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ABSTRACT 
 

 
 
Biophysical and Bioanalytical Analysis of the Iron-ome in Mitochondria Isolated 

from Saccharomyces cerevisiae. (May 2010) 

Jessica Hope Garber Morales, B.S., Virginia Commonwealth University  

Chair of Advisory Committee:  Dr. Paul A. Lindahl 

 

 An integrative biophysical and bioanalytical approach to studying the Fe 

distribution in isolated mitochondria was developed.  This procedure involved 

large-scale growths, the inclusion of a chelator in isolation buffers and an 

anaerobic isolation protocol.  Electron microscopy confirmed that mitochondrial 

membranes were intact and that samples were largely devoid of contaminants.  

The Fe-ome—the sum of all Fe species in mitochondria--was studied using a 

combination of EPR, Mössbauer Spectroscopy, Electron Absorption, ICP-MS 

and Protein analysis. 

Isolated mitochondria were packed prior to analysis to improve the S/N 

ratio.  The residual buffer content of sample pellets was determined by use of a 

radio-labeled buffer.  There was essentially no difference in the packing 

efficiency of mitochondria isolated from respiring and fermenting cells.  The 

determined packing factor, 0.80, was used to calculate concentrations of 

individual species in neat mitochondria.   
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 The Fe-omes of mitochondria isolated from cells grown on respiring, 

respirofermenting and fermenting media were determined.  Neat mitochondria 

contained ~ 750 µM Fe, regardless of whether the cells had been grown on 

respiring or fermenting media.  The Fe distribution of respirofermenting samples 

(which can undergo respiration and fermentation simultaneously) was nearly 

identical to that of respiring mitochondria.  Fermenting samples had a very 

different Fe-distribution.   

Nearly 40 % of the iron in respiring mitochondria was present in 

respiratory complexes including cytochrome c, cytochrome bc1, succinate 

dehydrogenase, and cytochrome c oxidase.  Fermenting mitochondria contain 

an Fe-ome dominated by non-protein centers.  Approximately 80 % of the Fe 

was present as a combination of nonheme HS Fe2+, nonheme Fe3+ and Fe3+ 

nanoparticles.  These centers were present in roughly equal amounts.  The 

remaining 20 % of the Fe was present as respiratory complexes which have 

concentrations ~ ½ to 1/3 that of respiring mitochondria.   

 A model is presented in which the nonheme HS Fe2+ species serves as a 

feedstock for Fe/S and heme biosynthesis.  When the cell is growing on 

respiring media, this metabolic reservoir diminishes as respiratory complexes 

are constantly synthesized.  Under fermentative growth, the metabolic pool 

increases due to the reduced demand for respiration-related prosthetic groups. 
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CHAPTER I  

INTRODUCTION 

The Importance of Mitochondria in Eukaryotic Respiration 

 Mitochondria are organelles essential for nearly all eukaryotic cells.  

Physiologically they have four architectural compartments/components; the 

outer membrane (OM), the inner membrane (IM), inner membrane space (IMS) 

and the matrix.  See Figure 1-1.  The OM is highly porous and contains porins 

which allow molecules and nutrients smaller than ~ 5 kDa to flow in and out 

freely (1).  Most metabolites will therefore have the same concentration in the 

IMS as in the cytosol (1).  Larger molecules and proteins that need to transport 

through the membranes require the assistance of the translocase of the outer 

membrane (TOM) (2-4).  Proteins are usually directed to the mitochondria by 

sequences of amino acids.  Although these are usually present as precursor 

sequences, large, multimeric or multi-spanning proteins will sometimes contain 

internal sequences (3, 5-6).  Sequences of IM and matrix-directed proteins are 

recognized and bound by receptors of the TOM complex which then mediates 

translocation across the outer membrane (2, 7).   

 The IM is highly invaginated and its folds, or cristae, consist primarily of 

protein.  Most inner membrane proteins are responsible for oxidative 

phosphorylation or are part of the electron transport chain (ETC) (8).  Proteins   

This dissertation follows the style of The Proceedings of the National Academy of Science. 
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Figure 1-1.  Mitochondria isolated from Caenorhabditis elegans.  Electron 

micrograph of a sample isolated and prepared in our lab.  This image is 

displayed since visualization of structural components is often more difficult in 

yeast samples.  Arrows indicate the outer membrane, inner membrane, inner-

membrane space, and the matrix.  Size discrepancies are typical in 

mitochondrial samples.   

200 nm 
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housed in the IM also regulate traffic to the matrix since nearly all molecules 

require a translocase to permeate the compartment.  There are two translocase 

complexes of the inner mitochondrial membrane, Tim22 and Tim23 (9-12).  

These translocases work with the TOM complex to import proteins from the 

cytosol.  Tim23 recognizes presequence-containing proteins and mediates their 

insertion to the IM or translocation into the matrix (9-10).  The insertion of 

proteins into the IM sometimes requires the protein to first be inserted into the 

matrix (10).  Tim23 requires both a presequence-translocase-associated-motor-

complex (PAM) and a membrane potential (Δψ) to completely import proteins 

into the matrix even when such import is a precursor to membrane integration 

(9).  It is thought that the Δψ activates the opening and closing of the pores for 

each complex as proteins are imported to the matrix or IM (9, 13).  Tim22 

recognizes multi-spanning proteins with internal targeting sequences and inserts 

them into the IM using the IM membrane potential (13-16).  

 The potential across the IM is approximately 200 mV which helps in 

regulating transport of nutrients and proteins (17-18).  The membrane potential 

allows positively charged amino acid sequences of IM proteins to form matrix-

exposed loops which promote docking into the IM (19).  The membrane potential 

promotes contacts of the precursor proteins with the Tim22 complex, signaling 

one or the other side of the pore to close so insertion can be completed as the 

protein moves through the complex (13).   
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 The Δψ is responsible for regulating several important processes.  For 

example, it prevents translocation of metabolites and molecules that would 

interfere with mitochondrial homeostasis.  Chelators such as negatively charged 

ethylene glycol tetra acetic acid (EGTA) cannot pass through the IM to 

sequester essential metal ions from the mitochondrial matrix (20).  Disruption of 

the membrane potential causes molecules to flow freely through the IM thereby 

inhibiting oxidative phosphorylation (4, 20-22).  Dissipated Δψ prevents protein 

import since the opening/closing of pores of the translocases cannot be 

activated (9, 13, 23).  Both mitochondrial aging and exposure to oxidative stress 

correlate to loss and eventual dissipation of the membrane potential (17-18, 24-

25).  The Δψ deficiency is associated with both mitochondrial structural damage 

and an efflux of matrix solutes (17, 25).   

 Mitochondria are often present as sausage shaped vesicles 

approximately 3 µm in length and 1 µm in diameter (22).  Stevens (26) 

discovered that mitochondria may also be present as larger tubular networks 

although smaller, sausage shaped mitochondria are still present.  Mitochondria 

constantly undergo fission and fusion during the cell cycle which results in 

significant size variations (27).  This process of fission and fusion may serve as 

a way of exchanging genetic information (22). 
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Mitochondrial Pathways 

 Mitochondria are responsible for several vital processes including the 

citric acid cycle, Fe metabolism and oxidative phosphorylation.  Oxidative 

phosphorylation is utilized by eukaryotes because it is such an efficient means of 

energy production.  A series of proteins (also called respiratory complexes) 

located in or along the mitochondrial inner membrane transfer electrons from 

donors to oxygen resulting in the production of water and an electrochemical 

gradient which is used to drive ATP production (22, 28).   

Although oxidative phosphorylation is highly conserved, there are a few 

differences in yeast from other eukaryotes.  Yeast mitochondria lack a Complex I 

(22, 28-30).  Succinate dehydrogenase or Complex II of the electron transport 

chain removes electrons from succinate and sends them to CoQ (31).  Complex 

III, also called cytochrome bc1, accepts electrons from CoQ and donates them 

to cytochrome c.  It also helps to form the proton gradient that is used by 

respiratory Complex V to produce ATP (21, 32).  Complex IV, also known as 

cytochrome c oxidase (Cox1) uses 4 electrons from cytochrome c and 4 protons 

to convert molecular oxygen to two molecules of water (33-34). Many of the 

proteins involved in oxidative phosphorylation contain Fe.  

 

Fe Prosthetic Groups 

There are two dominant types of Fe prosthetic groups in mitochondria, 

including Fe/S clusters (Figure 1-2) and hemes (Figure 1-3).  Iron sulfur clusters 
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Figure 1-2.  Types of Fe/S clusters.  [Fe2S2] (Top) and [Fe4S4] (Bottom) clusters 

are displayed in their oxidized (Right) and reduced (Left) forms.    
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Figure 1-3.  Heme centers. 
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can be of three main types:  [Fe2S2], [Fe3S4] and [Fe4S4].  [Fe2S2] clusters are 

coordinated either by four cysteine ligands or by two cysteine and two histidine 

ligands.  The reduced state of the cluster [Fe2S2]1+ contains one Fe3+ and one 

Fe2+ while the oxidized cluster [Fe2S2]2+ contains two Fe3+ ions.  The reduced 

cluster typically has a ground state electron spin S = ½, which gives rise to EPR 

signals with gave = 1.94 (35-36).  [Fe4S4] clusters are also usually ligated by 

cysteines.  Reduced clusters [Fe4S4]+ contain a Fe3+ ion and three Fe2+ ions 

while the oxidized cluster [Fe4S4]2+ contains two ferric and two ferrous ions, all of 

which are spin-coupled.  Oxidized clusters have spin S = 0 while reduced 

clusters have the EPR active S = ½ and S = 3/2 with signals visible in the g = 2.0 

region (35-37).  Oxidized [Fe4S4] clusters can sometimes lose one Fe to form 

[Fe3S4] clusters.  In this type of cluster three of the iron ions are coordinated by 

cysteines, while the labile iron is typically coordinated by water (38-39).  Most 

Fe/S cluster proteins participate in redox reactions, but proteins containing 

clusters with a labile Fe can be an exception.  The [Fe4S4] cluster of aconitase, 

for example, can actually bind the substrate directly (38, 40-42).  In the inactive 

[Fe3S4] cluster form, the labile Fe is absent, preventing substrate binding.  In this 

state, one of the sulfide ions bridges all three remaining Fe atoms (35-36, 39, 

41).  Oxidized [Fe3S4]+ clusters contain three ferric ions while the reduced 

cluster [Fe3S4]0 contains one ferrous ion and two ferric ions [(35-36)].  The 

oxidized cluster is also EPR active.  Observed g values, spin states and other 

known properties are listed in Table 1-1. 
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Table 1-1. Known Fe-containing mitochondrial proteins. 

Protein (gene) Gene location Prosthetic 
Group 

E0’  (mV, NHE) Electronic and Magnetic Properties 

Succinate 
dehydrogenase 

Sdh2 IM(facing M) (43) Fe2S2 0 (44) S = 0 [Fe2S2]2+ and S = ½ [Fe2S2]1+ (g = 2.026, 1.935, 
1.912) (44-45)  

Succinate 
dehydrogenase 

Sdh2 IM (facing M) (43) Fe3S4 + 60 (44) S = ½ [Fe3S4]1+ (g = 2.01) and S = 2 [Fe3S4]0 (45) 

Succinate 
dehydrogenase 

Sdh2 IM (facing M) (43) Fe4S4 - 260 (44) S = 0 [Fe4S4]2+ and S = ½ [Fe4S4]1+ (g = 2.064, 1.992, 
and 1.847 and magnetic interactions affording features 
at 2.27 and 1.63) (44) 

Succinate 
dehydrogenase 

sdh3: IM (43) Heme b + 60 (45) (but this is for 
non-Sc enzyme which 
has novel cys) 

S = ½ Fe3+ (g = 3.63) (46) and S = 0 Fe2+ 
sdh4 

Cytochrome bc1 rip1 IM (facing IMS) 
(47-48) 

Fe2S2 (Reiske) +285 (49-50) S = 0 [Fe2S2]2+ and S = ½ [Fe2S2]1+ (g = 2.02, 1.90, 
1.80) (51) 

Cytochrome bc1 cob1 IM (47-48) Heme bH - 45 (- 35 to + 25) (48) S = ½ Fe3+ (g = 3.45) (52) and S = 0 Fe2+ 
Cytochrome bc1 cob1 IM (47-48) Heme bL - 150 (-95) (48) S = ½ Fe3+ (g = 3.78) (52) and S = 0 Fe2+ 
Cytochrome bc1

T9 cyt1 IM (47-48) Heme c1 + 230 (est) (53) S = ½ Fe3+ (g = 3.33 or 3.35) (52, 54) and LS Fe2+ 
cytochrome c isoform I cyc1 IMS (33) Heme c + 290 (55) S = ½ Fe3+ (g = 3.06; 2.26, 1.25) (56) and  S = 0 Fe2+  
cytochrome c isoform 
II 

cyc7 IMS (33) Heme c +286 (57) S = ½ Fe3+ (g = 3.2; 2.05, 1.39) (56) and S = 0 Fe2+ 

cytochrome c 
peroxidase 

ccp1 IMS (58) Heme b - 182 (59) S = 5/2 Fe3+ (g = 6.60, 5.23 (5-CN) and g = 6.13, 5.81 
(6-CN) (60) and S = 2 Fe2+ 

Cytochrome c oxidase cox1 IM (61) Heme a + 320 (62) S = ½ Fe3+ (g = 3.03, 2.21, 1.45) (63-64) and LS Fe2+ 
Cytochrome c oxidase cox1 IM (61) Heme a3:Cub + 350 (65) Fully Oxidized: EPR-silent Fe3+ spin-coupled to Cu2+ 

with J ~ 1 cm-1 
Intermediate: S = 5/2  Fe3+ (g = 6.4, 5.3)116 mixed with 
(g = 6.0) when Cu1+ (64) 
Fully Reduced: HS Fe2+: Cu1+ (63) 

Fe/S Scaffold Protein Isu1 M (66) Fe2S2 (probably low) S = 0 [Fe2S2]2+ (67) 
Fe/S Scaffold Protein Isu1 M (66) Fe4S4 (probably low) S = 0 [Fe4S4]2+  (67) 
Fe/S Scaffold Protein   Isu2 M (66) Fe2S2 (probably low) S = 0 [Fe2S2]2+  (67) 
Fe/S Scaffold Protein   Isu2 M (66) Fe4S4 (probably low) S = 0 [Fe4S4]2+ (67) 
Fe/S Scaffold Protein  Isa1 M (68) Fe2S2 (probably low) S = 0 [Fe2S2]2+  (67) 
Fe/S Scaffold Protein  Isa1 M (68) Fe4S4 (probably low) S = 0 [Fe4S4]2+ (67) 
Fe/S Scaffold Protein   Isa2  M (63) or IMS (68) Fe2S2 (putative) 

(63) 
(probably low) S = 0 [Fe2S2]2+  (67) 

Fe/S Scaffold Protein   Isa2  M (63) or  Fe4S4 (probably low) S = 0 [Fe4S4]2+ (67) 
IMS (68) (putative) (63) 
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Table 1-1. Continued. 

Protein (gene) Gene location Prosthetic 
Group 

E0’  (mV, NHE) Electronic and Magnetic Properties 

Fe/S Scaffold Protein  Nfu1 M (66) Fe2S2 (probably low) S = 0 [Fe2S2]2+ (67) 
Fe/S Scaffold Protein  Nfu1 M (66) Fe4S4 (probably low) S = 0 [Fe4S4]2+ (67) 
biotin Synthase Bio2 M (69) Fe2S2 -140 (70)  S = 0 [Fe2S2]2+ and S = 1/2 [Fe2S2]1+ (g = 2.01, 1.96, 

1.88; and g = 2.00, 1.94, 1.85) (71-72) 
biotin Synthase Bio2 M (69) Fe4S4 - 440 (70) S = 0 [Fe4S4]2+ and S = ½   [Fe4S4]1+ (g = 2.042, 1.937, 

and 1.937) (73) 
or (g = 2.035, 1.937, 1.937) (14) (or g = 2.044, 1.944, 
1.914 and S = 3/2) (72) 

lipoic acid synthase Lip5 M (74) Fe2S2 - 430 (73) S = 0 [Fe2S2]2+ and S = ½ [Fe2S2]1+ 
lipoic acid synthase Lip5 M (74) Fe4S4 - 505 (73) S = 0 [Fe4S4]2+ and S = ½   [Fe4S4]1+ (g = 2.039, 1.937, 

and 1.937) (75) 
Dihydroxyacid 
dehydratase 

Ilv3 M (putative) (76) Fe4S4 (putative) (dithionite-reducible) 
(77) 

S = 0 [Fe4S4]2+ and S = 3/2 [Fe4S4]1+ (g = 5.2, 4.7) (76-
77) 

Frataxin homolog Yfh1 M (78) 2 Mononuclear 
Fe’s (79) 

(probably high) S = 5/2 Fe3+ and Fe2+ (79-80) 

Catalase A Cta1 M (81) Heme b - 226 (est (82)) S = 5/2 Fe3+ (g = 6.48, 5.10) (83) 
flavocytochrome b2 cyb2 IMS (58) Heme b2 - 3 (84) S = ½ Fe3+ (g = 2.99, 2.22, 1.47) (85) and S = 0 Fe2+ 
Ferrechelatase hem1

5 
IM (facing M) (86) Mononuclear 

Fe 
--- S = 2 Fe2+ (d = 1.36 mm/s; DEQ = 3.04 mm/s) (87) 

heme 
Monooxygenase 

cox15 IM (88) Heme a (61, 
89) 

+ 242 (61) S = ½ Fe3+ (g = 3.5) and S = 0 Fe2+, (61) 

heme 
Monooxygenase 

cox15 IM (88) Heme b (61, 
89) 

+ 85 (61) S = ½ Fe3+ (g = 3.7) and S = 0 Fe2+, (61) 

carboxylate 
monoxygenase 

Coq7 IM (90) Fe-O-Fe (91-
92) 

+ 48 and - 135 (93) (putative)  S = 0 [Fe2+ Fe2+], S = ½ [Fe3+ Fe2+] (g = 1.95, 
1.86, 1.77) and S = 4 [Fe2+ Fe2+] (94) 

Aconitase Aco1 M (41) Fe4S4 and 
Fe3S4 

- 450, - 268, S = 0 [Fe4S4]2+  and S = ½ [Fe4S4]1+ (g= 2.06, 1.93, 
1.86) (95) 

+ 100 (42) S = ½ [Fe3S4]1+ (g = 2.024, 2.016, and 2.004) and S = 2 
[Fe3S4]0 

 S = ½ [Fe4S4]3+ and S = 0 [Fe4S4]2+ 
Homoaconitase Lys4 M (96) Fe4S4 and 

Fe3S4 
Similar to aconitase 
(96) 

Similar to aconitase (96) 

(Putative) 
Ferredoxin Yah1 M (97) Fe2S2 - 353 (98) S = 0 [Fe2S2]2+ and S = ½ [Fe2S2]1+ (g = 2.024, 1.937, 

1.937) (98) 
flavohemoglobin Yhb1 M (99) (and 

cytosol) 
Heme b  - 230 to - 320 (100) S = 5/2 Fe3+ (g = 5.75, and 6.47, 5.22) (101) 
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 Heme prosthetic groups have an iron atom coordinated at the center of a 

protoporphyrin IX ring.  The iron is coordinated by the four planar N atoms of the 

ring and has two (axial) binding sites left for coordination to either protein amino 

acid donor atoms or to an exogenous ligand.  Hemes usually contain one axial 

protein side chain (histidine or cysteine, most commonly) coordinated to the Fe 

atom, although there are situations when the heme is bound axially by two 

protein side chains (102).  Hemoproteins are responsible for a variety of 

functions including electron transfers, biosynthesis, regulation, catalysis, and the 

transport of gases (102).     

Yeast mitochondria contain three types of heme:  heme a, heme b and 

heme c which differ by the functional groups located at the C3, C8 and C18 

positions.   Heme b has vinyl groups on C3 and C8 and a methyl group on C18.  

In heme c there are covalent thioether groups on C3 and C8.  Heme a has a 

formyl group at C18 and a hydroxyfarnesyl group at C3 (102).  Yeast 

mitochondria contain only LS heme c centers which have S = ½ (Fe3+) or S = 0 

(Fe2+) and reduction potentials ranging from +230 to +290 mV vs. NHE (55, 57).  

Heme a and heme b are found in yeast as either HS or LS with corresponding 

(Fe3+) S = 5/2 or S = ½ and (Fe2+) S = 0 (60-61, 63-64).  Heme a has a potential 

ranging from +250 to +350 mV (61, 64).  Heme b has potentials ranging from -

200 to +85 mV (60-61).  Details for the prosthetic groups of specific proteins 

including potentials and g values of EPR signals are listed in Table 1-1.   

 

http://en.wikipedia.org/w/index.php?title=Hydroxyfarnesyl&action=edit&redlink=1�
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Fe-Containing Proteins 

 Yeast mitochondria contain at least 20 Fe-containing proteins, all of which 

have vital roles in metabolic pathways.  These proteins are listed in Table 1-1.  

Several proteins involved in oxidative phosphorylation, including Respiratory 

Complexes II-IV, contain Fe.  Succinate dehydrogenase contains a LS heme b 

in its Sdh3:Sdh4 subunit in addition to the [Fe2S2], [Fe3S4] and [Fe4S4] clusters in 

Sdh2 (31, 45, 103).  Cytochrome bc1 contains two LS heme b’s (Cob1), heme c 

(Cyt1) and a [Fe2S2] cluster (Rip1) (47-48).  LS Heme c centers are found in 

both cytochrome c isoform I (Cyc1) and isoform II (Cyc7) (33, 56).  Cox1 has two 

heme a centers; one is LS heme a, while the second is HS heme a3 (56, 61, 63-

65).   

 Fe-containing proteins may also funnel electrons and substrates into the 

ETC.  Heme monoxygenase (Cox15) is responsible for converting heme b 

centers to heme a centers which are then incorporated into Cox1 (104-105).  

Cox15 contains a heme b center in addition to any bound heme a (89, 106).  

Carboxylate monoxygenase (Coq7), one of the proteins responsible for 

Coenzyme Q biosynthesis, contains a Fe-O-Fe center (107-108).   

 Enzymes responsible for scavenging and detoxifying reactive oxygen 

species (ROS) often contain Fe centers.  The two proteins responsible for 

detoxifying hydrogen peroxide, catalase (Cta1) and cytochrome c peroxidase 

(Ccp1), each contain a HS heme b (59-60, 109-110).  Flavohemoglobin (Yhb1), 
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which is responsible for the detoxification of nitric oxide, also contains a HS 

heme b (99, 111-112).   

 Several other metabolic pathways involve Fe-containing proteins.  

Flavocytochrome b2 (Cyb2), a protein in the IMS responsible for a step in lactate 

metabolism, contains a LS heme b (113).  Dihydroxyacid dehydratase (Ilv3), a 

protein involved in amino acid biosynthetic pathway, appears to contain a [Fe4S4] 

cluster (76, 114).  Biotin synthase (Bio2), which catalyzes the last step of the 

biotin synthetic pathway, contains both a [Fe2S2] and a [Fe4S4] cluster (69).  

Biotin is a cofactor in gluconeogenesis as well as in fatty acid and leucine 

metabolism (69).  Lipoic acid synthase (Lip5), a [Fe2S2] and [Fe4S4] containing 

protein, catalyzes the production of lipoic acid, an essential cofactor for many 

enzymes including pyruvate dehydrogenase (73-74).   

Understandably, many of the proteins involved in Fe metabolism also 

contain Fe.  Yfh1 carries two mononuclear Fe’s to either Hem15 or Isu1/2 for Fe 

metabolism (115-116).  The scaffold proteins involved in Fe/S cluster synthesis, 

including Isu1, Isu2, Isa1, Isa2, and Nfu1 may each contain both [Fe2S2] and 

[Fe4S4] clusters or an intermediate form of the Fe/S clusters being assembled 

(66, 68, 117).  Ferredoxin (Yah1), a [Fe2S2] containing protein, accepts electrons 

from NADH and donates them to either Cox15 for heme a synthesis or to an 

unknown component of the ISC to aid the formation of Fe/S clusters on the 

Isu1/2 scaffold (97, 118).   
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One family of [Fe4S4] cluster-dependent enzymes catalyzes isomerization 

reactions by using both a hydration and a dehydration step.  Aconitase (Aco1), 

an enzyme in the citric acid cycle, catalyses the isomerization of citrate to 

isocitrate, through the intermediate cis-aconitate (40).  Homoaconitase (Lys4) is 

part of the lysine biosynthetic pathway and catalyzes the conversion of 

homocitrate to homoisocitrate via the intermediate homoaconitate (96).  

Homoaconitase also contains a [Fe4S4] which can be converted to an [Fe3S4] 

upon oxidation (96).  ETF dehydrogenase (Cir2) which has similarities to other 

oxidoreductases, and is even part of a supramolecular complex with other 

mitochondrial dehydrogenases, contains a [Fe4S4] cluster (119-120). 

 

Fe Metabolism 

 Although oxidative phosphorylation is generally viewed as the most 

important function of mitochondria, Fe metabolism is also critical (121-124).  Iron 

is an essential metabolite utilized in many proteins involved in oxidative 

phosphorylation and the electron transport chain.  Without Fe or the associated 

processes involving the import and regulation of Fe in mitochondria, these 

proteins could not function properly.  Fe stores can also lead to toxic side effects.  

For example, high mitochondrial Fe concentrations are often associated with the 

misincorporation of Fe into proteins (125).  Mitochondria must find a balance in 

maintaining a concentration of biologically useful Fe while preventing toxic side 



15 
 

 

 

effects.  Therefore regulation of Fe-trafficking and Fe metabolism is essential for 

healthy mitochondrial function.   

 

Fe Import 

The first step in mitochondrial Fe metabolism is Fe import.  Lange et al. 

(126) found that only ferrous ions can be imported into mitochondria although 

the exact Fe complex imported is still not known.  Mrs3 and Mrs4 are thought to 

be two high affinity iron importers located in the inner mitochondrial membrane 

(127-128).  Cells with decreased expression of Mrs3/4 exhibit low mitochondrial 

iron concentrations when grown on Fe-depleted media (127).  Additionally Fe/S 

cluster and heme containing protein activity is diminished (128).  Over-

expression of these two proteins results in the protein activity being restored 

(128).  Growing Mrs3/4-deficient cells on Fe-replete media has no impact on 

Fe/S cluster or heme activity, indicating there is at least one other Fe import 

pathway (128).   

Mft1 and Mft2 [also called Mmt1 and Mmt2] are also thought to be 

mitochondrial Fe importers.  Lange et al. (126) found that cells grown on Fe-

limiting media grow slower and have lower mitochondrial Fe accumulation than 

cells grown under Fe-replete conditions.  Over-expressing Mft1 and Mft2 

resulted in a 2-5 fold increase in mitochondrial Fe.  Radioactive Fe2+ could be 

transported across the inner mitochondrial membrane and incorporated directly 

into heme centers (126).  In fact, the rate-limiting step appears to be Fe import, 
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suggesting the Fe is utilized immediately from the inner membrane and not from 

a storage protein or reservoir of Fe in the matrix.  Interestingly Fe imported by 

Mft1 and Mft2 does not seem to have an impact on heme synthesis, which may 

indicate that the iron imported by these proteins is utilized for Fe/S biosynthesis 

(122, 126, 129). 

 

Fe Storage 

 Fe levels inside mitochondria must be regulated.  High Fe concentrations 

are associated with mitochondrial defects.  Cells must sense Fe concentrations 

and use that information to import and store Fe complexes for mitochondria 

(121-123).  However, it is not clear what specific Fe-complexes are imported or 

stored although it has been hypothesized that the Fe is coordinated by ligands of 

low molecular weight (130-133).  This raises the question of how Fe complexes 

are stored and what function those store(s) have.   

Stored Fe complexes may contribute to a metabolic reservoir inside 

mitochondria (125, 134-137).  This reservoir may consist of multiple Fe 

complexes or states.  One hypothetical pool consists of ferrous Fe that is 

“bioavailable,” which has been defined as the ability of Fe to replace Mn ions in 

manganese superoxide dismutase (Sod2) in Mtm1-depleted cells (125).  Fe in 

this form has the reactive properties necessary to interact with proteins and 

metabolites and to be utilized or inserted into apo-proteins.  The Fe is chelated 

by unknown small molecules, possibly amino acids (133).  Although some 
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portion of mitochondrial Fe is always present in this bioavailable state, it appears 

to be a small portion.  Occasionally Fe homeostasis is disrupted by genetic 

mutations (such as through mutations in Mtm1, Ssq1 and Grx5) allowing Fe to 

accumulate (125).  Control of this ferrous reservoir is crucial to avoid Fe toxicity.   

It is uncertain what portion of wild-type mitochondrial Fe is part of the 

labile pool.  Tangeras et al. (138) incubated isolated mitochondria in 

bathophenanthroline sulfonate (BPS) which strongly chelates mononuclear Fe2+ 

(138).  The labile Fe was estimated to be nearly 25 % of the total mitochondrial 

Fe (138). Similar estimates have been obtained by digesting isolated 

mitochondria for ICP-AES analysis (134).  Interestingly addition of 0.1 mM Fe to 

the media reproducibly caused this labile pool to increase five-fold (134).  The 

dramatic increase in mitochondrial Fe in response to addition of Fe to media is 

surprising.  Due to the toxic nature of Fe overload, it seems intuitive that Fe 

concentrations should be low and tightly regulated.   

Lower estimations of the labile pool have been made using fluorophores 

which accumulate in mitochondria and chelate Fe2+ (135-137).  Fluorescence is 

quenched by Fe chelation allowing the presence of fluorescence to indicate 

when sufficient indicator to exceed the amount of labile Fe had been added.  

The addition of a stronger chelator permeable to the mitochondrial membrane 

restores fluorescence that had been quenched by Fe-binding (135-137).  These 

studies indicate that chelatable Fe is present in rat liver mitochondria at 

approximately 12-17 µM.  Assuming these mitochondria contain 4 mM total Fe, 
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Petrat et al. (135) concluded that the labile Fe was present at approximately 0.4 % 

of the total Fe.   

One disadvantage of the fluorescence studies is that they destroy the Fe 

complexes of interest during detection.  To gain the most information about the 

labile Fe, it would be beneficial to keep samples intact while neither destroying 

the Fe complexes nor disrupting the in vivo state of the mitochondria.  

Additionally, it would be beneficial to determine whether the detected Fe is from 

the mitochondria themselves or whether it is adventitiously bound.   

Isolation protocols have been designed to remove adventitious Fe but 

there are still variations in the size of labile Fe detected in samples (139).  As 

mentioned above, addition of Fe to media results in higher mitochondrial labile 

Fe (134).  This could indicate that the chelators included in isolation buffers are 

not able to remove adventitious Fe or it could simply reflect the actual variations 

in samples.  If the samples themselves contain variable amounts of labile Fe, it 

has significance for mechanisms of Fe regulation.  However, there may be an 

effect on the size of the labile Fe pool by carbon source, media nutrients and 

other factors. Further analysis of this labile Fe pool is necessary to determine 

the portion of mitochondrial Fe in this state and whether the amount of this Fe is 

variable under different growth conditions.   

There is a second pool of Fe that has been termed “biounavailable” 

because it is unable to replace Mn ions in Sod2 even under Mn-starving 

conditions (125, 140).  Although this type of Fe may be present under wild-type 
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conditions, it is not known what portion of mitochondrial Fe is in this state.  It has 

been hypothesized that biounavailable Fe can accumulate under genetic 

mutations just like the labile Fe pool (125).  Cells depleted in the yeast frataxin 

homolog (Yfh1p) have an accumulation of mitochondrial Fe while exhibiting wild-

type activity of Sod2p (115, 125, 141-142).  Mössbauer spectra of Yfh1p-

depleted cells exhibit a broad quadrupole doublet typical of high spin ferric iron 

bound to either oxygen or nitrogen atoms (142).  High field Mössbauer spectra 

show features typical of a broad distribution of magnetically nonequivalent ferric 

ions (142).  EPR and EXAFS confirmed the Fe was most likely present as iron 

phosphate nanoparticles.  It is unclear whether the biounavailable Fe in wild-

type cells is present as nanoparticles or some other form.    Additional research 

is needed to characterize the non-labile Fe pool.   

 

Fe/S Cluster and Heme Biosynthesis 

Fe/S cluster and heme biosynthesis both occur in the mitochondria.  

Imported or stored Fe can be incorporated into these centers .   This process is 

depicted in Figure 1-4.  Fe/S cluster biosynthesis can occur in either the 

mitochondria  or cytosol.  However, the maturation of cytosolic or nuclear Fe/S 

cluster proteins still requires the involvement of the mitochondrial Fe/S cluster 

biosynthesis (ISC) (126, 129, 143-147).  The mitochondrial ISC machinery 

exports an unknown component for cytosolic Fe/S cluster assembly (CIA) 
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Figure 1-4.  Mitochondrial Fe metabolism.  Fe is imported and chelated by 

Yfh1p which delivers Fe to Isu1/2p for Fe/S cluster biosynthesis.  It may also 

deliver Fe to either Hem15p for heme biosynthesis, but this is still debated in 

literature.  Nfs1p converts a cysteine to an alanine to donate S to the Isu1/2 

scaffold.  Yah1p accepts electrons from NADH.  Once the cluster has formed on 

the scaffold, the Ssq1/Jac1/Grx5 complex associates with Isu1/2p.  The cluster 

is incorporated into apo-proteins.  Atm1p exports an unknown compound for use 

in cytosolic Fe/S cluster assembly.   
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through the exporter Atm1p (144).  Preventing either export through Atm1p or 

the interaction between Atm1p and the CIA has disastrous defects in cytosolic 

Fe/S cluster proteins.  Interestingly, Atm1p-depleted mitochondria do not contain 

Fe/S clusters (148).  Mitochondrial ISC machinery is therefore responsible for all 

cellular Fe/S clusters.   

Fe/S cluster biosynthesis requires a source of sulfur, usually cysteines, as 

well as a source of Fe.  The Fe atoms must be brought together with the sulfur 

atoms into the proper arrangement by chapperones and scaffold proteins. 

Ferrous Fe is imported into the mitochondria and chelated by the yeast frataxin 

homolog Yfh1, a small protein which can bind two ferrous ions (79, 115).  Yfh1p 

is known to interact with the scaffold protein Isu1 and the cysteine desulfurase 

Nfs1 in an iron-dependent manner (116, 142, 145).  Yfh1 transfers the iron to 

Isu1/2 (116).   Isu1/2 serves as a platform on which Fe/S clusters form (143).  

Activity of both mitochondrial and cytosolic Fe/S cluster proteins is greatly 

diminished in the absence of Isu1 indicating its role in the synthesis of all cellular 

Fe/S clusters (143).  Figure 1-4 shows the Fe/S cluster biosynthetic pathway.   

Once nascent Fe/S clusters are formed, Isu1/2 interacts with Jac1p, a 

chaperone protein, which mediates the interaction of the Isu1/Isu2/Jac1 complex 

to Ssq1 (149).  Cells with reduced expression of Jac1p have low activity of Fe/S 

cluster proteins but accumulate Fe/S clusters on Isu1/2 indicating the Fe/S 

clusters can neither be transferred to apo-proteins nor exported (149).  The 

Jac1p/Ssq1p complex is responsible for transferring the Fe/S clusters to either 
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apo-proteins or to molecules for export to the cytosolic Fe/S cluster assembly 

pathway.  

While mitochondria are the foundation of all cellular Fe/S cluster 

biosynthesis, they are also essential for heme biosynthesis.  The last step of 

heme biosynthesis occurs in the mitochondrial inner membrane when 

Ferrochelatase (Hem15p) delivers Fe from the matrix to protoporphyrin IX (142).  

Hem15 can only use Fe that was already loaded into the mitochondrial matrix 

and not any free Fe in the IMS (142).  The yeast frataxin homolog (Yfh1p) has 

been shown to interact with Hem15, though the physiological significance of this 

is unclear (126, 142).  Since Yfh1p is also responsible for Fe delivery to Isu1 of 

the mitochondrial ISC, it may have a regulatory role in determining whether 

imported Fe is delivered for Fe/S cluster or heme biosynthesis (115-116, 141-

142).   

The incorporation of Fe into protoporphyrin IX may be a GTP-dependent 

process (150-151).  Yhm1 (also called Ggc1), is a GTP/GDP carrier protein 

(150).  Yhm1-depleted cells have increased cellular and mitochondrial iron 

import but low cytosolic iron levels (142, 152).  They also exhibit increased 

mitochondrial and cytosolic Fe/S cluster proteins (142) but a decreased activity 

in heme protein levels (although this defect was not as severe as in Yfh1-

depleted mitochondria) (150).   In addition to accumulating Fe, Ggc1-depleted 

mitochondria also have high GDP levels with low GTP concentrations (151).  

Expression of a human GTP carrier protein almost completely restored wild-type 
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characteristics indicating matrix GTP levels may have a role in the delivery of Fe 

to Hem15 for heme synthesis and export (150). 

 

Fe Export          

 Once Fe centers are manufactured, they may be exported for use in 

cytosolic or nuclear proteins.  Whether Fe is exported as Fe/S clusters or as 

chelated ions in trafficking proteins is unknown (122, 144, 153).  One exporter of 

the as-of-yet unknown Fe component may be Atm1p (144).   

Atm1p from the ATP Binding Cassette (ABC) transporter is known to be 

an importer of metal complexes in other organisms.  However, in yeast 

mitochondria the ATPase domain is located in the matrix and so Atm1p should 

function as an exporter (144, 153).  Atm1p-depleted cells exhibit low cytosolic 

iron concentrations and defects in the CIA.  Atm1-depleted mitochondria hyper-

accumulate HS nonheme Fe2+, Fe nanoparticles and have high levels of 

oxidative damage (144, 148, 153).  However, when Atm1 deficient cells were 

grown anaerobically, mitochondria exhibited wild-type levels of hemes and Fe/S 

clusters and did not hyper-accumulate Fe (148).  The cytosolic Fe/S cluster 

protein activity could not be recovered.  This indicates that the component 

Atm1p exports is likely utilized in the CIA (148). See Figure 1-4. 

Atm1-replete cells exhibit normal levels and activities of cytosolic Fe/S 

cluster proteins as long as the mitochondrial ISC machinery functions properly.  

Mutations in Nfs1 or Isu1 inhibit the CIA (121, 144-145, 154).  Preventing the 
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mitochondrial localization of Nfs1 by mutations in the protein’s presequence 

causes dramatic defects in both the ISC and CIA even when the protein 

functions normally (145).  Nfs1’s absence in mitochondria is accompanied by 

accumulation of free Fe (144).  This Fe could not be delivered to the CIA.  Both 

mitochondrial and cytosolic Fe/S cluster protein activities were recovered by 

directing murine Nfs1 to Nfs1-depleted human cells (144).  This indicates both 

Isu1 and Nfs1 must be localized to the mitochondria to promote the CIA.  

Kuhnke et al. (153) further demonstrated that the ATPase activity of Atm1p was 

selectively stimulated by substrates containing sulfhydryl groups (including 

[Fe2S2] clusters, peptides with cysteine groups and other thiol containing 

molecules.  This result may also indicate that the Fe component Atm1 exports to 

the CIA may contain sulfur although it is unclear what form that sulfur is in (148). 

 

Fe and ROS Toxicity 

 Mitochondria must import, transport, store, utilize and export Fe while 

regulating its redox state, ligands and concentrations.  The challenge is that Fe 

can be both biounavailable and toxic due to its chemical properties in aqueous 

environments (123, 155). Ferric Fe is largely insoluble and cannot be easily 

chelated at biological pH (pH ~ 7).  Ferrous Fe is soluble but can easily undergo 

Fenton chemistry resulting in the production of reactive oxygen species (ROS), 

one of the major contributors to mitochondrial dysfunction (22).  ROS are 
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responsible for DNA damage, initiating apoptosis (cell death), inactivating 

enzymes and oxidative signaling (22).   

 The three most common ROS are superoxide, hydrogen peroxide and the 

hydroxyl radical.  Until recently it was believed that mitochondrial ROS 

production came solely from the ETC.  Respiratory Complexes III-IV can leak 

electrons to molecular oxygen forming superoxide or hydrogen peroxide (32, 

156-157).  This type of ROS production occurs during normal respiration, but 

increases when the ETC is disrupted by inhibitors.  Alternatively, ROS 

production also increases when the ETC is functioning at a capacity too high for 

the corresponding ATP production such as through substrate (ADP) depletion 

(32, 157).  In this case the ETC continues to transport electrons, but with an 

increased chance for the reduced proteins to leak electrons to molecular oxygen 

forming superoxide (32, 156-157).  Superoxide can be converted to hydrogen 

peroxide by an electron and leaked protons that would otherwise form the proton 

gradient.    

 Almost as soon as they were discovered, researchers began questioning 

the reactivity of mitochondrial Fe species.   Mutations causing Fe build-up are 

often associated with oxidative damage and dysfunctions caused by ROS.  In 

fact, it is well known that ferrous Fe can react with molecular oxygen to produce 

superoxide.  Additionally if hydrogen peroxide is present, Fe2+ ions have a more 

toxic side effect.  In the presence of reduced Fe, hydrogen peroxide can be 

reduced to form a hydroxyl radical in the Fenton reaction (22).  This leads to two 
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paradoxes for mitochondria.  Mitochondria need to produce enough energy (ATP 

production) for cellular function while regulating the ETC so that electrons are 

not leaked to molecular oxygen.  In addition, mitochondria are the primary 

location of Fe metabolism which means Fe must be imported and kept for Fe/S 

cluster and heme biosynthesis while preventing Fe2+ accumulation in the matrix.  

Mitochondria may be able to prevent Fe toxicity by sequestering imported 

ferrous ions from the ability to undergo the Fenton reaction.   

Once ROS are produced, there are several enzymes that scavenge and 

detoxify ROS including superoxide dismutase, cytochrome c peroxidase and 

catalase.  Superoxide dismutase (Sod2) catalyzes the dismutation of superoxide 

to hydrogen peroxide and molecular oxygen (32, 125, 140).  Catalase (Cta1) 

decomposes hydrogen peroxide to water and oxygen (81, 109-110).  

Peroxidases, such as cytochrome c peroxidase (Ccp1) reduce hydrogen 

peroxide to water (58-60).  Interestingly all three of these enzymes contain Fe 

emphasizing the paradox between toxic Fe concentrations and detoxifying Fe 

proteins.  Cta1p and Ccp1p both contain heme b while Fe has been shown to 

replace Mn in the active site of Sod2 under high Fe concentrations (125, 134, 

140).  In addition to scavenging enzymes, there are numerous antioxidant 

molecules (such as vitamin E) and repair mechanisms to address inactivated 

proteins and damaged DNA (32, 81, 96, 156).  These processes are essential 

for the detoxification of ROS in mitochondria. 
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This balance between needed and toxic Fe may be achieved by 

maintaining a set level of free Fe as well as sequestering that Fe in a way which 

prevents its ability to undergo Fenton chemistry (130-133).  Since mitochondria 

have to store Fe for metabolic processes (such as the bioavailable HS Fe2+), it 

holds that some ROS production may be coming from this accumulated Fe.  

There may be a reason that some of the nonheme Fe in samples 

(biounavailable pool) is in a state that prevents its mis-incorporation into 

enzymes.  Perhaps this allows Fe accumulation without providing free ferrous Fe.  

This may also implicate an equilibrium between the two types of nonheme Fe in 

mitochondria.    

 

Fe-Associated Diseases 

Mitochondrial dysfunctions are closely linked to numerous human 

diseases and disorders including heart disease, anemia, aging and ataxia (158-

161).  Defects in Fe metabolism is involved in Friedrich’s Ataxia, Parkinson’s 

Disease and Sideroblastic Anemia (158-162).  In Friedrich’s Ataxia, the yeast 

frataxin homolog (Yfh1p) is depleted causing a build-up of amorphous 

precipitated Fe (141-142, 163-164).  A build-up of precipitated Fe is also seen in 

a small part of the brain, the substantia nigra, in Parkinson’s Disease (165-166).  

Typical Fe complexes are disrupted by favored production of Fe complexes that 

are more likely to undergo Fenton reactions in Alzheimer’s Disease (167-168).  
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Patients with Sideroblastic anemia accumulate Fe that is unable to be 

incorporated into hemoglobin (169-170). 

The inability of diseased cells to utilize Fe in the proper pathways has 

severe symptoms for the cells and organisms involved including decreased 

respiration, ataxia, neurodegenerative traits and even death (158-161).  It is 

therefore important to establish a wild-type distribution of Fe and establish 

trends to further evaluate mechanisms associated with these conditions.   

 

The Importance of Using a Systems Biology Approach to Study Fe Metabolism 

 The information accumulated on the cell as a model system began with 

the meticulous identification and characterization of individual proteins and their 

activities (171-172).  But in order to understand a system, it is necessary to 

integrate this information.  The “omics” suffix was coined with the ultimate goal 

of incorporating multiple datasets into a comprehensive analysis of a system.  

The earliest example of this is found in ‘genomics’.  In the late 1970’s 

researchers began sequencing genes to understand the storage, maintenance 

and expression of an organism’s hereditary information.  By the mid-1990’s the 

entire genome of organisms were being sequenced (173).  Furthermore, the 

invention of DNA microarrays led to exponential amounts of information being 

available.  The incorporation of this information into databases (ATCC, Yeast 

Genome Database etc) for public use has been beneficial to many research 

fields.   
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The next step in understanding cells as a system was to investigate the 

gene products.  This process is complicated since proteins are constantly being 

translated, modified and degraded.  The methods for identification would have to 

account for these variations.  Proteomics originated in the mid-1990’s when 2-D 

electrophoresis was used to identify large numbers of proteins at a time (174).  

Since then, numerous other methods for proteomic studies have been 

implemented.  Enzyme-linked immunosorbent assays and matrix-assisted laser 

desorption/ionization are two popular methods for determining which proteins 

are present in a mixture.  Fluorescent tags have been added to each gene in 

yeast in order to investigate the relative concentrations and locations of proteins 

(175-176).  Protein networks of interactions have also been investigated as a 

means of understanding cell processes.  Most recently, the metabolome of cells 

became a subject of interest as researchers began to investigate metabolites to 

identify and understand biomarkers for conditions and diseases.  The integration 

of these three types of studies is necessary for the comprehensive analysis of 

the cell (177).   

 The success of the “omics” studies in interpreting cellular processes and 

identifying mechanisms led us to question why a similar study had not been 

done on metal ions, such as Fe.  The development of a method to study the Fe-

ome would help interpret mechanistic details related to Fe metabolism.  

Although we ultimately want to understand the Fe-ome of entire cells, the 

number of components involved and the low concentrations of many of those 
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components make that goal unrealistic.  Indeed the resolution of many of our 

biophysical methods would not be able to handle either of those issues.  

Analysis of an individual organelle is a more realistic goal and would still provide 

information on an intact cellular ‘system’.  Incorporation of multiple organelle 

studies can be pieced together at a later time.   

 Mitochondria were the logical choice for the first system in which to study 

the Fe-ome.  Mitochondria are the site where much Fe metabolism occurs, as 

well as the site of essential processes governed by Fe-containing proteins.  In 

order to obtain mechanistic details and to determine trends in Fe metabolism it is 

necessary to evaluate intact mitochondria.  This will preserve the in vivo state of 

the organelle and allows the entire system to be studied without disrupting 

interactions, redox states or concentrations.  The ultimate goal of most chemists 

is to understand a system completely on the molecular level.  The number of 

components in our system, including the quantity of Fe-containing proteins, the 

different metal complexes, and the countless interactions and pathways involved 

makes that goal unrealistic for our purposes.  Instead we endeavored to obtain 

information on a broad scale by evaluating trends in Fe metabolism by 

investigating the Fe distribution.  While the traditional approach of studying 

individual proteins has yielded a wealth of knowledge, we were interested in how 

the system functions as a whole.   
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Developing an Approach to Study the Fe-ome 

In order to investigate trends in Fe metabolism, we must be able to see 

the total Fe in our samples:  the “Fe-ome” of mitochondria.  In order to do this we 

utilized an integration of numerous biophysical studies to gain information about 

that system.  We employed Mössbauer Spectroscopy, Electron Paramagnetic 

Resonance, Electron Absorption, Electron Microscopy as well as metal and 

protein analysis.  Integrating the information gained from each type of analysis 

allowed a more comprehensive assessment of the Fe in our samples than has 

ever been obtained previously.   

Mössbauer Spectroscopy is a vital tool in our Fe-ome analysis.  This is 

because the total Fe in a sample can be evaluated—there is no “Mössbauer-

silent” Fe.  Furthermore, the spectral features are proportional to the amount of 

Fe in each state.  Mössbauer Spectroscopy allows the separation of Fe 

complexes into classes of Fe centers; such as HS heme, HS nonheme Fe, 

[Fe2S2]+ and [Fe2S2]2+/[Fe4S4]2+ clusters.  There are some limitations with this 

method as it is impossible to distinguish between low spin heme and [Fe4S4]2+ 

clusters.  Nonetheless we will begin our analysis of the mitochondrial Fe-ome 

with Mössbauer Spectroscopy because it can give us the broad picture of the Fe 

present.   

Lesuisse et al. (142) was the first to publish a Mössbauer spectrum of 

intact mitochondria from S. cerevisiae.  Yfh1-depleted mitochondria showed a 

doublet corresponding to accumulated iron (III) phosphate, but the wild-type 



32 
 

 

 

spectra was completely devoid of any signals (142).  This indicates that the wild-

type sample was not concentrated enough for Mössbauer studies.  This is most 

likely because traditional growth and isolation parameters were designed for 

micro-scaled experiments.  A single Mössbauer sample requires at least 200 µL 

of packed mitochondria—approximately 10-fold more than most protocols were 

designed to produce.  We designed a protocol that will provide enough sample 

material for several macro-scale analyses.  Once we achieve the conditions 

necessary to observe Mössbauer spectra of mitochondria, we will have a 

depiction of the relative amounts of Fe centers present.   

One disadvantage to Mössbauer Spectroscopy is that magnetic Fe 

contributes to a broad feature that spans much of the spectrum’s baseline.  

Although we can determine the relative proportion of paramagnetic Fe, we 

cannot characterize or quantify individual components (such as between 

cytochrome bc1’s Reiske protein and succinate dehydrogenase’s [Fe2S2]+ 

cluster).  In order to evaluate individual paramagnetic species, we relied on EPR.  

A few recent studies have attempted to use EPR to study intact mitochondria.  

Bulteau et al. (38) treated mitochondria with hydrogen peroxide to observe 

damaged aconitase.  They were unable to detect signals from cytochrome bc1’s  

Reiske center, succinate dehydrogenase or cytochrome oxidase (38).   EPR 

studies were also performed on rat mitochondria to evaluate whether calcium or 

manganese ions had an effect (178).  Weak signals have even been seen in 

mitochondria isolated from human placenta (179).  These studies were not able 
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to obtain strong signals from multiple components in mitochondria and samples 

were usually isolated aerobically, preventing the preservation of the sample’s 

redox state.  Just as with Mössbauer samples, EPR samples will have to be 

prepared in a way that provides a sufficient signal to noise ratio so that reliable 

spectra can be obtained.   

Mössbauer Spectroscopy can determine the amount of HS heme in a 

sample, but it is impossible to determine which type of heme (heme a, heme b or 

heme c) is contributing to the HS heme feature.  Electron Absorption 

Spectroscopy can easily distinguish between each heme type.  Furthermore, 

concentrations of each heme center can be determined by using standard 

curves obtained from isolated proteins containing one type of heme.  Knowing 

the concentrations of the total heme content in a sample as well as the portion of 

HS heme (obtained by Mössbauer) will allow us to determine the portion of Fe in 

LS heme centers.  Since this type of heme overlaps with diamagnetic Fe/S 

clusters, we will be able to determine the portion of Fe in those Fe/S clusters as 

well.  We are also interested in the presence of the Fe pools.  If such pools are 

present, Electron Microscopy can evaluate that Fe to determine what elements 

are chelating the Fe to give information on the state of the Fe in the pool(s). 

Although mitochondria and mitochondrial dysfunctions have been studied 

for more than fifty years, there is still a wealth of information to learn.  

Mössbauer of wild-type cells has never been obtained.  Although EPR and 

Electron Absorption studies of individual proteins have been completed before, 
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data from multiple techniques has never been integrated so comprehensively.  

We aim to investigate the Fe-ome of mitochondria by integrating data collected 

from several biophysical methods.  The main limitation of our analysis is that for 

most Fe-containing species, it is impossible to draw conclusions on the per-

species basis.  Instead we will be focusing on groups of Fe centers.  We can use 

the molecular and supra-molecular information gained from our integrated 

analysis to draw conclusions about mechanisms of Fe metabolism and gain new 

physiological insights.   

 

Objectives for the Dissertation 

Our study is novel in that we are isolating intact organelles to attempt a 

more systems-biology approach.  In addition, we strive to maintain the biological 

states of the organelle by isolating mitochondria anaerobically.  Finally we seek 

to incorporate information from Electron Paramagnetic Resonance, Mössbauer 

Spectroscopy, Electron Microscopy, Electron Absorption, respiration assays, 

protein and metal analysis to obtain a more integrated analysis.  This allows us 

to gain more quantitative analysis on the organelle than ever before obtained.  

We describe the Fe-ome of intact mitochondria from S. cerevisiae.   

This dissertation will discuss the: 

• Development of an integrative biophysics-based approach to study the 

Fe-ome (Chapter II). 



35 
 

 

 

• Fe-ome of isolated mitochondria collected from cells grown on respiring 

and fermenting carbon sources (Chapter III). 

• The discovery of Fe pools in mitochondria. 

• The determined concentrations of some Fe species in mitochondria. 
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CHAPTER II 

METHODOLOGY AND PROTOCOLS*† 

Introduction 

As described in the Introduction, the goal of the project was to probe the 

Fe-ome of isolated mitochondria.  None of the established isolation procedures 

addressed the requirements of preparing mitochondrial samples for our 

integrated analyses.  We had two categories of problems to deal with.  First—

how could we obtain samples that were pure, intact and representative of the in 

vivo state of the organelle?  Second—how could we use established biophysical 

and bioanalytical techniques to investigate the entire Fe-ome (or at least as 

much as possible) of our samples?  A protocol was developed that addressed 

both problems.   

Several modifications to existing isolation protocols were necessary.  Our 

analyses required a substantially larger sample volume than previous studies 

employed.  Our lab uses custom-built 25 L bioreactors to obtain enough cells (to 

yield enough mitochondria) for our series of experiments.  Several steps of the 

protocol had to be adjusted for handling large sample volume (see below).   

                                                 
* Part of this chapter is reprinted with permission from “Electron paramagnetic resonance and 
Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae” by 
Hudder,BN.; Morales, JG.; Stubna, A.; Mϋnck, E.; Hendrich, MP.; and Lindahl PA. Journal of 
Biological Inorganic Chemistry, 12, 1029-1053, [2007]. Elsevier Inc.  
  
† Part of this chapter is reprinted with permission from “Chapter 15 isolation of Saccharomyces 
cerevisiae mitochondria for Mössbauer, EPR, and electronic absorption spectroscopic analyses.” 
by Lindahl PA.; Morales JG.; Miao, R.; and Holmes-Hampton GP. 456. 26-285 Methods 
Enzymology. [2009]. Elsevier Inc.  
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We endeavored to maintain the in vivo state of the organelle by keeping 

our samples in a refrigerated (5 °C) MBraun glove box with an inert Argon 

atmosphere (~ 1 ppm O2) during all isolation steps.  Several Fe containing 

proteins including biotin synthase (180), aconitase (181) and lipoic acid (73) are 

oxygen sensitive.  There is evidence that the mitochondrial matrix is anaerobic.  

Although oxygen is consumed by the mitochondrion, it is likely that its 

consumption is fast relative to its diffusion across the matrix allowing the matrix 

to remain essentially anaerobic (182-183).  Isolating mitochondria anaerobically 

allows the in vivo state of the organelle to be preserved while preventing protein 

and membrane degradation caused by oxygen exposure.  Additionally, 

maintaining our samples in an anaerobic environment, limits ROS production 

which may damage proteins and membranes and would likely give an altered Fe 

distribution.   

 Previously published protocols did not include a chelator in isolation 

buffers.  In order to probe the Fe-ome of mitochondria, it is necessary to know 

that the metal ions present are contained within the mitochondria themselves.  

We needed to remove adventitiously bound metal ions from our samples without 

compromising Fe centers inside isolated mitochondria.  We utilized EGTA, a 

chelator that cannot enter the mitochondrial membrane.   

 Sample integrity was another concern.  Aliquots of isolated proteins can 

be frozen and thawed repeatedly until samples are consumed.  Treating 

organelles the same way would damage membranes and result changes in the 



38 
 

 

 

state of the mitochondria.  Isolated organelles are susceptible to aging—which 

involves protein degradation and membrane ruptures.  Therefore samples of 

sufficient volume must be isolated and immediately analyzed.   

To interpret results from our analyses the purity and integrity of our 

samples needed to be characterized in a simple yet insightful way.  This is 

especially important since mitochondrial samples generally contain some 

contamination.  Brito et al (184) found that the ER actually tethers to 

mitochondria which means ER contamination of mitochondrial samples is likely.  

Characterizing the relative amounts of cellular contamination in mitochondrial 

samples provides information of the relative purity of the mitochondria for use in 

interpreting results. 

Electron microscopy allows the visualization of samples and 

contaminants.  Mitochondria vary in size and this distribution can be viewed by 

this method.  Additionally sample contamination by broken membranes, cell 

spheroplasts, vacuoles and bacteria are also visible.  Furthermore, membranes 

can be visualized and characterized in a qualitative manner since intact 

membranes will have sharp lines while damaged membranes will often look 

blurry.  A large number of electron micrographs were collected on our samples.  

In fact, after each adjustment to isolation procedures, several replicates were 

taken for electron micrographs to evaluate sample integrity and purity.   

 In addition to purity assays, functionality of samples was tested.  

Individual enzyme activities can be determined but this is an inadequate 
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estimate of sample health since only ~ 1-4 proteins of the ~ 800 total proteins 

are tested.  A slightly more effective experiment involves evaluating isolated 

mitochondrial respiration activities.  This assay has the ability to determine how 

well samples couple oxygen consumption to ATP production.  Aged 

mitochondria or samples with damaged membranes will not maintain the proton 

gradient necessary to couple oxygen consumption to ATP production.  This 

uncoupled respiration is indicative of the level of damage in isolated samples.  

The coupling ratio (the ratio of the rate of coupled to uncoupled respiration) is 

often determined to demonstrate the viability of mitochondria (185).  We 

incorporated this assay into many of our early sample preparations to determine 

whether our samples were consistent with previously published 

respiration/functionality assays.   

The large number of Fe containing species in mitochondria means that 

there is a distinct possibility that each individual species is relatively dilute.  In 

order to detect as many Fe components as possible, it is necessary to 

concentrate our samples.  Dilute mitochondrial solutions would not have a S/N 

ratio necessary to resolve spectral features.  Furthermore, we wanted to 

determine absolute concentrations (concentrations of species in neat 

mitochondria).  All papers, that we are aware of, report concentration data for 

mitochondrial species in relative terms (µM / mg protein).  In order to determine 

absolute concentrations, samples need to be packaged in a way that can 

address both of these issues.  Samples were packed by centrifugation.  This 
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provides the high S/N ratio necessary for spectroscopic analysis.  Furthermore, 

electron microscopy and respiration assays showed that repeated packing did 

not cause significant damage to samples.   

Since samples were packed with low force (10,000 x g), it was likely that 

some interstitial buffer remained in the mitochondrial pellets.  It is necessary to 

know the exact percent of that included buffer in order to determine the absolute 

concentrations of Fe species in neat mitochondria.  An experiment utilizing 

radiolabeled buffer was designed to determine the pellet composition.  Samples 

were packed using conditions shown to be gentle, yet effective.  The sample 

pellet was resuspended in radiolabeled buffer and centrifuged again.  The 

dilution of the radioisotope into interstitial buffer provided a means to calculate 

the volume of mitochondria occupying sample pellets.  This allowed us to 

establish a packing constant for use when calculating absolute concentrations 

from spectral features.   

Evaluation of the Fe-ome requires the integration of several biophysical 

techniques.  We decided to center our study around Mössbauer Spectroscopy 

because of its ability to simultaneously distinguish the total Fe in a sample into 

distinct categories.  The collection and analysis of all Mössbauer spectra were 

done in collaboration with Eckard Mϋnck’s lab at Carnegie Mellon University.  

Mössbauer spectroscopy takes advantage of the Mössbauer effect:  gamma 

radiation emitted by a source can be absorbed by atoms of the same isotope 

(186).  The resulting absorption will differ based on the chemical environment of  
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Figure 2-1.  Simulations of typical Mössbauer features.  Spectra are of; A, 

Isolated Reiske protein; B, HS reduced heme; C, HS Fe2+ nonheme (NHHS); D, 

the central doublet; E, central doublet in the presence of an 8T magnetic field; F, 

Fe(III) nanoparticles; and G, HS Fe(III) in the presence of an 8T magnetic field.   
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the Fe atoms in the sample.  Diamagnetic centers will (in the absence of a 

magnetic field) give rise to quadrupole doublets which are characterized by the 

quadrupole splitting (ΔEq) and the isomer shift (δ) (139, 187) (Figure 2-1).  

Identification of both parameters is often enough to identify the spin and 

oxidation state of an Fe species.  For example HS ferrous (S = 2) sites with N/O 

ligands in octahedral geometry typically have parameters of ΔEq ~ 2.5 - 3.3 

mm/s and δ ~ 1.2 - 1.3 mm/s.  LS (S = 1/2) ferrous sites typically have ΔEq ~ 

0.45 mm/s and δ ~ 1.2 - 1.3 mm/s (139, 187).  Parameters found for typical Fe 

centers are listed in Table 2-1.   Centers with half integer spins do not display 

quadrupole doublets.  Instead, they are distinguished by paramagnetic hyperfine 

features.  Paramagnetic features tend to be broad and shallow (Figure 2-1).  

This implies that paramagnetic species that are present at low concentrations 

(relative to diamagnetic species) will be difficult to detect (139).   

The absorption of energy by each Fe species is directly proportional to 

the amount of that species in the sample.  This means the relative 

concentrations of several types of Fe centers can be determined by calculating 

the area under each feature.  Furthermore the only necessity for analyzing 

samples is that the concentration of 57Fe needs to be high enough to allow 

analysis within an appropriate time frame.  Since 57Fe is present with only 2 % 

natural abundance, this presented a problem.  In order to enrich our samples in 

57Fe, we incorporated 40 µM 57Fe into our media during cell growth prior to the  
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Table 2-1.  Parameters for typical Mössbauer features seen in our samples.  Aiso 

is the 57Fe magnetic hyperfine coupling constant in AisoS•I for an S = 5/2 spin 

Hamiltonian appropriate for high-spin Fe3+. A negative value for the line width 

parameter Γ indicates a Voigt shape; Γ = - 0.40 mm/s indicates that a Lorentzian 

of 0.15 mm/s full width (fixed in WMOSS) has been convoluted into a Gaussian 

of full width 2σ = 0.40 mm/s. Use of Voigt shapes allows us to account for the 

presence of many similar species, such as those contained in the central doublet: 

[Fe4S4]2+ clusters, and ferrous LS heme a and LS cytochrome c. 

 δ (mm/s) ΔEQ (mm/s) Aiso (T) Γ (mm/s) 

Central Doublet 0.45 1.15 - - 0.35 

HS Fe2+ Heme 0.85 2.15 - - 0.35 

Nonheme HS Fe2+ 1.30 3.00 - - 0.40 

Fe3+ Nanoparticles 0.51 0.63 - - 0.52 

Mono HS Fe3+ 0.45 0 - 22.4 0.40 
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production of any Mössbauer sample.  Mössbauer spectra were obtained on the 

enriched samples and the general features of the Fe-ome were observed.   

Mössbauer spectroscopy can quickly recognize and determine relative 

quantities of multiple Fe species (for samples enriched in 57Fe).  Not only is 

analysis of a complicated system like mitochondria possible, but the resulting 

spectra provides detailed information about the chemical environment and 

oxidation state of each type of Fe center present.  Although spectra of 

mitochondrial samples exhibit several overlapping features, this level of 

resolution is unprecedented!  Since Mössbauer can only distinguish between 

types of Fe species (such as [Fe2S2]+, [Fe4S4]2= [Fe2S2]2+, HS heme, etc., it is 

necessary to use other biophysical techniques to further characterize the Fe 

present.  

 Once the relative proportions of Fe-containing species have been 

determined by Mössbauer, it is possible to use other techniques to further 

investigate each unresolved feature.  EPR is useful for probing paramagnetic 

species such as organic radicals and transition metals (i.e. Fe, Mn, and Cu).  

Unpaired electrons have an electronic spin (i.e.. S = ½) characterized by 

magnetic components (ms = ± ½).  The difference in energy between these two 

states (± gβH) is ΔE, which varies proportionally to an applied magnetic field.  

The electron can move between the two states (ms) when microwave radiation 

equal to the ΔE is applied in the presence of a magnetic field.  As the electron 

changes states it absorbs microwave radiation.  The first derivative of that 
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absorption of energy is depicted in the resulting spectrum (188).  EPR spectral 

features can help determine the oxidation state, geometry and concentration of 

the species.   

Isolated proteins have been investigated by EPR for several decades.  

Beinert et al. (45) first published the spectrum of cytochrome c oxidase in 1978.  

Fee et al. (51) reported the spectrum of the Reiske protein of the cytochrome 

bc1 complex in 1984.  The parameters of all known Fe-containing proteins from 

yeast mitochondria are listed in Table 1-1.  These parameters can be used to 

resolve individual contributions of proteins to spectra of intact mitochondria.  It is 

possible to determine the concentrations of each protein in our samples using 

SpinCount (http://www.chem.cmu.edu/groups/hendrich/facilities/index.html) and 

our packing constant.    

 Although Mössbauer spectra show resolution between the feature due to 

HS heme components and other features, it is impossible to resolve low spin 

hemes from [Fe4S4]2+ components.  Furthermore, one cannot distinguish 

between the types of heme centers in samples.  In order to investigate the heme 

content of our samples further we used electron absorption spectroscopy.  The 

resulting spectra illustrate distinct α and β bands for heme a, heme b and heme 

c allowing the determination of the concentration of each component.  

Integrating the concentrations of each type heme with the known Fe-containing 

proteins (Table 1-1) allows the determination of concentrations of two proteins, 

cytochrome c oxidase and cytochrome c, who contain the bulk of heme a and 
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heme c respectively.  The knowledge of the HS and LS heme components 

further allows the concentrations of several groups of proteins to also be 

determined.  Integrating the information gained from these techniques  provides 

a synergy that allows for a cumulative amount of information to be gained.  A 

more in depth explanation of the integrated analysis will be included in Chapter 

III.  In the following sections, each of the relevant methods used in generating 

the iron-ome of mitochondria will be described. 

 

Growth of Saccharomyces cerevisiae 

Strains W303 (generously provided by Roland Lill) and D237-10B 

(American Type Culture Collection) are both wild-type diploid yeast strains.  All 

yeast experiments used one of these strains and are described by (139, 189).  

Frozen stocks were used to inoculate YPD (1 % w/v yeast extract, 2 % w/v 

peptone, 2 % w/v glucose, 1.7 % w/v agar) plates.  When strain W303 was used, 

plates were also supplemented with 40 mg adenine.  All chemicals were 

purchased from Sigma, Fisher Scientific or MP Biomedical.   

Plates were allowed to grow at 30 °C for 2 - 3 days until single colonies 

were visible for selection.  Plates were stored for a maximum of 2 months at 

5 °C.  Individual colonies were selected and used to inoculate 50 mL media.  

Cells were grown to an OD600 of ~ 1.2 at 30 °C with gentle shaking.  The entire 

slurry was used to inoculate 1 L media.  The inoculum was allowed to grown for 
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Figure 2-2.  Bioreactor.  One of two 25 L bioreactors available for growth of 

yeast cells.   



48 
 

 

 

12 - 36 hours until the OD600 was 1 - 2 before using the culture to inoculate 24 L 

media.   

Our 25 L vessel (Figure 2-2) was custom built by ChemGlass.  The 25 L 

chamber is surrounded by a water-jacketed region that controls the temperature 

during growth.  The lid has four openings.  The first contains a large rod with a 

teflon paddle that extends down the middle of the reactor and is attached to a 

motor that turns during growth.  A second opening has a glass tube with a small 

pore fritz 60mm in diameter (ChemGlass).  Oxygen is bubbled through this tube 

at 2 - 3 SCFH during growth.  Oxygen is used rather than air to compensate for 

the small surface to volume ratio in the reactor.  The third opening contains a 

long glass tube that is used to transfer sterile media into the reactor (and to 

remove the cell slurry after growth).  The final opening is used to add the 1 L 

inoculum and other solutions (such as Fe57, Cu and tryptophan).  All cells were 

grown at 30 °C.  All cultures were collected when the OD600 was 1 - 1.7 which 

afforded 200 - 300 g cell paste when grown on glucose media or 100 - 250 g cell 

paste when grown on glycerol media.   

 

Media Recipes 

All chemicals were purchased from Fisher Scientific, Sigma Aldrich or MP 

Biomedical.  Growth medium was made just before use and autoclaved for 25 - 

30 minutes at 121 °C.   It was allowed to cool to room temperature prior to 

inoculation.  When 24 L of media was required, components were split into four 
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6 L aliquots (in 9 L bottles) and autoclaved prior to combining them in the 

bioreactor.  (For SSlac medium; salts, lactate, yeast extract and glucose all had 

separate bottles).  A 5xSSlac stock could be made and stored for later dilution 

and use for small (volumes < 1 L) cultures.  If the culture was to be used to 

produce Mössbauer samples, the media was supplemented with 40 µM 57Fe 

(purchased from Cambridge Isotopes or Isoflex).  The following recipes have 

been previously described (139, 189-190).   

 

YPD 

10 g/L  Yeast extract 

20 g/L  Peptone 

20 g/L  Dextrose 

 

SSlac 

3 g/L   Yeast extract 

1 g/L   KH2PO4  

1 g/L  NH4Cl 

0.5 g/L  glucose 

0.5 g/L  NaCl 

0.5 g/L  CaCl2 

0.6 g/L  MgCl2 

(47 mLs 60 % Na Lactate or 30 g/L) Na Lactate (pH 5.5) 
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Minimal 

0.1 g/L  Leucine 

0.04 g/L  Adenine 

0.02 g/L  Histidine 

0.02 g/L  Uracil 

1.7 g/L  Yeast Nitrogen Base (YNB) 

5 g/L   NH4SO4 

Either 20 g/L glucose OR 30 mL Glycerol  

 

Isolation of Mitochondria 

The procedure for isolating mitochondria was modified from previously 

reported protocols (191-192) to allow for 25 L harvests as described in (139, 

189).  All chemicals were from Fisher Scientific, Sigma, or MP Biomedical.  In 

order to collect enough mitochondria, the isolation was scaled up and slight 

modifications were made.  Once cell walls were removed, spheroplasts were 

disrupted by homogenization with a Dounce homogenizer (Fisher Scientific or 

Kimbal).  This process was initially difficult to regulate since the speed of the 

repeated lifting/lowering of the pestle varied depending on the strength of 

individuals.  In order to standardize this process, a mechanical homogenizer was 

built (Texas A&M University Department of Chemistry Machine Shop) to house 

the glass homogenizer and pestle.  The machine raises and lowers the pestle at 
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a regulated speed (one revolution every 3.5 seconds) When using the tight-

fitting glass pestle, the number of strokes required for disruption remains the 

recommended 25 strokes (192).  Additionally, in most experiments, buffers were 

supplemented with 1mM EGTA to remove adventitious Fe ions.  Essentially the 

protocol is as follows. 

1. Cells were collected at 5000 x g for 5 minutes at 5 °C in 1 L bottles 

(Kendro) in a Sorvall SLC-6000 rotor (this rotor is the only one used until 

step 10).  The supernatant was decanted and cell paste was 

resuspended into Milli-Q (deionized and distilled) water and combined 

into one 1 L centrifuge bottle.  From 24 L media 200 g of cells could be 

collected from YPD media, 100-200 g from SSlac media and 100 g from 

minimal media.   

2. Cells were washed with water and centrifuged at 5000 x g for 5 minutes 

as 5 °C.  The supernatant was decanted and the wet weight of the cell 

paste was determined.  The bottle was capped and taken into an 

anaerobic box (MBraun) at 5 °C.  All subsequent steps are carried out 

anaerobically (< 1 ppm O2) with buffers that were degassed on a Schlenk 

line.   

3. Cells were resuspended in 500 mLs (TD) buffer (100mM Tris pH 9.4, 1 

mM EGTA, 10 mM dithiothreitol (DTT) that was added just prior to use).   

4. Cells were incubated in the buffer at 30 °C with gentle shaking for 30 

minutes.  Cells were centrifuged at 5000 x g for 5 minutes at 5 °C.  
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5. The supernatant was decanted and cells were resuspended in 300 mL 

SP buffer (1.2 M sorbitol, 1 mM EGTA, 20 mM KH2PO4 pH 7.4).  The 

slurry was centrifuged at 5000 x g for 5 minutes at 5 °C.  This step was 

repeated. 

6. Cells were resuspended with 300 - 400 mL SP buffer.  A 1 mL aliquot was 

taken and set aside.  Lyticase that had just been dissolved in 5-10 mL SP 

buffer was added to a concentration of 1500 activity units per gram cells.  

A second 1 mL aliquot was collected.  The cells were incubated at 30 °C 

with gentle shaking until the OD600 of the aliquot containing lyticase was ~ 

20 - 30 % that of the aliquot without lyticase (usually 1 - 1.5 hours).     

7. The samples were kept at 5 °C for the rest of the isolation.  Spheroplasts 

were centrifuged at 5000 x g for 5 minutes.  The supernatant was 

decanted and the pellet was washed twice with SP Buffer and centrifuged 

again.   

8. Spheroplasts were resuspended in 200 mL 2SH (1.2 M sorbitol, 1 mM 

EGTA, 40 mM HEPES pH 7.4).  An equal volume of Milli-Q water 

containing 1 mM PMSF was added.   
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Figure 2-3.  Homogenizer.  The glass homogenizer available from FisherSci or 

Kontes was fit into a teflon block and held secure.  The glass piston was 

attached to a second block which was moved at a fixed rate by a motor.  

Mitochondrial solutions were added in 40 mL aliquots to the apparatus and 

homogenized as described.   
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9. Samples were homogenized in a 40 mL Dounce homogenizer using a 

custom built machine (Figure 2-3).  Samples were homogenized with 25 

strokes of a tight fitting glass pestle (Fisher/Kontes) at a speed of one 

revolution per 3.5 seconds. 

10. Samples were centrifuged at 3500 x g for 7 minutes.  The supernatant 

was decanted into 250 mL bottles and centrifuged at 10,000 x g for 10 

minutes in a Sorval SLA-1500 rotor.   

11. The supernatant was decanted and the pellet was resuspended in 100 

mL 1SH buffer (0.6 M sorbitol, 1 mM EGTA, 20 mM HEPES pH 7.4).  The 

slurry was homogenized in a 15 mL glass homogenizer with a loose fitting 

piston using 3-5 strokes.   

12. The resulting solution was centrifuged at 3500 x g for 7 minutes.  The 

supernatant was decanted and centrifuged at 10,000 x g for 10 minutes. 

13. The resulting pellet was resuspended into 10 - 15 mL 1SH buffer using a 

glass pipette.  This solution contains crude mitochondria that must be 

further purified by a density gradient.   

14. Histodenz (Sigma) or Nycodenz (Fisher Scientific) solutions were made in 

1SH buffer.  Gradients consisted of 2 layers (15 mLs each) 18.5 % (w/v) 

and 14.5 % (w/v).  Nycodenz was weighed out and taken into the glove 

box in 50 mL tubes.   
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15. 1SH buffer was added to ~ 75 % required volume to make solutions and 

the solution was vortexed until all powder was dissolved.  The volume of 

1SH buffer was adjusted to the required amount.   

16. 15 mL of 18.5 % Nycodenz was poured into 38 mL Thick-Wall 

Polycarbonate Centrifuge Tubes (Beckman).  15 mL of 14.5 % Nycodenz 

was gently overlaid with long tip glass pipettes.  2 - 3 mL mitochondrial 

solution was added to the top of the gradient.   

17. Gradients were centrifuged for 50 - 60 minutes at 164,000 g (max RCF) in 

a Beckman L7 Ultracentrifuge.   

18. Glass pipettes were used to collect the mitochondria from the interface.  

Mitochondria were diluted with 2 - 3 fold 1SH buffer and centrifuged at 

10,000 g (average RCF) for 60 minutes. 

19. The supernatant was decanted and the mitochondrial pellet was 

resuspended in 1 - 2 mL 1SH buffer.  This solution is used for all further 

experiments.   

 

Determining Sample Purity and Integrity with Electron Microscopy 

The procedure is essentially as previously reported (139).  All steps were 

done anaerobically at 5 ºC.  A 0.1 - 0.5 mL solution of purified mitochondria was 

micro-centrifuged (Fisher Scientific) at 6,400 rpm for 5-10 min in an Eppendorf 

tube. The supernatant was decanted with glass pipettes and the pellet was 

resuspended in 1SH buffer containing 4.0 % (v/v) glutaraldehyde (Sigma).   The  
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Figure 2-4.  Electron micrographs.  Mitochondrial samples were prepared as 

described.  Electron micrographs of isolated mitochondria were essentially 

devoid of spheroplasts and membrane debris.    

 

 

 

400 nm 



57 
 

 

 

solution was allowed to incubate for 45 minutes.  The slurry was micro-

centrifuged for 5-10 minutes.  Once the pellet had formed, glass pipettes were 

used to remove the supernatant.   The pellet was rinsed twice with 1SH buffer.  

This was done by carefully resuspending the pellet in 1SH buffer and then 

micro-centrifuging the solution as above.  Although most of the supernatant was 

removed, enough solution was left to cover the pellet to prevent dehydration.  

Samples were left in the MBraun box until right before taking them (on ice) to the 

Electron Microscopy Center at Texas A&M University.   

Mitochondrial samples were routinely analyzed by Electron Microscopy to 

assess sample purity and membrane integrity.  Images (139) of early 

preparations showed large size variations in mitochondria and the presence of 

some contamination from membranes and unbroken spheroplasts.  As the 

protocol was optimized, the size distribution as well as the contamination of 

membranes, spheroplasts and other cellular components diminished somewhat 

(Figure 2-4).   

 

Respiration Assays 

The procedure was previously described (139) and was modified from 

(185). Prior to respiration assays, a portion of purified intact mitochondrial 

solutions were diluted to 5 mLs and sonicated on the Branson Sonifer 450 for 5-

10 minutes at 20 % capacity.  The protein concentration of these samples was 

determined by the Biuret method (193).  Once the protein concentrations were 
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determined the remaining intact mitochondrial solution could be used for 

respiration assays.   

A custom-built water-jacketed glass vessel was made to include a cap, 

which has a replaceable rubber septa for use in inserting specific reagents.  The 

vessel was kept at 298 K during the analysis.  25 mL of respiration buffer (2 mM 

MgCl2, 20mM phosphates pH 7.4, 250 mM sucrose and 10 mM KCl) was added 

to the vessel (185).  A Clark oxygen electrode (YSI Bioanalytical Products) was 

used to calibrate the system at 100 % oxygen.  The mitochondrial sample (with a 

total of 5 - 30 mg total mitochondrial protein) was injected and the system was 

allowed to incubate for a few minutes to establish a baseline.  Once the system 

reached equilibrium, 1.5 mM NADH was injected and uncoupled respiration 

monitored.  After several minutes 0.2 mM ADP was injected to the vessel 

separately to observed coupled respiration (194).   

 Once the oxygen readings stabilized (ideally near 0 %) the solution was 

discarded.  The file was imported into Microsoft Excel and the rates of both 

coupled and uncoupled respiration were determined by a best fit line.  The ratio 

was determined from these rates.  Mitochondria isolated from respiring cells 

consumed oxygen at 0.2 μmol per mg protein per minute compared to 0.05 μmol 

per mg protein per minute for mitochondria collected from fermenting cells.  This 

agrees with the reported values (139, 195-197).  Coupling ratios were ~ 2-6 for 

all samples.  These values are expected for samples with good membrane 

integrity and protein activity.   
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Determination of Packing Efficiency and Sample Pellet Composition 

In order to determine the Fe-ome of mitochondria, it is necessary to 

determine the concentrations of many Fe-containing species in our samples.  

Many previous studies have reported concentrations of Fe species and/or 

proteins.  However, most of these studies reported values in relative terms such 

as µM/mg protein.  This type of information is incomplete because it does not 

indicate absolute concentrations.  In order to determine these concentrations, 

we designed an experiment utilizing radio-labeled buffer (139, 189).   

In order to obtain a high S/N ratio and to have samples with high 

mitochondrial enrichment, it is necessary to centrifuge samples to obtain 

mitochondrial pellets for analyses.  However, it would be difficult to pack 

samples in a manner that allowed the exclusion of all buffer since the conditions 

that might allow the exclusion of all buffer would probably be damaging to 

mitochondrial membranes.  Therefore we chose a centrifugation force and time 

(10,000 x g for 1 hour) that by Electron Microscopy had proven gentle on our 

samples as membrane remained intact after repeated steps at these conditions.   

The volume of any packed sample must be comprised of the volume of 

purified mitochondria as well as any interstitial buffer.   This relationship can be 

represented by 

Vpellet = Vmito + Vbuffer   [1] 

where Vmito is the volume of mitochondria in the pellet and Vbuffer is the volume of 

any interstitial buffer.  Purified mitochondria were centrifuged at 10,000 x g for 1 
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Figure 2-5.  Inserts for sample packing and treatment.  A modified Lexan 

graduated cylinder insert was custom made for the SW32Ti Beckman 

Ultracentrifuge rotor.  Lines around the tube allowed determination of the 

solution volume.  B. Glass container could be sealed with rubber septa and 

flushed with oxygen for 20 - 30 minutes prior to incubation of mitochondria.  

Alternatively DDT could be added and brought into the MBraun box for dilution 

and treatment of mitochondria.  C. Lexan tube designed to hold Mössbauer cups.  

Cups had small holes drilled in the sides which could be threaded with fishing 

line to provide small handles.  Notches on opposite sides of the tube provided an 

area for the fishing line to fit.  D.  Teflon tubes designed to hold the 5 mm EPR 

tubes.  Modified EPR tubes were fit with an aluminum adapter prior to putting 

into the instrument.   
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Figure 2-5. Continued.  
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Table 2-2.  Determination of mitochondrial volume in packed samples.  Samples 

1-7 are of mitochondria grown on Na lactate media (respiring) while samples 8-

12 were grown on YPD (fermenting) media.   

 

 C*
stock 

(cpm/ml) 
Vstock 
(mL) 

C*
1 

(cpm/mL) 
Vsuper1 

(mL) 
Vbuffer1 
(mL) 

C*
2 

(cpm/mL) 
Vsuper2 
(mL) 

Vbuffer2 
(mL) 

Vpellet 
(mL) 

Ave 
% mito 
In Vpellet 

1 24000 1.00 21000 1.00 0.14 2100 0.98 0.11 0.71 83 

2 38000 1.00 36000 1.00 0.05 3200 0.98 0.10 0.40 82 

3 49000 1.00 45000 0.99 0.11 8200 1.00 0.22 0.82 80 

4 250000 1.00 240000 0.98 0.07 53000 1.00 0.28 0.52 66 

5 59000 1.00 51000 1.01 0.14 7900 0.99 0.18 0.63 74 

6 59000 1.00 45000 1.12 0.20 4100 0.99 0.10 0.92 84 

7 59000 1.50 48000 1.49 0.37 14800 0.97 0.44 1.4 71 

8 160000 0.6 860000 0.96 0.14 NA NA NA 0.82 83 

9 110000 0.5 110000 0.45 0.058 NA NA NA 0.61 90 

10 11000 0.4 10800 0.37 0.035 NA NA NA 0.41 91 

11 11000 0.5 8800 0.45 0.17 NA NA NA 0.52 78 

12 4400 0.5 4300 0.47 0.037 NA NA NA 0.41 91 
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hour in our special graduated cylinder inserts (Figure 2-5A) in the Beckman L7 

Ultracentrifuge to obtain an initial pellet.  The supernatant was removed with a 

glass pipette and residual buffer was removed from the walls of the inserts using 

paper towels.  The pellet was resuspended in 1SH buffer which had a small 

amount of 14C-labled sucrose (American Radiolabeled Chemicals, 625 mCi/mol)  

with counts per min (CPM) of radioactivity per mL given as C*stock in (Table 2-2).   

The purified mitochondria suspended in radiolabeled buffer were centrifuged as 

above.  The volume of the resulting pellet could be measured by obtaining the 

height of the pellet in the inserts.   

The supernatant was decanted and measured.  The amount of the 

radionucleotide in the supernatant is proportional to the counts per minute (CPM) 

detected by a Beckman 5000SL scintillation counter.  The radioactivity added to 

the mitochondrial pellet would then be diluted by the interstitial buffer  such that 

C*stock Vstock  = C*super1 (Vsuper1 + Vbuffer1)      [2] 

where C*super1 is the CPM/mL of the supernatant and Vstock is the volume of the 

initial radio-labeled buffer added.  C*super1 is the CPM/mL of the resulting 

supernatant, Vsuper1 is the volume of the supernatant measured and Vbuffer is the 

volume of the buffer that must remain in the sample.  One can solve this 

equation for Vbuffer.   

An additional measurement can be done by repeating a wash with cold 

(non-radioactive) buffer.  First, the sides of the vial were wiped with paper towel 

to ensure that no supernatant remained coated on the sides of the cylinder.  The 
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pellet was resuspended with a known volume of cold 1SH buffer.  The slurry was 

centrifuged as above.  The supernatant was decanted and the volume of the 

pellet measured.  The radiolabeled isotope remaining in interstitial buffer in the 

mitochondrial pellet would then be diluted with the added cold buffer.  

C*super1 Vbuffer2 = C*super2 (Vsuper2 + Vbuffer2)                       [3] 

where C*super1 is the CPM/mL of the interstitial buffer remaining from the last 

step, C*super2 is the CPM/mL of the new supernatant and Vsuper2 is the volume of 

cold buffer added.  This process of washing the packed samples with a known 

volume of buffer and obtaining the relative amount of CPM in the resulting 

supernatant was repeated with an additional step such that two independent 

dilution factors could be calculated for the same sample.   

Solving Equations 2 and 3 for Vbuffer will give allow an average Vbuffer 

(Table 2-2) which can then be used to determine the volume of mitochondria in 

the sample.  The Vmito can be used to determine the packing efficiency by 

comparing the volume of the total pellet to the volume of mitochondria such that 

Vmito / Vpellet x 100 = %          [4] 

Repeating this packing protocol (RCF and time) and using this packing 

efficiency will allow the concentration of observed signals and features in our 

samples to be calculated for neat mitochondria in every sample.  The packing 

constant for isolated mitochondria did not depend on carbon source.  

Mitochondria collected from cells grown on lactate media occupied 77 ± 7 % of a 

mitochondrial pellet while samples collected from cells grown on glucose media 
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occupy 85 ± 10 % of a mitochondrial pellet.  We did not view this as a significant 

difference and we averaged the values to get a packing constant of 0.82.  This 

value was used to correct calculated concentrations in samples to determine the 

absolute concentrations of metal and protein in neat mitochondria.  These 

results will be discussed further in Chapter III.  

 

Metal and Protein Analyses 

Metal and protein concentrations were determined essentially as 

described (139, 189).  Purified mitochondria were packed into EPR tubes for one 

hour at 10,000 x g.  The supernatant was decanted with a glass pipette.  The 

height of the resulting pellet was marked with for later volume determination.  

The sample was carefully transferred to a 15 mL centrifuge tube (Fisher) using a 

glass pipette in a manner that prevented the mitochondrial sample from traveling 

too far up the glass pipette and therefore adhering to the glass walls.  1SH buffer 

was added to the marked line in the EPR tube.  The glass pipette was used to 

resuspend any residual mitochondria from the EPR tube into the buffer.  This 

solution was removed and added to the first aliquot of mitochondria.  Since the 

added buffer occupied the same volume as the mitochondrial sample, the 

dilution factor is 2.  This combined with the packing constant can be used to 

determine absolute protein and metal concentrations.  

  The mitochondrial samples were either sonicated with a Branson Sonifer 

450 for 5 - 10 minutes at 20 % capacity or treated with 1 – 2 % (w/v) 
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deoxycholate (Acros Organics) to disrupt membranes prior to metal or protein 

analysis.  Failure to disrupt the membranes results in lower concentrations being 

determined.   

For metal analysis three aliquots of the mitochondrial solution (ranging 

from 25 to 75 µL) were distributed into three 15 mL Falcon tubes.  Each aliquot 

was treated with 100 µL of 15.8 M trace-metal-grade HNO3 (Fischer Scientific).  

Each tube was securely wrapped with electrical tape and vortexed to mix the 

sample and acid prior to incubating overnight at 90 – 95 °C.  The resulting 

solution was diluted with deionized and distilled H2O to a final HNO3 

concentration of 0.2 M.  Samples were run on an Inductively Coupled Plasma 

Mass Spectrophotometer  PerkinElmer DRCII and calibrated with standards 

Environmental Standards ranging from 1 - 250 ppb metal.   

Protein concentration was determined by the BCA (Pierce Scientific) 

method.  BSA (Pierce or Sigma) was used to generate a standard curve.  

Dilutions and solutions are carefully described by (198) which is included with 

each kit purchased from Pierce Scientific.  Measurements were made using the 

Hitachi U-3310 spectrometer with a head-on photomultiplier tube. 

 

Treatment of Samples with Redox Agents 

 Mitochondria have been treated with redox agents previously (139, 189).  

Purified mitochondria were collected in the “as-isolated” state (without the 

addition of any redox agents).  Samples prepared in the as-isolated state were 
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packed as described above without being reduced or oxidized.  For oxidized 

samples, 40 mL glass vials were capped with rubber septa and a gas line of 

pure oxygen was inserted, a second needle was placed in the septa to provide 

an outflow (Figure 2-5B).  The vial was flushed with oxygen for 20 - 30 minutes.  

The outlet needle was removed immediately prior to the inlet needle to preserve 

the high-oxygen concentration in the vial.  The rubber septum was secured to 

the vial electrical tape.  The entire vial was taken into the MBraun box.  

Mitochondrial pellets from the isolation protocol were resuspended in 0.5-1 mL 

1SH buffer and a Hamilton Gastight 16 gauge syringe was used to insert the 

samples into the vial.  Samples were incubated in oxygen for 30 - 40 minutes 

before being packed for analyses.   

For reducing samples, packed mitochondria from the last step of the 

isolation protocol were resuspended into a 0.5 - 1 mL of 1ST buffer (0.6 M 

sorbitol, 1 mM EGTA, 20mM Tris, pH 8.5).  Sodium dithionite (Fisher Scientific) 

was weighed out and anaerobically dissolved in 0.2 M NaOH.  Samples were 

treated with 1.0 mM dithionite (final concentration) for 30 - 40 minutes.  Reduced 

samples were packed at 10,000 x g for one hour and used for analysis.   

 

Electron Paramagnetic Resonance 

Sample preparation has been described by our lab previously (10, 14).  

Custom built Delrin inserts (Figure 2-5D) were made to fit centrifuge tubes for 

the SW-32Ti rotor for the Beckman L7 Ultracentrifuge.  Custom made EPR 
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tubes (Figure 2-5D) were from Wilmad Labglass.  Supracil tubes had 

dimensions 5.0 ± 0.05 mm OD, 3.2 ± 0.03 mm ID, 170 mm long.  Each tube was 

cut in half and the bottom was rounded on the new tube—providing two ca 80 

mm long tubes.   

Samples were kept anaerobic until after being frozen.  Purified 

mitochondria were pipetted into the Supracil EPR tubes which were placed in 

the inserts.  Tubes were centrifuged at 10,000 x g for one hour.  The 

supernatant was decanted.  If the mitochondrial pellet did not occupy at least 2.5 

cm height (or approximately 250 µL) more mitochondrial solution was added and 

the tube was centrifuged again.  Once enough mitochondria were packed and 

the supernatant was decanted, the tube was capped with a rubber septa, 

brought out of the box and frozen slowly from the bottom of the tube upwards in 

liquid N2.   

Spectra were collected on a Bruker EMX X-band EPR with an Oxford 

Instruments ESR 910 crytostat.  In order to collect spectra of samples, an 

adapter (Figure 2-5D) was necessary to extend the length of the modified tubes.  

The aluminum adapter has a length of approximately 200 mm and a thin gauge 

wire soldered to the bottom.  The wire extends approximately 30 mm and folds 

back on itself with several bends and twists.  Once inserted into the opening of 

the EPR tubes, these bends provide the force necessary to securely handle the 

sample for insertion and removal from the EPR.   
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Spectra were calibrated using a 1.0 mM Cu (II) EDTA standard run the 

same day as the samples.  Spectra were imported into SpinCount 

(http://www.chem.cmu.edu/groups/hendrich/facilities/index.html) and assigned a 

Cu standard.  Typical spectral features (which are discussed in detail in Chapter 

III) can be simulated with spectra (and the corresponding g values) of isolated 

species such as the organic radical, succinate dehydrogenase and the reiske 

protein.  Concentrations were calculated using g values reported in Chapter III 

and adjusted manually for the best fit.  Analysis of EPR spectra is discussed in 

greater detail in Chapter III.  

 

Mössbauer Spectroscopy 

 All steps were done anaerobically.  Custom made Lexan inserts (Figure 

2-5C) were made for the SW-32Ti ultracentrifuge rotor.  Mössbauer sample cups 

were made of Delrin and had dimensions shown in (Figure 2-5C).  Small holes 

were drilled into the cups such that fishing line could be threaded through the 

holes and function as a handle for the sample cup.  The cup was pushed to the 

bottom of the Lexan insert and the fishing line secured with tape to the outside of 

the insert.  5 - 8 mL of dilute purified mitochondria were packed into the 

apparatus at 10,000 x g for 1 - 2 hours.  The fishing line was used to remove the 

sample cup from the insert.  Any visible solution was decanted with a glass 

pipette.  An aluminum block with a cavity just wider and shorter than the sample 

cup was cooled in liquid N2 for ~ 30 minutes (usually during the late stages of 
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the centrifugation step).  It was brought into the MBraun box.  The sample cup 

was placed in the cavity until frozen before bringing the sample out of the box to 

store in liquid N2.   

 All Mössbauer spectra were collected at 4.5 or 100 K on either a MS4 

WRC spectrometer (SEE Co. Edina, MN) equipped with a CCR4K Closed Cycle 

He gas Refrigerator cryostat (Janis Instrument Co., Willmington, MA) or on a 

Super-Varitemp Dewar (Janis Instrument Co., Wilmington, Ma).  Data were 

analyzed using the WMOSS software package (See Co. Edina, MN).  All 

chemical shifts are reported relative to Fe metal (alpha Fe foil) at 298 K.  

Analysis of samples by Mössbauer spectroscopy is discussed in greater detail in 

Chapter III.  

 

Electronic Absorption Spectroscopy 

Samples were prepared essentially as described (189, 199).  All samples 

were prepared under anaerobic conditions.  Purified mitochondria were packed 

into EPR tubes for 1 hour at 10,000 x g as described above to obtain an 

accurate sample volume (by marking the height of the sample in the tube) and 

allowing the use of the packing constant.  Samples were then resuspended in 2 - 

3 fold volume buffer (also clearly marked on the EPR tube for accurate volume 

determination).  Samples were quantitatively transferred to 2 mm path-length 

custom-made UV-Vis quartz cuvettes (NS Precision Inc).  These cuvettes were 

adapted such that they could be sealed with rubber septa.  Once mitochondrial  



71 
 

 

 

400 450 500 550 600 650
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 ε 
(µ

M
-1
,c

m
-1
)

λ ( )

B

C

A

 

 
Figure 2-6.  Electron absorption of isolated heme-containing proteins.  Spectra 

are of A, cytochrome c oxidase (generously provided by Graham Palmer (200)); 

B, cytochrome b5  (human); C, cytochrome c (bovine).   



72 
 

 

 

solutions were added to the cuvettes, they were sealed and remained anaerobic 

for the duration of the measurements.  Spectra were collected on a Hitachi U-

3310 with a head-on photomultiplier tube. The resulting spectrum was 

decomposed assuming  

   Abs(λ) = [Heme a]εa(λ) + [Heme b]εb(λ) + [Heme c]εc(λ) + light scattering      [5] 

where [Heme x = a, b or c] is the concentration of each heme center and εx are 

the extinction coefficients.  In order to determine the concentration of each heme, 

spectra were multiplied by the samples dilution factor, corrected for the path-

length and divided by the packing constant.  The resulting spectra were then 

imported into OriginPro and fit with individual contributions from heme a, b and c.   

The spectra of cytochrome c oxidase (beef heart), human cytochrome b5, 

and yeast cytochrome c were used to represent a, b, and c type hemes in the 

spectral decomposition.  A spectrum of reduced cytochrome oxidase was 

obtained from (200).  The spectral intensity was divided by two to account for the 

two heme centers (heme a and heme a3).  Purified cytochrome b5 and 

cytochrome c were purchased from Sigma.  Each protein was dissolved in buffer, 

reduced with 1 mM dithionite and measured.  Absorption intensities were divided 

by the concentration of the protein solution such that the extinction coefficient 

could be plotted vs. the wavelength (Figure 2-6).  These individual protein 

curves were corrected so that the extinction coefficients were in µM-1 cm-1.  The 

resulting spectra were used to determine the relative contributions of each heme 
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center to the mitochondrial samples.  Contributions were fitted manually, 

affording the composite spectrum shown in Chapter III.   

 

Enrichment of Samples by Growth on 57Fe 

Preparation of samples for Mössbauer spectroscopy included addition of 

40 μM 57Fe to growth media.  Samples were grown on either rich (YP*) or 

minimal media.  Rich media contains approximately 40 μM Fe naturally.  

Therefore, rich media that was supplemented with 57Fe contained ~ 50 % 57Fe.  

Minimal media only has approximately 10 μM Fe naturally so the supplemented 

media contained ~ 80 % 57Fe.  The enrichment of our samples could also be 

determined during ICP-MS analysis.  Since the concentrations of both 56Fe and 

57Fe were determined (Table 2-3).   Mitochondria grown on minimal media 

contained 40 ± 10 % 57Fe (for respiring samples) or 81 ± 10 % 57Fe (for 

fermenting samples).  The enrichment dropped to 20 ± 4 % and 30 ± 5 % 

respectively when samples were grown on rich media.  Interestingly there is not 

a direct relation between the percent 57Fe in the media and the actual 

enrichment of our samples.  However growth in minimal media did at least 

double the enrichment in our samples.  This discovery led us to prepare most 

later (after the discovery of this fact) batches on minimal media.  Analysis of our 

samples by Mössbauer is only sensitive to the 57Fe concentration, therefore for 

the purposes of analysis, we assume that the distribution of 56Fe and 57Fe are 

identical.  
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Table 2-3.  Enrichment of 57Fe in typical samples. All samples were grown in media 

supplemented with 40 µM 57Fe.  Media was either minimal (M) or rich (YP).  Rich media 

naturally contains approximately 40 µM Fe while minimal media has only ~ 10 µM Fe.  

Therefore the enrichment of the media was 50 % and 80 % (final concentration) 

respectively.  The cultures were grown on either glycerol (R) or glucose (F).  

Concentrations of mitochondrial solutions (*) are reported where dilution factors were 

not calculated.  All other concentrations were calculated for neat mitochondria.  

Estimated uncertainties are ± 20 % in every measurement. 

Media Carbon 56Fe (µM) 57Fe (µM) enrichment 
M R 250 350 58 
M R 440 200 31 
M R 410 210 33 
M R 560 230 29 
M R 430 310 42 
M R 400 300 43 
M R 340 290 46 
M F 120 200 62* 
M F 190 820 81 
M F 26 250 90* 
M F 45 180 80* 
M F 180 600 77 
M F 19 480 96 
M F 110 550 83 
M F 260 1000 80 
YP R 520 150 22 
YP R 960 200 17 
YP R 110 18 14* 
YP F 490 240 32 
YP F 570 180 24 
YP F 620 290 31 
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CHAPTER III 

THE Fe-OME OF MITOCHONDRIA ISOLATED FROM RESPIRING AND 

FERMENTING Saccharomyces cerevisiae‡ 

Introduction 

 Yeast cells can undergo two distinct modes of metabolism:  respiration 

and fermentation.  Fermentation is the process by which ethanol and carbon 

dioxide are produced from pyruvate.  Cells grown on fermenting carbon sources 

are smaller and tend to have shorter cell cycles than when grown on respiring 

carbon sources (8, 22, 201).  A small amount of energy is gained in this process 

as glycolysis produces 2 ATP molecules per glucose consumed (22).  

Fermentation is an anaerobic pathway since molecular oxygen is not required 

for glycolysis (202-205).  Glycolysis occurs in the cytosol and therefore this type 

of metabolism does not utilize mitochondria or other cellular organelles (22, 205).   

 Unlike fermentation, respiration involves mitochondria extensively as 

most of the reactions of this metabolic pathway occur along the mitochondrial 

inner membrane and within the matrix.  During respiration sugars are broken 

down or converted to intermediates of glycolysis or the citric acid cycle.  By 

feeding into the citric acid cycle, the cell can utilize oxidative phosphorylation to 

produce more ATP per carbon. Thus, although respiration is slower, it is more 

efficient energetically (203).   
                                                 
‡Reprinted with permission from “Characterization of the iron in mitochondria isolated from 
respiring and fermenting yeast.” by Morales, JG.; Holmes-Hampton, GP.; Miao, R.; Guo, Y.; 
Münck, E.; and PA Lindahl.  Proceedings of the National Academy of Science. Submitted 2010.  
Proceedings of the National Academy of Sciences. 
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 For yeast, glucose is a fermenting sugar because it actually represses the 

expression of genes involved in respiration (202, 206-209).  However, if the cell 

culture is allowed to grow in the presence of glucose for a long duration, and 

enough glucose is consumed to alleviate the repression, both types of 

metabolism may occur simultaneously (205, 210-211). In addition, some carbon 

sources, such as galactose can be used for both respiration and fermentation 

and exhibit a mixture or intermediate type of metabolism (206, 208, 212).  As 

cells shift their metabolism from fermentation to respiration, they are said to 

undergo a diauxic shift (190).   

Related metabolic shifts occur in human metabolism.  Human cells 

primarily produce energy through oxidative phosphorylation due to the efficiency 

of this process (213).  A shift in metabolism occurs during different levels of 

exertion.  Cells initially use cellular stores of ATP for energy.  During anaerobic 

exercise this ATP is regenerated through glycolysis (213).  This generally can 

only last for short durations.  During aerobic exercise, cells have sufficient 

oxygen for the breakdown of sugar and fat for production of energy through 

oxidative phosphorylation (214).   

A metabolic shift is also noted in oncology.  Cancerous cells produce ATP 

via glycolysis followed by lactic acid fermentation (213, 215-216).  Both of these 

processes occur in the cytosol even if oxygen is readily available (217).  Healthy 

cells prefer pyruvate oxidation in mitochondria to lactic acid fermentation due to 

the higher efficiency of energy production.  This fundamental change that occurs 
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in the metabolism of cancerous cells is known as the Warburg effect (213, 217).  

Because they are growing and dividing faster than normal, cancer cells have a 

low-oxygen environment, which favors glycolysis (213).  Additionally 

mitochondria may be damaged in oncology, which would favor cytosolic 

pathways (213, 217).  In order to gain insight to metabolic trends within our own 

cells, it is necessary to use model organisms where phenotypic and genotypic 

traits can be manipulated. 

Respiring cells exhibit higher expression of proteins involved in oxidative 

phosphorylation and Fe metabolism than when grown on fermenting carbon 

sources (29, 205-206, 218-219).  Derisi et al. (29) used microarrays to 

demonstrate how glucose concentrations in the media affect the expression of 

proteins.  Media glucose concentrations above 2 % repress the expression of 

respiratory complexes, including cytochrome bc1 and cytochrome c oxidase.  In 

contrast, many genes of unknown function are repressed as glucose 

concentrations decline (29).  Gao et al. (206) found that 176 proteins were up-

regulated during cellular growth on glucose while cellular growth on galactose 

up-regulated 231 proteins.  Glucose-induced proteins were highly varied in 

function and included roles in membrane growth, protein degradation, amino 

acid biosynthesis and glucose metabolism (206).  Galactose-induced genes 

were involved in galactose metabolism, protein synthesis, Fe metabolism and 

oxidative phosphorylation (206).  The response of gene expression to changes 

in carbon source correlates to the metabolic needs of the cells. Respiring cells 
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utilize mitochondria and different metabolic pathways than fermenting cells, and 

it follows that expression of these pathways are activated by growth on respiring 

carbon sources (30, 205, 220). 

As mentioned in Chapter II, mitochondria occupy a larger volume of the 

cell when grown on respiring carbon sources.  Fermenting cells are known to 

produce fewer mitochondria.  Furthermore, cells early in the exponential growth 

phase are largely devoid of mitochondria, while in later stages of fermentation, 

the organelle occupies 3 - 4 % of cell volume (221-223).  Under respiration, 

mitochondria represent 10 – 12 % of cell volume (26). Also, the morphology of 

mitochondria in fermenting cells differs from that in respiring cells. Using fast 

high-resolution 3D microcopy of live cells, Egner et al. (224) found that 

mitochondria from both fermenting and respiring cells consist of a single large 

branched tubular network, but that fermenting mitochondria are thinner and 

possess fewer branch points. 

This variation in cell volume occupied by mitochondria may seem partially 

intuitive since mitochondrial functions are utilized more during respiration.  

However, even cells not actively utilizing mitochondria may need to maintain 

some basal expression of mitochondrial respiratory proteins during fermentative 

growth in case they undergo a diauxic shift (22, 29, 205).  The lack of 

involvement of mitochondria during fermentation raises the issue of what these 

organelles do during this growth mode.  
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In this study, we employed our integrative biophysical approach to assess 

the iron-ome of mitochondria isolated from yeast grown under fermenting, 

respirofermenting and respiring conditions.  We report that respiration-related 

Fe-containing proteins and other [Fe4S4]2+ cluster containing proteins dominate 

the iron-ome of mitochondria isolated from respiring and respirofermenting cells.  

Under fermenting conditions, the concentrations of these species decline while 

those of nonheme high-spin (NHHS) Fe2+ ions, mononuclear HS Fe3+ ions and 

Fe3+ nanoparticles increase. These NHHS Fe2+ ions may be feedstock for Fe/S 

cluster and heme biosynthesis.  

 

Iron-ome of Respiring Mitochondria 

Mitochondria were isolated from respiring yeast cells.  The metal 

concentration of isolated respiring mitochondria was determined by ICP-MS 

(Table 3-1, Table 3-2).  Mössbauer, EPR, and UV-Vis spectra of the same or 

equivalently prepared samples were obtained.  The low-field Mössbauer 

spectrum of a respiring mitochondria sample (Figures 3-1 and 3-2) was 

dominated by the central doublet which extends between - 1 and + 1 mm/s 

Doppler velocities (percentages given in Table 3-1).  This doublet has 

parameters ((isomer shift δ, quadrupole splitting ∆EQ, and line width Γ) typical of 

S = 0 [Fe4S4]2+ clusters and low-spin Fe2+ hemes; these two groups cannot be 

distinguished by Mössbauer spectroscopy.  A minor contribution (< 10 %) of S = 

0 [Fe2S2]2+ and S = 2 [Fe3S4]0 clusters to the central spectral region could not be 
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Table 3-1.  Analytical properties of isolated mitochondria.  Concentrations are for “neat” mitochondria 

(devoid of solvent) rather than mitochondrial suspensions or packed mitochondrial samples.  

Experimentally determined protein and metal concentrations of mitochondrial suspensions were multiplied 

by the dilution factor ( ) /mito buffer mitoV V V+  and dividing by 0.8 (packing efficiency, as measured 

previously (139, 189).  Values listed are the average of individual determinations (Table 3-2).  Relative 

uncertainties are standard deviations from batch-to-batch.  There are additional uncertainties related to 

fitting (which we estimate to be 20 %).  The number of samples evaluated is given in parentheses.  Heme a, 

b, and c concentrations were determined by analysis of electronic absorption spectra.  The percentages of 

Fe present as HS Fe3+ were determined solely from high-field Mössbauer spectra. 

 Respiring Respirofermenting Fermenting 
Protein (mg/mL) 170 ± 61 (5) 200 ± 60 (2) 110 ± 30 (11) 

Fe (µM) 720 ± 210 (5) 840 ± 120 (2) 770 ± 320 (11) 
Cu (µM) 210 ± 170 (5) 160 ± 80 (2) 50 ± 37 (11) 
Mn (µM) 35 ± 20 (5) 12 ± 4 (2) 15 ± 12 (11) 
Zn (µM) 290 ± 160 (5) 230 ± 150 (2) 290 ± 210 (11) 

Central Doublet 60 ± 2 % (2) 50 % (1) 25 ± 4 % (5) 
HS Fe2+ heme 7 ± 1 % (2) 4 % (1) 4 ± 1 % (5) 

NHHS Fe2+ ions 2 ± 1 % (2) 3 % (1) 20 ± 5 % (5) 
Mononuclear HS Fe3+ 0 % (2) 5 % (1) 15 ± 3 % (3) 

S = ½ [Fe2S2]1+ 13 ± 2 % (2) 10 % (1) ~ 0 % (5) 
[Fe2S2]2+ < 5 % (2) < 5 % (1) ~ 0 % (5) 

Fe3+ nanoparticles < 5 % (2) < 5 % (1) 33 ± 7 % (5) 
Central  un-resolved material 20 % 25 % 5 % (5) 

Heme a (µM) 51 ± 8 (4) 61 (1) 14 ± 1 (4) 
Heme b (µM) 52 ± 8 (4) 55 (1) 27 ± 5 (4) 
Heme c (µM) 120 ± 10 (4) 160 (1) 73 ± 15 (4) 

gave = 1.94 (µM) 1 – 10 (3) 13 ± 4 (2) 1 - 3 (2) 
gave = 1.90 (µM) 13 ± 3 (3) 29 ± 18 (2) 6 ± 2 (2) 
g = 2.01 (µM) 0 – 1 (3) 1 - 2 (2) 0 (2) 
g = 2.00 (µM) 0 – 2 (3) 0 – 6 (2) 0 – 1 (2) 
g = 2.04 (µM) 1 – 3 (3) 3 ± 1 (2) 1 - 2 (2) 
g = 4.3 (µM) 5 – 45 (3) 2 – 14 (2) 3 (1) 
g = 5.8 (µM) 1 - 2 (3) 0 - 2 (2) ~ 0 (1) 

g = 6.4, 5.3(µM) 1 - 4 (3) 0 - 5 (2) 1 (1) 
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Table 3-2.  Protein and metal concentrations in isolated mitochondria. 

Mitochondria isolated from cells grown on glycerol, galactose, and glucose are 

designated R# (respiring), RF# (respiring/fermenting) and F# (fermenting), 

respectively. Samples F1 – F4 were from cells grown on YPD media while F5 – 

F11 were from cells grown on minimal media.  Estimated uncertainties are ± 

20 %. 

 

  

Preparation Protein (mg/mL) Fe (µM) Mn (µM) Cu (µM) Zn (µM) 
R1 200 750 23 360 420 
R2  180 600 46 63 320 
R3  110 600 30 59 180 
R4 120 670 42 110 82 
R5  80 320 6.1 270 200 

RF1 200 770 13 80 270 
RF2 120 690 8 170 100 
F1 74 640 30 36 540 
F2 64 520 12 95 580 
F3 86 650 11 92 220 
F4 80 530 27 58 190 
F5 120 850 7.2 46 180 
F6 96 280 2.5 14 75 
F7 74 620 6.3 28 220 
F8 120 500 4.8 25 140 
F9 99 560 3.9 22 140 

F10 120 1300 1.6 41 280 
F11 89 470 22 4.5 89 

WCF1 55 440 16 34 570 
WCF2 57 600 13 24 550 
WCF3 55 430 9 22 540 
WCR1 75 340 38 48 1300 
WCR2 70 260 37 31 1100 
WCR3 98 340 30 40 970 
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Figure 3-1.  Mössbauer spectra of mitochondria isolated from respiring cells.  A, 4.5 K, 0.05 T parallel 

applied magnetic field. The solid red line is a simulation using the parameters listed in Table 3-1 for the 

central doublet (60 % of the Fe), HS Fe2+ hemes (7 % of the Fe), nonheme HS Fe2+ (2 % of the Fe), and S 

= ½ [Fe2S2]1+ clusters (14 % of Fe). B, same as A after subtracting the central doublet and HS Fe2+ heme 

contributions. The solid blue line is a simulation for S = ½ [Fe2S2]1+ clusters, while the solid blue line is a 

composite simulation including this feature as well as that for HS Fe2+ hemes and nonheme HS Fe2+. Most 

of the absorption that remains is the central unresolved material. C, same as A except at 100 K. D, same as 

A except with 8 T applied field. The red line is a simulation including 60 % of the central doublet and 14 % 

of S = ½ [Fe2S2]1+ clusters. 
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Figure 3-2. Mössbauer spectra of an additional respiring mitochondrial batch.  

Spectra were collected at 4.5 K, 0.04 T parallel field (A);  100 K 0.04 T parallel 

field (B); and (C) 4.2 K 8 T applied field.  Fermenting samples reported in Table 

3-1 but not displayed are shown in (225).   
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 excluded but neither is there unequivocal evidence for such clusters in respiring 

mitochondria.  Simulations that included ~ 5 % of total Fe in the form exhibited 

by S = 0 [Fe2S2]2+ clusters improved low-field fits but not high-field fits.  

Respiring mitochondria also exhibited a quadrupole doublet with 

parameters typical of high-spin Fe2+ heme centers (226).  The high-energy line 

of this heme doublet is at 2.2 mm/s while the low-energy line is buried within the 

central doublet (Figures 2-1 and 3-1).  Although difficult to distinguish from the 

baseline, the 4.5 K low-field spectrum had absorption due to magnetic Fe.  This 

absorption is most clearly observed by subtracting the contributions of the 

central doublet and the HS heme doublet from the original spectrum.  The solid 

red line overlaying the resulting spectrum (Figure 3-1B) simulates the 

contribution of a generic S = ½ [Fe2S2]1+ cluster (we chose the parameters of the 

Reiske Fe/S protein (227)).  Other paramagnetic centers (e.g. from [Fe4S4]1+ 

clusters) might also contribute to this absorption but the spectral resolution is 

insufficient to distinguish the contributions of individual species.  Rather, EPR 

spectroscopy was used to do this (see below).  The Mössbauer simulation is 

useful, however, in revealing that much of the absorption at the velocity of the 

high-energy line of the nonheme HS Fe2+ doublet that is evident in fermenting 

mitochondria (see below) is actually due to magnetic Fe simulated here as S = 

½ [Fe2S2]1+ cluster.  Only ~ 2 % of spectral intensity in the spectrum of respiring 

mitochondria appears to arise from nonheme high-spin (NHHS) Fe2+ ions.  
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After simulating all of these spectral features, and subtracting them from 

the data, some unresolved and absorption remains in the center of the spectrum 

(Figure 3-1). This so-called central unresolved material remains unassigned, but 

its apparent isomer shift suggests a magnetically interacting Fe3+ species.      

Mitochondrial suspensions are turbid, leading to electronic absorption 

spectra with strong sloping baselines due to light scattering (Figures 3-3 and 3-

4).  Superimposed on this are Soret bands in the 400 nm region and α and β 

bands in the 500 – 620 nm region arising from both HS and LS Fe2+ hemes.  

UV-Vis spectra of respiring mitochondria were simulated by adding spectra of 

individual heme a, b and c containing proteins (Figure 3-3A dashed line).  

Resulting concentrations for each center (Table 3-1 and Table 3-3) reveal the 

dominance of heme c, followed by heme b and heme a in roughly equal 

amounts.  The HS portion of these Fe2+ heme centers afforded the heme 

quadrupole doublet mentioned above, while the LS portion contributed to the 

central doublet.  Most heme a groups observed by UV-Vis are found in 

cytochrome c oxidase; the portion observed reflects reduced Fe2+ states of the a 

and a3 sites.   

EPR spectra of respiring mitochondria revealed additional details 

regarding the magnetic Fe observed by Mössbauer.  The low-field spectrum 

(Figure 3-5D) was dominated by signals at g = 6.4, 5.9, and 5.3.  These signals 

are assigned to the partially oxidized heme [a3:Cub] center of cytochrome c 

oxidase (64), in which the a3 heme is Fe3+ and the Cub site is Cu1+.  The signal  
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Figure 3-3.  Electronic absorption spectra of mitochondria in buffer suspension.  A, respiring (R1); B, 

respirofermenting (RF2); C, fermenting (F3). Effective absorbances of neat mitochondria normalized to a 10 

mm path-length cuvette are plotted. These values were obtained by multiplying raw absorbance by 2 (the 

dilution factor relative to packed mitochondria) and by 5 (path-length factor due to the use of a 2 mm path-

length cuvette) and dividing by 0.82 (the packing factor). Dashed lines are composites of spectra from 

individual heme a, b, and c containing proteins, using parameters given in Table 3-3 (average values are 

given in Table 3-1).   
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Figure 3-4.  Electronic absorption spectra of different batches of respiring 

mitochondria. A, batch R3 (protein concentration, 45 mg/mL); B, R4 (44 mg/mL); 

and C, R2 (74 mg/mL). Dotted lines are composite spectra using the [Heme a], 

[Heme b], and [Heme c] concentrations given in Table 3-3.    
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Table 3-3.  Concentrations of individual heme components determined for 

mitochondrial samples.  Values are in µM and are for neat mitochondria. 

Estimated uncertainties are ± 20 % for each entry.  

 

Sample [Heme a] [Heme b] [Heme c] 

R1 45 43 110 

R2 55 44 130 

R3 60 60 130 

R4 44 44 120 

F1 15 30 85 

F2 15 33 85 

F3 13 22 61 

F4 12 23 61 
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at g = 6 has axial symmetry while that at g = 6.3 and 5.4 has rhombic symmetry; 

spin concentrations are given in Table 3-1. 

The g = 2 region of the EPR spectrum of as-isolated respiring 

mitochondria (Figures 3-5A and 3-6) was dominated by signals with gave = 1.94, 

gave = 1.90 and a nearly isotropic signal with gave = 2.01 (perhaps combined with 

another signal at g = 2.00).  The dashed spectrum in Figure 3-5A is the sum of 

simulations of these signals, assuming the spin concentrations listed in Table 3-

1.  The similarity of the observed g-values to signals of isolated mitochondrial 

proteins suggests that the gave = 1.94 and 1.90 signals arise, respectively, from 

the [Fe2S2]1+ clusters in succinate dehydrogenase (44-45) and the Reiske 

protein of cytochrome bc1 (51).  The gave = 2.01 signal is typical of S = ½ 

[Fe3S4]1+ clusters, arising perhaps from the oxidized inactivated form of 

aconitase or homoaconitase, or from the [Fe3S4]1+ cluster in succinate 

dehydrogenase.  The overlapping signal at g = 2.00 is probably an organic-

based radical.  A signal with gave = 2.04 may be due to the electron transfer 

flavoprotein-ubiquinone oxidoreductase (ETF-QO) (228).  Minor features with 

resonances between g = 2.2 – 2.1 are reproducibly observed but remain 

unassigned.  The species affording these EPR signals should collectively 

correspond to some or all of the ~ 13 % of the Fe of respiring mitochondria 

associated with magnetic Mössbauer features (Figure 3-1B).  To evaluate this, 

we summed the spin concentrations for the g = 2 region signals, weighted by the 

number of irons that are likely to be associated with each species, and then 
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Figure 3-5.  EPR spectra of mitochondria isolated from respiring (A), 

respirofermenting (B), and fermenting (C) cells.  Spectra are of batches R2, RF1 

and F11 respectively.  Spectra A and C were collected at 10 K and 0.05 mW, 

spectrum B was collected at 10K and 0.2 mW.  Dashed lines are simulations 

assuming parameters given in Table 3-1. Lowfield spectra of respiring (D), 

respirofermenting (E) and fermenting (F) mitochondria are also shown.  Spectra 

were collected at 10K and 20 mW.   
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Figure 3-5. Continued.  
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Figure 3-6.  10 K EPR spectra of batches not shown in Figure 3-5 but used in 

the construction of Table 3-1. Spectra A, B, C and D are of samples R5, R1, 

RF2 and F11, respectively. Spectra A, B and D were collected at 0.05 mW 

microwave power while spectrum C was collected at 0.2 mW. For ease of 

viewing, spectra A and C were multiplied by 1.5 while D was multiplied by 15.   



93 
 

 

 

divided by the concentration of Fe in the sample.  This calculation indicated that 

EPR-active species should account for ~ 7 % of mitochondrial Fe, about half of 

that observed by Mössbauer to be magnetic.  The uncertainties associated with 

both estimates are large; EPR spin intensities are difficult to determine 

accurately, and distinguishing the small amount of magnetic Fe from baseline in 

these weak Mössbauer spectra is difficult.   

These results are generally similar to those reported in a preliminary 

study of mitochondria isolated from yeast grown on glucose/lactate media (139).  

However, there are some differences that we describe in the Discussion section 

of Chapter IV.   

 

 Iron-ome of Respirofermenting Mitochondria 

Protein and metal concentrations of mitochondria isolated from cells 

grown under respirofermenting conditions (Table 3-1) were similar to those of 

respiring mitochondria, except that the Mn concentration was 2-fold lower.   

Mössbauer spectra (Figure 3-7) were also similar.  Simulations of individual 

components are indicated above the spectrum.  Compared to respiring 

mitochondria, the proportion of Fe present as the central doublet, HS Fe2+ 

hemes, and magnetic Fe in respirofermenting mitochondria declined slightly, 

while the percentages due to NHHS Fe2+ ions and the central unresolved 

material increased slightly.   The presence of this latter species is most evident 

from the mis-match of the spectrum and simulation (Figure 3-7A) which does   
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Figure 3-7.  Mössbauer spectra of respirofermenting mitochondria.  A, the spectrum measured at 4.5 K, 

0.05 T parallel applied magnetic field. The red line is a simulation using parameters and percentages listed 

in Table 1 for the central doublet, HS Fe2+ hemes, nonheme HS Fe2+, and S = ½ [Fe2S2]1+ clusters. The 

lines above the spectrum are the simulations for S = ½ [Fe2S2]1+ clusters, the nonheme HS  Fe2+ and the 

HS  Fe2+ hemes. B, same as A except at 100 K. C, same as A except with 8 T applied field. The blackline is 

a simulation including 50 % of the central doublet and 10 % of  S = ½ [Fe2S2]1+ clusters. The blue line 

above is a simulation for HS mononuclear Fe3+ species assuming 5 % of the total Fe. 
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not include this species at ~ 0 mm/s Doppler velocity.   The high-field spectrum 

(Figure 3-7B) revealed the presence of mononuclear HS Fe3+ ions (simulated by 

the blue line).   The red line in Figure 3-4B is a simulation of the diamagnetic Fe 

associated with the central doublet at low-field.    

The UV-Vis spectrum of respirofermenting mitochondria (Figure 3-3B) 

revealed heme a, b and c concentrations (Table 3-1) that were similar to those 

obtained for respiring mitochondria.   EPR spectra (Figure 3-5B and 3-5E and 

Figure 3-6) exhibited the same group of signals that were observed in respiring 

mitochondria.   Spin concentrations (Table 3-1) were significantly higher for the 

gave = 1.94 and 1.90 signals, while that for the gave = 2.04 and 2.01 signals were 

similar to that observed with respiring mitochondria.   The observed collective 

spin concentrations for g = 2 region signals correspond to ~ 17 % magnetic Fe, 

somewhat greater than the ~ 10 % magnetic Fe observed by Mössbauer 

spectroscopy.   We suspect that this discrepancy is due to uncertainties in EPR 

spin quantification and/or in identifying the baseline in the Mössbauer spectrum.     

 

Iron-ome of Fermenting Mitochondria 

Protein and Fe concentrations for fermenting mitochondria (Table 3-1) 

were again similar to those obtained for respiring and respirofermenting 

mitochondria; the protein concentration might be reduced somewhat, but the 

variability among batches was too high to correlate these changes to metabolic 

mode.   The Mn concentration was similar to that of respirofermenting 
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mitochondria and substantially lower than in respiring mitochondria.   The Cu 

concentration of fermenting mitochondria was nearly 4-fold lower relative to that 

in respiring or respirofermenting mitochondria.     

Mössbauer spectra of fermenting mitochondria (Figures 3-8, 3-9 and 

Table 3-1) differed substantially from those of respiring or respirofermenting 

mitochondria in that there was a substantial decline in the intensity of the central 

doublet and the heme doublet, and an increase in the proportion of NHHS Fe2+ 

ions.   We included EGTA in all isolations to remove any adventitiously bound Fe.  

Despite these efforts, the nonheme, non-Fe2+(EGTA) HS Fe2+ doublet was 

observed in all of the ~ 30 independently-prepared batches of EGTA-washed 

fermenting  mitochondria that we have examined.  

The blue line in Figure 3-9A is a simulation assuming isomer shift, 

quadrupole splitting and effective line width parameters of δ ≈ 1.25 mm/s, ΔEQ ≈ 

3.35 mm/s, and Γ = - 0.65 mm/s, respectively (in WMOSS, a negative line width 

indicates a Voigt profile with a Lorentzian of 0.15 mm/s full width convoluted into 

a Gaussian with Γ = 0.65 mm/s). These values are typical of mononuclear 

{Fe2+(O)m(N)n} complexes for which 5 < (m + n) < 6 and m ≥ 4 (229). HS Fe2+ 

hemes have distinctly different parameters (δ ranging from 0.92 - 0.95 mm/s and 

ΔEQ ranging from 2.02 to 2.20 mm/sec (230-231)). The low-energy absorption 

line of the NHHS Fe2+ doublet is hidden within the central doublet (see below)  

while the high-energy line, which contains half of the doublet’s intensity, is 

generally resolved. In Figure 3-9A, the spectral area of the doublet represents 
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Figure 3-8.  Mössbauer spectra of fermenting mitochondria (F9).  A, 4.5 K, 0.05 T parallel applied magnetic 

field. The red line is a simulation of the central doublet (25 % of the Fe), HS Fe2+ hemes (5 % of the Fe), 

nonheme HS Fe2+ (16 % of the Fe), and the ferric nanoparticles (20 % of the Fe). B, same as A except at 

100 K. The red line is a simulation including the central doublet (25 % of the Fe), HS Fe2+ hemes (5% of the 

Fe), nonheme HS Fe2+ (16 % of the Fe), and Fe3+ nanoparticles (30 % of the Fe) at essentially the 

percentages given in Table 3-1. C, same as A except with 8 T applied field. The red line is a simulation for 

HS mononuclear Fe3+ species assuming 20 % of total Fe. 
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Figure 3-9.  Mössbauer spectra of EGTA-washed fermenting mitochondria.  (Sample F12) recorded at 4.5 

K and 0.05 T (A), 100 K and 0.05 T (B), and 4.2 K and 8 T (C). Solid lines simulate the contributions of 

NHHS Fe2+ species (blue line in A, ∼20 % of total Fe), the central doublet (red line in A and blue line in C, ∼ 

20%), Fe3+ nanoparticles (red line in B, ∼ 40%), and mononuclear HS Fe3+ species (red line in C, ~ 20 %). 

Shown offset above B is the experimental spectrum of Fe2+(EGTA) (black hash marks). The black arrows in 

Figures 1-3 point to the high energy absorption line of the NHHS Fe2+ species. 
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20 % of the Fe in the sample, corresponding to ~ 150 µM Fe2+. The large width 

of the absorption lines suggests the presence of multiple species. This 

experiment shows that the NHHS Fe2+ ions in our sample are protected from 

EGTA chelation despite extensive washing of mitochondria with EGTA-

containing buffers. 

Mössbauer spectra of fermenting mitochondria also contain the central 

doublet representing ~ 20 % of the total Fe in the sample with δ ~ 0.45 mm/s 

and ΔEQ ~ 1.15 mm/s. In strong applied fields the spectra of these species can 

readily be simulated (Figure 3-9C, blue line) because the effective field at the 

nucleus arises solely from the applied field. In contrast, HS Fe2+ ions exhibit 

paramagnetic hyperfine structure spread over a wide velocity range, making it 

difficult to characterize such species in our 8.0 T spectra. 

EGTA-washed fermenting mitochondria also exhibited spectral features 

from magnetically isolated high-spin (S = 5/2) mononuclear Fe3+ species with E/D 

~ 1/3; D and E are the zero-field splitting and rhombicity parameters, respectively.  

In weak applied fields (0.05 T here), magnetically isolated Fe3+ yield intricate 

Mössbauer patterns exhibiting paramagnetic hyperfine structure. With the low 

57Fe concentrations in these samples, such features cannot be analyzed well or 

even distinguished from baseline (which distorts the quantification of other 

species). Fortunately in 8 T applied fields, the outmost features of HS Fe3+ 

components are well resolved (Figure 3-9C), allowing simulation (red line) and 
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an accurate estimate of concentration (here 20 % of spectral intensity, 

corresponding to ~ 150 µM 57Fe).  

In 0.05 T applied fields, and at 4.5 K (Figure 3-9A) and 100 K (Figure 3-

9B), EGTA-washed fermenting mitochondria also yielded a quadrupole doublet 

with ΔEQ ≈ 0.63 mm/s and δ ≈ 0.52 mm/s; in Figure 3-9B, the red line is a 

simulation using these parameters. Similar doublets were present in spectra of 

mitochondria isolated from Yfh1p-, Yah1p-, and Atm1p-depleted cells (142, 148, 

232); they arise from Fe3+ phosphate nanoparticles exhibiting 

superparamagnetism.  

In strong applied fields, these nanoparticles yield broad unresolved 

features (see Figure 2D of (232)). Quantification is most accurate at 

temperatures well above the so-called blocking temperature, TB; for T >> TB, 

spectra consist of a quadrupole doublet (in the present samples, TB < 4.2 K). 

The 100 K spectrum (Figure 3-9B) shows that ~ 40 % of the Fe of the sample 

belongs to Fe3+ nanoparticles.  

 In summary, the Fe in EGTA-washed fermenting WT mitochondria is 

distributed into four main groups. Approximately 20 % of the Fe is NHHS Fe2+, ~ 

20 % is a combination of [Fe4S4]2+ and LS Fe2+ hemes (e. g. cytochrome c), ~ 

40 % Fe3+ resides in nanoparticles, and ~ 20 % is non-interacting mononuclear 

high-spin Fe3+. These organelles also contain small amounts of other Fe-

containing species (29). All of these Fe-containing species were present despite 
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extensive exposure of the mitochondria to a strong Fe2+ chelator, suggesting 

that they are located within the organelle and protected from chelation.  

 The UV-Vis spectrum of fermenting mitochondria (Figures 3-4C, Figure 3-

10 and Table 3-1) exhibited lower quantified intensities of heme centers.   The 

concentrations of heme b and c were ~ half of those in respiring and 

respirofermenting mitochondria, and the heme a contribution was diminished 

substantially.   This is consistent with the observed decline in intensity of the 

high-spin heme doublet in Mössbauer spectra of fermenting mitochondria.   The 

EPR spectra of fermenting mitochondria (Figures 3-5C, 3-5F and 3-6) were 

qualitatively similar to those of respiring and respirofermenting mitochondria, but 

again spin concentrations were reduced (Table 3-1).   The intensity of the g = 6 

features, assigned to the partially oxidized a3 site of cytochrome c oxidase, was 

also diminished.   Summing the spin concentrations of the signals in the g = 2 

region suggests that ~ 3 % of Mössbauer spectral intensity should be magnetic, 

which is within the uncertainty of that observed by Mössbauer.    

 

Discussion 

The major objective of this study was to characterize the iron-ome of 

mitochondria isolated from respiring, respirofermenting, and fermenting yeast 

cells using a biophysical approach.  We can now integrate the results from the 

various techniques with the known composition of some proteins in mitochondria,  
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Figure 3-10.  Electron absorption of fermenting mitochondria. A, F4 (33 mg/mL); 

B, F1 (30 mg/mL) and C, F2 (27 mg/mL). Dotted lines are composite spectra 

using the concentrations given in Table  3-2. 
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beginning with the respiring state.  Our data allow an estimate of the 

concentration of cytochrome c oxidase in the organelle.  There are few other 

heme a containing proteins in mitochondria, such that the heme a concentration 

essentially reflects twice the cytochrome c oxidase concentration in the 

organelle.  Mitochondrial heme monoxygenase (Cox15p) may have sub-

stoichiometric amounts of heme a bound (97), but we will assume that this 

amount is insignificant.  The total Fe2+ heme a concentration in respiring 

mitochondria (Table 3-1) suggests a cytochrome c oxidase concentration of ~ 25 

µM.  The absence of EPR signals at g ~ 3 indicates the lack of LS Fe3+ hemes in 

as-isolated respiring mitochondria.  EPR spectra did exhibit two signals from HS 

Fe3+ hemes (probably from the partially oxidized {Fe(III)a3:Cub(I)} state of 

cytochrome c oxidase), and so the collective concentration of these signals were 

added to the UV-Vis-based estimate.  This affords a cytochrome c oxidase 

concentration of ~ 30 µM in “neat” mitochondria (see Table 3-2 for a complete 

compilation).   

Since cytochrome c oxidase contains 3 molar equivalents of Cu, ~ 90 µM 

Cu out of 210 µM total Cu in respiring mitochondria should be contained in this 

enzyme.  The remainder might be present as the Cu pool as suggested by 

Winge and coworkers (134), although the percentage of Cu that we calculate for 

this pool (~ 60 %) is less than they determined (~ 90 %).  The absence of Cu2+ 

EPR signals in our preparations is consistent with their proposal of a Cu1+ 

oxidation state for this pool.   
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The HS Fe2+ heme doublet in Mössbauer spectra of respiring 

mitochondria should include contributions from heme a3 and HS heme b 

containing proteins (we are unaware of any HS heme c – containing proteins).  

After subtracting the heme a3 contribution, the concentration of HS heme b 

species in respiring mitochondria is calculated to be ~ 20 µM.  We are aware of 

three HS heme b proteins, including Ccp1p, Cta1p and Yhb1p.  Subtracting the 

HS heme b concentration from the total heme b concentration suggests that the 

concentration of LS heme b species in mitochondria is ~ 30 µM.  The LS heme b 

proteins in the mitochondria include succinate dehydrogenase (Sdh), 

cytochrome bc1 (2 heme b), Cox15p, and Cyb2p, and perhaps others.   This can 

be described by the relationship  

 

30µM = [succinate dehydrogenase] +2[cytochrome bc1] + [Cox15p] +  

 [Cyb2p] + … [6] 

 

The gave = 1.94 and 1.90 EPR spin concentrations suggest succinate 

dehydrogenase and cytochrome bc1 concentrations of ~ 5 µM and ~ 10 µM 

respectively, which implies, by this relationship, that most of the LS heme b 

centers in mitochondria arise from these two respiratory complexes.   

The known heme c containing proteins in mitochondria include two 

isoforms of cytochrome c and cytochrome c1.  Taking ~ 10 µM for the 

cytochrome bc1 concentration suggests ~ 110 µM concentration for both 
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cytochrome c isoforms.  Thus, the heme a and c contents of respiring 

mitochondria are dominated by cytochrome c oxidase and cytochrome c, 

respectively.  The heme b content is rather evenly distributed between HS and 

LS, with LS forms dominated by succinate dehydrogenase and cytochrome bc1.   

Quoted concentrations were calculated with respect to the entire 

mitochondrial volume.  Since species are located in particular regions of the 

mitochondria, their regional concentrations will be higher, sometimes 

dramatically so.  For example, cytochrome c oxidase is located in the inner 

membrane (61), which occupies only 20 %  of the total mitochondrial volume 

(233).  This suggests a regional concentration of ~ 150 μM!  All other 

concentrations reported here are with respect to overall mitochondrial volumes, 

but this effect of compartmentalization on concentration could become important 

in future studies.    

Succinate dehydrogenase contains 10 molar equivalents of Fe (1 heme b, 

1 [Fe2S2] cluster, 1 [Fe3S4] cluster and 1 [Fe4S4] cluster), so a concentration of ~ 

5 µM for this respiratory complex implies a ~ 50 µM Fe contribution overall.  

Similarly, cytochrome bc1 contains 5 molar equivalents of Fe (1 heme c1, 2 

heme b, and 1 [Fe2S2] cluster), also implying a ~ 50 µM overall Fe contribution.  

Including a 60 µM Fe contribution for cytochrome c oxidase and 110 µM for 

cytochrome c reveals that respiration-related complexes constitute ~ 40 % of the 

iron-ome in respiring yeast mitochondria.   
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The central doublet of the Mössbauer spectra of respiring mitochondria 

includes contributions from [Fe4S4]2+ clusters and LS Fe2+ heme centers.  Table 

3-1 and the relationships mentioned above suggest ~ 30 µM (LS heme a) + ~ 30 

µM (LS heme b) + ~ 120 µM (LS heme c) = 180 µM LS Fe2+ hemes.  Subtracting 

this from the central doublet leaves ~ 35 % of mitochondrial Fe as S = 0 

[Fe4S4]2+ clusters.  This corresponds to ~ 250 µM Fe and ~ 60 µM of cluster.  

Subtracting an additional 5 µM contribution due to the succinate dehydrogenase 

[Fe4S4]2+ cluster leaves ~ 55 µM for such clusters in other mitochondria proteins.  

Some mitochondrial proteins contain only [Fe4S4] clusters (e.g.  Aco1p, Lys4p, 

Ilv3p) while others contain both [Fe4S4] clusters and [Fe2S2] clusters (e.g.  Bio2p 

and Lip5p).  We have attempted to fit simulations of S = 0 [Fe2S2]2+ clusters into 

the Mössbauer spectra of respiring mitochondria but we have no unambiguous 

evidence for their presence.  We conclude that < 5 % of the Fe is in this form.  

This suggests that the majority of the non-succinate dehydrogenase-containing 

[Fe4S4]2+ clusters in respiring mitochondria arise from proteins that contain only 

[Fe4S4]2+ clusters (i.e.  55 µM ≈ [Aco1p] + [Lys4p] + [Ilv3p] + ...).    

Respirofermenting and fermenting mitochondria were analyzed similarly; 

results are shown in Tables 3-1 and 3-4.  In general, the total Fe concentration 

in mitochondria was similar regardless of metabolic mode.  Also, the overall 

distribution of Fe in respirofermenting mitochondria was similar to that in 

respiring mitochondria.  In contrast, the Fe distribution in fermenting 

mitochondria was significantly different.  This suggests that the repression of 
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respiration by glucose, rather than the occurrence of fermentation per se, is 

responsible for the major shifts observed in the iron distribution.  Thus, we will 

simplify our analysis by averaging the Fe distributions observed for respiring and 

respirofermenting mitochondria, and then comparing the averaged distribution to 

that obtained under fermentation.   

Viewed in the respiration  fermentation direction, cytochrome c oxidase 

↓ (declined) 4×, succinate dehydrogenase ↓ 3.8×, cytochrome bc1 ↓ 2.5×, and 

cytochrome c ↓ 2×.  LS hemes generally ↓ 2× and [Fe4S4]2+ containing proteins 

↓ 3.5×.  On average, these species declined ~ 3-fold.   The Cu(1) pool 

decreased ↓ 3×.  The decline in the size of the Cu1+ pool contrasts with a 

previous report (134) that the concentration of this pool was independent of the 

metabolic growth mode.  In terms of Fe pools, the nonheme HS Fe2+ pool, the 

mononuclear HS Fe3+ pool and the Fe3+ nanoparticles went from nearly 

undetectable in respiring mitochondria to representing nearly 70 % of the Fe in 

the fermenting organelle.   These are dramatic changes that reflect major 

differences in the way that Fe is handled in the organelle depending on 

metabolic mode.   

These results can be compared to proteomic studies that also indicate a 

substantial shift in the yeast mitochondria proteome due to the diauxic shift (161).  

Ohlmeier et al.  (219) found that the concentration of 17 proteins were 

significantly lower in fermenting vs.  respiring cells.  Most of these were involved 

in respiration or the TCA cycle, including the Fe-containing enzymes cytochrome  
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Table 3-4.  Concentrations of dominating Fe and Cu containing species in yeast 

mitochondria.  Concentrations are reported in µM and are for neat mitochondria. 

 Respiring Respirofermenting Fermenting 

Cytochrome c oxidase 30 35 8 

Succinate dehydrogenase 5 10 2 

Cytochrome bc1 10 20 6 

Cytochrome c 100 140 60 

Other HS heme b  

(Ccp1, Cta1, Yhb1…) 
20 minor minor 

LS hemes combined 
180 

(30a +30b + 120c) 

230 

(35a + 55b +140c) 

100 

(7a + 12b + 83c) 

[Fe4S4]2+ only 

( Aco1p, Lys4p, Ilv3…) 
55 36 13 

{[Fe4S4]2+ + [Fe2S2]+} 

(Bio2, Lip5…) 
minor minor minor 

[Fe2S2]2+ only (Yah1…) minor minor minor 

Cu(I) Pool 120 60 30 
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c oxidase (Cox4p, ↓ 3.7×), cytochrome bc1 (Qcr7p, ↓1.3×), lactate 

dehydrogenase (Cyb2p, ↓ 68.6×) and succinate dehydrogenase (Sdh1p, ↓ 7.0×, 

Sdh2p, ↓ 9.8×, Sdh4p, ↓ 4.6×).  Dihydroxyacid dehydratase (Ilv3p, ↑ 2.3×), the 

sole Fe-containing protein mentioned whose concentration increased under 

fermenting conditions, is involved in amino acid biosynthesis.   

The mitochondrial transcriptome changes more dramatically with growth 

mode (29).  When glucose repression is relieved (such that respiration is 

allowed), the Cyc1 (cytochrome c, isoform 1) transcript ↑ 6× (34).  Mn-

superoxide dismutase (MnSod2p) activity and the mRNA level for this protein 

also increased so as to bolster the cell’s defenses against formation of reactive 

oxygen species during respiration (234).  Consistent with this, we observed a 3-

fold increase in the Mn concentration of respiring mitochondria relative to 

respirofermenting and fermenting conditions.  MnSod2p is the major Mn-

containing protein in yeast mitochondria, suggesting that the increased Mn 

concentration might reflect an increased level of MnSod2p.  However, we have 

not observed an EPR signal from this protein, suggesting that most of the Mn in 

our samples arises from other species.  In some batches of mitochondria, we 

have observed aqueous Mn2+ EPR signals, but the intensity of these signals is 

not apparently correlated to Mn concentration.   

The observed changes in Fe distribution are highly complex, but they can 

be interpreted simply given the known roles of mitochondria in respiring vs. 

fermenting cells.  In respiring cells, these organelles are critical for energy (ATP) 
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production, which requires the biosynthesis of Fe/S clusters and heme centers, 

as well as their installation into apo-respiratory complexes.  Under fermentation 

conditions, energy production is associated with glycolysis, where no such 

centers are involved.  Thus, the production of Fe/S clusters and heme centers is 

probably reduced in fermenting mitochondria because the metabolic need for 

these centers is reduced.  Our results suggest a 3-fold reduction in production of 

these centers.  However, the presence of these centers at reduced levels might 

allow fermenting cells to be poised to convert rapidly into respiration mode.  If no 

respiratory complexes were present under fermenting condition, the cell might 

not be able to change metabolism abruptly with a change of environmental 

conditions (e.g.  in the absence of glucose).   

The Fe feedstock for mitochondrial Fe/S cluster and heme biosynthesis is 

imported into the organelle as Fe2+ complexes.  Neither the structure nor 

composition of the imported complex(es) are known but they are probably of low 

molecular weight as they must pass through protein transporters (Mrs3p and 

Mrs4p) in the inner membrane (127, 235).   We propose that the nonheme HS 

Fe2+ ions present in fermenting mitochondria are these imported ions and that 

they serve in this capacity.  The model of Figure 3-11 assumes this role and can 

rationalize the observed changes in the level of this pool.  During respiration, the 

size of the Fe2+ pool is small since the biosynthesis rates of Fe/S clusters and 

hemes are elevated.  During fermentation, the pool increases because the rate 

of Fe/S cluster and heme biosynthesis is reduced.  Consistent with the nearly 
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invariant Fe concentrations in respiring and fermenting mitochondria, the overall 

rate of Fe2+ import appears to be unaffected by changes in metabolic growth 

mode; i.e. the cell does not regulate the rate of Fe2+ import into mitochondria 

according to metabolic growth mode.  The Fe2+ import rate is thought to be 

controlled by the transcriptional regulator Aft2p (236).  We find this lack of 

regulation intriguing but somewhat non-intuitive, given how precisely other 

aspects of cellular function are regulated.   

Whether the other pools of Fe in fermenting mitochondria, including Fe3+ 

nanoparticles, mononuclear HS Fe3+ ions, and perhaps the central unresolved 

material, are related to the NHHS Fe2+ pool remains uncertain.  These pools 

may exist in a dynamic equilibrium with each other, which implies that they are 

imported by the same IM transporter(s).  Alternatively, these pools may be 

independent of the Fe2+ pool and of each other, and imported by different IM 

transporters.  Also uncertain is the cellular function of these other pools.  They 

certainly appear to store Fe in fermenting mitochondria that can be used when 

the cell respires.  However, whether this can be construed as a cellular strategy 

for storing Fe in mitochondria (analogous to mitoferrin in human mitochondria 

(237) or more like a “malfunction” resulting from the lack of a coordinating ligand, 

or a shift of pH or oxidation status in fermenting mitochondria is unknown.  We 

favor the latter possibility, as we suspect that the Fe2+ ions composing these 

pools are not protein bound and thus not under the direct genetic control of the 

cell.  Nevertheless, they may impact cellular function, e.g. by generating reactive 
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oxygen species during their formation.  Further studies are required to evaluate 

these possibilities.   
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Figure 3-11.  Model describing the shift in iron-ome with metabolic growth mode. 

Under respiration conditions, the size of the nonheme HS Fe2+ pool is small 

because the rate of Fe/S cluster and heme biosynthesis is elevated. When cells 

ferment, the rate of Fe/S cluster and heme biosynthesis declines, leading to an 

increase in the size of the Fe2+ pool. The rate of Fe2+ import from the cytosol is 

not significantly affected by the change in metabolism. A portion of the pool Fe2+ 

ions may become oxidized and a subset of these mononuclear HS Fe3+ ions 

may precipitate as Fe3+ nanoparticles (not shown).   
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CHAPTER IV 

FURTHER BIOPHYSICAL CHARACTERIZATION OF MITOCHONDRIA:  

DISCOVERY OF A Mn EPR SIGNAL AND THE EFFECT OF REDOX 

TREATMENT 

 

Introduction 

 This chapter includes results that provide some insight into the iron and 

manganese metabolism in cells and mitochondria, but have not been organized 

into a publication.  These aspects are included here to suggest future studies.  

Early mitochondrial samples were prepared using isolation protocols established 

by other labs (139, 191-192).   As discussed in Chapter II, we have made 

several modifications to those procedures.  These modifications were made over 

the course of several years as experimental results implicated necessary 

changes.  Some of the experiments included in this chapter used procedures at 

intermittent stages of refinement.   

 

The Presence of a Mn2+ EPR Signal 

Mitochondria were isolated under anaerobic conditions and packed for 

EPR analysis.  The g = 2 region of EPR spectra of isolated mitochondria is 

sometimes (but not always) dominated by a signal (Figure 4-1) with a six-line 

hyperfine pattern (magnetic hyperfine coupling constant, a = 90 G) typical of an I 

= 5/2 Mn2+ species with E/D  
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Figure 4-1.  An EPR feature due to Mn2+ sometimes dominates spectra of 

mitochondria. Mitochondria were isolated from cells grown on glucose.  

Spectrum was collected at microwave power 0.2 mW, 10 K, microwave 

frequency 9.44 GHz, and modulation amplitude 10 G.   
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~  0.  Spin concentrations determined ~ 20 µM Mn2+ contributed to this feature.  

Spin concentrations of ~ 5 μM Mn cannot be reliably detected by our instrument 

(139).  A feature at g = 1.94 (most likely due to succinate dehydrogenase) is 

also evident but is obscured by overlap with the Mn2+ signal (139).  It is unclear 

whether the Mn is adventitiously bound, whether it is inside a contaminating 

organelle or whether it is inside the mitochondria.   

In order to remove any adventitiously bound Mn2+ (as well other metals), 

mitochondria were isolated in the presence of 1 mM EGTA.  Addition of a 

chelator to isolation buffers resulted in the removal of the Mn signal from ~ half 

of our preps.  It is unclear why the Mn signal appears or does not appear in all 

preps and we wanted to explore what factors might be contributing to this 

variability.   

 

Correlation Between EPR and Mn Concentrations 

Since the Mn signal is not always removed by the addition of a chelator, 

perhaps its presence correlates to variations in our samples.  For example, the 

Mn EPR feature would not be detected in mitochondrial samples with Mn 

concentrations below the detection limit (< 10 µM) of the EPR.  Additionally it 

was unclear whether all mitochondrial Mn contributes to the EPR feature.   It 

would be beneficial to know the proportion of mitochondrial Mn in the EPR active 

state.   
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Mitochondria were isolated and packed for analysis essentially as 

described in Chapter II.  Since the [Mn] of neat mitochondria depends on 

metabolism, samples were collected from cells grown on either glycerol or 

glucose.  ICP-MS analysis reveals that the Mn EPR feature does not correlate to 

deviations in mitochondrial Mn concentrations (Table 4-1).  Neat mitochondria 

collected from cells grown on glycerol contain 35 ± 20 µM Mn.  The fermenting 

mitochondria in Table 4-1 have 25 ± 15 µM Mn.  The average [Mn] in fermenting 

samples reported in Table 4-1 is slightly higher than reported in Chapter III, but 

these samples were isolated from cells grown on rich media which has been 

shown to contribute to higher mitochondrial metal concentrations (134).  

Interestingly, mitochondrial Mn concentrations show less variation than the 

intensity of the Mn signal.   

Of the 23 samples included in Table 4-1, 9 exhibited the Mn EPR feature.  

Spin concentrations of the feature ranged from 0 to 30 µM.  Samples not 

exhibiting the feature are assumed to have 0 µM Mn contributing to the signal.  

When the feature was present, spin concentrations ranged from 15 to 30 µM.  

Interestingly spin concentrations do not depend on the carbon source used for 

cell growth (Table 4-1).  Detected signals from mitochondrial samples collected 

from cells grown on either glycerol or glucose have spin concentrations of ~ 25 ± 

4 µM.   
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Table 4-1.  Comparison of samples isolated for Mn EPR studies.  Each row indicates an individual prep.  

Samples were grown on glycerol or glucose.  Samples were grown on either rich (YP) or minimal (min) 

media.  Respiring samples were often grown on minimal media enhanced with 5 % rich media.  Rich and 

minimal media contain approximately 40 µM and 10 µM Fe respectively.  The final concentration of Fe (the 

Fe the media contains plus any supplementary Fe) in the media during growth is reported.  Spectra of 

samples exhibiting the Mn EPR signal were integrated to determine spin concentrations of Mn contributing 

to the feature.  Spin concentrations of the Mn EPR signal may be overestimated since spectral integration 

will include concentrations of any other signals hidden by the Mn feature. 

Carbon 
Source 

Media 
Type 

Oxygen 
(SCFH) 

Media 
Fe (µM) 

Final 

Mn Signal 
(µM) 

Mito 
Mn (µM) 

Glucose YP 0.4 - 0.6  40 - 35 
Glucose YP 2 - 3 40 - 11 
Glucose YP 2 – 3 40 15 16 
Glucose YP 4 - 5 40 26 27 
Glucose YP 8 – 12 40 - 11 
Glucose YP 0.4 - 0.6 80 19 31 
Glucose YP 2 - 3 80 30 34 
Glucose YP 4 - 5 80 22 17 
Glucose YP 8 – 12 80 26 41 
Glucose YP 4 – 5 250 - 7.5 
Glucose YP 4 – 5 1000 - - 
Glucose YP 2 – 3 40 - - 
Glucose Min 2 – 3 40 - 16 
Glucose YP 2 – 3 80 - - 
Glucose YP 2 – 3 80 - - 
Glycerol 5 % YP 2 – 3 40 24 30 
Glycerol 5 % YP 2 – 3 40 - 23 
Glycerol 5 % YP 2 – 3 80 - 6.1 
Glycerol 5 % YP 2 – 3 80 30 42 
Glycerol 5 % YP 2 - 3 80 - - 
Glycerol 5 % YP 2 - 3 80 22 46 

Gal 5 % YP 2 – 3 80 - 13 
Gal 5 % YP 2 - 3 80 - 8 
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Since the mitochondrial Mn concentrations were invariant regardless of 

whether the EPR feature was detected, it must be the proportion of EPR active 

Mn that is changing.  The proportion of Mn contributing to the EPR feature 

ranges from 0 – 100 %.  In respiring samples exhibiting the Mn EPR signal, the 

percentage of mitochondrial Mn contributing to the feature was 72 ± 10 %.  

Fermenting samples with a detectable feature have 91 ± 22 % mitochondrial Mn 

contributing to the feature.   

The proportion of samples exhibiting the Mn EPR feature did not depend 

on carbon source.  The Mn EPR signal was detected in 3 of the 6 samples 

isolated from respiring cells.  It was also detected in 6 of the 15 fermenting 

samples.  Furthermore, the spin concentrations of the Mn signal did not depend 

on metabolic mode.  Although the proportion of mitochondrial Mn contributing to 

the feature may be slightly higher in fermenting samples, this cannot be said 

with certainty due to the large errors associated with determining spin 

concentrations.  Therefore, it appears the Mn feature does not correlate to 

changes in metabolism.   

The presence of the Mn EPR feature does not correlate to changes in 

mitochondrial Mn concentrations.  Table 4-1 lists 14 samples that do not show 

the Mn EPR feature. All of these samples had sufficiently high mitochondrial Mn 

to have potentially contributed to a detectable Mn EPR signal.  The fact that no 

signal is detected suggests that Mn is either in the EPR-silent Mn3+ state or that 

the Mn2+ ions are spin-coupled.  Furthermore, since mitochondrial Mn 
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concentrations are stable regardless of whether a Mn EPR signal is detected, 

the same concentration of Mn is always present in samples but only sometimes 

in the EPR active state.  This raises the question what causes the changes in 

mitochondrial Mn to allow the Mn EPR feature to be detected in some samples?  

This question drove us to develop several more experiments to further examine 

mitochondrial Mn.   

 

Response of Mn EPR to Redox Treatment 

We wanted to determine whether the species giving rise to the Mn signal 

was redox active.  Mitochondria were isolated as described in Chapter II.  Prior 

to packing, the sample was split into three aliquots.  One was packed into an 

EPR tube in the as-isolated state (without treatment with a redox agent).  One 

was treated with 100 % molecular oxygen for 30 minutes.  The third aliquot was 

treated with 1 mM dithionite (pH 8.5) for 30 minutes prior to packing samples.  

Since we could not predict when we would detect the Mn EPR signal (and since 

we were also interested in the redox activity of Fe in our samples) this treatment 

was done routinely.  Five of the samples in Table 4-1 exhibiting the Mn signal  

had been prepared for redox studies.   

If the Mn feature was detected in one aliquot of a mitochondrial sample, it 

was present in aliquots representing all three redox states (Figure 4-2).  

Oxidized samples had large g = 2.01 signals (1 – 5 μM Fe) that overlap the Mn 

signal (Figure 4-2).   
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Spin concentrations for the signal did not depend on redox treatment.  

The spin concentrations for Figure 4-2 were 26 µM (as-isolated), 23 µM 

(oxidized) and 25 µM (reduced).  For all samples treated with redox agents the 

spin concentration of the Mn signal remained constant (which we define as 

varying by less than 15 %) within the individual prep’s aliquots.  Therefore if the 

as-isolated sample exhibited a Mn feature with a spin concentration of 30 µM, 

the oxidized and reduced aliquots of the same sample would be within 15 % of 

30 µM.  This indicates that the Mn2+ EPR species is not responsive to treatment 

with redox agents.  Therefore the Mn2+ is probably not redox active or it is redox 

active but is buffered in some way.   

 

Correlation of Mn EPR and Media Oxygen 

The sporadic appearance of the Mn EPR signal causes us to examine the 

effect of several variables in our growth and isolation protocol.  One of these 

variables was the gas used during cell growth.  Pure oxygen (and not air) is 

typically bubbled through the bioreactor during cell growth.  Oxygen is used to 

compensate for the low surface to volume ratio of our bioreactor.  Since the Mn 

EPR signal is due to Mn2+, perhaps the oxygen flow rate during cell growth could  

explain the appearance of the Mn feature.  Oxygen could also explain the 

occasional appearance of the g = 4.3 signal (Fe3+) that accompanies the Mn 

feature.   Additionally, samples with oxygen bubbling at over 30 SCFH have 

been reported to sometimes exhibit the Mn signal (139). 
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Figure 4-2.  Redox treatment did not affect Mn signal.  Spectra were collected at 30 db and 10 K.  Samples 

were collected from cells grown in YPD media.  Spectra were of a single prep.  Isolated mitochondria were 

split into three aliquots, packed and frozen after (A) no treatment, (B) exposure to pure O2 (C) treatment 

with 1 mM dithionite.  Due to the presence of a large g = 2 signal (due to an organic radical) in the oxidized 

spectrum, the intensity of spectrum B was divided by 3 to graph all spectra on the same axis.  Spin 

concentrations for the Mn EPR signal differed by 5-10 % for Spectra A-C.   
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In order to determine whether the rate of oxygen bubbled through media 

during cell growth correlated to the appearance of the Mn EPR feature, oxygen 

flow rates were varied from batch to batch (Table 4-1, Figure 4-3).  Mitochondria 

were isolated from cells grown on rich media containing glucose.  Typical preps 

were grown using 2 SCFH (standard cubic feet per hour).  Flow rates ranging 

from 0.5 to 10 SCFH were investigated.   Since we sometimes add 40 µM 57Fe 

to media for preparation of Mössbauer samples, oxygen flow rates were varied 

in the presence and absence of supplemental Fe.   

Figure 4-3 show the results of preps grown without Fe added to the media 

and oxygen flow rates of 0.5, 2, 5, and 10 SCFH.  Samples that were grown 

without additional Fe added to media exhibited the Mn EPR feature in two preps.  

One of these was grown using an oxygen flow rate of 5 SCFH.  The other prep 

exhibiting the feature was one of the two preps prepared using an oxygen flow 

rate of 2 SCFH.  Interestingly the Mn feature was not detected using the high 10 

SCFH flow rate.  Since the Mn signal could not be detected in either samples 

grown in the presence of the high or the low oxygen flow rates, there appears to 

be no correlation between oxygen in the media and the appearance of the Mn 

EPR signal.   

Samples prepared with supplemental media Fe had a slightly different 

result (Table 4-1).  For these samples, the Mn feature was present in the 

samples grown with 0.5, 5, and 10 SCFH (Table 4-1).  The Mn EPR signal was 

also found in one of the three preps grown using 2 SCFH oxygen.  The  
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Figure 4-3.  Media oxygen and Mn EPR.  Samples were prepared under equivalent conditions except that 

the rate of O2 bubbling through the media during cell growth was varied.  Spectra were collected at 30 db 

and 10 K.   Mitochondria were collected from cells grown with oxygen bubbled at a rate of (A) 0.5, (B-C) 2, 

(D) 5 and (E) 10 SCFH.   
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fact that the Mn feature was detected at both low and high oxygen flow rates 

confirms that there is no correlation between media oxygen and the Mn EPR 

feature.  However, the presence of the Mn feature in more of the samples 

prepared in the presence of supplemental Fe raised the question of whether the 

Mn EPR feature was related to media Fe concentrations.   

 

Effect of Isolating Samples at Different OD600 

Yeast go through several stages of growth—each with specific 

characteristics.  Once an innoculum is added to media there is a lag phase 

(OD600 0.02 - 0.10)—where yeast grow slowly.  This is followed by an 

exponential growth phase (OD600 0.1 - 2.0) (8, 190). During this phase, cells 

grow and divide at established rates.  This is the ideal phase to collect cells for 

mitochondrial isolation because cell walls are easily disrupted and mitochondrial 

yields are higher (190, 192).  The last stage of growth is the stationary phase 

(OD600 >2.0).  Cells grow very slowly and store nutrients for use during divisions 

(190, 192).  In order to optimize the yield of cells and mitochondria, most 

protocols call for cells to be collected during the last part of the exponential 

phase—right before they enter stationary growth.  When we first began this 

project, we collected cells in a broad range of OD600 (1-2).  Perhaps cells from 

some of our preps began to enter stationary phase earlier than anticipated.  

Perhaps the Mn signal intensity could be correlated to the OD at harvest.   
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The optical density (OD600) for cell collection was altered to determine 

whether there was a correlation between OD600 and the Mn signal.  Mitochondria 

were isolated in the same way except for the OD600.  Mitochondria were isolated 

from cells at an OD600 much higher (> 3) and much lower (~ 0.5) than our 

established protocol (1.0 – 1.2).  The Mn signal was not seen in either the high 

OD or the low OD prep (Table 4-1).  It seems unlikely that the cell density 

correlates to the appearance of the Mn EPR signal.   

 

Correlation Between Media Fe and Mn EPR 

 Results from several of the above experiments indicated a potential 

relationship between mitochondrial Fe and Mn.  The Mn EPR feature is often 

accompanied by a large g = 4.3 signal typical of a nonheme Fe3+ with an E/D = 

0.27 – 0.33 (Figure 4-4).  This feature was removed from some preps by 

treatment with a chelator.  Other samples (including some discussed in Chapter 

III) isolated in the presence of a chelator still exhibit the g = 4.3 with spin 

concentrations above 40 µM (Figure 4-5 and Table 3-1).  This suggests that the 

Fe contributing to this feature is protected from chelation and is most likely 

inside the mitochondria.  However, it is unclear why this feature is only present 

in some of our samples.  Another indication for a relationship between 

mitochondrial Fe and Mn is seen in the experiment where cells were grown in 

media with different flow rates of oxygen.  In this experiment, the Mn feature was 

present in two of the five samples grown without supplementing Fe in the media.  
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Figure 4-4.  Mitochondria isolated with a chelator often exhibit a Mn2+ and a g = 

4.3 EPR signals.  Two individual preps where mitochondria were isolated from 

fermenting cells in the presence of a chelator.  Spectra were collected at 

microwave power 0.2 mW, microwave frequency 9.45 GHz, 10 K and 

modulation amplitude 10 G.   
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Figure 4-5.  The Mn EPR signal did not depend on media Fe concentrations.  Spectra were collected at 

microwave frequency 0.2 mW, microwave frequency 9.44 GHz and 10K.  Cells were grown in the presence 

of (A) 1.0 mM, (B) 0.25 mM, (C) 40 µM and (D-G) 0 added 57Fe.  Rich media already contains 

approximately 35 µM Fe which means total Fe concentrations were higher by this amount.   
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In contrast, 4 of the six preparations in which 40 µM Fe was added to the media 

exhibited the signal.  It appeared there may be a correlation between high media 

concentrations and the presence of the Mn EPR signal.  Furthermore, studies by 

other labs suggest that supplementing media with metals such as Fe or Cu 

affect the mitochondrial concentrations of those components (134). However, 

results (Chapter III) by our lab have not been able to confirm that adding 

supplemental Fe to media during cell growth affects the mitochondrial [Fe].  

However, we had not investigated whether adding supplemental Fe could result 

in the appearance of the Mn EPR feature.  

In order to test whether media [Fe] and the Mn feature were connected, 

we grew cells on media with different concentrations of [Fe].  The total media [Fe] 

depends on both the initial [Fe] in the media as well as any added supplements.  

There are two types of media used in our lab:  minimal and rich.  Rich media has 

approximately ~ 35 µM Fe naturally while minimal media contains only ~ 10 µM 

Fe.  Therefore the addition of 40 μM Fe to rich growth medium results in the final 

concentration of ~ 80 µM.  The resulting EPR spectra of isolated mitochondria 

were then collected and analyzed. 

We analyzed the effect of media Fe concentrations for cells grown in rich 

glucose media.  Samples were grown with equivalent conditions (oxygen flow 

rate, media supplements, OD600 for cell collection, etc.) except that the Fe added 

to the media was varied.  Cells were grown in the presence of 40 µM, 80 µM, 

250 µM, or 1.0 mM media Fe (final concentration).  The Mn signal was present 
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in 2 of the 8 samples prepared from cells grown in 40 µM Fe.  It was also 

present in 6 of the 8 samples isolated from cells grown in 80 µM Fe.  However 

no Mn EPR signal was depicted in samples collected from cells grown in media 

containing 250 µM or 1.0 mM.  Thus, there does not appear to be a correlation 

between media [Fe] and the Mn EPR signal.   

In summary, we have been unable to establish the factor responsible for 

the Mn EPR signal.  We tested multiple parameters of cell growth and 

mitochondrial isolation to determine what factor might contribute to the 

appearance of a Mn EPR feature.  Growth parameters investigated include the 

carbon source and media type.  Carbon source did not have an effect as the Mn 

signal has been seen in samples isolated from glucose (Table 4-1), lactate (139) 

and glycerol media (Table 4-1).  Samples isolated from both rich and minimal 

media have exhibited the signals.    Although we are not certain what is causing 

the Mn EPR signal, we do know the presence of this signal is not correlated to 

media [Fe], the rate of oxygen bubbling during growth, OD600 when cells are 

isolated, metabolic mode or media type.   The Mn may be from a contaminating 

species that is present in some of our preparations.  One possibility is that the 

Mn is inside other organelles (such as vacuoles or ER) that co-localize with 

mitochondria. 
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Assessment of Redox Properties of Mitochondria 

We have reported on the Fe-ome of respiring mitochondria previously 

(139). As mentioned above, we constantly used experimental results as 

indicators of how to adjust our isolation protocol.  Here we will mention some of 

our early results and how they were used to evaluate our protocol and develop 

new procedures.  Early studies in our lab indicated that treatment of purified 

organelles with redox agents had a significant impact on the mitochondrial Fe-

ome.   

Mössbauer spectra of mitochondria isolated from cells grown on lactate 

media and treated with redox agents showed a tremendous difference in 

spectral features. Oxidized samples exhibited only ~ 50 % of the magnetic 

material present in as-isolated samples.  Treatment of mitochondria with 1 mM 

dithionite resulted in a 2 - 3 fold increase in the NHHS Fe2+.  In addition, nearly 

50 % of the Fe/S clusters in our samples could be reduced with dithionite (139).  

Since dithionite is negatively charged, it should not be able to enter the IM and 

should not reduce samples with intact membranes.  The changes induced by 

treatment of dithionite were disconcerting.  Are mitochondria unable to control 

their redox state?   

We were unsure as to whether those early results were indicative of the 

long sample preparation times (resulting in damaged membranes and Fe 

centers) or whether intact mitochondria are responsive to redox treatment.  We 

repeated several of the experiments presented in Hudder et al. (139) to address 
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this issue.  In order to understand the Fe-ome, it would be helpful to evaluate 

whether intact mitochondria have an ability to resist internal redox changes upon 

exposure to a redox agent.   

 

Disruption of Mitochondrial Membranes 

Traffic through the inner mitochondrial membrane is highly regulated.  

The negatively charged dithionite ion should not be able to cross the IM and only 

mitochondria with damaged membranes would be subject to reduction.  We 

wanted to determine whether the response to redox treatment was a result of 

compromised membranes.  Therefore, we needed to treat samples with redox 

agents while membranes are intact and after their complete disruption.   

Mitochondrial membranes can be disrupted by either sonication or the addition 

of a detergent.  Disruption of membranes by sonication is difficult.  Sonication for 

a short time may not disrupt all the membranes while long periods can damage 

proteins and remove metal ions from enzyme active sites. However, the addition 

of detergents is fairly straightforward.   Addition of 1 % deoxycholate, is sufficient 

to disrupt mitochondrial membranes.   

Since sonication can potentially damage enzyme active sites and thus 

give a skewed Fe distribution, we wanted to begin using a more gentle method 

of membrane disruption.  However, it was first necessary to establish whether a 

detergent like deoxycholate would cause a similar situation.  Mitochondria were 

isolated from cells grown on glucose media as described in Chapter II.  Purified 
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mitochondria were split into two aliquots.  They were packed for analysis after 

treatment with either nothing or 1 % deoxycholate.  Samples were then 

evaluated by both EPR (Figure 4-6) and Mössbauer spectroscopy (Figure 4-7).  

The EPR spectrum of the untreated sample had spin concentrations of 

features similar to those discussed in Chapter III.  Features had the following 

spin concentrations  gave = 1.94 ~ 2.5 µM, gave = 1.90 ~ 5.0 µM, gave = 2.00 ~ 1.0 

µM and gave = 2.04 ~ 1.5 µM.  These spin concentrations did not change in the 

sample treated with deoxycholate.  There were two differences in the treated 

spectrum.  First, it appeared that there was an increased resolution between the 

g = 2.01 and g = 2.02.  However, this could not be confirmed by simulation.  The 

same line-width was used in each simulation.  The treated spectrum also had a 

broad feature around g = 1.7.  This feature may be an artifact and was not 

simulated.   

The Mössbauer spectrum of the untreated sample in Figure 4-7 had an 

Fe distribution similar to that discussed in Chapter III.  The treated sample did 

not change except for a nominal increase (~ 4 %) in the NHHS Fe2+, the 

significance of this remains unclear.  These results indicate that deoxycholate 

did not have a significant effect on the Fe distribution of our samples.  Therefore 

membranes could be disrupted with deoxycholate prior to treatment with redox 

agents.   
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Figure 4-6. Deoxycholate did not affect EPR spectra.  Spectra of mitochondria 

isolated from cells grown on minimal glucose media.  Spectra were collected at 

microwave power 0.2 mW, microwave frequency 9,43 GHz and 10 K.  Samples 

were packed in EPR tubes with either (A) no treatment or (B) treatment with 1 % 

(w/v) deoxycholate.   
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Figure 4-7.  Deoxycholate did not alter Fe distribution.  Spectra were collected 

at 4.5 K and 0.05 T.  Mitochondria were isolated from cells grown on minimal 

media containing glucose.  Samples were packed for analysis with (B) or without 

(A) treatment with 1 % deoxycholate.  There may have been a slight increase (~ 

4 %) in the NHHS Fe2+ but the significance of this is uncertain. 
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Mössbauer Analysis of Mitochondria Treated with Reductant 

 As discussed above, when we started this project, we saw substantial 

changes in spectra upon treating samples with a reductant.  Since dithionite 

should not be able to cross the mitochondrial inner membrane, the significant 

differences seen with its treatment indicated one of two things.  Either the bulk of 

the Fe in our samples was adventitiously bound outside of the mitochondria and 

therefore accessible to reduction, or the mitochondrial membranes had been 

compromised, allowing dithionite to flow freely throughout the samples and 

reduce mitochondrial Fe complexes.   

 In another experiment, mitochondria were isolated as described from cells 

grown on respiring media.  The sample was split into two aliquots.  One was 

treated with 1 mM dithionite for 30 – 45 minutes prior to packing.  The other was 

treated with 1 % deoxycholate prior to dithionite treatment.   Mössbauer spectra 

were obtained and are shown in Figure 4-8. The sample treated with dithionite in 

the absence of deoxycholate had an Fe distribution discussed in Chapter III.  

Treatment with deoxycholate prior to incubation with dithionite resulted in an 

increase in the NHHS Fe2+ and a decrease in the amount of HS Fe2+ heme.  

This may indicate that the dithionite is only able to reduce the sample once 

membranes have been disrupted.  However, the changes induced with dithionite 

treatment in the presence of deoxycholate are smaller than anticipated.  This 

may indicate that mitochondria are already resting in a reduced state when 

isolated under anaerobic conditions.   



137 
 

 

 

 

Figure 4-8.  Mitochondria reduced in the presence and absence of deoxycholate.  Spectra were 

collected at 4.5 K and 0.05 T.  Mitochondria were isolated from respiring cells.  Sample was split 

into two aliquots. Spectrum A was treated with 1 mM dithionite for 30 minutes prior to packing.  

Spectrum B was matched except that prior to incubation with dithionite, the sample was treated 

with 1 % deoxycholate to disrupt membranes.   
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 There are reductants that can freely pass through the inner mitochondrial 

membrane.  Malate and glutamate are trafficked by transporters through the 

inner membrane.  They can therefore serve as reductants to samples with intact 

membranes.  We wanted to treat isolated mitochondria with these compounds to 

see if they could reduce our samples.   

 Mitochondria isolated from respiring cells were split into two aliquots.  

One was treated with 5 mM malate, 5 mM glutamate as described (238) prior to 

packing. The other was packed without treatment.  Mössbauer spectra were  

obtained and are shown in Figure 4-9 and Figure 4-10.  The low field Mössbauer 

spectra are shown in Figure 4-9.  The as-isolated spectrum (black) is also shown 

in Figure 3-1.  Simulations for the as-isolated sample (discussed in greater detail 

in Chapter III) include assumptions that there is 63 % central doublet, 7 % HS 

Fe2+ heme, 13 % Rieske protein, 2 % NHHS Fe2+ and < 10 % [Fe2S2]2+.  Figure 

4-9 shows both the as-isolated and reduced spectra can overlap.  For ease of 

viewing, the reduced spectrum was graphed without the corresponding error 

bars.  The reduced spectrum showed essentially no change in Fe distribution 

and the same simulation could be fit to both spectra.  Similar results were seen 

in mitochondria isolated from fermenting cells(225). 

The high field Mössbauer spectra of the as-isolated and reduced samples 

are shown in Figure 4-10.  The as-isolated spectrum (black) which is also 

depicted in Figure 3-1 is shown in Figure 4-10.  It is overlaid with a simulation 

(blue) assuming 65 % [Fe4S4]2+ and 13 % Reiske protein.  In addition, it is shown  
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Figure 4-9.  Low field Mössbauer spectra of as-isolated and reduced 

mitochondria.  Spectra were collected from 4.5 K and 0.05 T.  Mitochondria were 

isolated from respiring cells.  Sample was split into two aliquots-one was packed 

for analysis without treatment (black), the other was treated with 5 mM malate 

and 5 mM glutamate (red) to reduce the sample. The as-isolated sample is also 

shown in Figure 3-1.  Analysis of the as-isolated spectrum is discussed in detail 

in Chapter III but includes a simulation assuming 63 % central doublet, 7 % HS 

Fe2+ heme, 4 % NHHS Fe2+, 13 % Rieske protein and < 10 % [Fe2S2]2+.  The 

reduced aliquot was fit with the same simulation.   
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Figure 4-10.  High field Mössbauer spectra of mitochondria.  Spectra were 

collected at 4.2 K and 8 T.  Mitochondria were isolated from cells grown on 

glycerol media.  Isolated mitochondria were split into two aliquots.  One aliquot 

was packed in the as-isolated state (black spectrum).  The blue simulation 

assumes 65 % [Fe4S4]2+ cluster (with δ = 0.46 mm/s and ΔEq = 1.15 mm/s) and 

13 % reduced Rieske protein.  The second aliquot was treated with 5 mM malate 

and 5 mM glutamate prior to packing (red spectrum).  The as-isolated and 

reduced spectra are overlaid to show there is essentially no difference between 

the as-isolated and reduced spectra.  For ease of visualization, the reduced 

spectrum is plotted without error bars.   
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with the reduced spectrum (red) superimposed.  There is essentially no 

difference between the reduced and as-isolated spectra.  This further indicates 

that anaerobically isolated mitochondrial samples are in a reduced state.   

 

EPR Analysis of Mitochondria Treated with Reductant 

 Mössbauer spectra indicated that the percentage of magnetic Fe was 

unchanged by treatment with a reductant.  However, this information is not 

complete.  The concentrations of several paramagnetic species could be 

changing even though the percent of Fe contributing to the paramagnetic  

Mössbauer feature is constant.  Therefore, mitochondria isolated from cells 

grown on respiring (Figure 4-11) and fermenting (Figure 4-12 and Figure 4-13) 

media were treated with reductant and evaluated by EPR.   

Interestingly, the spin concentration of the gave = 1.90 signal in both 

fermenting and respiring samples was unchanged by treatment with reductant.  

The gave = 1.94 concentration increased 20 % from 7.5 ± 2 to 10 ± 2 µM in 

respiring samples while the fermenting concentrations remained unchanged at 

2.2 µM.  The main difference found in the g = 2 region of the EPR spectra of 

reduced samples is the significant diminishing of the gave = 2.00 from the organic 

radical.  This signal can be diminished by treatment with dithionite, even in the 

absence of a detergent.  The low field region of the EPR spectra further 

exhibited the reducing power of dithionite.  Here spin concentrations of heme 

centers which totaled ~ 5 µM in the as-isolated samples were diminished to ~ 0 
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Figure 4-11.  Respiring mitochondria treated with redox agents.  Mitochondria were isolated from respiring 

cells and split into three aliquots.  Samples were packed and frozen after treatment with (A) nothing, (B) 

100 % molecular oxygen or (C) 1 mM dithionite for 30 minutes.  Spectra were collected at microwave power 

0.2 mW, microwave frequency 9.44 GHz and 10 K.  Spectra were normalized for differences in spectral 

parameters, but then the intensity of B was divided by 2 and intensity of C was multiplied by 2.5 to graph all 

three spectra on same axis.   
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Figure 4-12.  EPR spectra of fermenting mitochondria treated with redox agents.  

Mitochondria were isolated from fermenting cells and split into three aliquots.  

Samples were packed after treatment with (A) nothing, (B) 100 % molecular 

oxygen or (C) 1 mM dithionite for 30 minutes. Spectra were collected at 

microwave power 0.2 mW, microwave frequency 9.44 GHz and 10 K.  Spectra 

were normalized and the intensity of spectrum B was divided by 4 to graph all 

three spectra on the same axis.   
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Figure 4-13.  EPR spectra of fermenting samples showing dithionite reduction of 

hemes.  Spectra are of isolated mitochondria collected from fermenting cells.  

Samples were either treated with (A) nothing, (B) 1 mM dithionite (pH 8.5) for 30 

minutes or (C) 100 % molecular oxygen for 30 minutes.  Spectra were all 

collected at 10 K and microwave frequency 9.43.  The low field spectra were 

collected at microwave power 20 mW.  The g = 2 region was collected at 

microwave power 0.2 mW.   
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In the reduced sample.  This change, although appears significant, (Figure 4-13) 

only encompasses ~ 2 % of the total heme concentration in our samples 

calculated by electron absorption.   

Thus treatment with dithionite had only a minor effect on the g = 2 region 

of EPR spectra with concentrations of the gave = 1.90 and gave = 1.94 only 

changing by standard errors in our experiments.  In contrast, the changes in the 

low field EPR spectra reveal that ferric HS hemes are much more susceptible to 

treatment with dithionite.  The oxidized hemes are most likely arising from 

cytochrome c oxidase.  This enzyme is housed in the IM, with CuA, in redox 

equilibrium with the IMS and may be in redox equilibrium with dithionite or 

oxygen.  In contrast other heme-containing species may be redox equilibrium 

with the matrix and inaccessible to redox treatment by exogenous redox agents.   

 

Electron Absorption of Mitochondria Treated with Reductant 

 In order to confirm the changes in distribution of Fe seen by EPR, 

mitochondria were evaluated by Electron Absorption Spectroscopy in the as-

isolated state and after treatment with 1 mM dithionite. 

 Figure 4-14 shows mitochondrial samples treated with 1 mM dithionite in 

the presence of 1 % deoxycholate.  The reduced and as-isolated spectra could 

be overlaid and were simulated with identical heme concentrations.  Thus heme 

centers were essentially unaffected by treatment with reductant.  This 

corresponds to the changes seen by EPR where the minor ferric heme   
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Figure 4-14.  Electron absorption spectroscopy of mitochondrial samples treated with redox agents.  Three 

individual preparations are shown.  Electron absorption spectra were collected of the as-isolated state.  

Samples were then treated with oxygen for 30 - 45 minutes.  An electron absorption spectra was collected 

of the oxidized state.  After oxidation, one sample (B) was treated with 1 mM dithionite.  The reduced 

spectrum could be overlaid with the original as-isolated spectrum (collected prior to redox treatment), 

indicating heme oxidation is reversible. 



147 
 

 

 

contributions (~ 5 µM) are reduced by dithionite.  This further confirms that 

mitochondrial heme centers rest in the reduced state.   

 

Mössbauer Analysis of Mitochondria Treated with Oxygen 

In order to understand the Fe-ome of isolated mitochondria, it is 

necessary to evaluate how Fe-containing species change upon treatment with 

oxygen.  A Mössbauer spectrum of respiring mitochondria treated with oxygen 

(Figure 4-15) showed an increase in the NHHS Fe2+ (~ 20 %).  This increase is 

surprising since O2 is an oxidant.  This feature could be due to residual 

Fe:EGTA in the sample or damaged Fe centers.  It seems counter-intuitive that 

an oxidant should increase the amount of reduced NHHS Fe2+.  Perhaps an 

endogenous reductant is present. 

Since it was unclear whether molecular oxygen was able to oxidize the Fe 

in intact samples, a separate sample was treated with 1 % deoxycholate to 

disrupt membranes prior to treatment with oxygen.  This sample (Figure 4-15B) 

showed a feature that begins at ~ - 4 mm/s with parameters corresponding to LS 

ferric heme (239), possibly from oxidized cytochrome c.   Simulation of this 

feature is difficult since it is buried in the baseline.  However, we can tentatively 

assign 5 - 10 % of the Fe to this feature which corresponds to 30 – 70 µM Fe.  

This is much lower than the only a fraction of the cytochrome c in our samples 

was oxidized with treatment with molecular oxygen.   



148 
 

 

 

 
 
 
Figure 4-15.  Mössbauer spectra of mitochondria treated with oxygen.  Spectra 

were collected at 4.5 K and 0.05 T.  Sample was isolated from respiring cells 

and split into two aliquots.  The aliquots were treated with molecular oxygen for 

~ 30 minutes in the presence (B) and absence (A) of 1 % deoxycholate.   
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EPR Analysis of Mitochondria Treated with Oxygen 

EPR spectra of some oxygen-treated mitochondrial samples exhibit a g = 

3.1 feature from ferric hemes (Figure 4-16).  Simulation of spectra indicates this 

feature has a spin concentration ranging of ~ 5 µM.  We have seen this feature 

in 3 individual oxidized spectra.  This concentration implies that either heme 

centers are protected from oxidation or the samples were not being completely 

oxidized.   

The g = 2 region of the oxidized EPR spectra were often dominated by an 

organic radical that overlaid the gave = 1.90 and gave=1.94 signals.  The 

concentration of the gave = 2.0 signal increased from 1 - 3 µM in as-isolated 

samples to 2 - 5 µM in oxidized samples. The gave = 1.90 and gave = 1.94 signals 

may be present, but are obscured by the dominant radical feature.  Simulation of 

this feature gave a spin concentration of  ~ 7 µM.  This is within the expected 

uncertainty of that determined for the as-isolated sample.  Since the radical 

(perhaps from CoQH·) dominates the EPR spectra for all of the fermenting 

samples we have, it is impossible to determine the spin concentration of the gave 

= 1.94  in these samples.   

The low field region of oxidized samples (Figure 4-13 and Figure 4-16) 

indicate that hemes are the most responsive to oxidation.  In both situations the 

spin concentrations of the hemes increased substantially when reduced samples 

were treated with oxygen.  In Figure 4-13, the spin concentrations collectively 

rose from ~ 5 µM to ~ 12 µM.   
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Figure 4-16.  EPR spectrum of an oxidized sample showing a LS ferric heme 

feature.  Sample was isolated from fermenting mitochondria and treated with 

oxygen as described above.  Spectrum was collected at 10 K, microwave 

frequency 9.43 GHz and microwave power 20 mW.   
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Electron Absorption Spectroscopy of Mitochondria Treated with Oxygen 

UV-Vis spectra of oxidized samples isolated from respiring samples are 

included in Figure 4-14 and Figure 4-17.  In Figure 4-14, isolated mitochondria 

were incubated in a septum vial with pure oxygen bubbled through for 30 

minutes.  Samples were immediately analyzed by Electron Absorption 

Spectroscopy.  Molecular oxygen completely oxidized α and β bands of all three 

hemes.   

We wanted to determine whether heme oxidation was time dependent.  A 

freshly purified mitochondrial sample was isolated as described and evaluated 

by electron absorption.  The sample contained heme a, b and c in 45, 50 and 

110 µM.  The sample was treated with pure molecular oxygen for 30 minutes 

before a second spectrum was collected.  As expected, the α and β bands were 

completely diminished (Figure 4-17B).  The sample was incubated in air and 

without O2 bubbling for 10 minutes, then another spectrum was collected.  The 

spectrum (Figure 4-17C) exhibited the original heme features at as-isolated 

concentrations.  This process was repeated 5 more times (Figure 4-17D-E).  The 

sample was treated with molecular oxygen, evaluated by UV-Vis, allowed to sit 

and was re-evaluated by UV-Vis.  In each instance, the spectrum collected 

immediately after O2 exposure had completely oxidized heme centers while the 

spectrum collected several minutes later had reduced heme signals with the 

same concentrations as of the as-isolated state.  This implies that there are 
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Figure 4-17.  Kinetic studies of oxidation.  Mitochondria were isolated from 

respiring mitochondria and evaluated by Electron Absorption Spectroscopy (A).  

Pure oxygen was then bubbled through the sample for ~ 30 minutes and 

evaluated (B). After an additional 10 minutes had passed, with the sample sitting 

in air, without O2 bubbling, the sample was analyzed again (C).  Reduced heme 

content was recovered.   This process was repeated several times.  D 

represents the spectra that had been oxidized 5 times for a total of ~ 2.5 hours.  

Spectra E was taken ~ 10 minutes later with the sample sitting in air.  Before 

samples are frozen for EPR analysis, they were evaluated by electron 

absorption (F).  The sample was treated with oxygen (H) and immediately frozen.  

This sample was the oxidized EPR spectrum in Figure 4-16.  The sample was 

thawed aerobically and evaluated (G).    
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Figure 4-17. Continued. 
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endogenous reductants present in mitochondrial samples.  Furthermore, it 

suggests that mitochondria return to a specific redox state. 

We wanted to confirm whether this phenomenon was present in all of our 

samples.  Although several EPR samples were analyzed by Electron Absorption 

Spectroscopy prior to storage for EPR analysis (Figure 4-17F-G), an oxidized 

EPR sample (from Figure 4-16) was thawed and analyzed for heme content 

(Figure 4-17H).  Heme concentrations were 35, 40 and 100 µM for heme a, b 

and c respectively.  The heme content had almost completely recovered to the 

as-isolated concentrations.  This recovery of reduced heme centers explains 

why results of EPR, Mössbauer and electron absorption spectra do not correlate.   

Depending on how quickly the sample was frozen after treatment with oxygen, 

there would be a different amount of oxidized heme centers in the sample.   

Taken together, mitochondrial heme centers are able to be oxidized.  

However, this oxidation is temporary with reduced heme centers recovering 

within several minutes.  Mitochondria appear to have a default redox state to 

which they return after oxidation.  This buffering capacity is probably maintained 

by endogenous reductants in the organelle.    

  

Spectral Changes After Sample Storage 

Isolating mitochondria and preparing samples quickly is commonly 

assumed to minimize sample degradation. Similarly, storing samples in liquid N2 

is generally thought to prevent them from changing redox state over time.  
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Prepared samples are often stored in liquid N2 until run by EPR.  Since samples 

stored in liquid N2 are thought to be safe from changes in redox state and 

degradation, this variation in storage times was not initially an issue of concern 

for us.  

The sample shown in Figure 4-18A was originally packed and stored in a 

Mössbauer cup.  Figure 4-19A shows a spectrum collected two weeks after 

mitochondria were isolated.  Once Mössbauer spectra were obtained, the 

sample was crushed and packed into an EPR tube as described (189).  

Spectrum A was obtained only hours after preparing the EPR sample.   

For both Figures 4-18 and 4-19, spectrum B was collected on the same 

sample after a period of time during which it was stored in liquid N2.  For Figure 

4-18B the sample was stored almost two weeks between runs, while for Figure 

4-19B the spectra were run within 6 days of one another.  In each instance the 

shape of the spectra has changed.  The gave = 1.94 and gave = 1.90 signal 

intensities did not change, and were simulated as 8.5 ± 3 and 14 ± 3 µM 

respectively.  However, both signals were overlapped by the appearance of a 

Mn signal which had not been present in the original spectrum.   

These spectra raised two questions.  First, what was causing the 

appearance of Mn EPR signal in stored samples—could samples be damaged 

during storage?  Secondly, why was signal intensity decreased after storage and 

why could it be recovered?  To address these questions, samples were thawed  
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Figure 4-18.  EPR spectral intensity diminishes over time and coincides with appearance of the Mn signal.  

Sample was originally stored in a Mössbauer cup, then crushed for EPR analysis three months later.  

Spectrum A was obtained within a few hours of crushing the sample into an EPR tube.  The spectrum was 

collected at microwave power 0.2 mW, microwave, microwave frequency 9.44 GHz and 10 K.  Spectrum B 

was obtained approximately two weeks later at the same power, temperature and gain.  The sample was 

then taken into the anaerobic cold box and allowed to thaw.  Once the sample thawed, it was diluted 2.5 

fold with buffer 1 ST (pH 8.5), deoxycholate (1 % w/v final) and 1 mM dithionite.  The sample was treated 

for 30 minutes before anaerobically freezing the sample and rerunning.  Spectra were corrected for other 

variables including dilution, such that their intensities can be directly compared. 
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Figure 4-19.  Mn signal can appear during storage and be removed by thawing.  Spectra from 

mitochondria collected from cells grown on glycerol minimal media supplemented with 5 % YPG.  

Spectrum A was collected two weeks after the sample was isolated. Spectrum B was collected six 

days later with the same conditions.  The sample was anaerobically thawed and allowed to incubate, 

without agitation for ~ 20 minutes.  Spectrum C was collected within 3 hours of spectrum B.  Spectra 

were collected at 10 K, microwave power 0.1 mW and microwave frequency 9.43 GHz.  
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in an anaerobic environment and then refrozen.  The resulting spectra exhibited 

the original spectra (Figures 4-18C and 4-21C) except the g = 1.94 signal was  

increased to 10 ± 3 µM.  Treatment with deoxycholate and dithionite also 

allowed recovery of the original sample features (Figure 4-18).  The only 

changes seen in the spectral features of Mössbauer samples (Figure 4-20) is a 

decrease in the amount of Rieske protein.  The Fe in this feature dropped from 

14 % in freshly prepared samples to ~ 8 % in samples that had been stored for 

several months.  This corresponds to the changes seen in our EPR samples.   

The fact that the Mn signal can disappear by the anaerobic freeze/thaw 

treatment indicates that the process causing the feature’s appearance (and 

subsequent removal) is due to some internal phenomenon from the samples 

themselves and not due to the growth or isolation protocol. Additionally, there 

may be a redox change that occurs in stored samples that causes its 

appearance.  Although we have shown that treatment of isolated mitochondria  

with redox agents does not cause a shift in the Mn2+ EPR feature, this may only 

imply that the Mn is protected from redox treatment by a membrane.  Whether 

the Mn is protected by mitochondrial membranes or by a contaminating 

organelle’s membranes is still debatable.  However, once the membranes are 

disrupted, by the freeze/thaw process (and subsequent addition of 1 % 

deoxycholate) the Mn is redox active.  In addition, the intensity of other EPR 

signals diminish, which may also imply further error in calculating (by simulation) 

the spin concentrations of these spectra features.  Since spectral features 
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Figure 4-20.  Mössbauer spectra undergo slight changes after long sample 

storage times.  Both spectra are of the same sample obtained ~ 8 months apart.  

The top spectrum has an Fe distribution identical to that discussed in Chapter III, 

including 14 % Rieske protein.  The later (bottom) spectrum was simulated with 

the same paramters except that there is now only 8 % Rieske protein.   
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change over time, the only way to accurately simulate spectra may be to do so 

immediately after sample isolation. 

 

Discussion 

We have reported on the iron-ome of respiring mitochondria in a 

preliminary study (139), and so it is useful to compare and contrast the results 

obtained from that study to the results in this and the previous chapter. The 

protein concentrations of packed mitochondria reported in the current study are 

higher by a factor of ~ 2, relative to that reported previously (139). Current 

samples were treated with deoxycholate rather than being sonicated prior to 

protein concentration determinations.  The current metal/protein ratios (~ 4 nmol 

Fe/mg protein) for respiring and respirofermenting mitochondria are similar to 

those reported from other labs (134, 138, 141, 144, 240), and thus we consider 

our current protein concentrations to be more accurate. 

We previously reported that ~ 22 % of total Fe was present as nonheme 

Fe2+ in respiring mitochondria (grown on lactate) (139). We now suspect that the 

majority of this was adventitious, as we no longer observe such features with 

this intensity in spectra of respiring mitochondria. Also, spectra reported in 

Hudder et al. (139) did not include a HS heme doublet, as we observe currently. 

Previous samples were not prepared as rapidly as are our current samples, and 

there may have been some heme and/or Fe/S cluster degradation that lead to 

the more intense nonheme HS Fe2+ doublet. 
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 The Mn EPR signal once reported to be from adventitiously bound (and 

chelatable) ions (139) now appears to be inside a membrane, such as the IM of 

the mitochondria.  The signal dominates the spectrum when present and may 

correlate to the absence of the gave = 1.90 and gave = 1.94 signals. The Mn signal 

is not correlated to mitochondrial Mn concentrations.  It is still unclear what is 

causing a portion of the mitochondrial Mn to be EPR active.  The Mn EPR signal 

is not correlated to media type, carbon source, oxygen flow rate during growth, 

OD600 of cell collection, and media Fe concentrations.  Nor does the Mn species 

appear to be redox active.   

 The Mn EPR signal also appeared in stored samples.  This occurred in 

samples which did not originally exhibit the Mn signal.  This signal was not 

present in every sample, and its presence cannot be predicted.  Packed and 

stored samples change redox states when stored in liquid N2. 

A similar phenomenon is seen with the intensity of EPR signals from 

stored samples.  Samples that were stored for later analysis exhibit lower signal 

intensities in subsequent runs as compared to the initial spectrum collected for a 

sample. The signal intensity could be recovered by anaerobic thawing of the 

sample and incubation in an anaerobic atmosphere for 1 hour.   

 Early studies by our lab indicated that mitochondrial samples are 

susceptible to treatment with redox agents (139).  Here we present evidence 

that samples undergo only slight changes when treated with dithionite.  

Treatment with a reductant did not change the heme concentrations detected by 
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Electron Absorption Spectroscopy.  Reduced Mössbauer spectra had the same 

Fe distribution as as-isolated samples.  Treatment with dithionite in the presence 

of a detergent still had no effect on Electron Absorption or Mössbauer spectra.  

EPR spectra of samples treated with dithionite showed a diminished gave = 2.0 

signal due to an organic radical, perhaps from CoQH·, and exhibited no 

detectable ferric heme.  The gave = 1.90 was unchanged by treatment with 

reductant while the gave = 1.94 signal intensity was unaffected in fermenting 

samples but increased by 20 % in respiring samples.  This was still a minor 

change considering that in early preparations the gave = 1.94 signal intensity 

increased by 100 % upon treatment of dithionite alone (139).   

 Treatment of samples with molecular oxygen caused an increase in the 

NHHS Fe2+ doublet from ~ 3 % in as-isolated samples to ~ 20 %.  This increase 

could be due to damage of Fe centers caused by O2 followed by reduction of the 

Fe3+ ions by unidentified endogenous reductants.  Mössbauer spectra of 

oxidized respiring mitochondria exhibited a feature due to ferric hemes.  Since 

only 5 – 10 % of the Fe in our samples could be simulated in this feature, only a 

portion of the hemes were oxidized.  This is most likely because the reduced 

heme centers are recovered quickly and it takes several minutes after oxidation 

to prepare and freeze a sample in a Mössbauer cup.     

Oxidation of the samples with molecular oxygen is temporary. 

Mitochondrial samples that are isolated and prepared immediately for analysis 

are resistant to treatment with O2.  Although it is possible to oxidize the heme 
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centers in mitochondrial samples with molecular oxygen, the oxidation is 

temporary and the original electron absorption spectra and concentrations of 

reduced hemes are recovered after only a few minutes.  Disruption of the 

mitochondrial membranes prior to redox treatment did not change this 

phenomenon.   

These results seem to indicate that samples rest in a reduced state and 

have the ability to ‘buffer’ their redox state.  We present a model in Figure 4-21 

that explains this phenomenon.  Mitochondria in an as-isolated state contain 

reduced heme centers and do not exhibit the Mn EPR feature.  They contain 

unidentified endogenous reductants that allow for the recovery of reduced heme 

centers after treating samples with oxygen.  Once frozen, samples are slowly 

oxidized, which results in the loss of the gave = 1.94 and gave = 1.90 signals.  In 

addition, this is usually accompanied by an appearance of the Mn EPR signal.  

Thawing and freezing the sample anaerobically allows for the recovery of the as-

isolated state.  This tends to suggest that our samples have the ability to use 

endogenous reductants to prevent oxidation.  This is most likely due to the 

mitochondrial roles of detoxifying ROS and preventing oxidative damage.  

Although further studies are needed, it also seems likely that the endogenous 

reductants are part of the citric acid cycle and may include succinate or pyruvate.   
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Figure 4-21.  Model of redox changes occurring in samples.   
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CHAPTER V 

SUMMARY AND FUTURE STUDIES 

 The goal of this dissertation was to probe the Fe-ome of yeast 

mitochondria collected from cells grown on fermenting and respiring carbon 

sources.  The number of Fe-containing species makes the resolution of 

individual components difficult.  However, we were able to develop a protocol 

that allowed for the large-scale isolation of mitochondrial samples followed by an 

integrated analysis of the Fe-ome.    

 The concentration of Fe in mitochondria did not change regardless of 

carbon source used for cell growth.  Rather, it was the distribution of Fe that 

changed with metabolic mode.  Respiring mitochondria contained higher 

concentrations of heme centers, Fe/S clusters and respiratory complexes.  

Fermenting cells do not require the same level of expression of those proteins.  

Indeed, fermenting cells have lower expression of proteins involved in oxidative 

phosphorylation, Fe metabolism and the citric acid cycle (28-29, 205, 218-219).  

It follows that the concentration of those Fe centers would also be lower.  

However, that mitochondria contain the same amount of Fe regardless of growth 

mode was unexpected, as was the dramatic shift in the Fe-ome.   

One notable difference in our samples is that fermenting mitochondria 

contain approximately 20 % of Fe in a NHHS ferrous ‘pool.’  This is nearly 7-fold 

larger than the NHHS Fe2+ in respiring samples.  This may be the labile Fe 

previously reported (135, 137-138).  Estimations of labile Fe in isolated samples 
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range from 0.4 to 25 % of the total mitochondrial Fe.  The higher estimate is 

based on a study where isolated mitochondria were disrupted before exposure 

to BPS.  There was a dependence on whether reducing agents were added prior 

to estimating, indicating that most of the labile Fe was present as ferrous ions 

(138).  However, this study may have overestimated the labile Fe for two 

reasons.  First, there was no chelator included in the isolation protocol to remove 

any adventitiously bound Fe.  Secondly, the study was destructive as 

mitochondria must be disrupted to obtain measurements.  This disruption can 

potentially damage Fe-containing proteins causing additional labile Fe as well as 

loss of the in vivo state of the mitochondria.  Studies which keep samples intact 

have a distinct advantage in measurements.   

The lower estimation on the amount of labile Fe originates from studies 

on rat liver mitochondria incubated with fluorophores.  These studies relied on 

fluorescent quenching to detect Fe chelation.  Petrat et al. determined that the 

chelatable Fe in was approximately 16 µM (135).  This study may have 

underestimated the labile Fe because it relies on the incorporation of the 

fluorophores into mitochondria.  

The labile NHHS Fe2+ in our samples were similar to both previous 

estimates.  The lower estimates originated from experiments done on rat liver 

mitochondria—mitochondria that are highly respiring.  Respiring yeast 

mitochondria contained approximately 3 % NHHS ferrous ions.  Since neat 

mitochondria contain ~ 700 µM Fe, approximately 20 µM is present as the 
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NHHS form.  This is similar to the values reported by Petrat et al. (135) which 

may implicate a relationship between samples with similar respiration levels.  In 

contrast, fermenting yeast mitochondria contain 20 % or ~ 150 µM NHHS.  This 

estimate is similar to that seen by Tangeras et al. (138).  The variation in the 

detected NHHS Fe may have metabolic implications.    

It has been hypothesized that this Fe feeds into Fe/S cluster and heme 

biosynthesis (116, 122, 235).  Since fermenting mitochondria do not have the 

same demand for Fe/S cluster or heme proteins, this reservoir may be stored 

until such a demand arises.  In order for cells to undergo a diauxic shift (a 

change from growth on a fermenting carbon source such as glucose to growth 

on a respiring carbon source such as glycerol), it must be necessary to store 

some form of metabolically usable Fe for use when more Fe-containing proteins 

are required.  Similarly, respiring mitochondria may not need to contain the 

same concentration of labile Fe, or may not be able to accumulate it, because 

Fe is constantly being used for production of respiratory complexes.   

 Fermenting mitochondria contain two other (potential) reservoirs of Fe In 

addition to the NHHS Fe.  The first is the 20 % HS Fe3+, the second is the 40 % 

of Fe is in the form of nanoparticles.  Neither of these species is detected in 

respiring samples which may indicate a relationship between these three Fe 

classes.  It may also implicate mechanistic details regarding Fe import, storage 

and metabolism.  It seems likely that the build-up of the NHHS Fe2+ occurs 

because of reduced demand for Fe/S cluster and heme biosynthesis.  However, 
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this hypothesis needs to be tested.  For example, further analysis is necessary 

to confirm that Fe is imported at similar rates in respiring and fermenting 

samples.  Additionally, it would be interesting to determine the fate of these 

three Fe pools when samples are allowed to shift metabolism.  Is there an 

equilibrium relationship between these three types of Fe?  Do nanoparticles and 

the HS Fe3+ shift to NHHS Fe2+ prior to feeding into Fe/S cluster or heme 

biosynthesis?  These are some of the questions that should be answered in 

future studies.   

 In conclusion we have presented an analysis of the Fe-ome of 

mitochondrial samples.  The concentrations of several individual proteins as well 

as classes of Fe centers have been determined.  The shifts that occur as 

samples change metabolic mode can be at least partially explained by the cell’s 

energetic requirements.  Growth on a respiring carbon source dictates that 

oxidative phosphorylation will be the primary source of energy production.  

Therefore, respiring samples need to have higher expression of respiratory 

complexes.   Our samples of respiring mitochondria contain 2 - 3 fold higher 

expression of heme centers, 4 fold more respiratory complexes (cytochrome bc1, 

cytochrome oxidase and succinate dehydrogenase) and virtually no Fe 

reservoirs.  Samples exhibiting a mixture of respiration and fermentation had an 

iron-ome that was nearly identical to respiring samples indicating that it is 

repression of respiration by glucose (rather than diminished respiration) that 

causes the major shifts in the Fe distribution in fermenting samples.   
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 We also present evidence that our samples have a default redox state 

that is buffered by endogenous reductants.  Mitochondria are prone to oxidative 

damage by ROS (which can be generated from respiratory complexes).  ROS 

production increases as mitochondria age.  These endogenous reductants may 

provide insight to a biological strategy for dealing with this issue.  Further 

investigations are needed to identify the endogenous reductants and their 

buffering capacity.   
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