
MANIFOLD INTEGRATION:

DATA INTEGRATION ON MULTIPLE MANIFOLDS

A Dissertation

by

HEE YOUL CHOI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010

Major Subject: Computer Science

MANIFOLD INTEGRATION:

DATA INTEGRATION ON MULTIPLE MANIFOLDS

A Dissertation

by

HEE YOUL CHOI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Yoonsuck Choe
Committee Members, Vivek Sarin

Tracy Hammond
Mikyoung Jun

Head of Department, Valerie E. Taylor

May 2010

Major Subject: Computer Science

iii

ABSTRACT

Manifold Integration: Data Integration on Multiple Manifolds. (May 2010)

Hee Youl Choi, B.S., Pohang University of Science and Technology;

M.S., Pohang University of Science and Technology

Chair of Advisory Committee: Dr. Yoonsuck Choe

In data analysis, data points are usually analyzed based on their relations to

other points (e.g., distance or inner product). This kind of relation can be analyzed

on the manifold of the data set. Manifold learning is an approach to understand

such relations. Various manifold learning methods have been developed and their

effectiveness has been demonstrated in many real-world problems in pattern recog-

nition and signal processing. However, most existing manifold learning algorithms

only consider one manifold based on one dissimilarity matrix. In practice, multiple

measurements may be available, and could be utilized. In pattern recognition sys-

tems, data integration has been an important consideration for improved accuracy

given multiple measurements. Some data integration algorithms have been proposed

to address this issue. These integration algorithms mostly use statistical information

from the data set such as uncertainty of each data source, but they do not use the

structural information (i.e., the geometric relations between data points). Such a

structure is naturally described by a manifold.

Even though manifold learning and data integration have been successfully used

for data analysis, they have not been considered in a single integrated framework.

When we have multiple measurements generated from the same data set and mapped

onto different manifolds, those measurements can be integrated using the structural

information on these multiple manifolds. Furthermore, we can better understand the

structure of the data set by combining multiple measurements in each manifold using

iv

data integration techniques.

In this dissertation, I present a new concept, manifold integration, a data inte-

gration method using the structure of data expressed in multiple manifolds. In order

to achieve manifold integration, I formulated the manifold integration concept, and

derived three manifold integration algorithms. Experimental results showed the algo-

rithms’ effectiveness in classification and dimension reduction. Moreover, for manifold

integration, I showed that there are good theoretical and neuroscientific applications.

I expect the manifold integration approach to serve as an effective framework for

analyzing multimodal data sets on multiple manifolds. Also, I expect that my research

on manifold integration will catalyze both manifold learning and data integration

research.

v

To my parents

vi

ACKNOWLEDGMENTS

During my Ph.D. study, I received valuable support from many people. Espe-

cially I would like to thank my advisor, Dr. Yoonsuck Choe, for his guidance and

support on my study. Also I thank the committee members: Dr. Vivek Sarin (and

Dr. Jianer Chen), Dr. Tracy Hammond and Dr. Mikyoung Jun for the valuable

questions and discussions. Also I thank my previous advisor, Dr. Seungjin Choi from

POSTECH, for his advice and help. In addition, I thank Dr. Anup Katake from

StarVision Technologies for all the fun and interesting discussions about research,

work and life. I also thank Dr. Ricardo Gutierrez-Osuna, who helped me a lot espe-

cially for the first year in Aggieland, Dr. Yunhee Kang (BaekSeok University) who

has supported me since I first met him, and Dr. Sung Yang Bang (POSTECH) and

Dr. Byungkyun Kang (POSTECH), who were my excellent references, my lab mates

and the department staff who made my time at TAMU enjoyable.

In addition, there have been others I am thankful for. Here is a very short list

of the people who supported me during my time in Aggieland: Gail Mills, who has

helped me a lot in the office, the church, and has been a good counsellor to me,

my roommate, Changyoung, from whom I received a great deal of assistance with

cooking and all the “girl” problems, Youngkwon Hyung-Nim, who is a big brother

to me, Sooyun and Tren, who helped me get used to the life in CNS and in Boston,

Hyekyoung Un-Nee, who is the kindest person to me ever, Dr. Yum, who was like

an angel sent by Him when I was in Boston, my little brother, Hailong, and sister,

Kijoeng, and my old friends, Taeho, Ohan, Byounguk, Jaehoon, Wonman, Chulwon,

and many, many more. Last but not least, my mom and dad, my older brother and

sister-in-law and little sister and brother-in-law and nephew and nieces, my family,

my love.

vii

Remembering people around me and their support and love through the time, I

cannot help but confess that I have been very blessed through these people. It was

Him who designed this seemingly terrible time and gave me all the troubles and tears.

It was also Him who has never stopped blessing me.

Finally, I would like to thank Starvision Technologies (Michael Jacox) and the

Korean Science Foundation and my friends for their financial support.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Manifold Learning . 2

B. Data Integration . 3

C. Manifold Integration . 5

D. Organization . 8

II BACKGROUND . 9

A. Manifold Learning . 9

1. Manifold . 9

2. Algorithms for Manifold Learning 11

3. Review of Isomap . 13

4. Isomap vs. KPCA . 15

B. Data Integration . 17

1. Review of α-Integration 18

C. Summary . 23

III THEORETICAL BASES FOR MANIFOLD INTEGRATION . 24

A. Manifold Learning . 24

1. Kernel Isomap . 24

a. Kernel Isomap Algorithm 25

b. Generalization Property 27

2. Applications . 28

a. Noisy Swiss Roll Data 28

b. Handwritten Digits 30

c. HRIR Data . 30

d. Spoken Letters Data 32

e. Sketch Data . 36

3. Summary . 37

B. Data Integration . 37

1. α-Integration on Evidence Theory 38

a. Evidence Theory 38

b. α-Integration on D-S Combination Rule 39

c. α-Integration on Averaging Methods 40

ix

CHAPTER Page

d. Experiments . 41

2. α-Integration on Linear Discriminant Analysis 44

a. Linear Discriminant Analysis 44

b. α-Integration on the Scatter Matrices 47

c. Experiments . 48

3. Learning α-Integration 51

a. Learning α . 52

b. Learning w . 53

c. Experiments . 54

d. Discussion . 60

C. Summary . 61

IV MANIFOLD INTEGRATION 62

A. What is Manifold Integration? 62

B. Related Work . 65

1. Using Reproducing Kernel Krein Space 66

2. DISTATIS . 67

3. Oriented PCA . 68

4. Kernel Fusion . 69

C. Kernel Oriented Discriminant Analysis 70

1. KODA Algorithm . 71

2. Experiments . 75

3. Discussion . 78

D. Random Walks on Multiple Manifolds 80

1. RAMS Algorithm . 80

2. Relation to Previous Work 83

3. Projection Property 85

4. Experiments . 86

5. Discussion . 95

E. Manifold α-Integration . 95

1. MAI Algorithm . 96

2. Comparison with Existing Integration Approaches . . 99

3. Experiments . 102

4. Discussion . 110

F. Summary . 111

V ADVANCED APPLICATIONS OF MI 112

A. Kernel Integration . 112

x

CHAPTER Page

1. What is Kernel Integration? 112

2. Kernel Integration Based on Manifold Integration . . . 114

3. Simulation . 117

B. Sensorimotor Integration 121

1. What is Sensorimotor Integration? 121

2. Integration of Sensory and Motor Manifolds 125

3. Transformation from Sensory to Motor Space 126

a. Without Manifold Integration 126

b. Through Manifold Integration 128

4. Simulation . 130

a. Integration of Sensory and Motor Manifolds . . . 131

b. Transformation from Sensory to Motor Space . . 133

C. Summary . 137

VI DISCUSSION AND FUTURE WORK 138

A. Main Contributions . 138

B. The Constraints of Manifold Integration 139

C. Issues in the Manifold Integration Algorithms 140

D. Future of Manifold Integration 142

E. Summary . 143

VII CONCLUSION . 144

REFERENCES . 146

VITA . 160

xi

LIST OF TABLES

TABLE Page

I Squared errors in learning w (×10−29) 56

II Monthly average temperature data (F o) 57

III Sketch of the MI approach . 64

IV Constraints of MI . 65

V Measurement of the performance for two speakers and two phonemes

(MFCCs) on OPCA and KOPCA . 77

VI Efficiency of eigenvalues of DISTATIS and RAMS 92

VII A counter example shows that the integration of multiple dis-

tances might not be a mathematical distance 99

xii

LIST OF FIGURES

FIGURE Page

1 “The weeping philosopher”, Heraclitus (535 - 475 BC) by Jo-

hannes Moreelse . 1

2 Manifold way of perception . 3

3 An example of manifold integration when two manifolds are avail-

able from one underlying data set . 4

4 An example of manifold by Lars H. Rohwedder 10

5 Parameterization of a manifold . 11

6 Isomap on a Swiss roll data set . 13

7 The result of Isomap applied to 64×64 pixel images of a face

rendered with different poses and lighting directions 14

8 An example of α-mean of two sources with different α values 19

9 α-integration includes various means as its special case according

to the α value . 21

10 Comparison of Isomap with kernel Isomap for the case of noisy

Swiss roll data . 29

11 Digit images in 2-dimensional space 30

12 Query point and the retrieval results in USPS handwritten digits . . 31

13 HRIRs are measured for sound sources at different locations 31

14 A HRIR of the right ear for the case of zero azimuth 32

15 Two-dimensional manifolds of HRIRs 33

16 One-dimensional manifold of HRIR computed by kernel Isomap . . . 33

xiii

FIGURE Page

17 Isomap result on Isolet data . 34

18 Kernel Isomap result on Isolet data 35

19 Sketch recognition results . 36

20 The D-S combination rule is generalized with several α values 42

21 One averaging rule for ET is generalized with several α values 43

22 ET generalized by α-integration . 43

23 Toy data set with three classes for LDA 46

24 Toy data sets with four classes for LDA 47

25 Original LDA vs. generalized LDA on the three classes data 49

26 Original LDA vs. generalized LDA on the four classes data 50

27 Estimated curves by learning α-integration 55

28 Trajectories of α values in learning 56

29 Boxplot of α values for city temperatures from 50 random experiments 58

30 Average temperatures (F o) for 1 year 58

31 Errors in New York’s temperature (F o) estimation from the two

other cities: Boston and San Antonio 59

32 Overview of manifold integration . 63

33 Speech utterances contain two kinds of information 68

34 Subspaces for two speakers and two phonemes 76

35 Subspaces for two speakers and three phonemes 77

36 Overview of KODA in the case of two speakers’ two phonemes 79

37 Conversion between distance and transition probability in RAMS . . 82

xiv

FIGURE Page

38 Disc data set in 2D . 87

39 Eigenvalues of discs in the case of orthogonal and linear distances . . 88

40 Projections of discs for the orthogonal and linear case 88

41 Projections of discs for the nonorthogonal and linear case 89

42 Projections of discs for the orthogonal and nonlinear case 90

43 Two-dimensional manifolds of HRIRs 90

44 Eigenvalues of two ears’ HRIRs . 91

45 Projected results on compromised 2-dimensional manifold 91

46 Eigenvalues of faces . 92

47 Projections of the faces . 93

48 Projection property of RAMS . 94

49 RAMS and MAI on disc data sets . 103

50 Eigenvalues of the kernel matrices in the three methods 104

51 Embedded manifolds of HRIRs . 105

52 Individual mappings using kernel Isomap 106

53 Integrated phoneme manifold . 107

54 International phonetic alphabet (IPA) of vowels 108

55 MAI on classification task . 109

56 Multiple kernel machines . 113

57 Kernel integration based on manifold integration 115

58 The true map and the kernel matrix of a square data set in a

two-dimensional space . 117

xv

FIGURE Page

59 Two measurements of a square data set 117

60 Projected spaces and kernel matrices individually 119

61 Projected spaces and integrated kernel matrices 120

62 The cerebellum in the brain . 121

63 Diagram of cerebellar cortex . 122

64 Coordinate transformation . 123

65 Simulation of sensory and motor maps 130

66 Sensory and motor manifolds . 132

67 Integration of the sensory and the motor maps using MI 133

68 Sensory and motor transformation 134

69 The estimated and the true motor commands in the motor man-

ifold, on different dimensions . 135

70 Errors in the coordinate transformation in four cases 136

1

CHAPTER I

INTRODUCTION

More than two thousand years ago, the Greek philosopher Heraclitus (Fig. 1) said

“you cannot step twice into the same river”, referring to the fact that the world is

in eternal flux. Even in this kind of flux, however, we can recognize the river as

the same river based on the past experience since there are invariant features in the

flowing river. Such invariant features can be found using computational methods like

manifold learning using structural information of the measurement of the flux [1].

Fig. 1. “The weeping philosopher”, Heraclitus (535 - 475 BC) by Johannes Moreelse.

Heraclitus said “you cannot step twice into the same river.”

However, the situation is more complex, if we look at the river closely from

within. In the river, we can see, hear, and feel (with our sense of touch) the river

flowing. Our brain integrates such sensory information to recognize the river as a sin-

This dissertation follows the style of IEEE Transactions on Neural Networks.

2

gular entity. Manifold learning is not possible to deal with such multimodal data in

its original formulation. Can it be extended to utilize such a rich data stream?

In this dissertation, I will address this very question. To continue with the above

example, what we want ultimately is to discover invariant features of the river based

on the multiple sources of sensory information. In data analysis terms, measurements

of the data stream varies over time but there are invariant properties in the mea-

surement. Such invariant properties are inherent in the multiple measurements. The

problem is to integrate multiple measurements and extract invariant features. Earlier

approaches to solve the problem were based on either manifold learning for invari-

ant features from one measurement, or data integration of multiple measurements

without considering the structural properties of the data (data integration does not

use the structural information contrary to manifold learning). In this dissertation, I

propose a new framework to solve the problem by integrating the two approaches.

A. Manifold Learning

In data analysis, data points such as images or speech signals are analyzed based on

their relations to other points (e.g., distance or inner product) rather than their ab-

solute position in the coordinates as commonly done in principal component analysis

(PCA) or multidimensional scaling (MDS) (see [2, 3, 4]). From these relations, we

can get coordinate-invariance property, with which the analysis is invariant against

any choice of coordinate system for the data points. This kind of relation can be

better understood on the manifold of the data set (see [5, 6]) as shown in Fig. 2.

For example, suppose that a facial image data set is generated by varying the

orientation of a face like the river flowing. Then, the resulting facial images could

occupy a nonlinear low-dimensional manifold (e.g., a curve) embedded in the image

3

Fig. 2. Manifold way of perception. When we rotate a facial image, the resulting

facial images could occupy a nonlinear low-dimensional manifold (e.g., a curve)

embedded in the image space. Adapted from [1].

space as in Fig. 2. If we can find the embedded manifold, we can have orientation-

invariant facial image representation. So, it is important to understand the manifold

structure of the data. Manifold learning involves inducing a smooth nonlinear low-

dimensional manifold on which data points are organized, where the data points

are originally drawn from a high-dimensional space [1]. Various methods have been

developed including Isomap and locally linear embedding (LLE) (for example see

[7, 8, 9]) and their effectiveness has been demonstrated in many real-world tasks in

pattern recognition and signal processing [10, 11, 12]. Also, note that kernel methods

[13] can be viewed as manifold learning since a kernel matrix can be derived from a

Riemannian metric and vice versa [14, 15].

B. Data Integration

However, most existing manifold learning algorithms only consider one manifold based

on one dissimilarity matrix. As shown in Fig. 3, what if we have more than one

4

Unknown True Multimodal Data

Integrated ManifoldManifold of measurement 1
Manifold of measurement 2Measureby size

Measure by color
Fig. 3. An example of manifold integration when two manifolds are available from one

underlying data set. The two manifolds are from different types of measurement

(color or size), and, taken separately, are not suitable for fully understanding

the data set. However, we can integrate the two measurements to obtain one

integrated manifold that can give a complete picture of the data set.

5

measurements each of which generates one manifold as in the river example above

with multiple sensors? Since the manner in which the data set is measured can be

different and measurements are expected to have noise, more measurements will have

a higher chance of achieving more accurate data analysis than just one measurement.

Then, how can different measurements from different manifolds be used together to

form an integrated manifold? A key question in this case is how different pieces of

information can be integrated (data fusion).

In pattern recognition systems, data integration has been an important consid-

eration for improved accuracy. Some data integration algorithms have been proposed

to address this issue (see [16]), such as Bayesian inference [17], Dempster-Shafer the-

ory (D-S theory or evidence theory) [18, 19], clustering algorithms [4], and neural

networks [20]. Kernel-based integration methods have also been used for integration

[21]. These integration algorithms mostly use statistical information from the data

set such as uncertainty of each data source as in evidence theory, but they do not use

the structural information (i.e., the geometric relations between data points). Such a

structure is described effectively by a manifold.

C. Manifold Integration

Even though manifold learning and data integration have been successfully used for

data analysis and there is an abundance of work in manifold learning and in data

integration, they have not been considered together in a single integrated framework.

When we have multiple measurements generated from the same data set and mapped

onto different manifolds, those measurements can be integrated using the structural

information in the multiple manifolds. Furthermore, we can better understand the

structure of the data set by combining multiple measurements in each manifold using

6

data integration techniques.

The goal of this dissertation is to consider the two concepts together: manifold

learning and data integration, to develop effective manifold integration algorithms for

multimodal data sets.

To fulfill the goal, a new concept is proposed, manifold integration, a data inte-

gration method using the structure of the data expressed in multiple manifolds. In

order to handle multimodal data sets on multiple manifolds, the algorithms are based

on the relationship between data points from each measurement and the relationship

is obtained from the resulting manifolds. Finally, the relationships from different

manifolds are merged. For manifold integration, three algorithms are derived in this

dissertation: (1) kernel oriented discriminant analysis (KODA), (2) random walk on

multiple manifolds (RAMS), and (3) manifold α-integration (MAI).

First, KODA integrates multiple manifolds assuming that all the manifolds are

submanifolds of the same unknown manifold and that they are connected since the

distances between points on different submanifolds are used. The method also max-

imizes the separability between different classes. In practice, however, multiple sub-

manifolds may not be connected on one manifold. To overcome such a strong as-

sumption in KODA, we need to obtain the structural information from each manifold

independently and then integrate all the information while not connecting the man-

ifolds geometrically. RAMS integrates the structural information statistically (not

geometrically) based on the transition matrices of all manifolds where the transition

matrices are used for random walk on the manifold to determine the distance between

points in each measurement. It is assumed that the transition matrix of one man-

ifold is statistically independent from those of the other manifolds. However, since

statistical independence is still a strong assumption, I propose a more generalized inte-

gration method, MAI. MAI uses a generalized averaging method called α-integration

7

to integrate dissimilarity matrices (or transition matrices), instead of just using the

geometric mean of multiple transition matrices as in RAMS. This generalized method

can overcome the independence assumption in RAMS using different α values which

determine the relationship between multiple sources.

All the proposed algorithms above for manifold learning and data integration

as well as manifold integration are tested with synthetic and real-world data sets,

showing superb performance, compared to competing approaches such as DISTATIS,

kernel fusion and random walks. These tests demonstrate the algorithms’ effectiveness

in classification and dimension reduction. Moreover, for manifold integration, I show

that there are good theoretical and neuroscientific applications. First, I apply MAI

to multiple kernels from multiple kernel methods such as kernel principal component

analysis (KPCA) so that MAI can integrate the multiple distance matrices converted

from the corresponding kernel matrices and recover an integrated kernel matrix from

the integrated distance matrix. Second, MAI is proposed as a new framework for sen-

sorimotor integration as well as multi-sensory integration. By manifold integration,

the sensory and motor maps are integrated into the same space so that they can be

compared to each other directly.

I expect the manifold integration methods I developed to serve as an effective

framework for analyzing multimodal data sets on multiple manifolds including the

sensor and motor maps in the human brain. My prior work, especially kernel Isomap,

has been recognized as a useful tool in scientific applications such as emotion analysis

[22] and sketch recognition [23]. Moreover, some researchers have applied kernel

Isomap in their algorithm development such as supervised kernel Isomap [24] and

weighted kernel Isomap [25]. Since this dissertation extends the performance and the

ability of kernel Isomap for multiple manifolds, this research can help achieve better

performance in applications where multiple measurements are available, and can open

8

new directions in manifold learning research as well as in data integration research.

D. Organization

The rest of this dissertation is organized as follows. In Chapter II, I will review man-

ifold learning and data integration with a focus on some topics related to manifold

integration. In Chapter III, I will describe the theoretical bases for manifold inte-

gration: manifold learning and data integration, especially, my prior work on kernel

Isomap and extension of α-integration. I will present manifold integration in Chapter

IV with the concept, algorithms, and experiments. In Chapter V, as an advanced

application, I propose manifold integration as a new framework for kernel integration

and sensorimotor integration. Discussion and future work follow in Chapter VI. In

Chapter VII, conclusions are drawn.

9

CHAPTER II

BACKGROUND

Before we begin, some background knowledge of manifold learning and data integra-

tion is required, as two key ingredients of manifold integration. Manifold learning and

data integration have a large volume of references (see [1, 16] and references therein),

so, in this chapter, I will only provide a focused review.

A. Manifold Learning

1. Manifold

A manifold is a topological space which is locally Euclidean. In order words, a

manifold is a topological space locally homeomorphic to an open subset of Euclidean

space Rn, where n is a non-negative integer1. For example, if we think of some

surface region of the Earth as in Fig. 4, it is on a manifold, which is different from

the Euclidean plane. In the Euclidean plane, the sum of angles inside of a triangle

should be 180o while in a general manifold it is not always the case. But zooming

into a sufficiently small local region shows that the surface of the Earth is a Euclidean

plane with the sum of angles inside a triangle equal to 180o.

Mathematically speaking, points in a local region on a manifold can be indexed

by a subset of a low-dimensional Euclidean space as shown in Fig. 5. The index in

this case is called the coordinate of the point on the manifold. However, there may

not be such a coordinate system globally. The goal of manifold learning algorithms

is to obtain a global coordinate system with some loss of information while trying to

minimize such a loss. In other words, assuming that the manifold in a high dimen-

1For more mathematical definitions, see [5, 6].

10

50°

90°
90° 50°

Fig. 4. An example of manifold by Lars H. Rohwedder. In a Euclidean space, the sum

of angles inside of a triangle should be 180o. In more global figure, it is not a

Euclidean space since the sum of angles is 230o. But when zooming in a place

locally enough, it is a Euclidean space with the sum of angles of 180o.

sional space is generated by a function f which is called a coordinate patch, manifold

learning tries to find its low-dimensional representation.

Note that in data analysis, a manifold of data set is conceptually the same as the

mathematical manifold, especially topological manifold. Actually, however, a mani-

fold in data analysis cannot be exactly the same as the mathematical one, because

in data samples we cannot define even an open set. So, we adapt the concepts from

mathematical theories on manifold but implement the concept as a discrete approxi-

mation of the true manifold. For example, a locally open set can be implemented by

neighborhood in the graph made of data points, and geodesic distances can be imple-

mented by shortest pathes in the graph. If the data set is dense enough (ideally with

infinite data samples), then the discrete approximation will asymptotically converge

to the true manifold.

11

M
x: coordinate for zx

zRn
R2 x1x2 f

Fig. 5. Parameterization of a manifold. Nonlinear space can be parameterized with a

subspace of a Euclidean space. Manifold learning is an approach to obtain a

global parameterization.

2. Algorithms for Manifold Learning

In data analysis, a data set can be given in a high-dimensional vector format. How-

ever, the number of dominant factors that are expected to have generated the high-

dimensional data set might be much less than the intrinsic dimensionality of the data

set. Principal component analysis (PCA) is one of the most popular methods to find

such factors from the data set [2]. PCA works by maximizing the variance of the data

set in the projected space. As shown later, classical scaling (an instance of metric

multidimensional scaling (MDS)) is closely related to PCA [3]. The projection of the

centered data onto the eigenvectors of the data sample covariance matrix returns the

classical scaling solution. Classical scaling, where Euclidean distance is employed as

a dissimilarity measure, can be explained in the context of PCA. In the same man-

ner, non-Euclidean dissimilarity can be used, although there is no guarantee that the

eigenvalues will be nonnegative. A relationship between kernel principal component

12

analysis (KPCA, [13]) and metric MDS was also established in [26].

In a kernel machine such as KPCA or kernel Fisher discriminant (KFD) [27], the

kernel function can be considered as defining implicitly the corresponding Riemannian

metric of the embedded low dimensional space in the high dimensional data space

[14]. However, these kernel functions are not learned from the data set but are given

by users after a number of experiments. In practice, it is nontrivial to find the proper

kernel function with their proper parameters. Moreover, even a wisely chosen function

may not reflect the real data structure while just emphasizing some of the distances.

For example, if an exponential function is used as a kernel function, the distances

with the neighbors are emphasized where long distances are relatively ignored.

Manifold learning finds a kernel matrix directly from the data set using the data

structure and induces a smooth nonlinear low-dimensional manifold [15, 28]. Re-

cently, various manifold learning methods (for example see [7, 8, 29, 9, 30, 31]) have

been developed in the machine learning community and their performance has been

demonstrated in many real-world problems in pattern recognition and signal process-

ing. Since a manifold is defined as a locally Euclidean topological space, the manifold

learning methods are commonly based on Euclidean distance between neighboring

points in the data set. However, even though most manifold learning methods are

based on locally Euclidean geometry, many different algorithms result, dependent on

how the data structure defines and utilizes local information. Roughly, they can be

categorized into two approaches: (1) global approaches preserving the global struc-

ture composed of local structures, and (2) local approaches preserving just the local

structure. Isomap and locally linear embedding (LLE) are representative manifold

learning methods for the global approach and the local approach, respectively. Even

though I will be using the global approach throughout this dissertation, there is no

specific reason for doing so and the main idea of this dissertation does not depend on

13

a specific choice of the type of manifold learning approach. In the following sections,

I briefly review Isomap and its relation to KPCA.

3. Review of Isomap

Classical scaling, a form of metric MDS, is a method of low-dimensional embedding

based on pairwise similarity between data points. In general, Euclidean distance is

used as a measure of dissimilarity (or similarity) in MDS. The basic idea in Isomap

[7] is to use geodesic distances on a neighborhood graph in the framework of classical

scaling, in order to utilize the nonlinear manifold structure, instead of subspace based

on Euclidean distances. Fig. 6 shows Isomap on a Swiss roll data set. The sum of edge

−15 −10 −5 0 5 10 15 20
0

10

20

30

−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15 20
0

10

20

30

−15

−10

−5

0

5

10

15

(a) (b) (c)

Fig. 6. Isomap on a Swiss roll data set. (a) Swiss roll manifold, (b) data samples from

the manifold, and (c) two dimensional space extracted by Isomap.

weights along the shortest path between two nodes is assigned as the geodesic distance.

The top n eigenvectors of the geodesic distance matrix represent the coordinates in

the n-dimensional feature space. Fig. 7 shows the result of Isomap applied to 64×64

pixel images of a face rendered with different poses and lighting directions.

Following the connection between classical scaling and PCA, metric MDS can

be interpreted as KPCA [26]. In a similar manner to the above the geodesic distance

14

Fig. 7. The result of Isomap applied to 64×64 pixel images of a face rendered with

different poses and lighting directions. Adapted from [7].

matrix in Isomap can be converted to a kernel matrix and Isomap can be seen as a

kind of kernel machine [15].

Kernel machines are data analysis algorithms that use the kernel trick. Examples

of kernel machine include support vector machines (SVMs) and KPCA. Kernel trick

is a method that generates a Gram matrix (inner product matrix or kernel matrix)

in a higher dimensional feature space while bypassing explicit mapping of the data

set into the feature space. For the kernel matrix to be an inner product matrix in the

feature space, the kernel matrix calculated from the kernel trick should be positive

semidefinite, which is defined as follows [14].

Definition 1 (Positive Semidefinite) A symmetric matrix K ∈ Rn×n is positive

semidefinite, if x>Kx ≥ 0, for any nonzero vector x ∈ Rn.

So the kernel matrix should be carefully obtained. Usually judiciously chosen kernel

15

functions are used to generate a positive semidefinite kernel matrix2. Note that kernels

in data analysis and those in other area like statistics (kernel density estimation) are

used differently and their properties are different. For more details, see [14, 32].

The doubly centered geodesic distance matrix K in Isomap is of the form

K = −1

2
HD2H , (2.1)

where D2 = [D2
ij] means the element-wise square of the geodesic distance matrix

D = [Dij], H is the centering matrix, given by

H = I − 1

N
eNe>N (2.2)

for eN = [1 . . . 1]> ∈ RN . Note that Eq. (2.1) is a kernel matrix, which is obtained

by a distance matrix rather than a kernel function.

4. Isomap vs. KPCA

Understanding the relationship between MDS and PCA is essential in understanding

the relationship between Isomap and KPCA. Given a data set X = [x1,x2, ..., xN],

the Euclidean distance Dij from xi to xj is

D2
ij = (xi − xj)

>(xi − xj). (2.3)

Let the inner product matrix be B, where

Bij = x>i xj. (2.4)

2A definition of kernel function is given in Chapter V.

16

Then, with eigen-decomposition, we can get

B = X>X

= V MΛMV >
M, (2.5)

where V M and ΛM are the eigenvector and the eigenvalue matrix of B, respectively.

Finally, the projected data from MDS is obtained by

Y M = Λ
1/2
M V >

M. (2.6)

For PCA, the covariance matrix can be decomposed as follows:

XX> = V PΛPV >
P , (2.7)

where V P and ΛP are the eigenvector and the eigenvalue matrix of the covariance

matrix XX>, respectively. The projected data from PCA is given by

Y P = V >
PX. (2.8)

With V P = XV M, the relation between Y P and Y M becomes:

Y P = V >
PX

= (XV M)>X

= V >
MB

= Λ
1/2
M Y M. (2.9)

That is, in the case of Euclidean distance, PCA and MDS are equivalent to each

other, except for the ambiguity in scale.

Note that manifold learning is also known as nonlinear dimensionality reduction.

More features provide more information, which gives potentially higher accuracy.

17

Unfortunately, however, more features make it harder to analyze, because of the curse

of dimensionality. As a solution, we can start with as many potentially useful features

as possible, and then reduce the number of features. There are two approaches to

reduce the number of features: (1) feature selection methods select the salient features

by some criteria and (2) feature extraction methods obtain a reduced set of features

by a transformation of all features. Manifold learning belongs to the second approach.

B. Data Integration

In many research areas such as automatic target recognition (ATR) and target track-

ing, data integration has been an important issue to achieve improved accuracy than

that based on a single source of information because one sensor might not be good

enough to provide unambiguous information. Some data integration algorithms have

been proposed (see [16]) such as Bayesian inference [17], evidence theory [18, 19],

clustering algorithms and neural networks [20]. Kernel-based integration methods

have also been used for integration [21].

According to [33], there are three basic alternatives in data integration: (1)

direct integration of measurements, (2) integration of the extracted features, or (3)

decision-level integration (or high-level inferences). Each of these approaches uses

different integration techniques. If the data set consists of multiple heterogeneous

measurements (for example, visual data and audio data), then the direct integration

approach cannot be applied. Otherwise, classical estimation methods such as Kalman

filtering can be applied [34]. Pattern recognition techniques such as neural networks,

clustering algorithms, or template methods are feature-level integration methods.

The decision-level integration approach which combines determinations based on each

measurement includes weighted decision methods, Bayesian inference, and evidence

18

theory.

Recently, a general approach, α-integration, was proposed by [35] for stochas-

tic model integration of multiple positive measures. It can be applied to any of the

three levels: homogeneous (positive) measurements, features, or classification results.

α-integration is a one-parameter family of integration, where the parameter α de-

termines the characteristics of integration. Given a number of stochastic models in

the form of probability distributions, it finds the optimal integration of the sources

in the sense of minimizing α-divergence. Many artificial neural network models for

stochastic problems such as the mixture (or product) of experts model [36, 37] can

be considered as special cases of α-integration. In this dissertation, α-integration is

adopted as a general integration method for multiple manifolds. Although simple

integration methods are also tested in this dissertation, they can all be considered as

a special case of α-integration.

1. Review of α-Integration

Here I provide a brief overview of α-integration, more details on which can be found

in [38, 35].

Let us consider two positive measures of random variable x, denoted by m1(x) >

0 and m2(x) > 0, satisfying

∫
mi(x) dx > 0,

for i = 1, 2. The simplest integration of these two positive measures is to compute

the arithmetic mean

m̃a(x) =
1

2
{m1(x) + m2(x)} ,

19

or the geometric mean

m̃g(x) =
√

m1(x)m2(x).

Fig. 8 shows an example of α-mean with two sources.

20 40 60 80

1

2

3

4

5

Sample #

M
ea

su
re

m
en

ts

Source 1
Source 2
alpha=−1
alpha=1
alpha=3

Fig. 8. An example of α-mean of two sources with different α values. Two black dotted

curves are sources and the three solid curves are the α-mean.

α-mean [35] is a one-parameter family of means, which is defined by

m̃α(x) = f−1
α

(
1

2

{
fα(m1(x)) + fα(m2(x))

})
, (2.10)

where fα(·) is a differentiable monotone function given by

fα(z) =





z
1−α

2 , α 6= 1,

log z, α = 1.
(2.11)

The function fα(·) in Eq. (2.11) is the only function which leads the α-mean to be

20

linear scale free for c > 0, i.e., the α-mean of cm1(x) and c m2(x) is c m̃α(x) [39, 38],

c m̃α(x) = f−1
α

(
1

2

{
fα(cm1(x)) + fα(cm2(x))

})
.

α-mean includes various means as its special case:

• α = −1: arithmetic mean

• α = 1: geometric mean

• α = 3: harmonic mean

• α = ∞: m̃∞(x) = min (m1(x),m2(x))

• α = −∞: m̃−∞(x) = max (m1(x),m2(x))

The value of the parameter α (which is usually specified in advance) reflects the

characteristics of the integration. As α increases, the α-mean resorts more to the

smaller of m1(x) or m2(x), while as α decreases, the larger of the two is considered

more as in Fig. 9 [35].

α-mean can be generalized to the weighted α-mixture of M positive measures

m1(x), . . . , mM(x) with weights wi, which is referred to as α-integration of m1(x), . . . , mM(x)

with weights wi [35].

Definition 2 (α-integration) The α-integration equation of mi(x), i = 1, . . . , M ,

with weights wi is defined by

m̃(x) = f−1
α

(
M∑
i=1

wifα(mi(x))

)
, (2.12)

where wi > 0 for i = 1, . . . , M and
∑M

i=1 wi = 1.

What are described in the case of two positive measures above carries over to the

case of M positive measures.

21

−50 0 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

in
te

gr
at

io
n

va
lu

e

alpha

Artithmetic mean

Geometric mean

Harmonic mean

Fig. 9. α-integration includes various means as its special case according to the α

value. Here, the values of two measures are 1 and 2, respectively. Note that

the α-integration value monotonically decreases and converges to either 1 or 2.

22

Given M positive measures, mi(x), i = 1, . . . , M , the goal of integration is to

seek their weighted average m̃(x) that is as close to each of the measures as possible,

while how close two positive measures are is evaluated using divergence. It was shown

in [35] that the α-integration m̃(x) is optimal in the sense that

Jα[m̃(x)] =
M∑
i=1

wiDα[mi(x) ‖ m̃(x)] (2.13)

is minimized, where Dα[mi(x) ‖ m̃(x)] is the α-divergence of m̃(x) from the measures

mi(x).

The α-divergence belongs to a family of convex divergence measures which is

known as Csiszár’s f -divergence, called sometimes also Ali-Silvey divergence [40, 41].

Definition 3 (f-divergence) Csiszár’s f -divergence is defined by

Df [m1‖m2] =

∫
m1(x) f

(
m2(x)

m1(x)

)
dx, (2.14)

where f(z) is a convex function, f : [0,∞) 7→ (−∞,∞], which is continuous at 0,

satisfying f(1) = 0 and f ′(1) = 0.

When f(z) = z − 1 − log z, the f -divergence becomes KL-divergence (a.k.a. I-

divergence)

DKL[m1‖m2] =

∫
m1(x) log

m1(x)

m2(x)
dx−

∫
(m1(x)−m2(x))dx. (2.15)

In the case where positive measures m1(x) and m2(x) are probability distributions

satisfying
∫

m1(x)dx = 1 and
∫

m2(x)dx = 1 then Eq. (2.15) is simplified as

DKL[m1‖m2] =

∫
m1(x) log

m1(x)

m2(x)
dx.

Definition 4 (α-divergence) The α-divergence Dα[m1‖m2] is derived from f -divergence

23

Df [m1‖m2], making use of f(·) given by

f(z) =





4
1−α2

{
1−α

2
+ 1+α

2
z − z

1+α
2

}
, α 6= ±1,

z − 1− log z, α = −1,

z − 1 + z log z, α = 1.

(2.16)

That is, for α 6= ±1,

Dα[m1‖m2] =
4

1− α2

{∫
1− α

2
m1(x) +

1 + α

2
m2(x)

−m1(x)
1−α

2 m2(x)
1+α

2 dx
}

.

For α = −1, Dα[m1‖m2] = DKL[m1‖m2] given in Eq. (2.15), and for α = 1,

Dα[m1‖m2] = DKL[m2‖m1].

Note that α and w are given and fixed (i.e., specified by the user). However,

these values are unknown before we get a specific data set and understand it.

C. Summary

Manifold learning is an effective dimension reduction method and Isomap is a pop-

ular method and can be interpreted as a kernel machine. On the other hand, data

integration is an important issue to achieve improved accuracy in pattern recognition

and signal processing tasks. α-integration is a general approach for stochastic model

integration. These manifold learning and data integration methods have been studied

separately, even though there are some cases which both approaches could be applied

to. In the next section, I will describe my work in both approaches that are to be

considered together into manifold integration later.

24

CHAPTER III

THEORETICAL BASES FOR MANIFOLD INTEGRATION

As stated before, manifold learning and data integration are two theoretically key

parts of manifold integration. In this chapter, I briefly review my prior work on

both approaches that forms the basis for the development of the manifold integration

concept and algorithms. Basically this chapter consists of two sections: manifold

learning and data integration.

A. Manifold Learning

My prior work on manifold learning has been focused on kernel Isomap [28]. Here I

present the algorithm and several applications.

1. Kernel Isomap

Since I use kernel Isomap as the main manifold learning algorithm later in this dis-

sertation, in this section I will review kernel Isomap.

*Part of this chapter is reprinted with permission from “Gesture Recognition based
on Manifold Learning” by H. Choi, B. Paulson and T. Hammond, 2008, LNCS 5342
pp. 247-256. Copyright 2009 by Springer.
*Part of this chapter is reprinted with permission from “Sketch Recognition based on
Manifold Learning” by H. Choi and T. Hammond, 2008, Association for the Advanced
of Artificial Intelligence (AAAI-08), Copyright 2008 by AAAI.
c©2005 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. on Devel-
opment and Learning “Kernel Isomap on Noisy Manifold” H. Choi and S. Choi. For
more information go to http://thesis.tamu.edu/forms/IEEE permission note.pdf.
c©2010 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. Acoustics,
Speech and Signal Processing “Learning Alpha-Integration with Partially-Labeled
Data” H. Choi, S. Choi, A. Katake and Y. Choe. For more information go to
http://thesis.tamu.edu/forms/IEEE permission note.pdf.
c©2010 IEEE. Partially reprinted, with permission, from IEEE Int. Conf.

Acoustics, Speech and Signal Processing “Alpha-Integration of Multiple Evidence”
H. Choi, A. Katake, S. Choi and Y. Choe. For more information go to
http://thesis.tamu.edu/forms/IEEE permission note.pdf.

25

As stated in the previous chapter, Isomap can be interpreted as a kernel ma-

chine. However, the kernel matrix K from Isomap in Eq. (2.1), is not always positive

semidefinite. In kernel machines, the kernel matrix should be positive semidefinite.

The main idea for kernel Isomap is to make this K a Mercer kernel matrix (which is

positive semidefinite) using a constant-shifting method, in order to relate it to KPCA

such that the generalization property is preserved.

a. Kernel Isomap Algorithm

Given N objects with each object being represented by an m-dimensional vector xi,

i = 1, . . . , N , the kernel Isomap algorithm finds an implicit mapping which places N

points in a low-dimensional space. In contrast to Isomap, kernel Isomap can project

test data points onto a low-dimensional space using the kernel trick. Kernel Isomap

mainly exploits the solution of the additive constant problem, the goal of which is to

find an appropriate constant to be added to all dissimilarities (or distances), except

for self-dissimilarities, that makes the kernel matrix positive semidefinite.

Given a distance matrix, we calculate Dijkstra’s geodesic distances (shortest

paths) D [42], and calculate the doubly centered kernel matrix as in Eq. (3.1).

K(D2) = −1

2
HD2H , (3.1)

where D2 = [D2
ij] means the element-wise square of the geodesic distance matrix

D = [Dij], H is the centering matrix, given by

H = I − 1

N
eNe>N , (3.2)

for eN = [1 . . . 1]> ∈ RN . Then, we make the kernel matrix positive semidefinite by

26

adding a constant, c.

K̃ = K(D2) + 2cK(D) +
1

2
c2H , (3.3)

where c is the largest eigenvalue of the matrix




0 2K(D2)

−I −4K(D)


 [43] and K(D) =

−1
2
HDH as shown in Eq. (3.1). Eq. (3.3) implies substituting D̃ for D in Eq. (3.1),

given by

D̃ij = Dij + c(1− δij), (3.4)

which makes the matrix K positive semidefinite. The term δij is the Kronecker

delta. Finally, projection mapping Y is given by Eq. (3.5) after eigen-decomposition,

K̃ = V ΛV >.

Y = V Λ
1
2 . (3.5)

The matrix K̃ is a Mercer kernel matrix, so its (i, j)th element is represented by

K̃ij = k(xi,xj)

= φ>(xi)φ(xj), (3.6)

where φ(·) is a nonlinear mapping onto a feature space or a low-dimensional manifold.

The coordinates in the feature space can be easily computed by projecting the cen-

tered data matrix onto the normalized eigenvectors of the sample covariance matrix

in the feature space,

C =
1

N
(ΦH) (ΦH)> , (3.7)

where Φ = [φ(x1), . . . , φ(xN)]. Using this mapping, novel data points can be pro-

27

jected on the same feature space as the training data points. See below for details.

b. Generalization Property

As in KPCA, we can project a test data point tl in the low-dimensional space by

[yl]i =
1√
λi

N∑
j=1

[vi]jk(tl,xj), (3.8)

where [·]i represents the ith element of a vector and vi is the ith eigenvector of K̃.

The geodesic kernel for the test data point, k(tl,xj), in Eq. (3.8), is constructed by

the kernel matrix (Eq. (3.3)) for a set of training data points and geodesic distances,

Dlj, between test data points tl and all training data points xj, j = 1, . . . , N . As in

Eq. (3.4), Dlj is also modified by

D̃lj = Dlj + c. (3.9)

Note that the geodesic distance D̃lj in the feature space has a Euclidean representa-

tion. Hence, the following relation holds:

D̃2
lj = [φ(tl)− φ(xj)]

> [φ(tl)− φ(xj)]

= φ>(tl)φ(tl) + φ>(xj)φ(xj)− 2φ>(tl)φ(xj). (3.10)

Taking into account that the mappings on the feature space {φ(xj)} are centered, we

have

1

N

N∑
j=1

D̃2
lj = φ>(tl)φ(tl) +

1

N

N∑
j=1

φ>(xj)φ(xj). (3.11)

28

Then, it follows from Eq. (3.10) and Eq. (3.11) that the kernel for the test data point

tl, is computed as

k(tl,xj) = φ>(tl)φ(xj)

= −1

2

(
D̃2

lj − φ>(tl)φ(tl)− φ>(xj)φ(xj)
)

= −1

2

(
D̃2

lj −
1

N

N∑
i=1

D̃2
li +

1

N

N∑
i=1

K̃ii − K̃jj

)
. (3.12)

For the detailed derivation and properties of kernel Isomap, see [10].

2. Applications

Kernel Isomap has been applied to many data sets showing successful performance

in finding a smaller number of dominant factors out of a high-dimensional data set

as well as demonstrating projection property for the test data. Here, I present some

examples. See [10, 11, 23, 12, 44] for more experiments I have done.

a. Noisy Swiss Roll Data

Noisy Swiss roll data was generated by adding isotropic Gaussian noise with zero

mean and variance=0.25 to the original Swiss roll data that was used in Isomap

(see Fig. 10 (a)). In the training phase, 1,200 data points were used to construct a

neighborhood graph with a neighbor size of k = 4. As in Isomap, geodesic distances

were computed by calculating shortest paths using Dijkstra’s algorithm.

Representative embedding results (onto 3-dimensional feature space) for Isomap

and kernel Isomap, are shown in Fig. 10 (b) and (c), respectively, where kernel Isomap

is shown to provide a smoother embedded manifold than Isomap. The geodesic kernel

matrix modified by a constant-shifting method led kernel Isomap to find a smooth

embedded manifold.

29

(a) (b)

(c) (d)

Fig. 10. Comparison of Isomap with kernel Isomap for the case of noisy Swiss roll data.

(a) noisy Swiss roll data; (b) projection result by Isomap; (c) projection result

by kernel Isomap; (d) projection of test data points using kernel Isomap [28].

The generalization property of the kernel Isomap algorithm is shown in Fig. 10

(d), where 3,000 test data points are correctly embedded while preserving local isom-

etry. The modification by constant-shifting in kernel Isomap improves the embedding

while preserving local isometry (see (c)) as well as allowing the projection of test data

points onto the same feature space as the training data points (see (d)). Note that

Isomap cannot be used for projections as in (d).

30

b. Handwritten Digits

I applied kernel Isomap to the United States Postal Service (USPS) data set. I used

a portion of the USPS data set, which contained digits ‘7’ and ‘9’. Fig. 11 is the digit

images projected on the recovered 2-dimensional space. I also applied kernel Isomap

to information retrieval tasks. The result of retrieval is shown in Fig. 12. This result

shows that kernel Isomap can be used in a retrieval system which searches data points

similar to the query point referencing only the selected features.

Fig. 11. Digit images in 2-dimensional space. The vertical axis means the height-width

ratio and the horizontal axis means how curved the upper portion of digit is

[11].

c. HRIR Data

It was recently shown in [45] that a low-dimensional manifold of the head-related

impulse responses (HRIRs) can encode perceptual information related to the direc-

tion of the sound source. Locally linear embedding (LLE) [8] was applied to find

31

(a) (b)

Fig. 12. Query point and the retrieval results in USPS handwritten digits. (a) Query

image, and (b) the Results which have the same degree of curve in the upper

portion as that of the query image [11].

a nonlinear low-dimensional feature space of HRIRs [45]. In this experiment, I used

public-domain CIPIC HRIR data set [46] and applied Isomap as well as kernel Isomap,

comparing the embedding results of these two methods.

We mainly pay our attention to the HRIRs involving sound sources specified

by different elevation angles (see Fig. 13). The database contains HRIRs sampled

Fig. 13. HRIRs are measured for sound sources at different locations. Locations of

sound sources vary according to different elevation angles in interaural-polar

coordinates. Elevations are uniformly sampled in 360/64 = 5.625◦ steps from

−45◦ to 230.625◦.

at 1250 points around the head for 45 subjects. Azimuth is sampled from −80◦ to

80◦ and elevation from −45◦ to 230.625◦. Each HRIR is a 200-dimensional vector

corresponding to a duration of about 4.5ms. The HRIR of the right ear for the 18th

subject is shown in Fig. 14.

32

T
im

e
(m

s)

0 10 20 30 40 50 60 70 80 90 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Elevation (degrees)

Fig. 14. A HRIR of the right ear for the case of zero azimuth.

Two-dimensional manifolds of HRIRs (with different elevation angles) are shown

in Fig. 15 for Isomap and kernel Isomap, where kernel Isomap finds a smooth low-

dimensional manifold that encodes perceptual information related to different eleva-

tion angles (location of sound), in contrast to Isomap where there are two curves due

to noise effect. A one-dimensional manifold computed by kernel Isomap is shown in

Fig. 16, where points projected onto the largest eigenvector of the geodesic kernel

matrix K̃ used in kernel Isomap, are plotted with respect to elevation angles.

d. Spoken Letters Data

I applied Isomap and kernel Isomap to the ‘Isolet Spoken Letters Data’ which is

available from ‘University of California, Irvine’ (UCI) Machine Learning Repository

[47], that was also used recently in [48, 49]. I used a portion of Isolet DB, which

contains utterances of 30 subjects who spoke the name of each letter of English

alphabet twice. Thus the number of data points are 1,560 (= 26×2×30). Attributes

33

(a) (b)

Fig. 15. Two-dimensional manifolds of HRIRs. (a) Isomap; (b) Kernel Isomap. Kernel

Isomap finds a smooth low-dimensional manifold of HRIRs, in contrast to

Isomap.

−50 0 50 100 150 200 250
−6

−5

−4

−3

−2

−1

0

1

2

3

4

F
irs

t E
m

be
dd

ed
 C

om
po

ne
nt

Elevation (degrees)

Fig. 16. One-dimensional manifold of HRIR computed by kernel Isomap.

34

(features) are 617, including spectral coefficients, contour features, sonorant features,

pre-sonorant features, and post-sonorant features. These utterances are in a high-

dimensional space, however, it is expected that distinctive phonetic dimensions are

few. Two-dimensional manifolds of Isolet data found by Isomap and kernel Isomap,

are shown in Figs. 17 and 18, where one can see that kernel Isomap shows slightly

better cluster structure, compared to Isomap. Even though kernel Isomap is not able

to discriminate clearly every English letters in a two-dimensional manifold, it still

shows better performance over Isomap.

A A

B
B

C
C

D
D

E
E F

F

GG

H
H

I I

JJ
KK

LLM
M

A A

BB

C
C

D

D

E

E

FF

G
G

H

H

I
I

JJ

K
K

L
L

M

M
AA

BB

CC

D
D E

E

F

F

G

G

HH

I

I

J J

KK

L
LM

M
AA

BB

CC

D

D

E
E

FFG

G

H

H

I

I

J
J

K

KLL
MM

A
A

BBC

C

D

D

EE

F

FG
G

H

H

II

J

J
K

K

L
LM

M

Fig. 17. Isomap result on Isolet data. Two-dimensional manifold of spoken letters data

by Isomap.

35

A
A

B

B

CC

DD

E

E

FF

GG

H

H

I
I

J
J KK

L

L

M

M

A
A

BB

CC

D
D

E

E

FF

G
G

H

H

I

I

JJ

K

K

LL

M

M A
A

BB

C
C

D

D E
E F

F
G

G

H

H

I
I

J
J

KK

L
LM

M
AA

BB

C
C

D

D

E
E

FF

G

G

H
H

I

I

J
J

K

K

LL

MM

A
AB

BC
C

D
D

EE
F

F

GG

H

H

I
I

J
J

K
K

L

LM

M

Fig. 18. Kernel Isomap result on Isolet data. Two-dimensional manifolds of spoken

letters data by kernel Isomap.

36

e. Sketch Data

Current feature-based sketch recognition systems use human-chosen features to per-

form recognition. Effective features for classification can also be automatically learned

and chosen by the computer. In other recognition domains, such as face recognition,

manifold learning methods have been found to be good nonlinear feature extractors.

Few manifold learning algorithms, however, have been applied to sketch recognition.

Here, I developed a new algorithm for multi-stroke sketch recognition, which is based

on kernel Isomap.

1 2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

1

H
it

R
at

es

Methods

Fig. 19. Sketch recognition results. The classification accuracies of three methods for

mathematical symbols (‘+’, ‘–’, ‘×’, ‘/’, ‘=’, ‘sin’, ‘cos’ and ‘tan’): (Method

1) Rubine’s method (Method 2) $1 recognizer (Method 3) kernel Isomap and

(Method 4) weighted kernel Isomap. The average hit rates were 60.46%,

82.41%, 92.77% and 92.41%, respectively [12]. The box plot shows the lower

quartile, median, and upper quartile values and the Whisker plot shows the

most extreme values within 1.5 times the interquartile range from the ends of

each box. The red ‘+’ marks are outliers.

I applied kernel Isomap to 8 different mathematical symbols (‘+’, ‘–’, ‘×’, ‘/’,

37

‘=’, ‘sin’, ‘cos’ and ‘tan’), drawn by 10 subjects, where each class of each person

contained 5 characters, each of which was drawn in one stroke. In order to show

the advantages of using kernel Isomap, I compared the proposed method with the

algorithm in [50] and the $1 recognizer in [51]. For more robust results, I executed

10-fold cross validation 50 times. Fig. 19 compares the classification hit rates by the

four approaches: (1) Rubine’s method, (2) $1 recognizer (3) kernel Isomap and (4)

weighted kernel Isomap. Here kernel Isomap shows the best results. In this figure,

kernel Isomap has better performance in classification than other methods. This

approach can be applied directly to any other gesture recognition.

3. Summary

In sum, I presented the kernel Isomap algorithm where I constructed a geodesic Mercer

kernel matrix through a constant-shifting method. Kernel Isomap was explicitly

related to kernel PCA, providing the generalization property such that test data

points were able to be embedded in the associated low-dimensional space by a geodesic

kernel mapping. Numerical experiments with several data sets such as noisy Swiss roll

data, USPS handwritten digits, HRIR, Isolet spoken letters, and sketch data verified

the useful properties of kernel Isomap.

B. Data Integration

For data integration, I use a general framework called α-integration, proposed by

Amari [35]. So, in this section, I will briefly review how I applied α-integration

to other algorithms so that those algorithms become generalized. Also, I expand

α-integration by using learning algorithms of the parameters in the integration.

38

1. α-Integration on Evidence Theory

In order to test the utility of α-integration in data integration, I applied α-integration

to evidence theory (or Dempster-Shafer theory). Two approaches were evaluated: (1)

the D-S combination rule interpreted as a special case of α-integration and gener-

alized, and (2) the previous averaging methods for ET generalized. Note that both

generalization approaches can be applied together at the same time. Here, I briefly

describe evidence theory and show how to apply α-integration to evidence theory.

See [18, 19, 52] for details on evidence theory.

a. Evidence Theory

Evidence theory (ET) is a mathematically well defined theory for handling conflicts

between different bodies of evidence. It is conceptually the same as Bayesian theory

except that it uses epistemic (subjective) uncertainty [53]. The advantages of ET

include its flexibility in theory and easy implementability. As the first evidence theory,

Dempster and Shafer proposed the D-S combination rule [18, 19]. Here, I give a brief

review of it. For details, see [52] and references therein.

Let Θ be a set of hypotheses, and m be a basic belief assignment (BBA) which

is a function from a subset of Θ to [0, 1] with the following properties.

m(φ) = 0,

∑
A⊆Θ

m(A) = 1. (3.13)

When two bodies of evidence m1 and m2 are given, the D-S combination rule for

m̃(A) is defined by

m̃(A) =

∑
B∩C=A m1(B)m2(C)

1−K
, (3.14)

39

where

K =
∑

B∩C=φ

m1(B)m2(C). (3.15)

Here, K indicates basic probability associated with conflict. This can be easily ex-

panded to more than two bodies of evidence.

As pointed out in [54], in some cases the D-S combination rule is against our

intuitive reasoning. For example, when only one evidence has 0 belief but all others

have 1 belief, still the combination is 0. To overcome this weakness, ET has been

improved in some directions, and the averaging approach is known to be better than

others [52].

In [54], Murphy proposed an averaging rule to avoid nonintuitive combination in

ET. When there are N bodies of evidence, Murphy’s rule first calculates the average

of each hypothesis for the evidence and applies the D-S combination rule with the

averages N − 1 times. That is, Eq. (3.14) can be modified as follows.

m̃(A) =

∑
B∩C=A m̄(B)m̄(C)

1− K̄
, (3.16)

where

K̄ =
∑

B∩C=φ

m̄(B)m̄(C). (3.17)

Here, m̄(B) and m̄(C) are the averages of evidence for B and C, respectively. Here,

all bodies of evidence have the same importance with the same weight in calculating

the average, which is not always the case. Instead of a simple averaging rule, some

other researchers have tried a weighted sum of bodies of evidence [55, 56].

b. α-Integration on D-S Combination Rule

I interpreted the combination rule as a kind of averaging and proposed a generalized

method which can avoid the problems in the original D-S combination rule has.

40

The D-S combination rule in Eq. (3.14) can be rewritten by

m̃(A) =

∑
B∩C=A m12(BC)2

1−K
, (3.18)

where

m12(BC) =
√

m1(B)m2(C). (3.19)

This is the geometric mean of m1(B) and m2(C).

Now using the fact that the geometric mean is a special case of α-integration

with α = 1, we generalize it as follows.

m̃(A) =

∑
B∩C=A mα,12(BC)2

1−K
, (3.20)

where

mα,12(BC) = f−1
α [fα(m1(B)) + fα(m2(C))] . (3.21)

Eq. (3.20) with Eq. (3.21) is a more generalized combination rule, which can avoid

the nonintuitive problem stated above by choosing the α value carefully.

c. α-Integration on Averaging Methods

Several averaging rules have been proposed to overcome the problem of the D-S combi-

nation rule. I also generalized the previous averaging methods with α-integration. By

applying α-integration, the previous averaging methods which are arithmetic means

with different weights can be replaced with

m̄α(Ai) = f−1
α

(∑
j=1

wjfα(mj(Ai))

)
, (3.22)

where wj are obtained as in the previous averaging methods. Even though in the

experiments below I used one example of the averaging rule, probabilistic weight

41

method in [56], the approach can be applied to any other averaging methods.

After calculating the α-integration of all the hypotheses, I applied the D-S com-

bination rule N − 1 times as other averaging methods do. With the new averaging

rule in Eq. (3.22), the combination rule in Eq. (3.16) is modified as follows.

m̃α(A) =

∑
B∩C=A m̄α(B)m̄α(C)

1− K̄α

, (3.23)

where

K̄α =
∑

B∩C=φ

m̄α(B)m̄α(C). (3.24)

d. Experiments

In order to show the useful properties of the generalized versions, I carried out exper-

iments with two different data sets used in two previously published papers: (a) the

data set in [57] and (b) the data set in [55]. Both data sets are for target recognition

systems where there is one true target (for both cases, hypothesis A is the true target)

with multiple evidence. I tested my proposed methods with different α values. Note

that the D-S combination rule and the previous averaging methods are a special case

with specific α values. For the comparison between the previous averaging methods,

see [56].

Application of α-Integration on D-S combination rule: In Fig. 20, we

can see that the original D-S combination rule which is a special case of the proposed

method with α = 1 is not the best way to combine the bodies of evidence. Rather,

when α is around -1, the combination result is more desirable. Note that the results

for hypothesis A with α = 1, 2, 3 are zero after evidence 2 no matter how high other

BBAs are, because it ignores all the conflicting evidence which can be interpreted

as an AND operation as mentioned in [52]. Since α-integration is a monotonically

42

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evidence bodies

B
el

ie
f a

ss
ig

nm
en

t

alpha = −3
alpha = −2
alpha = −1
alpha = 0
alpha = 1
alpha = 2
alpha = 3

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evidence bodies

B
el

ie
f a

ss
ig

nm
en

t

alpha = −3
alpha = −2
alpha = −1
alpha = 0
alpha = 1
alpha = 2
alpha = 3

(a) (b)

Fig. 20. The D-S combination rule is generalized with several α values. The belief

assignments of the hypothesis A with different α values are shown for (a)

Xu’s data [57] and (b) Yong’s data [55].

decreasing function, once the result of a certain α value is the minimum, then the

bigger α values have the same minimum results as shown in Fig. 20. On the other

hand, in the cases of α < 1, the results are not against our intuitive reasoning.

Application of α-Integration on averaging methods: When an averaging

rule is generalized with α-integration, the belief assignments of the hypothesis A are

similar to Fig. 20. Fig. 21 shows the belief value of the hypothesis C which is expected

to decrease as the bodies of evidence are added. In Fig. 21 (a), smaller values for α

than -1 are generally better and in Fig. 21 (b), roughly speaking, α = 0 seems better

than others. That is, the best α value depends on each situation and we can wisely

choose the value to get a more desirable result from multiple evidence. Also, note

that even though I used only integer values for α, any real number would be possible.

Note that we can apply α-integration to both the D-S combination rule and an

averaging rule. In Fig. 22, to make the figures clearer, I tested two α values for

the averaging rules and six α values for the D-S combination rule. Fig. 22 shows

43

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of evidence bodies

B
el

ie
f a

ss
ig

nm
en

t

alpha = −3
alpha = −2
alpha = −1
alpha = 0
alpha = 1
alpha = 2
alpha = 3

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of evidence bodies

B
el

ie
f a

ss
ig

nm
en

t

alpha = −3
alpha = −2
alpha = −1
alpha = 0
alpha = 1
alpha = 2
alpha = 3

(a) (b)

Fig. 21. One averaging rule for ET is generalized with several α values. The belief

assignments of the hypothesis C with different α values for the averaging rule

are shown for (a) Xu’s data [57] and (b) Yong’s data [55].

0 1 2 3 4 5
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

alpha value for D−S combination

B
el

ie
f a

ss
ig

nm
en

t

avg. alpha = −1
avg. alpha = 0

0 1 2 3 4 5
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

alpha value for D−S combination

B
el

ie
f a

ss
ig

nm
en

t

avg. alpha = −1
avg. alpha = 0

(a) (b)

Fig. 22. ET generalized by α-integration. The converged belief assignments of the hy-

pothesis A from several α to both the D-S combination rule and the averaging

rule for (a) Xu’s data and (b) Yong’s data.

44

the converged belief assignment after combining all the evidence. We can see with

different α values, the results are changing. That is, this generalized method gives us

more room to improve the performance by fitting the α value. Note that the previous

averaging method is a special case with α = −1 (arithmetic mean) for the averaging

rule and α = 1 (geometric mean) for the combination rule. With different α values,

we could get better results.

See [58] for details and experimental results that confirm the effectiveness of the

algorithm.

2. α-Integration on Linear Discriminant Analysis

As another application of α-integration, I generalized linear discriminant analysis

(LDA) [59] by applying α-integration to calculate the between-scatter and within-

scatter matrices in the LDA formulation. The ways to calculate these scatter matrices

can be interpreted as a special averaging method. In this section, I also discuss the

problems with LDA that is the reason why we need to generalize LDA.

a. Linear Discriminant Analysis

Since there is an abundance of published work on LDA, here it is suffice to describe

the objective function of LDA. See [4, 60, 61, 62, 63] for the detail and the related

work.

For the case of two classes, assume that there are n d-dimensional samples

x1, . . . , xn with n1 samples in class C1 and n2 samples in class C2. The class mean

45

vectors, mi, and global mean vector, m, are calculated by

mi =
1

ni

∑
x∈Ci

x, for i = 1, 2, (3.25)

m =
1

n

n∑
i

xi. (3.26)

The projection of x is obtained by

y = w>x, (3.27)

where w is a direction vector for projection. Then the objective function is basically

the ratio of the variance between the classes to the variance within the classes on the

projected space, and defined by

J(w) =
σ2

between

σ2
within

=
w>SBw

w>SWw
, (3.28)

where

SB = (m1 −m2)(m1 −m2)
>, (3.29)

SW = S1 + S2, (3.30)

Si =
∑
x∈Ci

(x−mi)(x−mi)
>.

For more than two classes, say c classes, the objective function is slightly changed

as follows.

J(W) =
W>SBW

W>SWW
, (3.31)

46

where

SW =
c∑
i

Si, (3.32)

SB =
c∑
i

ni(mi −m)(mi −m)>, (3.33)

where SW and SB use arithmetic mean of Si and (mi−m)(mi−m)>, respectively.

Fig. 23. Toy data set with three classes for LDA. The three classes have different scales

of variance. Especially the blue class has a much greater variance than the

other two classes. If we try to reduce the within-scatter on the projected space

as the original LDA does, the scatterness in the upper class (blue) would affect

to the projection more than that of the other two classes.

When the scales of Si are different in each class as in Fig. 23, the objective

function in Eq. (3.31) considers the bigger covariance matrix more seriously on the

projected space so that the variance of the blue class will play the major role in

LDA as shown in Fig. 25 (a), which is not always the best projection. We want to

reduce the effect of the variance of the bigger classes than other classes for better

classification performance in lower-dimensional space.

Likewise, when mi are not equidistant from m as in Fig. 24, the objective func-

tion in Eq. (3.31) considers the longer distance more seriously on the projected space.

47

Fig. 24. Toy data sets with four classes for LDA. All classes have different distances

to the global mean and the difference is large. The green and the red classes

(the two middle ones) are very close to the global mean but the blue and the

black ones are very far from the mean. If we try to preserve (or maximize) the

distance between classes in a one-dimensional space, the distance of classes

far away from the center would affect to the projection more than the other

two classes near the center. Note that all four classes have the same variance.

In such cases, regardless of the classification ability on the projected space, LDA tries

to preserve the distance on the space as shown in Fig. 26 (a), which is not the best

way for projection. We want to separate all the classes as much as possible on the

projected space rather than preserving the distances.

Since the goal of LDA is to extract more informative projected space for classifi-

cation instead of preserving the distance on the projected space, we need to put more

weight on the smaller distances or “within-scatter”. This is what α-integration can do.

Therefore, both scatter matrices, SW and SB, can be generalized with α-integration.

b. α-Integration on the Scatter Matrices

I generalized the within-scatter matrix SW and the between-scatter matrix SB for

multi-classes cases with α-integration. As applied in evidence theory, α-integration

48

can be applied simply and the generalized equations are as follows.

SW = f−1
α

(
c∑
i

fα(Si)

)
, (3.34)

SB = f−1
α

(
c∑
i

nifα

(
(mi −m)(mi −m)>

)
)

, (3.35)

where fα(·) is the α-function in Eq. (2.11) element-wisely applied to a matrix. The

original LDA is a special case of the generalized method with α = −1 for both

integration.

Note that α-integration works with positive sources and the scatter matrices

might have negative values. We can add a constant value to the elements of the scatter

matrices so that all the values become positive and then subtract the constant from

the integrated matrix. In the current work, I made the constant value by negating

the minimum value of the sources. We may need a more careful estimation of this

constant which affects the performance.

c. Experiments

Fig. 25 shows projected spaces of the data in Fig. 23. The project direction of the

data set rotates as the α value increases. Even though the plots are shown in 2-

dimensional space, the first component (horizontal axis) is more important in pursuing

the effectiveness of dimensionality reduction. In the first component, the generalized

LDA (b-f) has room for improvement especially with α = 1. In the original LDA

in (a), however, the red and the green classes are completely overlapped in the first

component. In this data set, each class mean is equidistant to the global mean so

that the generalized integration of the within-scatter matrices affects the projection

more dominantly than the one based on the between-scatter matrices.

Fig. 26 shows the projected spaces of the data in Fig. 24. As in Fig. 25, the

49

(a) α = −1 (b) α = 0 (c) α = 1

(d) α = 2 (e) α = 3 (f) α = 4

Fig. 25. Original LDA vs. generalized LDA on the three classes data. (a) Conventional

LDA where the red and the green classes are completely overlapped in the first

component space (horizontal axis). (b-f) Generalized LDA by α-integration

in the scatter matrices with α = 0, 1, 2, 3, 4. In (c) with α = 1, the red and

the green classes are well separated in the first component space as well as

the blue one.

50

horizontal axis is more important. The projection direction rotates along with the

α value. The generalized LDA method has better clustering results especially with

α = 4 while the conventional LDA in (a) has totally overlapping classes. In this data

set, with the isotropic variance, the generalized integration of the between-scatter

matrices affects the projection more dominantly than the one based on the within-

scatter matrices.

(a) α = −1 (b) α = 0 (c) α = 1

(d) α = 2 (e) α = 3 (f) α = 4

Fig. 26. Original LDA vs. generalized LDA on the four classes data. (a) Conventional

LDA where the red and the green classes are completely overlapped in the first

component space (horizontal axis). (b-f) Generalized LDA by α-integration

in the scatter matrices with α = 0, 1, 2, 3, 4. When α is 4, the red and the

green classes are well separated in the first component space as well as the

blue and the black ones.

From the two experiments, we can see that the optimal α value depends on each

51

data set. The within-scatter and the between-scatter matrices determine which value

would be better for α. That is, we cannot determine the value in advance and should

learn the value from each data set. Also, conventional LDA does not always find the

best projection for all kinds of data sets.

3. Learning α-Integration

There is an unresolved critical issue with α-integration. In most existing works [64,

35, 65, 66] including the description in the previous sections, the value of α as well as

the weight vector w is given in advance rather than learned. Even though the theory

generalizes some specific stochastic models into the α-family, in practice, we have to

specify the α value when we use this integration with a specific data set. It means

that we have to decide which model is going to be used in advance. For example,

if we fix α to 1 in advance, we get to use geometric mean from the exponential

family which is a special case of α-integration from α-family. Then there is no actual

benefit in generalizing an arbitrary stochastic model. If we can find out the α value

automatically, the size of the model that is considered gets larger than that of a

specific stochastic model. Instead of one model specified by α, the integration gets

more accurate in terms of α-divergence since it searches over all the models.

To overcome these issues, I proposed new algorithms to learn α-integration from

data when the sources and only a few integrated target values are available. There

are two kinds of parameters: α and w. Given a couple of training data points, I first

define an objective function with respect to α and w and then derive two algorithms

to learn the parameters based on gradient descent. The update procedure consists of

two parts: (1) α-integration and (2) parameter updating. These parts are executed

iteratively because parameter update equations include the α-integration equation in

themselves.

52

The problem that I consider is as follows. Given M positive measurements,

mi(x), where i = 1, · · · ,M and mi(x) > 0 for all x, our task is to determine an α-

integration m̃(x) when target values for m̃(x) are partially available. We assume that

either α or w is known in advance. In other words, given wi’s (or fixed in advance),

we learn the parameter α such that the optimal α-integration m̃(x) is as close to

partially available target values as possible. If α is given, then we learn parameters

wi’s under the same criterion.

Optimal α-integration has the form

m̃(x) =





{∑
i wimi(x)

1−α
2

} 2
1−α

, α 6= 1,

exp {∑i wi log mi(x)} , α = 1,
(3.36)

which is derived by applying calculus of variation to solve ∂Jα[m̃(x)]
∂m̃(x)

= 0 for m̃(x),

where Jα[m̃(x)] is of the form of Eq. (2.13).

a. Learning α

Given M measures mi(xk) where i = 1, ..., M and k = 1, ..., N , let SN be the number

of targets (SN ¿ N). With true target values tj (the integrated values) where

j = 1, · · · , SN , the objective function for α, J (α) is defined as

J (α) =

SN∑
j=1

(tj − m̃(xj))
2, (3.37)

which is expected to be minimized. Then, we take a derivative of Eq. (3.37), as

follows.

∂J (α)

∂α
= −2

∑
j

(tj − m̃(xj))
∂m̃(xj)

∂α
, (3.38)

53

where

∂m̃(x)

∂α
=

2m̃(x)

1− α

{
log(

∑
i wifα(mi(x)))

1− α
+

∑
i wi

∂fα(mi(x))
∂α∑

i wifα(mi(x))

}
,

∂fα(u)

∂α
= −1

2
log(u)u

1−α
2 .

Finally, we can use gradient descent to update α given by

∆α = −ηα
∂J (α)

∂α
, (3.39)

where ηα is the learning rate for α. Note that since m̃(x) is a monotonically decreasing

function with respect to α, Eq. (3.37) is a convex function and Eq. (3.39) always

converges to the global optimizer.

b. Learning w

In order to learn w, we can use Eq. (3.37) as an objective function for w to get a

gradient algorithm based on the derivative of the objective function with respect to

w. Each element of the gradient vector ∂J (w)
∂w is obtained by

∂J (w)

∂wi

= −2
∑

j

(tj − m̃(xj))
∂m̃(xj)

∂wi

, (3.40)

where

∂m̃(x)

∂wi

=





2
1−α

(
m̃(x)fα((mi(x))∑

k wkfα(mk(x))

)
, α 6= 1

m̃(x) log mi(x), α = 1
.

Then, the update rule is given by

∆w = −ηw
∂(Jw)

∂w
, (3.41)

where ηw is the learning rate for w.

However, for w, as long as the α value is around 1, we can have an algebraic

54

solution which is approximately the same as the solution from Eq. (3.41). We can

slightly modify the objective function in Eq. (3.37) to look like

J2(w) =

SN∑
j=1

(fα(tj)−
∑

i

wifα(mi(xj))
2. (3.42)

Note that this objective function does not have m̃(x) in the equation in contrast to J ,

so w can be obtained without any iterative interaction with the update rule for m̃(x).

Actually, J2 is a variation of J where f was taken off, where f has nothing to do with

w. Then we use the least square method for optimization as below (pseudo-inverse)

w = (ΦΦ>)−1Φfα(t), (3.43)

where

Φ =




fα(m1(st))

fα(m2(st))

· · ·
fα(mM(st))




.

Note that usually the gradient method needs a series of updates until it converges,

whereas the least square method needs just one step of calculation.

c. Experiments

In order to show the effectiveness of the proposed algorithm, I carried out experiments

with two different data sets: (a) a synthetic data set with two curves and a few

true integrated values and (b) monthly average temperatures of multiple cities from

www.cityrating.com. See [67] for more detail.

Synthetic data set: Given 2 curves and only 5 target values from the true

integration, I tried to find the true integration curve which has an optimal α or w for

55

the target values when one of the parameters is given. In Fig. 27, I used one weight

vector, [0.4 0.6] with different true α values, 3 and -2 (unknown to the algorithm).

The α learning procedure is based on two black solid curves and 5 points randomly

selected from the true curve with the fixed weights. The learning trajectory is shown

in Fig. 28. In Fig. 27, the blue dotted curves are the estimated curve m̃(x) and the

sum of the squared errors between the estimated curve and the true curve are 9.85e-11

and 9.91e-11 for (a) and (b), respectively. With different weight vectors like [0.9 0.1],

the proposed algorithm worked perfectly too (data not shown).

(a) (b)

Fig. 27. Estimated curves by learning α-integration. The true curves were generated

with different α, but with the same weight vector [0.6 0.4]. The true α values

are 3 and -2 for (a) and (b), respectively. Two black curves in each figure are

mi and the blue dot curve is the estimated one m̃(x) for each case. Five red

dots are target values.

Given α, the proposed algorithm found out w perfectly with any given hidden

true weights. The squared errors in the estimated curve and in the estimated weight

vector are almost 0 as shown in Table I. In this data set, I did not assume any noise

added to the true values.

City temperature data set: To test the proposed method in a real world

56

0 100 200 300 400 500 600 700
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

iteration

al
ph

a

alpha = 3
alpha =−2

Fig. 28. Trajectories of α values in learning. The true α values were 3 and -2, respec-

tively. Both curves starts from the initial value 0 and are converging to 3 and

-2 at around 700 iterations, respectively. The speed of convergence depends

on the learning rate, which was 0.05 in this case.

Table I. Squared errors in learning w (×10−29).

α -2 -1 0 1 2 3

J 0.725 0.875 3.116 0.017 1.505 0.932

w 0.019 0.024 0.135 0.001 0.228 0.217

57

task, I used a monthly average temperature data from several cities in the U.S as

shown in Table II. First, I used three cities (New York, Chicago, and Houston) as

sources and estimated the temperature of Atlanta. Second, two cities (San Antonio

and Boston) were used as sources and New York as the target. I assumed that all

temperature information is correct, so I used the same weights for all source cities.

For both cases, I used temperatures from 10 randomly selected months to learn α

and tested with the other 2 months’ temperature.

Table II. Monthly average temperature data (F o). Adapted from www.cityrating.com.

City Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chicago 21.0 25.4 37.2 48.6 58.9 68.6 73.2 71.7 64.4 52.8 40.0 26.6

Boston 28.6 30.3 38.6 48.1 58.2 67.7 73.5 71.9 64.8 54.8 45.3 33.6

NY 31.5 33.6 42.4 52.5 62.7 71.6 76.8 75.5 68.2 57.5 47.6 36.6

Atlanta 41.0 44.8 53.5 61.5 69.2 76.0 78.8 78.1 72.7 62.3 53.1 44.5

Houston 50.4 53.9 60.6 68.3 74.5 80.4 82.6 82.3 78.2 69.6 61.0 53.5

SA 49.3 53.5 61.7 69.3 75.5 82.2 85.0 84.9 79.3 70.2 60.4 52.2

For the first case, Atlanta is roughly equidistant to three cities. Here we have two

cooler cities (New York and Chicago) and one warmer city (Houston) than Atlanta.

So we can expect α to be low to move the estimation to get closer to the higher value

(Houston’s temperature) because we have only one warmer city. Fig. 29 (a) shows

boxplot of α values for 50 experiments and the average α value is -11.62 (variance

0.54).

In the second case, New York is much closer to Boston than San Antonio. So

we can expect the α value to be high. Fig. 29 (b) shows boxplot of α values for 50

58

(a) (b)
−15

−10

−5

0

5

10

15

20

al
ph

a

Fig. 29. Boxplot of α values for city temperatures from 50 random experiments. (a)

α values for estimating Atlanta’s temperature from the three other cities:

Chicago, New York and Houston (b) α values for estimating New York’s

temperature from the two other cities: Boston and San Antonio.

1 2 3 4 5 6 7 8 9 10 11 12
20

30

40

50

60

70

80

90

Month

T
em

pe
ra

tu
re

 (
F

)

Fig. 30. Average temperatures (F o) for 1 year. The black (cross) lines are New York,

Chicago and Houston. The blue (square) line is the true Atlanta temperature.

The red (circle) line is the estimated temperature.

59

experiments and the average is 18.37 (variance 0.67). With this kind of an example,

the α value takes on a concrete meaning, based on temperature-based geometry.

According to this α value, we can guess how close the city is to some other city in

terms of the temperature. A high α value means that the city is close to the cooler

city, and a low α value means the city is close to the warmer city.

Learned Fixed to −1
0

1

2

3

4

5

6

7

av
g.

 te
m

pe
ra

tu
re

 e
rr

or

alpha

Fig. 31. Errors in New York’s temperature (F o) estimation from the two other cities:

Boston and San Antonio. The boxplots are from 50 random experiments. In

the ‘alpha’ axis, ‘Learned’ means the estimated α and ‘Fixed to -1’ means the

simple arithmetic average.

Fig. 30 shows the true temperature of Atlanta and estimated temperature with

α = −11.62 learned above. Fig. 31 shows a boxplot of errors in the estimated tem-

perature of New York with α = 18.37 learned above or α = −1 fixed in advance.

There are many causes to affect the temperature of a city. Each month of each city

might have different causes to the temperature. That can be the reason of the error

we cannot overcome simply by averaging even with a very carefully learned α value.

However, the proposed method is better than the simple arithmetic (or geometric

60

or harmonic) average. It theoretically achieves the minimum error among all linear

scale-free averaging methods.

d. Discussion

The α-family includes some stochastic models such as the exponential family and the

mixture family. So, learning α can be seen as finding the best family out of all possible

stochastic families in the α-family. In that sense, the proposed algorithm tries to find

the best stochastic family model and the best distribution in the model, iteratively.

That is, when we learn α, it finds a better model (a set of distributions) than the

current model for the current integration and sources. Then α-integration gives us

the best distribution out of the current model. As a consequence, α-integration with

learning the value of α finds out the best average out of all distributions in α-family.

From a geometrical view point, if we define the distance between any two points

in the set, it implies one corresponding metric, which defines the manifold where

the points lie on. Here, learning α means defining the manifold of the probability

distributions (or nonnegative measurements). When we initialize α, we assume one

manifold and when α changes, the shape of the manifold we assume changes. So, α-

integration with learning the value of α gives us the best integration with the metric

of the manifold which is defined by the optimized α value. The α-integration and the

manifold shape are determined iteratively. These two interpretations are very similar

because α-integration originated from information geometry [38].

In addition, as we saw in the previous section, α can take on a concrete meaning

depending on the data set. In the temperature experiments, α has some temperature-

based geometrical meaning. Likewise, with a specific data set, we can try to interpret

the optimized α value after learning.

Here, the parameters α and w are learned separately in α-integration. So, we

61

need further works to learn α and w at the same time.

C. Summary

In this Chapter, I summarized what I have done so far as the theoretical bases for

manifold integration. I have studied manifold learning and data integration and

developed algorithms for both. Kernel Isomap I proposed is an effective manifold

learning algorithm with desirable properties and has been proved effective with many

real-world data sets. As for data integration, I proposed some algorithms equipped

with α-integration and expanded α-integration. In the next Chapter, I will show

how to consider together manifold learning and data integration, leading to manifold

integration.

62

CHAPTER IV

MANIFOLD INTEGRATION

In this dissertation, I develop a new concept, manifold integration, a data integration

method using the structure of data expressed by multiple manifolds. In this chap-

ter, I describe what manifold integration is (section A) and review some algorithms

that are related to manifold integration (section B). Also, in order to achieve mani-

fold integration, I propose three manifold integration algorithms: (1) kernel oriented

discriminant analysis (KODA) (section C), (2) random walk on multiple manifolds

(RAMS) (section D), (3) manifold α-integration (MAI) (section E). All the proposed

algorithm are tested with synthetic and real world data sets.

A. What is Manifold Integration?

Manifold integration (MI) is a concept combining manifold learning and data integra-

tion as shown in Fig. 32. Contrary to conventional manifold learning algorithms, MI

considers the relationship between data sets (or different manifolds). Also, contrary

to typical data integration algorithms, MI considers structural information in each

data set (or on each manifold).

One assumption in manifold learning is that all the data points are connected.

This assumption makes conventional manifold learning unable to work with multiple

manifolds. I start from another assumption that two types of dissimilarities from

c©2008 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. on Pat-
tern Recognition “Kernel Oriented Discriminant Analysis for Speaker-Independent
Phoneme Spaces” H. Choi, R. Gutierrez-Osuna, S. Choi and Y. Choe. For more
information go to http://thesis.tamu.edu/forms/IEEE permission note.pdf.
*Part of this chapter is reprinted with permission from “Manifold Integration with
Markov Random Walks” by H. Choi, S. Choi and Y. Choe, 2008, Association for the
Advanced of Artificial Intelligence (AAAI-08), Copyright 2008 by AAAI.

63

Fig. 32. Overview of manifold integration. Data integration uses statistical relation

between two sets and manifold learning uses geometric relation between data

points in each set. MI uses both relations.

two different measurements are measured independently. From this, I calculate an

integrated transition probability from multiple transition probabilities converted from

multiple dissimilarities, and then obtain the statistical distance between data points

from the integrated transition probability. This statistical distance is a nonlinear sum

of the multiple distances. This approach can be applied to the case of more than two

manifolds.

However, the assumption may not generally hold and it makes the integration

method to be the product of multiple transition probabilities, which is a special

way to integrate data sets. Motivated by advances in manifold learning and data

integration, I generalize the approach that makes use of α-integration on the transition

probabilities or distances between data points. For the manifold learning part, I use

the kernel Isomap algorithm to utilize its projection property. I show that my method

includes as its special case previous methods such as statistical distance, kernel-based

data fusion or mixture of random walks, by analyzing the compromised distances on

the integrated manifold. MI can be considered as generalized kernel integration and

64

can be applied to sensorimotor integration as well as multimodal sensory integration.

The proposed MI approach is summarized in Table III.

Table III. Sketch of the MI approach.

1. Obtain dissimilarity matrices, E
(i)
D , from the ith measurement.

2. Calculate geodesic distance matrices, G
(i)
D , from E

(i)
D .

3. Integrate G
(i)
D into G∗

D with data integration.

4. Find the low-dimensional space from G∗
D with manifold learning.

5. Project the measurements onto the low-dimensional space.

However, the current MI approach only works with specific types of data that

satisfy the constraints summarized in Table IV. Otherwise, MI will not work as

expected. The first constraint is the same constraint as for manifold learning. The

second one means we should know which point in the ith measurement corresponds

to which point on the jth manifold for all i and j. Tensor network theory also needs

this constraint [68]. Finally, MI will not work well if some manifolds are too different

topologically from the others. That is, neighbors of the kth point on the ith manifold

should be also neighbors of the corresponding point on the jth manifold for all i and

j. Note that these constraints are for the current MI approach and we can make these

constraints loose in the future.

To make the constraints easier to understand, I will give some examples. As a

wrong example for MI, we can think about face images and speech signals for personal

identification, though they can be combined in a different way for personal identifi-

cation. They can be dense enough and the personal identity can connect the facial

image to the corresponding speech signal. But, the two manifolds based on the two

features probably have different topologies which means there is no homeomorphism

65

Table IV. Constraints of MI.

1. Data points should be dense enough and connected on each manifold.

2. Each point on one manifold should correspond to one counter part in

the other manifolds.

3. All the manifolds should share the same topology (topologically isomorphic).

between the two manifolds. That is, two persons with similar looking faces might

have totally different voices.

A good example of MI is two sound signals from the left and the right ears.

Another good example is phonemes from multiple speakers, since phonemes that are

similar in one speaker would be generally similar in others too. As shown in the

next Chapter, sensory information and motor commands are also a good example.

Even though the data sets are heterogeneous, sensory and motor maps can be dense

enough and can be connected, each point on one map corresponding to one point on

the other map and they have topologically similar maps.

B. Related Work

So far, few approaches have been proposed to merge multiple dissimilarity matrices.

A simple method to make one dissimilarity matrix is to combine them through sub-

straction or division [69]. Alternatively, we can use the reproducing kernel Krein space

(RKKS) instead of reproducing kernel Hilbert space (RKHS) as in [70]. RKKS uses

negative eigenvalues in the kernel matrix, while conventional kernel methods use pos-

itive semidefinite kernel matrix. Recently, Abdi suggested an algorithm, DISTATIS,

based on linear sum of manifolds through principal component analysis (PCA) [71].

Also, oriented PCA (OPCA) [72] was proposed to integrate disconnected subspace.

66

More importantly, kernel integration (or kernel fusion) is more closely related to MI

[21].

In this section, I briefly describe those algorithms to compare them to my algo-

rithms presented in the next sections.

1. Using Reproducing Kernel Krein Space

Most kernel methods use positive semidefinite kernel matrix to guarantee that the

dissimilarity matrix is the Euclidean representation in the embedded manifold. In

these methods, any negative eigenvalue for the kernel matrix means error or noise.

However, as in Isomap, usually the kernel matrix from dissimilarity of points does not

satisfy the semi-positiveness. Moreover, as stated in [69], negative eigenvalues might

indicate important features.

Ong showed that non-positive kernels are meaningful just as positive kernels and

suggested using RKKS to generalize reproducing kernel Hilbert space (RKHS) for

both positive semidefinite kernel and negative kernel [70]. With two RKHSs, H+

and H−, if a Krein space K is on RKKS with K = H+ Ä H− defined by 〈f, g〉K =

〈f+, g+〉H+ − 〈f−, g−〉H− , where 〈, 〉K, 〈, 〉H+ and 〈, 〉H− represent inner products in K,

H+ and H−, respectively, and f ∈ K, f+ ∈ H+, f− ∈ H− as do g, g+ and g−, then

there exists two positive kernels k+ and k− such that

k = k+ − k−. (4.1)

From this, if we have two manifolds that are orthogonal, then we can merge them

using Eq. (4.1). From two dissimilarity matrices, we can calculate two kernel matrices

and then apply Eq. (4.1). However, this assumption about orthogonality between two

manifolds is not satisfied in the general case, so when we apply this approach, there

is some distortion in the compromised manifold. Moreover, this approach is only

67

for two dissimilarity measures. To apply this method to more than two dissimilarity

measures, we must apply it iteratively. However, it is unnatural and the order of

merger should be determined properly.

2. DISTATIS

Abdi calculated kernel matrices S(k), k = 1, · · · , C for each dissimilarity matrix D(k),

as in kernel Isomap [71].

S̃
(k)

= −1

2
HD(k)2H , (4.2)

S(k) = λ−1
1 S̃

(k)
, (4.3)

where λ1 is the first eigenvalue of S̃
(k)

, D(k)2 = [D
(k)2
ij] means the element-wise square

of the distance matrix D(k) = [D
(k)
ij], and H is the centering matrix, given by Eq.

(2.2). Then, each kernel matrix is converted into one vector si, to produce a matrix

X = [s1, s2, · · · , sT], which corresponds to a matrix of manifolds using my terminol-

ogy. The principal components are then calculated using the inner product of X as

in MDS or Isomap. The first eigenvector corresponding to the largest eigenvalue is

the compromised matrix, which serves as the target manifold to project the data set.

Actually, this final compromised manifold is expressed using the kernel matrix, S+.

S+ =
C∑

k=1

α(k)S(k), (4.4)

where α is the first eigenvector of N− 1
2 X>XN− 1

2 , and N is the diagonal matrix

with diagonal terms of X>X.

The remaining part is the same as MDS or Isomap. Projection to this compro-

mised manifold Y is executed by Eq. (4.5) after eigen-decomposition, S+ = V ΛV >,

Y = V Λ
1
2 , (4.5)

68

where columns of V and diagonal elements of Λ are eigenvectors and eigenvalues of

S+, respectively.

Here, Abdi et al. tried to find the best space to project the data set. However,

because they used just the first linear principal component of X, they lose some infor-

mation residing in the other components. Especially, when the principal component

is nonlinear, it will lose more information.

3. Oriented PCA

OPCA [72] was proposed by Malayath [73] as a potential method to find such speaker-

independent phoneme space. OPCA is an extension of principal component analysis

(PCA). Like PCA, OPCA maximizes variance in directions defined as informative,

but in addition also minimizes variance in directions considered to be noisy. In the

original formulation in [73], OPCA was used to separate two phonemes and two

speakers as shown in Fig. 33.

Fig. 33. Speech utterances contain two kinds of information. OPCA maximizes the

linguistic information and minimizes the identity information for phoneme

recognition. Adapted from [73].

69

Malayath defines a difference vector dl to capture differences between two phonemes

for the same speaker, and a difference vector ds to capture differences between two

speakers for the same phoneme. From these difference vectors, we can then esti-

mate a covariance matrix for each of the two sources of information in the data (i.e.,

speaker-specific and linguistic) as:

Rl = E
[
(dl − dl)(dl − dl)

>]
,

Rs = E
[
(ds − ds)(ds − ds)

>]
,

(4.6)

where dl and ds are the mean difference between phonemes and speakers, respectively,

and E [·] is the expectation operator. Then, the objective function JOPCA(w) to be

maximized can be written as follows:

JOPCA(w) =
Signal

Noise
=

w>Rlw

w>Rsw
, (4.7)

where w are the basis vectors of the projected space. Note that, by maximizing

JOPCA, we also maximize the signal-to-noise ratio, i.e., the variance due to phonetic

content relative to the variance due to speaker information. This equation is similar

to the objective function in LDA [27], except that Rl and Rs are covariance matrices

of phoneme-difference and speaker-difference, instead of between-class scatter and

within-class scatter.

Note that OPCA assumes that all the phonemes from all the speakers are on one

linear space, which is not always the case.

4. Kernel Fusion

Kernel fusion is a process to integrate separately tuned kernels to analyze multiple

measurements including heterogeneous data sources in computer vision, bioinformat-

ics, audio processing problems and so on. Lanckriet [21] used a weighted sum of kernel

70

matrices for kernel-based data fusion. The integrated kernel from C kernel matrices

is calculated as follows.

K fusion =
C∑

k=1

wkK
(k), (4.8)

where K(k) is the kernel matrix from the kth measurement. Usually the kernel fusion

methods focus on how to calculate the weight wk, assuming that the fused kernel

matrix can be obtained by weighted sum of kernel matrices, even though there are

other ways to integrate the kernels like the product of kernels.

C. Kernel Oriented Discriminant Analysis

Here, I interpret OPCA as a linear multiple MI method considering one speaker’s

phoneme space as one manifold. OPCA is an extension of PCA. Like PCA, OPCA

maximizes variance in directions defined informative, but in addition also minimizes

variance in directions considered to be noisy. In the original formulation [73], OPCA

was used to separate two phonemes of two speakers.

In this dissertation, I extend OPCA to the non-linear case by means of the kernel

trick used in KPCA and KFD [13, 27]. This method, referred to as kernel OPCA

(KOPCA), employs a geodesic-distance-based kernel similar to my previous work [10],

but the technique can be easily extended to other kernel functions (e.g. polynomial,

exponential, hyperbolic tangent functions), as long as they satisfy the Mercer kernel

condition, i.e., positive semidefiniteness of the kernel matrix. As a second step, I

propose a generalization of this algorithm, KOPCA, to multi-class discrimination

problems, and will demonstrate its effectiveness on multiple phonemes. For this

purpose, I use the classical linear discriminant analysis (LDA) approach to OPCA

which leads to oriented discriminant analysis (ODA), and will apply the kernel trick

71

to ODA to obtain a kernel ODA (KODA) method [74].

Although KODA does not perfectly fit into the MI concept described in the

previous section, it can be considered as a special version of manifold integration

since it integrates manifolds. We discuss this issue later with Fig. 36.

1. KODA Algorithm

Kernel ODA can be considered as a generalized version of kernel OPCA for multi-

class problems. Here, to avoid clutter, I show the derivation of kernel OPCA in detail.

Since the derivation of kernel ODA is very similar to that of kernel OPCA, I give just

the objective function of kernel ODA.

In order to ”kernelize” OPCA, the objective function in Eq. (4.7) is implemented

as an inner product matrix. Let X = [x1,x2, · · · ,x4N] and xi ∈ Rd×1, where

xi =





Speaker A, Phoneme X if 1 ≤ i ≤ N

Speaker B, Phoneme X if N + 1 ≤ i ≤ 2N

Speaker A, Phoneme Y if 2N + 1 ≤ i ≤ 3N

Speaker B, Phoneme Y if 3N + 1 ≤ i ≤ 4N

.

As in KFD [27], we transform w>Rlw and w>Rsw into α>Mα and α>Nα, re-

spectively using the kernel trick as follows.

α>Mα = w>RΦ
l w, (4.9)

α>Nα = w>RΦ
s w, (4.10)

where RΦ
l and RΦ

s correspond to Rl and Rs in nonlinear feature space obtained by

applying the nonlinear mapping Φ to the original data points X. Once these M and

N matrices are defined, the remaining part of the method is the same as in KFD

72

[27]. I describe the details of the case Rl below (Rs follows a similar derivation).

First, I express the objective function in terms of the input data X instead of the

difference vectors dl and ds using dl = [x2N+1−x1, · · · ,x4N −x2N], which represents

the difference between phonemes. Then the covariance matrix1 is given by

Rl = E
[
(dl − dl)(dl − dl)

>]

=
1

2N

2N∑
i

(
(di

l − di
l)(d

i
l − di

l)
>
)

=
1

2N

2N∑
i

(x2N+i − xi − x2N+i − xi) · (x2N+i − xi − x2N+i − xi)
>, (4.11)

and

w =
4N∑
i

αixi. (4.12)

Now, w>Rlw is given by

w>Rlw =
4N∑
i

αix
>
i

1

2N

2N∑

k

(
(dk

l − dk
l)(d

k
l − dk

l)
>
) 4N∑

j

αjxj

=
1

2N

2N∑

k

(
4N∑
i

αix
>
i (dk

l − dk
l)(d

k
l − dk

l)
>

4N∑
i

αixi

)
. (4.13)

Let H ik = x>i (dk
l − dk

l). Now, with Ki,j = xi
>xj,

H ik = Ki,2N+k −Ki,k − 1

2N

2N∑
m

(Ki,2N+m −Ki,m) . (4.14)

1We can also define the correlation. Then, consequently, M and N change slightly
with respect to Eqs. (4.16) and (4.17), respectively. In my experiments, the use of this
correlation showed a slightly better performance than the covariance-based algorithm.

73

Finally,

w>Rlw =
1

2N

2N∑

k

(
4N∑
i,j

αiαjH
ikHjk

)

=
1

2N

4N∑
i,j

αiαj

2N∑

k

H ikHjk

=
1

2N

4N∑
i,j

αiαj(HH>)ij

=
1

2N
α>HH>α. (4.15)

Therefore, we obtain M by

M =
1

2N
HH>. (4.16)

Likewise, in case of the denominator w>Rsw in Eq. (4.7), with ds = [xN+1 −
x1, · · · ,x2N − xN ,x3N+1 − x2N+1, · · · ,x4N − x3N], we can derive N as

N =
1

2N
GG> + µI, (4.17)

where

G = [G1G2], (4.18)

G1,ik = Ki,N+k −Ki,k

− 1

2N

N∑
m=1

(Ki,N+m + Ki,3N+m −Ki,m −Ki,2N+m) , (4.19)

G2,ik = Ki,3N+k −Ki,2N+k

− 1

2N

N∑
m=1

(Ki,N+m + Ki,3N+m −Ki,m −Ki,2N+m) . (4.20)

Note that, for regularization purposes, I add a multiple of the identity matrix, µI to

N in Eq. (4.17), where µ is a small number to make N positive definite [27]. In my

experience, this regularization term makes the algorithm more stable.

74

Given a novel test data xt, the projected point yt can be calculated as

yt = w>xt (4.21)

=
4N∑
i

αiKT,it , (4.22)

where KT is a kernel matrix for test data as in Eq. (3.12).

Several Mercer kernel functions (i.e. polynomial, exponential, or hyperbolic tan-

gent function) can be used for the kernel matrices K and KT. Here, I use a kernel

matrix based on the geodesic distance. As discussed in previous work [10], this ap-

proach has the advantage that it can find a nonlinear structure of data set without

critical parameters affecting the performance.

In kernel OPCA, I considered an example with two phonemes and two speakers.

I extend the solution to problems with more than two phonemes. This extension

leads to a new method, which I term kernel ODA. I first define ODA in terms of the

covariance matrix, then derive the kernel ODA solution. With only two speakers,

the correlation matrix Rs remains the same as before. Only the correlation matrix

Rl must be adjusted to handle more than two phonemes. My solution is to use the

between-scatter matrix RL in the LDA solution. With this minor adjustment, the

final objective function of ODA becomes

JODA(w) =
w>RLw

w>Rsw
, (4.23)

where Rs is given in Eq. (4.6) and RL is given by

RL =
C∑
i

ni(µi − µ)(µi − µ)>, (4.24)

where C is the number of classes (phonemes), ni is the number of phonemes in the ith

class, µi is the average of the ith class, and µ is the average of all data. To kernelize it

75

as in Eqs. (4.9) and (4.10), M is obtained from the KFD solution [27] instead of Eq.

(4.16), and N is obtained from the kernel OPCA solution in Eq. (4.17). Projections

of novel test data are obtained with Eq. (4.21). To calculate M and N , I again use

the kernel matrices K̃ and K̃T from kernel Isomap [10].

2. Experiments

I validated the proposed methods through a series of experiments using the CMU

ARCTIC speech database [75]. As performance measures, we applied quadratic clas-

sifiers to the projection of the test data and measured the Bhattacharyya distance of

the class-conditional distributions [76].

Two speakers and two phonemes: The CMU ARCTIC database is a pho-

netically balanced corpus from US speakers, which was designed for unit selection

speech synthesis research. The database includes US English male (‘bdl’, ‘rms’)

and female (‘slt’, ‘clb’) speakers. For a representative example, I extracted two

phonemes (‘AH’ and ‘IH’) for each speaker, and used Mel frequency cepstral coeffi-

cients (MFCCs) as the feature vectors. I used two speakers (‘bdl’, ‘slt’) for training

and two speakers (‘rms’, ‘clb’) for testing. I used 300 samples per phoneme of each

speaker for training, and 400 samples for testing, for a total of 1,200 training sam-

ples and 1,600 test samples. Note that since the phonemes were extracted from real

sentences, two samples from the same speaker and the same phoneme class ‘AH’ may

have significantly different MFCCs as a result of coarticulatory effects.

Fig. 34 shows the subspaces for linear OPCA and kernel OPCA. Even though

both scatterplots show speaker-independent subspaces, the kernel OPCA solution

appears to provide increased separability. Indeed, I measured the Bhattacharyya

distance [76] between the two clusters of phonemes and compared the classification

rate based on quadratic classifier. The results, summarized in Table V, indicate that

76

(a) (b)

Fig. 34. Subspaces for two speakers and two phonemes. (a) linear OPCA and (b)

kernel OPCA. Blue crosses correspond to the phoneme ‘AH,’ whereas red

circles correspond to the phoneme ‘IH’. Yellow circles denote the training

data.

kernel OPCA provides better phoneme discrimination than linear OPCA using either

measure. Paired T-test indicates that the difference in classification performance

between both methods is statistically significant (p=0.0406; n=24).

Two speakers and multiple phonemes: The CMU ARCTIC database is

also used for these experiments. In this case, I extracted three phonemes (‘AH’, ‘IH’

and ‘OW’) for each speaker and used MFCCs as the encoding vector. As in the

previous experiment, I used two speakers (‘bdl’, ‘slt’) for training and two speakers

(‘rms’, ‘clb’) for testing, resulting in 300 samples per phoneme of each speaker for

training, and 300 samples for testing, for a total of 1,800 training samples and 1,800

test samples.

Fig. 35 shows the resulting subspaces for linear ODA and kernel ODA. Kernel

ODA provides more scattered clusters than linear ODA (both within and between

classes), in agreement with kernel OPCA in the previous experiments. Classification

77

Table V. Measurement of the performance for two speakers and two phonemes

(MFCCs) on OPCA and KOPCA.

Methods B-dist B-dist Hit Rate

Train Test on test data

OPCA + Cov 14.71 14.70 85.88%

OPCA + Cor 14.52 14.53 87.58%

KOPCA + Cov 24.11 23.80 88.13%

KOPCA + Cor 24.33 23.91 89.54%

(a) (b)

Fig. 35. Subspaces for two speakers and three phonemes. (a) linear ODA and (b)

kernel ODA. The blue crosses are ‘AH’, the red circles are ‘IH’, and the green

triangles are ‘OW’.

78

rates using a quadratic classifier were 72.93% (linear ODA) and 78.17% (kernel ODA).

When KFD is optimized with some kernel functions (here RBF was the best) and

parameters, it has 74.86% hit rate with the same classifier as before, which means

just phoneme information is not enough to find a speaker-independent space.

3. Discussion

In this section, I proposed a two-pronged generalization of oriented PCA. First, I

found a nonlinear subspace by means of the kernel trick, which led to kernel OPCA.

Second, I extended kernel OPCA to problems with more than two classes, which

led to linear ODA and kernel ODA. Experimental results on the CMU ARCTIC

corpus showed that the proposed methods, kernel OPCA and kernel ODA, provide

better separability than their linear counterparts (OPCA and linear ODA) in finding

a speaker-independent phoneme space, as measured by classification rates and the

Bhattacharyya distance.

These algorithms can be viewed as nonlinear manifold-learning strategies for

problems where data points exist on several clustered manifolds corresponding to

their classes. These algorithms were tested with relatively small data sets in the

speech domain. Additional work is required to determine the extent to which these

results will hold when applied to a larger data set of speakers and the entire phonetic

space.

KODA can integrate multiple manifolds assuming that all the manifolds are

submanifolds of the same unknown manifold and that they are connected as in Fig.

36. The method also maximizes the separability between different classes. In practice,

however, multiple manifolds might not be connected on one manifold as submanifolds.

To overcome such a strong assumption in KODA, as shown in Fig. 32, we need to

obtain all the structural information from each separate manifold and then integrate

79

Fig. 36. Overview of KODA in the case of two speakers’ two phonemes. KODA min-

imizes the distance between the same phonemes (s1 and s2), and maximizes

the distance between different phonemes (d1 and d2). These distances are ob-

tained based on the assumption that these submanifolds are on one unknown

manifold.

80

all the information while not connecting the manifolds geometrically.

D. Random Walks on Multiple Manifolds

In this section, I suggest a new algorithm, random walk on multiple manifolds (RAMS),

utilizing the fact that the distance in Euclidean space can be translated into transi-

tion probability [77]. Sometimes, it is natural to assume that two dissimilarities are

measured independently. With this assumption, we can calculate one transition prob-

ability from multiple transition probabilities, and then obtain a statistical distance

from the integrated transition probability. This statistical distance is a nonlinear

sum of the multiple distances, contrary to DISTATIS [71]. RAMS can be applied to

the case of more than two manifolds, contrary to the reproducing kernel Krein space

(RKKS) method which uses the sign of the eigenvalues [70]. Moreover, since RAMS

uses kernel Isomap after getting one integrated dissimilarity matrix, RAMS inherits

the projection property from kernel Isomap [10].

1. RAMS Algorithm

The connection between random walk and manifold has been mentioned in many

other papers [78, 15, 79]. Let G be a weighted graph with N nodes V and edges E,

representing a manifold. Then, the distance between two nodes on the kth manifold,

D
(k)
ij , can be transformed into probability P

(k)
ij which is the transition probability from

the ith node to the jth node on the kth manifold, which can be given by

P
(k)
ij =

1

Z
(k)
i

e
−D

(k)2
ij

σ(k)2 , (4.25)

where Z
(k)
i is a normalization term so that the sum of transition probabilities from

the ith node to all its neighbors on the kth manifold is 1, and σ(k) is a parameter

81

representing the standard deviation.

Given C dissimilarity matrices, D(1), D(2), · · · ,D(C), we can get C probabil-

ity matrices, P (1),P (2), · · · ,P (C). I assume that these dissimilarities are measured

independently. Note that we are not assuming that these dissimilarities make up or-

thogonal manifolds. Based on these assumptions, the compromised probability matrix

P ∗ is calculated as

P ∗
ij =

1

Z∗
i

C∏

k=1

P
(k)
ij , (4.26)

where Z∗
i is a normalization term given by Z∗

i =
∑

j P ∗
ij. Eq. (4.26) represents the

probability for transition from the ith node to the jth node on the target (or inte-

grated) manifold. From P ∗, I reconstruct the compromised dissimilarity D∗ again.

D∗
ij = σ∗

√
− log(P ∗

ij), (4.27)

which is the statistical distance from all the individual manifolds. Here, the parame-

ters are given by

σ(k) =
1

N2

N∑
i=1

N∑
j=1

D
(k)
ij , (4.28)

σ∗ =
1

C

C∑

k=1

σ(k). (4.29)

Fig. 37 sketches how RAMS handle multiple sources.

After getting D∗, the rest is the same as kernel Isomap [10]. I calculate the

kernel matrix from the compromised dissimilarity matrix.

K = −1

2
HD∗2H . (4.30)

As in kernel Isomap, I make the kernel matrix positive semidefinite by adding a

82

S
ou

rc
e

1
S

ou
rc

e
2

Integrated

Distances DistancesProbabilities Probabilities

Fig. 37. Conversion between distance and transition probability in RAMS.

constant, c.

K̃ = K(D∗2) + 2cK(D∗) +
1

2
c2H , (4.31)

where c is the largest eigenvalue of the matrix




0 2K(D∗2)

−I −4K(D∗)


 . (4.32)

Eq. (4.31) implies substituting D̃
∗

for D∗ in Eq. (4.30), which is given by

D̃∗
ij = D∗

ij + c(1− δij), (4.33)

which makes the matrix K to be positive semidefinite. The term δij is the Kronecker

delta. Finally, projection mapping Y is given by Eq. (4.34) after eigen-decomposition,

K̃ = V ΛV >.

Y = V Λ
1
2 . (4.34)

83

2. Relation to Previous Work

In RKKS, in the case of two distance matrices, the compromised distance matrix D∗

is obtained implicitly from Eq. (4.1) and is given by

D∗
ij =

√
D

(1)2
ij −D

(2)2
ij . (4.35)

It is not easy to compare Eq. (4.35) directly to DISTATIS or RAMS because it

uses negative eigenvalues even though D∗2 is a linear sum of D(1)2 and D(2)2 as in

DISTATIS.

From the RKKS theory, however, if D(1) is orthogonal to D(2), which means

two distances are uncorrelated, RKKS works, otherwise it has some distortion in

the compromised manifold. Generally, two measurements will be correlated and this

approach has some distortion on the final manifold. On the other hand, RAMS does

not assume that two measurements are orthogonal. One assumption in RAMS is that

two distances are measured independently, which is generally true. So, even with

correlated distance matrices, RAMS works well.

In DISTATIS, the compromised distance matrix, D∗, is obtained implicitly from

Eq. (4.4) and given by

D∗
ij =

√√√√
C∑

k=1

α(k)
D

(k)2
ij

λ
(k)
1

. (4.36)

Eq. (4.36) shows that D∗2 is a linear sum of each squared distance matrix as in the

RKKS method, where α(k) gives the weight of the normalized distance matrix. In

other words, it represents the importance of the individual manifold.

On the other hand, in RAMS, before adding the constant c in Eq. (4.33), the

compromised distance matrix D∗ is obtained explicitly as in Eq. (4.27) and is given

84

by

D∗
ij =

1

C

C∑
t=1

σ(t)

√√√√log Z∗
i +

C∑

k=1

log Z
(k)
i +

D
(k)2
ij

σ(k)2
. (4.37)

In Eq. (4.37), the distance is calculated in a statistical way, where some variables such

as log Z∗
i +

∑C
k=1 log Z

(k)
i reflect how much related the ith point is to others on the

compromised manifold. To compare with Eq. (4.36), if the normalization terms are

1, which means data points are already distributed in a well normalized form, then

D∗2 is a linear sum of each squared distance matrix as in Eq. (4.36).

RAMS is generally better than DISTATIS, especially when the compromised

manifold is nonlinear. For example, let A,B, and C be three points with two distance

matrices and the distance between A and C is longer than the distance between B

and C in both distance matrices. However, if A and B on each individual manifold

are located on a perpendicular line from the compromised manifold, then the distance

between A and C will be the same as that between B and C on the compromised

manifold represented by D∗. But in RAMS, if one distance is longer than the other

in both distance matrices, the former will be definitely longer than the latter on

the compromised manifold. The reason for this difference is that DISTATIS uses a

linearly compromised manifold that discards the other components except for the first

principal component, whereas RAMS uses statistical distance as in Eq. (4.27).

Usually, the manifold made by a distance matrix is curved in high dimensional

space and then the first components of the manifolds is not enough to contain the

proper information. This is the reason why DISTATIS has some problems with non-

linear manifolds. However, RAMS does not depend on the linear structure of distance

matrices but depends on the statistical structure. This makes RAMS robust even with

nonlinear manifolds.

85

3. Projection Property

RAMS has the projection property which involves the embedding of test data points in

the associated low-dimensional space. In other words, generalization property means

the ability to determine a point yl embedded in the low-dimensional space, given a

test data point xl. The generalization property naturally emerges from the fact that

K̃ (geodesic kernel with the constant-shifting employed in kernel Isomap) is a Mercer

kernel.

In this section, I describe how to get the distance from test point xl to other

training points xj on the compromised manifold, and how to map the test point on

the compromised manifold. Let the distance between the test point xl and a training

point xj on the kth manifold be D
(k)
T:lj , then it can be transformed into probability

P
(k)
T:lj which is given by

P
(k)
T:lj =

1

Z
(k)
Tl

e
−

D
(k)2
T:lj

σ(k)2 , (4.38)

where Z
(k)
Tl is a normalization term and σ(k) is from Eq. (4.28), calculated from the

training data set. Given C dissimilarity matrices, D
(1)
T ,D

(2)
T , · · · ,D

(C)
T , as in the

training phase, we can get C probability matrices, P
(1)
T ,P

(2)
T , · · · ,P

(C)
T . With the

same assumption, the compromised probability matrix, P ∗
T, is calculated by

P ∗
T:lj =

1

Z∗
Tl

C∏

k=1

P
(k)
T:lj , (4.39)

where Z∗
Tl is a normalization term. From P ∗

T, we reconstruct the compromised dis-

similarity D∗
T again,

D∗
T:lj = σ∗

√
− log(P ∗

T:lj). (4.40)

The remaining part after this is exactly the same as kernel Isomap. That is, the

86

embedding of a test data point xl in the low-dimensional space is done by

yli =
1√
Λii

N∑
j=1

V ijk(xl,xj), (4.41)

where the kernel for the test data point xl, k(xl, xj), is computed as

k(xl,xj) = −1

2

(
D̃∗2

T:lj −
1

N

N∑
i=1

D̃∗2
T:li +

1

N

N∑
i=1

K̃ii − K̃jj

)
, (4.42)

where K̃ is from Eq. (4.31) and D̃∗
T:lj is calculated by

D̃∗
T:lj = D∗

T:lj + c, (4.43)

where c is same as in Eq. (4.33). See [10] for the details.

4. Experiments

In order to show the useful behavior of the proposed method, I carried out experiments

with three different data sets: (a) disc data set made of 100 discs with different colors

and sizes; (2) head-related impulse response (HRIR) data [46]; and (3) face data [71].

Discs: I made an artificial data set to show the differences between the three

methods: (1) RKKS, (2) DISTATIS, and (3) RAMS. Fig. 38 shows 100 discs, where

the horizontal axis represents color and the vertical axis represents size. Actually,

100 points were generated on a 10× 10 lattice with added random noise in location.

Let X ∈ R2×100 be the discs’ locations. The first row X1 and the second row X2

are the coordinates for color and size, respectively. From this disc data set, I made 3

pairs of measurements: (1) Orthogonal and linear case, (2) correlated but still linear

case and (3) orthogonal but nonlinear case. Each case is calculated by the following

equations.

(1) Orthogonal and linear: Each distance matrix is obtained by only color or

87

Fig. 38. Disc data set in 2D.

size, respectively,

D
(k)
ij = dist(Xk,i, Xk,j),

where k = 1, 2, and dist(x, y) is the Euclidean distance function between two points

x and y.

(2) Nonorthogonal and linear: one distance matrix is based on only color, and

the other is based on both color and size;

D
(k)
ij = dist(X1:k,i, X1:k,j).

(3) Orthogonal and nonlinear: Each distance matrix is obtained by only color or

size, respectively, and squared.

D
(k)
ij = dist(Xk,i, Xk,j)

2,

Orthogonal and linear case: Fig. 39 shows the eigenvalues for each method.

All three methods found 2 dominant eigenvalues. RKKS uses positive and negative

values. Fig. 40 shows projection results for each method. Even though they are

rotated, all three methods had no problem in finding the relative locations of the discs.

In this case, two distance matrices are uncorrelated and each distance is obtained

88

0 20 40 60 80 100
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100
0

100

200

300

400

500

600

700

800

900

(a) (b) (c)

Fig. 39. Eigenvalues of discs in the case of orthogonal and linear distances. (a) RKKS,

(b) DISTATIS and (c) RAMS.

(a) (b) (c)

Fig. 40. Projections of discs for the orthogonal and linear case. (a) RKKS, (b) DIS-

TATIS and (c) RAMS.

89

linearly. So, RKKS and DISTATIS also work well as well as RAMS.

Nonorthogonal or nonlinear cases: When the distances are measured

nonorthogonaly or nonlinearly, RKKS and DISTATIS failed to find true locations,

even though they are able to estimate along one coordinate, either size or color, but

not both. Fig. 41 is the result of correlated but linear case. As we expected, RKKS

found just one coordinate (size) and failed to find the color axis. On the other hand,

RAMS still found proper coordinates as DISTATIS also did.

(a) (b) (c)

Fig. 41. Projections of discs for the nonorthogonal and linear case. (a) RKKS, (b)

DISTATIS and (c) RAMS. RKKS finds the size axis but fails to find the color

axis, whereas RAMS and DISTATIS find both successfully.

Fig. 42 is the result of nonlinear but orthogonal case. In contrast to the linear

and nonorthogonal case, DISTATIS found the size axis but failed to find the color

axis, whereas RAMS found proper coordinates as RKKS also did.

Head-Related Impulse Responses (HRIR): In this experiment, I used

the public-domain CIPIC HRTF data set. Detailed description of the data can be

found in [46]. It was recently shown in [45] that the low-dimensional manifold of

HRIRs could encode perceptual information related to the direction of sound source.

However, there has been no attempt to use both the left and the right HRIRs at the

same time. I applied kernel Isomap to both left and right, and then tried to merge

90

(a) (b) (c)

Fig. 42. Projections of discs for the orthogonal and nonlinear case. (a) RKKS, (b)

DISTATIS and (c) RAMS. DISTATIS finds the size axis but fails to find the

color axis, whereas RAMS and RKKS find both successfully.

the two dissimilarity matrices into one with the three methods (RKKS, DISTATIS,

and RAMS).

Two-dimensional manifolds of HRIRs are shown in Fig. 43 for kernel Isomap,

where each ear has similar information, with a little distortion. Fig. 44 shows the

Fig. 43. Two-dimensional manifolds of HRIRs. (left) Left HRIR; (right) Right HRIR.

Each ear has similar information with a little distortion. This is the result

from the 10th subject.

eigenvalues of three methods, where RAMS and DISTATIS found two dominant eigen-

values of HRIRs because the manifold of each ear’s HRIR is almost linear (see [10]),

91

whereas RKKS failed because these two pieces of information from the two ears are

strongly correlated. Fig. 45 shows the embedded manifolds of the two methods and

confirms the result. RKKS did not work here, so the results are not shown.

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
−20

0

20

40

60

80

100

120

140

160

(a) (b) (c)

Fig. 44. Eigenvalues of two ears’ HRIRs. (a) RKKS, (b) DISTATIS and (c) RAMS.

(a) (b) (c)

Fig. 45. Projected results on compromised 2-dimensional manifold. (a) RKKS, (b)

DISTATIS and (c) RAMS. DISTATIS and RAMS work well.

Faces: I used the face data set from [71], to compare RAMS with DISTATIS

since RKKS does not work with more than two dissimilarity matrices. Abdi made

four distance matrices and found a 2-dimensional space to represent 6 face images.

Fig. 46 shows the eigenvalues and Table VI compares the 2 top eigenvalues from

the two methods, DISTATIS and RAMS, showing that RAMS is more efficient. Fig.

47 shows the 2-dimensional spaces from the two methods. Even though they have

92

1 2 3 4 5 6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

(a) (b)

Fig. 46. Eigenvalues of faces. (a) DISTATIS and (b) RAMS.

Table VI. Efficiency of eigenvalues of DISTATIS and RAMS.

Methods First Eigenvalue Second Eigenvalue

DISTATIS 47.75% 20.74%

RAMS 63.67% 19.04%

93

similar results, RAMS produces a little more spread map, because RAMS uses all

information whereas DISTATIS uses only the first component of the compromised

manifold and discards the rest.

(a) DISTATIS (b) RAMS

Fig. 47. Projections of the faces. RAMS has a more scattered result than DISTATIS.

Projection property: To prove the projection property of RAMS, I just checked

with 3 cases of discs above. I used 100 training data points as in Fig. 38, and 100 test

data points generated in the same way as the training points. In Fig. 48 (a), blue

crosses are training data points and colored and different sized discs are test data

points in the original space. I projected the test data points into the compromised

manifold of the training data based on the two distance matrices. Fig. 48 (b),(c) and

(d) show the result of projection in RAMS in all three cases. As expected, RAMS

successfully projected the test data points on the compromised manifold in all three

cases.

94

(a) (b)

(c) (d)

Fig. 48. Projection property of RAMS. Training data set (blue crosses) and test data

set (colored and differently sized discs) are shown. Test of the projection

property of RAMS with (a) orthogonal and linear, (b) nonorthogonal and

linear, (c) orthogonal and nonlinear, and (d) nonorthogonal and nonlinear

cases show good mapping along both the color and the size axes.

95

5. Discussion

In RKKS, even though two measurements are obtained independently, if their values

are affected by each other, then the final manifold is distorted because RKKS as-

sumes that the two Hilbert spaces are orthogonal. However, in RAMS, even though

the measurements are related to each other, it gives a proper mapping because the

two dissimilarity matrices are measured in a statistically independent way. Another

interesting issue is that in RKKS, it is not straightforward to extend the number of

measurements to more than 2, while RAMS can be naturally extended.

DISTATIS uses the principal component of the manifolds to project data sets into

the compromised manifold. That results in loss of information that could be found

in the other components. When the distances are measured nonlinearly, such as in

squareness, DISTATIS fails to find a proper mapping, because nonlinear manifold

does not guarantee that one linear component of manifolds can contain most of the

information. However, in RAMS, the final manifold is not a linear combination but

rather a probabilistic combination, so it is robust even with nonlinear manifolds.

More interestingly, RKKS and DISTATIS are not concerned with the projection

property, while RAMS is. So, RAMS can be considered as the generalization of RKKS

and DISTATIS. An interesting direction for future work is to compare with other data

fusion theories and extend this algorithm.

However, since statistical independence is still a strong assumption, I propose a

more generalized integration method in the next section.

E. Manifold α-Integration

In this section, I propose a new MI algorithm, manifold α-integration (MAI) that

makes use of α-integration proposed by [35], applying it on the transition probabilities

96

(or distances) from one data point to the others in RAMS. Statistical independence in

RAMS may be too strong an assumption for some data sets. In the RAMS algorithm,

this assumption is exploited by using multiplication of the transition probabilities.

This multiplication is a squared geometric mean of the probabilities and geometric

mean is a special case of α-integration with α = 1. So, α-integration can generalize

RAMS with different α values, which leads to MAI.

I show that this method includes as its special case other existing methods such as

statistical distance in RAMS, kernel-based data fusion method [21] or mixture of ran-

dom walks [80] by analyzing the compromised distances on the integrated manifold.

Moreover, since MAI uses kernel Isomap after getting one dissimilarity matrix, MAI

inherits the desirable projection property from kernel Isomap [10], which is necessary

for classification tasks.

1. MAI Algorithm

Let G be a weighted graph with N nodes, to represent a manifold. Then, the distance

between two nodes on the kth manifold, D
(k)
ij , can be transformed into probability

P
(k)
ij , the transition probability from the ith node to the jth node on the kth manifold.

We simply use the Gaussian kernel which is given by

P
(k)
ij =

1

Z
(k)
i

e
−D

(k)2
ij

σ(k)2 , (4.44)

where Z
(k)
i is a normalization term so that the sum of transition probabilities from

the ith node to all other nodes on the kth manifold is 1, and σ(k) is a parameter repre-

senting the standard deviation. Given C dissimilarity matrices, D(1), D(2), · · · ,D(C),

we can get C probability matrices, P (1),P (2), · · · ,P (C).

There are two approaches in using α-integration on multiple manifolds: (1) using

transition probability matrices and (2) using distance matrices. First, the transition

97

probability from the ith node to the jth node on the kth manifold is given by Eq.

(4.44). So, given P (1),P (2), · · · ,P (C), with α-integration, the compromised probabil-

ity is given by

Pα,ij =
1

Zα,i

f−1
α

(
C∑

k=1

wkfα(P
(k)
ij)

)
, (4.45)

where Zα,i is a normalization term. From the compromised probability P α, we can

reconstruct the compromised dissimilarity Dαp as follows.

Dαp,ij = σ∗
√
− log(Pα,ij), (4.46)

where σ∗ is the average of σ(k), k = 1, ..., C.

By performing α-integration on probabilities, we can have a generalized integra-

tion of the probabilities. For example, with α = 1, the integration result is similar

to Bayesian inference (or the product of experts) where the likelihood and the prior

distributions are multiplied. Or, with α = −1, the integration result is similar to the

mixture of experts or Gaussian mixture model.

Once Dαp,ij is obtained, I use kernel Isomap [10]. Given a distance matrix, Dαp,

I substitute D̃αp for Dαp, which is given by

D̃αp,ij = Dαp,ij + c(1− δij), (4.47)

where δij is the Kronecker delta. Here, c is the solution of constant-shifting method

[43] to make the doubly centered kernel matrix positive semidefinite given by

K̃ = −1

2
HD̃

2

αpH . (4.48)

Here, D̃
2

αp is the element-wise square of D̃αp and H is a centering matrix as in Eq.

98

(2.2). Finally, after eigen-decomposition,

K̃ = V ΛV >, (4.49)

projection mapping Y is given by

Y = V Λ
1
2 . (4.50)

A more interesting approach is to apply α-integration to the distance matrices

directly. Given C dissimilarity matrices, D(1), D(2), · · · ,D(C), we can reconstruct

the compromised dissimilarity Dαd directly by α-integration without considering the

transition probability. It is given by

Dαd,ij = f−1
α

(
C∑

k=1

wkfα(D
(k)
ij)

)
. (4.51)

Note that Eq. (4.45) is an α-integration of the probabilities, while Eq. (4.51) is an

α-integration of the distances. So, with Eq. (4.45), the compromised distance in Eq.

(4.46) is different from that of Eq. (4.51). I derive two slightly different manifold

integration methods from these two different integration approaches, and call the two

versions MAIp and MAId, respectively. After getting Dα (either Dαp or Dαd), the

rest is the same as kernel Isomap [10], by which my method inherits the dimensionality

reduction property.

MAI also has the projection property which involves the projection of novel

data points onto the associated low-dimensional space. In other words, with the

projection property it is able to determine the location of a point yl embedded in the

low-dimensional space, given a test data point xl. I do not derive the equations for

the projection here. The derivations for the projection property is the almost same

as in RAMS.

Note that Dαd might not be a true distance in mathematical terms. For example,

99

suppose that we have three points. Then, let the three distances for two measurements

be d
(k)
i , with k = 1, 2 and i = 1, 2, 3 as in Table VII. As shown in the table, when

the α = ∞, the α-integration results do not satisfy the distance property (triangle

inequality) since d1+d2 < d3. This is another point of using kernel Isomap that makes

the integration of multiple distances mathematically distance implicitly by making

the kernel matrix positive semidefinite.

Table VII. A counter example shows that the integration of multiple distances might

not be a mathematical distance.

Distance d1 d2 d3

d(1) 1 10 10

d(2) 10 1 10

Integration with α = ∞ 1 1 10

2. Comparison with Existing Integration Approaches

I analyze MAIp and MAId, comparing them to previous methods [77, 21, 80] even

though some of them are not immediately about MI.

Case 1: In random walk on multiple manifolds (RAMS) [77], the compromised

transition probability matrix P ∗ is simply given by multiplication of the source prob-

abilities. Approximately, this is a special case of MAIp in Eq. (4.45) with α = 1 and

100

uniform weights for all manifolds:

P1,ij =
1

Z1,i

f−1
1

(
C∑

k=1

1

C
f1(P

(k)
ij)

)

=
1

Z1,i

exp

(
1

C

C∑

k=1

log P
(k)
ij

)

=
1

Z1,i

(
C∏

k=1

P
(k)
ij

) 1
C

=
1

Z1′,i
(P ∗

ij)
1
C , (4.52)

where Z1′,i is a normalization term. Then, the compromised distance in Eq. (4.46) is

reconstructed by

D1p,ij = σ∗
√
− log

(
1

Z1′,i
(P ∗

ij)
1
C

)

= σ∗
√

log Z1′,i − 1

C
log P ∗

ij, (4.53)

which is almost the same as the compromised distance in RAMS except for the

normalization term and 1
C
. That is, RAMS is approximately a special case of MAIp

with α = 1 and uniform weights. If we relax the assumption on the weights so that

the sum of weights is not 1 but
∑C

k=1 wk = C, then MAIp leads to an exactly the

same result as RAMS.

Now, we can check the case when α-integration is applied to the distance matrices

directly (MAId). When α = −3 and the weights are given by 1
σ(k)2 , the compromised

distance matrix of MAId in Eq. (4.51) is given by

D−3d,ij = f−1
−3

(
C∑

k=1

1

σ(k)2
f−3(D

(k)
ij)

)

=

√√√√
C∑

k=1

1

σ(k)2
(D

(k)
ij)2, (4.54)

101

which is the same as the the compromised distance matrix D∗ in RAMS except the

normalization terms. Here, the weights 1
σ(k)2 can serve as normalization terms for

different units across measurements.

Case 2: Lanckriet [21] used a weighted sum of kernel matrices for kernel-based

data fusion. For the special case when α = −3 and weight wk for the kth manifold

applied to MAId, the corresponding kernel matrix KMAId is given by just the weighted

average of the kernel matrices as follows:

KMAId = −1

2
H(D−3d)

2H

= −1

2
H

(
C∑

k=1

wkD
(k)2

)
H

=
C∑

k=1

wkK
(k), (4.55)

where

K(k) = −1

2
HD(k)2H . (4.56)

Notice that Eq. (4.55) is the kernel-based data fusion proposed in [21] which can

now be seen as a special case of MAId. It was shown that manipulating the distance

matrix gives a better result than manipulating the kernel matrix directly [10, 77]. In

other words, the integrated space of MAId is better than (or at least equal to) the

kernel-based data fusion methods when the α value is carefully chosen. Also note

that with wk the same, Eq. (4.55) is equivalent to stacking multiple measurements in

a single vector.

Case 3: Also, in [80], even though they did not discuss directly about MI, a

mixture of random walks was used as an integration method. With α = −1 and

102

different weights wk for the kth manifold, MAIp has

P−1,ij =
1

Z−1,i

f−1
−1

(
C∑

k=1

wkf−1(P
(k)
ij)

)

=
1

Z−1,i

C∑

k

wkiP
(k)
ij , (4.57)

which is a mixture of random walks.

In sum, I checked three previous methods for data integration and compared

them with the two proposed approaches. The previous approaches all turn out to be

a special case of the proposed method, though MAIp is approximately the same as

RAMS.

3. Experiments

In order to show the effectiveness of my method, I carried out experiments with four

different data sets: (1) disc data set made of 100 discs with different colors and sizes

[77]; (2) head-related impulse response (HRIR) data [46]; (3) the CMU ARCTIC

speech database [75]; and (4) sensorimotor integration.

Disc data: I used an artificial disc data set [77] to show the differences be-

tween the three methods: (1) RAMS [77], (2) MAI on transition probability matrices

(MAIp), and (3) MAI on distance matrices (MAId). Let X ∈ R2×100 be the discs’

locations. The first row X1 and the second row X2 are the coordinates for color and

size, respectively. From this disc data set, each distance matrix is obtained by only

color or by size, and squared as follows.

D
(k)
ij = dist(Xk,i, Xk,j)

2.

Fig. 49 shows the data set and three integrated spaces from the three methods.

If we use α = 1 and α = −3 for MAIp and MAId, respectively, then the results

103

(a) Data (b) RAMS

(c) MAIp (d) MAId

Fig. 49. RAMS and MAI on disc data sets. Disc data set (a) and three integrated

spaces (b-d); (a) original data set, 100 discs, (b) RAMS, (c) MAIp with

α = 0.89, and (d) MAId with α = −1.25.

104

of MAI are the same as RAMS. Here, I chose the α values to be 0.89 and -1.25

for MAIp and MAId, respectively. Note that the integrated space from MAI have

almost a square shape, which is supposed to be like that, while RAMS has a fat

square even though it found a “properly” integrated space where color and size are

two dominant coordinates. In addition, MAId found almost the same result as the

original set, while MAIp has a little denser dots around the center of the space. Even

though MAIp generalizes RAMS with the same transition probability matrices, the

reconstructed distance matrix is not optimal in the α-integration sense, because the

transition probability equation in Eq. (4.44) is combined into fα, which is not a linear

scale free function of distance any more. This can be why MAIp has a little distortion

in the integrated space, even though it is still better than RAMS.

10
0

10
1

10
2

1

2

3

4

5

6

x 10
5

10
0

10
1

10
2

2

4

6

8

10

12

14

16

x 10
4

10
0

10
1

10
2

2

4

6

8

10

12

x 10
4

(a) RAMS (b) MAIp (c) MAId

Fig. 50. Eigenvalues of the kernel matrices in the three methods. (a) RAMS, (b) MAIp,

and (c) MAId. The x-axes (index for eigenvalues) are in log-scale to highlight

the first few eigenvalues.

Moreover, in Fig. 50, all three methods (after making the kernel matrix positive

semidefinite) have two dominant eigenvalues which are for the size and color. However,

RAMS has one more eigenvalue higher than the other majority. MAIp and MAId have

only two dominant eigenvalues but the majority of eigenvalues in MAIp has relatively

much higher values than in MAId. So, based on the eigenvalues, MAId has more

105

efficient features than RAMS or MAIp.

HRIR data: In this experiment, I used public-domain CIPIC HRTF data set

[46] as in the previous Chapter. First, I applied kernel Isomap to each ear’s HRIR

data to generate a 2-dimensional manifold for each ear. Then I applied MAId to

integrate the two manifolds. We mainly pay attention to the HRIRs involving sound

sources specified by different elevation angles.

(a) Left only (b) Right only (c) Integrated

Fig. 51. Embedded manifolds of HRIRs. (a) left HRIR (b) right HRIR and (c) inte-

grated HRIR. Even though the left HRIR is seriously distorted and the right

one is also not smooth, the integrated space shows a very smooth, low error

result, due to the use of both pieces of information.

Fig. 51 shows the performance of the method MAId with α = −0.5 on 20th

subjects in the data set. MAId was applied to the distance matrices of (a) and (b).

Either (a) or (b) is not perfect for locating the sound source. The integrated result

is better than the two results considered separately, as to where the sound source is.

Note that the embedded manifolds in Fig. 51 have some ambiguities like up-down or

front-back.

Speech data: I carried out numerical experiments with the CMU ARCTIC

speech database [75] as used in the previous section in order to show an integrated

manifold from multiple manifolds which leads to a speaker independent phoneme

106

space and to show the benefit of the integrated space for phoneme classification.

aaa

a
a

a

a

a

a

a
a

a
a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a a
a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

aa

a
a

a

a

a a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a
a

a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

aa

a

a

a

a

a

a

a

a
a

a

a

a

aa

a

a

a

aa

a

a

a

a

a
a

a

a
a

a

a

a
a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a
a

aa

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

a

a

a

a

a

aa a

a a

a

a
e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e
e

e
e

e

e

e

e

e e
ee

e

e

e

e

e

e

e
e

e

ee

e

e

e

e

e

e
e

e

e e

e

e e

e
e

e

e

e e

e

ee

e

e ee

e

e

e

e
e

e

e

e

e

e

e

e

e

e e

e

e

e
e

e

e
e

e

e

e
e

e

e

e
e

e

e
e e e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e
e ee

e

e

e

e
e

e

e
e

e

e
e

e
e

e

e e

e

e

e

e

e e

e

e

e

e

e

e

e
e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e e

e

e

e

ee

e

e

e

ee
e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e e

e

e
eee

e

e

e ee

e

e

e

e

e

e

e

e
e

e

e

e

e e
e

e

e
e e

e

e

e

ee ii

i

i

i

i

i

i
i

i

i
i

i

i

i

i

i

i

i

i

i

i
i

i i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i
i

i

i

i i

i

i

i

i

i

i

i

i

i

i

i
i i

i

ii

i
i

i

i i

i
i

i

i

i

i

i

i

i

i i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i

i i

i

i

i

i

i

i i

i

i

i

i i

i

i

i

ii

i

i

i i
i

i

i

i

i

i

i

i

i

i

i

i ii

i
i

i

i

i

ii

i

i

i

i

i

i

i

i

ii

i
i

i

i

i

i
i

i
i

i

i

i

i

ii

i

i

i

i

i

i

i

i

i i

i

i

i

i

i

i i
i i

i

i

i

ii

i

i

i

i

i

i

i
ii

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

ii

i

i

i

i

i

i

ii

i
i

ii

i

i

i

ii

i

i

i

i

i

i

i

i
i

i

i

i i

i

i

i

i

i
i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

ii

i

i
o

o

o

o

o

o

oo

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o
o

o

o

o

o

o
o

o

o o

o

o

o

o oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o
o

o o

o

o

o

o

o
o

oo

o

o

o

o

o

o

o
o o

o

o
o

o
o

o
o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o
o

o
oo

o o

o

o
o o

oo

o

o
o

o

o o

o o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o
oo

o

o

o o

o

o

o

oo
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

oo
o

o o

o

o

o

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a a
a

a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a a

a

a

a

a

a

a

a
a

a

a
a a

a

a

a

a

a
a

a

a

a

a

a
a

a

a

aa

a

a

a

a

aa

a

a

a

a
a

a

a

a

a
a

a

a

a

a

a

a a

a

a
a

a

a

a a

a

a

a

aa

a

a

a

a

a

a
a a

a

a

a

a

a

a

a
a

a

a

a

a

a
a

a
a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a

a

a

a a

a

a

a

a

a

a

a
a

a
a

a

a

a

e
e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e
ee e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

ee

e

e

e
e

e

e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e
e

e

ee

e

e

e

e

e

e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e
e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e
e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e e

e

e

e
e

e

e

e

e

e e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

ee
e

e

e

e

e

e

e

e

e

e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e e

e

e

e

e e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e

e e

e

e

e

e
e

e

e e

e
e

e

e

e

e

e
e

e
e

e

e

e

e

i

i

i i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i

i i

i

i

i

i

i

i

i

i

i

i
i

ii

i

ii

i

i

i

ii

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i i

i

i

i

i
i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

ii

i

i

ii

i

i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

ii

i

i

i
i

i

i

i

i

i

i

i

i

i
i

i

i

i

i
i

i

i

i

i
i

i

i

i

i

i

i

i

i

ii

i

i

i
i

i

i

i

ii

i

i

i

iii

i

i

i

i

i

i

i

i

i

i

i

i

ii

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i i
i

i
i

i

i
i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i ii

i

i

i

i

i

i

i

i

i

i

i

i

ii o
o

o
o

o
o

o

o

o
o oo

o

o
o

o

oo

o

o

o

o o

o

o

o

o

o

o

o

o oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o o
o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o
oo

o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o

o
o

o

o

o

o

o

oo

o o

o
oo

o

o

o

o

oo

o

o

o

o

o

o

o

o o

o

o

o

o

ooo

o
o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o
o

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o
oo

o

o

o
o

o

o

oo

o
o

o

o
oo

o

o

o

o

o

o

o
o

oo

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o o o

o

o

o
o

o

oo

o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

oo

o

o

o

oo

o o

o

o

o

o

o

o
o

o

o o
o

o

o

o

o

o

(a) Speaker ‘bdl’ (b) Speaker ‘slt’

Fig. 52. Individual mappings using kernel Isomap. (a) speaker ‘bdl’ and (b) speaker

‘slt’. Two maps look different because they are from different speakers even

though they are for the same set of phonemes.

First, I found one map of these vowels from four speakers’ four vowels, where each

phoneme consisted of 300 sample data points. Fig. 52 shows two speakers’ individual

maps from kernel Isomap. Even though they pronounced the same phonemes, their

maps are different from each other. Furthermore, the clusters of phonemes are not

well separated even in each map, since each map represents both linguistic information

and speaker dependent information.

On the other hand, Fig. 53 is the integrated map from four speakers’ maps,

and it shows well defined clusters of phonemes, which means that this map represent

the phoneme information but not speaker dependent information. In addition, when

compared to international phonetic alphabet (IPA) map in Fig. 54, Fig. 53 shows an

almost identical layout of vowels. Even though the integrated map does not exactly

match with IPA, the integrated map in Fig. 53 looks more like IPA map than the

individual maps in Fig. 52 do. If we try more phonemes from more speakers, it can

107

a

a
a

a

a

a

a

a

a

a a

a

a

a

a
a

a

a

a

a
a

a

a

a

a

a

a

a
a

a
a

a
a

a
aa a

a

a

a
a

a
a

a

a

a

a

a
a

a

a

a aa

a

a

a

aa

a

a a

a

a

a

a

aa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

a

a

a

a

a

a
a

aa

a

a

a

a

a

a

a
a

a

a

a

a

a

a

aa

a

a
a

a

a

a a

a

a

a
a

a

a

a
a

a

a

a
a

a

a
a

a
a

a

a

a

a

aa

a

a a

a

a

a

a

a

a

a
a

a a

a
a a

a
a

a
a

a
a

a
a

a

a

a

a a

a

a

a

a

a
a

aaa

a

a

a

a

a

a

a

a

a

a

a

a

a

a

aa

aa

a

aa

a

a

a

a
a

a

a

a

a
a

aa

a a a

a

a

a

a

a
a

a

a

a

a

a

a

a

a

a

a

a

a

a
a

a

a

a
a

aa

aa
a

a
a

a

a

a
a

a
a

a

a

a

a

a

a

a

a a
a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a aa

a

aa

a
a

a

a

a

a

a
a

a

a

a

a

ee
e

e

e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e e

e

e
e

e

e

e

e

e

e

e

e
e

e

e
e

e

e

e

e
e

e

e
ee

e

e

e

e
e

e

e e

e ee

e

e

e

e
e

e

ee

e

e

e

e

e

e

e

e ee

e

e

e

e

e

e
e

e

e

e

e

e

e

e e
e

e

e

e
e

e

e

e

e

e

e

e

e

e

e

e

e

e

e
e

e

e
e

e

e
e
e

e

e

e

ee

e

e

ee

e

e

e

e

e

e e

e

e

e
e

e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e

e

e
e

e

e e

e

e

e

e

ee

e

e

e

e
e

e

e

e

e

e
e

e

e
e

e

e e
e

e e

e
e

e
e

e

e

e

e

e

e

e
e

e

e

e

e

e

e

e
e

e

e e

e

e
e

e

e
e

e
e

e

ee

e

e
e

e

e

e

e
e

e e

e e

e

e
e

e

e

e
e

e

e

e

e

e

ee

eee

e

ee
e

e

e

e
e

e

e

e

e

e

e

e

e
e

e

e e

e

e

ee

e

e

e
e

e

e

e

e

ee

e

e

e

e

e

e

e

e

e e
e

e
e

e

ee

e

e

i

i

i

i

i

i

i

i

i

i

i
i

i
i

ii

i

i

i

i
i

i

i

i i

i
i

i

i

i

i

i i

i

i

i

i

i

i

i

i

i

i

i

i

i
i

i

i

ii

i
i i

i

i

i

i i

ii

i
ii

i

i

i
i

i

i
ii

i
i

i
i i

i i

i

i

i

i

i

iii

i

i

i

i

i

i

i

i
i

ii

i i

i

i
i

i

i
ii

i
i

i
i

i

ii

ii

i
i

i

i
i

i

i

i
i

i

i
i

i

i
ii

i

i

i

i
i

i

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i

i i i

i

i

i

i ii
i

i

i
i

i

i i

i

i

i

i

i

i

i

i

i i
i

i

i

i

i

ii

i

i

i

i

i
i

i
i

i

i
i

i

i

i

i

i

i

i
i

i

i

i

i

i i

i
i

i

i

i

i

i

i
i iii

i

i

i
i

i i

i

i

i

i

ii

i

i

i

i

i

i

i

i
i

i

i

i

i

i

i
i

i

i

i

i

i

i

i

i

i

i i

i

i

i

i

i
i

i

i

i

i

iii

i

i

i

i

i

i

i
i

ii
ii

i

i i
i

i
i

i

i i

o

o

o

o

o

o

o o

o
o

o o

o
o

o
o

o

o

o
o

oo
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o oo
o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o o

oooo

o

o

o

o

o
o

o

o
o

o

o

o
o o

o
o

o

o
o

o
o

o

o
o

o
o

o

o

o

o

o

o

o

o
o
o

o

o

o

o o
o

o

o

o

o

o

o o

o
o

o

o

o

o

o
o

o
oo

o

o

o

oo

o
o

o

o

o
o
oo

o

o
o

o
o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o
o

o

o

o
o

o
oo

o

o
o

oo

o

o

o

o

o

o

o

o

o

o
o
o

o

o o

o o

o
o

o

o

o o

oo

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o

o o
o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o

o

o

oo

o

o

o

o

o

o
o

o
o

o

o
o

o

o

o o

o o

o
o

Fig. 53. Integrated phoneme manifold. The map through MAId with α = 3, where

the phonemes are better clustered within class and separated from each other

across class than the individual maps in Fig. 52.

108

become closer to the Fig. 54.

Fig. 54. International phonetic alphabet (IPA) of vowels. The red dotted cir-

cles show the vowels which are used in the experiments. Adapted from

‘http://www.arts.gla.ac.uk/IPA/vowels.html.’

After getting the integrated map of phonemes, I tried to use this map for classi-

fication. I tested it with 6 different training data sizes. For each speaker’s individual

phoneme, I randomly selected 50, 100, 150, 200, 250, and 300 samples for training

and the rest for testing. For each trial, we repeated the experiment 30 times with

randomly chosen data points and averaged them.

Fig. 55 shows the classification results with the quadratic classifier. From this

figure, we can see that other speakers’ information is helpful for phoneme classifica-

tion as long as the training data set is larger than a certain size. The average of

classification rate of individual speaker data converges to 73.8% when 300 phonemes

are used for training data, whereas MAId, especially with α = 3, reaches 76.4%. Note

that the performance changes as the α value changes and we can pick the best one

to get better results. Here, α = 3 is the best among integer values for α.

109

50 100 150 200 250 300
0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Amount of training data for each phoneme

A
ve

ra
ge

 h
it

ra
te

 (
%

)

Individual
alpha=−3
alpha=0
alpha=3

Fig. 55. MAI on classification task. Hit rates for MAId (squares, triangles and circles)

and individual map (crosses) are shown. After around 50 phonemes for train-

ing, MAId becomes better than the individual map. As shown above, RAMS

and kernel-based data fusion are (approximately) a special case of MAId with

α = −3 (squares).

110

In Fig. 55, however, when the training data size is smaller than around 80

phonemes, the proposed method is slightly worse than the individual-based map.

The intersection is somewhere between 50 and 100. This phenomenon might be ex-

plained as follows. When the training data set is small, it is not enough to represent

the real phoneme space. So, the test points could have been projected into a distorted

map induced by the other speakers’ information. But when the training data set is

large enough, the projected space represents more likely the real phoneme space. So,

from the test points, the speaker dependent noise is removed, which leads to better

classification.

4. Discussion

I proposed a generalized MI method utilizing α-integration which led to manifold α-

integration (MAI). MAI integrates multiple measurements each of which is assumed

to lie on a separate manifold. I showed that MAI includes as its special case previ-

ous methods such as RAMS, kernel-based data fusion, or mixture of random walks.

Furthermore, it can generalize to other integrated spaces in as many different ways

as we want with a different α value. The experimental results confirmed that MAI

integrates multiple measurements into one manifold in an effective manner, helping

us to understand the data set better. For example, when I applied MAI to real world

data sets, it found a better manifold than the individual manifolds. In classification

tasks, the integrated manifold generally improved the accuracy when the training

data set is reasonably large.

One beneficial property of MI is its coordinate invariance since it does not use

any coordinate system except the final projection space. It uses only dissimilarity

matrices. The performance is invariant to the coordinate systems that the data sets

use. Meanwhile, simply staking the multiple data sets in one data space seems simple

111

but its performance depends on which coordinate systems are used for each data set.

F. Summary

In this Chapter, I proposed a new concept, manifold integration, which is a concept

combining manifold learning and data integration. Contrary to manifold learning or

data integration, it uses both the statistical relation between the two data sets and

the geometric relation between data points in each set. The MI approach can serve

as an effective framework for analyzing multimodal data sets on multiple manifolds.

Specifically, I derived three algorithms: KODA, RAMS and MAI. They were

developed with different assumptions so that they work with different kinds of data

sets. However, all of them find a nonlinear mapping rule and can project new points

on the same projected space as the training data set. Especially, MAI includes other

previous methods as a special case. The three algorithms were tested with synthetic

and real world data sets showing encouraging results.

112

CHAPTER V

ADVANCED APPLICATIONS OF MI

In this chapter, I propose MI as a framework to handle two well-known tasks: kernel

integration and sensorimotor integration. Both tasks are not simply to integrate

multimodal data sets. However, key parts of the tasks can be interpreted as MI. So, I

show that MI can provide an alternative framework for those tasks. Here I use MAI

as a representative MI method in the experiments.

A. Kernel Integration

MI can be applied to kernel integration. In this section, I briefly review kernel inte-

gration and show how MI can be used as a good framework for kernel integration.

My approach includes previous methods as a special case.

1. What is Kernel Integration?

Kernel machines such as support vector machines (SVMs) [81], KPCA and KFD, have

been successfully applied to many pattern recognition problems [32, 14, 82, 83, 84]. In

all of these algorithms, designing and learning kernel matrices play a key role. These

kernel matrices are usually obtained by kernel functions. A kernel function is defined

as follows [14].

Definition 5 (Kernel function) Let X be a data space. If K(xi,xj) = 〈φ(xi) ·
φ(xj)〉 for all xi, xj ∈ X where φ is a nonlinear mapping from the data space X to

feature space H, then K(·, ·) is a kernel function.

In other words, if the matrix by K(xi,xj) is positive semidefinite, K(·, ·) is a kernel

function. For example, K(xi,xj) = 〈xi,xj〉d for d ≥ 2 is a polynomial kernel.

113

Another popular kernel function is the exponential function given by K(xi, xj) =

exp (−‖xi − xj‖2/σ2). See [14] for more examples of kernel functions and how to

make new kernel functions from already known ones.

However, they usually use a single kernel designed (or learned) for one measured

data set. When multiple measurements are available as we have discussed earlier,

multiple kernel functions can be applied and each kernel function can be tuned up

with each measured data for a specific task as in Fig. 56. Usually, these tuned kernel

functions can have better kernel matrices than those from manifold learning for a

given specific task. After tuning the kernels, each measured data has a different

kernel function with different parameters.

best performancefor measurement 1
Measured data 1 Truedata set Measured data 2KernelFunction 1 KernelFunction 2Taskbest performancefor measurement 2

Fig. 56. Multiple kernel machines. Kernel functions can be tuned for multiple mea-

surements separately. These kernel functions are designed to have optimized

performance based on each measurement for the task. This approach can be

generalized to more than two measurements.

Kernel integration is a process to integrate separately tuned kernels to ana-

lyze multiple measurements including heterogeneous data sources in computer vision,

114

bioinformatics, audio processing problems and so on. Recently, Lanckriet proposed

kernel fusion, which is a linear weighted sum of kernel matrices [21]. The main issue

is to find an optimal way to combine the kernels like the product of kernels and the

mixture of kernels.

In this section, I propose MI for combining separately tuned kernel matrices into

one integrated kernel matrix, although kernel methods can be viewed as manifold

learning.

2. Kernel Integration Based on Manifold Integration

Multiple measurements or multiple processing methods generate multiple data sets

where multiple kernel functions can be applied. Given multiple kernel functions (or

kernel matrices), my new approach consists of three steps: (1) converting kernel

matrices into distance matrices, (2) integrating the distance matrices into one distance

matrix, and (3) recovering an integrated kernel matrix from the integrated matrix. In

the sense that manifold learning finds a low-dimensional space from a kernel matrix,

a kernel matrix is equivalent to a manifold in manifold learning. A detailed procedure

of the above approach is summarized in Fig. 57.

Since a kernel matrix itself does not include any target information (as in super-

vised learning), we need to handle two different cases for kernel integration: supervised

case like KFD and unsupervised case like KPCA. I focus on the unsupervised case

in this dissertation. The unsupervised version of kernel integration to the supervised

case is left for future work.

To apply the MI approach to kernel integration, we need a transformation from

a kernel matrix K to a corresponding distance (or dissimilarity) matrix D and vice

versa. First, a transformation from a distance matrix to a kernel matrix is well known

115

IntegratedDistanceMatrix
KernelMatrix 1DistanceMatrix 1KernelFunction 1 KernelMatrix 2DistanceMatrix 2KernelFunction 2

IntegratedKernel matrix
Fig. 57. Kernel integration based on manifold integration. Each kernel function gen-

erates a kernel matrix which is converted into a distance matrix. MI shown

in the dotted box integrates these distance matrices and reconstructs an inte-

grated kernel matrix. This approach can be applied to more than two kernel

matrices.

116

and can be done as:

K = −1

2
HD2H , (5.1)

where D2 = [D2
ij] means the element-wise square of the elements, and H is a centering

matrix as in Eq. (2.2). That is, given a dissimilarity matrix that has a metric property,

then there is a corresponding kernel matrix that is positive semidefinite.

As for a conversion from a kernel matrix to a corresponding distance matrix, I

use the relation between distance and inner products of two points xi and xj and the

transformation is given by

Dij =
√

(xi − xj)>(xi − xj)

=
√

x>i xi − x>i xj − x>j xi + x>j xj

=
√

Kii −Kij −Kji + Kjj. (5.2)

This approach can utilize existing kernel machine algorithms where the individual

kernel machines on their own cannot give optimal results. For example, for texture

images, visual processing and haptic processing can generate two different receptive

fields (RFs): tactile receptive field (TRF) and visual receptive fields (VRF) as shown

in [85]. These RFs can be processed by two different kernel machines separately, as

shown in [86]. The proposed kernel integration approach can be applied to such a

case to improve the performance of classification (note that in [86] KFDs were used

which are supervised kernel machines so that the current approach cannot be applied

to their RFs directly).

117

3. Simulation

In order to show how MI can work for multiple kernel matrices, I carried out experi-

ment with a synthetic data set. The data set had 672 samples x ∈ [0, 2]× [0, 2] and

the kernel matrix (or inner product matrix) was 672× 672.

(a) (b)

Fig. 58. The true map and the kernel matrix of a square data set in a two-dimensional

space. (a) True map and (b) True kernel matrix.

(a) (b)

Fig. 59. Two measurements of a square data set. (a) Measurement m1 and (b) mea-

surement m2.

The true map of the square data set in a two-dimensional space is shown in Fig.

118

58 (a) and the kernel matrix is shown in Fig. 58 (b). This data set was measured by

two different distorted functions as shown in Fig. 59. In this simulation, given a true

point x = (x1, x2), I generated two measurements as follows.

m1 = (
√

x1, 4x
2
2), (5.3)

m2 = (x2
1, 4
√

x2). (5.4)

Then the corresponding kernel functions are “tuned” for the distorted measurements.

Here the kernel functions are polynomial and exponential functions. I assume that

these kernel functions are given. From these kernel functions, two kernel matrices can

be obtained as in Fig. 60 (a-b). Then the mapping rules are obtained as in KPCA or

kernel Isomap and the projected spaces are shown in Fig. 60 (c-d).

In Fig. 60, the maps do not reflect the true map, but they are topologically iso-

morphic and the points are dense enough to apply manifold integration. I applied two

different integration methods: linear weighted sum of kernel matrices and MI. Fig. 61

shows the two integrated kernels and the corresponding spaces. The projected space

by MI looks more similar to the true map than the one by the linearly weighted sum.

I used MAI with α = −3. Note that the previous kernel integration methods do not

have a mapping rule (such as [21]) for new data points, while the MI algorithm does.

One problem in the proposed approach is that the integrated kernel matrix might not

be positive semidefinite, while the linearly integrated kernel matrix is always positive

semidefinite as long as each kernel is positive semidefinite. Even though we use kernel

Isomap which modifies the integrated kernel so that it is positive semidefinite, more

research is needed when kernels are integrated.

In sum, I showed how to apply MI to kernel integration. Also, I showed, with

a synthetic data set, MI’s performance advantage compared to kernel fusion method

119

(a) (b)

(c) (d)

Fig. 60. Projected spaces and kernel matrices individually. (a-b) Two kernel matrices

from polynomial and exponential kernel functions and (c-d) the projected

spaces through the two different kernel matrices for different measurements

of the data set.

120

(a) Kernel from [21] (b) Kernel from MI

(c) Map from [21] (d) Map from MI

Fig. 61. Projected spaces and integrated kernel matrices. Two integrated kernel ma-

trices (a) by a linear sum as in [21] and (b) by MI. Integrated spaces are shown

in (c) and (d) by the linear sum method and by MI (MAI with α = −3). (d)

is much closer to the true map (shown in Fig. 58 (a)) than (c) is. Also, (b) is

closer to the true kernel matrix (shown in Fig. 58 (b))than (a) is.

121

based on a linear weighted sum [21].

B. Sensorimotor Integration

MI can be applied as a computational model for sensorimotor integration. In this

section, I briefly review sensorimotor integration and then show that MI can be used

as a good framework for sensorimotor integration.

(a) Outside view (b) Sagittal plane

Fig. 62. The cerebellum in the brain. (a) The cerebellum is located in the inferior

posterior area in the brain, directly dorsal to the pons, and inferior to the oc-

cipital lobe. Motor coordination is a key function of the cerebellum. Adapted

from http://www.omsusa.org/.

1. What is Sensorimotor Integration?

Sensorimotor integration is a mechanism that processes sensory information to guide

actions and controls motor commands to manipulate sensory information. It has

long been known that the cerebellum is the organ in the brain that acts as a motor

coordinator [87, 88, 89, 90] and its absence produces spatial and temporal dysmetria

[91]. The cerebellum allows the person to perform rapid alternating movements, speak

122

clearly, and walk tandem 1. See Fig. 62 for the location of the cerebellum in the brain.

Fig. 63. Diagram of cerebellar cortex. According to Marr, the Purkinje cells are trained

to connect olivary cells (motor-related) via climbing fibers and the context

via mossy fibers-granule cells. After training, contextual information alone is

enough to cause the next action [88]. Adapted from [92].

In the cerebellum, Purkinje cells are the primary integrative neurons and provide

the only output of the cerebellar cortex. See Fig. 63 for the Purkinje cells in the

cerebellar cortex. Each olivary cell responds to a cerebral instruction for an action.

The inferior olivary cells and the cerebellar Purkinje cells have a special one-to-one

relationship. Whenever an olivary cell fires, it sends an impulse to its corresponding

Purkinje cell. This Purkinje cell is also exposed to the context2 in which its olivary

1It is also known that the cerebellum takes a role in other cognitive functions like
abstract reasoning, prosody and use of correct grammar [90].

2In Marr’s paper, the exact meaning of ‘context’ is unclear, but we can assume
that it means the information contained in the circumstantial sensory condition during
which the Purkinje cells fired.

123

cell is fired. During training of an action with the corresponding context via mossy

fibers and granule cells, each Purkinje cell can learn to recognize such contexts. After

training, occurrence of the context alone is enough to fire the Purkinje cell, which

then causes the next action. The action thus progresses as it did during training [88].

In Marr’s model [88], the Purkinje cells work as classifiers and the granule cells are

feature extractors.Rn
Rl U Vg hh-1g Rm

M
Fig. 64. Coordinate transformation. One manifold M can be represented by different

coordinate systems U and V . In order to compare different representations,

they should be represented by the same coordinate system.

One problem in previous formulations of sensorimotor integration is that the

sensory information to the cerebellum cannot be directly understood since the sensory

information and the motor information are encoded differently in the cerebellum [92,

68, 93]. For these two different types of information to be understood to each other,

they can be converted into a common representation (or an integrated manifold) or the

sensory information can be converted onto the motor manifold, which is referred to as

coordinate transformation [93]. The mapping in the cerebellum can be understood as

124

coordinate transformation and this view has been experimentally supported [94, 95].

Fig. 64 shows a diagram of coordinate transformation with two different coordinate

patches (or maps). Given two coordinate patches, g and h, in order to compare

the different representations, a common representation can be obtained in a different

space like M or a transformation from U to V can be given by a function composition,

h−1g.

Some computational models for sensorimotor integration (or robot motor con-

trol) have been proposed [96, 97] including Bayesian theory [98], Kalman filter [93],

recurrent network [99], forward model [100], input-output regression [101, 102], and

tensor network theory [103, 104]. Generally, these models are based on an assumption

that the motor commands and their consequences can be understood as input-output

relationships. They do not consider the geometric structure of sensory and motor

information that can be represented by manifolds.

There are some other models based on manifolds of sensory and motor informa-

tion including generic forward-backward model [105], and spatio-temporal manifold

learning [106, 107]. In addition to the manifold learning based models, differential

geometry has been applied to understand dependency between sensory information

and motor information on a manifold in a high dimensional space [108, 109]. How-

ever, these models do not consider the sensory and the motor information on separate

manifolds or do not use the input-output relations clearly.

In this section, I develop a framework using MI as a computational model for sen-

sorimotor integration. There are two approaches to use MI: (1) finding an integrated

manifold of the sensory and the motor manifolds (subsection 2) which is a straightfor-

ward application of MI, and (2) transforming the sensory or motor information onto

the other manifold, respectively (subsection 3).

125

2. Integration of Sensory and Motor Manifolds

In this subsection, I focus on finding a common representation as in [93]. That is,

the goal of this approach is to obtain two mapping functions that project the two

different representations onto the same space, such as g and h in Fig. 64.

To find a common representation, Ghahramani and his colleagues suggested max-

imizing mutual information between sensory information and motor information on

the common representation while preserving topographic order to find the two dif-

ferent mapping functions, but without considering structural information inherent in

the data set [93]. Instead, we can simply obtain two such mapping rules from MI,

based on the structural information from the sensory and the motor maps. In MI,

we learn two coordinate patches (or mapping rules g and h), from the individual

manifolds to the integrated manifold, and obtain the integrated map on M ∈ Rn.

So, when we have two different manifolds representing an unknown true map, these

mapping rules project the manifolds onto the same manifold while preserving the

topological properties of the source. Experimental results in subsequent sections will

demonstrate how manifold integration works.

Specifically, given the two dissimilarity matrices, DS and DM, from the sensory

and the motor information respectively, the integrated dissimilarity is given by

D̃ij = f−1
α

(
wsfα(DS

ij) + wmfα(DM
ij)

)
. (5.5)

where D̃ij, D
S
ij, and DM

ij are distances between the ith and the jth points on the

integrated manifold, the sensory manifold, and the motor map; and ws and wm are

weights for the sensory and the motor information. Once we obtain the integrated

dissimilarity matrix, kernel Isomap is applied to the matrix. The projection property

is inherited from kernel Isomap as shown in the previous Chapter.

126

3. Transformation from Sensory to Motor Space

Here I focus on the coordinate transformation from one map (sensory manifold) to

the other map (motor manifold), which can be obtained by h−1g as shown in Fig.

64. Calculating a general solution of h−1 might not be possible in manifold learning,

since h is usually a function from a high dimensional space to a lower dimensional

space. However, since the embedded manifold in M can be represented by the same

number of dimensions as V , we can obtain the inverse of h locally based on each

point’s neighbors.

I develop two computational models for the coordinate transformation from the

sensory information to the motor information. One does not use MI and the other one

does so that the transformation is defined like h−1g through the integrated manifold.

Note that these models can be applied to the transformation of motor information to

sensory information without any modification.

a. Without Manifold Integration

Simply we can project sensory information directly onto the motor manifold using

the local information on the sensory manifold. That is, assuming that the sensory

and motor manifolds are locally very similar, the local information from the sensory

manifold such as distances between a point to its neighbors can be reused in the

motor manifold. The local information can be represented by weights of each point’s

neighbors. Let xs be a point for the sensory information on the sensory manifold.

As in locally linear embedding (LLE) [8], xs can be approximately represented by

neighbors on the sensory manifold considering that the manifold is locally Euclidean,

xs =
∑

i∈IS
xs

wS
i x

S
i , (5.6)

127

where IS
xs

is an index set of neighbors of xs on the sensory manifold and wS
i are

weights for xS
i which are points on the sensory manifold. Then the projection of the

sensory information onto the motor manifold can be approximately defined as

xm =
∑

i∈IS
xs

wS
i x

M
i . (5.7)

Note that xm in Eq. (5.7) uses the same weights but with the points on the motor

manifold instead of on the sensory manifold. This method does not consider the fact

that Riemannian metrics on two different manifolds might be different. However, if

the samples are dense enough, the resulting projection will be very close to the true

transformation.

To obtain the best weights, an objective function can be defined based on the

error between the estimated distances of xs to the neighbors and the actual distances,

DS
sj, given by

J S =
∑

j∈IS
xs

(
(xs − xS

j)
>(xs − xS

j)− (DS
sj)

2
)2

. (5.8)

Then our algorithm is simply given by gradient descent as follows.

∆wS
i = −ηS∂J S

∂wS
i

, (5.9)

where ηS is the learning rate and the gradient is given by

∂J S

∂wS
i

= 4
∑

j∈IS
xs

(
(xs − xS

j)
>(xs − xS

j)− (DS
sj)

2
)
(xs − xS

j)
>xS

i . (5.10)

After each learning step, the weights are normalized by the sum of all weights. This

learning procedure takes time to obtain the optimized weights. For real-time trans-

formation, we need a more elaborate method.

One other issue is that since gradient descent does not converge to the global

128

minimum, we need good initial values for the weights. Intuitively, the weights should

have an inverse relation with the distance, so it can be initialized by

wS
i =

1

ZS
s

1

DS
si

, for i ∈ IS
xs

, (5.11)

where ZS
s is a normalization term to make sure that

∑
j∈IS

xs

wS
j = 1. Actually these

initial values are very close to the optimal solution3.

b. Through Manifold Integration

We can formulate a new coordinate transformation method using MI. Once we have an

integrated manifold of the two manifolds, when only sensory information is available,

we can project it onto the integrated manifold using the projection property of MI.

Let xs be a point for the sensory information on the sensory manifold as before and

x̃ the projected point on the integrated manifold. Then we calculate the distances

to the neighbors on both the sensory manifold and the integrated manifold, DS
sj and

D̃sj, for all the neighbors on each manifold. Then, from Eq. (5.5), we can obtain the

distances on the motor manifold as follows.

DM
sj = f−1

α

(
1

wm

[
fα(D̃sj)− wsfα(DS

sj)
])

. (5.12)

Using the fact that a manifold is locally Euclidean, given the distances from a

point to its neighbors, the projection to the manifold is given by a weighted sum of

the neighbors. So, given the sensory information, xs, the transformation onto the

3When the number of neighbors is 2, these values are actually the optimal solution.
As the number of neighbors increases, these are not the optimal solution but they are
still similar to the optimal solution.

129

motor manifold can be defined as

xm =
∑

i∈II

x̃

wM
i xM

i , (5.13)

where II
x̃ is an index set of points that are neighbors to x̃ on the integrated manifold.

Here, the weights wM
i should be non-negative and must sum up to 1. Note that we

use neighbors on the integrated manifold instead of those on the sensory manifold,

contrary to the previous section.

To obtain the best weights as before, an objective function can be defined by the

error between the estimated distances to the neighbors and the true distances from

Eq. (5.12) given by

JM =
∑

j∈II

x̃

(
(xm − xM

j)>(xm − xM
j)− (DM

mj)
2
)2

. (5.14)

Then the algorithm simply utilizes gradient descent.

∆wM
i = −ηM∂JM

∂wM
i

, (5.15)

where ηM is the learning rate and the gradient is given by

∂JM

∂wM
i

= 4
∑

j∈II

x̃

(
(xm − xM

j)>(xm − xM
j)− (DM

mj)
2
)
(xm − xM

j)>xM
i . (5.16)

After each learning step, the weights are normalized as before.

Again, we need good initial values for the weights and they can be calculated as

wM
i =

1

ZM
s

1

DM
si

, for i ∈ II
x̃, (5.17)

where ZM
s is a normalization term to make sure

∑
j∈II

x̃
wM

j = 1. Note that again the

neighbors are found on the integrated manifold, not on the sensory manifold.

This method is mathematically elegant, since the projection in Eq. (5.13) is

130

based on the distances on the integrated manifold, which is equivalent to using the

corresponding Riemannian metric on the integrated manifold. One more beneficial

property of the proposed method is its coordinate invariance. So, its performance is

constant no matter what kinds of coordinate system is used by sensory and motor

information.

4. Simulation

In order to show the effectiveness of the method, I carried out experiments with a

synthetic data set for integration on a common representation and coordinate transfor-

mation through integration. Simulated sensory and motor information were obtained

using the simulation configuration shown in Fig. 65.

mymx
(tx,ty)

Fig. 65. Simulation of sensory and motor maps. The sensory information, mimicking

a non-linear transformation (e.g., log-polar transform) in the visual system, is

a distorted version of the true square map. The motor information is based on

two angles of an articulated arm to reach locations within the true coordinate.

The arm consisted of two sticks of the same length.

The sensory information, mimicking a non-linear transformation (e.g., log-polar

transform) in the visual system, is a distorted version of the true square map. The

motor information is based on two angles of an articulated arm to reach locations

131

within the true coordinate. The arm consisted of two sticks of the same length. Given

a point (tx, ty) in the true map with tx ∈ [0, 2] and ty ∈ [0, 2], the corresponding point

in the sensory map (sx, sy) was given by





sx = tx + 0.05,

sy =
√

ty + 0.05.
(5.18)

With the two sticks a1 and a2 pointing at (tx, ty) with the end of a2, the corresponding

point in the motor map (mx,my) was calculated by





mx = angle between a1 and the horizontal axis,

my = angle between a1 and a2,
(5.19)

where the angles are in radian. These distorted maps are shown in Fig. 66. In Fig.

66, the projections of the straight line from the true map in the two different maps

result in curves and cannot be compared directly.

a. Integration of Sensory and Motor Manifolds

Fig. 67 shows how the integrated manifold can map and align the two different curves

from the two different manifolds. For example, when we draw a straight line on the

true map, we get two kinds of information at the same time, sensory and motor, as the

two curves on the two different maps in Fig. 66. While we cannot directly compare

the two curves on the two different maps, with MI we can project the two curves

onto the integrated map and compare them as in Fig. 67. The blue curves are from

the sensory space and the red curves from the motor space. In the integrated map,

the two curves closely overlap, although they are not perfectly the same because the

maps are not perfect. This error can be reduced if we increase the sample density

in the map. We can compare the sensory and the motor information directly on the

132

(a) True map

(b) Sensory map (c) Motor map

Fig. 66. Sensory and motor manifolds. (a) true manifold and a straight line (reference),

(b) sensory manifold and the projection of the reference line, and (c) motor

manifold and the projection of the line. The curves with the same color in

the three manifolds represent the same location [110].

133

Fig. 67. Integration of the sensory and the motor maps using MI. An integrated map

and the two projections of the reference line from the sensory and the motor

space in Fig. 66, respectively. MAId with α = 3 was used for MI.

integrated manifold that gives a common representation.

b. Transformation from Sensory to Motor Space

To make the simulation more realistic, I increased the dimension of the motor infor-

mation into three which is higher than the integrated manifold as well as the sensory

manifold. That is, h is now a function from a higher dimensional space to a lower

dimensional space and the inverse might not be possible. In this simulation, the third

dimension for the motor manifold is simply added to Eq. (5.19) as

mz = sin(mx), (5.20)

where the embedded manifold of the motor information can still be represented by a

two-dimensional coordinated system. After the integration as shown in the previous

experiment, only the sensory information is given as a ‘C’-shaped curve in Fig. 68

(a). Note that the integrated manifold is obtained from two-dimensional sensory

information and three dimensional motor information.

134

(a) Sensory manifold (Given) (b) Integrated manifold (Estimated)

Fig. 68. Sensory and motor transformation. (a) A ‘C’-shaped curve on the sensory

manifold and (b) the projection of the curve onto the integrated manifold.

When the sensory information is given, we can project it onto the integrated map

as in Fig. 68 (b). Then based on the proposed algorithms we can project the sensory

information on the motor manifold as in Fig. 69. That is, the sensory information is

transformed into the form of motor information. In Fig. 69, the red curves are the

transformed ones from the ‘C’-shaped curve on the sensory manifold and the black

dotted curves with cross marks are the true motor command which is unknown to the

algorithm. Note that the red and the black curves almost completely overlap which

shows that the algorithm works well. Here the data is assumed to be noise free.

Comparison of the two methods: As described in the previous section, there

are two ways to perform coordinate transformation from the sensory information to

the motor information: (1) without MI and (2) through MI. Since the difference in

the projected result is almost invisible (as can be seen in Fig. 69) is almost invisible,

the error between the estimated and the true points on the motor manifold was

measured (Fig. 70), with different weights for the sensory and the motor information

and different noise conditions in the sensory information. During the MI process, the

number of neighbors was 9. For robust comparison, instead of one curve, 1,000 points

135

(a) First two dimensions (Estimated) (b) Last two dimensions (Estimated)

Fig. 69. The estimated and the true motor commands in the motor manifold, on dif-

ferent dimensions. In each of (a) and (b), the red curve is the estimated curve

and the black curve marked with crosses is the true curve unknown to the al-

gorithm. The circles with the same color in the manifolds represent the same

location. Here the transformation is obtained using the integrated manifold.

on the sensory manifold were randomly generated and the average of the errors is

presented on the figures. For noisy sensory information, random noise (variance of

0.034) was added to each point 4. Each case was tested with different neighbor sizes

from 2 to 13.

Since the integrated manifold is obtained using local information on the sensory

manifold, when there is no noise, simple transformation has slightly smaller error

than the transformation through the integrated manifold as shown in Fig. 70 (a,c).

However, when the sensory information is noisy, the transformation through the in-

tegrated manifold is slightly better especially when the neighbors are small as shown

in Fig. 70 (b,d). That is because the integrated manifold is based on both sensory

and motor information so that it is more stable than only the sensory manifold when

4The same integrated manifold was used with the noiseless sensory and motor
information.

136

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4
x 10

−3

Number of Neighbors

S
qu

ar
ed

 E
rr

or

Without MI
Through MI

2 4 6 8 10 12 14
0.0284

0.0286

0.0288

0.029

0.0292

0.0294

0.0296

Number of Neighbors
S

qu
ar

ed
 E

rr
or

Without MI
Through MI

(a) Without noise, ws = 0.6 (b) With noise, ws = 0.6

2 4 6 8 10 12 14
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Number of Neighbors

S
qu

ar
ed

 E
rr

or

Without MI
Through MI

2 4 6 8 10 12 14
0.0294

0.0296

0.0298

0.03

0.0302

0.0304

0.0306

Number of Neighbors

S
qu

ar
ed

 E
rr

or

Without MI
Through MI

(c) Without noise, ws = 0.4 (d) With noise, ws = 0.4

Fig. 70. Errors in the coordinate transformation in four cases. (a,c) without noise on

the sensory information, (b,d) with noise on the sensor information, (a,b) with

the weight 0.6 on the sensory side, and (c,d) with the weight 0.6 on the motor

side.

137

sensory information is contaminated. In Fig. 70 (a,c), the error increases again after

around 9 which is the neighbor size for manifold integration, since more neighbors

break the assumption that the manifold is locally Euclidean. Also, the blue curves

are not affected by different weights since the transformation is not related to the

integrated manifold, while the red curves different with different weights. Note that

the differences in error are very small because the individual and integrated manifolds

are well distributed without noise.

As a computational model for sensorimotor integration, I formulated a manifold

integration approach equipped with coordinate transformation from one manifold to

the other manifold. Compared to other models such as tensor network theory, the

method described above is easy to understand and implement. Also, the proposed

method is mathematically elegant. One more beneficial property of the proposed

method is its coordinate invariance. Although I used synthetic data sets, the results

suggest that manifold integration can be used for sensorimotor integration. Also,

the proposed approach can be applied to any other task that needs a coordinate

transformation.

C. Summary

I applied the MI approach to two advanced integration tasks: kernel integration and

sensorimotor integration, with discussions of MI compared to select previous methods.

Although I used synthetic data sets for both tasks, the results are robust and suggest

that MI can be used as a good framework for those tasks.

138

CHAPTER VI

DISCUSSION AND FUTURE WORK

In this Chapter, I will focus my discussion on manifold integration, its merits, con-

straints, limits and future direction.

A. Main Contributions

The main contribution of this dissertation is the new framework I developed to utilize

both structural information and multiple measurements in the data set. The three

algorithms I developed integrate manifold learning (for the utilization of structural

information to find invariant properties) and data integration (for multiple measure-

ments), showing promising results in a wide range of applications.

In KODA, the contribution lies in the nonlinear integration of multiple mea-

surements with maximization of the separability between different classes. KODA

is different from KPCA since KODA is a supervised method and also distinguished

from KFD since KODA defines a noise term instead of the within-scatter matrix in

KFD. The noise term is defined as the distance between points that are supposed to

have the same invariant features.

In RAMS, the contribution is that RAMS is the first nonlinear manifold inte-

gration algorithm that integrates geometrically separate multiple manifolds. Con-

trary to KODA which defines distances between points on different manifolds, RAMS

integrates the structural information statistically (not geometrically) based on the

transition matrices of all manifolds. So, RAMS finds invariant features from multiple

measurements as long as the measurements satisfy the constraints in the manifold

integration concept.

For MAI, the main contribution is in the use of a general data integration method,

139

α-integration, thus providing a general manifold integration method that encompasses

previous approaches as a special case. This generalized method can overcome the inde-

pendence assumption in RAMS using different α values which determine the relations

of multiple measurements. So, MAI integrates properly multiple measurements and

extracts invariant features, according to the relation of the measurements.

I showed that manifold integration is effective in analyzing multimodal data sets

with various experiments and can be used as a new framework for other integration

tasks (e.g., kernel integration and sensorimotor integration). So, another important

contribution of this dissertation is that this research can help achieve better perfor-

mance in diverse applications where multiple measurements are available, and can

open new directions in manifold learning research as well as in data integration re-

search.

B. The Constraints of Manifold Integration

First, the constraints for manifold integration described in Table IV in Chapter IV

are just for the current version of manifold integration. Manifold integration can be

generalized by loosing the constraints.

The first constraint is inherited from manifold learning. Most manifold learning

algorithms have the same constraint and it is hard to avoid (See [111, 10] for some

discussion about this.).

The second constraint can be alleviated. As shown in Fig. 64, an integrated

manifold can be drawn based on the intersection of the manifolds. That is, instead

of using all the data points, as long as there are some data points that are measured

on all (or some) of the manifolds, we can find out an integrated manifold. Then a

remaining issue is how to expand the integrated manifold with the other data points

140

that are not on all (or some) of the manifolds. This can be really useful for some

practical situations. For example, when multi-robots are building one integrated map,

each robot can navigate and build its own map where the maps are only partially

overlapping [112]. Then based on the common intersection of the maps, the integrated

map can be completed including exclusive (non-common) maps from all the robots.

As mentioned in Chapter IV, in many cases like face and voice data set for

personal identification, the third constraint could cause manifold integration to fail.

However, even if multiple manifolds are topologically different, locally they can be

the same. So, instead of considering integrated manifold as a whole, we can find an

integrated manifold as a connected manifold of sub-manifolds each of which is an inte-

grated manifold of topologically isomorphic sub-manifolds of the multiple manifolds.

In this sense, this constraint is somehow interwoven with the second constraint.

C. Issues in the Manifold Integration Algorithms

Besides the concept and constraints of manifold integration, the algorithms and the

applications presented in this dissertation have some issues to discuss or to be solved

in the future.

In MAI, the α value and the weight vector w are given in advance and fixed. As

discussed in Chapter III, it is desirable to be able to learn the parameters in MAI.

If some target values are given for integrated distances, we can apply the learning

algorithms presented in Chapter III to MAI directly. But then one question arises:

“how often is it that, in practice we have target values for integrated distances?” That

is, when we have multiple distance matrices for a true data set, can we have some

true distances for the data set? This is always an issue in manifold integration even

when manifold integration is applied to other integration tasks like kernel integration

141

and sensorimotor integration.

One remaining issue on kernel integration is how to apply the unsupervised ver-

sion of manifold integration to the supervised cases. For example, in KFD, a super-

vised kernel machine, there are two kernels for one measurement: one is from the

‘between scatter’ matrix, KB, and the other from the ‘within scatter’ matrix, KW.

Then are we supposed to integrate separately the kernel matrices from the ‘between

scatter’ matrices of multiple measurements and the kernel matrices from the ‘within

scatter’ matrices? Or do we have to integrate the final form of kernel matrices in the

generalized eigenvalue form like K−1
W KB [113]? Or else, do we have to figure out a

new way? We need more research on this issue.

Since I focused on the mathematical formulation of manifold integration, I did

not use any real-world data sets for kernel integration and sensorimotor integration.

However, based on the experiments with synthetic data sets, I expect the proposed

approaches to work well with real world data sets. It would be an interesting direction

for future work to apply manifold integration to kernel integration and sensorimotor

integration with real-world data sets.

In sensorimotor integration, for one invariant object in the external world, tensor

network theory uses two non-orthogonal frames of reference for sensory and motor

information. However, while these non-orthogonal frames in tensor network theory

are linear, manifold integration implicitly has two nonlinear frames for the two refer-

ences. Actually, manifold integration does not need any coordinate system for sensory

and motor information, and it works based on the relative geometric relations. Any

nonlinear form of manifold can be represented by this relative geometric relations,

thus manifold-based integration is more general and flexible.

142

D. Future of Manifold Integration

Even though I showed many applications of manifold integration, it can be applied

to many other areas with additional work discussed above.

Due to the rapid technological development, data can be measured in many

different ways for the same task and multiple measurements need to be integrated.

For example, speech recognition systems using both sound and video (of the lips)

can outperform audio-only recognition systems [114, 115, 116]. The McGurk effect

shows that speech perception in our brain is multimodal combining audio and visual

information interactively [117]. It would be interesting to model the McGurk effect

with manifold integration. Also, EEG, MEG and fMRI data from a single subject

can be recorded at the same time when he or she performs a specific task. In such

cases, multimodal data analysis is required for reliable results. Since each modality

of such data sets can be analyzed on a manifold, manifold integration can be helpful

in obtaining more reliable analysis from the multimodal data sets. Basically manifold

integration can be applied to any multimodal data set as long as they satisfy the

constraints of manifold integration.

Not only for multimodal data sets, manifold integration can also be used as a

coordinate transformation tool as in sensorimotor integration. The application of

manifold integration to sensorimotor integration can be easily revised and applied to

some other areas like robotics. It can be applied to more than just a transformation

between an eye and an arm. For example, for automatic driving, camera information

and internal/external context like tire pressure or brake condition can be combined

and transformed based on manifold integration into motor information to control the

wheels of the car.

143

E. Summary

In sum, I discussed several issues in manifold integration. Some of these are interesting

directions for future work. The issues mentioned above may or may not be so easy

to resolve. However, any progress in them will be helpful for better multimodal data

analysis and for practical applications of manifold integration to other integration

tasks. In addition, I presented some future direction for manifold integration research.

Although they cannot be achieved with the current manifold integration techniques,

they can be in the future, with more effort.

144

CHAPTER VII

CONCLUSION

Manifold learning and data integration have been important and popular research

topics. However, they have not been considered together in a single framework to

deal with multimodal data sets more effectively than when each approach is used

independently from each other. In prior work, I studied separately manifold learning

and data integration, and developed algorithms for each. For manifold learning, I

derived an advanced algorithm called kernel Isomap that possesses a desirable pro-

jection property, and for data integration, I extended the application of α-integration

and developed learning rules for parameters that previously had to be set manually.

For both algorithms, I demonstrated the effectiveness using synthetic and real-world

tasks.

To analyze multimodal data sets, I formulated a new concept, manifold integra-

tion, a data integration method using the structure of data expressed by multiple

manifolds. Manifold integration combines manifold learning and data integration to

integrate information from multiple manifolds. So, contrary to manifold learning or

data integration as separate methods, my method uses both statistical relation be-

tween the two (or more) sets and the geometric relation between data points in each

set.

For manifold integration, I derived three algorithms: KODA, RAMS and MAI.

They depended on different assumptions so that they work with different kinds of

data set. However, all of them can find a nonlinear mapping rule and can project new

points on the projected space constructed from the training data set. Also, manifold

integration is coordinate invariant since it does not use any coordinate system except

in the final projection space. The three algorithms were tested with synthetic and

145

real world data sets, showing robust results.

Manifold integration provides an effective framework for advanced integration

tasks such as kernel integration and sensorimotor integration as well as for integrating

general multimodal data sets on multiple manifolds. Although I used synthetic data

sets for both application, they show the possibility that manifold integration can be

used successfully for those tasks.

Finally, I expect that my research on manifold integration can catalyze the two

separate research areas of manifold learning and data integration.

146

REFERENCES

[1] H. S. Seung and D. D. Lee, “The manifold ways of perception,” Science, vol.

290, pp. 2268–2269, 2000.

[2] I. T. Jolliffe, Principal Component Analysis. New York, NY: Springer-Verlag,

1986.

[3] T. Cox and M. Cox, Multidimensional Scaling, 2nd ed. London: Chapman &

Hall, 2001.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York,

NY: John Wiley & Sons, 2001.

[5] R. S. Millman and G. D. Parker, Elements of Differential Geometry. Englewood

Cliffs, NJ: Prentice-Hall, 1977.

[6] M. Spivak, A Comprehensive Introduction to Differential Geometry, 3rd ed.

Houston, TX: Publish or Perish, 1999, vol. 1.

[7] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric frame-

work for nonlinear dimensionality reduction,” Science, vol. 290, pp. 2319–2323,

2000.

[8] S. T. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[9] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction

and data representation,” Neural Computation, vol. 15, pp. 1373–1396, 2003.

147

[10] H. Choi and S. Choi, “Robust kernel Isomap,” Pattern Recognition, vol. 40,

no. 3, pp. 853–862, Mar. 2007.

[11] ——, “Kernel Isomap on noisy manifold,” in Proc. Int’l Conf. Development and

Learning, Osaka, Japan, 2005, pp. 208–213.

[12] H. Choi, B. Paulson, and T. Hammond, “Gesture recognition based on man-

ifold learning,” in Proc. Int’l Workshop on Structural and Syntactic Pattern

Recognition. Orlando, FL: Springer-Verlag, 2008, (LNCS 5342 pp. 247-256).

[13] B. Schölkopf, A. J. Smola, and K. R. Müller, “Nonlinear component analysis

as a kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299–

1319, 1998.

[14] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines

and Other Kernel-Based Learning Methods. Cambridge: Cambridge University

Press, 2000.

[15] J. Ham, D. D. Lee, S. Mika, and B. Schölkopf, “A kernel view of the dimen-

sionality reduction of manifolds,” in Proc. Int’l Conf. Machine Learning, Banff,

Canada, 2004, pp. 369–376.

[16] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,” Pro-

ceedings of the IEEE, vol. 85, no. 1, pp. 369–376, 1997.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference., 2nd ed. San Francisco, CA: Morgan Kaufmann, 1988.

[18] A. P. Dempster, “Upper and lower probabilities induced by a multivalued map-

ping,” The annals of Statistics, vol. 28, pp. 325–339, 1967.

148

[19] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Princeton

University Press, 1976.

[20] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY: Oxford

University Press, 1995.

[21] G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble,

“Kernel-based data fusion and its application to protein function prediction in

yeast,” in Proc. Pacific Symposium on Biocomputing (PSB), vol. 9, Big Island,

HI, 2004, pp. 300–311.

[22] C.-C. Ho, K. MacDorman, and Z. A. D. Pramono, “Human emotion and the

uncanny valley: A GLM, MDS, and Isomap analysis of robot video ratings,” in

Proc. of the Third ACM/IEEE Int’l Conf. on Human-Robot Interaction, Ams-

terdam, the Netherlands, Mar. 2008, pp. 169–176.

[23] H. Choi and T. Hammond, “Sketch recognition based on manifold learning,” in

Proc. Association for the Advancement of Artificial Intelligent (AAAI), vol. 3,

Chicago, IL, 2008, pp. 1786–1787.

[24] R.-J. Gu and W.-B. Xu, “Face recognition based on supervised kernel Isomap,”

in Computational Intelligence and Security: Int’l Conf., CIS 2006, 2006, pp.

674–677.

[25] ——, “Weighted kernel Isomap for data visualization and pattern classifica-

tion,” in Computational Intelligence and Security: Int’l Conf., CIS 2006, 2006,

pp. 1050–1057.

[26] C. K. I. Williams, “On a connection between kernel PCA and metric multidi-

mensional scaling,” Machine Learning, vol. 46, pp. 11–19, 2002.

149

[27] S. Mika, G. Ratsch, J. Weston, B. Schölkopf, and K. Müller, “Fisher discrimi-

nant analysis with kernels,” in Proc. IEEE Neural Networks for Signal Process-

ing Workshop, 1999, pp. 41–48.

[28] H. Choi and S. Choi, “Kernel Isomap,” Electronics Letters, vol. 40, no. 25, pp.

1612–1613, Dec. 2004.

[29] L. Saul and S. T. Roweis, “Think globally, fit locally: Unsupervised learning of

low dimensional manifolds,” Journal of Machine Learning Research, vol. 4, pp.

119–155, Jun. 2003.

[30] G. Hinton and S. Roweis, “Stochastic neighbor embedding,” in Advances in

Neural Information Processing Systems, vol. 15. Cambridge, MA: MIT Press,

2003, pp. 857–864.

[31] X. He and P. Niyogi, “Locality preserving projections,” in Advances in Neural

Information Processing Systems, vol. 16. Cambridge, MA: MIT Press, 2004.

[32] B. Schölkopf and A. J. Smola, Learning with Kernels. Cambridge, MA: MIT

Press, 2002.

[33] D. L. Hall and J. Llinas, Handbook of Multisensor Data Fusion, 2nd ed. Boca

Raton, FL: CRC Press, 2001.

[34] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Transaction of the ASMEJournal of Basic Engineering, pp. 35–45, Mar. 1960.

[35] S. Amari, “Integration of stochastic models by minimizing α-divergence,” Neu-

ral Computation, vol. 19, pp. 2780–2796, 2007.

[36] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixtures

of local experts,” Neural Computation, vol. 3, pp. 79–81, 1991.

150

[37] G. E. Hinton, “Training products of experts by minimizing contrastive diver-

gence,” Neural Computation, vol. 14, pp. 1771–1800, 2002.

[38] S. Amari and H. Nagaoka, Methods of Information Geometry. Providence, RI:

American Mathematical Society, 2000.

[39] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, 2nd ed. Cambridge:

Cambridge University Press, 1994.

[40] S. M. Ali and S. D. Silvey, “A general class of coefficients of divergence of one

distribution from another,” Journal of the Royal Statistical Society B, vol. 28,

pp. 131–142, 1966.

[41] I. Csiszár, “Information measures: A critical survey,” in Trans. 7th Prague

Conference on Information Theory, vol. A, 1974, pp. 73–86.

[42] B. Bollobás, Modern Graph Theory. New York, NY: Springer, 1998.

[43] F. Cailliez, “The analytical solution of the additive constant problem,” Psy-

chometrika, vol. 48, no. 2, pp. 305–308, 1983.

[44] D. Han, H. Choi, C. Park, and Y. Choe, “Fast and accurate retinal vasculature

tracing and kernel-Isomap-based feature selection,” in Proc. Int’l Joint Conf.

Neural Networks, Atlanta, Geogia, Jun. 2009, pp. 1160–1167.

[45] R. Duraiswami and V. C. Raykar, “The manifolds of spatial hearing,” in Proc.

IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, 2005, pp. 285–288.

[46] V. R. Algazi, R. O. Duda, D. M. Thompson, and C. Avendano, “The CIPIC

HRTF database,” in Proc. 2001 IEEE Workshop on Applications of Signal Pro-

cessing to Audio and Acoustics, 2001, pp. 99–102.

151

[47] S. Hettich, C. L. Blake, and C. J. Merz, “UCI reposi-

tory of machine learning databases,” 1998. [Online]. Available:

http://www.ics.uci.edu/∼mlearn/MLRepository.html

[48] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for

embedding and clustering,” in Advances in Neural Information Processing Sys-

tems, vol. 14. Cambridge, MA: MIT Press, 2002, pp. 585–591.

[49] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geomet-

ric framework for learning from examples,” Department of Computer Science,

University of Chicago, Tech. Rep. TR-2004-06, 2004.

[50] D. Rubine, “Specifying gestures by example,” Computer Graphics, vol. 25, no. 4,

pp. 329–337, Jul. 1991.

[51] J. Wobbrock, A. Wilson, and Y. Li, “Gestures without libraries, toolkits, or

training: A $1 recognizer for user interface prototypes,” in Proc. of the 20th

Annual ACM Symposium on User Interface Software and Technology, Newport,

RI, 2007, pp. 159–168.

[52] K. Sentz and S. Ferson, “Combination of evidence in Dempster-Shafer theory,”

Albuquerque, NM, Tech. Rep. Sandia report SAND2002-0835, 2002.

[53] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”

Machine Learning, pp. 131–163, 1997.

[54] C. K. Murphy, “Combining belief functions when evidence conflicts,” Decision

Support Systems, vol. 29, pp. 1–9, 2000.

[55] D. Yong, S. WenKang, Z. ZhenFu, and L. Qi, “Combining belief functions based

on distance of evidence,” Decision Support Systems, vol. 38, pp. 489–493, 2004.

152

[56] H. Choi, A. Katake, S. Choi, Y. Kang, and Y. Choe, “Probabilistic combina-

tion of multiple evidence,” in Proc. Int’l Conf. Neural Information Processing,

Bangkok, Thailand, 2009, (Part I, LNCS 5863, pp. 302–311).

[57] G. Xu, W. Tian, L. Qian, and X. Zhang, “A novel conflict reassignment method

based on grey relational analysis (GRA),” Pattern Recognition Letters, vol. 28,

pp. 2080–2087, 2007.

[58] H. Choi, A. Katake, S. Choi, and Y. Choe, “Alpha-integration of multiple

evidence,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing,

Dallas, TX, 2010, pp. 2210–2213.

[59] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-

nals of Eigenics, vol. 7, pp. 179–188, 1936.

[60] S. Ioffe, “Probabilistic linear discriminant analysis,” in European Conference on

Computer Vision, 2006, pp. 531–542, (Part IV, LNCS 3954).

[61] S. J. D. Prince and J. H. Elder, “Probabilistic linear discriminant analysis for

inferences about identity,” in IEEE 11th International Conference on Computer

Vision, Rio de Janeiro, Brazil, Oct. 2007, pp. 1–8.

[62] D. J. Bartholomew, Latent Variable Models and Factor Analysis. London:

Charles Griffin & Co. Ltd., 1987.

[63] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”

Journal of the Royal Statistical Society B, vol. 61, no. 3, pp. 611–622, 1999.

[64] T. Minka, “Divergence measures and message passing,” Microsoft Research,

Tech. Rep. MSR-TR-2005-173, 2005.

153

[65] A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi, “Nonnegative matrix factorization

with α-divergence,” Pattern Recognition Letters, vol. 29, no. 9, pp. 1433–1440,

Jul. 2008.

[66] Y. D. Kim, A. Cichocki, and S. Choi, “Nonnegative Tucker decomposition with

alpha-divergence,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Pro-

cessing, Las Vegas, NV, 2008, pp. 1829–1832.

[67] H. Choi, S. Choi, A. Katake, and Y. Choe, “Learning α-integration with

partially-labeled data,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal

Processing, Dallas, TX, 2010, pp. 2058–2061.

[68] A. J. Pellionisz, “Brain theory: Connecting neurobiology to robotics tensor

analaysis: Utilizing intrinsic coordinates to describe, understnd and engineer

functional geometries of intelligent organisms,” Journal of Theoretical Neurobi-

ology, vol. 2, pp. 185–211, 1983.

[69] J. Laub and K. R. Müller, “Feature discovery in non-metric pairwise data,”

Journal of Machine Learning Research, vol. 5, pp. 801–818, 2004.

[70] C. Ong, X. Mary, S. Canu, and A. Smola, “Learning with non-positive kernels,”

in Proc. Int’l Conf. Machine Learning, Banff, Canada, 2004, pp. 639–646.

[71] H. Abdi, D. Valentin, A. J. O’Toole, and B. Edelman, “DISTATIS: The anal-

ysis of multiple distance matrices,” in Proc. Int’l Conf. Computer Vision and

Pattern Recognition, San Diego, CA, 2005, pp. 42–47.

[72] K. I. Diamantaras and S. Y. Kung, Principal Component Neural Networks:

Theory and Applications. New York, NY: John Wiley & Sons, 1996.

154

[73] N. Malayath, H. Hermansky, and A. Kain, “Towards decomposing the sources

of variability in speech,” in Proc. EUROSPEECH, Rhodes, Greece, 1997, pp.

497–500.

[74] H. Choi, R. Gutierrez-Osuna, S. Choi, and Y. Choe, “Kernel oriented discrim-

inant analysis for speaker-independent phoneme spaces,” in Proc. Int’l Conf.

Pattern Recognition, Tampa, FL, 2008, pp. 1–4.

[75] J. Kominek and A. W. Black, “CMU ARCTIC databases for speech synthesis,”

2003. [Online]. Available: http://www.festvox.org/cmu arctic/

[76] K. Fukunaga, An Introduction to Statistical Pattern Recognition. New York,

NY: Academic Press, 1990.

[77] H. Choi, S. Choi, and Y. Choe, “Manifold integration with Markov ran-

dom walks,” in Proc. Association for the Advancement of Artificial Intelligent

(AAAI), vol. 1, Chicago, IL, 2008, pp. 424–429.

[78] M. Szummer and T. Jaakkola, “Partially labeled classification with Markov

random walks,” in Advances in Neural Information Processing Systems, vol. 14.

Cambridge, MA: MIT Press, 2002, pp. 945–952.

[79] R. I. Kondor and J. Lafferty, “Diffusion kernels on graphs and other discrete

structures,” in Proc. Int’l Conf. Machine Learning, 2002, pp. 315–322.

[80] D. Zhou and C. Burges, “Spectral clustering and transductive learning with

multiple views,” in Proc. Int’l Conf. Machine Learning, 2007, pp. 1159–1166.

[81] T. Joachims, “Making large-scale SVM learning practical,” in Advances in Ker-

nel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola,

Eds. Cambridge, MA: MIT Press, 1999, pp. 169–184.

155

[82] Y. Bengio, O. Delalleau, N. Le Roux, J. F. Paiement, and M. Ouimet, “Learning

eigenfunctions links spectral embedding and kernel PCA,” Neural Computation,

vol. 16, pp. 2197–2219, 2004.

[83] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means, spectral clustering and

normalized cuts,” in Proc. ACM SIGKDD Int’l Conf. Knowledge Discovery and

Data Mining, Seattle, WA, 2004, pp. 551–556.

[84] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE Trans.

Neural Networks, vol. 13, no. 3, pp. 780–784, 2002.

[85] Y. Bai, C. Park, and Y. Choe, “Relative advantage of touch over vision in

the exploration of texture,” in Proc. Int’l Conf. Pattern Recognition, Tempa,

Florida, 2008, pp. 1–4.

[86] C. Park, H. Choi, and Y. Choe, “Self-organization of tactile receptive fields:

Exploring their textural origin and their representational properties,” in 7th

International Workshop on Self-Organizing Maps, St. Augustine, FL, 2009, pp.

228–236.

[87] P. Flourens, Experimental Researches on the Properties and the Functions of

the Nervous System in Vertebrate Animals, 2nd ed. Paris: Bailliere, 1824.

[88] D. Marr, “A theory of cerebellar cortex,” Journal of Physiology, vol. 202, pp.

437–470, 1969.

[89] A. J. Pellionisz, “David Marr: A theory of the cerebellar cortex,” Brain Theory,

pp. 253–257, 1986.

[90] E. J. Fine, C. C. Ionita, and L. Lohr, “The history of the development of the

156

cerebellar examination,” Seminars in Neurology, vol. 22, no. 4, pp. 375–384,

2002.

[91] G. Holmes, “The cerebellum of man,” Brain, vol. 62, pp. 1–30, 1939.

[92] N. Ramnani, “The primate cortico-cerebellar system: Anatomy and function,”

Nature Reviews Neuroscience, vol. 7, pp. 511–522, 2006.

[93] Z. Ghahramani, D. M. Wolpert, and M. I. Jordan, “Computational models of

sensorimotor integration,” Science, vol. 269, pp. 1880–1882, 1997.

[94] A. J. Pellionisz and R. Llinas, “Space-time representation in the brain. The cere-

bellum as a predictive space-time metric tensor,” Neuroscience, vol. 7, no. 12,

pp. 2949–2970, 1982.

[95] C. C. Gielen and E. J. van Zuylen, “Coordination of arm muscles during flexion

and supination: application of the tensor analysis approach,” Neuroscience,

vol. 17, no. 3, pp. 527–539, 1986.

[96] E. Todorov, “Optimality principles in sensorimotor control,” Nature Neuro-

science, vol. 7, no. 9, 2004.

[97] M. I. Jordan and D. M. Wolpert, The Cognitive Neuroscience. Cambridge,

MA: MIT Press, 1999, ch. Computational Motor Control.

[98] K. P. Körding and D. M. Wolpert, “Bayesian decision theory in sensorimotor

control,” TRENDS in Cognitive Science, vol. 10, no. 7, pp. 319–326, 2006.

[99] S. Denéve, J.-R. Duhamel, and A. Pouget, “Optimal sensorimotor integration

in recurrent cortical networks: A neural implementation of Kalman filters,”

Journal of Neuroscience, vol. 27, no. 21, pp. 5744–5756, 2007.

157

[100] D. M. Wolpert and R. C. Miall, “Forward models for physiological motor con-

trol,” Neural Network, vol. 9, pp. 1265–1279, 1996.

[101] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,” Ar-

tificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[102] C. W. Wampler, “Manipulator inverse kinematics solution based on damped

least-squares solutions,” IEEE Trans. Systems, Man and Cybernetics, vol. 16,

no. 1, pp. 93–101, 1986.

[103] A. J. Pellionisz, “Tensor network theory of the central nervous system,” in

Encyclopedia of Neuroscience, G. Adelman, Ed. Boston, MA: Birkhauser,

1987, vol. II, pp. 1196–1198.

[104] A. J. Pellionisz and R. Llinas, “Tensor network theory of the metaorganization

of functional geometries in the central nervous system,” Neuroscience, vol. 16,

no. 2, pp. 245–273, 1985.

[105] M. Lopes and B. Damas, “A learning framework for generic sensory-motor

maps,” in IEEE/RSJ Int. Cof. on Intelligent Robots and Systems, San Diego,

CA, 2007, pp. 1533–1538.

[106] O. C. Jenkins, R. Bodenheimer, and R. Peters, “Manipulation manifolds: Ex-

plorations into uncovering manifolds in sensory-motor spaces,” in Proc. Int’l

Conf. Development and Learning, Bloomington, IN, 2006.

[107] R. A. P. II and O. C. Jenkins, “Uncovering manifold structures in robo-

nauts sensory-data state space,” in IEEE-RAS International Conference on

Humanoid Robotics, Tsukuba, Japan, 2005, pp. 369–374.

158

[108] D. Philipona, J. K. O’Regan, and J. P. Nadal, “Is there something out there?

Inferring space from sensorimotor dependencies,” Neural Computation, vol. 15,

pp. 2029–2050, 2003.

[109] D. Philipona, J. K. O’Regan, J. P. Nadal, and O. J. M. D. Coenen, “Perception

of the structure of the physical world using unknown multimodal sensors and

effectors,” in Advances in Neural Information Processing Systems, S. T. L. Saul

and B. Schölkopf, Eds., vol. 16. Cambridge, MA: MIT press, 2004, pp. 945–952.

[110] H. Choi, S. Choi, A. Katake, and Y. Choe, “Sensorimotor integration on mani-

folds,” in The Southwest Cognition Conference (Armadillo), Houston, TX, 2010,

poster presentation.

[111] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C.

Langford, “The Isomap algorithm and topological stability,” Science, vol. 295,

no. 5552, p. 7, Jan. 2002.

[112] A. Howard, G. S. Sukhatme, and M. J. Mataric, “Multirobot simultaneous

localization and mapping using manifold representations,” Proceedings of the

IEEE, vol. 94, no. 7, pp. 1360–1369, 2006.

[113] G. Strang, Linear Algebra and Its Applications, 3rd ed. Orlando, FL: Harcourt

Brace Jovanovich, Inc, 1988.

[114] D. G. Stork and M. E. Hennecke, Speechreading by Humans and Machines:

Models, Systems and Applications. New York, NY: Springer-Verlag, 1996.

[115] J. R. Movellan and P. Mineiro, “Robust sensor fusion: Analysis and application

to audio-visual speech recognition,” Machine Learning, vol. 32, no. 2, pp. 85–

100, Aug. 1998.

159

[116] X. Z. Zhang, R. M. Merserratt, and M. Clements, “Bimodal fusion in audio-

visual speech recognition,” in Proc. Int’l Conf. on Image Processing, 2002, pp.

I: 964–967.

[117] H. McGurk and J. MacDonald, “Hearing lips and seeing voices,” Nature, vol.

264, pp. 746–748, 1976.

160

VITA

Hee Youl Choi received his B.S. and M.S. degrees in computer science from

Pohang University of Science and Technology (POSTECH), Pohang, Korea, in 2002

and 2005. As a computer programmer in OromInfo for 3 years, he developed several

web service and server programs for digital libraries, such as database managements,

search engines, inter-library-loan (ILL) service, image viewers, and book alert services.

Also he worked in POSTECH as a researcher on machine learning for 6 months and

had an internship in Starvision Technologies on pattern recognition for almost 4

months.

His master thesis was about independent component analysis (ICA) titled “Rel-

ative Trust-Region Learning for ICA” where he developed a new optimization algo-

rithm for ICA. He received his Ph.D. in the Department of Computer Science and

Engineering at Texas A&M University in 2010. His research interests include man-

ifold integration, sensorimotor integration, active perception, computational neuro-

science, manifold learning, kernel methods, differential geometry, independent compo-

nent analysis, blind source separation, neural networks, pattern recognition, machine

learning, camera calibration, image/signal processing, graphical models, and concepts

learning.

Dr. Choi may be reached at 301 Harvey R. Bright Building, College Station, TX

77843-3112 or at heeyoul@gmail.com.

The typist for this dissertation was Hee Youl Choi.

