000218004 NTF2-related export protein 2. [Source: UniProtKB Q9NPJ8] 

 
 
 

As evident from Table 4.4, the two isoform variants ENSP00000339705 and 

ENSP00000218004 map to the same UniProtKB entry, Q9NPJ8. By the annotation 

transfer strategy described above, 15208_CL2Contig1_Bt is annotated as “putative 
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NTF2-related export protein 2” – from the “Description” field of the UniProtKB entry, 

Q9NPJ8. 

Example II: ‘Protein Family 23614’ – metastatic lymph node (MLN) proteins 

Figure 4.4 depicts the phylogenetic tree for Protein Family ‘23614’, comprised 

of ‘metastatic lymph node (MLN)’ protein homologs. This protein family is represented 

by four Livestock EST gene products and proteins from six of the other seven vertebrate 

species used in this study. Two of the Livestock EST gene products, 

23614_CL1Contig1_Ss and 23614_29253671_Bt, are involved in a one-to-one bovine-

porcine orthologous relationship. The remaining two Livestock EST gene products, 

23614_CL1Contig1_Bt and 23614_CL2Contig1_Ss, are part of one-to-many 

orthologous relationships. 23614_CL2Contig1_Ss is involved in a one-to-five 

orthologous relationship as it is orthologous to the human protein ENSP00000341409, 

the mouse proteins ENSMUSP00000042792 and ENSMUSP00000043328, and the rat 

proteins ENSRNOP00000012812 and ENSRNOP00000012820. 23614_CL1Contig1_Bt 

is involved in a one-to-six orthologous relationship as it is orthologous to 

23614_CL2Contig1_Ss and the five putative orthologs identified for 

23614_CL2Contig1_Ss. Table 4.5 lists the descriptions of the five Ensembl proteins 

which were identified as orthologs to both 23614_CL1Contig1_Bt and 

23614_CL2Contig1_Ss. 
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Figure 4.4: Phylogenetic tree for Protein Family 23614 – a family comprised of 
‘metastatic lymph node’ protein homologs. 
The tree is rooted using the fugu  protein (SINFRUP00000176287) as the outgroup. 
Orthology assignments for the four Livestock EST gene products 
(23614_CL1Contig1_Ss, 23614_29253671_Bt, 23614_CL1Contig1_Bt, 
23614_CL2Contig1_Ss) shown in this tree are made as detailed in the text. 
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Table 4.5: Descriptions of Ensembl proteins identified as orthologs for 

23614_CL1Contig1_Bt and 23614_CL2Contig1_Ss. 

Ensembl protein Description 

ENSP00000341409 
PREDICTED: similar to RIKEN cDNA 4121402D02 

[Source:RefSeq_peptide;Acc:XP_496217] 

ENSMUSP00000042792 
Cancer susceptibility candidate gene 3 protein 

[Source:UniProtKB Q8K3W3] 

ENSMUSP00000043328 
Cancer susceptibility candidate gene 3 protein 

[Source:UniProtKB Q8K3W3] 

ENSRNOP00000012812 
similar to RIKEN cDNA 4121402D02 

[Source:RefSeq_dna;NM_001107048] 

ENSRNOP00000012820 
similar to RIKEN cDNA 4121402D02 

[Source:RefSeq_dna;NM_001107048] 

 
 
 
From Table 4.5, one can make the observation that three of the five putative 

orthologs for 23614_CL1Contig1_Bt and 23614_CL2Contig1_Ss are annotated as 

“similar to RIKEN cDNA 4121402D02” with the “source” field database being RefSeq. 

The remaining two putative orthologs are annotated as “Cancer susceptibility candidate 

gene 3 protein” with the “source” field database being UniProtKB. By using the 

annotation rules regarding database precedence mentioned above, we tried to identify 

UniProtKB mappings for each of the RefSeq identifiers from the above table, but none 
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of the RefSeq identifiers mapped to any UniProtKB entry. Hence, using the annotation 

transfer strategy mentioned above, 23614_CL1Contig1_Bt and 23614_CL2Contig1_Ss 

were annotated as “putative Cancer susceptibility protein” – from the “Description” field 

of the UniProtKB entry, Q8K3W3. 

Example III: ‘Protein Family 32278’ – zinc finger proteins 

Figure 4.5 depicts the phylogenetic tree for Protein Family ‘32278’, comprised 

of ‘zinc finger proteins’. This family is represented by two Livestock EST gene products 

and proteins from six of the other seven vertebrate species used in this study. One of the 

two Livestock EST gene products, 32278_CL8Contig1_Bt is involved in a one-to-one 

orthologous relationship with the human protein ENSP00000262630, which is a “Zinc 

finger and BTB domain-containing protein 32”. ENSP00000262630 mapped to the 

UniProtKB entry Q9Y2Y4, which had the same description as the Ensembl protein. 

Since this is one-to-one orthologous relationship, 32278_CL8Contig1_Bt was annotated 

as “similar to human Zinc finger and BTB domain-containing protein 32” using the 

“Description” of the UniProtKB entry Q9Y2Y4. The other Livestock EST gene product 

in protein family 32278, 32278_CL2Contig1_Ss, is involved in a one-to-five 

orthologous relationship as it is orthologous to three human proteins 

(ENSP00000346516, ENSP00000352262 and ENSP00000333556), one mouse protein 

ENSMUSP00000002095, and one rat protein ENSRNOP00000020573. Table 4.6 lists 

the descriptions of the five Ensembl proteins which are identified as orthologs for 

32278_CL2Contig1_Ss. 
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Figure 4.5: Phylogenetic tree for Protein Family 32278 – a family comprised of 
‘zinc finger’ proteins.  
The tree is rooted using the fugu  protein (SINFRUP00000160592) as the outgroup. 
Orthology assignments for the two Livestock EST gene products 
(32278_CL8Contig1_Bt and 32278_CL2Contig1_Ss) shown in this tree are made as 
detailed in the text. 
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Table 4.6: Descriptions of Ensembl proteins identified as orthologs for 

32278_CL2Contig1_Ss. 

Ensembl protein Description 

ENSP00000346516 Zinc finger protein HRX [Source:UniProtKB Q03164] 

ENSP00000352262 Zinc finger protein HRX [Source:UniProtKB Q03164] 

ENSP00000333556 Zinc finger protein HRX [Source:UniProtKB Q03164] 

ENSMUSP00000002095 Zinc finger protein HRX [Source:UniProtKB P55200] 

ENSRNOP00000020573 
myeloid/lymphoid or mixed-lineage leukemia 

[Source:RefSeq_peptide; NP_001101609] 

 
 
 

From Table 4.6, the consensus description for four of the five putative orthologs 

is “Zinc finger protein HRX”; each of these four orthologs had UniProtKB as the 

“source” field database. The other putative ortholog (ENSRNOP00000020573) had the 

description “myeloid/lymphoid or mixed-lineage leukemia” and was sourced from a 

RefSeq entry NP_001101609.  This RefSeq entry could not be mapped to any 

UniProtKB entry. Hence, using the annotation transfer strategy mentioned above, 

32278_CL2Contig1_Ss was annotated as “putative Zinc finger protein HRX” – from the 

“Description” field of the UniProtKB entry, Q03164. 

The annotation transfer strategy for the different one-to-many orthologous 

relationship examples discussed above gives precedence to UniProtKB cross-references 

of the putative orthologs, where available, for transferring the annotation of one of the 
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putative orthologs to the bovine/porcine EST gene product.  This UniProtKB preference 

is given irrespective of the number of putative orthologs that had UniProtKB cross-

references. To elaborate, in Table 4.5 (Example II) above, the Livestock EST gene 

product, 23614_CL2Contig1_Ss, was part of a one-to-five orthologous relationship. Two 

of the five putative orthologs had UniProtKB cross-references and the rest of the 

orthologs had RefSeq cross-references. We chose to use the ortholog having a 

UniProtKB cross-reference for the transfer of annotation to the Livestock EST gene 

product in question. If the putative ortholog does not have a UniProtKB cross-reference, 

we give preference to those orthologs that have RefSeq cross-references and if RefSeq 

cross-references are not available, one of the Ensembl protein(s) identified as putative 

ortholog is used for transfer of annotation.  

For the purposes of annotation transfer in one-to-many orthologous scenarios, we 

believe that it really should not matter whether on not the putative ortholog had a 

UniProtKB or RefSeq cross-reference. We say so because the ‘subtree’ approach used in 

our orthology algorithm identifies the distinct subfamily to which a Livestock EST gene 

product belongs; since function is conserved within orthologous subfamilies [82], any of 

the orthologs in that subfamily can be used for ‘reliable’ annotation transfer. By first 

short listing putative orthologs that had UniProtKB cross-references and using them for 

annotation transfer, we are only enriching the quality of the annotation for the reasons 

discussed earlier.  
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Phylogenomic annotations – can it predict functions for all sequences? 

It is well-known that the phylogenomic method cannot predict functions for all 

sequences [53], but the predictions that are obtained tend to be accurate; hence, the 

annotations can be transferred reliably. In our analysis, we had 86,312 Livestock EST 

gene products to begin with, of which only 50,119 sequences passed our multiple 

sequence alignment (MSA) editing criteria. From these 50,119 sequences, we were able 

to identify predicted functions for only 19,775 Livestock EST gene products at the end 

of our phylogenomic annotation pipeline. Sequences get excluded from the 

phylogenomic pipeline at the following different stages: 

1. Protein families excluded from phylogenetic analysis: we chose to run the 

PHYLIP pipeline only on those protein families which have ≤50 sequences in the 

edited MSA. 

2. Consense step in PHYLIP pipeline: The ‘majority rule extended’ (MRe) method 

from the ‘Consense’ step in our PHYLIP pipeline excludes some sequences from 

the final tree that did not match its tree resolving criteria.   

3. Tree ambiguity in our subtree orthology assignment: If any branch of the 

phylogenetic tree contains at least one sequence of the ‘outgroup’ species OR at 

least one sequence of the same species as the sequence in question, it denotes 

ambiguity in the tree topology pertaining to the sequence in question; hence the 

sequence in question is discarded. 
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Currently, there do not exist genomic-scale error-free ‘ortholog gold standard’ 

datasets [190] and this makes it difficult to analyze and evaluate the performance of the  

orthology algorithm. Benchmark datasets like PREFAB [174], BALiBASE [191] and 

SABMark [192] are available for evaluation of multiple sequence alignment programs. 

Likewise, in the protein structure prediction field, the availability of challenging 

benchmark datasets from the Protein Structure Prediction Center [193] in the 

international biennial CASP event [194] helps in the assessment of the protein structure 

prediction methods. Analogous to the MSA and protein structure prediction benchmark 

datasets, the accuracy of phylogenomic methods can be assessed only if rigorously 

validated biological data is available [77].  

 

Future work 

 Future work would include making the phylogeny based function annotations for 

bovine/porcine EST gene products accessible from the “Livestock EST Gene Family 

Database”. Cattle and pig are more closely related to each other than to the other 

vertebrate species used in this study. It would be interesting to know the different cases 

in which a protein family has at least one bovine and one porcine EST gene product 

where these are not orthologous – using a ‘best hit’ method in this scenario for bovine vs 

porcine would have resulted in function prediction and assignment that is not based on 

orthology, which would have been erroneous. Comparing the function predictions made 

using the ‘best hit’ method with the predictions from the phylogeny based approach 

would reveal instances where the ‘best hit’ was not used for function prediction and 
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annotation transfer in the phylogeny based approach. Future work on this front could 

address the issue as to why the ‘best hit’ sequence was not the closest neighbor in the 

phylogeny based approach.  

 

CONCLUSIONS 

In this chapter, we have discussed the development and implementation of a 

phylogenomic annotation pipeline to make computational predictions of the functions 

encoded in Bos taurus (bovine) and Sus scrofa (porcine) expressed sequence tag (EST) 

datasets. As part of the TAMUClust EST clustering pipeline, Bos taurus and Sus scrofa 

ESTs were grouped into gene families using the Ensembl vertebrate protein family 

clusters. The different EST consensus sequences and proteins in each protein family 

were subject to a pipeline involving multiple sequence alignment and phylogenetic tree 

construction. This resulted in subdivisions of groups containing orthologs and paralogs, 

each group representing distinct subfamilies. Following this, the tree topology was 

analyzed and the functions of the uncharacterized EST gene family members were 

predicted using a subtree neighbors approach. This approach involves identifying the 

subgroup having the sequence (bovine/porcine) whose function is being predicted, and 

assigning predicted function based on the most recent diverging sequence from a 

different species in that subgroup. Our approach requires estimating a new phylogenetic 

tree for each protein family, and the trees need to be recomputed each time a new 

sequence is added to the family.  
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For phylogenomic inference to be accurate, all sequences in the set must share 

the same domain architecture [68]. In this study, we ensure that this requirement is taken 

care of by the clustering algorithm when Ensembl vertebrate proteins are clustered into 

protein families. The protein families generated are non-redundant, comprehensive set of 

full-length protein clusters with homogeneous domain architecture within clusters and 

the pairwise sequence identity between any two proteins within each cluster is at least 

55%. Phylogenetic tree construction of these full-length protein clusters with 

homogeneous domain architecture enhances the specificity of function annotation for 

phylogenomic inference of function [68]. 

 The phylogenomic approach uses phylogenetic trees to determine orthology 

between homologs; this requires that the phylogenetic tree topology used as a basis for 

inference of function is correct. We address this by performing bootstrap phylogenetic 

analysis and obtaining the consensus tree in our PHYLIP pipeline. We use the ‘majority 

rule extended’ (MRe) method in the ‘Consense’ step in PHYLIP to obtain the consensus 

tree. The MRe method first includes all sequences that appear in more than 50% of the 

trees and then considers the other sets of sequences in order of the frequency with which 

they have appeared, adding to the consensus tree any sequence compatible with the tree 

until the tree is fully resolved. In doing so, the MRe method may exclude some 

sequences from the final tree as they did not match the criteria.   

We have used the phylogenomic inference method to make computational 

predictions of the functions encoded in Bos taurus (bovine) and Sus scrofa (porcine) 

expressed sequence tag (EST) datasets. We were able to identify putative functions for 
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~23% of the Livestock EST gene products in our dataset. This, to our knowledge, is the 

first time that phylogenomic inference has been used in predicting functions for EST 

gene products. The livestock community would largely benefit from the function 

predictions of the uncharacterized EST gene family members in cattle and pig from this 

analysis. By designing experiments based on these predictions, the number of direct 

experiments required to verify function would be drastically reduced. 
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CHAPTER V 

SUMMARY 

 Prediction of functions of genes in a genome is one of the key steps in all 

genomic sequencing projects. Sequences that carry out important functions are likely to 

be conserved between evolutionarily distant species and cross-species comparisons help 

identify these biologically active and conserved regions.  

Obtaining insights about the function encoded in an organism by means of 

computational function predictions using EST datasets forms the crux of the work in this 

dissertation. In this dissertation, the EST clusters from Bos taurus and Sus scrofa EST 

datasets were utilized to make computational function predictions. We have shown here 

how some of the tools for comparative genomics like sequence homology searching, 

annotation transfer, phylogenetic analysis can be used to predict the functions of the 

sequence with unknown function. 

The TAMUClust method described in this dissertation uses a protein framework 

to cluster the ESTs and in doing so, it helps avoid many of the frequently encountered 

problems in oligo design - generating oligos with redundant information, and designing 

oligos based on chimeric ESTs. The performance of the TAMUClust Bos taurus EST 

clusters and the Bos taurus Gene Indices (BTGI) clusters were compared by using 

bovine ESTs aligned to the bovine genome assembly as a gold standard. Findings from 

the gold standard comparisons reveal that TAMUClust and BTGI are similar in 

performance. Comparisons of TAMUClust and TGI with predicted bovine gene models 

reveal that both datasets are similar in transcript coverage. 
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The Ensembl protein families from seven vertebrate species were used as a 

framework to cluster and assemble the cattle/pig EST datasets, resulting in ‘EST 

consensus sequences’ (contigs/singletons) that represent putative genes. These EST 

consensus sequences were assigned predicted functions by transferring annotations of 

the Ensembl vertebrate protein(s) they get grouped with following sequence homology 

searches. The ‘Livestock EST Gene Family Database’ available at 

http://genomes.arc.georgetown.edu/cgi-bin/search_livestock_est_gene_family.cgi houses 

the annotations. The database has a user-friendly web interface and can be searched in a 

number of ways: Cattle/Pig EST GenBank identifiers (GI or accession), Gene Ontology 

accession to obtain information about the vertebrate protein family, related EST 

members and other annotations. The Livestock EST Gene Family Database is the first of 

its kind where ESTs from different species (cattle and pig in this case) are grouped 

together in the same gene family. This information comes in handy when a researcher 

wants to get a listing of ESTs from different species performing the same function. The 

Livestock EST Gene Family Database is also the first of its kind that incorporates a 

search strategy that transitively annotates EST gene products with a GO accession and 

all its descendants. Searching by GO accession on the Livestock EST Gene Family 

Database will retrieve the complete descendant information for the GO accession and 

give a mapping of the different cattle and pig EST gene products associated with the 

complete GO descendant tree starting from the GO Accession being searched for. This 

search feature is useful for researchers wanting to obtain a complete profile of the cattle 

and pig EST gene products associated with a particular GO Accession. The Livestock 
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EST Gene Family Database and the annotations housed would help researchers to deal 

with the volume of information, and to utilize the information embedded in the gene 

expression data gathered from assembling the EST datasets.  

Phylogenomic inference of function combines evolutionary and comparative 

genomic analysis into a single composite approach, and the function predictions using 

this method are more accurate. This approach relies on inferring the function of an 

unknown sequence (protein) in the larger context of a protein family based on 

evolutionary relationships. Using the phylogenomic method, bovine/porcine EST 

consensus sequences belonging to a protein family were grouped with other proteins in 

the family, and subject to multiple sequence alignment followed by phylogenetic 

analysis. This resulted in subfamilies with each subfamily representing a functionally 

and evolutionarily distinct group of sequences with similar functions. By analyzing the 

tree topology using a subtree neighbors approach, uncharacterized bovine/porcine EST 

gene products were assigned predicted function based on the proteins from the subfamily 

in which they got grouped with. To our knowledge, this is the first time that 

phylogenomic analysis, and that too on a large scale, has been used in predicting 

functions for EST gene products. The annotations for the uncharacterized EST gene 

family members in cattle and pig developed using the phylogenomic annotation pipeline 

provide the livestock community with a valuable resource to verify function by 

designing experiments based on the predictions. 

Experimental characterization of sequences, function prediction of sequences and 

genomic sequencing can be thought of a three-horse race with the leader being ‘genomic 
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sequencing’ followed by ‘function prediction of sequences’ and ‘experimental 

characterization of sequences’ lagging far behind the other two. Computational analysis 

of genomes keeps yielding interesting function predictions, even years after the 

publication of the sequence; what is most often lacking is systematic experimental 

testing of these predictions. In addition, there do not exist genomic-scale error-free 

‘ortholog gold standard’ datasets and this makes it difficult to analyze and evaluate the 

performance of orthology algorithms. The accuracy of the function prediction methods 

can be assessed only if rigorously validated biological data is available, a la, the MSA 

and protein structure prediction benchmark datasets that help evaluate the performances 

of the multiple sequence alignment and the protein structure prediction methods, 

respectively. 
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