
 1

SEMANTIC ROUTED NETWORK FOR DISTRIBUTED SEARCH ENGINES

A Dissertation

by

AMITAVA BISWAS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010

Major Subject: Computer Engineering

 2

SEMANTIC ROUTED NETWORK FOR DISTRIBUTED SEARCH ENGINES

A Dissertation

by

AMITAVA BISWAS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rabi N. Mahapatra
Committee Members, Eun Jung Kim
 Radu Stoleru
 Behbood Zoghi
Head of Department, Valerie E. Taylor

May 2010

Major Subject: Computer Engineering

 iii

ABSTRACT

Semantic Routed Network for Distributed Search Engines. (May 2010)

Amitava Biswas, B.Tech.(Hons), Indian Institute of Technology;

M.S., Concordia University;

M.B.A., Indian Institute of Management

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

Searching for textual information has become an important activity on the web. To satisfy the

rising demand and user expectations, search systems should be fast, scalable and deliver relevant

results. To decide which objects should be retrieved, search systems should compare holistic

meanings of queries and text document objects, as perceived by humans. Existing techniques do

not enable correct comparison of composite holistic meanings like: “evidences on role of DR2

gene in development of diabetes in Caucasian population”, which is composed of multiple

elementary meanings: “evidence”, “DR2 gene”, etc. Thus these techniques can not discern objects

that have a common set of keywords but convey different meanings. Hence we need new methods

to compare composite meanings for superior search quality.

In distributed search engines, for scalability, speed and efficiency, index entries should be

systematically distributed across multiple index-server nodes based on the meaning of the objects.

Furthermore, queries should be selectively sent to those index nodes which have relevant entries.

This requires an overlay Semantic Routed Network which will route messages, based on meaning.

This network will consist of fast response networking appliances called semantic routers. These

appliances need to: (a) carry out sophisticated meaning comparison computations at high speed;

 iv

and (b) have the right kind of behavior to automatically organize an optimal index system. This

dissertation presents the following artifacts that enable the above requirements:

(1) An algebraic theory, a design of a data structure and related techniques to efficiently

compare composite meanings.

(2) Algorithms and accelerator architectures for high speed meaning comparisons inside

semantic routers and index-server nodes.

(3) An overlay network to deliver search queries to the index nodes based on meanings.

(4) Algorithms to construct a self-organizing, distributed meaning based index system.

The proposed techniques can compare composite meanings ~105 times faster than an equivalent

software code and existing hardware designs. Whereas, the proposed index organization approach

can lead to 33% savings in number of servers and power consumption in a model search engine

having 700,000 servers. Therefore, using all these techniques, it is possible to design a Semantic

Routed Network which has a potential to improve search results and response time, while saving

resources.

 v

TABLE OF CONTENTS

 Page

ABSTRACT .. iii

TABLE OF CONTENTS .. v

LIST OF FIGURES ... xiii

LIST OF TABLES .. xviii

CHAPTER

 I INTRODUCTION ... 1

 1.1 Motivation ... 1

 1.1.1 Demand for meaning based search .. 1

 1.1.2 Distributed search engines ... 2

 1.1.3 Energy efficient distributed index and role of semantic router 4

 1.2 Requirements and challenges .. 7

 1.2.1 Challenges in meaning similarity computation 7

 1.2.2 Challenges in designing meaning based message delivery network 12

 1.3 Scope of this dissertation and addressed challenges 13

 1.4 Organization of this dissertation .. 15

 II PROBLEM EXAMINATION AND ANALYSIS OF PRIOR ART 17

 2.1 Search basics: Definition of terms ... 17

 2.1.1 Collection of objects and keys .. 17

 2.1.2 Search process, query and key comparison 18

 2.1.3 Role of index .. 19

 2.1.4 Result ranking ... 19

 2.2 Search and retrieval performance metrics ... 20

 2.2.1 Precision ... 20

 2.2.2 Recall .. 20

 vi

CHAPTER Page

 2.2.3 Search response time .. 21

 2.2.4 Complete recall (response) time ... 21

 2.3 Research imperatives ... 21

 2.4 Significance of “meaning” in human cognition and language 22

 2.4.1 Sense of meaning .. 22

 2.4.2 Existence of meaning composition process 23

 2.4.3 Notion of complex concepts ... 25

 2.4.4 Relationship between language and meaning 25

 2.4.5 Simple principles of meaning composition 26

 2.4.6 Generative mechanism of meaning composition 27

 2.4.7 Simple composition and memory models in cognitive science 28

 2.4.8 Realizations and implications ... 29

 2.4.9 Need for a suitable mathematical model .. 30

 2.5 Existing meaning representation methods ... 30

 2.5.1 Descriptors for documents and concepts .. 30

 2.5.2 Set based (Boolean) model ... 31

 2.5.3 Vector based models and associated techniques 33

 2.5.4 Graph based model ... 37

 2.5.5 Galois lattice model .. 37

 2.5.6 Meaning representation using mainstream semantic web standards 38

 2.5.7 Unsuitability of existing meaning representation techniques 39

 2.6 Existing tree matching algorithms ... 39

 2.7 Existing meaning based search techniques .. 40

 2.7.1 Conceptual (exploded) searching ... 40

 2.7.2 Semantic searching ... 41

 2.7.3 Significance in meaning representation design 41

 2.8 Relevant natural language processing techniques 42

 2.8.1 Topic identification techniques .. 42

 2.8.2 Presence of semantic structures in natural language texts 42

 2.8.3 Named entity recognition techniques ... 43

 2.8.4 Knowledge extraction techniques ... 43

 2.8.5 Text summarization and discourse analysis 44

 2.8.6 Interpretation of actual meaning of a sentence 44

 2.9 Meaning based indexing .. 45

 vii

CHAPTER Page

 2.9.1 Inverted index for vector models and Galois lattice based indexes .. 45

 2.9.2 Index scaling techniques ... 46

 2.9.3 Equivalence between searching and routing problems 46

 2.9.4 P2P network as a distributed index .. 47

 2.10 Networking science (graph theory) fundamentals 51

 2.10.1 Role of network science (graph) theories 51

 2.10.2 Definitions: Node degree, clustering coefficient and path length .. 52

 2.10.3 Watt and Strogatz topology generation model 54

 2.10.4 Greedy routing .. 57

 2.11 Queuing theory .. 67

 2.11.1 Definitions: Execution time, waiting time, response time 67

 2.11.2 Basic queuing model and response time statistics 68

 2.11.3 Useful lessons and application note ... 69

 2.12 Bloom Filter basics .. 71

 2.13 Theory of hash functions ... 73

 2.14 Summary ... 74

 III MEANING REPRESENTATION AND COMPARISON MODEL 76

 3.1 Requirements for the descriptor .. 76

 3.2 Role of SRN in the proposed distributed index ... 77

 3.2.1 Documents, URLs, index entries, document ids and storage 78

 3.2.2 Distributed search engine components ... 78

 3.2.3 Components that carry out meaning comparison 80

 3.3 Overview of the proposed meaning comparison process 80

 3.4 Concept tree representation and its generation .. 84

 3.4.1 Notions and rationale .. 84

 3.4.2 Representation of standard concepts and contextual meanings 85

 3.4.3 Role of composition templates and ontology artifacts 85

 3.4.4 Concept tree structure for a given text .. 86

 3.4.5 Tree construction rules ... 88

 3.4.6 Incorporating subject category information 89

 3.4.7 Tree generation process .. 90

 3.4.8 Practical considerations .. 93

 viii

CHAPTER Page

 3.4.9 Evidence that support the rationale behind the tree construct 94

 3.5 Tensor representation of a concept tree ... 95

 3.5.1 Motivation .. 95

 3.5.2 Overview of the technique .. 95

 3.6 Required algebra .. 97

 3.6.1 Notations and significance ... 97

 3.6.2 Definition of the vector space ... 97

 3.6.3 Algebraic representation of composition and binder functions 98

 3.6.4 Definition of […,… ,…] binder function 99

 3.6.5 Definition of {…, …., …} binder function 100

 3.6.6 An example to illustrate tensor generation 102

 3.6.7 Algorithm to generate tensor expression for a given concept tree ... 104

 3.6.8 Rationale for using delimiter characters ... 105

 3.7 Method to incorporate hypernyms ... 106

 3.7.1 Motivation .. 106

 3.7.2 Suggested method ... 107

 3.8 Additional applications of the tensor model .. 108

 3.8.1 Possible applications .. 108

 3.8.2 Methods to materialize term disambiguation 109

 3.9 Integrating tensor, latent semantic indexing and term vector models 110

 3.9.1 Motivation .. 110

 3.9.2 Design of the integrated semantic descriptor data structure 111

 3.10 Criticality of execution time of tensor comparison 112

 3.11 Summary ... 113

 IV MEANING COMPARATOR: ARCHITECTURE ... 114

 4.1 Equivalence between tensor and vector for comparison purpose 114

 4.2 The problem in dot product: Quick identification of common basis vectors 115

 4.3 Hardware accelerators for dot product computation 116

 4.4 Application of Bloom Filters in identifying common basis vectors 118

 4.5 Necessary data structure, algorithms and processing architecture 119

 4.5.1 Data structure generation .. 120

 4.5.2 Data structure comparison .. 127

 ix

CHAPTER Page

 4.5.3 Rationale for separate step III and IV ... 133

 4.5.4 Comparator architecture and its execution time analysis 134

 4.5.5 Techniques to reduce circuit complexity and circuit power 137

 4.6 Summary ... 149

 V SEMANTIC ROUTED NETWORK .. 151

 5.1 Semantic Routed Network ... 151

 5.1.1 Recapitulation: What is Semantic Routed Network 151

 5.1.2 Generalized versions of networking concepts 151

 5.1.3 Destinations, routers and destination address assignment scheme .. 152

 5.1.4 Network organization and router address assignment scheme 154

 5.1.5 Routing operation ... 155

 5.1.6 Semantic routing table and their content .. 158

 5.1.7 Semantic routing table lookup mechanism 159

 5.1.8 Notion of semantic space and greedy routing in SRN 160

 5.1.9 Overview of the SRN protocol stack .. 161

 5.2 Performance concerns and design imperatives .. 162

 5.2.1 Determinants of performance ... 162

 5.2.2 Design imperatives ... 163

 5.3 Choice of network topology .. 163

 5.3.1 Network topology requirements ... 163

 5.3.2 Network topology options .. 164

 5.3.3 Performance comparison of topologies and choice for SRN 172

 5.4 Summary ... 176

 VI SELF ORGANIZATION OF THE INDEX SYSTEM ... 177

 6.1 Generation of small world topology Semantic Routed Network................. 177

 6.1.1 Basic mechanism .. 177

 6.1.2 Small world operation in SRN ... 179

 6.1.3 Necessary algorithms for the self organizing mechanism 180

 6.1.4 Adding index entries ... 184

 6.2 Programming shortest paths in semantic routing tables 184

 6.2.1 Motivation ... 184

 x

CHAPTER Page

 6.2.2 Separate distance table and semantic routing table 185

 6.2.3 Generation of semantic routing table.. 186

 6.2.4 Correspondence between distance table and routing table 187

 6.2.5 Identification of shortest paths ... 188

 6.2.6 Programming shortest paths in semantic routing tables 191

 6.2.7 Difference in table lookup speeds in distance and routing tables 191

 6.3 Compacting the semantic routing table ... 191

 6.3.1 Motivation .. 191

 6.3.2 Approach .. 192

 6.3.3 Routing table entry eviction policies and significance 193

 6.3.4 Routing table reorganization algorithms and significance 194

 6.4 Duplicate message elimination ... 196

 6.5 Automatic storage space balancing .. 197

 6.6 Automatic reorganization of the distributed index 199

 6.7 Semantic routing table lookup mechanism .. 199

 6.7.1 Exhaustive comparison against all row keys 200

 6.7.2 Design and analysis of semantic routing table lookup scheme 201

 6.8 Summary ... 204

 VII EVALUATION, RESULTS AND DISCUSSIONS ... 206

 7.1 Evaluation approach .. 206

 7.1.1 Hypothesis and their significance ... 206

 7.1.2 Evaluation plan to substantiate the claims .. 210

 7.2 Analysis of a typical distributed index system .. 215

 7.2.1 Number of servers required and response time 215

 7.2.2 Estimated values of some parameters ... 218

 7.3 Analysis of the proposed index distribution scheme 220

 7.3.1 Meaning based object distribution .. 220

 7.3.2 Number of servers and response time... 220

 7.3.3 Benefits of the proposed index distribution scheme 221

 7.4 Evaluation of the tensor model of meaning representation 223

 7.4.1 Definition of alternative tree comparison metrics 223

 7.4.2 Tensor comparison is consistent with other comparison metrics 225

 xi

CHAPTER Page

 7.4.3 Property I: Composition information is included 227

 7.4.4 Property II: A partial set can represent composite meaning 228

 7.4.5 Property III: Higher level compositions are more important.. 229

 7.5 Experimental setups for meaning comparator evaluation 230

 7.5.1 Comparator architecture simulator ... 230

 7.5.2 Optimal software implementation of the comparator 231

 7.5.3 Existing hardware design of dot product processors 232

 7.5.4 Experiments and rationale .. 232

 7.6 Results for meaning comparator evaluation .. 233

 7.6.1 Performance evaluation of the comparator 233

 7.6.2 Setup time for the comparator .. 242

 7.6.3 Memory space scalability analysis for the proposed comparator 243

 7.7 Experiments and setups for Semantic Routed Network evaluation 244

 7.7.1 Semantic Routed Network simulator .. 244

 7.7.2 Experiments and rationale .. 244

 7.8 Results for Semantic Routed Network .. 246

 7.8.1 Message routing capability and self organizing behavior 246

 7.8.2 Effectiveness of duplicate message suppression techniques 248

 7.8.3 Effectiveness of routing table optimization techniques 248

 7.8.4 Performance of small routers ... 249

 7.9 Storage scalability of the proposed distributed index 250

 7.10 Semantic Routed Network response time and throughput analysis............. 251

 7.10.1 Analysis approach .. 251

 7.10.2 Alternative SRN implementations .. 254

 7.10.3 Semantic router hardware and timing related assumptions 255

 7.10.4 Response time analysis of SRN having large router 256

 7.10.5 Response time analysis of SRN with small routers 260

 7.10.6 SRN does not significantly perturb search engine performance 261

 7.11 Estimated power consumption of the proposed semantic router 263

 7.12 Suitability of the proposed comparison technique 264

 7.13 Suitability of the index self-organization technique 265

 7.14 Summary ... 265

 VIII CONCLUSION ... 267

 xii

 Page

 8.1 Open research problems .. 267

 8.2 Contributions ... 268

REFERENCES .. 270

VITA ... 281

 xiii

LIST OF FIGURES

FIGURE Page

 1.1 The meaning comparison processes required for meaning-based search 1

 1.2 Index distribution and query delivery in a typical distributed search engine 3

 1.3 Proposed index distribution and query delivery model ... 5

 1.4 Role of Semantic Routed Network in the proposed distributed search engine 6

 2.1 The search paradigm ... 18

 2.2 Role of index ... 19

 2.3 Semantic and syntactic processings are distinct .. 26

 2.4 Hierarchical collection of meanings .. 28

 2.5 Search operation with set based descriptor ... 32

 2.6 Vector model of meaning representation and comparison 34

 2.7 Search operation with vector based descriptor .. 35

 2.8 Abstract inverted index in a typical search engine .. 45

 2.9 Distributed search operation in a P2P network ... 48

 2.10 Network science concepts ... 52

 2.11 Lattice, small world and random network topologies ... 55

 2.12 Normalized clustering coefficient and average path lengths for different p 57

 2.13 Need for explicit route maps in a random network ... 58

 2.15 Greedy routing in lattice networks .. 60

 xiv

FIGURE Page

 2.16 Greedy routing is unable to route messages in a random network 62

 2.17 Role of short links in greedy routing ... 63

 2.18 Queuing model .. 68

 2.19 Bloom Filter basics ... 72

 3.1 Role of Semantic Routed Network and semantic routers in query delivery 79

 3.2 Overview of the search process ... 81

 3.3 Equivalence between nested set of elements and concept tree.............................. 84

 3.4 Generation of concept tree from text ... 87

 3.5 Concept tree representation of the entire publication .. 90

 3.6 Tensor representation of concept tree ... 96

 3.7 Isomorphic concept trees which convey the same meaning 99

 3.8 Concept tree tensor expression .. 102

 3.9 Role of delimiter vectors in distinguishing compositions 106

 3.10 Taxonomic ancestors of a given term ... 107

 4.1 Descriptor generation process ... 120

 4.2 Coefficient table generation .. 121

 4.3 Bloom Filter based data structure generation .. 124

 4.4 Comparison of descriptors .. 128

 4.5 Proposed information processing architecture .. 134

 4.6 Event tree for the proposed architecture ... 146

 xv

FIGURE Page

 5.1 Semantic Routed Network as a distributed index system 156

 5.2 Semantic routing table lookup algorithm .. 159

 5.3 Network protocol stack ... 162

 5.4 Hierarchical network with uniform degree ... 165

 5.5 Hierarchical power law network ... 167

 5.6 Balanced hierarchical tree ... 168

 5.7 Unbalanced hierarchical tree ... 168

 5.8 Random network with uniform degree .. 169

 5.9 Random power law network ... 170

 5.10 Lattice network .. 171

 5.11 Average path length distribution ... 171

 5.12 Small world network ... 172

 6.1 Small world network operations ... 179

 6.2 Pseudo code of semantic router behavior .. 181

 6.3 Pseudo code of index node behavior. .. 183

 6.4 Generation of routing table entries from distance table .. 185

 6.5 Actual implementation of distance and routing table .. 187

 6.6 Updation of distance table ... 189

 6.7 Identification of shortest path .. 190

 6.8 Lattice formation by routing table entry eviction .. 193

 xvi

FIGURE Page

 6.9 Reallocation of destination addresses ... 196

 6.10 Suggested high level architecture for the semantic lookup sub-system 201

 7.1 Index distribution and query delivery in a typical distributed search engine 215

 7.2 Proposed index distribution and query delivery model ... 220

 7.3 Terminologies for tree comparison ... 223

 7.4 Pseudo code for optimum software implementation of dot product 232

 7.5 Comparison of speedup against other designs .. 236

 7.6 Number of CAM lookups for different number of basis vectors 237

 7.7 Execution cycles for different number of basis vectors .. 238

 7.8 Number of CAM lookups for various numbers of common basis vectors 239

 7.9 Number of CAM lookups for different number of basis vectors 239

 7.10 Number of CAM lookups for various BF sizes. .. 240

 7.11 Number of execution cycles for various BF sizes ... 240

 7.12 Number of CAM lookups for various number of BF hash functions 241

 7.13 Number of execution cycles for various number of BF hash functions 241

 7.14 Improvement of routing success rate with network maturity. 246

 7.15 Improvement of routing response time with network maturity 247

 7.16 Message overhead, duplicate, TTL & looping message drop ratios 248

 7.17 Role of different routing table optimization algorithms .. 249

 7.18 Performance comparison between small & large Semantic Routers 250

 xvii

FIGURE Page

 7.19 Time response analysis of a typical search engine .. 252

 7.20 Time response analysis of proposed search engine which incorporates SRN 252

 7.21 Semantic Router replication technique for load sharing 259

 xviii

LIST OF TABLES

TABLE Page

 1.1 Limitations of the scientific publications search at Pubmed 10

 1.2 Limitations of a popular internet search engine .. 11

 2.1 Waiting times for a M/M/n queue ... 69

 4.1 Alternative architectures due to variation in stage A .. 144

 5.1 Comparison and suitability of network topologies .. 175

 7.1 Consistency between tensor and ratio based tree comparison metric 225

 7.2 Importance of higher level compositions .. 230

 7.3 Superior execution time of the comparator architecture 234

 7.4 Speedup comparison with other hardware designs ... 237

 7.5 Performance comparison of alternative architectures ... 242

 7.6 Routing and search performance comparison ... 247

 7.7 Time response of the proposed search engine design using SRN 262

 1

CHAPTER I

INTRODUCTION

1.1 Motivation

1.1.1 Demand for meaning based search

Searching for unstructured textual information has become an important activity on the internet.

Currently the demand for “web search” service is 13 billion search queries per month and

growing 38% annually [1]. With this rising demand, user’s expectations are also increasing.

Users prefer more sophisticated meaning based (semantic) search capabilities that go beyond

keyword matching based searches [2]. For example, they expect that a search for “healthy

lifestyle” (the query) should retrieve documents/web pages related to “nutrition”, “wellness”,

“diet”, “exercise”, “fitness” etc., even though the user’s query and the returned documents/pages

may not share any common keywords. This kind of search involves comparing meaning of a

search query against meanings of all available objects (e.g. text document, web pages, etc.) to

identify which objects are similar to the query in terms of meaning (Fig. 1.1). The objects, whose

meanings are similar, are retrieved and presented to the user as search results.

Fig. 1.1 The meaning comparison processes required for meaning-based search

This dissertation follows the style of IEEE Transactions on Parallel and Distributed Systems.

User
searching

Search
intention

Meaning of
search

intention
Object

Meaning
of

object Compare

Collection of
information objects

 2

In this process, the quality of search results will depend on how well computers can represent

and compare meanings as perceived by human mind. Existing web search engines have adopted

some forms of meaning comparisons but those are yet to deliver high quality meaning based

(semantic) search results in all situations. Hence there are opportunities to make improvements.

1.1.2 Distributed search engines

Both kinds of searching, simple keyword based and semantic searching, involves intensive

computations and require large scale computing infrastructure. Hence, to match the growing

demand of search service, internet search engines are striving to scale up their infrastructure. The

number of webpages/documents indexed by a typical internet search engine is in order of tens of

billions [3]. These search infrastructures also serve several billions of queries per month. For

example, Google serves 9 billon queries per month or 3500 per second [1]. To cater to that kind

of service demand, large search engines are integrated as distributed systems in data centers [4].

The distributed design imparts the needed scalability and speed. For example, Google take a

short time of 200 milliseconds on average, to deliver search results [5] and have over half a

million servers/computers (estimated) in multiple data centers [6]. As a result these data centers

consume very large amount of power (~mega watts).

For efficiency and scalability, large search engines use an index system. By using index system

one can avoid comparing the search query with each and every available object. The index

system drastically reduces the number of comparisons required and yet manages to identify the

best matching objects. This index is the heart of the search engine. The index map queries

(search intentions) to objects. Thus the index system is a collection of map entry pairs of search

keywords and object locations. For scalability, this index collection is usually broken up into

multiple pieces by randomly distributing index entries over multiple pools of servers. Here

 3

each pool hosts a portion of the index called index shard, as shown in Fig. 1.2. More details

about this design are available in [4]. Here, each index shard resides in a server pool which can

be viewed as a small functioning search engine or index system.

Fig. 1.2 Index distribution and query delivery in a typical distributed search engine

In this system, the user provides search keywords to the query processor. The search keywords

serve as a meaning representation of user’s search intention. The query processor creates an

internal representation of the search intention. This representation may be a term vector, latent

semantic vector or a set of search keywords [7]-[9]. This search intention is broadcasted to all the

index shards or pools, as shown by heavy arrows in Fig. 1.2. The index pools which have

matching entries return locations of objects to the document server (shown by broken arrows in

Fig. 1.2). The document locations are expressed in terms of document identifiers (ids) and each

document id is mapped to a unique web URL [4]. The document server is the map between the

document ids and their web URLs. On getting the document ids, the document server returns all

the relevant URLs to the user as search results (shown by a single broken arrow at the top in Fig.

1.2).

Pool 2 Pool NpPool 1 Q/Ns

Index Servers

User Searching

Query
Processor

Document
Server

Query Rate Q

Q

1 NS2

Index entries are randomly
distributed in pools.

Number of index servers in each pool = Ns

Search
engine

Returns list of
document locations.

 4

Each individual index server pool contains a large number of index servers, all having the same

index map (i.e. replica of the same index server). These multiple index servers together enable

load sharing for scalability. The incoming search query traffic is uniformly distributed across all

the servers located within a pool. Hence the throughput of the entire pool is given by the

individual throughput capacity of each server multiplied by the number of servers in the pool. The

number of index servers chosen to ensure that the total throughput of the pool matches the query

traffic rate.

In this kind of distributed index system, one key problem is how to distribute the queries at high

rate (3500 per second) to all the index pools. Broadcasting to all index pools, as explained earlier,

is a simpler solution, but it is not the most efficient method due to the broadcast mode of

operation (Fig. 1.2). This approach implies that the number of index servers in each pool have to

be scaled up to handle the full query traffic rate. This results in a larger number of servers in each

pool and higher power consumption. Last few years, power consumption has become a key

concern in data center planning and management [10]. So there is a need to deploy power

efficient index distribution and query forwarding techniques that would satisfy the throughput

requirements.

1.1.3 Energy efficient distributed index and role of semantic router

Instead of query broadcasting, an energy efficient approach will be to systematically distribute

index entries to the pools based on the meaning of the objects (as in Fig. 1.3), so that objects

(documents) having similar content in terms of meaning, are indexed in the same index pool.

 5

Fig. 1.3 Proposed index distribution and query delivery model

Here the index pools can be viewed as specializing in certain kind of objects. For example, index

entries on webpages related to sports news will be in one pool, bioscience research publications,

in another and so on. This naïve example is mentioned to convey the notion. In actual systems, the

index pools may not have a simple topic as mentioned in this example. Rather the categorization

topic of an index pool will be defined by a model object, and all other objects that are similar to

this model object will be indexed in that pool.

In this approach, the query has to be send to only a single index pool (or few of them) which is

(are) likely to have relevant objects, unlike the system in Fig. 1.2. Thus this method will obviate

unnecessary query traffic to all pools thereby allowing index server pools to be smaller and have

lower power consumption. In this example, the query traffic rate Q per second gets equally

distributed. Thus the query rate encountered by each pool is Q/NP, assuming all documents are

equally likely to get queried and these are equally distributed across all pools. In that case, the

number of servers needed in each pool can be nS (Fig. 1.3), which is 1/NP
th fraction of the number

Pool 2 Pool Np

User Searching

Query
Processor

Document
Server

Pool 1
Q/(Np ns)

Query Rate Q

1 ns2

Index Servers

Q/Np

Objects systematically
distributed based on

meaning.

Each index pool specializes
in certain kind of objects

Search
Engine

Number of index servers in each pool = ns << Ns

Sports newsBioscience research
publications

…..

Returns list of document locations.

 6

of servers NS in the system shown in Fig. 1.2. When NP is in order of 1000, this scheme can

significantly reduce the number of index servers.

Materializing such efficient index distribution (as in Fig. 1.3) will necessitate two things:

(1) An automatic mechanism to systematically distribute index entries among the available

index fragments (pools); and

(2) A query delivery network to deliver a query to a specific pool(s) based on the meaning of

the query.

In fact both: object distribution and query delivery mechanism, can be built if an underlying

meaning based message routing/forwarding network is available. A Semantic Routed Network

(SRN) can be used to implement this mechanism, as shown in Fig. 1.4.

Fig. 1.4 Role of Semantic Routed Network in the proposed distributed search engine

Query rate Q

User Searching

Query Processor Document
Server

Query Rate Q

Pool 2 Pool NpPool 1
Q/(Npns)

1 ns 2

Index Servers

Query rate Q/Np

Index pools are
destinations in the

SRN

Returns list of matching
document ids to retrieve

Returns list of matching
URLs

Sends query

Selective query
delivery

SRN

Semantic
Router SR1

SR3
SR2

SRn

Search
Engine

 7

In this system, the index pools are considered as the destination nodes from SRN’s viewpoint.

Within SRN, messages are routed, using a fast response application protocol level message

forwarding appliance called semantic routers. These semantic router appliances are distinct from

IP routers. These semantic routers will delivery queries and route messages between index pools

to enable co-ordination between the pools and their reorganization. These semantic routers can be

either placed within a single data center on top of a clustered system or on the internet connecting

index servers across multiple data centers. When a message arrives, the semantic routers will

compare the meaning contained in message against meanings of all the available destination’s

specializations, and then forward the message to the destination (index pool) whose meanings is

most similar. Such semantic routers need a fast meaning comparison scheme to do meaning based

destination lookup. The index pool specialization, meaning comparison and meaning based

destination lookup mechanisms are analogous to IP addresses, IP longest prefix matching in the

IP routing table lookup processes.

1.2 Requirements and challenges

1.2.1 Challenges in meaning similarity computation

1.2.1.1 Role and criticality of meaning comparison

Given the kind of meaning based message forwarding as explained in the previous section, the

effectiveness of the proposed index organization scheme will depend on the sophistication of the

meaning similarity comparison capability of the semantic routers. Effectiveness and efficiency of

the meaning comparison method will in turn depend on the kind of meaning representation

technique that is chosen. In this regard, the existing meaning representation and comparison

techniques, as embodied in the web search engines and other search systems, are not very

effective. This is evident from the fact that, the existing search engines do not yet deliver high

 8

quality semantic searching. Some examples are presented in subsequent sections to illustrate this

problem.

1.2.1.2 The meaning composition problem

A major limitation of the existing meaning comparison methods is that these are largely based on

meaning comparison of individual keywords, their synonyms, hyponyms, hypernyms and

contextually similar or related words (as in latent semantic indexing [8]). Searching based on

meanings of individual keywords, are effective when the search intentions are simple. To search

with more complex search intentions, which are conveyed by longer query phrases or by couple

of sentences, a more sophisticated meaning comparison technique is needed. This sophistication

can be engendered, if, computers can represent and compare holistic meanings as perceived by

human mind.

For example, a user searching for cause of diabetes among the Caucasian people, may use a

search phrase: “evidences on role of DR2 gene in development of diabetes in Caucasian

population”. This phrase conveys a composite meaning. This meaning is composed of elementary

meanings that are conveyed by: “evidence”, “DR2 gene”, etc. In such situations, a single “bag of

words” aggregation of the individual keywords [11] may not always convey the composite

meaning of the entire object, as assumed in popular meaning representation models (set or vector

models [9]). As instances of holistic composite meanings arise in description of objects and search

intentions, therefore we need techniques to represent and compare composite meanings. This

need for capturing the composition aspect is illustrated by an exaggerated example [12],

presented below. Here the same set of keywords, convey two very different meanings.

 9

Object 1: It was not the sales manager who hit the bottle that day, but the office

worker with the serious drinking problem.

Object 2: That day the office manager, who was drinking, hit the problem sales

worker with a bottle, but it was not serious.

Vector or set based information retrieval models, which suffer from the “bag of word” problem,

will report the two texts presented below, to be similar in meaning. If meaning based search

systems employ adequate mechanisms to represent and compare composite meanings, for

example, a technique which could have distinguished the two aforementioned texts as having

different meaning, then that would improve the specificity of holistic meaning representation and

improve the quality of search results. In other words, adoption of high quality meaning

representation and comparison technique will improve relevance of search results.

1.2.1.3 Need for generative composition, meaning interchangeability and speed

In human mind, the composition of meaning is often generative. This means elementary meanings

are composed to generate a composite meaning, then several of such composite meanings may be

further composed together to generate the next higher level composite meaning, and so on, till a

multiple hierarchical level composition is generated to get the final composite meaning.

Interchangeability of similar meanings is common in natural language expressions,

communications and interpretations. Thus along with this generative composition aspect,

interchangeability of synonyms also has to be incorporated. Hence we need a speedy, unified,

generative mechanism that can simultaneously:

(1) compose elementary meanings to represent composite meaning; and

(2) recognize the semantic (meaning) relationships between dissimilar text strings,

 10

to yield consistent results unlike Table 1.1 [13] & Table 1.2. Here these two tables illustrate the

weakness of the state-of-art search system due to poor meaning representation quality. We are

interested in meaning representation and comparison techniques for search systems, hence we are

using examples from state-of-the art search systems to demonstrate the weaknesses of the

deployed techniques. These weaknesses get exposed even when small composite meanings are

used as search intentions, therefore problems will be more acute with larger composite meanings.

In both these cases, as shown in these tables, composition and interchangeability of similar

meanings appear to be are un-coordinated.

Table 1.1 Limitations of the scientific publications search at Pubmed [14]

Keyword used in “All Database”
searching

Objects
returned

Comments

“diabetes” AND “PPAR” 1979 Indicates that objects are available

“auto immune disease” AND “PPAR” 0 This result should be a superset of the result above, so the
number of results should not be less than the number in 1st row.

“diabetes” AND “nuclear receptor” 406 This number of results should not be less than in 1st row

Note: “PPAR” is a “nuclear receptor”, “diabetes” is an “auto immune disease”. Observed on Jul, 2008.

In case of Table 1.1, the user wanted to search for a scientific publication on role of “PPAR”

which is a type of “nuclear receptors” that plays a role in causing “autoimmune diseases” and its

subclass “diabetes” disease. In this experiment, three searches were carried out which are reported

as three rows in the table. The keywords that were used are reported in the first column and the

number of items that are presented as search results are reported in the second column of the

table. The results with different search keyword combinations are inconsistent. This indicates that

meaning composition, as implemented by AND operator (e.g. “diabetes” AND “nuclear

receptor”) is not working with meaning interchangeability (e.g. when “PPAR” is used instead of

 11

“nuclear receptor”). Thus Table 1.1 illustrates the limitations of a set based information retrieval

model.

On the other hand, Table 1.2 shows limitations of a popular web search engine which appears to

be using latent semantic indexing which is a vector model.

Table 1.2 Limitations of a popular internet search engine

Keywords used Top 20 results Comments

rodent supplier Some are relevant Presence of some results indicates that objects are
available.

mouse supplier Irrelevant Returns web pages on computer mouse suppliers.

supplier animal mouse medical
experimentation

Irrelevant Fails to return relevant results even though the term
“mouse” is disambiguated by adding “animal”.

Note: Observed on Apr 24, 2009.

The 3rd row of Table 1.2 illustrates the need of hierarchical/generative composition. Usage of the

word “animal” along with “mouse” to generate the composition “animal mouse”, should have

enabled disambiguation of the term “mouse”, so that it is not to be confused with computer

device mouse. Next, when a higher level composition between “animal mouse” and “supplier” is

used as the search query, the search engine should have yielded relevant search results. However

this did not happen even though required objects were available (2nd column of the 1st row shows

that objects were present). Co-coordinating all these features together is computation intensive

and not easy. These examples indicate that satisfying all three requirements: generative

composition, interchangeability of similar meanings, and speed, together in a meaning

representation is not trivial. In addition, we need to also think how to best apply the meaning

representation and comparison techniques in a search system, once they are designed. This draws

our attention to the second group of challenges.

 12

1.2.2 Challenges in designing meaning based message delivery network

1.2.2.1 Need for novel network organization

Traditional routable networks such as IP networks are organized as hierarchy of sub-networks,

where addresses are numeric variables. At every level, the sub-networks are assigned a range of

numeric addresses, based on which the messages are routed up and down the hierarchical k-ary

tree (a tree where each node has k children instead of only two in a binary tree node). In this case

the tree traversal works because the numerical address keys support three required logical

relationship operators: less than, greater than or equal to, between them. These logical operations

are implicitly carried out during longest prefix match during IP routing table lookup. However

none of these three logical operators can be defined for meanings, because one can not claim that

one meaning is greater or less than the other. Thus it is not possible to construct a hierarchical

network topologies (or k-ary trees) for meaning based routing.

Meaning representations support only a single non-logical operator which is meaning

comparison operation that yields a meaning similarity value. This value is non-binary in nature

because the similarity value is a continuous valued variable. For example, similarity values

between 0 and 1, define different levels of similarity from absolutely no similarity to exact or

100% similarity. Currently vector models provide such similarity values [9].

In IP network, the numeric address space is partitioned into ranges, specific ranges are allocated

to sub-networks and the hierarchical IP address space is built on this premise of range

partitioning. Conceptually, we can conceive an analogous meaning (semantic) space where each

point in that space represents a meaning and the distance between two points represents the

extent of similarity between the meanings represented by those two points. But the meaning

space can not be partitioned in a manner in which we can partition the IP address space. This is

 13

because meaning is a non-numeric entity. This also pose a severe challenge in terms of how to

organize a routable network where messages can be routed based on meaning or how destination

nodes can be addressed based on their meaning (i.e. the meaning of their content). This means

that the usual networking technique can not be used to implement a meaning based message

delivery in the Semantic Routed Network. A new kind of topology and routing logic has to be

innovated and/or adapted. In addition, as the meaning representation method is yet to be defined,

so this network design problem is not trivial.

1.2.2.2 Need for speed and efficiency

Existing web search engines deliver search results very quickly (within ~200 millisecs) [5],

hence they have set the standards of user expectations. Therefore the Semantic Routed Network

has to deliver queries within a small fraction of that 200 millisec window, to be acceptable. Thus

the semantic routers have to be fast and resource efficient. It is not preferable to deploy large

clustered system to implement each semantic router to gain speed. Because that kind of approach

will take away the hardware savings gained by the proposed index organization scheme.

Therefore, we have to innovate technologies, which will enable us to design a semantic router

that can readily fit inside a small enclosure or a data center rack.

1.3 Scope of this dissertation and addressed challenges

To materialize this meaning based index and query delivery network (Semantic Routed Network),

the following problem areas need to be addressed:

1. Design of meaning representation data structure and comparison technique: A composite

meaning has to be represented as a computable data structure called semantic descriptor or

semantic key. This data structure will represent meanings of: user’s search intentions,

 14

objects and index pool specializations. This data structure will be used as the message

address (analogous to IP address in IP routing layer) in the proposed query delivery overlay

network. The key challenge, that will be addressed here, is how to enable composition of

elementary meanings to represent composite/complex meanings and interchangeability of

similar meanings, while allowing fast meaning comparison. This composition aspect is

important to enable semantic routers which will enable meaning based clustering of index

entries and query delivery to appropriate index pools. The quality of these operations will

be reflected in the search performance and relevance of search results.

2. Design of algorithms and a high level architecture for the accelerator hardware to speedup

the proposed meaning comparisons inside computers. This hardware will sit inside

semantic routers. This hardware will compare semantic descriptors that represent users’

search intentions against those descriptors that represent index pools’ specializations during

for query routing operations. Additionally, this hardware may be incorporated in the index

servers to take part in the object retrieval decisions and result relevance ranking operations.

The challenge that is being addressed here is how to enable extremely fast meaning

comparison computations to enable low search response time.

3. Design of an overlay networking scheme which will deliver messages based on their

meaning. Here networking protocol and the proposed networking stack will be presented

which will make use of semantic routers.

4. Designing algorithms to enable construction of semantic index system using an underlying

meaning based message forwarding network. Objects that are related or have similar

meanings will be automatically grouped/reorganized together inside a single index pool in

this index system. This index infrastructure will be a network of individual computers in a

 15

data center or even small specialized internet search engines. Here the idea is to design a

co-ordination scheme that will integrate services of multiple indexes, index fragments

and/or several small search engines.

In this dissertation, we would present the aforementioned techniques to substantiate that it is

possible to design a meaning based message routing network. Then we will show that, a

systematically organized distributed index system which uses a Semantic Routed Network,

requires smaller number of index servers and consumes less power to operate.

1.4 Organization of this dissertation

Chapter II analyses the existing state of art in: meaning representation, meaning comparison,

meaning based indexing, index scaling strategies, distributed search technologies and network

science domain. These are relevant to distributed index systems and message forwarding

network design.

Chapter III discusses the proposed meaning representation, meaning comparison model, the

necessary algorithms and their rationale. Chapter IV describes the information processing

architecture for a meaning comparator hardware which forms the basis for actual hardware

design of the semantic router core.

Chapter V identifies the requirements for the Semantic Routed Network (SRN) mechanism and

presents its design. Whereas, Chapter VI presents necessary algorithms and optimization

techniques that are needed to materialize a practical SRN.

Chapter VII presents the claims made in this dissertation, evaluation approach to substantiate the

claims, necessary experiments, their rationale, results and discussions.

 16

Finally, Chapter VIII concludes this dissertation by identifying the contributions of this

dissertation and the open problems.

 17

CHAPTER II

PROBLEM EXAMINATION AND ANALYSIS OF PRIOR ART

To design an effective meaning representation data structure and a comparison technique, we

need to understand how human mind actually comprehends meanings. Similarly, to devise a

network which can forward messages based on meaning, we need to know the necessary

network science concepts and the pros and cons of various networks which had been employed

in past for distributed searching. In this chapter we analyze these prior arts to get a better

understanding of the problems and issues involved. We introduce the relevant terms and

concepts used in this dissertation and present the relevant cognitive science and linguistic

theories on how humans process meanings. We also describe existing meaning representation

and comparison techniques, relevant designs of scalable index system and explain the connection

between distributed index and peer-to-peer networking. Based on these we identify the key

research problems and imperatives, which are addressed by this dissertation.

2.1 Search basics: Definition of terms

2.1.1 Collection of objects and keys

A database being searched is considered as a collection of key and object/record pairs (Fig. 2.1).

The “object” is the data item or entity which we want to retrieve during the search process [15].

In database systems, a record is an object, whereas in the web, objects are less structured and

more heterogeneous. The object may be a document file, a webpage, or a multimedia object

(picture, audio, video files), etc. The “key” is the identifier or handle for an object which is used

in the search process. This key may be a single numerical value, text string as in case of

 18

relational database systems, or a set of descriptive keywords to tag pictures or video files or a

vector of keywords/terms, as used in vector space information retrieval models [9]. In essence,

this key is a descriptor that is a compact and structured description of the object which enables

search and retrieval.

Fig. 2.1 The search paradigm

2.1.2 Search process, query and key comparison

To perform a search, the user has to provide a search criterion. This search criterion is

represented by an entity (expression) called search query. The search engine effectively checks

all keys to identify which objects have keys that satisfy this criterion and present those objects as

results. Looking from another view point, we can also perceive this search query as a

representation of what the user wants, i.e. a description of user’s intended object. This query is

compared with all the keys, which are the descriptors of the objects. When the query is found

somewhat similar to a key, then that object is retrieved as result.

Comparing numerical or text string keys are straightforward, but comparing complex descriptors

requires sophisticated algorithms. Numerical value and text string keys comparisons results in

discrete Boolean values 0 (not equal) or 1 (equal), but complex descriptor comparisons may

generate continuous values between 0 and 1 (e.g. vector based information retrieval models [9]).

Collection of Object-Key pairs
User

Query “Q”

Key ‘K’ Object ‘O’

K1 O1

K2 O2

K3 O3

K4 O4

K5 O5

Sends

Query is effectively compared
against all object keys

 19

In those cases of continuous values, a higher comparison value means greater similarity between

the object and the search key.

2.1.3 Role of index

To enable faster searching across larger collections, pre-computed indexes are used. Index serves

the function of a catalog in a library [15]. It is a data structure of key and object pointer pairs,

which is ordered based on the key (e.g. Fig. 2.2 [15]). The ordering and organization of the index

drastically reduces the number of comparisons required to search the entire collection. For

example, in Fig. 2.2, the hierarchical index structure enables searching using only (logkN)

comparisons instead of N comparisons when index is not used. Here N = number of objects and k

= the number of children in each index tree node.

Fig. 2.2 Role of index

2.1.4 Result ranking

Searching in structured database, produce results that exactly satisfied user’s search criterion,

whereas the results from the advanced search technologies are a collection of probable items that

finally may or may not match user’s need. In this situation, the best way to reduce user’s effort,

is to rank the results in terms of relevance so that users can examine only the top few results in

the ranked list, to satisfy their need. This requires computing the relevance of searched items and

Key ‘K’ Object ‘O’

K1 O1

K2 O2

K3 O3

K4 O4

K5 O5

Index Collection User

Query

OP2 OP1

K1 K2 K3 K4 K5

OP3 OP4 OP5OP = Object Pointer

 20

rank of the items. In some cases, for example, in vector space models [9] the relevance

computation is based on descriptor comparison that yields continuous values. Objects whose

descriptors are more similar to the search key are attributed with higher relevance values. In

these cases, the key similarity computation itself gives the relevance metric to rank results. We

will use this notion of meaning similarity rankings to decide meaning based message routing and

delivery, i.e. deliver messages to those nodes for which the meaning similarity values rank

higher.

2.2 Search and retrieval performance metrics

The following metrics are useful to evaluate the performance of any search and retrieval

systems. We need to design the meaning based index system in a manner so that these metrics

are improved. Hence we need to understand these metrics.

2.2.1 Precision

It is the fraction of the retrieved objects that are relevant to the user. This metric is calculated as:

objects retrived all ofnumber

relevant are that objects retrived ofnumber
precision

Our objective should be to improve this precision metric.

2.2.2 Recall

It is the fraction of the available relevant objects in the collection that were successfully

retrieved. This metric is computed as:

collection in the objectsrelevant all ofnumber

relevant are that objects retrived ofnumber
recall

 21

A higher recall value is preferable.

2.2.3 Search response time

This is the time a user has to wait to get all objects from the retrieval system to satisfy his/her

need [15]. The user do not have to wait for all available objects to be retrieved, he has to wait for

a shorter duration to get the minimal amount of objects that will just satisfy his/her needs. A

lower search response is desirable.

2.2.4 Complete recall (response) time

This is the time required to complete the search and recall all the available and relevant objects

in the collection [15]. This duration is larger than search response time. We would like to have a

smaller complete recall time.

The two aforementioned response time metrics are not traditionally used as retrieval

performance evaluation criteria. So far information retrieval has been limited within relatively

small centralized systems, where these two times are small enough to be ignored. However these

two time responses will become significantly large and distinct in large distributed index

systems. Hence we require to measure and manage both of them through superior distributed

index system designs, in addition to improving precision and recall performances.

2.3 Research imperatives

To extend the traditional information retrieval paradigm for meaning-based searching we need to

compare meaning of the search intention against meaning of all objects. Therefore the key

should be a “semantic descriptor” data structure that represents the meaning of user’s search

intention (query) and the object. The key comparison should ascertain the similarity between

 22

meanings represented by two semantic descriptors. Whereas the index should be a scalable

infrastructure designed to improve the search speed (response) and recall. Materialization of this

paradigm needs: (1) appropriate design of keys; (2) key comparison method; and (3) design of an

index system. The four research objectives, as mentioned in Chapter I, are related to these three

problems. The design of key and comparison method is addressed by the first two research

objectives and the design of the index system is addressed under the last two research objectives.

We have to design these three things in a way so that we achieve favorable precision, recall and

response time values.

2.4 Significance of “meaning” in human cognition and language

This section presents how human beings comprehend and convey meanings. These

understandings are necessary to design realistic meaning representation that can ultimately

support human friendly searching. Here we integrate and develop notions assimilated from

diverse domains like: cognitive science, neuroscience, linguistics, anthropology and

mathematics. Specifically we discuss supporting evidences and ideas that are the key premises

for the design of a psychologically realistic descriptor data structure that can represent meanings

and enable their comparisons [16].

2.4.1 Sense of meaning

“Meaning” denote ideas and thoughts in human mind that are usually conveyed by natural

languages. Human beings convey and comprehend this meaning using concepts. A concept is

mental representation of an abstract idea or a physical object (e.g. Car) that is stored, recognized,

comprehended and manipulated in human memory in terms of its attributes (e.g. wheel, engine,

transportation, etc.) which are used as manipulation handles [17]. A concept can be either

 23

generalized or specified to a class having only a single object (e.g. “President Kennedy’s car”).

Therefore comparison of meaning actually means comparison of concepts.

2.4.2 Existence of meaning composition process

Earlier we had asserted that meaning composition is an important aspect in meaning

representation and composition, and this aspect was not being properly taken care of in existing

meaning representation and comparison techniques. Here we present the following evidences to

substantiate the existence and importance of the meaning composition process in human

thoughts:

1. Meaning composition process is very intrinsic to humans and intelligent primates.

Behavioral, neuro-scientific [18], [19] and linguistic [20], [21] studies indicate that

humans combines elementary thoughts and ideas to generate more complex ones

(composition of concepts), which forms the basis of reasoning, learning [22] and

language comprehension ability [23].

2. Human brain has a physical site which is involved in meaning composition and

interpretation (semantic processing). This semantic processing is distinct from the

language interpretation process which involves part of speech components of the

language (syntactic processing). This distinction between syntactic and semantic abilities

of the human brain, their separate brain sites and their dissimilar brain activity patterns

are supported by several neuro-scientific observations. For example, Broca’s aphasia is

caused by damage to some particular areas of the brain known as Broca’s area [24]-[27].

These aphasia patients can comprehend complex meaning which indicates presence of

complex thoughts. But they have severe difficulty in communicating them using

 24

language or in interpreting language utterances or writings [27]. This situation is

different from Wernicke’s aphasia, which is caused by damage of Wernicke’s area of the

brain. This area is distinct from Broca’s area [24], [26]. Wernicke’s aphasia patients

speak fluently but their words do not have any meaning and the patients have difficulty

in comprehending and discerning meanings of sentences.

Brain scans and other neurological studies also indicated that interpretation of language

(syntactic processing) and meaning comprehension (semantic processing) are two

distinct neurological processes that use different parts of the brain and neural pathways

[18], [19], [23], [28], [29], [30]. However during language processing these two

neurological processes challenge and test each other for incongruence or look for

support and cues in case of ambiguity [19], [23].

3. It seems that a common meaning processing process is involved in all kinds of

communications and interpretation of visual sensory signals. Studies on fluent

bilinguals, monolinguals, monolinguals with different levels of second language

competence suggests that though sites for syntax processing varies for different

languages and competency levels, but the neural site, which is used for semantic

processing is common. Interestingly this common site is also the Wernicke’s area of the

brain [31], [32]. In addition, neuro-scientific findings suggest that human brain uses

similar neurological processes to comprehend meaning from text and visual imagery

[23].

All these evidences indicate the importance of meaning composition in meaning (semantic)

processing and comprehension within human mind. This meaning composition is a key cognitive

process which comes into play during information processing, interpretation and learning which

 25

are intrinsically related to the information search task. Therefore this aspect of meaning

compositions has to be supported by the descriptor data structure which will be used to enable

meaning representation and comparison.

2.4.3 Notion of complex concepts

We denote the composite meanings that are generated by composing elementary meanings, as

“complex concepts”. As these composite meanings are intrinsic in human thought process, so

natural language texts involves complex concepts. Therefore these complex concepts will be also

involved in describing a text object and user’s search intentions.

2.4.4 Relationship between language and meaning

Natural language utterances are stimuli which invoke thoughts and cognitive processes that

reconstruct the meanings within human mind. These processes constitute meaning interpretation

of the natural language instance (writing or verbal utterance). This is supported by the fact that

sometimes language syntax alone does not sufficiently represent the entire meaning, but yet

humans understand the full meaning [21], [22]. For example the following sentence invokes

more than one meaning:

Jane attempted to pass the test

There is a tacit meaning which indicates that Jane took a test, in addition to the explicit one

which is about her attempt to pass. The compositional principles, that govern composition of

semantics, are not always evident in the language’s explicit syntactic representation, but

nonetheless they definitely come into play during communication, just before language

generation or during language comprehension. So linguists hypothesize that there must be

another parallel composition process (Fig. 2.3) which is taking place in the human mind in

 26

addition to syntactic processing. This argument is also congruent with the evidences presented in

section 2.4.2. This notion is fundamental to language generation and meaning comprehension

process (Fig. 2.3) [33].

Fig. 2.3 Semantic and syntactic processings are distinct

2.4.5 Simple principles of meaning composition

“Simpler syntax hypothesis” [21] and “parallel architecture” theory [22] argue that in human

mind, semantics or meaning has its own rules of composition, which are different from

grammatical composition (syntactic) rules. Simpler syntax hypothesis [21], [22] proposed that

rules for composing meaning are inherently simpler. A simple collection of elementary meanings

is good enough to represent a complex meaning. There is no need to specify the ordering of the

elements or the exact nature of association between individual elements. This is supported by

evidences like: presence of compound words in modern natural languages; and speech of

children, pidgin language speakers, late language learners who communicate complex ideas and

meanings with a collection of simple words and terms which are devoid of any grammatical

relationship. Some examples are illustrated below:

Children: “Walk street; Go store”; “Big train; Red book” [34]

Late language learner raised in the wild: “Want milk”; “Big elephant, long trunk” [34]

Semantic Composition Rules Syntactic Composition Rules

Semantic Structure Syntactic Structure

Interactions for meaning
interpretation

 27

Pidgin language: “And too much children, small children, house money pay”; “What say? Me

no understand” [34]

English compound words: “winter weather skin troubles”; “health management cost containment

services”; “campaign finance indictment” [35]

All of these utterances are just collection of words, and each word conveys a simple elementary

concept. These collections of words together convey a complex concept. Here the meaning

composition is happening without aid of sophisticated syntactic (grammatical) rules. This

indicates that a simple collection of words by itself can represent a complex meaning. This

notion is also supported by [30]. Here the words stimulate elementary thoughts, meanings or

concepts in human mind which then combine and invoke the complex meaning [20]. Ref. [23]

and [34] proposes that ability for this kind of semantic composition is intrinsic to human brain

and this is also the basic tier of language comprehension ability.

2.4.6 Generative mechanism of meaning composition

“Parallel architecture” theory proposes that a generative (recursive) mechanism for semantics

[22] exists in mind that generates complex semantic structures based on two simple rules. The

first rule allows representation of complex meaning as a collection of elementary meanings, and

the second one allows composition of collection of meanings to form higher level collections. By

applying these two rules, a hierarchical collection (tree or nested set structure) of elementary

concepts / meanings can be generated. This is explained with a simple example as in Fig. 2.4. In

this example, we assumed that the entire text object consists of only a single sentence, therefore

the hierarchical structure as shown in the figure can represent the meaning of this single sentence

object. This simple example (Fig. 2.4 [13]) was provided to convey the notion of hierarchical

meaning composition, but it should not construed that we are advocating that all sentences

 28

present in a given text, should be converted to this kind of structure to represent meaning of the

entire text. In Chapter III we shall propose that only this structure should be generated for the

central theme of the text, not for each and every sentence. This kind of hierarchical structures

can be used to represent a complex concept/composite meaning within computers.

Fig. 2.4 Hierarchical collection of meanings

2.4.7 Simple composition and memory models in cognitive science

The notion that collection of elementary concepts can be a suitable representation of complex

concepts is also supported by cognition science research like [30]. This notion is also coherent

with the spread activation model of associative semantic memory [36]-[38]. Each of the

elementary thoughts stimulate independent spread activations in the human semantic memory

which all of such activations acting together finally gives rise to a thought in a associative

semantic memory [36]. This spread activation model explains how a collection of elementary

concepts can invoke a complex meaning.

“The fisherman wearing a green shirt, caught a big trout”

Hierarchical collection of terms representation

shirt

{{fisherman, { green, shirt }}, catch, { trout, big }

{fisherman}

 {{fisherman, {green, shirt}} catch {trout, big}

green

{green, shirt } trout big

Text Representation

Can be represented by

 29

This notion also corroborates well with the semantic memory related empirical observations

made by [17], [39]. These studies indicate how multiple elementary concepts are useful in

retrieving complex concepts through node activations and how these complex concepts are

manipulated in human mind using these elementary concepts as search handles. In fact a larger

number of elementary concepts are likely to generate better activation (recalling) or invocation

of a complex concept.

2.4.8 Realizations and implications

All these above discussion imply the followings:

1. The phrase “meaning representation” or “meaning comparison” is actually a figure of

speech. This is so because, meaning interpretation and comparison are mental processes,

therefore they can not be literally described, represented or compared within computers.

What can be compared are the stimuli, i.e. the symbolisms that invoke the mental

process which we denote as “meaning”. Natural language is one form of symbolism [40]

which achieves this. Hence by “meaning representation”, what we actually mean is an

alternate and computable form of symbolism that would invoke similar mental process

as the text (assuming if we humans had learnt that symbolism as we learn languages).

Similarly, by “meaning comparison” we mean comparing this computable kind of

symbolism within computers.

2. To generate meaning representation data structures for a given natural language text, we

need to first extract meanings from the text. During that process, we can not depend

solely on natural language syntax analysis techniques. We also need additional

knowledge based mechanisms to mimic the brain function where the meaning of a given

text is interpreted using knowledge artifacts (i.e. experience) gained in past. This implies

 30

that a two phase process is necessary, where we first need to create knowledge artifacts

to form an extensive corpus (i.e. experience), and then use this artifact corpus to

generate the meaning representation of a given text. Both these phases will need

supervised, unsupervised and various other kinds of machine learning techniques [41].

2.4.9 Need for a suitable mathematical model

A basic hierarchical tree structure is reasonably good candidate to represent a complex meaning.

To use this model for comparing meaning inside computers, we need mathematical logic and a

suitable computational model. This computation model is needed to compare two such trees at

high speed. To get an idea about what kind of formal logic and models may be suitable for high

speed computation, in the next section, we examine some of the existing models that had been

used in past to represent meanings within computers.

2.5 Existing meaning representation methods

2.5.1 Descriptors for documents and concepts

Broadly two kinds of descriptors, one for describing objects (documents), another for describing

a concept, are available in the literature. Semantic descriptor for documents represents meaning

of an entire document object, whereas descriptor for an elementary concept represents the

meaning of an elementary concept. Both kinds of descriptors are necessary. The object

descriptor designs that are available in literature are based on vector, set and Galois lattice

[42],[43] based data structures, whereas the concept descriptor design reported in [44] is based

on graphs. On the other hand, the descriptor design which we propose in this dissertation unifies

the notion of document (object) and concept descriptors. This particular design views the entire

 31

object description as a large complex concept. Therefore the object descriptor can be represented

by a concept descriptor. We present this idea later in Chapter III.

Vector and set based descriptor designs are the most adopted ones. We explain the fundamental

notions behind these designs in details. This is needed because we extend these notions to design

our proposed descriptor. All these existing designs and their criticisms are discussed in the

subsequent sections.

2.5.2 Set based (Boolean) model

Here “set” has the same connotation as in formal set theory in mathematics. In this set based

model, the document’s descriptor is considered as a set of index terms or keywords which are

either picked up from the object (text) or assigned by human indexers to describe the object [7].

The query is a set which is either explicitly expressed as a straightforward set or as an implied

set that is expressed in form of Boolean conjunction, disjunction and negation expression

involving some of the index terms (Fig. 2.5). For example, in this figure, the query expression

“sales” AND “manager” implies those sets which have both terms “sales” and “manager”.

The similarity value between document and query descriptors is always Boolean 0 (not similar)

or 1 (similar). It is computed as follows. It can be ascertained by checking whether any of the

query descriptors terms are present in the object descriptors or not. If the term is present then the

value is considered as 1, otherwise it is 0. This is the way of verifying whether the given Boolean

condition expressed by the query is satisfied for the object descriptor (as illustrated in Fig. 2.5)

or not. The documents, whose descriptors yield a value of 1 when compared for similarity

against the query descriptor, are returned as search results.

 32

In the example in Fig. 2.5, for the document object O3, we considered the stemmed (base) terms

“drink”, “sales”, “manager”, etc., as the terms for indexing.

Fig. 2.5 Search operation with set based descriptor

Stemming is the process which reduces inflected and derived words to their base or root (stem)

form. For example, after the stemming process, the words “use”, usefulness” and “useful”

become a single word “use”. We ignored the terms “the”, “he”, “at”, “then” and “it” because

they do not help to distinguish objects from each other. Generally these terms do not carry any

distinguishing information because they occur with high frequencies in almost all objects.

Considering the set of four document objects: O1, O2, O3 and O4 as the collection, the three

queries: Q1, Q2 and Q3 generated the three result sets: R1, R2 and R3. The document objects O3

and O4 are borrowed from [12]. These two texts have similar terms but they convey very

Objects

O1: “The sales manager looked at
the receipt. Then he took it”

O2 : “The sales manager took
the order.”

O3: “It was not the sales manager
who hit the bottle that day, but
the office worker with the
serious drinking problem.”

O4: “That day the office manager,
who was drinking, hit the
problem sales worker with a
bottle, but it was not a serious

Set based object descriptors

D1 = set { sales, manager, look, receipt, took}

D2 = set { sales, manager, took, order }

D3 = set { sales, manager, hit, bottle, day, office,
worker, serious, drink, problem }

D4 = set { sales, manager, hit, bottle, day, office,
worker, serious, drink, problem }

Results generated by queries

R1 : O1 , O2 , O3 , O4

R2 : O1 , O2

R3 : O2

Queries

Q1 : “sales” AND “manager”

Q2 : “receipt” OR “order”

Q3 : “took” AND “order”

 33

different meanings. Thus set based approach would not distinguish these two objects O3 and O4.

This shows that the set model is not a good semantic descriptor.

2.5.3 Vector based models and associated techniques

In vector models (VMs), the meaning of an object is represented by a vector/tensor in a vector

space [8], [9], [12], [45]-[48]. Different kinds of vector models are available. Some models

involve large dimensional vector spaces, where each basis vector corresponds to a real world

term, concept or a phrase which are either selected from the text object, or from the object’s

metadata. Other more sophisticated models involve smaller finite dimensional vector spaces,

where each dimension is latent semantic feature having only statistical significance, thus they

can not be attributed to a single term or real world meaning (e.g., latent semantic dimensions as

in Latent Semantic Indexing (LSI) [8]).

Algebraically, the vector/tensor is represented as a sum of scalar (wi) weighted basis vectors (vi)

(Fig. 2.6). In a simple term based VM, each basis vector denotes an elementary meaning which

is a term or a phrase from a controlled vocabulary/dictionary [9]. Within a computer, the entire

meaning vector is represented by a set or table of character strings (each representing a basis

vector) and corresponding weights (Fig. 2.6). In rest of this dissertation, we call this table as the

coefficient table. These VMs assume an infinite dimensional vector space where the meaning

representation is a sparse vector having finite number of basis vectors with non-zero

weights/coefficients. In the example in this figure, the compound term “sales manager”

represents a single entity, hence considered as a single term. To consider such compounds as a

single term or not will depend on the implementation of the model. Recognizing compound

terms improve the performance of the meaning representation model.

 34

In all these vector models, the magnitude of semantic similarity between two descriptor vectors,

D1 and D2 that represent two meanings, is computed as the dot (cosine) product D1D2 (Fig. 2.6).

A similarity value of zero means that two vectors are dissimilar (orthogonal) and a higher value

(≤1) indicates more similarity.

Fig. 2.6 Vector model of meaning representation and comparison

2.5.3.1 Assignment of weights

A term which is an important distinguishing factor should have a higher weight. There are

several alternatives ways to assign these weights, the most popular being the term frequency-

inverse document frequency (TF-IDF) scheme [9]. In this scheme a larger weight is assigned to a

term if it occurs frequently in a document but not too frequently in all documents in the

collection. This larger weight is assigned because such terms should have higher contribution in

distinguishing the document from others.

O1: “The sales manager looked at the receipt. Then he took it…..”

O2: “The sales manager took the order….”

tooktooklooklook

receiptreceiptmanagersalesmanagersales

vwvw

vwvwD

11

1

1

1

orderordertooktookmanagersalesmanagersales vwvwvwD 22

2

2

…..

wBA
1
Breceipt

Coeff.

wBA
1
sales manager

“receipt”

Basis vector Vi

“sales manager”

…..

…..

wBA
2
took

Coeff.

wBA
2
sales manager

“took”

Basis vector Vi

“sales manager”

…..

Vector/Tensor D2 in memory

Vector/Tensor D1 in memory

Where 1
21

i
iw

Where 1
22

i
iw

Where similarity between two objects =
 212121

21 orderordertooktookmanagersalesmanagersales wwwwwwDD

 35

2.5.3.2 Searching using vector based descriptor

The search query is given as a string of terms or in form of natural language text. A vector based

descriptor for the search string is generated and compared with the objects’ descriptors using

cosine similarity. The result objects are ranked based on the cosine similarity value. This is

illustrated in Fig. 2.7 for the same objects used earlier in Fig. 2.5. The collection of terms inside

the quotes are treated as a single compound term and terms without quotation are treated as

separate terms.

Fig. 2.7 Search operation with vector based descriptor

2.5.3.3 Limitations of vector models

The traditional term vector model does not address the synonymy and polysemy problems [8].

Synonymy means different words having similar or same meaning, and polysemy means a single

words being used to connote different meanings. The basic LSI vector model [8] recognizes the

meaning context better than term vector approaches, however LSI ignores new infrequently used

terms which might convey important meaning information (e.g. in niche scientific domains). In

addition, vector models alone are not sufficient, hence vector model based search systems often

need additional techniques, for example, methods to identify topic concepts (to generate

metadata) from the text [45], [49] or disambiguate terms to resolve the polysemy problem [50],

etc.

Queries Ranked results generated by queries

Q1 : “sales manager”

Q2 : receipt

Q3 : took order

R1 : O2 > O1 > O3

R2 : O1

R3 : O2 > O1

 36

Vector based models are also computationally expensive because the way the required

computations are carried out at present. For example, the TF-IDF computation assumes presence

of a centralized corpus. It also implies use of a centralized inverse document frequency

computation and the index. Even though computation can be parallelized using map-reduce kind

of paradigms [51], but such parallelization is also expensive.

Vector based approach also has an inherent weakness in representing complex descriptions

which are based on composite meanings (concepts). This results in failure to discern between

descriptions that have common keywords/terms but have very different meanings. This is well

explained by objects O3 and O4 as in Fig. 2.5, which have similar terms but convey different

meanings. A simple vector based similarity computation erroneously reports that these objects

are similar (the TF-IDF based cosine similarity is 0.998 when computed against a given text

corpus). This problem exists primarily because vector based models are based on a belief that

elementary syntactic terms contain the meanings and this meaning can be entirely captured by a

flat collection of the terms available in the text.

Considering compound words or named entities like “sales manager”, “office manager”, “office

worker”, “sales worker” or “problem sales worker” as the terms, can improve the situation but

will not report absolute zero similarity in all possible cases. Thus considering large numbers of

n-grams (specific phrases composed of n terms) can not entirely avoid this problem in all

situations. Instead of machine generated vectors, if the vectors are based on standardized topics

assigned by human indexers, then some of these problems can be avoided. However this requires

human involvement.

 37

2.5.3.4 Use of vector products and other sophisticated algebraic operators

Some of these limitations have caught attention of researchers and enhancements like vector

products [12], [46] and more sophisticated vector operations like [48], [52], [53] are being

proposed. However these are still term centric low level approaches which will have limited

impact in composite meaning representation of entire large documents. We need new kind

designs for semantic descriptors which are more meaning centric.

2.5.4 Graph based model

A composite meaning can be represented as a graph where each elementary concept is a node

and the relationships between the elementary concepts are denoted as edges connecting those

concepts [44]. This design is based on the notion of conceptual structure in human mind as

proposed by [54]. The technique to compose two elementary concepts to get a representation of

the complex concept is also available from [44]. It might be possible to compare complex

concepts with graph comparison techniques like in [55],[56], however these are ungainly and

computation intensive.

2.5.5 Galois lattice model

This document descriptor design [42],[43] is based on Formal Concept Analysis (FCA) theory

[57] from mathematics and statistics. A technique to compare similarity of Galois lattice based

descriptor is also available from the same researchers [42],[43]. Whereas a technique to compose

Galois lattice based descriptor is available from [58]. This Galois lattice based design assumes

that concepts are only based on closed classification taxonomy (i.e. all possible concepts are

incorporated in the taxonomy and all concepts which are not in this taxonomy are ignored).

Based on this over simplistic and closed taxonomy it elaborately models all possible concepts

 38

present in the entire context (in other words it defines the entire context in terms of finite number

of concepts). This is an unrealistic closed and rigid model that does not reflect the realities of

human thought processes. Description of the entire context with all possible concepts in the

universe may not be necessary.

Such elaborate rigid formal modeling and related computation does not deliver any substantial

gains in terms of meaning comparison confidence and it is also too expensive in terms of

computation. This design does not seem to be based on any particular model and current

understanding from cognitive science. On the other hand the notion of requirement for

parsimony in cognitive processing [59] does not agree with the elaborate FCA based modeling.

In addition, harvesting attribute and object relationship from the object text description as

suggested in [43] is not a good solution because all the attribute-document relationships required

to define the concept may not be available in the document text. This necessitates processing all

documents in the corpus to index even a single document. Though a technique to compose

Galois lattice is available but it does not elegantly support hierarchical concept composition in a

manner that happens in human mind. Therefore Galois lattice design does not achieve anything

substantial in terms of meaning representation or comparison, which LSI vector or set based

exploded conceptual searching (refer section 2.7.1) can not.

2.5.6 Meaning representation using mainstream semantic web standards

Mainstream semantic web standards like: RDF [60], RDFa [61], microdata [62], microformat

[63], HTML5 [64], has begun providing ways to represent meaning in terms of attributes (object)

and their relationships (predicate) with the subject. These representations are more structured

and hence more computable to enable formal reasoning/inferencing capabilities, thus can be used

to enable more precise searching than the vector models. However the way the required

 39

computations are currently carried out in sequential processors, makes them computationally

expensive and slow.

2.5.7 Unsuitability of existing meaning representation techniques

The aforementioned meaning representation and comparison techniques do not support meaning

composition elegantly. They are also not congruent with cognitive and linguistic theories and are

not computationally efficient. Therefore there is a need for a new semantic descriptor design and

a new descriptor comparison technique.

2.6 Existing tree matching algorithms

From the discussion in section 2.4.6, we realize that nested set or hierarchical tree structure

seems to be a promising abstract data structure for meaning representation. We need suitable tree

comparison algorithms to compare such unordered trees (i.e. where children can be unordered),

which can have more than two children at the nodes, and which have only leaves and no labeled

nodes. Two trees are considered same when they have common embedded components, which

are either sub-trees or leaves. These algorithms should either provide a single similarity measure

between two trees or simply identify the matching trees from a large collection of trees, when

one tree is provided as the query. The second option is similar to set based search operation

where similarity value is binary, either 1 (similar) or 0 (not similar) and the first one is akin to

the vector model based similarity measure. Both approaches suit our purpose for search and

information retrieval task. However we prefer to have a technique which gives a continuous

similarity measure which can be useful to rank results.

Some suitable techniques are available from phylogenetic tree matching research. These are

based on edit distance [65], Robinson-Foulds distance [66], [67] or lowest common ancestor [66]

 40

measures. Edit distance indicates how many insert and delete changes need to be made to

transform one tree to the other. There are other tree comparison techniques which are for ordered

trees, or for trees with labeled nodes, therefore these are unsuitable for our purpose.

All these algorithms are computational intensive and unsuitable for fast processing. Interestingly

there had been some attempt to accelerate tree comparison computations by specialized hardware

processor [68], unfortunately the underlying technique is for comparing trees with labeled nodes.

2.7 Existing meaning based search techniques

A variety of meaning based search technologies are available, here we discuss a few under two

categories: conceptual and semantic searching [16].

2.7.1 Conceptual (exploded) searching

This kind of searching expands the scope of search by automatically including search keywords

that are conceptually related to the given search/query keywords/terms. An example is Pubmed’s

exploded search service [69] where a user can provide a standard Medical Subject Heading [70]

“Glucose Metabolism Disorder” as the search key to get all bio/medical science publications

(objects) indexed under that topic. The results will also include objects that are indexed under

topics like: “Diabetes Mellitus”, “Glycosuria”, “Hyperglycemia”, etc., in addition to those that

are indexed under “Glucose Metabolism Disorder”. In medical science the concept “Glucose

Metabolism Disorder” (a hypernym) encompasses “Diabetes Mellitus” or “Glycosuria”

(hyponyms), therefore the search is expanded to include all hyponyms of “Glucose Metabolism

Disorder”. The hyponym-hypernym relationships between index terms are based on controlled

taxonomies.

 41

2.7.2 Semantic searching

This kind of searching has the flexibility to tolerate interchangeable or related search terms as

long as these terms broadly convey similar meanings (semantically related). This is best

explained with an example. The gene “PTPN22” has several (single nucleotide polymorphic)

variants: 1868C, 1858T, etc. The gene “PTPN22” is also known by synonyms: “IPI00298016”,

“PTPN8: Tyrosine-protein phosphatase non-receptor type 22”. PTPN22 is related to a protein

“LyP”, whose function is to bind with another molecule known as “CsK”. Therefore all these

terms “PTPN22”, “CsK”, “LyP”, and “1858C”, etc., are related. When these related terms are

used as interchangeable search keywords the semantic search engine should retrieve a similar set

of documents as results in all cases. Latent semantic indexing (LSI) [8] is one method which can

implement this kind of searching.

2.7.3 Significance in meaning representation design

There are several lessons to be learnt from these conceptual and semantic search technologies,

which are relevant for meaning representation design. These are as follows:

1) We have to incorporate meaning subsumption, so that more general meanings are

incorporated in a representation of a specific meaning. This is needed to ensure

similarity of a specific meaning with its broader meanings. Preferably this should not

only hold true for meaning of individual keywords, but also for holistic composite

meanings.

2) We need mechanisms to identify the common underlying meanings, even though they

might be conveyed by a different set of keywords. These keywords may be either

synonyms or contextually related keywords. This should hold true for simple elementary

meanings that are conveyed by a single keywords as well as composite meanings.

 42

3) We should incorporate methods to ensure that the composite meanings, that are

conveyed by two different but partially overlapping sets of elementary meanings, should

be comparable with each other.

To achieve the above, we need appropriate techniques to extract the meaning and composition

information from natural language texts. Some of these are discussed in the next section.

2.8 Relevant natural language processing techniques

We require more advanced natural language processing techniques to extract holistic meaning

from text as opposed to harvesting simple index terms. Some of the relevant techniques which

are presented below.

2.8.1 Topic identification techniques

A given text can be automatically and successfully classified based on topic of the content by

topic identification technologies [45], [49], [50]. These apply machine learning and pattern

recognition techniques. These classification techniques can be reused to identify the particular

classes which a given document belongs to, and then assign the class names as topics for the

document. These techniques will have a role to play in the descriptor generation process as

proposed by us in Chapter III.

2.8.2 Presence of semantic structures in natural language texts

Natural language processing techniques often focus on a small portion of the text. This is called

a window and this window is moved along as the entire document is processed. Machine

analysis (word frequency based) like [71], demonstrates that the terms have high correlation

within a window, and this correlation decreases across windows based on the relative distance

 43

between windows. This means that some information is available within a window which may

be used to define the contextual meaning of all terms within that window. This kind of

information may be used to disambiguate the meaning of a term in the given context. In addition,

this also indicates that there is a well defined hierarchy of meanings in human written natural

language texts. Therefore it may be possible to identify such hierarchy of meanings and it may

be possible to transform such meaning hierarchies to a meaning representation suitable for

computations (comparison) using some mediating techniques.

2.8.3 Named entity recognition techniques

Atomic meanings that can be categorized to a particular class in the taxonomy are called named

entities in natural language processing domain. For example, in the text in Fig. 2.4, the entity

“fisherman” will be recognized as a subclass of “person”, if that class exists in the taxonomy.

Similarly, “Type 1 diabetes” will be recognized as a disease from medical/bioscience related

publications. Language syntax (grammatical) analysis and various other machine learning

techniques like [72]-[75], are used to disambiguate terms and identify these entities. State-of-art

named entity recognition (NER) techniques have low error rates (~6%) which are comparable to

human detectors (~ 3%).

2.8.4 Knowledge extraction techniques

In natural language processing domain, the relationship between entities and taxonomic classes

(e.g., relationship between gene and disease) is considered as a knowledge artifact. These

relationships are formally documented in a knowledge repository (or data structures) called an

ontology. Various machine learning and language syntax analysis technologies like [76]-[80] are

available to detect a relationship between two or more entities in a given specific portion of text

and construct ontologies by processing multiple text documents [81]-[89]. Once constructed,

 44

ontologies provide readily available patterns to detect relationships among entities in a given

document and recognize context and contextual meanings in a given text. Once identified, these

relationships can be used to identify which concepts should be composed together.

2.8.5 Text summarization and discourse analysis

It is possible to automatically create abstracts of text documents [90]-[94]. These technologies

first identify the portions of text that contains the essence of the entire document and then built

the abstract. Automatic generation of abstracts are interesting because that way it is possible to

further process the abstract to identify the broad topic of the text, extract the most important

named entities or relationship between entities without getting distracted by rest of the

voluminous text. The most important information is concentrated in the abstract, therefore any

information that is extracted from it is likely to be more relevant, accurate and represent the

overall meaning of the entire document/object. Some of these are based on discourse analysis

techniques [91]-[94] that can identify which sentences are more important and which are the

most important information bearing part of these sentences.

2.8.6 Interpretation of actual meaning of a sentence

Deconverter technologies [95] are available that can parse a sentence to identify the meaning that

is being conveyed by that sentence and then represent the meaning in United Networking

Language form that is computable [96]. Using these technologies one may parse sentences of a

machine generated abstract to generate their UNL form. Then from the UNL form one can

identify the central meaning of an entire document.

 45

2.9 Meaning based indexing

2.9.1 Inverted index for vector models and Galois lattice based indexes

Indexes are pre-computed data structure of key and object pointer pairs which enable faster

searching of objects. Set and vector based search and information retrieval systems have their

own inverted index scheme which is a colossal incidence matrix. Fig. 2.8 illustrates the abstract

view of a typical inverted index, which is a lookup table (or matrix) of basis-vector terms as

rows and object/document location as the columns. In this example, the second row in the

inverted index table corresponds to “Dimension-2” and has two columns, each of which contains

a pair. One of the pair is (DocId 1, w2,1). Suppose this table is for a term vector model, and the

Dimansion-2 corresponds to a term “sales”, then the document identified by DocId 1 has a term

“sales” and has a corresponding weight w2,1.

Each terms of the query (e.g. “sales”) is used as the key to identify the documents column (e.g.

Doc Id 1, DocId 3) which has these terms and the corresponding weights (e.g. w2,1, w2,3) of these

terms. Once the weights of these terms in each document is identified, then for each identified

document, these document term weights are multiplied with corresponding term weights of the

query to identify the dot product between the document vector and the query vector. Based on

the dot product value the identified documents are ranked and returned as result. In case of latent

semantic indexing, instead of terms these basis vectors are latent semantic dimensions [8].

Fig. 2.8 Abstract inverted index in a typical search engine

Dimension-1

Dimension-n

DocId1, w1,1

DocId 2, w1,2

Dimension-2 DocId 3, w2,3 DocId 1, w2,1

Columns (Documents)

Rows

 46

Similarly, proposals on large (and expensive) Galois lattices as concept based indexes are

available in [97]. Neither inverted index nor Galois lattice based index enables incorporation of

composite meanings, therefore unsuitable for high quality meaning based searching.

2.9.2 Index scaling techniques

In large search engines, for scalability, inverted indexes are partitioned and distributed into a

cluster of nodes, as mentioned earlier in Fig. 1.2 in Chapter I [4]. This index partitioning scheme

for load sharing is a proven technique. However improvements can be made, as suggested in

Chapter I, on how to partition the index to further improve the scalability for a given amount of

resources (i.e. the index can be made to have a higher query servicing capacity).

2.9.3 Equivalence between searching and routing problems

An index structure, for example a k-ary indexing tree, can be represented as a tree graph. To

search an object, we traverse the index tree and reach a particular leaf and test whether that leaf

node corresponds to the required object or not. This index traversal is equivalent to a graph

traversal in the tree graph. During index tree traversal, at every node, we decide on which next

child node we should move to. This is also a routing decision, where we decide which should be

our next node destination. The index nodes can be conceived as routing nodes in a

graph/network, and the search key can be conceived as the message which has the search (query)

key as the destination address. Thus, every search problem has an equivalent routing problem.

Therefore, from algorithmic viewpoint, searching and routing is one and the same problem. Due

to this very reason, P2P networks [98]-[113], where a query is routed to a particular node which

can best service it, can act as a search index. Therefore in the next section [15], we study P2P

networks to understand the routing related challenges from theoretical viewpoint, then solve

them to utilize the solutions to construct a meaning based index system.

 47

2.9.4 P2P network as a distributed index

In P2P networks (P2PN) the searching workload is distributed across multiple nodes which store

the document objects. These underlying principles of P2P networks can be applied to solve the

query delivery problem in a distributed index which has very large number of index pools. Thus

these principles may help further scaling of a distributed index. Related rudimentary works on

P2P networking and query routing can be found in [98]-[116].

A P2PN can be a scalable search solution because it can simultaneously carry out distributed

searching for data objects in multiple computers (nodes). Here the computers (nodes) contain

document objects and these computers interact with each other using IP (TCP or UDP) packets.

Here a search query is embedded in a query message, which is distributed to all the participating

nodes where multiple instances of the same search are simultaneously executed. P2PN is the way

how these computers are logically connected and how the search query is routed through them.

Users send a query to any random computer and the computer which receives the search query

delivers the query message to those destination computers which might host objects that are

being searched for. This query delivery may constitute routing of the query through multiple

routing hops till it reaches a node with relevant objects.

2.9.4.1 Search operation

Fig. 2.9 presents an abstract view of a P2PN and its distributed search operation. Here the

interactions, message paths and messages are identified with labels and serial number (i) to (iv).

A randomly selected computer/node “N2” accepts a message from the user (transaction labeled

as “(i)” and indicated by a arrow) and forwards (routes) it to computer “N3”, which finally

delivers the message to computer “N6” (transaction (ii) & (iii)). The node (“N6”) that contains

 48

the relevant objects directly presents the results to the search initiator (transaction (iv)). In this

manner query routing in a P2PN can enable distributed and scalable searching. In more primitive

and simpler variety of P2PNs each node may simply broadcast the query to all other neighboring

nodes that are directly connected to it. This flooding of the entire network with copies of a given

query ensures that the query reaches all nodes. This strategy avoids need for sophisticated query

routing mechanisms but it causes severe load on the network. Based on their design

sophistication, these P2PNs can be categorized under three different generations as presented

below. The P2PNs which does not implement any particular topology has a random network

topology [117].

Fig. 2.9 Distributed search operation in a P2P network

2.9.4.2 First generation P2P network

This generation of network implemented searching by flooding the network with the query.

Gnutella version 0.4 [109] is an example of this class where all nodes have equal status and

capability in a truly peer-to-peer configuration. These schemes generate high volume of message

Document
object

Node containing
document Objects

N1

(i) Search
Query

User searching for an object

N3

N6

N4

N5

(iii)

(ii) Forwarded
Query

(iv) Response from
Node having the Object

 49

traffic due to naïve searching by query flooding. They also do not bound the end-to-end query

routing response because in any random network, this time can be arbitrarily large. The rational

for this assertion will be discussed in sections 2.10.4.3 and 2.10.4.6.

2.9.4.3 Second generation P2P network

This class of networks selectively routes query messages and uses mature networking

organization mechanisms to avoid network flooding and yet carryout searching in all nodes.

Here query routing tables are used to progressively route search queries towards nodes that are

likely to have matching content. The query routing tables are maps between search

keywords/terms (key) and next hop node addresses (destination). Various routing table updating

schemes are used that either enables permanent table entries or temporary caching depending on

use and age of the entry. Examples include: SemAnt [100], Range Addressable Network [114],

NeuroGrid [98], Intentional Name System [115], [111], [112] and Remindin [113].

In these proposals, the routing tables are implemented as distributed hash tables (DHT) where a

single keyword/term serves as the routing table key. This is a severe limitation because this kind

of query routing is based on strict keyword matching and not meaning based. For example, if the

search key (intention) is “P2P networks software products” then the query might be routed

towards all nodes that stores documents that has the following standard keywords/term/phrases:

“P2P networks”; “software”; “products”; “software products”, in addition to the nodes that have

the required document having conjunction of all the keywords, but will not forward messages to

nodes having relevant objects having description keywords “Gnutella” or “Neurogrid”, etc. This

kind of query forwarding without sophisticated meaning based comparison at the routers will

cause more message traffic and yet yield lower search recall.

 50

2.9.4.4 Third generation P2P network

This group of networks used premeditated topology to manage search response time. These

networks actually propose to organize their network according to a specific topology. However

neither formal justifications were given nor evaluation of the used topologies were carried out to

explain why those specific topologies were chosen. These designs also lacked a suitable design

for the keys used in the routing table. Examples include: Seers Search Protocol [99], Schema

Based P2P [101], Content Based Addressing and Routing [102], SenPeer P2P Data Management

System [103], H-Link semantic routing [104], D2B [105], The Socialized.Net [106], PlanetP

[107], Makalu [108], CAN [110], and [116].

2.9.4.5 Limitations of existing P2P networks

The aforementioned three generations of P2P networks have several weaknesses, hence they are

not readily useful to materialize a distributed index system for mainstream usage. These

weaknesses are follows:

1. Sophisticated, meaning based search not yet possible: Most designs use distributed hash

tables which are based on exact matching of keys, so meaning based searches are not

possible.

2. P2P network designs do not attempt to adequately improve retrieval performance metrics:

In a P2P network, the evaluation criteria should encompass all four metrics: precision,

recall, search response and complete recall time, instead of only open ended precision and

recall metrics. However this is not a common P2P network design practice, therefore many

aforementioned designs often do not address key questions like: (1) how to reduce the end-

to-end query routing response time; and (2) how to increase query routing success rate.

Hence these proposed designs ignore the fundamental requirements and have not been able

 51

to apply the right solutions. Managing routing success, response time and messaging

overheads requires applying network science fundamentals as available in [117], [118] and

[119] to choose an optimum topology. Only some of the third generation P2PNs have

started to leverage topology to manage routing success and response time.

2.9.4.6 Useful lessons from P2P network designs

It is important to note that even though the P2P networks are not be readily suitable, however

there are relevant lessons to be learnt from their weaknesses. These would be useful to guide the

design of the required SRN. Some of these lessons are as follows:

1. Peer-to-peer networking can support distributed searching and reduce number of

comparisons.

2. Search query should be selectively routed towards resources that can best service the

query.

3. An optimal overlay network topology is needed for high query routing success rate and

low response time.

2.10 Networking science (graph theory) fundamentals

2.10.1 Role of network science (graph) theories

Traditional numeric key based indexes like binary or k-ary trees are based on tree topologies (as

illustrated earlier in Fig. 2.2). However such tree topologies can not be constructed when the

address keys are non-numeric entities, for reasons that were discussed earlier in Chapter I.

Therefore alternative network topologies have to be adopted which can work with non-numeric

keys. On the other hand, P2P networking solutions could have been used as meaning based

 52

distributed index infrastructure, provided they supported meaning based operation and adopted

optimal topologies. Network science provides us with the understandings that are necessary to

choose and adopt appropriate network topologies for building meaning based index systems

based on the P2P network paradigm. To gain useful insights, in the following sections, we

discuss some fundamental notions from network science domain.

2.10.2 Definitions: Node degree, clustering coefficient and path length

2.10.2.1 Node degree

The “degree of a node” in a given network, is defined as the number of connecting links (edges)

that a node has. In Fig. 2.10, the node “A” has a degree of 4.

Fig. 2.10 Network science concepts

2.10.2.2 Clustering coefficient

Clustering coefficient is a characteristic of a network topology. We use the term “clustering

coefficient” to indicate the measure of the tendency of the nodes in the network (graph) to cluster

together. A number of clustering coefficient metrics has been defined in the literature. We will

consider the “average clustering coefficient” metric as defined by [119] and explained in [120].

From henceforth, by the term clustering coefficient, we will mean average clustering coefficient.

A

C

B

D

E

 53

This clustering coefficient is defined as the average of all the “local clustering coefficients” for

the entire given network. The local clustering coefficient is the quantification of how close the

neighbors of this given node are to being a complete graph (i.e. where all nodes are directly

connected to each other). Local clustering coefficient is defined as follows.

Using formal graph theory notations, we say that a graph/network G is defined as a set G =

(V,E), which consists of a set of vertices/nodes V and a set of edges/links E connecting them, and

a particular edge eij connects vertex/node i with vertex/node j. For a directed graph, the edges eij

and eji are distinct from each other and for an undirected graph, they are identical. In all our

examples, for simplicity we will only consider undirected graphs/networks. Suppose the set Ni

denotes all the nodes that are directly connected to the node i and Ei is the set of all edges

between these nodes in set Ni. The total number of nodes in the set Ni is denoted as

│Ni│and│Ni│= ki, where ki is the degree of the node i. Maximum number of edges that are

necessary to connect all these │Ni│nodes together to form a complete graph is ki(ki-1). We

denote the set of all possible edges as the set Ei and │Ei│= ki(ki-1). Hence for a directed

graph/network the local clustering coefficient Ci of node i, is defined as follows:

ijki

ii

jk

i EeNkj
kk

e
C

 ,, :

)1(
(2.1)

For an undirected graph/network the local clustering coefficient Ci of node i, is defined as:

ijki

ii

jk

i EeNkj
kk

e
C

 ,, :

2

)1(
(2.2)

For example, the local clustering coefficient CA of node A in Fig. 2.10 is 2/(4C2) = 2/6 = 0.33.

 54

Using the above definitions, the average clustering coefficient C of a network/graph is defined

as:

ViC
n

C
n

i
i

 :
1

0
(2.3)

2.10.2.3 Path length

The distance between two nodes is defined as the number of edges in the shortest path between

these two nodes. In Fig. 2.10, the path length between node B and node E is 2. The average path

length in a network/graph is defined as the average of all these distances for all possible pairs of

nodes. Average path length is another characteristic of a network topology.

2.10.3 Watt and Strogatz topology generation model

A part of the research reported in this dissertation is based on the Watt and Strogatz topology

generation model [119]. Hence we discuss this model and all the related and relevant insights.

This model is based on the notion that a network can be represented in a D-dimensional space

having D degrees of freedom. This model is explained below. “Degrees of freedom” is a

different notion than node degree as used in graph theory, but we can say that for every two node

degrees there is a single degree of freedom, i.e., D ≡ k/2, where k is the node degree.

2.10.3.1 Lattice network in D-dimensional space

Fig. 2.11 shows a representation of 2-dimensional lattice network in a 2-dimensional space. In a

lattice network, the nodes are connected to immediate k neighboring nodes, where k is the degree

of the nodes (in Fig. 2.11 we have shown uniform degree, k = 4) and neighbors are those nodes

that are closest to a given node. This means that the neighbors are those k nodes for which the

 55

distance between the given node and all other nodes are minimum. We can see that, a lattice

network is an ordered network. This ordering does not mean that nodes should have uniform

distance between them, but it means that the links only connect the closest pair of nodes. Fig.

2.11 should not be taken as the general case. This figure actually showed a special case where

links not only connected to closest nodes, but all nodes also had uniform distance with all 4

neighbors.

Fig. 2.11 Lattice, small world and random network topologies

In Fig. 2.11, the distance metric is the geometric distance between nodes based on their two

dimensional co-ordinate positions in the 2-dimensional space. Similarly, we can consider a

generalized D-dimensional space with D degrees of freedom. We can further extend this to a

more general model (and more complicated space), where k is not equal for all nodes, but

indeterministic having a given probability distribution. That kind of topology in a complex

geometric space is difficult to visualize but possible to conceive and analyze using graph

theoretic methods.

2.10.3.2 Generation process

This Watt and Strogatz model generates three kinds of network topologies: lattice, small world

and random networks, based on a single parameter p. The generation begins with a lattice

Lattice Network Small World Network Random Network

For 1 >> p > 0

Transforms

 to

For p ~1

Transforms

 to

 56

network. Watt and Strogatz [119] had explained their model for a D-dimensional lattice network

connected in torus fashion (i.e. the two ends of a lattice are connected back to each other and this

is done for all dimension). However, in Fig. 2.11, we show the process for a 2-dimensional

lattice network, which is not connected as a torus. In the generation process, a certain p fraction

of links of all the nodes in the lattice network are disconnected from their immediate neighbors

and connected to a distant node chosen at random. So this means a p fraction of short links/edges

between neighbors are replaced by long links/edges between distant nodes. By varying the

generation parameter p we can create a wide variety of network topologies. When p is very small

value <<1 or ~0, the topology that is generated is still a lattice network because not many

ordered links are disturbed. Whereas for p = 1 or a value near 1, the topology that is generated is

a random network [117]. This is because, each node is connected to any random node

irrespective to the distance between them.

What is interesting here is the clustering coefficient and average path length properties of all

these networks that are generated by this process. When we plot the normalized clustering

coefficient C(p) and average path length L(p) against the generation parameter p, we get a

trajectory as shown in Fig. 2.12. This plot was obtained from [119]. In this plot the clustering

coefficient and average path lengths are normalized by clustering coefficient C(0) and average

path length L(0) at p = 0, respectively and was used as the vertical axis values. The zones for

lattice and random networks are also shown on this plot.

 57

Fig. 2.12 Normalized clustering coefficient and average path lengths for different p

In between the two extremes of p = 0 and 1, there lies a region where the network topologies

have high clustering coefficient, which is similar to that of the lattice network, and yet the

network has a small average path length similar to that of a random network. This class of

networks that have this property is called as “Small World Network” by [119].

2.10.4 Greedy routing

2.10.4.1 Motivation

To deliver a message to a particular node, whose address is unknown to the sender, the sender

would prefer to hand it over to any arbitrary node, which will ensure its delivery to the intended

destination. This mode of operation is convenient because a node can be selected at random to

become the entry point in the network. In addition, this can spread the message processing load

to multiple nodes if a proper network topology is adopted to implement the network.

Messages could be delivered in a single hop in a network topology where all nodes are

connected to each other. However with large number of nodes, this kind of topology become

impractical as it is not possible for a single node to maintain connections to all other nodes. This

Small World
Network

1.0

0

0.0001 0.001 0.01 0.1
p

C(p)/C(0)

L(p)/L(0)

Normalized clustering coeffecient

Normalized average
path length

Lattice
Network

Random Network

 58

is specifically difficult when nodes get added to the network in an organic fashion. So we should

choose topologies where all nodes are not connected with each other.

A network where all nodes are not connected to each other, a message can be delivered by

flooding the network with copies of a message. In this method, each node broadcasts a message

that it receives to all its immediate neighbors. However this strategy overloads the network with

unnecessary copies of the same message. A better alternative is where each node selectively

routes a message through a path that takes the message to the intended destination. However

there are challenges in this selective routing.

Selective routing in an arbitrary random network requires a pre-determined map of the shortest

path which a message should take, so that the search time is minimal. To allow injection of the

query/message in any arbitrary node and yet successfully route the query to the destination, we

need to construct and maintain a large number of explicit route maps at every node. For example,

in the random network as shown in Fig. 2.13, for a node B, the required list of route maps are

also shown in the same figure.

Fig. 2.13 Need for explicit route maps in a random network

Thus for every node, there has to be a list of N-1 route map entries when there are N nodes in the

network. Identification of all these routes will require that each node has the global knowledge of

A

C

GB

D

F

E

Route maps at node B:

To A: A

To C: C

To D: D

To E: DE

To F: DF

To G: DFG

 59

the entire network topology (i.e. how all other nodes are connected to each other). Identifying

and maintaining such elaborate route maps is expensive. If we use ordered lattice network and

adopt greedy routing method, we can avoid this need for explicit maps [118], [121], [122]. In our

proposed semantic routed network we adopt a modified form of greedy routing because it is

simple and elegant.

2.10.4.2 Basic mechanism

In this greedy routing method, the address of each node in the lattice network is expressed using

a D-dimensional co-ordinate system [123]. In this co-ordinate system, a numeric identifier is

assigned to each node, based on its position on a particular dimension. Here a node’s position is

considered as its address. The address (or position) assignment of the nodes in a 2-dimensional

lattice network, is shown in Fig. 2.14. Identifiers are assigned in ascending order starting from

one node and traveling in one direction on a particular dimension. The lattice network may be

connected in a torus fashion (though not shown in this figure).

In the greedy routing method, a node decides only the next immediate destination of the message

in the current hop, and the next hop is independently decided by the next node and so on. By this

manner a message is progressively routed to the final destination. In Fig. 2.14, message routing

from node B to F is shown in a 2-dimensional lattice network. Here three alternate shortest paths

are possible all of which takes 3 routing hops to reach the final destination. These alternate paths

are: (1) BDEF, (2) BDGF, (3) BCEF. Here each node decides the next hop

node depending on which neighboring node is closest to the destination’s position/address. To

determine the distance between all the neighboring nodes and the destination node, the Euclidean

distance using the D-dimensional co-ordinate system is used. Each node maintains a routing

table that has position (address) of the neighboring nodes in terms of the D-dimensional co-

 60

ordinate system and the corresponding outgoing link. This positions/addresses act as the routing

table lookup key and outgoing link identifiers act the next hop route direction. Here the link

identifiers act as the substrate mechanism over which the network is overlaid.

Fig. 2.14 Greedy routing in lattice networks

When a message arrives, the Euclidean distance between the message’s destination address and

all the key addresses in the routing table are computed. Based on these distances one particular

routing table row is chosen whose key address is closest to the message’s destination. The

position in the D-dimensional space is also a position vector and therefore instead of Euclidean

distance, the dot product of the two position vectors may be used to decide the route. For the

above example in Fig. 2.14, the routing table of node D and the message’s destination (node F) is

also shown in the figure. For the given message and destination, the Euclidean distances and

vector dot products of the message’s destination and node D’s neighboring node’s

address/position is also shown in Fig. 2.14, at the right side of the routing table. The destinations

addresses are next hop are mentioned in terms of the link directions (e.g. “Up”, “Down”, etc.).

They can be also mentioned in terms of address of the nodes they connect to from the current

node D. This addressing should use the underlying network’s addressing scheme.

 B C

D

2, 2 1, 2

1, 0 2, 0

0, 1 1, 1

0, 0

3, 20, 2

 E

G

A

2, 1 3, 1

3, 0

 F

Routing Table of
node D

 (2,2)

Message containing
destination’s address

0.71

0.71

0.47

Dot prod

0.47

2.23

2.23

1

Dist

1

Left

Down

Right

Link

Up

(0, 1)

(1, 0)

(2, 1)

Key

(1, 2)

 61

For the message routing example, as shown in Fig. 2.14, both proximity schemes- the Euclidean

distance (shown as “Dist” in figure) or vector dot product (shown as “Dot prod”) measure

indicated that, among all neighboring nodes of node D, only the node G or E is the closest to the

final destination node F. Hence the final destination next hop destination from node D should be

either node E or G.

This illustrates that though greedy routing does not require elaborate pre-determined route maps

but it uses a simple rule to take routing decision at each node in the traversal path based on the

very limited knowledge of only the immediate local network (i.e. the given node is connected to

which all other immediate nodes). The routing table lookup mechanism, as presented above,

constitutes the routing rule. This rule is simple and can be executed in a distributed fashion. This

obviates the need for voluminous storage of all the shortest routes between all possible pair of

nodes.

2.10.4.3 Greedy routing problems in random network

Greedy routing can not successfully deliver messages in a random network, even though routes

may exist in the network. This notion is illustrated using a simple example in Fig. 2.15. Here the

positions of the nodes in the given space represent their addresses. In this example, an attempt is

made to route a message from node A to the final destination node G. Using greedy routing, the

node A will determine that the next neighboring destination should be node B. This is because

there is only one entry in node A’s routing table, which is for node B. Therefore a routing table

lookup using any message destination address will yield only one route, i.e. to node B. Once the

message reaches node B, that node will determine that the next destination node should be node

A. This is because, node B’s routing table has three entries, belonging to node C, D and A, out of

which the nearest node to the message destination’s address G is node A (refer Fig. 2.15). Hence

 62

this message will be forwarded to node A. This returning to node A, creates a loop and the

message would keep on circulating within this loop and would be unable to reach the destination.

Fig. 2.15 Greedy routing is unable to route messages in a random network

Suppose the greedy routing method is fitted with a loop detection mechanism, where a node,

which the message has previously visited, is never chosen as the next hop destination, then the

message is routed from node B to node D. This is because, as node A is excluded by the loop

detection rule, so the next nearest destination in node B’s routing table is node D. Once the

message reaches node D, the greedy routing mechanism will route it to node E, because node E

is closer to node G, compared to node F. There is no other egress route from node E, except the

one through node D, and the loop detection mechanism will not allow back tracing from node E

to node D. Therefore the message effectively gets trapped in the dead end at node E and fails to

reach the destination. Even though a route from node D to node G existed through node F, but

the greedy routing method at node D did not use that route because the simple greedy routing

rules did not enable identification of that route. This example shows that why greedy routing is

not useful in random networks. On the other hand, greedy routing works well in lattice networks

because it is an ordered network where by using the general sense of direction a node is able to

identify the viable routes. This is also true for small world network topology. We explain this in

the next section.

A

C

GB

D

F

Looping situation

Dead end
situation

E

 63

2.10.4.4 Role of short links in greedy routing

Sufficient number of short links between neighboring nodes will avoid the problems related to

greedy routing in a random network. This insight is explained in Fig. 2.16.

Fig. 2.16 Role of short links in greedy routing

This figure is similar to the previous one in Fig. 2.15, but there are three additional short links

between neighboring nodes A, G and E. These short links are shown by broken lines. Presence

of any one of these three short links could have solved the above mentioned routing problem. A

random network which has sufficient number of short links connecting immediate neighbors is a

lattice network having random long distance links. This network is a small world network

because it has high clustering coefficient as lattice network and low average path length as a

random network. This shows that greedy routing will perform better in a small world network,

where the average path lengths will be small similar to random network, thus the routing (search)

will successfully terminate within small number of steps (routing hops). As short links leads to

high average clustering coefficient, hence high clustering coefficient in small world network is

an indication of its ability to successfully route a message, whereas low path length indicates that

a small number of routing (search) steps will be needed.

A

C

G
B

D

F

Previously
looping situation

Previously dead
end situation

E

 64

2.10.4.5 Greedy routing in small world network

Greedy routing works satisfactorily in a small world network, only under some specific

conditions. Performance of greedy routing in small world networks has been investigated by

[118], [121] and [122]. It was found that greedy routing works fine only when the random links

in the small world network follows a specific pattern of connections. It is required that random

long distance links should have a certain kind of probability distribution as a function of the

distance between the nodes that the random link connects. Greedy routing works only when this

probability distribution P(x,y) of a link between two nodes x and y, is a D-harmonic distribution

[121]. That is when, probability P(x,y) is proportional to 1/H·s(x,y)D, where s(x,y) is the

Manhattan distance [124] between node x and y in the D-dimensional space and H is the

normalizing factor. Generating topology using this rule is difficult as the generation process will

require a global knowledge of all nodes and their positions (addresses) in a network to determine

the required D-harmonic probability distribution function. Networks which grow organically

with time and have no known growth pattern, will pose a problem as the necessary global

knowledge can never be predetermined. So we need to explore alternative avenues on how to

make greedy routing work in any general small world network, which may not satisfy the D-

harmonic distribution criterion.

Analysis in [122] implies that if we retrofit greedy routing algorithm with an explicit mechanism

that identifies the shortest paths and explicitly program these routes in the routing tables, then we

can still enjoy the benefits of greedy routing and yet successfully route a message in a small

world network. This modified greedy routing is called as “indirect-greedy routing” in [122]. The

benefit of greedy routing is that no route maps need to be generated and maintained, whereas in

random network we have to generate and maintain all possible shortest paths. Indirect-greedy

 65

routing is a compromise between these two extremes, where only a very few shortest path routes

need to be identified and maintained. The extent of the need to maintain shortest paths will

depend on the ordered property of the small world network. In other words, we can say that the

indirect-greedy routing method will need to identify and program a small number of pre-

determined shortest path routes, as long as the small world network has high amount of ordering

and have high clustering coefficient which is similar to the pure lattice network. The ordering

and clustering coefficient can be preserved when the topology generation parameter p in the

Watts and Strogatz model is kept very small.

2.10.4.6 Notion of search path length

We have seen that greedy routing does not always lead to a viable and shortest route in a general

network. During search, the length of the actual path taken may be greater than the shortest path,

and the average of all such search paths is defined as the “average search path length” in a given

network for a given routing method. Only for lattice networks with greedy routing, the average

search path length is same as the average path length as defined in section 2.10.2. But for any

other kind of networks, the average search path length is greater than the average path length.

This means that average search length is either equal or greater than average path length for any

network topology for any kind of routing.

The average search path length in a lattice network has an order of O(N1/D), where N = number of

nodes, and D = dimension of the lattice network which is ≡ k/2, where k is the uniform

deterministic node degree of the lattice. The average search path length for a small world

network with D-harmonic link distribution is in order of O((1/l)(logkN)2) [122], where l is the

number of long distance links per node. Whereas, the search path length for an arbitrary small

world network which does not satisfy the D-harmonic link distribution criterion, is in order of

 66

O(Nα), where α is constant. On the other hand, the average search path length for a small world

network with indirect-greedy routing is in order of O((1/l1/D)(logkN)1+1/D) [122].

2.10.4.7 Notion of routing table size

The notion of routing table size is also important in this context of routing. To enable successful

routing in a random network, at every node we need to maintain the route map to every other

node. This means all nodes have to keep route information about rest N-1 nodes (refer Fig. 2.13

in section 2.10.4.1). This constitutes the database which helps routing and can be thought as the

routing table mechanism for a random network. Thus the order of this routing table size is O(N).

For lattice network using greedy routing method, each node have to maintain only the table of k

immediate neighboring nodes, therefore the order of routing table size is O(k). For small world

network using indirect-greedy routing, according to [122], each node need to have know

O((logN)2) other long distance links in its vicinity in addition to short link related information

about k immediate neighbors. Therefore we expect that the nodes need to maintain O(k+((logN)2)

entries in their routing tables.

2.10.4.8 Lessons

The following lessons are useful in regards to adoption of small world network for constructing a

meaning based message routing network and index system:

1. Greedy routing is a simple and attractive method because it reduces the routing table size

at each node. But greedy routing requires that the network should have lattice like

ordering.

 67

2. Indirect-greedy routing can lead to much shorter search path lengths (and smaller search

response time) in small world network compared to lattice networks. To implement

indirect-greedy routing, there is a need for additional mechanisms to identify the shortest

paths and explicitly program these routes in the routing tables.

3. Indirect-greedy routing is viable and attractive only when the small world network has

lattice like properties, i.e., when number of long distance routes is small compared to

shortest distance links between immediate neighbors. In this case only a few route maps

have to be maintained.

4. Small world network has the lattice like properties when the Watt and Strogatz

generation parameter p is small enough to maintain the clustering coefficient to a high

value similar to that of the lattice network.

2.11 Queuing theory

The load sharing technique of deploying multiple replicas of index servers is a standard solution

pattern to scale up the capacity of a system. Here we examine the theory behind this technique.

2.11.1 Definitions: Execution time, waiting time, response time

Concepts from two domains: real time systems and queuing theory (operations research), are

useful to analyze and design the index system. Here we explain the equivalence between the

concepts from these two domains. The notion of “task” which is waiting to be executed, as

portrayed in real time system domain, is equivalent to the notion of an “entity” waiting to be

serviced, in queuing theory.

 68

Execution time is the time needed to execute a task. This is also known as service time in

queuing theory terminology. Waiting time is the time a task (or an entity) waits before its

execution (or servicing) begins. Response time is the difference of time when a task was released

and the time when its execution was completed, i.e. total time a task spent in a queue plus the

time spent in execution. Hence we can say that the response time is the sum of waiting time and

execution time. This response time is also called as the “flow time” in operations research.

2.11.2 Basic queuing model and response time statistics

In any network device (say router), messages arrive at a rate rarr per unit time, get queued up and

wait for processing. The queue gets serviced by n concurrent message processors, each of which

completes processing a message in time tserv (Fig. 2.17). When a large number of messages arrive

within a short time, the queue momentarily builds up. If the long term average service rate is

greater than the long term average arrival rate, then the queue will eventually get serviced and

the queue length will drop. Instantaneous arrival rate rarr, servicing time tserv, response time tresp,

and queue length l are random variables.

Fig. 2.17 Queuing model

This kind of queue system is denoted by the “A/B/n” queue system notation, where A denotes

the arrival model, B the service model and n denotes number of concurrent servers/processors.

Packets arriving

at a rate rarr

and get queued

n message processors
processing the queue at rate

1 / tserv

Queue length l at any
given time.

Backlog messages waiting in
the queue for processing

 69

Generally in networks, rarr has been observed to have Poisson distribution [125] with long term

average arrival rate λ and tserv is known to have Exponential distribution [126] with long term

average serviced time t (i.e. the variable 1/tserv have Poisson distribution with long term average

service rate 1/t). This type of system is called M/M/n queue according to Kendall’s notation

[127], where A = M denotes the Poisson arrival process, B = M denotes the Exponential

distribution of the service time.

The approximate average waiting times for this kind of system have been analytically computed

and available as standard waiting time tables [128] for a given value of n and the product λ*t,

which is the long term utilization ratio for the processors. For example, in Table 2.1, when the

utilization value is 0.3 and there are 4 processors, the waiting time is 0.0132 times of the average

execution time t. Therefore, in this example, the average response time = (1 + 0.0132)*t. This

also means only a small fraction of messages will have to wait in the queue and most of them

(~96.29%) will be immediately processed upon arrival.

Table 2.1 Waiting times for a M/M/n queue [128]

Processor utilization
λ*t

Number of processors (servers)

1 2 4 8

W P W P W P W P

0.1 0.1111 0.9 0.0101 0.9818 0.0002 0.9992 0 0.9999

0.3 0.4286 0.7 0.0989 0.8615 0.0132 0.9629 0.0006 0.9964

0.40 0.6666 0.6 0.1905 0.7714 0.0377 0.9093 0.0039 0.9815

2.11.3 Useful lessons and application note

From the queuing model and wait time statistics tables we assimilate the following insights:

1. The lower bound of the average response time is the average execution time t.

 70

2. To get smaller average response time, we have to use larger number of concurrent

processors, and/or processor with larger average service rate 1/t so that the utilization

rate is smaller than 1. To ensure a small average response time, we choose appropriate n

for a given λ and available processor with a given t. Therefore, how many processors

should be employed is to be decided based upon the message arrival rate statistics and

service rate statistics of the available processors.

3. The queuing model incorporates both response time and throughput capacity factors.

When an appropriate number of processors n is chosen, the average response time is in

order of the average execution time. This indicates that the system will have sufficient

capacity to service tasks that arrive with the given arrival rate statistics. In other words,

the throughput capacity and the response time of the designed system will be sufficient if

the single parameter n is chosen properly.

4. The two steps of designing the M/M/n system are as follows. First we design a processor

to minimize the average service time t. Then for a given arrival rate λ, we choose the

minimum number of processor n, that is necessary to keep the utilization rate λ*t of each

processor < 1 and the average wait time W within the acceptable limit. As W = kn*t,

where kn is a factor given by the M/M/n wait time table, so we choose n such that kn is

small. In the example shown above this kn = 0.0132 for a n = 4. As response time =

(W+t) = (1+ kn)*t, therefore the processor design should be carried out properly to ensure

that t is far less than the acceptable response time, so that a feasible M/M/n system can

be designed to achieve the desired system response time and throughput capacity. This

also means that being able to design processors with very small service time t leads to

savings in number of processors n.

 71

5. For a well provisioned system, the execution time and response times are very similar,

i.e. response time = (1 + kn)*t ≈ t, because the number of processors n is chosen such

way that kn << 1. In many place in this thesis we have considered this assumption.

2.12 Bloom Filter basics

Since we will use a Bloom Filter in this research, hence its fundamental principles are discussed

here. A Bloom Filter (BF) is a compact representation of a set [129]. It consists of a large single

dimensional array of m bits generated using k hash functions (Fig. 2.18). To insert an element (a

number, say “idi”) into this set, we hash this element using k different hash functions to generate

k different index values having a range 0 to (m – 1) = (2q-1), where q = number of bits in the k

index values. These values decide which bits in the m-bit array should be set to 1. To test

whether an arbitrary element is in the BF, we generate its k bit indices (using the same hash

functions), and check whether all of those bits are 1. The condition that all bits are 1, indicate

that the element is present in the set.

This kind of membership testing does not yield any false negatives (i.e., element is present but

test will show negative), but will yield some false positives (i.e., element is absent and yet test

will indicate its presence). Probability of false positives can be made smaller by proper choice of

a large m and optimum k, for a given maximum element holding capacity n, where n is number

of element that will be accommodated in the BF. The m bit array is implemented by a bit

addressable memory. Membership test is performed by checking whether all k given bit locations

(obtained by k hashing elements say “ei”), contains 1 or not. This test can be implemented by

testing the conjunction of all the bits using an AND gate or passing all the bits through a

sequence detector to detect k consecutive ones.

 72

Fig. 2.18 Bloom Filter basics

Two different designs of this basis BF are possible. In one form, the m bit array is considered as

one single array, while in the other one, the m bit array is partitioned in equal k partitions and

considered as k separate arrays. In the partitioned version of the BF, each of the k bit address

generated from hashing is mapped to separate partitions. For the un-partitioned case the

membership testing requires k memory accesses. So it takes O(k) order of time assuming use of a

single port memory. Whereas for partitioned BF, the k memory partitions can be implemented on

separate memory banks that can be accessed in parallel, reducing the testing time to O(1).

BF creation

BF membership testing

Data
write

k hash values of idi: {F1, F2…}
used as addresses

Bit addressable
Memory

Address

Membership
test output

Sequence
Detector

Address

Data
read

Bit addressable
Memory

k hash values of ei: {F1, F2…}
used as addresses

Computational model Suggested hardware implementation

Suggested hardware implementation

BF bit array

1
0
1
1
1

1
0

0
1
2
3
4

m-2
M - 1

 FB1B (idBi B)=0

F B2B (idBi B)=2

 FBk B (idBi B)=j

BF hashings

Bits are set as indicated
by hash values

Computational model

BF bit array

0
1
2
3
4

m-2
M - 1

 FB1B (idBi B)=0

F B2B (idBi B)=2

 FBk B (idBi B)=j

BF hashings

Bits are examined as
indicated by hash values

&

1
0
1
1
1

1
0

 73

For a given BF bit array size m, and number of elements n, there exists an optimum number of

hash functions k, that should be used. This optimum k minimizes the false positive probability

during membership testing. This optimum k is given as:

2ln
n

m
k (2.4)

With this optimum k, the probability of false positive for a BF for a given m bits and n elements,

is approximately given by a simple function [129] as follows:

When unpartitioned BF is used, then

 111
kkn

vefalse mP

 (2.5)

When partitioned BF is used, then this is

 kn

vefalse m
kP

 11 (2.6)

For example, for m = 131,072, k = 7, and n = 104, the probability of false positives are: 0.002076

for the unpartitioned BF, and 0.002077 for the partitioned BF. This shows that the probabilities

are quite similar when they are small. The above equations are good approximations as long as

k·n << m and the hash functions are collision resistant.

2.13 Theory of hash functions

For proper operation of the Bloom Filter, we need high quality, minimal collision (i.e. collision

resistant) hash functions that satisfy the “strict avalanche criterion” [130]. This criterion tells that

each bit in the hash value should change with a probability of 0.5 whenever a single bit of the

 74

input bit string changes. This quality ensures that the hash values are equally distributed across

the entire range, hence minimize collisions.

2.14 Summary

We need to understand how human mind actually comprehend meanings. This is necessary to

design an effective meaning representation data structure and comparison technique. Similarly to

devise a network which can forward messages based on meaning, we need to know network

science theories as well as the pros and cons of various networks which had been employed in

past for distributed searching. In this chapter we analyzed relevant literatures to get a better

understanding on: the cognitive processes that are related to meaning interpretation; strengths

and weaknesses of the existing meaning representations; useful natural language processing

(NLP) techniques; index organization; index scaling techniques; distributed search using P2P

networks and useful network science insights.

Existing meaning representation techniques used in the information retrieval domain do not

support meaning composition, thus they can not adequately represent composite meanings for

the purpose of comparison. Therefore we need a new meaning representation design, which is

psychologically realistic. We realized that hierarchical unordered collections of elementary

meanings may be a good candidate to represent composite meanings, because it has support from

multiple cognitive science and linguistic theories. However to build such hierarchical collection

structure for a given natural language text, we need to first interpret the text. Fortunately, several

useful NLP technologies are available which can be used to extract the most essential meaning

from a text document and help building the structure.

 75

We also realized that the P2P networks can be used as distributed indexes, as they distribute the

search (or index lookup) task load across multiple nodes, thereby improving scalability.

However P2P networking schemes have to be enhanced using network science insights to

improve its search success rate and response time. This requires adoption of appropriate query

routing methods. Load sharing technique, which is based on queuing theory is used in existing

distributed index designs. This is a good and proven mechanism, which should be adopted and

adapted to further improve scalability of a P2P network based index system.

76

CHAPTER III

MEANING REPRESENTATION AND COMPARISON MODEL

Systematic organization of the index entries in an index system can save number of servers

necessary to build the index system. However such systematic organization of the index system

requires an overlay network appliance called semantic routers. These overlay networking routers

forward search queries to the particular index server which is most likely to contain matching

index entries. This forwarding of destination is decided by ascertaining how closely the meaning

of query matches the meaning of the document whose index entry is stored in a particular index

server. To support such decisions we need a design of a descriptor that will represent meanings

of documents, queries and enable their comparisons. In this chapter we present the design of

such descriptor and a comparison technique. This descriptor design supports generative meaning

composition and thus can represent and compare composite meanings as explained in Chapter I.

We begin by specifying the requirements of a desired meaning representation scheme followed

by a description of role of the meaning comparison in the proposed index system and the

proposed meaning comparison scheme.

3.1 Requirements for the descriptor

Based on the understanding gained in Chapter II, we can assert that the proposed semantic

descriptor design and the comparison technique should satisfy the following requirements:

(A) The descriptor should be able to express complex concepts (or meanings). This is a key

requirement because this compositionality aspect is fundamental in meaning processing

77

and meaning comprehension. The relevance, rationale and evidences to support this

requirement had been presented and discussed in the previous chapter.

(B) The descriptor design should be coherent with human cognitive processes and supported

by understandings from cognitive sciences. This requirement is needed to ensure

realistic data structures to serve the needs of practical applications.

(C) The meaning in a text should be reasonable expressed by the proposed descriptor.

(D) The semantic similarity comparison should be a self contained process and the

descriptor should be sufficiently descriptive to preclude the need of additional

information to disambiguate meaning or to enable recognition of meaning subsumption,

during the meaning comparison operation.

(E) Descriptor data structure should be compact enough for efficient storage in the index

and transmission as message payloads.

(F) The similarity computation technique should be computationally efficient for faster

comparison during index operations (lookups, additions/deletions, etc.).

3.2 Role of SRN in the proposed distributed index

To appreciate the design of the meaning comparison scheme, we need to first understand its role

in the index system. Therefore, in this section we present an overview of the proposed index

system which will use this meaning comparison scheme. We begin by explaining the data

entities that are used in this index system, then describe the role of the key system components

and finally identify the components which will carry out the meaning comparison operation.

78

3.2.1 Documents, URLs, index entries, document ids and storage

For basic search operation, instead of the web page or documents, only their URLs need to be

stored in the search engine. When users search for a web page or a document, the URLs would

be returned from the index. This index system which maps meanings to URLs, has a two-tier

mapping system very similar to the one proposed by [4]. In the first tier, the meaning is mapped

to a unique document identifier, in the second tier the document id is mapped to its URL.

The first tier mapping entries are called index entries, each of which consists of two entities: (1)

the document identifier (called “document id”) of the object being searched; and (2) the meaning

representation (semantic descriptor) of the web page or the document. These index entries are

stored in the index servers in form of inverted index as described in section 2.9.1. Whereas, the

second tier mappings between document ids and URLs are stored in the document servers. Each

second tier mapping entry consists of document id and document URL, and all these mapping

entries are stored in the document server.

In this system, when a user makes a search request for an object (URL of the web page or

document), actually a search is made for the object’s index entry in the index server. When the

index entry is found, its document id is retrieved and sent to the document server. For a given

document id, the document server retrieves the corresponding URL and presents it to the user.

3.2.2 Distributed search engine components

We proposed that, to achieve scalability, the index should be deployed as a distributed system of

large number of small index server nodes, each specializing in specific domain areas. For

example, index entries related to biological sciences can be stored in one index server node,

whereas entries related to sports news can be in another.

79

In this proposed system, all these index servers will be interconnected by a special network

called Semantic Routed Network (SRN) (as in Fig. 3.1). To search and retrieve index entries,

these specialized index nodes may apply custom search strategies that are suited to the domain,

search context, type of data objects, etc., to yield superior search performance. Each index node

may be deployed as a single computer/server or a pool of servers to achieve scalability. A single

pool or index node may host index entries on multiple subject categories to utilize available

spare storage capacity. In that case, this single physical location will be represented as multiple

destinations from SRN’s viewpoint. This allocation of stored physical space to multiple subject

matter categories is premeditated, not random and unaccounted as in the case shown in Fig. 1.2,

Chapter I. In that system, the index entries are randomly distributed across all index server pools.

When number of index server pools is small say ~1000, one single semantic router (as in Fig.

3.1) may be used to implement the entire SRN. The other alternative is to use multiple smaller

routers to implement the SRN. These alternative methods will be discussed in Chapter VI.

Fig. 3.1 Role of Semantic Routed Network and semantic routers in query delivery

Index entries are
systematically

distributed based on
meaning of the
corresponding

document content

SRN

Query rate Q

User Searching

Query Processor Document
Server

Query Rate Q

Pool 2 Pool NpPool 1
Q/(Npns)

1 ns 2

Index Servers

Query rate Q/Np

Semantic Router Returns list of matching
document ids to retrieve

Returns list of matching
URLs

Sends query

Selective query delivery

Search
Engine

80

3.2.3 Components that carry out meaning comparison

Meaning comparison operations are carried out in the semantic routers. The semantic routers use

this comparison operation to decide message forwarding routes. In addition, the index servers

may also use this comparison operation. In a typical search engine, the inverted index operation,

which is carried out inside an index server, is based on a vector model (either term based or

latent semantic indexing models). Therefore inverted index operation alone does not give good

meaning comparisons and discerning ability. If index servers also use the proposed meaning

comparison operation in addition to the inverted index operation, then search performance can be

improved. This hybrid scheme of meaning comparison will operate as follows.

First a consideration set of index entries are identified using the inverted index system, then the

semantic descriptors of all the considered index entries are compared against the query

descriptor using the proposed meaning comparison scheme. Only the top few index entries

whose comparison values are high enough will be sent to the document server for second tier

mapping resolution. Inverted index mechanism is best suited to pinpoint suspected matches from

a large collection, whereas the proposed mechanism can do a better job in identifying relevant

objects from the set suspects generated by inverted index mechanism.

3.3 Overview of the proposed meaning comparison process

Here we present an overview of the processes in a distributed search engine that are necessary

for operation of the proposed meaning representation and comparison scheme. This will help

appreciating the design of this proposed scheme. This scheme can be retrofitted to the existing

inverted index based distributed search engine.

81

Fig. 3.2 presents an overview of the information processing flows involved in the search process

using this scheme.

Fig. 3.2 Overview of the search process

The search process involves seven systems (shown by boxes with broken boundaries): (1) user’s

desktop terminal; (2) query processor; (3) object storage platform; (4) index generator system

that generates semantic descriptors (keys) for the stored object; (5) index storage sub-system

which stores all key-docId pair mappings inside the index server; (6) semantic routers which

takes query/message routing decision by comparing a query/message’s key against destination

Indexing process Search process

Step III

3) Storage
platform

Concept Tree representation
of object

Concept Tree
representation of

query

5) Index
 storage

2) Query
processor

Step I

Text query

Step II

Object

Step I

Step II

 1) Desktop

Step III

4) Index
 generator

Tensor
representation

Tensor
representation

Text
description

6) Semantic router

7) Index server core

User
searching

Coefficient Table Coefficient Table

Step IV Step IV

Key Data structure:
 1. Expanded coefficient Table
 2. Bloom Filter

8) Hardware key comparator

Key Data structure:
 1. Expanded coefficient Table
 2. Bloom Filter

82

address keys; and (7) index server core which carries out the 2nd phase of index lookup for a

given query by comparing it against object keys inside the index servers, after the 1st inverted

index based lookup phase has been completed; and (8) the hardware key comparator located

inside the semantic router and the index server core. As the comparison processes inside the

semantic router core and the index server cores are similar, hence both processes are shown by a

single common representation in Fig. 3.2 [13]. The key comparator will be located inside the

semantic routers and also in the index servers where meaning comparisons will be carried out for

query routing and index lookup. We propose that the key comparator be implemented by using a

specialized hardware accelerator (e.g. ASIC based coprocessor on PCI-E card inside a server)

for: speed, smaller hardware investment and energy efficiency. Based on the approaches

proposed in this dissertation, it is possible to design such hardware [131]. In Fig. 3.2, the arrows

indicate flow of data entities (shown as boxes with continuous lines).

Here we assume that an object is either a text or has a text description provided by the object

owner/publisher. This text conveys the meaning of the object. Using the processing steps I to IV,

as shown in Fig. 3.2, the final forms of the object and query keys are generated from the text.

These final forms are used for key comparison in the hardware comparator.

In step I, the meaning of the text (a complex concept) is captured and represented as a concept

tree representation (explained in details in next section) by a manual or automated process. In

step II, an algebraic (tensor) representation of this concept tree is generated to enable cosine

similarity comparison of two trees. In step III, this derived tensor is encoded in the Coefficient

table data structure (details explained later in Chapter IV). This coefficient table is used as the

format to store the key in the index (Fig. 3.2). In step IV, this table is extended to a Bloom Filter

based data structure to enable fast parallel computation of cosine similarity using a simple

83

hardware accelerator. During the query key generation (left side of Fig. 3.2), steps I to III take

place within the search engine query processor. For object key generation (right side of Fig. 3.2),

steps I to III takes place within the indexer system. Step IV takes place within the search

engine/index core. Step III uses hash functions and bloom filters [129] that are specific to a

search engine and indexer implementation. Sometimes there is also a need to find objects that are

similar to a given object (e.g. as in recommender or search systems in Amazon [132], Pubmed

[69]). In such cases, the given object’s coefficient table is used as the query coefficient table.

The steps III, IV and the descriptor data structure are necessary to satisfy requirements (E) and

(F) as presented in the earlier section. Whereas step I will incorporate techniques that would

satisfy requirements (A) to (D).

The cosine comparison for all the three the descriptor components are carried out in the

hardware comparator based on strict string (or vector label) matching. There is no need to check

for the semantic similarity of different keywords from ontology or keyword co-occurrence

matrix during the dot product computation hence the process is straightforward and speedy.

However step I & II will involve natural language processing and semantic relationships

between words and phrases (this is not in the scope of the proposed dissertation). Even though

step I & II are outside the scope of this dissertation, for sake of continuity, in the next section, we

suggest how these steps may be implemented, along with other details of this meaning

representation and comparison model. These are discussed to demonstrate the fact that already

several techniques are available to support steps I and II and these steps are achievable provided

some additional research work is carried out. These are identified in Chapter VIII.

84

3.4 Concept tree representation and its generation

Concept tree is an abstract representation of a composite meaning. From this concept tree

representation a more concrete from of the descriptor data structure is generated. This section

introduces the notion of concept tree followed by a description of suggested methods and

techniques to generate a concept tree for a given text.

3.4.1 Notions and rationale

The concept tree construct is based on the notion of hierarchical collections as presented in Fig.

2.4 in section 2.4.6, Chapter II. We represent a hierarchical collection (or a nested set) of

concepts by an equivalent tree structure as shown in Fig. 3.3. A collection of concepts are

represented by the set notation where the curly brackets “{…}” denote the set or collection. In a

concept tree, the nodes at the intermediate levels represent complex meanings which are

hierarchical collection of elementary meanings (concepts). Thus concept tree representation

supports generative composition of meanings to represent a complex concepts (meaning). This

structure has backing from cognitive science and linguistic domains, as explained earlier in

section 2.4.7 of Chapter II. Therefore concept tree representation satisfies requirement (A) and

(B).

Fig. 3.3 Equivalence between nested set of elements and concept tree

≡

Concept Tree Representation

big
fisherman

shirt

catch

green

trout

shirt

{ {fisherman, { green, shirt } }, catch, { trout, big }

{fisherman}

{{fisherman, {green, shirt}}

catch
{trout, big}

green

{green, shirt } trout big

Hierarchy of word collection

85

3.4.2 Representation of standard concepts and contextual meanings

We consider two kinds of complex concepts. Both kinds are defined as a collection of its

attributes. The first kind constitutes standard concepts which have standard names in the natural

language vocabularies. For example the concept which is called “car” is expressed by its

collection attributes as { car, wheel, engine, transportation, etc….}, where the name “car” is also

an attribute. These are also called “named entities” in natural language processing domain.

The second kind includes complex concepts (composite meanings) which are contextual and

transitory in nature. This kind of concept is only defined for the given context that arose during

the discourse and the concepts of this kind are used to communicate a specific idea. These

contextual concepts do not have standard names (or identifiers) in vocabularies and only exist for

conveying an idea in the given context. This kind of concepts is expressed by a collection of the

attributes that define the context. For example, in Fig. 2.4 and Fig. 3.3, the concept conveyed by

the natural language sentence is the entire idea or story that is being conveyed.

3.4.3 Role of composition templates and ontology artifacts

A key question is how does one decide what attributes to use to define a contextual concept. For

some cases, it is possible to find common patterns in some of these contextual complex concepts.

For example a concept of gene, as in bioscience, can be described by its name, by function,

which is protein encoding, and also by its variant names (allele names). This choice of attributes,

i.e., name, function (encoded protein), etc., is based on a fundamental knowledge model in

bioscience (biochemistry) domain. In bioscience domain we recognize a gene in terms functions.

Therefore, here we represent the specific gene “PTPN22” as a collection of its attributes as

follows: {PTPN22, LyP, single nucleotide polymorphism, 1858T, 1858C,…….}, where LyP is

the protein that is encoded by this gene PTPN22 and this gene demonstrates the “single

86

nucleotide polymorphism” phenomenon and have polymorphic forms 1858T, 1858C, etc. This

pattern to describe a gene is actually a composition template, which can be used to describe

multiple other genes as well. This template is derived from a standard knowledge item from

bioscience knowledge domain, which tells that a gene is involved with encoding of a specific

protein and it can have multiple alleles. These knowledge artifacts can be formally structured as

ontology artifacts and made available on demand to help formation of compositions whenever

possible. Next we show how this notion may help to generate the concept tree structure for a

given text document.

3.4.4 Concept tree structure for a given text

To explain the concept tree and its generation process we have considered a bioscience

publication as a document object in Fig. 3.4 [13]. For such documents, the abstract of the

publication can be used as the text description of the document. The advantage of using a readily

available abstract is that meanings related information (the central idea) is available in the

abstract in more concentrated form instead of being dispersed through the entire document text.

Alternatively the entire document could be considered as the description. In this example, the

abstract gives a fair idea about the meaning of the document. Even an abstract may be

automatically generated using techniques mentioned in section 2.8.5, Chapter II and then used.

Fig. 3.4 presents the concept tree representation of this document. In the concept tree figure,

each complex concept is defined by collection of elementary concepts. These elementary

concepts are considered as the attributes of the complex concept, therefore taken together they

denote the complex concept. The composed concepts are underlined and the standard concepts

(called “basic concepts”) are shown in bold as the leaves. Basic concepts have been defined as

controlled terms in domain ontologies and lexicons like Gene Ontology [133], Disease ontology

87

[134], etc. Basic concepts are denoted by the corresponding terms and their ASCII character

strings represent these terms inside the computer memory.

Fig. 3.4 Generation of concept tree from text

Here the given text is a publication which is a narrative about the gene PTPN22 whose

malfunction causes diabetes and other autoimmune diseases. Therefore the publication is

expressed as a contextual concept shown at the top of the tree. This concept is composed of two

child concepts: the resulting disease “Type 1 diabetes mellitus” and the gene “PTPN22”. Each of

Generation of Concept Tree from given text

Textual representation of the description

(Abstract of the publication)

Concept tree representation of the description

Single
nucleotide

polymorphism

Other attributes

Specific concept in the Publication

1858C
1858T

Type 1 diabetes
mellitus

caused disease

PTPN22

has name

LyP

negative regulation of T
cell activation Csk

Binds
with

LyP

has name has function

Involved Gene

has function
allele

allele

Composition Templates used

Disease

Concept in Publication

Gene

Gene

Protein Gene
Name

Other

attributes

Protein

Name Function Function

Step I

“We report that a single-nucleotide polymorphism (SNP) in the gene (PTPN22) encoding the lymphoid
protein tyrosine phosphatase (LYP), a suppressor of T-cell activation, is associated with type 1 diabetes
mellitus (T1D). The variants encoded by the two alleles, 1858C and 1858T, differ in a crucial amino acid
residue involved in association of LYP with the negative regulatory kinase Csk. Unlike the variant encoded
by the more common allele 1858C, the variant associated with T1D does not bind Csk” [135].

88

these child concepts are further defined by collection of elementary concepts. Thus the next two

levels of the tree describe the concepts that represent the gene and its function. The concept of

the “Lyp” protein is defined by multiple attributes: by its name “LyP”; by its “binds with”

relationship with another gene product “Csk” and by its function “negative regulation of T cell

activation”. Thus the “Lyp” concept is represented by a collection of all these elementary

concepts. The rationale behind this representation is explained in the next section.

3.4.5 Tree construction rules

The specific rules of constructing this tree will depend on the domain knowledge models. These

rules can be codified as composition templates which are to be used to represent concepts as and

when required. Here three composition templates were used. The first one was the composition

of disease name and implicated gene which served as the template to describe the publication.

The second one was a composition of gene name, protein name, and other gene attributes

(variations), which was used to represent the gene “PTPN22”. The third template was a

composition of protein name and functions, which was used to represent the protein “Lyp”.

These standard templates can be put in a library to be used during construction of the concept

tree. Standard templates will enable use of common set of rules (domain knowledge) to construct

concept trees and ensure proper meaning representation and similarity comparison. This will

ensure that similar concepts are represented by similar concept tree representations (descriptors).

This will enable proper similarity comparison between meanings.

The keywords or a phrases used at the leaves are selected from a controlled vocabulary to

represent the meaning of the text for indexing purpose. When sufficient controlled vocabulary is

available for a given domain, this technique can be applied to generate concept trees from text.

The actual nature of relationships between concepts is ignored. However they are shown in the

89

figure for the purpose of illustration. Inclusion of all relevant attributes of a context allows for

disambiguation of a meaning without needing additional information, therefore satisfies

requirement (D).

3.4.6 Incorporating subject category information

3.4.6.1 Motivation

Each index node specializes in storing one or more topic areas. The specialization assignment is

made by choosing a model document/object and assigning its descriptor as the index node’s

specialization descriptor. Here the idea is that all objects which are similar to this model object

should be indexed by this index node. Therefore we have to ensure that descriptors of all similar

objects should give high similarity value when compared against the descriptor of the model

object.

The concept tree shown in Fig. 3.4 only includes information about the specific subject matter

described in the text. If this tree is used as the object descriptor, then there is no way that this

document can be found similar to other documents from bioscience domain, and thus can not be

assigned to a index server that specializes in storing bioscience publications. Therefore the

descriptor needs to incorporate additional information so that it can be found similar to the

model document from same domain (i.e. molecular biology or biochemistry, in this example).

3.4.6.2 Suggested method

Here we will show hot to get a concept tree that defines the specific context for the given text

along with the concepts that categorize the given publication. A collection of the concept tree for

the specific context and all the category topics can be considered as a high level concept tree

itself. This concept tree is shown in Fig. 3.5. In this simple example, we used two subject

90

categories: “Molecular biology” and “Diseases” from Dewey decimal classification [136] (we

choose this classification system in this example for sake convenience, some other taxonomy

could have been also used). In real application this top level collection can include multiple

subject categorization concepts to include all facets of the document.

Fig. 3.5 Concept tree representation of the entire publication

3.4.7 Tree generation process

3.4.7.1 Involved artifacts

Generation of trees from a given text involves four kinds of artifacts, as follows:

1) Domain vocabularies or lexicons, based on which the next three artifacts are

generated.

2) Standard concepts or named entities which are identified from the given text.

3) Domain ontologies, from which composition templates are generated.

Molecular
biology

Csk

has name

Single
nucleotide

polymorphism

Other attributes

Specific concept in the Publication

1858C

1858T

Type 1
diabetes
mellitus

caused disease

PTPN22

has name

LyP

negative
regulation of T
cell activation

Binds
with

LyP

has function

Involved Gene

 has function

allele

allele

Medical sciences

Concept that describes the entire Publication

91

4) Composition templates that can guide formation of contextual concepts.

Ontologies and lexicons may be available as multiple separate ontologies and lexicons or in

partially integrated form.

3.4.7.2 Required processes

The tree generation involves a two phase process. In the first phase the artifacts that are needed

to support the tree generation process is built. In this phase, the lexicon, ontological artifacts and

templates are created and made available for use in the second phase. The second phase involves

construction of a specific concept trees for a given text document or object. The first phase is

common for all instances of concept tree generation (i.e., phase 2), whereas the second phase is

specific to a concept tree that is being generated from a given text. A method is suggested below

to carry out both these processes.

3.4.7.3 Phase 1: Generation of lexicon, ontology artifacts and templates

Lexicons can be manually created or can be semi-automatically generated under human

supervision based on terms harvested from a corpus of texts from the given domains that are

necessary. Similarly, ontology artifacts may be manually, partially or fully automatically created

with or without human intervention. Technologies for creation of lexicons and ontologies are

available and some have been mentioned in Chapter II, section 2.8.3 and 2.8.4.

Generation of templates involves identification of association patterns between standard

concepts (named entities) that are common across multiple documents. These patterns may be

available from the available ontologies that have been generated so far or may be manually

created by human users. The creation of association patterns are part of the ontology creation

process itself. For example, the strong association between genes and diseases may be observed

92

in multiple scientific publications and may be incorporated as an ontology artifact. In this case

each publication will have a specific association between a specific gene and a specific disease.

Based on this association one can decide to formulate a template {gene name, disease name} to

define a context that arises in a given publication.

3.4.7.4 Phase 2: Generation of concept tree for a given text

The steps for a suggested concept tree generation method is given below-

Step 1. Identify the broad topics of the given text by available topic identification techniques

as mentioned in section 2.8.1, of Chapter II.

Step 2. In case abstract of the text is unavailable, create machine generated abstracts using text

summarization techniques as mentioned in section 2.8.5, of Chapter II.

Step 3. Consider a moving window that puts a portion of the abstract text in the current scope.

Identify all the named entities in the given text window. Techniques to identify named

entities are available and have been discussed in section 2.8.3, of Chapter II.

Step 4. Check the available ontology to see whether any association exists between the named

entities. Here an application of multiple techniques like: UNL deconversion, discourse

analysis, machine learning techniques, etc., as mentioned in section 2.8, will be

required. One way to achieve this is to parse the sentences using the UNL deconverters

[95] and/or discourse analyzers [91]-[94] to generate their UNL form and/or discourse

structures. Then from the UNL form and/or discourse structures, one can identify

which named entity is associated with which other ones.

Once an association network between entities is identified, then we need to decide

which single entities will be the primary ones, and which ones will be considered as its

93

attributes. This can be based on the fact that the primary entities are generally the

focus of the discussion and will be referred more frequently in other windows

compared to other entities found in the current window. There can be other ways to

identify the primary entities. Once the primary entities have been identified we can

construct a small tree to represent the primary entity in terms of other entities. There

may be more than one primary entity, which can not be associated based on available

ontological artifacts. For each primary entity there should be a concept tree which may

or may not have leaves.

Step 5. Keep on moving the window to identify more entities, construct more trees or grow

the existing ones by attaching branches and leaves.

Step 6. Finally consider a collection of all disjointed trees as the top level collection that

represents the contextual concept conveyed by the text document.

In the search process, as illustrated in Fig. 3.2, the ontology and templates are specific to the

search engine query processor and indexer. Using the available ontology and knowledge base

(construction templates, etc.) the search query processor and indexer system will make the best

effort to iron out variations and ambiguities that might be present in user provided terms and

construct the right kind of concept tree from the given text. For example, all synonyms will be

replaced by similar trees, thereby addressing the synonymy problem. The named entity

recognition techniques as mentioned in section 2.8.3, Chapter II, provides such capabilities.

3.4.8 Practical considerations

There is a limit how many basis vectors can be compared inexpensively, so the number of basis

vectors should be limited by considering limited number of attributes in the lower level

94

compositions and limiting the number of hierarchical levels in a concept tree. Only those

attribute which are most important should be considered. When abstract is considered for

generation of the concept tree, then only the most important named entities and their

relationships are considered. This keeps the number of leaves in the concept tree under check.

3.4.9 Evidence that support the rationale behind the tree construct

Neuro-scientific findings reported in [23] indicate that human brain uses similar neurological

processes to comprehend meaning from text and visual imagery. Other evidences [31],[32]

suggested that semantic processing takes place at a common site irrespective of the kind of

language that is being processed. This corroborates well with the argument that semantic

processing and composition has its own set of rules which are common across different

languages including visual imagery.

On the other hand, meaning representation techniques like Universal Networking Language [95]

gives a confidence that using a small formal set of linguistic and meaning representation rules, it

is possible to represent meanings of multiple languages. The concept tree is based on even more

minimal set of semantic composition rules and these same set of rules are also the basis behind

all these languages [23], [24]. Therefore concept tree model is also likely to be compatible with

all these languages and meanings from visual imagery. Hence we expect that concept tree

representation will be able to express meanings of natural language texts and other sources (e.g.

images). Therefore concept tree representation is likely to satisfy requirement (C). As concept

tree model is a good candidate for meaning representation, therefore it is worthwhile to explore

and develop techniques for fast comparison of concept trees.

95

3.5 Tensor representation of a concept tree

3.5.1 Motivation

To compare two composite meanings we have to compare the concept trees that represent these

meanings. Traditional tree comparison algorithms are elaborate and expensive [65], [66], [67],

hence a faster alternative is required. We propose to generate the tensor representation of a

concept tree then compare two tensors of two given concept trees by taking their dot (cosine)

products. To compute tensor dot products at high speeds, we have developed a computational

method and an associated hardware based processing architecture. Therefore to exploit this

technique we need to generate tensor representation of a concept tree.

3.5.2 Overview of the technique

In a concept tree, each composition is a set, and the entire concept tree is actually a nested set

(set of sets) having hierarchical structure (Fig. 3.6). Such a nested set or a tree structure can be

expressed as a tensor which is sum of scalar weighted polyadic products (polyads) [137] of the

basic basis vectors that represent the elements at the lowest/innermost levels of the nested set

(leaves of the tree). Fig. 3.6 illustrates this process of converting a concept tree of a document

(only publication title is shown) to its tensor representation. Only the tensor representation of the

shaded portion of the tree is shown for sake of simplicity. Any particular composition (or a set)

in the hierarchical structure is represented as a tensor, which is a function of all the elementary

meanings contained in the set. Here the elements (say A, B, C…) are considered as tensors

themselves, and their composition (or the set) is expressed as {A, B, C, ….}, where the curly

brackets “{…}” denote a certain algebraic function of: A, B, C,…. . This function can express

the set as a mix of conjunction and disjunction of the constituent elements. An algebra is

developed to formally represent all the required rules. This algebra, the explanation of the

96

delimiter vectors “” and “” and the generative method to produce the scalar coefficients and

the polyads, are presented below.

Fig. 3.6 Tensor representation of concept tree

Concept tree representation

Publication Title
“Role of PTPN22 in type 1 diabetes and other autoimmune diseases”

(Bottini, et al., Semin. Immunol. 18(4), 2006)

Concept in the Publication

PTPN22

Type 1
diabetes
mellitus

LyP Csk

caused disease Involved Gene

PTPN22

has name

LyP

encodes

Binds with
has name

Step I

C

A B

Portion of
concept tree

Step II

*Cs*Bs*As*ABs

CB*sCAsCAB*s

7654

321

Tensor representation of the partial tree
Basis vector terms

aA =”LyP”, bB =Csk”,

cC =”PTPN22”, baAB =”LyPCsk”,

cbCB =” CskPTPN22”, ……

97

3.6 Required algebra

3.6.1 Notations and significance

Here we use four quantities:

(1) basic basis vectors, denoted by smaller case alphabets with an arrow on the top (e.g. a);

(2) scalar coefficients, by smaller case alphabets (e.g. “si”);

(3) polyadic of basic basis vectors, as an sequence of basic basis vector notations (e.g. cba);

(4) tensors, by upper case alphabets (e.g. “A”).

Within computers, basis vectors are represented by character strings (keywords/phrases). These

represent elementary meanings/concepts (e.g. “Csk”, “negative regulation of T cell activation”)

or special purpose characters (“”, “”) having specific functions. Tensors represent composite

meaning (complex concept). Algebraically they are represented as sum of scalar weighted basis

vectors.

Polyadic combinations are represented as concatenated strings that represent individual basic

basis vectors. For example, ba is represented by a string “CskLyP” which means

conjunction of both basic basis vectors a (“Csk”) and b (“LyP”). By)hsh(a , we mean the hash

(e.g. FNV hash [138]) value of the character string that is represented by a basis vector a .

3.6.2 Definition of the vector space

A concept is expressed as a tensor [137] in an infinite dimensional space. This space is

represented by two kinds of basis vectors. One kind comprises of a set of basic basis vectors (e.g.

a), each of which corresponds to a unique basic concept (e.g. “Csk”, “LyP”, “negative

98

regulation of T cell activation”) in the domain lexicon. The other kind includes basis vectors

which are polyadic combinations represented in the form: cba , which represent conjunction of

concepts (e.g. “LyP” & “CsK” & “negative regulation of T cell activation” &…). This second

kind of basis vector is needed because elementary concepts can combine with each other to form

complex concepts which are entirely different from the elementary ones. The semantic similarity

between two concepts is given by the cosine product of their tensors representations. The basis

vectors and their polyads represent different concepts, hence we assert that all the dot product of

orthogonal basis vectors are zero. This rule can be expressed as:

0... bacbacbaababa .

3.6.3 Algebraic representation of composition and binder functions

We use polyadic product of tensors to represent the composition of the elementary tensors.

These polyadic tensor products [137] are distinct from tensor cross (sine) products or dot

(cosine) products. Polyadic products are denoted by ordered juxtaposition of tensors, for

example, AB denotes a dyadic tensor product, ABC denotes a triadic tensor and ABCD...

represents a polyadic of individual tensors: A, B, C, D, etc. In general, AB ≠ BA, i.e. the product

operation is not commutative. This definition can be expanded for a general case of n arguments

[139], [13].

A triadic tensor product ABC represents a conjunction composition where three elementary

tensors A, B and C are arranged in a specific order from left to right. However this tensor

product is not sufficient to represent a simple single level collection, because it does not satisfy

two important requirements:

1. The expression has to be commutative to avoid forced ordering of elements.

99

2. It has to represent both conjunction and disjunction composition at the same time.

Hence we need a different algebraic representation that can satisfy both these requirements to

represent a collection, which does not force ordering of elements. To achieve this purpose we

introduce two algebraic binders (functions): (1) [A, B,…] ; and (2) {A, B, …}, that bind two or

more tensors (concepts) together. For example, by using the binder function [A, B, C], three

tensors A, B and C, can be bound together to represent a certain composition of A, B, and C.

Using these two binder functions we synthesize an algebraic (tensor) representation that can

depict a concept tree in terms of its leaves. These binder functions represent compositions which

do not force ordering of arguments. This means that these binder functions are commutative with

respect to their arguments. This ensures that all possible isomorphic trees (e.g., Fig. 3.7 [139])

that convey the same meaning are expressed by a single tensor.

Fig. 3.7 Isomorphic concept trees which convey the same meaning

In the following sections, we define the aforementioned commutative algebraic binders

(functions).

3.6.4 Definition of […,… ,…] binder function

For one, two and three and n arguments we define the following rules [13]:

][aa (3.1)

Tree 1

E

C D
A B

Tree 2

B A

E

C D

Tree n

C

E

D
B A

100

)hsh()hsh(if

)hsh()hsh(if],[

abab

bababa

 (3.2)

)hsh()hsh()hsh(if

)hsh()hsh()hsh(if

)hsh()hsh()hsh(if],,[

bcabca

cabcab

cbacbacba

 (3.3)

.....] , ,.....[....] , ,[cbassscsbsas cbacba (3.4)

],[],[....],[],[....)](....),[(dbcbdacadcba
(3.5)

AA][(3.6)

kji

kjikcjbia

i
iic

i

iib
i

iia

cbasssCBA

csCbsBasA

,,
,,,

,,,

 ,.....],,.....[,....],,[then

....... , , , If

(3.6)

Proof for the commutative property, for the two argument case, is given below which can be

extended for n arguments. Based on equation (3.2), we can claim that [A, B] = [B, A], because

whatever the ordering of the arguments, the outcome only depends on the ranking of their hash

values. Which means the tensor representation does not depend on the argument ordering.

3.6.5 Definition of {…, …., …} binder function

For one, two and three argument cases, we define the followings:

][

}{ A
h

Ah
A

A

A (3.7)

101

][][],[

},{
BAAB

BAAB

hhh

BhAhBAh
BA

 (3.8)

])[][][],[],[],[],,[(

},,{
CBAACBCABABC

CBAACBCABABC

hhhhhhh

ChBhAhCAhCBhBAhCBAh
CBA

(3.9)

This binder encompasses all possible combinations and permutations of arguments. The resultant

tensor is also normalized and used as an elementary tensor to be incorporated for next higher

level of composition. Each instance of this binder has a corresponding set of co-occurring

coefficients “H”, having real valued scalar elements (e.g. H = set { hABC, hAB, hBC, hAC, hA, hB,

hC}), each of which indicates the importance of the corresponding polyad to represent the

meaning of the composed concept. For example, when only hABC = 1 and all other scalars hAB =

hBC ….= hC = 0, then the composed concept is the one which is given by a strict conjunction of

A,B and C. Whereas the set hA = hB = hC = 1 and hABC = hAB = hBC = hAC = 0 represents

disjunction composition. A mix of all these extremes is possible by suitable choice of values for

the co-occurring coefficients. This enables a controlled mix of conjunction and disjunction

composition to suit specific situations. Rules that guide assignment of these values can be

codified and made accessible along with composition templates.

Proof for the commutative property of this binder function is given below. Suppose a function

“F” is a linear composition (linear functional) of two other functions “F1” and “F2”, such that

F = λ1*F1 + λ2*F2 , where λ1 and λ2 are real numbers.

If both functions F1 and F2 are commutative, then their linear functional F is also commutative.

The rationale of this property is explained below for two arguments, but it can be extended for n

arguments.

102

If F1(A, B) = F1(B, A) and F2(A, B) = F2(B, A)

Therefore, F(A, B) = λ1*F1(A, B) + λ2*F2(A, B) = λ1*F1(B, A) + λ2*F2(B, A)

Here F1 and F2 are the […,… ,…] binder functions and F is the {…, …., …} binder function.

Therefore as the {…, …., …} binder is a linear functional of commutative […,… ,…] binders,

therefore the {…, …., …} binder (i.e., “F”) is also commutative. The commutative property of

the {…, …., …} binder makes the composition tensor insensitive to ordering of the leaves.

3.6.6 An example to illustrate tensor generation

Here we explain how the tensor expression of the {…, …., …} binder also supports generative

composition. In Fig. 3.8, all the intermediate composed concepts for the given concept tree are

represented by the expressions shown at corresponding nodes in terms of the { …, …,…} binder.

On expanding these expressions we get the tensor. Each of the two compositions: {A,B} and

{{A,B},C} in the example tree, has two associated co-occurrence sets: ABH, (AB)CH, as shown in

Fig. 3.8.

Fig. 3.8 Concept tree tensor expression

Tree representation Co-occurrence set

ABH = set { ABhAB, ABhA, ABhB }

(AB)CH = set {(AB)Ch(AB)C,(AB)Ch(AB),
(AB)ChC}

B

{{A,B}, C}

{A,B}
C

A

103

The expression {{A,B}, C} which represents the tree in Fig. 3.8, is expanded bottom up as an

example [13], using equation (3.1) to (3.9). Only a few terms are shown for a specific case when

)chsh()bahsh(),bhsh()ahsh(.

B
AB

A
AB

AB
AB

B
AB

A
AB

AB
AB

hhh

bhahbah
BAcCbBaA

},{ and ,,,

c
hhh

h

b
hhh

h

hhh

h

ba
hhh

h

hhh

h

ca
hhh

h

hhh

h

cba
hhh

h

hhh

h

hhh

ChBAhCBAh
CBA

C
CAB

AB
CAB

CAB
CAB

C
CAB

B
AB

A
AB

AB
AB

B
AB

C
CAB

AB
CAB

CAB
CAB

AB
CAB

B
AB

A
AB

AB
AB

AB
AB

C
CAB

AB
CAB

CAB
CAB

AB
CAB

B
AB

A
AB

AB
AB

A
AB

C
CAB

AB
CAB

CAB
CAB

CAB
CAB

B
AB

A
AB

AB
AB

AB
AB

C
CAB

AB
CAB

CAB
CAB

CAB
CAB

C
CAB

AB
CAB

CAB
CAB

C
CAB

AB
CAB

CAB
CAB

)()(
)(

)(

)(

)()(
)(

)(

)(

)()(
)(

)(

)(

)()(
)(

)(

)(
)(

)()(
)(

)(

)(
)(

)()(
)(

)(

)()(
)(

)(

 *

.......

)(*

........

)(*

) (*

},{]},,[{
}},,{{

104

This method presented above illustrates that is possible to use the {…, …., …} binder function

recursively for two levels of composition. If this recursion is defined for two levels, then it can

be logically established (proof by induction) that it is also defined, in general, for n multiple

levels. Therefore this {…, …., …} binder function can be used to enable recursive (generative)

composition.

3.6.7 Algorithm to generate tensor expression for a given concept tree

Here we suggest an algorithmic method to generate tensor expression for a given concept tree.

Here the abstract concept tree is represented as a tree data structure in the computer memory.

The tensor expression is represented in the memory by a suitable data structure, which maintains

the information about the sum and product relationship between the individual terms and scalar

coefficient values. The proposed algorithm uses this tree data structure as the input and generates

the tensor data structure as the output.

In this method the algebraic representations are generated for each nodes, starting from leaves

from bottom of the tree and progressed up to the top most root node. The steps of this algorithm

are as follows:

Step 1. Iterate the concept tree by depth-first basis.

Step 2. If the current node is a leaf, then do nothing.

Step 3. If the current node is not a leaf then consider all the children nodes, take the

basis vector terms of the children nodes that constitutes their tensor

representations, then using equation (3.1) to (3.9) construct the terms of the

tensor representation for the current node. Store this tensor representation at

105

the current node. This tensor represents the composition of current node of the

concept tree.

Step 4. Iterate to the next location of the concept tree (go to step 2).

Step 5. At the completion of depth-first iteration, pick up the tensor representation of the

entire tree from the top most root node.

3.6.8 Rationale for using delimiter characters

The ordering and combination of the leaf tensors and the delimiter characters “” and “” in the

polyads retains the information about the tree structure. For example in Fig. 3.9, the two trees

have similar leaves but different compositions. The arrangement between the leaves and the

delimiter vectors distinguishes the two tensors that represent the respective trees. This is because

for the example in Fig. 3.9, the tensor dot product value (which is < 1), is smaller than the vector

dot product value (which is = 1). Therefore the tensor based comparison can recognize the two

tensors (and the trees) as being different, whereas the vector based comparison perceives the

vectors to be similar.

106

Fig. 3.9 Role of delimiter vectors in distinguishing compositions

3.7 Method to incorporate hypernyms

3.7.1 Motivation

In Fig. 3.5, “Type 1 diabetes mellitus” (hyponym) is a specific instance of “Auto immune

disease” (hypernym). Similarly the subject category information items “Bioscience” and

“Medical sciences” have common taxonomic ancestors, i.e. hypernyms, according to the Dewey

classification system [136], which we adopted for the sake of this example. We need a method to

incorporate these hypernyms or taxonomic ancestors so that when a user searches for with a

query concept tree that has the taxonomic ancestors, the query should be somewhat similar to the

AsCsBsBCsACsABsABCs
7654321

{{A,B}, C}

{A,B} C

A B

{{B, C}, A}

{B, C} A

B C

≡

≡

CsBsAsABsCBsCAsCABs
7654321

Equivalent tensor representation Tree representation

Comparison tensor representations

Comparison of vector representations

Tensor dot product = 1
577665
 ssssss

CsBsAs
CBA

CsBsAs
CBA

Vector dot product = 1
CCBBAA

ssssss

Leaf terms Vector representation

A, B, C

B, C, A

107

given document’s descriptor. This notion is best explained by an example, which is presented

below.

3.7.2 Suggested method

Any leaf term represented by basis vector c , should be replaced by a tensor that represents all

the taxonomic ancestors of this term that corresponds to this basis vector. This is best explained

by an example. Fig. 3.10 shows a portion of the taxonomy of the basic concept “Type 1

diabetes”.

Fig. 3.10 Taxonomic ancestors of a given term

Here the term “Type 1 diabetes mellitus” corresponds to the basis vector c . All the taxonomic

ancestors of this terms corresponds to the basis vectors: 1c , 2c , 3c , and so on. Here

1c corresponds to “Diabetes”, 2c corresponds to “Auto immune disease”, etc.

Suppose a portion of the original tensor expression is dcbaskjis abcdijk
, then c in

this expression is replaced by)....(2211 nn cycycycy . Therefore the expanded tensor is now

given as - 2211 dcbaysdcbaysdcbaysdcbayskjis nnabcdabcdabcdabcdijk
, where yi

are weighting parameters, such that y > yi > yi+1 and the sum of their squares is one. This choice

is a

is a

is a

Auto immune
disease

Diabetes

Type 1 diabetes
mellitus c

1c

2c

Corresponding basis
vectors

108

of weights ensures that when both tensors have the same term c , then the similarity value is

maximum. If the term c is not the common term, but 1c , 2c , 3c , etc., are common, then the

similarity value is smaller than the previous case, but larger than the case when 1c is not

common but 2c , 3c , etc., are common, and so on. This satisfies the subsumption related

requirement (D).

3.8 Additional applications of the tensor model

3.8.1 Possible applications

In addition of using the meaning composition framework to represent composite meanings,

several other applications of the tensor models are also possible. The proposed tensor framework

can be used to bolster the traditional term vector models and improve its semantic performance.

In this case we do not use a large concept tree and its large tensor to represent the entire object as

explained earlier. Rather, we use small tensors to selectively replace some of the basis vectors in

a term vector model (where the leaves may be text terms or from controlled vocabulary). This

can improve the search performance of information retrieval systems by improving its power to

discern composite meanings. Some of these are discussed below:

1. Define a term by its attributes: Compositions having form {item, attributes} can be used

instead of only item to define the term. E.g. use the composition {“LyP”, “Csk”} to

denote the function of “LyP” in terms of relationship with “Csk” instead of only “LyP”.

The curly bracket notation “{ , , …}” was explained earlier.

2. Define the specific usage context for a term: Composition template to be used is in the

form: {item, context attributes}. E.g., use the composition {“diabetes”, “PTPN22”} to

denote the cause aspect of the disease instead of only “diabetes”.

109

3. Aid term disambiguation: E.g., instead of using the single term “mouse”, use the

compositions: {“mouse”, “animal”} or {“mouse”, “computer device”}. This composition

{“mouse”, “animal”} will clearly denote that in the given context we mean the rodent not

the computer device. This addresses the polysemy problem (ambiguity in meaning).

3.8.2 Methods to materialize term disambiguation

Here we explain how one of the applications presented above (e.g. point 3 as above) can be

implemented using existing technologies. This scheme, if used, can avoid the problem illustrated

in Table 1.2 in Chapter I. This scheme illustrates the process of generating tensor representations

from natural texts. The steps to implement this scheme are as follows:

Step 1. Generate generic tree templates that can express terms as presented in point 3 above.

Use these templates to generate concept trees for various named entities (e.g. animal

mouse and/or computer device mouse). The simplest template with a single attribute

will have the form: { item name, attribute }. Maintain a library of trees for named

entities that require disambiguation.

Step 2. Process a given text object to recognize the various named entities [72] using state-

of-art named entity recognition (NER) techniques.

Step 3. Convert the concept trees to respective algebraic forms and replace the entity terms

(e.g. “mouse”) by their corresponding tensor representations, then insert these in the

meaning vector for that document (or text fragment under consideration). This

process is to be done during indexing when the TF-IDF vectors [9] are generated.

This process will be carried out at the query processor to generate the query vector,

as shown in Fig. 3.1.

110

Step 4. Use the meaning vector which is now retrofitted with the tensors, for indexing or

searching purpose.

An alternate method can be also adopted, where small concept trees can be embedded in the

XML or newer version of HTML documents to disambiguate certain named entities. Using step

1 and 2, these concept trees can be generated, and then they can be embedded in the document

itself using XML based microdata [62], microformat [63], and newer HTML standard [64], as

suitable. These steps, i.e. step 1 & 2 as presented above, can be carried by the object owner

during generation of the document. Thus this can obviate step 1 & 2 during the searching or

indexing operation (making it faster) because, in this case the concept tree structures will be

readily available from the document itself.

3.9 Integrating tensor, latent semantic indexing and term vector models

3.9.1 Motivation

No one single meaning representation method alone will be sufficient. The proposed tensor

model has certain strengths that can complement the existing term vector or latent semantic

indexing (LSI) models, when used along with them. Hence we suggest that the tensor model

should be used in conjunction with existing vector models like LSI and term vector models to

complement them. This is because LSI and term vector models have following limitations.

The term vector model [9] can not address the synonymy and polysemy problems [8], [50].

Different flavors of LSI models can address some of these limitations, however a LSI model,

may disregard an important meaning bearing term if documents bearing that term are not

incorporated in the training corpus. This will lead to wrong routing and object placement

decisions in our proposed distributed index system. In fact, it has been argued [8] that it is still

111

inconclusive which one – the term vector model or the LSI model, has better performance.

Therefore the traditional term vector model may still have a role to play because it does not have

this limitation of the LSI model.

Both term vector and LSI models suffer from the “bag of words” limitations [11], hence, these

vector models fail to discriminate meaning of texts which have different meanings but have

similar set of keywords. Our proposed tensor model addresses this limitation, however the tensor

representation can become very large and un-wieldy if used indiscriminately (refer discussion in

earlier section 3.4.8). It appears that a better choice is to use a weighted or rule based mix of

multiple models. The tensor model should preferably be used to represent the overall meaning of

the object, whereas the LSI and term vector models can be based on the terms found in the text

object. Even though other models are possible, here we limit ourselves to only vector models as

they are established ones.

The method to compose a single similarity values from these three models can be derived or

synthesized. However this will require data from large scale user based experimental studies.

Such investigation is outside the scope of this dissertation. Here, we will only assume that there

are three separate approaches, i.e. term vector, LSI and tensor, to compute the similarity and

once a similarity value composition method has been decided, then the three values computed by

these approaches can be composed together to compute a single similarity value.

3.9.2 Design of the integrated semantic descriptor data structure

To enable use of all the three models together as mentioned above, we propose that the semantic

data structure should have three components. The first component, called latent semantic

component, is a limited dimension (<1000) latent semantic vector generated according to the

112

latent semantic indexing technique [8]. Generally this latent semantic vector is not a sparse

vector. Whereas, the term vector and tensor component, that are generated according to the term

vector [9] and the proposed tensor based techniques. These two components are similar in

structure and are sparse vectors.

3.10 Criticality of execution time of tensor comparison

When two descriptors need to be compared, then their three components (LSI vector, term vector

& tensor) are separately compared with their respective counter parts to generate three separate

similarity values. We shall prefer to execute the similarity computation of all the three

components in parallel and the longest execution time of the three will determine the similarity

comparison execution time. In this scheme, the computation of dot product of latent semantic

vectors can be carried in shortest time. This is because the number of basis vectors is very

limited (< 1000), and the vector being non-sparse one, there is no need to search for and match

the non-zero basis vectors. We can conceive a bank of 1000 fixed point multipliers, which can

compute all the multiplication of 1000 coefficient pairs concurrently, followed by a 1000 input

fixed point adder. Multipliers, having a latency of 5 clock cycles, and the required adders, having

latency of 1 cycle, are available in the libraries of Electronic Design Automation tools. It is

possible to integrate 1000 multipliers because each multiplier has small foot thermal and silicon

area foot-print. The entire dot product (mult-add) computation can be completed in around 5+1 =

6 clock cycles.

On the other hand dot product of the tensor and the term vectors takes much more clock cycles

than that. This means that the tensor or term vector dot product computation will determine the

execution time of the three component descriptor comparison process. Therefore this dot product

computation of these sparse vectors is the key problem here. Thus henceforth, we will only

113

discuss this sparse vector dot product computation problem and this problem is the focus of the

next chapter.

3.11 Summary

Systematic organization of the index entries in an index system can save number of servers

necessary to build the system. This kind of index organization and operation can be facilitated by

a network appliance called semantic routers which forward search queries and messages to index

servers based on meanings of the messages. These routers need to compare meanings of

messages and documents stored in the index system. To support such meaning comparisons we

proposed a theoretical framework including a formal algebra and a design of a meaning

representation and comparison technique. This design supports generative meaning composition

and thus can represent and compare composite meanings. The computations needed in this

comparison technique are simple and can be completed at high speed, if carried out on

accelerator hardware. We will demonstrate that aspect in the next chapter.

114

CHAPTER IV

MEANING COMPARATOR: ARCHITECTURE

To materialize a semantic router which can route messages based on their meanings, we needed

a method to represent composite meanings. A composite meaning is represented as a tensor in an

infinite dimensional vector space. The similarity between two composite meanings is computed

as the dot (cosine) product of the two tensors which represent these meanings. This chapter

explains: the challenges in carrying out fast dot product computations at high speed, the solution

approach and a high level information processing architecture for dot product computing

processor and additional hardware. This chapter also presents several high level architectural

alternatives for the dot product processor hardware and the associated design tradeoffs.

4.1 Equivalence between tensor and vector for comparison purpose

Once the basis vector terms of a tensor, are concatenated together they still remain as character

strings, though they will now have larger lengths. These strings are indistinguishable from the

basis vector term string of the term vector model, as presented in section 2.5.3 of Chapter II.

Therefore the basis vector terms can be treated the same way as the ones from basic term vector

model. In addition, the dot product of tensor is computed in same manner as the vector dot

product computation as explained earlier. Therefore a dot product computation solution that is

applicable for the tensor model is also good for the term vector model. So vector and tensors are

indistinguishable for the purpose of comparison. From mathematical viewpoint a tensor is also a

general form vector. Therefore, henceforth we will treat the infinite dimension space tensor and

vector equally and sometimes the term “vector” or “meaning vector” will be used

interchangeably with the term “tensor”. However the term “basis vectors” should not be

115

confused with the term “vector”, because by “basis vectors” we always mean the set of

orthonormal basis vectors for a given space in which a vector or tensor is defined.

4.2 The problem in dot product: Quick identification of common basis vectors

A problem arises in dot product computation when we assume an infinite dimensional vector

space to represent the tensors. This infinite dimensionality of the space is required to enable

tensor representation of composite meanings as proposed in last chapter. As representation of

composite meaning has a very important role in semantic searching, so tackling efficient dot

product computation of finite sized vectors/tensors, that has finite number of basis vectors with

non-zero weights in an infinite dimensional space, is needed. This problem is also present in the

term vector models. This is because there can be infinite number of terms that are possible,

hence the space has to have infinite dimensions.

The dot product is computed by first identifying the basis vectors that are common to both

tensors, then multiplying the coefficients of these basis vectors from their respective tensors (as

explained in Fig. 2.6) and summing up all the products. Here the problem is to quickly match

and identify the common basis vectors which are represented in the memory, as ASCII character

strings of the corresponding terms.

To match and pair the basis vectors, it is necessary to consider each basis vector from one of the

meaning vectors, and then search for its presence in the second meaning vector. Such searching

is not necessary in case of small finite dimensional vector models like LSI [8]. This is because,

both coefficients from the two meaning vectors can be multiplied irrespective of whether one (or

both) of the coefficients are zero or not. However multiplication operation becomes superfluous

when a coefficient is zero. Such superfluous operations can be carried out (without eliminating

116

them), when their numbers are limited as in case of small finite dimensional VMs. However for

infinite (or large) dimension VMs, it is necessary to eliminate such superfluous operations as

their occurrences could be infinitely (or extremely) large and will be computationally very

expensive. This elimination of unnecessary computations is done by identifying the matching

basis vectors having non-zero coefficients, which are only worth multiplying. This requires the

search operation to identify the common basis vectors, as explained above.

If the number of basis vectors in the two meaning vectors (having non zero weights) are denoted

as n1 & n2, then when a sequential processors is used, this search task has a time complexity of

O(n1.log n2) or O(n1.n2) depending on whether a binary or linear search is used. However we can

do this search using a Bloom Filter based algorithm, which has smaller time complexity, only

~O(k), where k <20, or O(1) depending on the Bloom Filter design (details presented in section

4.5).

4.3 Hardware accelerators for dot product computation

If we can address the aforementioned “common basis vector identification” problem using a

special technique then we can significantly speed-up this dot product computation. This

technique will be embodied in a special purpose hardware co-processor. This co-processor can

be retrofitted in existing server architectures by placing it on the PCI-Express or FSB bus. The

proposed dissertation will present the information processing approach, hardware centric

algorithms and high level architecture for such co-processor.

To implement the co-processor, we propose circuit level parallelization approach as opposed to

coarse grained thread level parallelization one. This circuit level parallelization approach will

provide several order of magnitude improvement in speed compared to the efficient software

117

based dot product computations, even if they are executed on a multiprocessor system. We shall

argue this point later in Chapter VII, with experimental data. We propose that this hardware

should be used in the semantic routers and also in the index servers. When used this hardware

can improve system throughput, diminish the need for load sharing by multiple servers and cut

down number of servers required in the infrastructure to reduce investments, power consumption

and operational costs in the data centers. This savings are in addition to the resource savings

mentioned in Chapter I.

To insert the SRN in a distributed search engine and enable operations of the dot product

processor hardware, we also need to make some changes in the query processor and index

generator sub-systems. We mentioned in section 3.3, Chapter III, that the query processor and

index generator sub-systems have to carry out an additional processing step called “step III”

(refer Fig. 3.2). This step III converts the two column coefficient table with basis vector terms

represented as character strings to another two column table format suitable for processing by the

dot product computation in the dot product hardware placed within the semantic routers in the

SRN and the index servers in the index server pools. This processing involves expensive hash

value generation computation, hence it is best carried out by a co-processor hardware for speed.

The co-processor hardware can be similarly retrofitted to the existing servers in the query

processor and index generator sub-systems, by placing it on their PCI-Express or FSB bus. This

arrangement can be viewed as if the dot product accelerator hardware has been split into two

separate hardware components, and one of the components is placed in the query processor or

index generator sub-system, while the other is placed in the semantic routers and index servers.

The rational for this separation is explained in section 4.5.3.

118

4.4 Application of Bloom Filters in identifying common basis vectors

The key problem in computing dot products is identifying the common basis vectors which are

present in both tensors. These common basis vectors can be identified very quickly by the

following technique. The basis vectors taken from each of the two tensors are used as elements

to form two separate sets. Then taking each element from the smaller set, we check whether it is

a member in the other set or not. If this membership test is positive, i.e. the element is also

member in the other set then that element (basis vector) is suspected to be a common basis

vector.

If this membership test is perfect, which means there would be no false positives (i.e. test

indicates membership even though the element is not a member) or no false negatives (i.e. the

element is a member but test indicates otherwise. If the test is perfect then the number of

suspected common basis vector would be also the authentic common ones. If the membership

test has some false positives but no false negatives, then the aforementioned common vector

identification method will yield a complete set of suspects, which includes all a complete set of

authentic common basis vectors. So from this suspects a complete set of authentic common basis

vectors can be filtered out. However this is not possible if the membership test gives false

negatives.

When Bloom Filter are used to implement these sets, as explained in section 2.12, it is possible

to carry out each membership tests inexpensively in O(1) or O(k) order of time depending on the

Bloom Filter (BF) design (as explained in next section). With an appropriately designed BF,

membership testing can have very small probability of false positives and absolutely no false

negatives. Therefore this scheme using BF is a workable one. In all these cases, the value of k is

small < 20. These techniques require n membership tests, where n is the number of elements in

119

the smaller set. These tests can be carried out in parallel using simple hardware circuits. Thus,

using this approach it is possible to identify the common basis vectors in O(k) or O(1) order time

(refer “Bloom Filter basics”, section 2.12).

Once the suspected common basis vectors are identified, they can be used as keys to retrieve

corresponding pairs of coefficient values from both the coefficient tables, which we propose to

implement in a content addressable memory (CAM). Once the coefficient values are retrieved

and paired, they can be multiplied and added. If the lookup fails then that means the suspect was

a false positive. With a well designed BF, the probability of false positives is small, hence this

scheme is workable and this reduces the search time.

4.5 Necessary data structure, algorithms and processing architecture

Here a method to compute dot product of two given tensor/vectors is explained. This

computation consists of two parts. In the first part, two tensors are encoded in form two semantic

descriptor data structures. This data structure is needed to enable faster dot product processing.

Section 4.5.1 explains how the data structure is generated from a given tensor/vector. In the

second part of the computation, two data structures of the two tensors are used to derive their dot

product. This is explained in section 4.5.2. For each part of this computational model, we

propose hardware centric algorithms and explain the parallelization strategy. Finally in section

4.5.4 we present how all these ideas will be consolidated in form of a processing architecture for

a meaning comparator. In the following sections, we denote the abstract algorithm as

“computation model”, the high level description of the hardware that carries out this computation

is called as “hardware description” and the data processing work flow that is carried out in the

hardware is termed as “architecture”.

120

4.5.1 Data structure generation

The data structure generation process for the proposed search system that was introduced earlier

in Fig. 3.2, in section 3.3, Chapter III, has been presented below in Fig. 4.1.

Fig. 4.1 Descriptor generation process

In this section we focus in step III and step IV of the process presented in the figure, where the

descriptor data structure is being generated from the tensor representation. Step III generates a

coefficient table having two columns, which is further processed to generate a Bloom Filter (BF)

based data structure having two components: (i) an expanded coefficient table having 3 columns;

and (ii) a Bloom Filter. Step III is carried out in the query processor and the index generator

(refer Fig. 3.2 in section 3.3 of Chapter III), whereas step IV is carried out in the hardware

comparator residing within the core of the semantic routers and index servers. Actually step IV is

considered as part of the comparison process. In the next few sections we explain the algorithms

and the computations in step III and IV followed by the rationale for a separate step III and IV

process.

4.5.1.1 Computational model and algorithm for step III

Each row of the coefficient table consists of two columns for the following two data fields:

User providing
description of the

intention or the object in
natural language text

Format of the
descriptor stored in

routing tables or
carried in messages

Descriptor generation steps

Concept Tree
representation of

the
intention/object

description

Tensor

representation

Text
description

of the
intention/

object

Coefficient table

Bloom Filter
based descriptor

data structure
(Expanded coeff.

table + BF)

Format of the
descriptor that are
being compared in
the router or index

nodes

Step I Step II Step III Step IV

121

(1) Vector id (e.g. id1 in Fig. 4.2); and

(2) 16 bit fixed point scalar coefficient of a basis vector (e.g. wBiB);

Fig. 4.2 Coefficient table generation

The generation of the coefficient table for the meaning vector/tensor is done in two steps (Fig.

4.2 [13], computation model). For each basis vector, the following two steps are carried out:

Step III-1: A 64 or 128 bit hash value of each basis vector term is generated. This hash

value is called vector id.

Step III-2: The vector id and the coefficient value are stored in the first and second column

in a row of the coefficient table.

4.5.1.2 Parallelization strategy and architecture for step III

For each basis vectors (or for each row in the coefficient table), steps III-1 and III-2 of the

computation model, as shown in Fig. 4.2, can be executed in parallel, as processing of each of

these basis vector terms (or rows) are independent. The parallel threads comprising of step III-1

The output: Coefficient table

wBiB = 0.2

Coefficients

wB1B

wBnB

Vector id

Id B1B

Id Bi

Id Bn

iid)receipt"hash(" 0.2, weight its and
,receipt"" rmvector tebasisaConsider
iw

Computation to generate the data structure

For each basis vector of tensor D1, do {
 Step III-1: Generate vector Id ;
 Step III-2: Insert vector Id, coefficient value in a coefficient table row ; };

Computational Model:

…..

wBA
A
Breceipt

Coeff.

wBA
A

sales manager

“receipt”

Basis vect.

“sales manager”

…..

The input: Vector/tensor

For each basis vector, implement circuit that {
 ith slice of Stage III: Computes hash values of basis vector term to generate vector Id;
 ith slice of memory interconnect: Loads vector Id in memory to pack it along with coefficient value; };

Hardware description:

122

and III-2 are short and simple computation, needing small amount of memory. This makes large

scale multi-processor based parallelization unsuitable for this computation. This is because the

multi-processor/core systems require significant amount of time to distribute and consolidate the

threads across large number of processor cores. In addition, general purpose processors takes

more time to compute simple arithmetic and logical operations compared to simple digital

circuits implementing the same. For example, addition operation takes 6 clock cycles on an Intel

Xeon processor, compared to 1 cycle on a hardware adder. For short computation threads, all

these overheads are significant compared to the thread execution time, therefore if used, then

circuit level parallelization will give a much higher order speedup compared to multiprocessor

based parallelization for this step III.

To improve throughput, generally, the practice is to deploy several general processors to

concurrently execute all the parallel threads. One coprocessor that computes hash values of all

the basis vector terms in parallel can do this task of several general purpose processors in the

same amount of time due to its higher order speedup compared to general purpose processor.

Thus one single coprocessor in a single server, can do the tasks of multiple general purpose

processors and can replace all of these general purpose processors and the servers that host them,

each of which consumes significant power. Thus, this coprocessor can save power by several

order times. Hence we prefer to use the circuit level parallelization approach. In addition, in

terms of power consumption, the circuit level parallelization is also better than the general

purpose processor. This is because a single co-processor using circuit level parallelization uses

less power than a general purpose processor. The circuit level parallelization approach to carry

out step III is described below.

123

A circuit is provisioned to execute each parallel thread and there are multiple such circuits. We

call each of this dedicated circuit as a “slice”. Therefore, each of these parallel processing

instances, which can be considered as a thread, is executed by each horizontal ith slice of stage

III, as shown in Fig. 4.2. There are r slices. For maximum parallelization we would like to use

maximum number of slices in these stages as necessary, so we choose r ≈ n, where n is the

maximum number of rows in a coefficient table (i.e. number of basis vectors) which is estimated

to be in order of 104 in worst case. This estimate of number of basis vectors is based on our

experience with tensors for real text documents [13]. In these cases, the number of basis vectors

was found to be few hundreds, which is much less than 104. As these circuits are simple and

small, so r can be chosen to be in order of 104 as well.

4.5.1.3 Time response analysis for step III

For each basis vectors, the execution time complexity of steps III-1 and III-2 is O(n) because n

hash values need to be computed and loaded on to the memory. As computation of each basis

vector is independent, so each of these can be computed in parallel using r (~ n) circuits within

O(n/r) time. For r ≈ n, this order of time is O(1). The actual execution time of a circuit carrying

out this computation would be:

u
n

T byte
exeStepIII (4.1)

Where nbyte = average number of bytes in each basis vector term and u = loop unroll factor used

to unroll loops in hash function that generate the vector id.

4.5.1.4 Computational model and algorithm for step IV

The proposed Bloom Filter based data structure for the descriptor has two components:

124

(1) An expanded coefficient table and

(2) A large m (~128K) bit long Bloom Filter (BF) using k (=7) hash functions (Fig. 4.3).

Fig. 4.3 Bloom Filter based data structure generation

Component 1: 3 col. Coefficient table

wBiB = 0.2

Coefficients

wB1B

wBnB

Set of BF bit indices

{ xBiB : 0 ≤ xBi B≤ m }

{ 0, 2,…j }

{…}

Vector id

Id B1B

Id Bi

Id Bn

Component 2: BF

BFBF hashings

FB1B (idBiB)= 0

FB2B (idBiB)= 2

FBk B (idBiB)= j

0

1

1

2

1 m

0
1

The input: 2 col. Coefficient table

For each vector id of D1, do {
 Step IV-1: Generate k hash values for the k BF indices;
 Step IV-2: Insert k hash values in the third column of the coefficient table row ; };

For each vector id of D2, do {
 Step IV-1: Generate k hash values for the k BF indices;
 Step IV-3: Using all the BF bit indices set the bits in the BF bit array; };

Computational Model:

For each vector id, implement circuit that {
 ith slice of Stage A: Generates k hash values for the k BF indices;
 ith slice of memory interconnect: Loads vector Id in CAM, k hash values in memory; };

For one vector/tensor (say D2), implement circuit that {
 ith slice of Stage B: Sets BF bits using all the BF bit indices in ith row of coeff. table; };

Hardware description:

Hash
Function 1

Hash
Function k

Vector id

BF
Index 1

BF
Index k

Slice i of Stage A

k hash values of idi:
{F1, F2…} used as addresses

Bit addressable
Memory

 Address bus

Set data bit

Slice i of Stage B

wBiB = 0.2

Coefficients

wB1B

wBnB

Vector id

Id B1B

Id Bi

Id Bn

The output: BF based data structure

125

The combination of the expanded coefficient table and the bloom filter represents the

vector/tensor that in turn represents the meaning of an object (text/non text document) or a

query. Each row of the expanded coefficient table consists of three columns for the following

three data fields:

(1) Vector id (e.g. id1 in Fig. 4.3);

(2) 16 bit fixed point scalar coefficient of a basis vector (e.g. wBiB); and

(3) Set of k BF indices, each of which have q bits, such that m = 2q (in Fig. 4.3 this is shown

as: {x1 : 0 ≤ xi ≤ m }).

The generation of the expanded coefficient table for one of the tensor is done in two steps (Fig.

4.3, computation model). Here, for each vector id in the two column coefficient table generated

in step III, the following two steps are carried out:

Step IV-1: A set of k BF indices is generated by further hashing each vector id by k hash

functions.

Step IV-2: The BF indices are stored in the third column of the coefficient table.

For the other tensor, that has to be loaded in the BF, another additional step is carried out. This is

as follows -

Step IV-3: The corresponding k bit locations are set in the BF.

Two processing stages, stage A and B, as denoted under “hardware description” in Fig. 4.3, carry

out these three computation steps (steps IV-1 & IV-3). Step IV-2 is carried out by the memory

interconnect and memory system. Step IV-1 of the computational model is materialized by the

stage A, and step IV-3 is embodied by stage B. Concrete realization of these two stages and the

notion of slices in the three stages are explained in the next section.

126

4.5.1.5 Parallelization strategy and architecture for step IV

For each basis vectors (or for each row in the coefficient table), steps IV-1 and IV-2 of the

computation in Fig. 4.3 can be executed parallel, as processing of each of these basis vector (or

rows) are independent. Therefore for the same reasons as mentioned in section 4.5.1.2, we prefer

to employ circuit level parallelization to speedup this computation. To execute each parallel

thread a circuit or “slice” is provisioned and there are multiple such slices. Each of these parallel

processing instances is executed by each horizontal ith slice of stage A, as shown in Fig. 4.3.

Similar is true for the ith slice of stage B. There are r slices in stage A and B. For maximum

parallelization we choose r ≈ n, where n is the maximum number of rows in a coefficient table

(i.e. number of basis vectors) which is estimated to be in order of 104 in worst case. So r can be

chosen to be in order of 104 as well. This is based on our experience [13].

In actual hardware, the BF bit array will be stored in the bit addressable memory and the

coefficient table will be stored in a content addressable memory (CAM). The need for CAM will

be explained in the following sections.

4.5.1.6 Time response analysis for step IV

For each basis vectors, the execution time complexity of stage A and B (steps IV-1, IV-2 and IV-

3) is O(k) because k hash values need to be computed and loaded on to the memory. For total n1

(< 104) basis vectors, the order of the entire data structure generation computation is O(n1·k). As

computation of each basis vector is independent, so each of these can be computed in parallel

using r (~ n1) circuits within O(n1·k/r) time. For r ≈ n1, this is O(k) with k < 20. If partitioned

Bloom Filter is used, then this execution time is in order of O(1). This was explained in the

“Bloom Filter basics” section 2.12, in Chapter II.

127

4.5.2 Data structure comparison

4.5.2.1 Computation model and algorithm for data structure comparison

Fig. 4.4 shows the 2nd part of the computation model and the description of the corresponding

hardware. This model has six steps (steps IV-4 to IV-9) which are implemented as three

processing stages (stage C to E). The step and stage numbering is continued from the first part of

the model. To generate the cosine similarity value (D1•D2), the two data structures (of D1 and D2)

are taken as inputs to step IV-4 and stage C.

The computation steps are as follows:

Step IV-4 & IV-5 (stage C): Identify the common basis vectors from the first coefficient

table (Component 1 of Fig. 4.4) by verifying which vector ids are in the second BF (BF2,

Fig. 4.4). This is carried out by Bloom Filter based membership testing technique, as

explained in section 2.12 in Chapter II. The set of BF bit indices in the first coefficient table

are used for this purpose.

Step IV-6 & IV-7 (stage D): If a vector is present in the BF2 then we use that common

vector id as the key to lookup, and extract the coefficient value from the coefficient lookup

table of the second data structure (Coefficient Table of D2). The coefficient table is

implemented on a content addressable memory (CAM), and the coefficients are looked up in

the CAM by using the vector Id as the key.

Step IV-8 & IV-9 (stage E): Multiply the pair of coefficients for each identified common

basis vectors that are extracted from both coefficient tables, and then add all the products to

get the similarity metric. To achieve this, the pairs of coefficients are feed to a bank of

multiplier-accumulator slices.

How these stages are realized is explained in the next section.

128

Fig. 4.4 Comparison of descriptors

Step IV-4: For each vector id in DP
1P coeff. table, test membership in BF2; if +ve do {

 Step IV-5: Note the vector in BF in common vector list }
Step IV-6: For each vector id in common vector list do {
 Step IV-7:Get s BiPB

1P & s BiPB
2P from DP

1 P& DP
2P coeff. tables,

 Step IV-8: Add s BiPB
1P × s BiPB

2P to accumulator }
Step IV-9: Get final cosine product DP

1P P PDP
2P from accumulator;

Computational model:

For each basis vector, implement circuit that {
 ith slice of Stage C: Carries out BF Membership testing ;
 ith slice of Stage D: If the testing is +ve, extracts coefficient values from CAM ;
 ith slice of Stage E: Multiplies coefficient pairs from D1 & D2 and accumulates; };

Hardware description:

Step IV-6, IV-7:

Coefficient lookup

Step IV-4, IV-5:

Membership testing

Multiplier p

Coefficient Table-1

Coefficient Table-2

Coefficient Table-1

Coefficient Table-2

Slice 2

Slice b

Similarity
value

Adder

Σ

BF2

BF2

Coefficient Table-2

Coefficient Table-1

Stage C Stage EStage D

0.4

0.7

CoeffSet of BF Vec ID

 0

 1
 1

 1

 2
 3

 0
 1

 m-1
 m

 0
 1 0.2

0.4

0.3

0.7

r slices b slices

0.3

CoeffSet of BF Vec ID

0.2

BF2

 Coeff_a

 Coeff_b

Multiplier 1

Slice 1

p slices

Coeff

{ 0, 2, 4,…}

Vec ID

{ 0, 3, 6,..}

{ 2, 6, 8,…}

BF Indices

Slice 1

Slice 2

Slice r

Step IV-8, IV-9:

Multiply & Add

Send Coeff pairs
to Multiply-Add

stage

Stage C

BF Membership
testing

(Identify suspected
common basis vectors)

Step IV-4,5

Stage D

CAM Lookup

(Confirm common basis
vectors & extract

coefficients)
Step IV-6,7

Stage E

Multiplier-
Accumulator
Step IV-8,9

Items for
CAM

Lookup Similarity

Data structures
from step 1

129

4.5.2.2 Parallelization strategy and architecture for data structure comparison

The roles of the three stages, that embody the second part of the computation, are as follows.

Stage C identifies the common basis vectors using BF membership testing functionality, stage D

extracts the matching pairs of scalar coefficients from the coefficient table; and stage E

multiplies the corresponding pairs of scalar coefficients and calculates the sum to obtain the dot

product.

For each row in the coefficient table, steps IV-4 and IV-9 of the computation in Fig. 4.4 can be

executed parallel, as processing of each of these rows are independent. Each of these parallel

processing instances is executed by each horizontal slice of each stage (C to E), as shown in Fig.

4.4. There are r slices in stage C, and b slices in stage D and p slices in stage E. Stage F also

consolidates all the processing. The choice of r has been explained earlier, the choice of b and p

are explained in next section.

The operations of these three stages are explained as follows. The basis vectors from the first

coefficient table are membership tested against the BF of the second table in step IV-4. The BF

is implemented as bit addressable memory of m bits. Membership test is performed by checking

whether all k given locations contains 1 or not, as explained in section 2.12, in Chapter II. The

membership testing of each vector Id (row) from the first table (step IV-4, Fig. 4.4) is carried out

in parallel by dedicating one logic circuit per row of the first table in a specialized hardware (Fig.

4.4), within n/r·k read cycles with r circuits for n basis vectors or rows in the coefficient table.

This is because each membership testing requires k memory read cycles and n/r membership

testing cycles are needed.

130

The second coefficient table is stored in a combined CAM-RAM unit. The vector Id column is

stored in the CAM and the coefficient column is stored in the RAM in a paired manner.

Whenever a vector Id for a particular coefficient table row is stored at a particular address

location of the CAM, the corresponding coefficient value is stored at the same address location

in the RAM. This enables extraction of the coefficient value by using the vector id as the lookup

key. A vector Id is used to ascertain whether there is match in the CAM. If there is a match, then

the CAM outputs the location address, in which the match happened. Then using this address,

the coefficient value is extracted from the RAM.

The operation of this entire mechanism is as follows. The basis vectors that tests positive are the

suspected common basis vectors. These suspects are either confirmed or rejected (step IV-6 in

Fig. 4.4) by using the positive tested vector Ids as keys and performing a lookup on the second

table stored in a content addressable memory (CAM). Once a match is confirmed, the

corresponding coefficients from the second table, which is stored in a random access memory

(RAM), are extracted (step IV-7 in Fig. 4.4). The logic signal routing by interconnects are

analogous to step IV-2 & IV-3 of the pseudo-code in Fig. 4.4.

The number of positives generated by the membership testing is (c + (n-c)·Pfalse+ve), of which “c”

are true positives and (n-c)·Pfalse+ve are false ones, when c = number of basis vectors that are

common (called common basis vectors) in both tables and Pfalse+ve = probability of false positives

during the BF membership testing. Therefore a total (c + (n-c)·Pfalse+ve) suspects are identified

and each of these suspects needs to be verified by using the CAM-RAM units. Therefore the

number of CAM lookups (step IV-7) that are necessary is also (c + (n-c)·Pfalse+ve). The value of

Pfalse+ve is kept very small << 1 (e.g., in order of 10-3) by proper choice of m and k (refer section

2.12 in Chapter II).

131

The use of Bloom Filter (BF) reduces the number of CAM lookups and the number of the CAM

banks that are necessary, from n to (c + (n-c)·Pfalse+ve). This value of the term (c + (n-c)·Pfalse+ve)

is very similar to that of c, therefore by employing the BF we are saving CAM-RAM units that

are necessary for parallelization and yet getting a good time savings. The CAM lookup

subsequently will identify c number of common basis vectors (and reject the false positives). The

corresponding coefficients will be passed to the multiplier-adder stage (Fig. 4.4). Thus this CAM

lookup operation filters away the false positives and thereby avoids any incorrectness in final

result and yet avoids n lookups to save time and CAM resources (less CAM can be used).

4.5.2.3 Choice of architectural parameters and rationale

To conserve hardware resources and keep the power consumption (and generation of heat in the

circuit) manageable, we will choose b and p to be much smaller than n (< 104). We will in fact

choose b to be less than 25% of n and choose p to be at most 16 as multipliers are expensive in

terms of gate counts and silicon die area. For example, for n ~ 104, we chose b to be 32 and p to

be 16. We show below that these choices are sufficient. Later in Chapter VII, we will also show

that these smaller choices for b and p have not increased the processing time significantly.

Actually for this choice of parameter b = 32, we can use a single multi-port CAM and RAM, as

presented in [140], [141] to implement all the b slices in stage D.

The rationale for choosing b and p values, are as follows. If we assume that probability of a query

being mapped (or routed) to a particular index server pool is equally distributed among all the NP

pools, then for large NP (~1000), this probability is 1/NP is small = 1/1000. For this scale of

distributed system (with NP ~1000), only one semantic router is necessary because a semantic

router can very well accommodate 1000 destination entries in its semantic routing table. We will

132

substantiate this aspect in Chapter VII. Numbers of destination lookups necessary on this routing

table will require at most NP meaning similarity comparisons.

In general, a query is expected to be matched against only one destination’s key and forwarded to

that destination. This means that in worst case, a query will be found similar to only one of the

descriptor keys out of NP keys in the semantic routing table. In worst possible case, for the

comparison which is a match, this similarity may be a 100% match (yielding a dot product value

of 1 when the c value is 100%). This means, out of NP comparisons, only one comparison will

have a c value of at most 100%. Hence the average c value for all the NP comparisons considered

together, will be 100*1/ NP %, which is ~0.1 % (or 0.001).

The expected (average) number of CAM lookup that will take place is given (c + (n - c)·Pfalse+ve),

where Pfalse+ve (~ 10-3, refer section 2.12) is the probability of false positive for the large Bloom

Filter being used (m ~131072, k ~ 7, refer section 2.12). In this case the expected (average)

number of CAM lookups that are necessary is (c + (n - c)·Pfalse+ve), which is in order of ~c = 10.

Therefore a small number of b (~32) slices in stage D and p (~16) slices in stage E will suffice.

CAM and RAM are the most power hungry components. From our hardware design experience

[131], we know that the ratio of power consumption between CAM and rest of the logic circuitry

is in order of 50:1, which means CAM has a disproportionate contribution in the total power

draw. Thus there is a motivation to reduce the number of CAM units to cut down the total power

consumption. When b, the number of CAM units, is chosen to be small, there is no point to keep a

large number of multipliers, hence p, the number of multiplier circuits is also chosen to be small.

However as we chose a b = 32, because a 32 port CAM design is readily available [140]. A higher

value of 32 instead of 10, which equates to a utilization value of 0.32, helps in significantly

133

reducing the average waiting time of the CAM lookup tasks compared to a utilization ~1 which

causes more waiting time (refer queuing theory in section 2.11, Chapter II). Therefore this choice

of b = 32 and p = 16, will reduce the CAM and multiplier circuitry, while still yielding the benefit

of parallelization.

4.5.2.4 Time response analysis for data structure comparison

We have shown that the number of clock cycles needed to carry out CAM lookups is given as:

(c+(n-c)·Pfalse+ve)/b, when there are b available CAM banks (copies) or a b ports in the CAM.

Similarly c multiplications take time in order of c/p, with p available pipelined multipliers each

having retiring rate of 1 (step IV-8, IV-9). The probability of false positive in Bloom Filters is

approximated by a standard function as given in section 2.12 in Chapter II. A more accurate

approximation will include contribution of different hash collisions. This is discussed in more

details later in section 4.5.5.6.

For each basis vectors the complexity of step IV-4, IV-5 is O(k) or O(1) depending on the type

of Bloom Filter used. The time complexity of step IV-6 & IV-7 is O(1) and step IV-5 & IV-6 is

O(1). Therefore for n basis vectors the order of the entire algorithm is O(n1·k) or O(n1)

depending on the BF design. The computation of each basis vector being independent, a parallel

computation using r (~n1) circuits has time complexity of O(n1·k/r) or O(n1/r), which is O(k) or

O(1) for r ≈ n. In the next section we explain the rationale for a separate step III and IV.

4.5.3 Rationale for separate step III and IV

The two column version of the coefficient table is used for storage whereas the expanded three

column version is used for comparison processing. Step III generates the two column version of

the coefficient table that contains the minimal information necessary for efficient storage and

134

transmission. This coefficient table, containing 64 or 128 bit vector ids, takes much less space

than a table which would have contained character strings of the basis vector terms as shown at

the top left-hand side of Fig. 4.2. This is explained as follows. On average, a term in the English

lexicon has 7 characters (i.e. 56 bits). The basis vector terms in a tensor are concatenated

combinations of multiple English language terms. These concatenated terms have a length which

is several multiples (3 or more) of 7 characters (refer section 3.6.6 in Chapter III). So an average

length of a tensor basis vector term is around 210 bits or more, which greater than 64 or 128 bits.

Therefore a coefficient table containing vector ids takes smaller space and thus suitable for

storage and transmission. This table may be further compacted by compaction techniques.

On the other hand the expanded three column version of the coefficient table is required to carry

out high speed comparison operation. This three column table does not carry any additional

information compared to the two column version and this three column version is generated from

the two column table only when a comparison has to be performed.

4.5.4 Comparator architecture and its execution time analysis

4.5.4.1 The architecture

The entire processing architecture, with both parts of the computation are put together, i.e., all

the six stages, stage A to E, is presented in Fig. 4.5.

Fig. 4.5 Proposed information processing architecture

Set Bloom
Filters

Multiply Coefficients
and add sum

Stage B

Identify Common
Basis Vectors

Stage C

Slice 1

Slice r

Extract
Coefficients

Stage D

Slice 1

Slice b

Slice 2

Stage E

Slice 1

Slice p

Slice 2

D1

D2

Generate BF
Indices

Stage A

Slice 1

Slice r

Slice 2

Similarity
value

Two column
coefficient

tables

Slice 1

Slice r

135

To facilitate smooth flow of data between the unequal number of slices in different stages and

schedule the utilization of slices, special interconnects have to be used between the stages (Fig.

4.5). For example, the interconnect between stage D and stage E schedules processing of larger

number of multiplications (b threads) necessary to smaller number (p) of available multipliers

(slices). Interconnect between stage C and D plays a similar scheduling role, whereas

interconnect between stage B and C distributes a single piece of data item (the Bloom Filter

content) to n slices in stage C. Hardware design of such interconnects and schedulers are based

on simple digital logic and it is outside the scope of this dissertation.

4.5.4.2 Operations

During semantic routing table lookup, the message key is compared with multiple keys

belonging to the routing table rows. Therefore, we would consider a system having n number of

comparator hardware, where n is the number of routing table rows. In each comparator, a

particular row key is considered as first descriptor whose Bloom Filter component is loaded in

the Bloom Filter (BF) RAM. The message keys will be passed through the comparator one by

one and the comparison values that come out of the comparator will be noted. Therefore the row

key will be loaded only once in the comparator to set it up. This will avoid multiple setup times

involved in loading the BF RAM multiple times. This paradigm is explained in greater details in

section 6.7.2, in Chapter VI.

4.5.4.3 Execution time analysis

For purpose of execution time analysis of the comparison operation, the critical path is through

the following stages: stage Astage Cstage Dstage E. Thus the execution time is the sum

of cycles required by each stages: A, C, D, E. Whereas, the setup time is the time necessary to

136

setup the Bloom Filter, which is done by stage B, thus the setup time is time taken to complete

processing in stage B.

When real hash functions are utilized to generate the k BF index values, then number of clock

cycles TA taken by stage A is given by the following equation.

u
n

T byte
A (4.2)

Where nbyte = number of bytes in a vector id and u = loop unroll factor used to unroll loops in

hash functions that generate the k BF bit indices.

The total number of clock cycles TC-E taken by stage C to E is given by the following equations.

The delay component of each stage is also indicated below each equation.

When unpartitioned Bloom Filter (as discussed in Chapter II), is used in stage C, this is-

ALp

c
b

Pcnc
kr

nT vefalse

EC

 1
)(

1 1 (4.3)

When partitioned Bloom Filter is used in stage C, this is-

ALp

c
b

Pcnc
r

nT vefalse

EC

 1
)(

1 1 (4.4)

Interconnect delay

Step C delay Stage D delay Stage E delay

Interconnect delayInterconnect delay

Interconnect delay

Step C delay Stage D delay Stage E delay

Interconnect delayInterconnect delay

137

where L = Latency of each multiplier = 5 and A = Latency of the adder =1. The interconnect

delays are based on the hardware design carried out by [131].

Thus the total execution time is the time taken by stages A, C, D and E and this is given by:

 ECAexe TTT (4.5)

whereas the setup time is given as the time needed to complete operation in stage B. When

unpartitioned Bloom Filter is used in stage B, this is -

 DkTT Bsetup

(4.6)

where D = clock cycles required by the interconnect to load the Bloom Filter and this D ~10.

When partitioned Bloom Filter is used, the setup time is -

DTT Bsetup 1 (4.6)

4.5.5 Techniques to reduce circuit complexity and circuit power

4.5.5.1 Motivation

To reduce the need for silicon die area and lower the power consumption, we strive for simpler

circuits. By choosing appropriate algorithms and computational models we can reduce the circuit

complexity and thereby reduce power consumption because a simpler circuit draws less power.

Simpler circuit and lower power consumption allows us to integrate a higher number of slices to

achieve greater degree of parallelization. We discuss some of the approaches below to achieve

this.

138

4.5.5.2 Approaches

Circuit complexity of the comparator hardware can be achieved by three following approaches:

1) By using smaller number of CAM units and multipliers: Contribution of smaller number of

CAM and multiplier units had been already discussed earlier in section 4.5.2.3.

2) By adopting a smaller Bloom Filter bit array size: A smaller BF size decreases the amount

of memory required. What should be the size of the BF in terms of number of BF bit array

m and number of hash functions k, depends on many factors. We choose to work with m =

131072 and k = 7. In Chapter VII we present the evaluation whether these are good values,

i.e. whether these choices gives a small execution time. However which would be a better

choice is best determined based on actual performance results of the entire comparator

architecture. This is requires a simulation based study, which is presented in Chapter VII.

3) By implementing the hash value generation circuitry by cheaper alternatives: We need k

hash values as the k BF bit indexes, hence in total k distinct hash functions are required.

Hash function implementation in hardware is expensive in terms of circuit complexity,

silicon die space and power consumption. So as a solution, we propose alternative

computation schemes that will use only one or two hash function implementation (circuits)

to generate all the k hash values that are necessary to operate the Bloom Filter. Various

combinations of these schemes will yield a variety of architectures. These schemes will be

implemented in stage A of the proposed architecture (Fig. 4.5). Cheaper alternatives to

generate hash value, is discussed in details in the next section.

The performance tradeoffs of using these approaches are analyzed in section 4.5.5.6.

139

4.5.5.3 Inexpensive methods to generate hash values

We need k different hash values to generate k different q bit Bloom Filter index values, where m

= 2q. This is done in two steps, first 64 bit hash values are generated, next from those 64 bit

values, corresponding q (=17) bit hash values are derived. There are two opportunities to reduce

circuit complexity here. We can choose a set of alternative circuit reduction strategies to

generate 64 bit values and in addition we can also choose another set of alternative strategies to

generate q bit values from 64 bit hash values. We can combine both these set of strategies

together. This aspect is explained later once we have described these strategies.

Generation of 64 bit hash values is possible by two alternative classes of strategies. One of the

class use two distinct hash functions to generate the required k hash values and the other class

use only one distinct hash function to generate k values. The “two hash function” class of

strategies is given by equations (4.8) to (4.11). The “one hash function” class is given by two

different set of strategies. One set of strategies require simultaneous use of any one of these

equations (4.8) to (4.11) along with any one of the equations (4.15) to (4.16) to generate 64 bit

hash values. Whereas, the second kind of one hash function strategy will involve using only

equation (4.17). Once a 64 bit hash value is generated, from it a q bit hash value is generated

using any one of these strategies given by equations (4.12) to (4.14). All these strategies are

described below.

This set of k values can be generated by only two distinct hash functions H1 and H2 by the

following mechanism:

The ith hash value is given by-

21 * HiHhi (4.8)

140

where i is an integer : 0, 1, 2, 3,….

Using this method [142] we can generate k hash functions without actually implementing distinct

k hash value generating circuitry. An integer multiplier from the hardware design compiler

library is expected to be an optimized and simpler circuit than a manually designed hash function

circuit, hence this strategy can reduce circuit complexity.

Another set of alternatives can be as follows. Instead of multiplying the integer i in equation

(4.8), we can simply rotate the H2 by i bit positions and then add it to H1. In that case the ith hash

value is given by-

),(21 iHrotHhi (4.9)

where i is an integer : 0, 1, 2, 3,….

As rotation can be materialized by re-routing bit lines so this rotations does not increase circuit

complexity by adding active devices, so this strategy (equation (4.9)) further reduce circuit

complexity compared to earlier method as shown by equation (4.8).

Another alternative generation function can be chosen to further reduce circuit complexity,

where the ith hash value is given by-

21 *2 HHh i
i

(4.10)

where i is an integer: 0, 1, 2, 3,….

This avoids the need for a multiplication altogether, just bit shifting the H2 hash value to the left

would suffice. The bit shifting or rotating does not need any active circuitry, just re-routing bit

logic lines can achieve the bit shifting or rotation. Therefore, the circuit complexity to implement

141

this technique as given by equation (4.10), is even less than the case for equations (4.8) and

(4.9).

Instead of adding we can even take bit wise XOR, in that case the ith hash value is given by-

)),(,(21 iHrotHbitwiseXORhi
(4.11)

where i is an integer : 0, 1, 2, 3,….

As XOR gates are simple circuits than bit address circuitry, therefore the circuit complexity for

equation (4.11) is even less than the case for equation (4.9).

There is another place where the circuit can be simplified by choosing proper computational

alternative to generate the BF bit indexes. In our Bloom Filter we need 17 bit hash values, so we

generate 17 bit values from 64 bit hash values by different alternative method. This can be done

either by taking only 17 LSB bits, or XORing the 17 bits chunks of higher bits to the lower 17

bits, or by bit folding technique proposed by the FNV hash algorithm [138]. This folding is

necessary to satisfy the strict avalanche criterion of minimal collision hash value generation

(refer section 2.13 in Chapter II). These alternatives are presented below:

)(6417 HfoldH
(4.12)

where the fold() function denotes the folding of higher 17 bit chunks to the lower 17 bits.

)(6417 HFNVfoldH (4.13)

where the FNVfold() function denotes the folding of higher order bits as suggested by FNV hash

algorithm.

142

The two alternatives, as presented above, appear to be similar in terms of circuit complexity, and

they are expected to cause similar BF performance. Another more simpler alternative to achieve

the same purpose, is presented below.

)(6417 HLsbH (4.14)

where function Lsb() considers the lower 17 bits only.

This third alternative is the simplest of all, however one needs to examine whether deterioration

of hash value property caused by discarding MSB bits causes in significant deterioration of

Bloom Filter (BF) operation, like increase of false positive probability. This may happen because

the hash value generated by this operation, as presented above, does not satisfy the strict

avalanche criterion. In Chapter VII, from simulation results, we shall see that this deterioration

is so small that it is not significant.

Additional reduction of circuit complexity is possible during 64 bit hash value generation. In fact

one can avoid the use of the second hash function H2 all together in the equations (4.8) to (4.11).

The second hash value H2 can be generated from the first hash value H1 by either rotating the

bits of H1 by some arbitrary fixed places or by scrambling them. Scrambling or rotating does not

cost any circuit space, because bit logic lines can be suitably routed to inter-change the bit

positions. These two methods are represented as follows:

),(1
'
2 aHrotH (4.15)

where a denotes the constant number of bit positions either rotated left or right.

)(s 1
'
2 HcramH (4.16)

143

Alternately we can directly generate the k hash values in a single step, by scrambling the bit

positions of the first hash function in k different ways, without needing to generate the

intermediate second hash function. In this method as the second hash function is not generated,

hence it is not necessary to combine the first and second hash functions. In this case the ith hash

value is given by-

)(1Hscramh ii (4.17)

where scrami() denotes the scrambling of bit positions in a ith manner.

An example of a “two hash function and q bit hash value generation” strategy would be

simultaneous use the circuit which implements the computation as mentioned by two equations

(4.8) and (4.12). On the other hand a “one hash function and q bit hash value generation”

strategy would be simultaneous use circuits that implement the computations as given by three

equations (4.8), (4.15) and (4.12). Similarly, an “alternate one hash function and q bit hash value

generation” strategy would be to carry out computations as given by equation (4.17) along with

equation (4.12).

4.5.5.4 Contribution of different methods to reduce circuit complexity

The hash function generation circuitry will contribute most of the circuit complexity, followed

by 64 to 17 bit hash value conversion circuitry (as given by equations (4.12), (4.13) and (4.14))

and hash value composition circuitry (as given by equations (4.8), (4.9) and (4.11)). This is

because hash function generation requires complex sequential logic circuitry, whereas 64 to 17

bit hash value conversion and hash value composition involves simpler combinational logic

circuits. However the alternate one hash function strategy, i.e. using equation (4.17) along with

either one of the equations (4.12) to (4.14), would generate the greatest savings in circuit

144

complexity, because there is no need for any circuit to combine the first and second hash

functions.

4.5.5.5 Alternative architectures

The corresponding architectures which exploit the techniques described above are presented

below in Table 4.1.

Table 4.1 Alternative architectures due to variation in stage A

Sl. #
Distinct

hash
values

Stage A Stage B Comple
-xity
rank

Second hash
number

generation, if
any

ith Hash value generation 64 bit to 17
bit

conversion

Type of BF

1 k + 1 - - Lsb(H64) unpartitioned D

2 k + 1 - - Lsb(H64) partitioned D

3 2 Distinct H2 bitwiseXOR(H1, rot(H2, i)) FNVfold(H64) unpartitioned C6

4 2 Distinct H2 H1 + i*H2 fold(H64) unpartitioned C5

5 2 Distinct H2 H1 + rot(H2, i) fold(H64) unpartitioned C4

6 2 Distinct H2 H1 + 2i * H2 fold(H64) unpartitioned C3

7 2 Distinct H2 bitwiseXOR(H1, rot(H2, i)) fold(H64) unpartitioned C2

8 2 Distinct H2 H1 + i*H2 Lsb(H64) unpartitioned C1

9 2 Distinct H2 H1 + i*H2 Lsb(H64) partitioned C1

10 1 H’2 = scram(H1) bitwiseXOR(H1, rot(H2, i)) fold(H64) unpartitioned B

11 1 H’2 = rot(H1,a) bitwiseXOR(H1, rot(H2, i)) FNVfold(H64) unpartitioned A6

12 1 H’2 = rot(H1,a) H1 + i*H2 fold(H64) unpartitioned A5

13 1 H’2 = rot(H1,a) H1 + rot(H2, i) fold(H64) unpartitioned A4

14 1 H’2 = rot(H1,a) H1 + 2i * H2 fold(H64) unpartitioned A3

15 1 H’2 = rot(H1,a) bitwiseXOR(H1, rot(H2, i)) fold(H64) unpartitioned A2

16 1 - scrami (H1) Lsb(H64) partitioned A1

We will evaluate all these alternative architectures. These architectures have been assigned ranks

solely based on circuit complexity: A1 means least complex and most preferable, followed by

A2 and so on. The lowest rank D is least preferable. These rankings were carried out taking into

145

consideration each stage’s relative contribution to the circuit complexity as explained in the

previous section.

4.5.5.6 Performance tradeoff analysis for alternative architectures

We matched the output of the simulator with the dot product numbers generated by a direct

multiply-add method as indicated in section 2.5.3 of Chapter II. The output of the simulator was

found to be correct. However there is an extremely small probability that the proposed

comparator will generate incorrect values. The analysis of such situation is presented below.

There are three indeterminsitic phenomena which are at play here. These affect the correctness

and execution time of the tensor comparison operation as carried out by the proposed

architecture. The first one is the hash collision phenomena (“phenomena 1”) that happen when

vector ids are generated in step III as shown in Fig. 3.2 in section 3.3 of Chapter III. When this

hash collision happens then, even though the basis vector terms are different they generate same

vector ids. The second phenomena (“phenomena 2”) is the generation of the same set of BF

index values taking place in step IV-1 in stage A of the architecture, even when the vector id are

different. The conditional probability of that happening is (2-q)k, because k distinct q (=17) bit BF

bit index values are being generated. The third one (“phenomena 3”) is the BF false positive

phenomena whose conditional probability is described earlier in section 2.12 of Chapter II. The

event tree for all these three phenomena is shown in Fig. 4.6 along with conditional and

unconditional probabilities of all events.

146

Fig. 4.6 Event tree for the proposed architecture

The false positives in the Bloom Filter either due to any of phenomena 2 or 3 in stage C, gets

filtered out by the CAM lookups in stage D. Thus, phenomena 2 and 3 do not have any impact

on correctness. These two phenomena leads to false positives in the BF operations which only

increases the number of CAM lookups that are necessary and the execution time for CAM

lookups in stage D. The proposed dot product computation algorithm will yield wrong values

only if there is a hash collision during vector id generation (phenomena 1) in stage A. The

probability of that happening is in order of p·n1·(n2 -c), where p = the hash collision probability

and n1, n2 = number of basis vectors in each tensor, c = number of common basis vectors.

Hash collision conditional
probability = p·n1(n2-c)

(1- p·n1 (n2-c))

Probability = p·n1(n2-c)

Vector Ids are identical

Vector Ids are not
identical

k BF index values are identical

k number of q bit BF index values are
identical, conditional probability = (2-q)k

 (1-(2-q)k)

BF index values are
distinct

BF false positive happened

BF indicated
no match

(1- PBF-coll)

Phenomena 3 Phenomena 2 Phenomena 1

(1-p·n1 (n2-c)) ((2-q)k)

(1-p·n1 (n2-c)) (1-(2-q)k) PBF-coll

(1-p·n1 (n2-c)) (1-(2-q)k) (1-PBF-coll)

False positve, conditional probability =
PBF-coll = (1-(1-1/m)kn)k

147

With a good quality 64 bit hash function, that satisfies strict avalanche criterion (refer section

2.13, Chapter II), this collision probability p ≈ 2-64. For n1, n2 < 104, wrong values are very

unlikely (probability in order of ~10-11 or less). The numerical impact of one of such collision is

also restricted because there is a limited contribution of a single basis vector in the dot product

computation. This likelihood of hash collision can be reduced by choosing a 128 bit hash vector

id if necessary.

When k distinct hash functions and q (=17) bit BF indexes are used then the false positive

probability is due to the combined effect of phenomena 2 and 3, is approximately given by the

following equation. This is a more accurate model compared to the one that can be derived

solely based on the equation (2.5) in section 2.12 of Chapter II.

 knkkqkq
vefalse mcnnpcnnpP

1121-1 2-1 2121 (4.18)

Where p = collision probability during vector id generation ~2-64, n1, n2 = number of basis

vectors in each tensor, c = number of common basis vectors in these tensors, q = number of bits

in the BF index, k = number of hash functions used in BF operation, m = size of BF bit array.

With p ≈ 2-64, n1, n2 = 104, q = 17, k = 7, c = 1% of n1, and m = 131072, this false positive

probability is 0.002077.

When the circuit complexity reduction strategies as given by equations (4.8), (4.9), (4.10) and

(4.11), are used instead of k distinct hash functions in the BF, then the probability of false

positive is higher than the one given by equation (4.18). For all these cases, this probability is

approximately given by the following equations:

148

 knkqq
vefalse mcnnpcnnpP

1121-1 2-1 2
21

2
21 (4.19)

Whereas, when the strategy as given by equation (4.15) or (4.16), is used as alternatives to

distinct k hash functions to generate BF bit index values, then the probability of false positive is

further increased compared to the one given by equation (4.19). This probability is

approximately given by the following equation:

 knkqq
vefalse mcnnpcnnpP

1121-1 2-1 2121 (4.20)

This means that when we use inexpensive alternatives to distinct hash functions, we get a higher

number of suspects which need larger number of CAM lookups and take more execution time.

For this case, the probability of false positive as given by equation (4.20) is 0.00208 for the same

example that was used earlier to show the value of 0.002077 according to equation (4.17). We

see that this increase predicted by these equations is small. In Chapter VII, we will see that this

increase in execution time is insignificant compared to reduction in circuit complexity that is

achieved.

Use of one hash function, as given by equation (4.17), saves execution time in stage A, because

these strategies only involve re-routing of bit lines and nothing more. As these does not involve

any extra clock cycles, therefore this execution time is zero and it is given as:

0AT (4.19)

This execution time of stage A in all other cases was given by equation (4.2). So the savings in

time due to use of one hash function is this amount that is given by equation (4.2). When the

number of bytes in the vector id is 8 (=64 bits) and there is no loop unrolling, i.e. loop unrolling

149

factor l = 1, then this savings = 8/1 = 8 clock cycles, which is modest. However due to increase

in false positives in stage C, the execution time will increase by a few clock cycles, so the net

savings in execution time will be little smaller that what is predicted by equation (4.19). In

Chapter VII, we will see that use of one hash function results in a modest decrease in execution

time. This is in addition to the significant reduction in circuit complexity.

The impact of using lower 17 bit LSB, i.e., the strategy corresponding to equation (4.14) instead

of folding as given by equation (4.12) and (4.13), is expected to result in higher collisions during

BF index value generation (i.e. in phenomena 2) and higher actual false positive rate. Thus we

expect the actual false positive rate will further deviate from the expression as given by

equations (4.18), (4.19) and (4.20). In Chapter VII, we will see that this increase in execution

time is rather insignificant when weighed against the amount of reduction in circuit complexity

that is achieved by this strategy.

4.6 Summary

To materialize a semantic router which can route messages based on their meanings, we need to

represent and compare composite meanings. A composite meaning is represented as a tensor in

an infinite dimensional vector space. The similarity between two meanings as represented by two

tensors is computed as dot (cosine) product of the tensors. These tensors are expressed in an

infinite dimensional vector space, even though the tensors have limited number of basis vector

components with non-zero coefficients. This gives rise to the problem which is how to quickly

identify the basis vectors that are common to both tensors, so that we can pair up their

coefficients for multiplication and addition to compute the dot product value. To quickly identify

the common basis vectors and finally compute the dot product, we proposed a hardware centric

algorithm and an information processing architecture. Finally we presented several

150

computational alternatives to reduce the circuit complexity and circuit power draw of the design,

followed by an analysis of the design tradeoffs.

151

CHAPTER V

SEMANTIC ROUTED NETWORK

Systematic organization of the index entries can save number of servers necessary to build a

distributed index system and result in reduction of power consumption. However this system

requires a network to redirect search queries to the particular index server which is most likely to

contain matching index entries. In this chapter, we present a design of an overlay network called

Semantic Routed Network which can route messages based on their meanings. This network can

be used to deliver queries to the destination index server based on the meaning of the query

messages. We begin by explaining how such overlay network will be incorporated in a

distributed index system. Next we explain the principle of meaning based semantic routing,

followed by the design of this overlay network.

5.1 Semantic Routed Network

5.1.1 Recapitulation: What is Semantic Routed Network

Semantic Routed Network (SRN) is a collection of networking appliances called semantic

routers and index nodes (index server pools) connected in a peer-to-peer fashion. SRN is

implemented as an overlay network on top of existing IP network or cluster systems. This SRN

implements the proposed distributed index system in a search engine (refer section 3.2, Chapter

III).

5.1.2 Generalized versions of networking concepts

To achieve message routing, the proposed SRN incorporates the several notions which are

analogous to the following fundamental networking concepts like:

152

1. Assigning addresses to destinations.

2. Grouping destinations to form sub-networks.

3. Assigning address to a sub-network (or the gateway router).

4. Deciding next hop address during routing, based on the similarity of the message

destination address and the next hop destination address.

However these are achieved in a different manner in SRN, compared to an IP network. The

following sections explain how these notions are applied in SRN.

5.1.3 Destinations, routers and destination address assignment scheme

In the Semantic Routed Network (SRN), there are three kinds of nodes. There are two kinds of

physical node and one kind of virtual node. Each index server pool is considered as a unique

physical destination node, we call these nodes as “index nodes”. The other kind of physical node

is called “semantic router”. These router nodes forward messages to other routers or destination

nodes. The SRN is actually implemented as an overlay network of semantic routers

interconnected to each other in peer-to-peer fashion and also connected to the index nodes. Index

nodes are only connected to the semantic router nodes.

In SRN, each index entry is considered as a virtual destination node. In section 3.8, we

mentioned that each index entry has a semantic descriptor that describes the meaning of the

corresponding web page or document content. In SRN, for the purpose of semantic routing, this

descriptor is considered as the address of the index entry.

When a query (or message) is delivered to the index server node, the index node performs index

look up to identify the matching index entry. This is analogous to message delivery to the index

153

entry which is the final virtual destination located at a physical destination (index server node).

On the other hand this index lookup is considered as a form of virtual routing to deliver the

message to the final virtual destinations (the index entries). Thus the index nodes are viewed as

virtual routers with only virtual routing ability (i.e. only index look up function) and also as

physical destination nodes (having a unique physical address). The overlay SRN can be

implemented on top of an open standard network such as IP (e.g., HTTP on TCP/UDP over IP),

or on top of a proprietary or standard node clustering technology. In case the underlying network

is HTTP on IP, then all physical address of the SRN are preferably represented in form of URI

[143]. If the underlying technology is a clustering system, then this address would be the cluster

id. Henceforth in all our examples and explanations we will consider all physical addresses to be

in URI format.

This scheme entails the following network (and search) operation. To send a message to a

specific index entry, the sender constructs a message with a semantic descriptor as the message

address and submits it to the SRN. The SRN delivers the message to those index entries whose

keys (semantic descriptors) are similar to the message key. The message address key is

constructed to be similar, in terms of meaning, to the key of the destination to which the sender

intends to send the message. Once the destination gets the message it can respond back to the

message originator or some other predetermined node (e.g. document server) and present itself.

This routing behavior can be also used for searching. The originator can use the query descriptor

as the message key and when then the destinations, i.e., the index entries having keys similar to

the query will present themselves to the originator. Actually the index nodes present the index

entries to the originator but this action is same as if index entries are presenting themselves. In

this way, the originator can identify the index entries that it is searching for. Thus this kind of

154

address assignment and network operation enables searching of index entries from a cluster of

index nodes.

As explained in earlier Chapter II and 3, the descriptor (or meaning) similarity is not based on

exact matching of the key to the document content or its data schema items, so the sender do not

need to know exact descriptions of the destinations to identify them. The sender can use alternate

forms of descriptions as long as they convey same meaning and yet successfully send message to

the intended index entries. Therefore this kind of addressing and descriptor comparison can

enable meaning based query delivery and searching.

5.1.4 Network organization and router address assignment scheme

In SRN, each semantic router has a semantic routing table which stores addresses and

description of destinations and other peer semantic routers. Each semantic router also has an

assigned descriptor that describes its interest or specialization. A router tends to maintain

addresses of only those destinations and routers in its routing table whose descriptors convey

somewhat similar meanings as its own descriptor. This is analogous to human beings

maintaining the contacts information of their associates and friends, who are interesting to them,

in their address book. Here the semantic routers are analogous to people, the router descriptions

are analogous to people’s interest profile and the semantic routing tables are similar to the

address books.

This ensures that index entries of similar kind and routers having similar interests are clustered

together to form a routable network. This use of routing table along with router’s descriptor,

makes it is possible to use a single uniform destination decision (routing table lookup)

155

mechanism to achieve both: forwarding of message and message delivery to the final destination.

This is similar to packet routing in an IP network.

As the index nodes are considered as virtual routers, they too are assigned an interest descriptor

based on type of index entries that are stored in it. Therefore a semantic router or an index node

is analogous to a gateway router node, all the destination addresses in their routing (and index)

tables considered together are analogous to a sub-network and the interest descriptor of this

router (or index node) is analogous to this sub-network address. Each semantic router that is also

connected to a group, other than the given group, is analogous to a gateway node for the given

group. In IP networks, the hierarchy is very strict where the sub-networks do not overlap at all

and generally there is only one designated gateway. But in the SRN the sub-networks overlap

with each other and there may be multiple gateway nodes.

5.1.5 Routing operation

Fig.5.1 illustrates the routing operation in Semantic Routed Network. Message delivery is

achieved by forwarding (routing) messages among semantic routers which are connected to each

other. In this figure, the semantic routers are indicated as small dark circles and physical

destinations (index nodes) as squares.

A portion of a semantic routing table for router “R4” is shown at the right side. The routes/links

between peer routers and index nodes are represented as next hop destination addresses in the

routing tables. For example, a uni-directional link between router node R4 to node index node

IN1 is represented by the first row in the routing table of R4, as shown in Fig.5.1. There can be a

bi-directional link (or two uni-directional links) between two routers, in that case the routing

table of each of these routers will have each other’s URI addresses. Similarly an index node will

156

at least have a link from index node to a router, so that an index node may send a message to that

“known router”. The index nodes may maintain a list of known routers, which serves similar

function as the routing table but only for outgoing messages which originates from that index

node. These entries in the semantic routing tables and known router lists represent the links

between the respective nodes. Henceforth by “links/routes/edges” we will always means these

entries. A router may connect to either another router or an index node, but an index node will

always connect to only routers. Here we have only shown a few index nodes connected to each

router, however in a real system many more index nodes will be connected to a single semantic

router, than what is shown in this figure.

Fig.5.1 Semantic Routed Network as a distributed index system

Index Node (IN)

Semantic Router (R)

Legend

IN1
IN2

D1
D2

IN3 D3

Key Destinations

R5 D4

R3 D5

Semantic
Routing Table
of Router R4 (ii) Index entry search

request with query’s
semantic descriptor ’K’

(iii) Response from
index node

User searching an object

(i) User query (iv) Results

Query processor

IN6

R2

R3
R1

R5
IN3

IN1

R4

IN2

Document server

IN2 = URI address of index

node IN2

R3 = URI address of router R3

157

Each router forward/route messages to other per routers or index nodes that can best handle the

message. The principle of semantic routing is similar to social networking which works as

follows:

Jim is looking for an expert on “processor architecture”, so he asks his friend Bill, who is a

computer engineer, for help. Bill forwards this request to his friend Tom who designs

processor chips. Tom calls Jim with an offer to help.

In SRN, each router is a like a person having a network of friends and associates (i.e. routers

connected to other routers). In this proposed system, a user can pose a search query (transaction

labeled as “i” and indicated as an arrow in Fig.5.1) to the query processor. The query processor

constructs a suitable search/query key “K” and submits an “index entry search request” message

with this key to any randomly chosen semantic router (arrow “ii” to R2). The message also

includes a similarity threshold value and the address of the document server as the message

originator address (so that the destination can respond to the document server). The significance

of the similarity threshold value is explained later. The search key represents the meaning of the

desired web page or document to the extent what the user can define. The query recipient

semantic router will forward the query by multiple hops, to the final physical destination (index

node IN6). In Fig.5.1, router “R2” accepts a message from the query processor and routes it to

router “R4”, which routes it to “R5”, and finally “R5” delivers the message to the index node

“IN6” which may have matching index entries. The index node IN6 will compare the similarity

between the message key and descriptors of all the index entries which are best matches and if

the compared values are greater than the message’s similarity threshold value, then it will send

the document ids from these selected index entries to the document server (transaction labeled

“iii”). The document server will then retrieve the documents and present them to the user (arrow

158

“iv”). The mediating query processor that initiated the search may decide to relax the similarity

threshold value to a certain extent, if sufficient responses are not received then the sender may

send additional queries with the relaxed threshold values.

The next hop destination to forward the query message is decided using a table lookup

mechanism (semantic lookup). For example, in Fig.5.1, semantic router “R2” receives a message

and finds its key “K” to be most similar to its semantic routing table row key “D4”. In this case,

this particular routing table row has a corresponding address belonging to router “R4”. This

address is either a cluster id or an URI. R2 carries out a DNS lookup look up with R5’s address

to ascertain R5’s IP addresses to forward the query message as the IP payload. In case there is no

routing table match, the query may be broadcasted to all addresses. In this manner the semantic

routing will operate on top of IP routing network.

As the semantic descriptors represent the meaning of the destination’s or router’s description and

sender’s intended target, messages are routed and delivered based on the similarity of meaning

(semantics) between index entry’s descriptor and sender’s intended target. Hence this message

delivery system is called as Semantic Routed Network.

5.1.6 Semantic routing table and their content

As index nodes takes care of the last leg of semantic routing to deliver the messages to index

entries (final virtual destinations), so the index nodes need to store the routes to all the index

entries (i.e. descriptors of all index entries and their memory addresses). Whereas, the physical

semantic routers need to store only the route information for the physical semantic routers and

index nodes in their semantic routing tables. Therefore the semantic routing table stores

descriptors and addresses of the physical destination nodes i.e., index nodes and other semantic

159

routers. This avoids the need to store addresses of a large number of virtual destinations in the

semantic routers and yet enables delivery of messages to the final virtual destinations (i.e. the

index entries).

5.1.7 Semantic routing table lookup mechanism

Semantic routing table look up involves comparing the semantic descriptor of the message

against all descriptors in the semantic routing table rows, and then identify the row whose

similarity value is the largest. A simple table lookup strategy is conceived where n comparisons

are made to identify the best matching row key, when there are n routing table rows. All these

similarity comparisons will use this descriptor comparison technique and the proposed

comparator architecture as presented in the earlier chapter. The pseudo-code for the semantic

routing table lookup algorithm is presented in Fig.5.2.

Fig.5.2 Semantic routing table lookup algorithm

IN1

IN2

D1

D2

IN3 D3

Key Destinations

R5 D4

R3 D5

Semantic Routing Table as a
specimen input to the algorithm

Extract destination descriptor key from message;
For each row in the routing table row, do {
 Compare the row key with the message to get the similarity value ;
 Store the current row number in a min-heap using the similarity value as the key ;
 }
 From the min-heap’s root node get the row number ;
 Using the row number extract the destination addresses from routng table;

Semantic routing table lookup algorithm

Output of the algorithm

is

Row # 4

Reflects the example
situation as in Fig.5.1

160

The algorithm operates on the semantic routing table (also shown in the same figure) and

generates the destination addresses of those nodes where the message should be forwarded to, as

the output. The complexity of this algorithm is O(n), where there are n rows in the semantic

routing table. The min-heap data structure always stores the minimum key in the root node

[144]. This data structure helps to identify the minimum value-key pair. Here we are using a

min-heap data structure instead of a simple minimum value storage register, because the heap

can be parallelized. This kind of semantic table lookup leads to greedy routing of messages in

the SRN, where messages are routed by a general sense of direction with respect to the current

routing node.

5.1.8 Notion of semantic space and greedy routing in SRN

To fully appreciate the significance of greedy routing in SRN and the associated challenges, we

need to understand how SRN relates to the notion of semantic space and the idea of greedy

routing in that space. Semantic space is a collection of points. Each of these points corresponds

to a composite concept. Thus the semantic space represents all possible composite concepts that

could ever exist. The distance between any pair of points represents the similarity of the meaning

of the corresponding concepts. We decided to represent the meaning of concepts by a sparse

tensor and the similarity between two concepts by the dot product of their tensors, as explained

in Chapter III. Therefore, the distance ssem-dist between the points in the semantic space can be

conceived as the modulus of reciprocal of the dot product sdotprd quantity minus 1, i.e. ssem-dist =

│(1/sdotprd -1)│. This means, when the dot product sdotprd is very small or 0, it leads to a very large

or infinite distance between points in the semantic space, and when sdotprd is 1, the distance is

vanishingly small. Thus this semantic space is distinct from the vector space in which the

161

meaning vector/tensor is defined. However the relationship defined by ssem-dist =│(1/sdotprd -1)│is

the mapping between points in these two spaces.

Each SRN node, which is either an index entry, index node and semantic router, has an

associated meaning, which is either the meaning of its content (when the node is an index entry),

or its specializations (in case of index nodes or routers). Therefore these SRN nodes can be

mapped on to the semantic space by positioning each node on a point that corresponds to its

associated meaning. When the nodes have similar meaning, they are closer in this space, other

wise they are long distance apart. Henceforth we use this map of SRN in the semantic space to

analyze and explain all problems and solutions. All diagrammatic representations of SRN in rest

this dissertation will be assumed to be mapped on this semantic space. The semantic routing

table lookup mechanism, as explained in the earlier section, leads to greedy routing in SRN in

this semantic space.

5.1.9 Overview of the SRN protocol stack

In SRN the semantic routing and IP (or cluster) routing will operate together. The SRN is

supposed to be implemented as a P2P network of semantic routers which is overlaid on top of

the IP (or cluster) network. The semantic routers are dedicated network nodes which redirects

message over the IP (or cluster) network. Once implemented over an underlying IP network, the

SRN protocol stack will look like Fig.5.3 [145].

162

Fig.5.3 Network protocol stack of the proposed SRN

The semantic routing table provides the mapping between semantic descriptor and URI

addresses, the DNS service provides the same between URI and IP addresses, whereas the IP

routing table maps IP address to a router’s interface.

5.2 Performance concerns and design imperatives

5.2.1 Determinants of performance

In distributed search engine using SRN, the search is completed only when the search query

percolates to all distant routers, as necessary, and finally reaches the intended destinations. In

routers, message processing takes time. The nodes that are too far away from the routers that first

received the query from user, will take time receive the search queries (messages) and thus the

search can take longer time to complete. But users can wait for only a certain time duration

within which the results will have to be returned. Many relevant matching document ids will not

be returned within that wait time window and they will not be available as results. This means

that that the search response time is directly related to end-to-end query routing response time in

the SRN. In addition, how routers are connected to each other is also important, because some

pattern of connections (SRN topology) will not be able to always successfully route a message to

Network Paradigm Protocol Layers Address Key
used

Mapping
(Performed by)

Semantic Routed
Network

SRN Layer
 Semantic

Descriptor
Semantic Descriptor to URI

(Semantic Routing Table)

Overlay Networking
Application Layer

(HTTP, SOAP)

URI

URI to IP

(DNS Service)

Traditional
Networking

Transport Layer

(TCP)

TCP Port

Network Layer

(IP)

IP address

IP to Router Interface

(IP Routing Table)

163

an intended destination. So search recall and precision as defined in section 2.2, Chapter II, also

depends on the success of message routing.

5.2.2 Design imperatives

To enable faster searching (lower search response time), the query message should be routed to

the final destinations as quickly and as successfully as possible. This will depend on the how the

routers are connected, i.e. SRN topology and how next hop destinations are actually decided, i.e.

routing method – either pure greedy routing or indirect-greedy routing. Thus in SRN, the search

problem becomes message routing and topology construction problem. In the next section we

delve into the details of this problem.

5.3 Choice of network topology

Several network topology options are available, but not all suitable for SRN. To help choose a

suitable network topology, we first identify the requirements, then evaluate the available options

and finally choose the right topology for the SRN.

5.3.1 Network topology requirements

Search performance is directly affected by choice of topology and routing method. Therefore

network topology and routing method should be chosen carefully based on the following

requirements. The chosen topology should:

(A) facilitate search over large number of index entries while maximizing routing (and

search) success rate and minimizing the average time required to route messages to final

destination (and get search results).

164

(B) minimize number of messages arriving at any particular SRN router node. Message

processing load should be preferably spread evenly among all nodes to avoid congestion.

(C) minimize message overhead (number of messages generate per query) to avoid

overloading the network.

(D) minimize number of routing nodes required to build a SRN.

(E) minimize number of rows that are required in the semantic routing tables to attain a given

level of search success rate for a given number of destinations to be searched. Large

number of rows in routing table means more comparisons and slower routing decisions.

On the other hand searching among a large number of index entries and achieving good

search performance require more destination addresses in the routing table. Therefore

optimizations are necessary to tackle this tradeoff situation;

(F) have sufficient number of routes (i.e., addresses in the routing table) available to route

messages using greedy routing algorithm. Routers can only have a local knowledge of the

network that is immediately around it because they can store only limited number of

routes in their routing tables. We call a topology routable if using the greedy routing

paradigm, the routers are able to route the message to the intended destination with high

degree of success, using limited local knowledge of the topology and a general sense of

direction.

5.3.2 Network topology options

Here we discuss six categories of network topologies to evaluate them. These are presented

below [15].

165

5.3.2.1 Hierarchical networks with uniform node degree

Fig.5.4 shows a typical hierarchical network, where the destination nodes are shown as squares,

and router nodes are shown as circles, with links between them. This kind of network is

hierarchically organized where nodes are strictly grouped into non-overlapping sub-networks

and sub-networks are grouped into higher level of sub-networks. Nodes having similar addresses

are put into a common group (sub-network). The common portion (e.g. IP address prefix) of all

node or sub-network addresses in a group becomes the address of that group (sub-network), and

the addresses of all peer nodes or sub-nets in that group falls under the scope of the sub-network

address. Each group has a node which acts as the message router for the group. This router node

mediates the message exchange between peer nodes or sub-networks and serves as the gateway

to and from the sub-network to the external world.

Fig.5.4 Hierarchical network with uniform degree

The highest level router is shown at the center of the network, and lowest level routers are at the

periphery. Lowest level routers only connect to the destinations (i.e. destinations can only

connect to the lowest level routers). A representative message path is shown in the figure with a

broken line in Fig.5.4. To support a hierarchical network of “N” destination nodes, (logkN)

Message Source

Destination

166

hierarchical levels are needed, where “k” is the degree of the router nodes (assuming all routers

have similar degree). Therefore the worst case message path length in terms of number of hops

necessary to reach a node from another, is 2*(logkN). The average search path length has value

that is of similar order of the worst case message path length. The routing table size is of order

O(k+1) = O(k), because each router can route the message to either k nodes in its sub-network or

to the external world. The main weakness of this topology is that most messages have to pass

through the central hub nodes, thereby causing higher message traffic which increases the chance

of congestions in those nodes. Hierarchical networks are routable when greedy routing method is

adopted.

5.3.2.2 Hierarchical power law networks

Fig.5.5 presents a typical hierarchical power law network. The degree distribution obeys an

asymptotic power law (at large k values): P(k) ≈ k-λ, where P(k) is the fraction of nodes that has

degree k, and λ is a constant and 2 < λ < 3. There are very few hub nodes that have very large

degrees (number of links/edges connected to a node), and large number of hub nodes having

smaller degrees. Hierarchical power law networks are also routable when we use greedy routing

method. This also being a hierarchical network, the destinations (shown as squares in Fig.5.5)

can only connect to the lowest level edge routers.

167

Fig.5.5 Hierarchical power law network

The average search path length is much smaller than the one for hierarchical network with

uniform node degree. Whereas the size of the routing table size is in order of O(kmax), where kmax

is the maximum node degree in this power law network.

5.3.2.3 Problems in implementing hierarchical topology in SRN

A balanced tree is the most optimum hierarchical network which has least tree depth and least

average path length (Fig.5.6). To construct a balanced tree hierarchical network, the address

space has to be partitioned suitably and allocated among the sub-networks. It is necessary that

the number of sub-networks and nodes are equally distributed among the peers (children) at the

same level. To achieve this allocation, the maximum number of routers and destination nodes

that may join the network in future has to be known beforehand and a method to partition the

address space should be available. For IP addresses, the address space partitioning and allocation

is not a problem, as the address key is a discrete numerical value and the address space is finite.

This means that address range can be defined (i.e. all addresses can be enumerated) and

partitioned as required.

168

Fig.5.6 Balanced hierarchical tree

However with semantic descriptor as the address key, address space partitioning and allocation

among sub-networks to make a balanced tree becomes a problem. This is because of several

reasons. Semantic descriptors are not discrete numerical values and the range of semantic

descriptor space can not be defined (i.e., all possible values can not be enumerated) and

partitioned. Therefore there is no way to uniformly allocate destinations under sub-networks to

generate a balanced tree. In addition, the SRN is likely to grow as more nodes are added, and

there will large numbers of them at any point of time. Hence, there is no way of knowing

beforehand the distribution of these descriptors in the entire semantic descriptor space. This

means that we can not plan and implement a balanced hierarchical network organization. Trying

any arbitrary address space partitioning and address allocation scheme would lead to an

unbalanced tree (Fig.5.7).

Fig.5.7 Unbalanced hierarchical tree

Trying to balance the tree on the fly as more nodes gets added is not feasible, as balancing

extremely large trees are computationally expensive and during such balancing operation the

169

network will remain nonfunctional. So a balanced hierarchical network organization is not

feasible for SRN.

5.3.2.4 Random networks with uniform node degree

In a random network, routers are randomly connected with each other and destinations are

randomly connected (assigned) to the routers (Fig.5.8). This randomness achieves uniformity in

node distribution to avoid problems that lead to unbalanced trees. Thus use of a random network

limits the average path length and search path length (both are monotonically related when

shortest paths are identified). All nodes might have uniform degree (or normally distributed

around a finite average value), hence order of routing table size is O(k). However, these

networks have extremely low clustering coefficients [117]. Random networks are not routable

when greedy routing method is used. This is because there is no guarantee that routes that are

available, will be found. This was explained in section 2.10.4.3, Chapter II.

Fig.5.8 Random network with uniform degree

5.3.2.5 Random power law networks

In these random networks the nodes have degree distribution that obeys an asymptotic power law

(at large k values) (Fig.5.9). The average path length is in order of O(loglogN), which is

170

extremely small for even a very large N. The size of the routing table size is in order of O(kmax),

where kmax is the maximum node degree in this power law network. Random power law

networks are not routable when greedy routing method is adopted for same reasons explained

above.

Fig.5.9 Random power law network

5.3.2.6 Lattice networks

Fig.5.10 shows a typical 2 dimensional lattice network. In lattice networks the nodes are

connected to only nearby neighbors. This is a feasible topology for SRN. The nodes (routers or

destinations) having a specific attribute/metric (semantic descriptor in the case of SRN) is

positioned at specific points in the graph. In case of SRN, the distance between the nodes

represents the similarity between the node’s semantic descriptors. This means that, nodes will

connect to other nodes which have similar attributes (similar semantic descriptors).

171

Fig.5.10 Lattice network

Fig.5.11 Average path length distribution

These networks have high clustering coefficient (probability that two nodes are connected if they

have a common peer) and large average path lengths. Fig.5.11 shows the distribution of the

characteristic path length of lattice network in comparison to that of the random network. It is

possible to uniformly distribute index entries to the routers based on their semantic descriptors in

a lattice network. The average search path length is in order of O(N1/D), where D = k/2, and k is

the node degree. This is moderately large for a very large N. The size of the routing table size is

in order of O(k). Lattice networks are routable when greedy routing method is applied.

0

0.2

0.4

0.6

0 10 20 30
Distance (hops) between Nodes

N
o

rm
a

liz
e

d

F
re

q
.

Random Connection
Mix of Random & Lattice
Lattice

172

5.3.2.7 Small world networks (SWN)

This topology is shown in Fig.5.12. This network is generated if a very small fraction of nodes in

a highly clustered lattice network randomly connect to nodes which are far away [118], [119].

Even though this topology has high clustering coefficient property of lattice networks, but its

average path length is small enough and quite similar to that of random networks. When a high

clustering coefficient value is maintained, this topology is considered routable for all practical

purposes because most of the message will be able to get successfully routed to the destinations

when a indirect-greedy routing method is used (satisfies requirement (F)). The average search

path length is in order of O((1/l1/D)(logkN)1+1/D), where D = k/2, and k is the node degree and l is

the number of long distance links per node. This is quite small for a very large N. The size of the

routing table size is also small, in order of O(k+((logkN)2).

Fig.5.12 Small world network

5.3.3 Performance comparison of topologies and choice for SRN

To assess their suitability for SRN, these six classes of topologies are evaluated against six

criteria (Table 5.1) [145],[146]:

1) routability;

2) routing table size;

173

3) implementability;

4) probability of congestion at semantic routers;

5) number of routers necessary to build the topology; and

6) average path length.

Here routablity of a network is judged by its ability to support greedy routing or indirect-greedy

routing. Greedy routing involves simple rules and does not require prior identification of each

and every shortest path route between each pair of nodes. This enables a very small routing table,

where only the route information to immediate neighbors needs to be maintained. This is

because the number of rows in the routing table is in the similar order as router node’s degree.

On the other hand, large node degree means large number of routing table rows which makes it

unpractical, so we need smaller routers with smaller number of routing table rows. A large

routing table size is not desirable for SRN because maintaining a large semantic routing table

may not be feasible. For indirect-greedy routing, as mentioned in section 2.10.4.5, Chapter II, the

router nodes need to maintain only a few additional shortest path routes to a relatively small

number of nodes which are not immediate neighbors but located at its vicinity. Therefore routing

table size in this case is little larger than that of the plain greedy routing case.

The implement-ability is judged based on the ease of allocating nodes under routers and subnets

as described earlier (i.e. ease of organizing the network). Whereas, the intensity of congestion is

assessed by the probability that a message has to pass through a particular hub which is likely to

be the most congested one.

These congestion probability figures are higher for hierarchical and power law networks because

a large number of messages have to pass through a very small number of hubs. For lattice and

174

small world networks, the traffic is uniformly distributed among all hubs equally so the

possibility of congestion in any particular hub node is lower. Small world networks also require

less number of routers to interconnect a given number of search engines. Empirical simulation of

small world network (SWN) [118], [119] indicated that average path lengths of SWN and

uniform random topologies (the best case) are comparable. This comparison in Table 5.1, clearly

shows that small world topology is the best choice as it has a good combination of all required

properties. It is evident that the small world network topology satisfies requirements (B), (C) and

(D). Therefore we have chosen Small World Network topology for our SRN design.

175

Table 5.1 Comparison and suitability of network topologies

Criteria

Topology

Routable ?
(Supports greedy

routing ?)

Routing table size Implementable
(balanced ?)

Congestion
(probability that
message passes
most congested

router)

Number of routers
needed

Average search path
length

(response time)

Suitable for
SRN ?

Hierarchical
with uniform
degree

Yes Very small

O(k)
No

(unbalanced)

Highest

1
)1(*

*)1(

Nr

Nr

Lower bound (for balanced
tree) is

2

loglog

1

*
k

N

k

N
kN

kN

i

i

No upper bound (for
unbalanced tree)

Lower bound (for balanced
tree) is

Nlog*2

Upper bound (for
unbalanced tree) is N

No

(balanced tree
not possible)

Hierarchical
power law

Yes Large

O(kmax) No
(unbalanced)

Highest

1
)1(*

)(
1

max

max

Nk

kN

Lower bound is

)(1
)1(

1
* NO

kP
N

No upper bound

Lower bound is
Nlog*2

Upper bound is N

No
(balanced tree
not possible,
large router)

Random No Very large

O(N)
(all routes needs to

explicitly programmed)

Yes

Extremely small

N

N)1log(log

Smaller

k

N

rk

N

)(

Small
 NlogO

No

(not routable)

Random
power law

No Very large

O(N+ kmax)

(all routes have to be
explicitly programmed)

Yes
(balanced)

High

Larger

)(O N
Smallest

 NloglogO
No

(not routable, large
router)

Lattice Yes Very small

O(k)
Yes

(balanced)

Small Smaller

k

N

rk

N

)(

Large

2

)(O 1

kD
N D

No

(large path length)

Small world Supports indirect-
greedy routing when

high clustering
coefficient

Small

 Yes
(balanced)

Very small

N

k

N

rlk

)(

Smaller

k

N

rlk

N

)(

Small

)11(1

logO DD Nl
Yes

N = number of index entries, k = number of index entries and routers registered by each router in networks with uniform router node degree, kmax = number of index
entries and routers registered by the biggest router in power law networks, r = number of routers registered to each router, l = number of long edges (shortcuts) per router
in small world topology, P(k) is the power law distribution (e.g. Zipf distribution), D = dimension of the lattice = k/2, , 1 < l << r << N, All logarithms have base k.

176

5.4 Summary

When the index entries are systematically organized in a distributed search engine index system,

then it is possible to save number of servers that are necessary to build the system. This scheme

needs a special network to redirect the search queries to the particular index node which is most

likely to contain matching index entries. An overlay Semantic Routed Network (SRN) which can

route messages based on their meanings can deliver queries to the destination index node. This

SRN is the arrangement of peer-to-peer connected semantic routers and index nodes. In this

chapter, we explained how such overlay network will be placed in a distributed index system and

illustrated the principle of meaning based semantic routing. We also presented the high level

design of this overlay network and explained why we would chose to build this SRN to have

Small World Network topology. When the SRN is organized as a small world network topology

then search response time is minimized and search success rate is maximized.

177

CHAPTER VI

SELF ORGANIZATION OF THE INDEX SYSTEM

Semantic Routed Network (SRN) should be organized as a small world network topology.

However there are several challenges regarding - how to implement such topology in a practical

SRN. Furthermore, adoption of a small world network topology in the SRN does not solve all

problems, several additional solutions are necessary to enable optimum operation of the SRN. In

this chapter we examine these practical problems and propose algorithmic solutions to address

them. We begin by explaining how small world topology may be applied in a SRN, and then we

present mechanisms that are necessary to optimize the SRN.

6.1 Generation of small world topology Semantic Routed Network

6.1.1 Basic mechanism

A small world topology in a SRN is generated when there is a high level of clustering (i.e. high

local clustering coefficient value) among neighboring semantic routers similar to lattice topology

and small number of long connections (routes) among distant ones similar to random network

topology. Here we assume a SRN representation in the semantic space, as explained in section

5.1.8, Chapter V. High clustering among neighbors means that there is lot of short links among

the neighboring nodes which have similar contents or specialization in terms of meanings. This

small world network topology is generated when two conditions are simultaneously satisfied

[119], [146]. The first condition requires that the routers and index nodes should be homophilic

(have preference of those who are like themselves). So that index nodes and semantic routers

form links with other semantic routers whose specializations are similar. Whereas, the second

178

condition requires that routers have simultaneous memberships in multiple diverse groups. In a

group, all member routers have links to each other, i.e. have key-address mappings of each other

in their routing tables (for routers) or addresses in the known router lists (for index nodes).

The homophilic behavior is materialized by routers’ preference to register only those routers and

index nodes in its routing table, whose descriptors are similar to one of its own specialty (or

interest) descriptors. This homophilia creates a regular lattice network, where the short edges

connect to immediate neighbors having similar specialties/interests. This behavior results in high

local clustering coefficient. In addition, a small number of dissimilar descriptors (specializations)

are assigned to a few routers, so that each of those routers can become member in multiple but

small number of dissimilar groups at the same time. Membership in multiple diverse groups will

effectively create the long edges connecting routers that are semantically far away (i.e. have

dissimilar descriptions/interests). Membership to a very limited number of diverse group ensure

that this network will have a small Watts and Strogartz generation parameter p [119].

Alternatively, the same effect can be created by permanently connecting (bonding) together two

or more routers having a dissimilar specialties. To understand this aspect, consider the graph

shown in Fig. 6.1 [15] which is representation of SRN as graph/network (collection of nodes and

edges) in semantic space.

Each router is represented as a single or multiple nodes (shown as grey circles in Fig. 6.1) in this

graph depending on the number of interest descriptors assigned to this router. Routers having

multiple interest descriptors are shown as multiple nodes which are connected by long edges. For

example, router R8 has two interest descriptors and therefore it is represented by two nodes each

of one belonging to two different groups which are farther away in the space. The same is true

for R2. The relative position and proximity among the router nodes are based on how similar

179

(semantically closer) their interest descriptors are. Due to the greedy routing mechanism

described earlier, a message is always routed in the general direction towards the final

destination with respect to the forwarding router.

Fig. 6.1 Small world network operations

6.1.2 Small world operation in SRN

The operations of a small world topology SRN can be understood if we consider the example in

Fig. 6.1. A message can arrive at a router (“R8”) from another router (“R7”) based on one of its

descriptions/interests (“D1”) and then it may be forwarded to another peer router (“R9”) whose

description (say “D2”) is quite dissimilar (and far away) from the initial description (say “D1”).

This is equivalent to a traversal over two short edges (R7 to R8 and R8 to R9), corresponding to

two physical hops (heavy short straight arrows) and a long edge (no physical hops) in between

(heavy curved arrow). Two phenomena: (1) semantic routing; and (2) the proposed router

membership behavior working together effectively creates a small world network of semantic

routers. Earlier, we had presented the semantic routing table lookup mechanism that materializes

R5

R2 R1
R2

R8

R8

R9

R6

R7

 R4 R3

180

semantic routing. Whereas, in the next section, we explain the mechanism which implements the

needed membership behaviors of routers and index nodes.

6.1.3 Necessary algorithms for the self organizing mechanism

The self-organization mechanisms are embodied as individual behaviors in part of the routers

and index nodes. These mechanisms enable self-organization of a small world topology SRN.

Over time, the collective behavior of all these nodes improve (or retain) the small world

properties of the network as more routers, index nodes and index entries join the network. These

behaviors are presented below.

6.1.3.1 Router behavior

A router periodically identifies new routers that can be better matching group members and

develops bidirectional connections with them. To develop a link, one router request the other one

to registers its key-address (semantic descriptor-URI) pair in the other router’s semantic routing

table. Similarly a router, which we call as the “seeking router”, also seeks out index nodes that

have descriptor keys that are similar to its interest descriptors. Once a new interesting index node

has been identified, the seeking router requests the other router, which we call as the “incumbent

router”, that currently has registered the given index node’s address in its routing table, to

register the index node with the seeking router (i.e., its routing table). If that incumbent router

perceives that the seeking router to be a better matching one than itself, then the incumbent

router may agree to shift the registration, i.e. deregister from the incumbent router and register to

the seeking one.

To achieve the above, routers periodically send “router search request” and “index node search

request” messages, one for each interest description, along with a similarity comparison

181

threshold to identify peer routers and index nodes with similar interest descriptors. If the routing

table has vacancy, then the router progressively expands its horizon by sending queries with

smaller similarity threshold value to allow more dissimilar index nodes to get registered. A

router send these requests repeatedly with a given time period, which we call “router period”.

This mechanism generates the short edges in a lattice formation, whereas the multiple interests

of routers implicitly generate the long edges. These algorithms are presented below in Fig. 6.2.

Fig. 6.2 Pseudo code of semantic router behavior

This kind of exploration and discovery of similar index nodes and routers, adds more rows to a

router’s routing table. A routing table is provisioned for a limited number of rows. So when all

// Routers periodically initiates search.
Every router period clock cycles do {
 For each of its own interest descriptor, do {
 Decrement router search similarity threshold and index node search similarity threshold values ;
 Send router search request message with its own descriptor & router search similarity threshold ;
 Send index node search request message with its own descriptor & index node search similarity threshold ;
 }
 }

//Action when a response to a router search request message is received
When a response to router search request message is received, do {
 If needed, compact own semantic routing table;
 Insert the key-address pair of the responding router in own routing table;
 Request the responding router to insert own key-address to the responding router’s table;
 }

//Action when a response to an index node search request message is received
When a response to index node search request message is received, do {
 If needed, compact own semantic routing table;
 Insert the key-address pair of the responding index node in own routing table;
 }

//Action when a router search request message is received
When a router search request message is received, do {
 Compare similarity of all own interest descriptor against the sender’s interest descriptor;
 If the similarity is greater than the threshold, then do {
 Respond back to the sender;
 }
 }

//Action when a request to insert a key-address pair is received
If needed, compact own semantic routing table;
Insert the key-address pair of the requesting router;

182

routing table rows are filled up, the router may compact the routing table and reclaim more row

space. This mechanism is explained in details in section 6.3.

6.1.3.2 Index node behavior

Similarly the index nodes periodically identify better matching routers to register itself, and

when it finds one, it requests for a shift of registration to those routers in the similar lines as

mentioned above. To initiate this, index nodes also send “router search request” messages with a

certain periodicity called “index node period”. When a router responds back it verifies which

router, the newly identified one, or the incumbent one, to which it is already registered, is a

better match to its own interest descriptor. If the newly discovered router is a better match then,

it requests to the new router to registers itself to the newly found router’s routing table. Once that

is successful it deregisters from the incumbent router’s routing table.

Similarly on behalf of each index entry in its own index table, the index node also searches for

other index nodes that are better match for the given index entry. Upon finding a better matching

index node, it negotiates with that other index node (for space in its index table) and if possible

transfers the given index entry to that better matching index node. In addition, for an index entry,

the index node sends “index node search request” messages to identify a more suitable index

node that might host that particular index entry. These algorithms are presented below in Fig.

6.3.

183

Fig. 6.3 Pseudo code of index node behavior.

6.1.3.3 SRN message protocol

The “index entry search request” and “index node search request” messages are used to search

for index entries and physical index nodes respectively. The sender includes a similarity

comparison threshold value in these messages. In case of the “index entry search request”

message, the destination is an index entry, so the index node compares the message key against

all the index entry’s descriptors that are stored in the index node. If the comparison value is

greater than the threshold, then the index node returns the index entry’s URI address to the

// Index nodes periodically initiates search to find similar routers
Every node period clock cycles do {
 Decrement router search request similarity threshold value;
 Send router search request message with its own descriptor & router search request similarity threshold;
 }

//Action when a response to a router search request message is received
When a response to router search request message is received, do {
 Request the responding router to insert own key-address to the responding router’s table;
 }

//Action when a response to an index node search request message is received
When a response to index node search request message is received, do {
 Compare similarity of all own interest descriptor against the sender’s interest descriptor;
 If the similarity is greater than the threshold, then do {
 Respond back to the sender;
 }
 }

// Index nodes initiates search to find suitable index node for an index entry
For all index entries, for every index entry period clock cycles do {
 Decrement index node search request similarity threshold value;
 Send index node search request message with the given index entry’s descriptor & similarity threshold value;
 }

//Action when a response to an index node search request message is received
When a response to index node search request message is received, do {
 Request the responding index node to register the given index entry;
 If the registration to other index node is successful, deregister the index entry from own index table;
 }

//Action when an index node search request message is received
When a response to index node search request message is received, do {
 Compare similarity of all own interest descriptor against the sender’s index entry’s descriptor;
 If the similarity is greater than the threshold, then do {
 Respond back to the sender;
 }
 }

184

sender of the request or to an alternate address as specified in the message. For the “index node

search request” the destination is the index node itself, therefore the index node compares the

message’s descriptor against all of its own interest descriptor. If the comparison value is greater

than the threshold, the index node returns its own URI address to the sender or to an alternate

address as specified in the message.

6.1.4 Adding index entries

A method is needed to add index entries so that the index system may grow. This can be

achieved by carrying out the following steps. First the object (URL of the document or web page

URL) has to be put it in the document server, then a semantic key for the document has to be

generated by a method discussed in earlier chapter, and then the document id and the semantic

descriptor (i.e. the index entry) needs to be submitted to any arbitrary index node. Using the

SRN’s search capability, the recipient index node will identify a more suitable index node which

is interested in hosting the object’s key-address pair permanently in its index. We already

discussed in the earlier sections, how index node implements such behavior.

6.2 Programming shortest paths in semantic routing tables

6.2.1 Motivation

The presence of shortest route in a small world topology does not ensure that a message will be

routed through it during semantic routing (greedy routing). For example, in the small world

network as shown in Fig. 6.1, though a shortest path via router number R1R2R6 (shown by

thin broken lines) exists but in absence of any additional measure, the semantic routing will

direct messages through the longer path R1R3R4R5R6 (shown by heavy broken lines).

To ensure that messages follow the shortest routes, these paths need to be programmed into

185

semantic routing tables using a technique which is inspired by the Open Shortest Path First

algorithm (OSPF RFC 1247). This is needed to satisfy requirement (A). However our technique

has several difference compared to OSPF, regarding how routing tables are managed and how

table lookups are carried out.

6.2.2 Separate distance table and semantic routing table

To aid generation of the routing table which includes these shortest paths, each router maintains

neighboring router distance tables as shown in Fig. 6.4, in addition to a semantic routing table.

Fig. 6.4 Generation of routing table entries from distance table

This distance table has three columns. The first column is for the URI address of a destination

node, which is either an index node or router. The second one for the router’s URI address which

is the destination of the next hop that would finally take the message to the destination whose

URI address is in the first column. The third column is for the hop distance in terms of number

of hops necessary for the message to reach the destination (as in the first column) through the

given route, whose first hop destination is given by the second column. The hop distance (third)

Creates corresponding
new row in routing

table

Relevant Portion of the network

R11

R12

R13

IN12,1

IN12,2 IN12,3

R10

Distance table of R12

Key Dest Hop
Distance

IN12,1 IN12,1 1
IN12,2 IN12,2 1
IN12,3 IN12,3 1
R13 R13 1
R11 R11 1

New row got
added

R10 R11 2

Key Dest

D12,1 IN12,1
D12,2 IN12,2
D12,3 IN12,3
D13 R13
D11 R11

Routing table of R12

D10 R11

Legend

R12 = URI address of router R12

IN12,1 = URI address of index
 node IN1 attached to R12

186

column value gives the shortest distance, required to reach the final destination. The second

column of the distance table has similar content as the second column of the routing table. In the

example in this figure, in the newly added row of the distance table of router R12, the first

column contains the URI address of node R10 (presented as “R10” in the figure), the second

column contains the URI address of R11, which is the destination of the first node in the route

from the current node R12 to R10 through R11 (i.e. the path R12R11R10). The URI

addresses in the first column of the distance table acts as the key for lookup purpose in the

distance table. For faster lookup with O(1) order of time, this distance table is implemented as a

hash table where instead of URI addresses, their hash values are used as the key.

In semantic routers, the distance table is maintained separately from the routing table unlike as in

IP routers. This separation allows compaction of semantic routing table, whereas distance table

is allowed to remain as it is. During compaction of routing table, rows are merged under a

common key to reduce the number of routing table rows. But distance table can not be

compacted as it will cause hazards in the shortest route identification operation in the distance

table. The shortest route identification mechanism is explained in the section 6.2.5 and the

compaction of routing tables is explained in the section 6.3.

6.2.3 Generation of semantic routing table

Whenever a new distance table row is created, a corresponding row is also created in the routing

table using the semantic descriptor of the node whose URI address (from the first column of the

distance table) and the next hop destination’s URI address (from second column in the distance

table) as the next hop destination address for the destination column of the routing table. This is

illustrated with an example in Fig. 6.4. In this example router R11 after having constructed its

initial distance table with the topology information about its immediate adjacent routers R10 and

187

R12, sends all the new rows in a distance update message to router R12. Router R12 creates a

new row in its distance table based on the content of this update message. By this way router

R12 gets the topological knowledge that to send a message to R10, it has to be routed through

router R11. To illustrate the operation, here we considered the possibility when R11 initiates

messages, but other possibilities are also possible.

6.2.4 Correspondence between distance table and routing table

To avoid duplication of information (URI addresses) in distance and routing tables and to

simplify simultaneous updation of both tables, the index node and router node addresses will be

maintained in a separate address list (Fig. 6.5).

Fig. 6.5 Actual implementation of distance and routing table

The second columns of both distance and routing tables will contain pointers to those locations

in the address list. When an address is inserted in any of these tables, it means that the address is

Table Abstract View of table after compaction

Distance Table
Key Dest Hop

Dist
IN12,1 IN12,1 1
IN12,2 IN12,2 1

R10 R10 2
IN10,1 IN10,1 3

Routing Table

Key Dest

D12,1 IN12,1

D12,2 IN12,2

D10 R10 IN10,1

Distance Table

Table Abstract View of table before compaction

Key Dest Hop
Dist

IN12,1 IN12,1 1
IN12,2 IN12,2 1

R10 R10 2

IN10,1 IN10,1 3

Distance Table Routing Table

D12,1 IN12,1

D12,2 IN12,2

D10 R10

D10,1 IN10,1

Key Dest

Actual Implementation

Adr i
Adr i +1

Adr 1

Address List

R10

IN10,1

Key Dest Hop Dist

IN12,1 IN12,1 1

IN12,2 IN12,2 1

R10 P_Addr i 2

IN10,1 P_Addr (i+1) 3

Distance Table Routing Table

Key Dest

D12,1 IN12,1

D12,2 IN12,2

D10 P_Addr i P_Addr (i+1)

188

inserted in the address list and pointers to this address list location are inserted in both tables.

When an address is updated in any of these tables, it means that the address is only updated in

the address list, with no change in the tables.

However for sake of simplicity we will show the distance table to contain index node and router

addresses instead of their address list location pointers. Routing table rows may contain multiple

destination columns after routing table compaction. This aspect is explained in later sections.

Due to such compaction operations, the keys in corresponding rows in the distance and routing

table rows may be different, but that does not create any problem. In Fig. 6.5 we have shown

sample tables before and after compaction along with their actual implementation. In Fig. 6.5,

the last two rows of the distance and routing tables before compaction, has different node keys

and destination addresses. After compaction, the last two rows of the routing table got merged in

to one single row having one descriptor key and two destination addresses.

6.2.5 Identification of shortest paths

The shortest paths in the distance table get recorded through a gradual process where each router

shares its distance table contents with its neighboring routers and updates its own distance table

as it gets to know the distance table contents of its neighbors. We start this algorithm with an

initial state where each router only has a minimal distance table which has rows having the

adjacent router URI addresses as keys, hop distance as 1 and the adjacent routers URI address in

the third column. Periodically, each router sends out the contents of this distance table to all

other adjacent routers using a distance update message. Only those distance table rows which

have been updated recently are sent in the update message. These update message are sent using

URI address as the message address key, that means the underlying IP network is used for this

purpose not the SRN.

189

For every distance table row received in the update message, a router uses the key from the first

column of this row to look up its own distance table and check whether the next hop router URI

address sent in the update message offers a shorter route than the one that was recorded earlier in

the existing distance table. If a shorter route is available then the distance and the URI address

(second and third column) of the router’s distance table is updated using values sent by the

distance table row in the update message. Gradually, in this manner, the existing shortest paths

are incorporated in the routing tables. This distance table update operation is illustrated with an

example (Fig. 6.6, Fig. 6.7).

Fig. 6.6 Updation of distance table

Initial Distance
Table of R12

Key Route Hops
IN12,1 IN12,1 1
IN12,2 IN12,2 1
R11 R11 1
R13 R13 1
R14 R14 1

Initial Distance
Table of R11

Key Route Hops

IN11,1 IN11,1 1
IN11,2 IN11,2 1
IN11,3 IN11,3 1
IN11,4 IN11,4 1
IN12 R12 1

Distance Update
Message to R12

 (Msg1)
Key Route Ho

IN11,1 IN11,1 1
IN11,2 IN11,2 1
IN11,3 IN11,3 1
IN11,4 IN11,4 1

Distance table of
R12 after Msg1

IN11,1 IN11,1 2
IN11,2 IN11,2 2
IN11,3 IN11,3 2

Key Route Hops
IN12,1 IN12,1 1
IN12,2 IN12,2 1
R11 R11 1
R13 R13 1
R14 R14 1

IN11,4 IN11,4 2

R11 R4

R6

R11

R12

R14

R13

R15

Msg 1

Msg 3

Msg 2

Msg 4

IN11,1
IN11,2

IN11,3 IN11,4

IN13,1
IN13,2

IN13,3

IN15,1

IN15,2

IN15,3

IN14,3

 IN14,2

IN12,2

IN12,3

IN12,1

IN4,2

IN4,3

IN4,1

Rows are added
due to Msg1

Information about new rows
are send in the Msg1

Relevant portion of the SRN

Distance table updation process

190

In the network as shown in Fig. 6.6, R11 has two descriptors and therefore it is shown to have

two nodes with a long edge between them, in two locations, one at the left of R4, another on top

of R12. Here we assume that initially, an uni-directional link exists from R12 to R14 and from

R11 to R4. Router R11 sends update message Msg. 1 to router R12. After getting Msg. 1 and

updating its distance table R12 sends distance update Msg. 2 to router R14, which in turn sends

Msg. 3 to R4.

Fig. 6.7 Identification of shortest path

Fig. 6.7 shows the situation that, after getting Msg. 3, router R4 makes an entry about router R11

in its distance table. The impact of these messages (Msg.1 to Msg.3) on the distance tables at

R14 and R4 has been shown in Fig. 6.7. R11 also sends a distance update Msg. 4 directly after

R4 had made an update based on Msg. 3. This particular message helps R4 to find a shorter route

towards router R11 and index nodes IN11,1, IN11,2, IN11,3, IN11,4.

Distance Table of R4
after Msg4

Key Route Dist
IN14,1 IN14,1 1

R6 R6 1
IN14,1 IN14,1 2

R11 R11 1

IN11,4 IN11,4 2

Initial Distance Table
of R4

Key Route Dist

IN4,1 IN4,1 1
IN4,2 IN4,2 1
IN4,3 IN4,3 1
R14 R14 1
R6 R6 1

Key Route Dist

IN4,1 IN4,1 1

R6 R6 1
IN14,1 IN14,1 2

R11 R11 3

IN11,4 IN11,4 5

Distance Table of R4
after Msg3

Initial Distance Table
of R14

Key Route Dist
IN14,1 IN14,1 1
IN14,2 IN14,2 1
IN14,3 IN14,3 1

R4 R4 1
R15 R15 1

Distance Table of
R14 after Msg2

Key Route Dist
IN14,1 IN14,1 1

R15 R15 1
IN12,1 IN12,1 2

R11 R11 2

IN11,4 IN11,4 3

191

To introduce new routers or index nodes in the network, they are bootstrapped with a small

number of router key address pairs in their distance tables. The new nodes start participating by

sending update messages to the routers they know.

6.2.6 Programming shortest paths in semantic routing tables

Due to the correspondence between the distance table and routing table, when the distance table

gets updated (which means updating the address list location) with a shortest path, this shortest

route also gets programmed in the semantic routing table.

6.2.7 Difference in table lookup speeds in distance and routing tables

Routing table lookups need to be carried out at high speeds, to cater to high message traffic rate.

Whereas the distance table update is a much slower process requiring slower table lookup

speeds. Thus routing table definitely needs a mechanism to reduce the number of key

comparisons (and number of table rows), but distance table can still be implemented by

traditional hash table based techniques.

6.3 Compacting the semantic routing table

6.3.1 Motivation

The number of descriptor (key) comparisons required to carry out a semantic routing table

lookup depends on the number of routing table rows. The descriptor comparison is fairly

computation intensive, hence there is a motivation to limit the number of rows in the routing

table. On the other hand the routing table has to accommodate a large number of destination

routes to have superior routing success and response time. There is a way to minimize number of

rows while storing more destination addresses in the routing table. This is done by allowing

192

multiple destinations in each routing table row. Multiple destination columns in a routing table

row creates selective message multi-casting, because multiple destinations having similar

descriptors will now receive a copy of the message. This selective multicasting represents

multiple short links in the SRN which enables higher routing success (and search recall). This is

because all intended destinations are now more likely to receive the message.

To ensure faster semantic routing table look up, number of descriptor comparisons is reduced by

limiting the number of rows in the semantic routing table. However during generation of the

small world topology, as new index nodes and routers are discovered by a router, new rows

(connection) are added in the routing table. As new rows get added in the routing table it runs

out of rows. Therefore there is a need to free up rows to record newer and more useful (from

routers viewpoint) outgoing connections. Routing table compaction is carried out to free up

routing table rows.

6.3.2 Approach

Two strategies are applied to reclaim routing table space without loosing out too much on

routing performance. As the first strategy, destination addresses are selectively evicted from

columns. Similarly, entire rows may be also evicted from routing tables. The second method

involves reallocating the evicted routing table entries so that routing links are reclaimed to avoid

deterioration of routing performance. These two mechanisms are applied when the need for row

and destination column space arises. These two mechanisms include: eviction of address entries

from routing table rows; and then reallocation of these evicted entries in existing routing table

rows. The need for eviction arises when the routers are seeking out new routers having similar

interests and need row space to record their association links (descriptor-address pairs). The

reallocation is a best effort attempt, which means if space is not found to reallocate an entry it is

193

permanently dropped. Successful reallocation avoids permanent loss of a link and thus enables

high clustering coefficient in the emergent network. Subsequent paragraphs describe how these

mechanisms work.

6.3.3 Routing table entry eviction policies and significance

 Each semantic router strives to enhance the space-quality efficiency of the routing table contents

over time by replacing the routing table entries with more relevant ones. This is explained by an

example as shown in Fig. 6.8. Here, more relevant nodes are those nodes (e.g. R5) whose interest

descriptors are more similar to that of the given node (e.g. R11). Such operation effectively

replaces distant nodes by neighbors (e.g. R12) of the given node (R11) having more similar

address descriptor. In this example node R12 is near to node R11 compared to R5. This

transforms a random network to a lattice network, by replacing long distance random edges

(links) by shorter ones to immediate neighbors. The long distance link between R11 and R12,

which was removed in this example, had been there either due to prior bootstrapping or due to

similar operation. It is possible that R11 was earlier disconnected from another node which was

further away compared to R5 and then R11 was connected to R5. At that time R12 did not

participate in the network.

Fig. 6.8 Lattice formation by routing table entry eviction

R5
R4

R6

R11

R12

R14

R13

R15

Before eviction of R5’s
address from R11’ table

After replacement of R5’s
address by R12’s address

R5
R4

R6

R11

R12

R14

R13

R15 R5
R4

R6

R11

R12

R14

R13

R15

After eviction of R5’s address

194

6.3.3.1 Column eviction policy

The destination addresses in the routing table columns are either conserved or evicted based on

the “relevancy” of the destination node’s description with respect to the row’s key. The address,

whose description is semantically dissimilar to the row’s key, is evicted. This allows creation of

a new column space to store a more relevant address and create a new link to a neighboring node

in the similar manner as explained above.

6.3.3.2 Row eviction policy

An entire row may be evicted by evicting all destination columns of the row. The candidate row

for eviction is chosen based on router’s relative interest on the row’s key, by comparing

similarity between the row’s key and router’s interest descriptors. This allows creation of an

entire new row to store more relevant addresses and create a new links to a neighboring node.

6.3.4 Routing table reorganization algorithms and significance

 When a destination is evicted from a row, an attempt is made to reallocate it in another row. The

next best possible place for the relocated entry is determined by a specific logic. This destination

reallocation reclaims row and column space and yet avoids complete discarding of destination

routes to nodes that are further away from immediate neighborhood. This allows a router to

retain knowledge about the topology and routes over a wider geography. This results in higher

end-to-end routing success and lower average routing response. The algorithms to reallocate

destinations from a single column or the entire row are described below.

6.3.4.1 Reallocation of column entry

The row whose key is semantically most similar to the key in the current row from which the

destination is being evicted, is chosen to accept the relocated entry provided it has a vacancy.

195

The check for vacancy is carried out as follows. If there is a free column space, then the vacancy

test returns a straight forward “true”. If there is no free column space then a check is made to

ascertain whether this destination being reallocated is likely to be evicted from this row in near

future or not. If it appears that the reallocated destination is likely to be evicted in near future,

then the next best matching row is considered. The check for possible future eviction is made by

comparing the relevance of the reallocated destination node’s description with the lowest

relevant destination’s description that is already in that row. This relevance test is carried out

with respect to the key of the row that is being considered.

If the vacancy test returns true for a row which does not actually have a free column space, then

the lowest relevant destination is evicted from this row to make space for the destination which

is being reallocated. The destination, which is swapped out, is reallocated to the best matching

row using the same principle. This leads to a recursion of reallocation column entries (domino

effect). To identify the best matching row, only those rows are considered which haven’t

suffered a destination eviction so far in the current recursion tree. The recursion may terminate

either when a free column space is found (which doesn’t lead to another destination being

reallocated) or when there are no rows left to consider. This is explained with an example

routing table (Fig. 6.9), where the columns are arranged from left to right and rows has been

arranged from top to bottom in order of increasing “relevance”. The destination IN5 from row

with key value D11 is being reallocated. First destination R1 from row D9 is swapped out, then

finally destination IN8,3 from row D6 is swapped out.

196

Fig. 6.9 Reallocation of destination addresses

6.3.4.2 Reallocation of an entire row

When an entire row is evicted, an attempt is made to reallocate all its destinations using the

column entry reallocation algorithm. Row with key D11 is an example of row eviction in Fig. 6.9.

6.4 Duplicate message elimination

High clustering coefficient in the small world topology and selective multi-casting during

semantic routing results in substantial amount of duplicate messages. To avoid network

overloading, duplicate messages are identified and eliminated at the earliest at the routers by

several strategies, like:

1) employing a message cache at the routers to detect and drop duplicates;

2) use of limited time-to-live messages; and

3) maintaining a “list of routers visited” in the messages to detect looping message.

Routers maintain a cache to hold a message’s signature for some time. The message’s signature

can be implemented by the combination of message sequence number and the URI address of the

message originator. When a new message arrives, its signature is checked against the cache

content. If the message is already present then it is dropped, otherwise it is processed. Older

signatures are retired from the cache after a timeout period to make space for newer messages.

IN5

R1

IN8,3

IN1,3

R11

R2

IN1,1

IN1,8

D11

D9

D6

D8

Key Destinations

IN7,8 IN1,3 IN7,5

IN4,3

IN1,8

Step 3: Dest. IN8,3 has been
swapped out from row D6

Step 1: Destination IN5 being
reallocated, from row D11

Step 2: Dest. R1 has been
swapped out from row D9

Destinations

IN5

R1

IN1,3

R11

R2 IN1,1

IN1,8

Key

D9

D6

D8

IN7,8 IN1,3 IN7,5

IN4,3

IN1,8

IN5

IN8,3

IN1,3

R11

R2

IN1,1

IN1,8

Key Destinations

IN7,8 IN1,3 IN7,5

IN4,3

IN1,8

D11

D9

D6

D8

197

Smaller timeout periods are desirable to limit cache capacity and scalability. This cache can be

implemented by a counting Bloom Filter.

Messages incorporates a time-to-live (TTL) field, which counts number of semantic routing hops

by decrementing the time-to-live value set by the sender. Once this value expires to zero the

message is discarded by a router. This TTL value is set according to the time window that a user

is willing to wait to get search results. This technique enables discarding older messages, which

could not reach the destination within the waiting time window as expected by user. Thus the

older messages that are serving no further purpose are not processed by the SRN, thereby

limiting the network load.

In a small world network topology there are chances that messages may loop back. Message

cache with smaller timeout can not detect looping messages. As there is a possibility that

messages are selectively forwarded to more than one destinations (due to presence of multiple

address columns in a row) therefore bigger TTL values will leave an window for possible

message looping and exponential message spawning causing network storms. In such situations,

a “list of routers visited” incorporated in the messages enables detection of message looping.

Messages maintain a list of address of routers it visited, and a router finding its own address in

that list will discard the message.

6.5 Automatic storage space balancing

The aforementioned router and index node behaviors, also have additional benefits. Due to its

behavior, the routers work with each other to automatically balance their storage space

utilization, so that a situation does not happen when one router’s routing table gets completely

198

filled up, while other routers’ tables remain empty, causing resource wastages. This works as

follows.

Whenever a new index node is added in the semantic neighborhood of an existing semantic

router (i.e. the added index node’s specialization is similar to the router’s descriptor), then that

router will eventually discover the index node. If that router has already filled up and does not

have any vacant space in its routing table, then the router will drop a different index node from

its routing table which is least relevant to its interest. This process is carried out by the routing

table compaction mechanism to accommodate the new and more relevant index node. The index

node which is now dropped will eventually get accommodated by another router which is located

nearby and the next closest one to this dropped index node. This happens because all routers are

seeking to add interesting index node in their routing table. The discovery process can be

hastened if the router, which is dropping the index node, makes a direct request to all of its

neighbors and finally selects one to take up the orphan index node. If that router which is

interested to take up the orphan index node also has space problem and has to drop another index

node to accommodate the current index node, it will do so. This domino effect of reshuffling and

reallocation of index nodes will continue, till all routers balance out their space utilizations. This

means that all index nodes in a particular semantic space neighborhood will be accommodated if

there is space in any one of the routers in that neighborhood.

This kind of collective dynamic behavior also implies that when population of index nodes in a

particular neighborhood in the semantic space becomes large, then it may be necessary to add a

few more semantic routers in that neighborhood to accommodate the population growth. Adding

a semantic router will entail picking up a model document/object from the semantic

neighborhood and assigning its semantic descriptor as the interest descriptor of the new router.

199

This will mean choosing a document which is similar to those which are in the index nodes that

are being reshuffled around. It is possible to detect those index nodes and routers to identify the

neighborhoods which need extra capacity. This localized monitoring of capacity utilization is

needed because the entire semantic space is not single continuous fabric, but likely to be a

fragmented one in real applications. This is because there will be index nodes which are so far

away from a semantic router, that those index nodes will never get accommodated with that

router, even if the router had vacancy.

Similarly, as more index entries are added, other index entries will also get redistributed between

the index nodes. This will also require adding more index node in a semantic neighborhood to

accommodate the organic growth of the index entries.

6.6 Automatic reorganization of the distributed index

An index system where index entries are randomly distributed corresponds to a random network

topology. This aforementioned mechanism which transforms a random network topology to a

desired small world network topology, can also re-organize any arbitrary index system to a

organized one where index entries are systematically organized. This re-organization is

automatic when the semantic routers are deployed and the required behaviors are imparted

(retrofitted) to the existing index nodes.

6.7 Semantic routing table lookup mechanism

For semantic table lookup, the message key is effectively compared with all the keys that are

there in the routing table rows to identify the most similar row key and the corresponding row.

This comparison can be implemented by two alternative methods. The first one is an exhaustive

n comparison against all n row keys. The second one involves constructing a meaning based

200

index system inside the memory of the semantic router using a small world network graph. To

construct a small world network based index, memory locations are considered as the small

world network destinations, and traversal tables in memory which helps index structure

traversals, are considered as routers. Such a index structure requires only O(logk n) number of

comparison, where n is the number of semantic routing table rows and k is the number of rows in

the traversal tables. How ever this second kind of index structure will be complicated to

implement within a single router node. So we prefer the simple exhaustive comparison scheme.

A suggested implementation is described below.

6.7.1 Exhaustive comparison against all row keys

Here all the exhaustive n comparisons against all n row keys will be carried out using the

comparator architecture presented in the last chapter. The mechanism is repeated here for sake of

continuity. In this scheme, there will be total n comparators to concurrently compare the message

descriptor against n routing table row key descriptors, where there are n rows in the semantic

routing table. For each comparator, the row key will be considered as the first descriptor whose

Bloom Filter component is loaded in the Bloom Filter (BF) RAM locate in stage C of the

architecture presented in Fig. 4.5 in section 4.5.4.1of Chapter IV. The message keys will be

passed through the comparator one by one and the comparison values will be noted. This means

a row key will be loaded only once in a comparator. This will avoid multiple setup times

involved in loading the BF RAM again and again.

201

6.7.2 Design and analysis of semantic routing table lookup scheme

6.7.2.1 The design

To carry out n comparisons in parallel, we suggest the high level hardware architecture as shown

in Fig. 6.10. This system has a network interface unit, which is connected to r comparator

modules using a high speed interconnect (shown as “ingress interconnect” in Fig. 6.10). These

interconnects will be implemented using Gigabit per second speed systems that links all rack

mounted modules. Nowadays, it is possible to get 10GBps or higher speed interconnects, as they

are getting available in the market.

Fig. 6.10 Suggested high level architecture for the semantic lookup sub-system

Each comparator module has a memory (RAM) to buffer the incoming message key and a bank

of q hardware comparators. Preferably we should choose q * r = n, where n is the maximum

number of routing table rows that the router should accommodate. Packing q comparator

Network
Interface

Message
buffer

Comparator
Module 1

Comparator 1

Comparator 2

Comparator q

Row
identification

module

Comparator
Module 2

Comparator
Module r

Incoming
messages

Egress
interconnect

Ingress
interconnect

Outgoing
messages

Network interface unit
Buffer

Binary
comparator

stack

202

processors in a single comparator module allows this system to be modular and yet scalable.

More comparator modules can be added up to integrate a router with large number of routing

table rows. In practice the comparator modules will be implemented as a rack mounted unit (e.g.

a form factor similar to a blade server) and to scale up the system, more units will be added in

the rack to match the requirement. For our design we assume that each module packs in q (= 32)

comparators. Therefore to achieve a router with n = 1000 routing table rows, we need r to be =

32.

In this scheme, each routing table row key descriptor will be permanently loaded in the Bloom

Filter of the hardware comparator, and the message keys will be sequentially passed through the

comparator hardware as suggested by the earlier section. The timing analysis of the comparator,

assuming this design was already presented in section 4.5.4 in Chapter IV. As messages arrive at

the network interface, their destination address keys (descriptors) are extracted and passed to the

local buffers located inside the comparator modules through the ingress interconnect. A copy of

the message will be buffered in the message buffer located at the network interface. The

common buffer in the comparator module will feed the message descriptor to all the comparators

in that module. As and when the comparison values are obtained they are passed to the binary

comparator stack which resides within the comparator module. In total q number of comparison

values will be passed on to this binary comparator stack. This stack identifies the minimum

descriptor comparison value from the q input values. Once this is identified, the minimum value

is forwarded through the “egress interconnect” to the row identification module that is outside

the comparators. This module identifies the minimum of the r values arriving from r comparator

modules and finally identifies the corresponding routing table row. Thus the minimum value

identification takes place at two levels, first within each comparator, then finally at the row

203

identification module. This enables modularity, so that a lookup system can also function with a

single comparator module.

The binary comparator stacks and the row identification module together implement the min-

heap operation as mentioned in section 5.1.7 of Chapter V. The implementation of the binary

comparator sack can be done simply by hooking up several binary comparators in a hierarchical

fashion. Each binary comparator compares two values and identifies the minimum. At each

hierarchical level, two lower level binary comparators feed a higher level comparator. Therefore

to identify minimum of q values, only s = log2q steps are necessary, and in total (2s-1) binary

comparators are needed. Actually this can be implemented by simple digital circuits, where each

comparison level can be completed with a clock cycle, and the comparison of all the q values can

be completed within s = log2q clock cycles. Similarly the comparison of r values in the higher

level row identification module will take u = log2r clock cycles.

The next hop destination location is picked up from the identified routing table row. Once the

destination addresses are identified, the message which was buffered at the network interface

unit, is transmitted by the network interface to those destinations. The time necessary to buffer

the message at the network interface buffer and to send it to the comparator unit buffers, will be

of similar order and these two buffering operations should be carried out in parallel. The time

necessary for these buffering operations will depend on the interconnect bandwidth and size of

the message keys. Next we analyze the response time of this design.

6.7.2.2 Response time analysis

The aforementioned lookup mechanism involves transferring the message data from the network

interface hardware to the comparators over the system interconnect, identifying the minimum

204

comparison value, then deciding the next destination address and finally transmitting the

message stored in the buffer. For simplicity, we assume that the system (memory) bus and the

ingress interconnect is the bottleneck because each message may have large descriptor size. In

Chapter VII we show that worst possible size of a descriptor is around 100KBytes. For large

messages of this size, the time required to transfer the message data through the ingress

interconnect are significantly larger than the message protocol processing time and the time

needed to transmit r values to the row identification module. Hence the total time tI/O needed for

all transfers, is in the order of the time taken by the memory and ingress interconnect system.

Assuming that the memory and ingress interconnect have similar bandwidths, then this tI/O = 2

times the ingress interconnect transfer time.

Similarly, we assume that the time to decide the route is the sum of the following three

quantities: tcomp, the time taken to compare the message’s key against all the keys in the semantic

routing table, tmin-dest-id is the time necessary to identify the minimum value and corresponding

addresses from the destination column of the routing table, and tI/O.

Therefore we can assert that the time tmsgprocess needed to process a message is given as:

) (~ id-dest-mincompI/Omsgprocess tttt (6.1)

Whereas the time tmin-dest-id is given as:

 log log~ 22id-dest-min rqt (6.2)

6.8 Summary

Semantic Routed Network (SRN) should be organized as a small world network. However there

are several challenges regarding how to implement such topology in a practical SRN and how to

205

enable optimum operation of the SRN. In this chapter, we examined some of the practical

problems and provided necessary solutions. We presented a scheme to enable automatic self-

organization of a small world topology. Next we explained how shortest routes may be identified

so that greedy semantic routing scheme can send messages over available shortest paths. Then

we presented a scheme to limit the number of rows in a semantic routing table to make the table

lookup process faster and yet effective. Finally we presented several mechanisms to detect and

eliminate duplicate messages that afflict a small world network topology. All these mechanisms

may be applied in any arbitrary distributed index system by deploying semantic routers and

imparting the necessary behaviors to the index nodes. These semantic routers and index nodes

working together and collectively will transform an arbitrary distributed index to an optimal

index system having small world network topology.

206

CHAPTER VII

EVALUATION, RESULTS AND DISCUSSIONS

In a distributed search engine, a systematic organization of the index entries can lead to efficient

use of resources. Such organization leads to smaller number of index servers and less power

consumption, compared to a random index distribution scheme. This desired index organization

and the associated search operation can be facilitated by a network appliance called semantic

router. These semantic routers, when deployed, can materialize an overlay network to route

messages based on their meanings. To materialize this router we had identified four problem

areas and investigated them. In this chapter we present our claims, thesis, and their substantiation

by arguments, analysis, reference materials and simulation results.

7.1 Evaluation approach

7.1.1 Hypothesis and their significance

Here we explain how we will evaluate our proposed solution approaches, which are classified

under four research areas (objectives) as identified earlier, along with the respective hypotheses

and their significance. These are explained below:

Primary hypothesis. A systematically organized distributed index system, that uses a semantic

routed network, requires smaller number of index servers and consumes

less power to operate.

207

Objective 1. Design of meaning representation data structure and comparison technique.

Claim 1. The proposed tensor based meaning representation and comparison model

is physiologically more realistic compared to vector models.

Sub-claim 1.1 Our proposed tensor model incorporates meaning composition

information, therefore it has superior capability to discern composite

meanings compared to vector models.

Sub-claim 1.2 This tensor model also represents regenerative composition.

Sub-claim 1.3 This tensor model has beneficial properties that are congruent to how

humans interpret meanings. Thus this can be applied to solve some

typical problems in information retrieval systems, like term

disambiguation, improving specificity of a context, ability to convey

meaning by describing the context, etc.

Sub-claim 1.4 This model is congruent with multiple theories, models and hypothesis

from cognitive science domain, which shows that the model is

physiologically realistic.

Significance: A meaning representation and comparison model, that fits well with the

theories of human cognition (psychology), that has beneficial properties to

address typical problems and which can incorporate generative meaning

composition, is a good candidate.

208

Objective 2. Design of a suitable, high speed information processing architecture for use in

the semantic routers.

Claim 2. The proposed information processing architecture has a significant speed

advantage in computing tensor/vector dot products compared to traditional

processors, hence suitable for use in semantic routers.

Sub-claim 2.1 The computation carried out by this proposed architecture yields correct

results.

Sub-claim 2.2 The proposed architecture has much lower execution times compared to

those of the software code executing on traditional processors and

existing dot product computation hardware designs.

Sub-claim 2.3 The proposed architecture has manageable memory space requirement,

thus it is feasible to implement using existing hardware technology.

Sub-claim 2.4 The proposed processing architecture satisfies response time constraints

of the semantic router application.

Significance: A processing architecture, that yields correct results and has high speed

and manageable memory requirements, is a good choice for hardware

design and implementation of semantic router.

Objective 3. Design of an overlay networking scheme to deliver messages based on their

meanings.

Claim 3. A routable overlay network can be conceived for meaning based message

delivery.

209

Significance: Once we are able to conceive a meaning based addressing scheme and

design a routable overlay network topology and a semantic router, then we

can address the primary theoretical challenges in materializing a meaning

based message delivery network.

Objective 4. Design of mechanisms that enable construction of a meaning based index using

the aforementioned message delivery network.

Claim 4. The proposed network organization techniques can enable automatic

transformation of any arbitrary index organization to an optimal one

which has superior search success rate and response time.

Sub-claim 4.1 Semantic Routed Network can implement a distributed index system.

Sub-claim 4.2 The designed semantic routed network can deliver messages based on

their meanings.

Sub-claim 4.3 In a Semantic Routed Network, the proposed semantic routing table

compaction algorithm allows replacement of large routers (having large

number of routing table rows) by small routers without deterioration of

routing performance (routing success rate and response time).

Sub-claim 4.4 The proposed self-organization scheme can automatically build a small

world network topology Semantic Routed Network. This scheme

enables gradual transformation of any random network topology to a

small world topology where the message routing delay reduces and the

message routing success rate improves with time. The emergent small

world topology which is generated has lower message routing delay and

210

superior routing success rate compared to those of a random network

topology.

Sub-claim 4.5 It is possible to design an efficient meaning based routing table lookup

mechanism which is suitable for use in semantic routers.

Significance: These sub-claims indicate that it is possible to automatically build (self-

organize) the required small world network topology that has high routing

success and low routing response time, using smaller sized semantic

routers. This means that semantic routers need not support large routing

tables and thus need not carry out overly large number of meaning

comparison to route each packets. Reduction on number of comparison

makes the routers fast and feasible for implementation.

This also means that when these semantic routers are deployed in any

arbitrary index, then they will self-organize the index system so that all

index entries are systematically organized. This emergent index

organization will have small world network topology properties, i.e. high

search (i.e. message routing) success rate and low response time.

Addressing these challenges removes some of the significant theoretical

hurdles.

7.1.2 Evaluation plan to substantiate the claims

In this section we explain how we will substantiate the aforementioned claims. We present an

overview of our arguments, by referring to existing research work, our own analysis and

211

numerical results. The actual numerical results, illustrations, conclusion and final closure of the

arguments are presented in later sections.

7.1.2.1 Systematically organized index system is resource efficient

To establish this resource efficiency aspect of the proposed distributed index system, in section

7.3, we present an analytical model of large distributed search engine system that uses semantic

routed network. We will compare this model with a typical distributed index system that does

not use SRN (as presented in section 7.2). By this comparison we will show that this proposed

distributed index scheme, which uses SRN, will save hardware costs and power consumption

compared to the one which does not use SRN. Our proposed distributed index system uses

similar load sharing scheme as described in [4]. Hence our proposed design has similar

scalability properties as the existing distributed index system. As this scalability solution is not

our contribution, hence we will not discuss it in our dissertation.

7.1.2.2 Meaning composition aspect of the proposed tensor model

Linguistic experts have proposed that hierarchical (or nested) sets, as explained in Chapter II,

can capture the generative composition aspect in meaning representation and interpretation. Our

proposed tensor model for meaning representation materializes the hierarchical or nested set

model to address the meaning composition problem.

On the other hand, vector models are established meaning representation and comparison

techniques [9], even though they lack in the meaning composition aspect. As our proposed tensor

model extends the vector model, hence it inherits all the good properties of the vector model.

Thus our tensor model will at least perform as good as the vector model. Next we explain why

our tensor model is even better.

212

To substantiate our hypothesis 1.1, in section 7.4, we illustrate how our proposed tensor model

incorporates meaning composition information, and therefore the tensor model is able to discern

composite meanings, which the existing vector models can not. Existing results in [12] and [46],

had already shown that when vector products (i.e. product of basis vectors) are used to

implement rudimentary single level meaning composition, then better search results are obtained

compared to plain vector model. As our tensor model extends the use of vector products, hence it

inherits vector product’s benefit of meaning composition. Thus we can assert that our hypothesis

1.1 is substantiated.

In addition, our tensor model extends this use of vector products to materialize a hierarchical

multilevel generative composition. This incorporation of the generative composition is by virtue

of its design, as explained in section 3.6.6 of Chapter III. That section substantiates hypothesis

1.2.

Then in section 7.4, we discuss the beneficial properties of the tensor approach that may be used

to model how humans interpret composite meanings. Whereas, in section 3.8 of Chapter III, we

showed how some typical problems in information retrieval domain may be solved using the

tensor model. All these illustrations substantiate our claim 1.3.

Finally, we refer to section 2.4.7 of Chapter II, where we analyzed various theories and models

of human memory and cognition from the psychology domain, to show how our adopted

hierarchical set model is congruent with these understandings. Through these discussions we

substantiate our hypothesis 1.4, that the proposed tensor model is physiologically realistic.

213

Considering all these aforementioned arguments together we can claim that tensor model

supports generative meaning composition and therefore physiologically more realistic compared

to existing meaning representation models like vectors and sets. This concludes the evaluation of

the meaning representation data structure and comparison technique (objective 1).

7.1.2.3 Speed benefit of the proposed comparator architecture

To evaluate the proposed algorithms and information processing architecture for the meaning

comparator (objective 2), we have conducted simulation studies. Using simulation results, as

presented in section 7.6, we show that the proposed comparator generates correct results

(substantiates hypothesis 2.1). We also show that it is significantly faster than an efficient

software implementation and other existing hardware based designs under broad range of

operational conditions (substantiates hypothesis 2.2).

Using analytical calculations and results from aforementioned simulations as presented in

section 7.6.3 and 7.10, we show that the memory requirements of the proposed semantic router

using this processing architecture is manageable (substantiates claim 2.3) and the worst case

response time for a semantic routing table lookup is well within the required limits (substantiates

claim 2.4). The hardware design of this proposed processing architecture, as carried out by [131],

shows its synthesizability and manageable circuit power consumption. Furthermore, we have

shown in section 4.5.5, how to reduce circuit complexity and circuit power consumption. This

further establishes the viability of this proposed design approach. All these show that the

proposed representation satisfies requirement (F) as presented in section 3.1 of Chapter III.

214

7.1.2.4 Design of an overlay networking scheme to deliver messages based on meaning

In Chapter VI, we had illustrated how the Semantic Routed Network (SRN) will operate. This

conception of SRN substantiates hypothesis 3. This hypothesis is further substantiated when we

demonstrate this by our SRN simulation results in section 7.8.1.

7.1.2.5 Self-organization of the meaning based index

In the beginning of Chapter VI, in section 6.1, we had explained how a meaning based message

forwarding network can co-ordinate and bind smaller index fragments to form a large scalable

meaning based index. That section substantiates hypothesis 4.1. Whereas, simulation results in

section 7.8.1 shows that such SRN can effectively route messages based on meanings, therefore

it substantiates hypothesis 4.2.

To substantiate hypothesis 4.3 and 4.4, we use simulation results in section 7.8.3 and 7.8.4, to

illustrate how routing table compaction algorithms enables small routers (having small number

of rows in the routing table) to build the SRN which self-organizes to form a small world

network topology. We will show that this topology progressively improves the message routing

and information retrieval success rates and response times. By using the same results we also

show that this success rate and response time is superior compared to those of a random network

topology. In addition, we illustrate the efficacy of the underlying algorithms and techniques that

enable small routers to built this SRN and materialize this self organizing behavior. This self

organizing behavior and meaning based query/message delivery properties enables automatic

construction of a meaning based index, as explained in section 6.1.

215

Finally, we refer to section 6.7 in Chapter VI, and by using the analysis in section 7.10, we show

how an efficient lookup mechanism can be designed to implement the semantic routing table

which is the heart of a semantic router. These substantiate hypothesis 4.5.

7.2 Analysis of a typical distributed index system

7.2.1 Number of servers required and response time

In our analysis model we assume that index entries are uniformly distributed across all index

node pools and user queries are distributed across all objects/documents uniformly. User queries

arrive at a rate “Q” per second to the search engine, and the internal representations of the

queries (one for each raw query send by user) are broadcasted at the same rate to all “NP”

number of index server pools (Fig. 7.1).

Fig. 7.1 Index distribution and query delivery in a typical distributed search engine

This number NP is determined by the capacity of each server to host certain “d” number of index

entries and the need to index a total number of “D” objects in the index, according to the

following equation:

Pool 2 Pool
Np

Pool 1 Q/Ns

Index Servers

User Searching

Query
Processor

Document
Server

Query Rate Q

Q

1 NS2

Objects randomly
distributed in

pools.

Number of index servers Ns

Search
engine

216

d
DN P (7.1)

The query arrival rate “qarrival” at each server within each pool decides how many servers “NS” is

required in each pool. The number of servers needed in each pool is given by the index look up

(or query serving) capacity “qcapacity” of each server. To achieve stable steady state, qcapacity has to

be at least matched to qarrival, therefore number of servers “NS” needed at each index pool is:

capacityarrival q
Q

q
QN s

(7.2)

Therefore total number of “Nindexpool” servers needed in all the index server pools is:

capacity

indexpool

 q

Q
d

DNNN SP
(7.3)

The search response time “t” of the infrastructure is the sum of the response times for: query

preprocessing (“tqryprocess”); query delivery to the index (“tdelivery”); index lookup (“tindex”); and

document serving (“tdocserver”). Query delivery is the simplest process involving message

transmission (hence faster), whereas the other three involves more intensive computation and

expected to involve data reads from memory and hard disks (hence slower). Hence we expect

that tdelivery << tqryprocess, tindex , tdocserver. So the search response time is given by:

)1(
1

)1(

21
capacity

21indexindex2indexindex1

docserverindexqryprocessdocserverindexdeliveryqryprocess

kk
q

kkttkttk

tttttttT

(7.4)

where index1docserverindex1qryprocess , tkttkt , where 0 < k1, k2

217

Here the constants: k1 and k2, are introduced to ease the modeling computation and analysis. It is

reasonable to expect that k1 , k2 have similar order magnitude near to 1 because document

serving, query processing and index lookup all three involves memory read operations (either

disk or RAM based), therefore involves similar response times.

The number of computers/servers “Ncriticalpath” in the search critical path is given by the sum of

computers in the query process Nqryprocesspath, index Nindexpath and document server path Ndocserverpath

which is:

3 athdocserverpindexpathathqryprocespthcriticalpa NNNN (7.5)

These Nqryprocesspath ≈ 1, Nindexpath ≈ 1, and Ndocserverpath ≈ 1, because the query passes through only

one server in the load sharing server pool which process the query, and that path constitute the

critical path.

As only one server replica in a load sharing server pool is required to process a particular query,

therefore, the number of servers that gets used for every search query is the sum of the servers

used in each pools multiplied by number of concurrent pools used. Assuming there is only one

server pool for the query processor stage, one pool in the document server stage and NP

concurrent pools in the index server stage, this total number of server used is given by:

 2d
D athdocserverpindexpathathqryprocesp NN

d

D
NN used

(7.6)

The total number of machines (servers) used in the entire system is given by the sum of servers

in query processor pool “Nqryprocessorpool”, index server pools “Nindexpool” and document server pool

“Ndocserverpool”. More servers are deployed in the pools in those stages of the processing which are

slower. This kind of throughput balancing (i.e. removing processing bottlenecks) is a regular

218

exercise in distributed system deployment and thus this is also assumed here. We also assume

that these stages are properly provisioned so that their response times and execution times are

very similar (refer queuing theory basics as presented in Chapter II, section 2.11). Thus number

of server deployed in each stage is reciprocal to the proportions of their execution (or response)

times. Therefore the total sum of required servers is:

)1(

21indexpoolindexpool2indexpoolindexpool1

ooldocserverpindexpoolorpoolqryprocess

kkNNkNNk

NNNNtotal

(7.7)

This expression excludes the machines/routers in the query forwarding network. Only single

router or only few hundred of micro sized routers (refer to section 6.7 in Chapter VI) are

sufficient for the query delivery network for this case, compared to the thousands of servers in

the pools, so this approximation is reasonable.

7.2.2 Estimated values of some parameters

We need to know the magnitude of these aforementioned variables to appreciate the problem.

We estimate their approximate order of magnitude by assimilating indirect information from

multiple sources. As more information is available about Google, we consider scale of Google’s

infrastructure (as reported) as a representative one.

Google [2] and others [3] implied that Google had indexed 26 billion web pages/documents out

of unique 1 trillions URLs, so we can consider D to be 2.6*1010. To estimate d we will need to

find out how many objects (index entries) (matrix columns in the inverted index as shown in Fig.

2.8 in Chapter II) can be accommodated in a single server.

219

Here we assume latent semantic indexing is used, and we expect that number of dimensions will

be in order of 1000 or less. The argument to support this is available in [147]. For each object

(column) and a dimension (row) we will need say 16 bits (or 2 Bytes) for representing the weight

coefficient (for a matrix cell in Fig. 2.8) to get an accuracy of 4 decimal places. So for each

index entry (an entire column) the memory foot print is 2000 Bytes. Each server having 2GB

RAM (or 200GB) hard disk can host 2GB/2KB≈ 106 (or 200GB/2KB≈ 108) entries, so d ≈ 106

(or 108). This indicates that the design parameter NP = D/d, is in order of 2.6*102 or 2.6*104,

depending on whether RAM or disk is used for the lookups.

Google used to report that each search involved about 103 computers [5]. We expect this 103

number to be number of computers activated for a particular search. This is also given by

equation (7.6). So this fact indicates that a more accurate estimate of NP or D/d is expected to be

in order of 103.

Google reports the search response time for each query to be in order of 0.2 seconds [5]. So for

our purpose we can take a typical response time “T” to be ≈ 0.2 seconds (values vary between

0.17 to 0.3 sec. based on our actual observations). Hence using equation (7.4), we can say:

)1(5 therefore,)1(
1

 0.2 21capacity21
capacity

kkqkk
q

T

From [1] we know that average Q = 3500 queries per second (as in case of Google), so using

equation (7.3), we can compute number of servers in index system Nservers is:

)1(5

3500)*(1000

21capacity
indexpool kkq

Q
d

DNNN SP

Whereas using equation (7.7), we can estimate the total number of machines used is at least:

220

700,000)1(
)1(5

3500)*(1000
)1(21

21
21indexpooltotal

 kk

kk
kkNN

This is quite close to the value what others have estimated about Google [6].

7.3 Analysis of the proposed index distribution scheme

7.3.1 Meaning based object distribution

We propose an alternative distributed index architecture (Fig. 7.2), where index entries of similar

objects are pooled and stored together under single pool instead of randomly distributing over

the entire collection of pools. For the sake of fair comparison, we assume that this scheme has

the same number of index server pools as the typical search engine model presented earlier in

Fig. 7.1.

Fig. 7.2 Proposed index distribution and query delivery model

7.3.2 Number of servers and response time

In this proposed model (Fig. 7.2), queries are selectively sent to a single (or few) pool(s), hence

rate of query arrival is much smaller. The query arrival rate Q is equally divided among the

Index entries are
systematically

distributed based on
meaning of the
corresponding

document content

SRN

Query rate Q

User Searching

Query Processor Document
Server

Query Rate Q

Pool 2 Pool NpPool 1
Q/(Npns)

1 ns 2

Index Servers

Query rate Q/Np

Semantic Router Returns list of matching
document ids to retrieve

Returns list of matching
URLs

Sends query

Selective query delivery

Search
Engine

221

number of pools Np (assuming all kinds of documents are equally preferred). In that case the

total required number of servers “NP
indexpool” in all the index pools is in order of (note that servers

can be allocated to a pool in whole numbers):

capacity

indexpool qN
QNnNN

P
PSP

P (7.8)

The rationale behind this equation is same as that behind equations (7.1) to (7.3). Here “nS” is the

number of server in each pool, which is smaller than NS as in the earlier case (equation (7.3)).

This is because each pool here has to handle much smaller query traffic. Here we assume that the

SRN does not perturb the response time of the search engine, and only a small number of

servers/routers are required to implement the SRN. We shall show later that these assumptions

are justified. Therefore the response time and the number of computers/servers in the search

critical path are still given by equation (7.4) and (7.5), whereas number of servers that gets used

for a search query is given by:

 3 athdocserverpindexpathathqryprocespused NNNN (7.9)

Whereas the total number of servers needed in all index pools NP
total is:

PPP NkkNNNNN indexpool21indexpoolooldocserverpindexpoolorpoolqryprocesstotal)((7.10)

where Nindexpool is given by equation (7.3).

7.3.3 Benefits of the proposed index distribution scheme

In case of the proposed index organization scheme the NP
total is:

222

)1(*5000

3500
*1000)(

)1(5

3500)*(1000

)1(5)(

)(

21
21

21

21
21indexpool

indexpool21indexpoolooldocserverpindexpoolorpoolqryprocesstotal

kk
kk

kk

kkN
QNkkN

NkkNNNNN

P
P

PPP

This value is between ~117,000 to ~667,000, depending on value of k1 and k2 (0.1< k1 , k2< 10).

This means that if the index servers are slow compared to the query processor and document

servers, then the number of index servers in the pools would dominate the total number of

servers and in that case we would get greater saving of servers by this proposed index

distribution approach (NP
total = 117,000, which means 83% savings), otherwise we would get

smaller reduction (NP
total = 667,000, which means 5% savings). We expect k1 and k2 to be similar

and a equal to a number near to 1, in that case NP
total ~ 467,000, which means a 33% reduction in

number of servers compared to the random object distribution case (Ntotal = 700,000).

This analysis shows that there can be a reasonable reduction in numbers of servers in the index

pools. Therefore, we can expect a significant amount of hardware savings by adopting the

proposed model in an actual distributed index system (search engine). In addition, such approach

will save data center floor space, cooling infrastructure, power costs, all of which means

reduction in data center capital investments and operating expenditures. This proposed index

distribution scheme is materialized by the SRN, which enables automatic formation of the

proposed distributed index and also acts as the query delivery network. To cater to only 1000

pools or destinations, only a single large semantic router (or ~200 of micro sized routers) is good

enough. Thus this arrangement does not significantly increase number of machines to offset the

server reduction which is in order of several thousands (~104).

223

7.4 Evaluation of the tensor model of meaning representation

7.4.1 Definition of alternative tree comparison metrics

As explained earlier, composite meanings are represented as a nested set or a hierarchical tree

structure with basic terms as the leaves. The tensor based model represents and compares two

trees that represent two composite meanings. The tensor model has some properties which are

useful for realistic meaning representation and comparison.

To explain these properties, we introduce some terminologies and metrics. These are explained

in Fig. 7.3. In this figure we show two trees that are compared against each other using three

metrics. We have devised these metrics to compare two trees. These metrics gives a deeper

insight on the role of composition during the tree comparison process, which the available tree

comparison metrics [65], [66], [67] do not. These metrics were mentioned in section 2.6 of

Chapter II. We define the “overlap” metric to indicate the amount of leaves present in similar

locations in both trees. In the example as shown in Fig. 7.3, the leaves “A” and “D” are common

to both trees and located in similar positions in these trees.

Fig. 7.3 Terminologies for tree comparison

As there are two such leaves, so the overlap metric is 2 in this case. Similarly the number of

“noise” denotes the count of leaves that are not common and hence considered as noise when the

L1 = set {A,B,C,D} # Overlaps =2

Displaced =1

D1 = {{A,B}, {C,D}} D2 = {{A,C}, {E,D}}

Noise =2

A B C D A C E D

224

other tree is taken as the reference one. Here the “B” and “E” are two leaves that are considered

noise. Whereas, the “displaced” metric indicates the number for displaced leaves in the two trees

(e.g. “C” in Fig. 7.3 [13]).

Based on these three numbers (Overlap, Noise, Displaced), three ratios, one for each number, are

derived by dividing them with the total number of leaves in the two trees taken together (number

of elements in the union of set of leaves). For example, if L1 is the set of leaves in the first tree

and L2 is for the second tree then │L1 L2│ denotes number of unique leaves in both trees. In

this example, the set L1 L2 = {A, B, C} and thus │L1 L2│ = 3. The overlap ratio is given by

Overlap / │L1 L2│. For this example, this ratio is 2/3 = 0.67. The noise and displaced ratios are

similarly computed. These ratios are analogous to “Jaccard similarity” [148] measure used to

compare two sets. These three ratios together convey the structural similarity or dissimilarity

between a pair of trees. The overlap ratio indicates the extent of similarity of two trees, for

example an overlap ratio of 1 indicates that two tree are exactly same, a ratio of 0 indicate totally

dissimilar trees and a value in between 0 and 1 indicates that the trees are partially similar.

Similarly the noise ratio indicate the extent of the dissimilarity due to presence of dissimilar

leaves, whereas the displaced ratio indicates the extent of dissimilarity that is caused when the

same leaves are in two dissimilar locations in the two trees. Though we have introduced these

three tree comparison metrics to get deeper insight on the tree comparison process, but these

metrics are unsuitable for use in an operational search system. On the other hand the tensor

based similarity comparison technique is more preferable than these ratio metrics, due to three

reasons. The tensor model:

225

1) does not involve the cumbersome and computation intensive leaf counting required to

compute these ratio metrics;

2) uses a single number to convey the similarity compared to using three separate ratio

metrics;

3) can be used for multi-level unbalanced trees without any need for additional

computations;

4) has other beneficial properties that the ratio metrics do not have. These are explained

in the next section.

7.4.2 Tensor comparison is consistent with other comparison metrics

To evaluate the tensor model, we consider couple of balanced trees, and then compare these trees

using three methods: tensor; vector; and the metrics described above and present all these

similarity values in Table 7.1 [13].

Table 7.1 Consistency between tensor and ratio based tree comparison metric

Row # D1 having
set of leaves L1

D2 having
set of leaves L2

D1●D2

21 LL

Overlap

21 LL

Noise

21 LL

Displaced

Tensor of
the tree

Vector of
leaves

1 {A,{C,D,E}} {A,{C,D,E}} 1 1 1/4 = 1 - -

2 {A,{C,D,E}} {A,{C,D}} 0.61 0.87 3/4 = 0.75 1/4 = 0.25 -

3 {A,{C,D}} {A,C} 0.416 0.82 2/3 = 0.67 1/3 = 0.33 -

4 {A,{C,D,E}} {A,{C,D,F}} 0.408 0.75 3/5 = 0.6 2/5 = 0.4 -

5 {A,{C,D,E}} {A,C} 0.29 0.71 2/4 = 0.5 2/4 = 0.5 -

6 {A,{C,D,E}} {A,{C,F}} 0.116 0.67 2/5 = 0.4 3/5 = 0.6 -

** ******** ********** ***** ***** ********** *********** ***********

7 {{A,B},{C,D}} {{A,B},{C,D}} 1 1 4/4 = 1 - -

8 {{A,B},{C,D}} {A,{C,D}} 0.136 0.87 3/4 = 0.75 1/4 = 0.25 -

9 {A,{B,D}} {A,{C,D}} 0.03 0.67 2/4 = 0.5 2/4 = 0.5 -

10 {{A,B},{C,D}} {A,{B,D}} 0.02 0.87 2/4 = 0.5 1/4 = 0.25 1/4 = 0.25

11 {{A,B},{C,D}} {{A,C},{B,D}} 0.008 1 2/4 = 0.5 - 2/4 = 0.5

226

Here, the trees in all these rows are constructed using two different kinds of tree composition

templates. Both of these templates have two levels of compositions. For both templates, the top

level composition is skewed towards conjunction (i.e. for a composition {A, B}, the composition

parameters are hAB = 0.8, hA = hB = 0.2). The use of composition parameters was explained in

section 3.6.7 of Chapter III. In one template the lower level composition is equally balanced

between conjunction and disjunction (i.e. for a composition {C, D, E or F}, the composition

parameters are hCDE/F = 0.19, hCD = hDE/F = hCE/F = 0.15, hC = hD = hE/F =0.12), and in the other case

it is skewed towards conjunction (i.e. hAB = 0.8, hA = hB = 0.2). The trees/descriptors (D1, D2) in

row # 1 to 6 in Table 7.1, are composed using the first kind of template described above, and the

ones in row # 7 to 11 are based on the second kind of template. These particular compositions

were used because they have practical use. For example the compositions (trees) in row # 1 to 6

can be used as templates to disambiguate a concept “A”. For example A = “store”, which defined

by a set of alternative attributes, say C = “sale”, D = “purchase”, E = “supply” and F = “buy”.

Table 7.1 illustrates that for different kinds of compositions as shown in row # 1 to 11, the tensor

similarity is consistent with the favorable effect of overlap and unfavorable effect of noise and

displaced ratios. The similarity values derived according to the tensor model consistently

indicates that the tree similarity decreases with decrease with overlap ratio and increase of noise

and displaced ratios. This shows that the tensor model is performing the basic task. However the

similarity according to the vector model is not always consistent with these ratios. For example

for the comparisons in row # 7 to 11, even though the trees progressively get dissimilar, i.e. the

overlay ratio decreases and noise and displaced ratio increase, but the vector based similarity

227

value does not monotonically drops, as it should. This indicates that the tensor model represents

and compares trees (and composite meanings) more faithfully than the vector model.

In addition, the tensor model has other desirable behaviors due to the certain properties, which

are explained below. The effect of these properties are additive.

7.4.3 Property I: Composition information is included

The tree comparison in row 10 and 11 of Table 7.1 above, illustrates the composition property of

the tensor based model. This comparison shows that that tensor similarity measure can

distinguish trees with similar leaves having different compositions, but vector based similarity

can not. This illustrates that the tensor model does a better job in discerning dissimilar

compositions (trees) and meanings compared to the vector model.

The same insight, as presented above, is deduced using algebraic logic but in a different manner.

Using algebra, we will show that, when there is a composition which is different then the tensor

based similarity measure gives lower value than the vector method. Thus we can assert that the

tensor model is able to discern the compositions more faithfully than the vector model. To show

this, we consider two normalized vectors: cxbxaxV dcba
1

/
111 , dxbxaxV dcba

2
/

222 and

two normalized tensors: cbxcxbxaxT dcbdcba
3

)/,(
3

/
333 , dbxdxbxaxT dcbdcba

3
)/,(

4
/

444 .

For these vectors and tensors, the scalar coefficients are shown as xi
j, where the subscript i

denotes the associated basis vector and the superscript j denotes the entire meaning vector/tensor.

As these vectors and tensors are normalized, hence:

 1
24

)/,(

24
/

242423
)/,(

23
/

232322
/

222221
/

2121 dcbdcbadcbdcbadcbadcba xxxxxxxxxxxxxx .

228

We consider that vectors V1 and V2 have similar kind of composition templates but having

different compositions } ,{ cb and } ,{ db . Therefore we consider these two vectors have similar

weights for their basis vector components, so: x1
a = x2

a, x1
b = x2

b and x1
c/d = x2

c/d. We also

consider that the tensor T3 represents the same meaning which is represented by the vector V1.

Here the composition between terms b and c are considered as simple disjunction in the vector

V1, whereas it is considered as the composition } ,{ cb in the tensor T3. Thus we consider x1
a =

x3
a. Similarly we consider tensor T4 represents the same meaning which is represented by vector

V2 and therefore x2
a = x4

a. We also consider that tensors T3 and T4 have similar kind of

composition templates, so x3
a = x4

a, x3
b = x4

b and x3
c/d = x4

c/d. This means

 23
)/,(

23
/

2321
/

21
dcbdcbdcb xxxxx . Here if x1

b
 > x1

c/d then x3
b

 > x3
c/d or if x1

b
 < x1

c/d then x3
b <

x3
c/d. As x3

(b,c/d) > 0, therefore, x1
b > x3

b.

The similarity between V1, V2 is given as 21212121212,1
babbaa xxxxxxVVs and

similarity between T1, T2 is given as 23234343434,3
babbaa xxxxxxTTs . As x1

b
 > x3

b,

therefore s1,2 > s3,4. This shows that the tensor based similarity measure has more discriminating

power than the vector model. This logic can be extended for cases when there are more

components in both: within the composition or outside it.

7.4.4 Property II: A partial set can represent composite meaning

Two similar composite meanings may be expressed by two different but overlapping set of

elementary meanings (i.e. they share many common elements) and yet they will be recognized as

similar ones by the tensor model (see row 1 & 2 in Table 7.1 above), as it is in case of vector

model. This property is useful to identify similarity between contexts which are described by a

229

slightly different set of elementary meanings. This is congruent to several understandings from

cognitive science domain as presented in section 2.4.7 in Chapter II. This property can be also

established by algebraic logic as presented below.

Here we will show that when a composition has an extra attribute, even then the tensor similarity

measure will yield a non zero value, indicating that the extra term does not make the

composition entirely dissimilar than the tensor which does not have that term. This effect is

opposite to the one due to the property presented in the last section. So by the proof of this

property II, it is implied that the behavior of the tensor model is not polarized to one single

property but it is a mix of multiple properties. Here we consider two normalized tensors:

bxT b
11 , 11 }1,{ 2

)1,(
2
1

22 bbxbxbxbbT bbbb , where the extra term in the composition is 1b .

We consider that tensor T1 and T2 convey the same meaning, and it is just that one attribute 1b in

the composition }1 ,{ bb is missing in the representation T1. The similarity between T1, T2 is given

as 21212,1
bb xxTTs , which is smaller than 1 but a non zero value. This shows that even

though the tensor based similarity measure has more discriminating power w.r.t. a composition,

but it does not yield a zero similarity when a term, e.g., 1b in the composition is different or

missing. This logic can be extended for cases when there are more components in both within

the composition or outside it.

7.4.5 Property III: Higher level compositions are more important

The differences or similarities of elements at higher level compositions in a tree have larger

impact on the similarity of the entire tree. The tensor based comparison in Table 7.2 below

illustrates this (only the dissimilarity case is shown). In row 1, the trees have dissimilarity in the

230

higher level of the composition (dissimilar leaves are D and H). Whereas in the row 2, the

dissimilarity is at the lower level (dissimilar leaves are G and I). All compositions are uniform

mix of conjunction and disjunction compositions. In this example, row #1 has two trees, where,

the leaves D and H are dissimilar ones located within the higher level composition. The

similarity between these two trees is 0.42. Whereas, row #2 has two trees, where the dissimilar

leaves are G and I located inside the lower level composition. The similarity between these two

trees is 0.54. This shows when the higher level compositions are dissimilar then that impacts the

similarity value more adversely.

Table 7.2 Importance of higher level compositions

Sl. D1 D2 D1●D2

1 {A,{C, D, {E,F,G}}} {A,{C, H, {E,F,G}}} 0.42

2 {A,{C, D, {E,F,G}}} {A,{C, D, {E,F,I}}} 0.54

The real world analogy of this property is that two objects will be considered similar if the big

picture meanings of objects are similar even though the finer detailed meanings may be

somewhat different. This property can be actually used to model this manner how humans

compare and interpret meanings.

7.5 Experimental setups for meaning comparator evaluation

7.5.1 Comparator architecture simulator

An in-house developed simulator of the comparator architectures was used for all related

experiments. Some of the simulation parameters used here is based on the actual hardware

design carried out by [131]. The following baseline parameters were used during these

simulations: number of basis vectors n in the input coefficient tables (vector/tensors) = 104,

231

number of common basis vectors c in the input coefficient tables = 500 (5% of n), BF size m =

131072 (= 217), number of CAM units b = 32 and number of multipliers p = 16. These particular

parameters for BF yield reasonably small false positive probabilities (~ 0.0021) to make the

architecture workable. Whereas the rationale for choosing the b and p parameters had been

presented in section 4.5.2.3 of Chapter IV. The baseline system used un-partitioned BF and total

k (=7) hash functions for BF operations. In some experiments, wherever different values or

assumptions were used, those are explicitly mentioned in the figures or in the associated text.

The time equivalent of the clock cycles were reported assuming 4Ghz clock.

7.5.2 Optimal software implementation of the comparator

The execution timing for a representative server class processor (Intel Xeon) was measured for

software code which computes the dot product (Fig. 7.4). The dot product software code

identifies the common basis vectors by first constructing a balanced binary search tree of basis

vectors (char strings) and coefficient pairs (with vectors as search keys) from the second table,

and searching for each vector from the first table. Thus this searching time is of the order of

O(n1·log n2), where n1 and n2 are number of basis vectors in the two input tensors. The balanced

tree is implemented using GCC C++ STL’s highly optimized map container which implements

Red-Black tree. The pseudo code in Fig. 7.4 [131] indicates the code segment for which

execution time is measured. This software code is efficient because it uses Red-Black tree based

search algorithm having logarithmic execution time compared to naïve linear search time

algorithm. In addition the C++ STL’s implementation is known to be very optimum in

computing practice domain. Therefore we consider this software based comparator

implementation as a near optimal one.

232

Fig. 7.4 Pseudo code for optimum software implementation of dot product

7.5.3 Existing hardware design of dot product processors

We would compare performance of our architecture with existing dot product processor

hardware designs proposed in [149], [150] and [151]. The design in [149], which we call “H/w

design 1”, offered speedups of 784 times for small number of basis vectors (only 8 basis vectors)

when compared to an equivalent software code. The architecture in [150], which we denote as

“H/w design 2” requires around 200 clock cycles to find dot product for two vectors having 400

basis vector components, and in the design in [151], which we identify as “H/w design 3”, the

execution time was in order of 8.3 million clock cycles for 1024 basis vectors.

7.5.4 Experiments and rationale

To compare performance of our designs and existing alternatives in a clock speed neutral manner,

we use clock cycles in lieu of execution time in seconds. This was done to fairly compare the

hardware designs that have been implemented and evaluated with different clock speeds in [149],

[150] and [151].

// Table data structure declarations.
struct rows{ string basis_vector; float coefficient };
…..
rows coeff_table1[NUM_BASIS_VECT1], coeff_table2[NUM_BASIS_VECT2];
….
// Declaration for map data structure for the red-black tree.
std::map < string, float> rbtree;
std::map < string, float>::iterator rbtree_itr;
….
//Execution time measurement starts here
//Code to construct tree
for (i = 0; i < NUM_BASIS_VECT1; i++)
 rbtree.insert(std::make_pair(coeff_table1[i]. basis_vector, coeff_table1[i].coeff));

//Code to search tree
for (i = 0, dot_prod =0; i < NUM_BASIS_VECT2; i++) {
 rbtree_itr= rbtree.find(coeff_table1[i]. basis_vector) ;
 if (rbtree_itr!=rbtree.end())
 dot_prod = dot_prod + ((*rbtree_itr).second * coeff_table2[counter].coeff); }
//Execution time measurement ends here

233

To help us optimally design the dot product hardware, we study execution clock cycles, as

primary point of interest and number of CAM lookups needed, for greater visibility of the

process, for the various operation scenarios as mentioned below:

(1) For different design parameters like: size of BF bit array m, number of hash functions k.

(2) For different numbers of: basis vectors n, and fraction of common basis vectors c.

(3) For various design alternatives as presented in section 4.5.5.5.

Queries generated by users generally have small sizes, however search engines often encourage

users to use a known object as the reference and search objects similar to the reference object

(because such strategy yields superior search performance [8]). Advertising disseminating

mechanisms may also use the descriptors of the currently viewed web page to dynamically

retrieve advertisements or sponsor’s web pages and display them as banners or sponsored links.

In all these cases the reference object’s semantic descriptor becomes the search query or the

semantic query. Such queries have large sizes. So in all our experiments we used semantic

descriptors for queries as large as the object’s descriptors to simulate worst case scenario.

7.6 Results for meaning comparator evaluation

7.6.1 Performance evaluation of the comparator

7.6.1.1 Execution speed comparison against software implementation

Table 7.3 compares the average execution time in terms of clock cycles (necessary to execute the

dot product execution for a pair of tensors/vectors) for the proposed dot product processing

architecture against the optimum software code as presented in Fig. 7.4 and reports the speedups

for different c, the numbers of common basis vectors (terms).

234

Table 7.3 Superior execution time of the comparator architecture

Number of
common basis

vectors (c)

Clock cycles for
proposed

architecture

Clock cycles for
Intel Xeon

Speedup (times)

100% 969 7.686*106 79,320

5% 80 7.712*106 964,096

1% 42.39 7.688*106 1,813,666

The typical average number of common basis vectors c ~0.1% of the total number of basis

vectors n (refer section 4.5.2.3, Chapter IV). We observe that the speedups for small value of c

are in order of ~106 or higher. This establishes the superior performance of our proposed

architecture in terms of speed. The conclusion drawn from this comparison remains valid across

multiple processors. The Intel Xeon (3Ghz version), used in this example, has a maximum

instruction per cycle (IPC) value of 4. The IPC indicates the maximum level of instruction level

parallelization that can be achieved per processor core. All other high performance sequential

processors have IPC of very similar order. Hence this speedup can not be significantly dropped

any further on a traditional CPU core. Multi-core CPU/GPUs are available with a limited

number of cores (not in order of hundreds of thousands), hence can’t give very large (~hundreds

of thousands) speedup, unless super computers with several thousands of processor are used.

Using super computers are not practical because they are too expensive, they have high

processing (setup) time overheads and consumes significant amounts of power and space to be

comfortably accommodated as a small component in a search engine. In fact multi-core or multi-

processor system based parallelization strategy will not deliver large amount of speedups (~105

times) for dot product computation for reasons explained in section 4.5.2.2 in Chapter II.

235

This rationale is briefly repeated here for sake of continuity. The parallel threads in the dot

product computation are simple and extremely short computations. Multi-processor based

parallelization requires significant overhead (time) to distribute the processing task (i.e.

distribute all the necessary inputs) to multiple cores/processors. Similarly, there is also a large

overhead to consolidate the processing (i.e. bring all the data back to a single point). These

overheads are absent in our proposed architecture. Our architecture is most suitable here because

each individual parallel thread (computation) is short. In contrast a multi-core system is more

suitable when each thread is long enough to amortize the distribution and consolidation

overheads. Hence our design will do better than GPUs also in terms of speed. Moreover a system

with 106 or more processor cores, in theory, can give the same order of speedup as our design,

but it will need more power and space compared to our design which is on a single chip. The

data presented in Table 7.3 illustrates this point.

7.6.1.2 Execution speed comparison against existing hardware designs

Fig. 7.5 shows the comparison of speedup of our architecture against that of other available

hardware designs. The speedup figures of the existing hardware designs (and our proposed

architecture) are either computed as ratios of clock cycles of execution time of the existing

hardware (and our proposed architecture) against the clock cycles of the efficient software code,

as in Fig. 7.4, or simply as ratio of average clock cycles of our design vs. that of the existing

hardware designs.

236

Fig. 7.5 Comparison of speedup against other designs

We show comparison for c=100%, 5% and 1%. The other hardware designs do not take into

consideration the number of common basis vectors to avoid the unnecessary computations like

we did in our design (refer section 4.2 in Chapter IV). In addition, our architecture is consistently

doing better due to fine grained parallelism in our design for large meaning vectors (number of

basis vectors = 400, 1024). Such parallelism has not been exploited by other hardware based

designs [149], [150], [151], which carry out the computations sequentially.

In Table 7.4, we present a comparison of our design with those presented in [149], [150] and

[151] (“H/w design 1,2 & 3”) and show and show the factors of speedup by which our design

performs better. For large meaning vectors (number of basis vectors = 1024) our design gives a

speedup increase of 124,664 times for c=1% and 52,201 times for c=100% compared to the

“H/w design 3”. In case of smaller vectors (having smaller number of basis vectors) a much

lower speedup is due to the overhead in our design. We do not optimize for extremely small

vectors, this is because in [13] we have shown that the typical number of rows (basis vectors) is

in order of few hundreds (103). Our design will reduce the constraint on the size of vectors that

2048 2041

167944

784.0

10136.9
0.7

29382 44699

1839

57302

150887

59300

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

8,H/w design 1 400,H/w design 2 1024,H/w design 3

Number of Basis Vectors

S
p

ee
d

u
p

Available Design
Proposed (c=100%)
Proposed (c=5%)
Proposed (c=1%)

237

can be used, because our design's speedup is better for larger vector sizes. In search application,

large vectors are preferable for precise meaning representation, comparison and searching, hence

this overhead is not a problem.

Table 7.4 Speedup comparison with other hardware designs

Number of Basis Vectors Compared Against
Improvement in speedup (times)

c = 1% c = 5% c = 100%

8 H/w design 1 2.60 2.34 2.61

400 H/w design 2 5.85 5.65 2.90

1024 H/w design 3 245,551 220,612 65,354

7.6.1.3 Characterization of the basic comparator

Fig. 7.6 shows the number of CAM lookups (“CAM” & “CAM_part”), and Fig. 7.7 shows the

similarity comparison execution clock cycles (“Cyc” & “Cyc_part” for unpartitioned and

partitioned BF designs).

Fig. 7.6 Number of CAM lookups for different number of basis vectors

0

100

200

300

400

500

600

0 2500 5000 7500 10000

Number of basis vectors

A
ve

ra
g

e

C
A

M
 L

o
o

ku
p

s

CAM
CAM_part
CAM_pred
CAM_part_pred

238

Fig. 7.7 Execution cycles for different number of basis vectors

Both number of CAM lookups and clock cycles increase with number of basis vectors n in the

input. However for a large n = 104, c = 103, the times is still within 80 clock cycles or 20

nanosecond with 4Ghz clock for all cases. The CAM lookup values predicted (“CAM_pred” &

“CAM_part_pred” for unpartitioned and partitioned BF designs) by the equations (2.5) and (2.6),

are shown in the same figure with number of CAM lookups (for details refer section 2.12 and

4.5.4). This illustrates that there is a good agreement between experimental (simulated) values

and their predictions.

Fig. 7.8 shows the increase in number of CAM lookups and Fig. 7.9 shows the same for

execution clock cycles when number of common basis vectors c increases. With a maximum

value of c (100% of n) the time/clock cycles is still 969 cycles (242.25 nanosec) for un-

partitioned BF design and 957 cycles (64.25 nanosec) for partitioned BF alternative.

0

10

20

30

40

50

60

70

80

0 2500 5000 7500 10000
Number of basis vectors

E
xe

cu
ti

o
n

 c
lo

ck
 c

yc
le

s Cyc
Cyc_part

239

Fig. 7.8 Number of CAM lookups for various numbers of common basis vectors

Fig. 7.9 Number of execution cycles for various numbers of common basis vectors

Fig. 7.10 shows the effect of variations of BF bit array size m on number of CAM lookups and

Fig. 7.11 shows the same for execution clock cycles. With the small (worse case) value of m

(=16,384) the time/clock cycles is still within 340 cycles (85 nanosec) for both BF designs.

Increasing m does not reduce number of cycles and CAM lookups beyond a certain level, so

there is no point to over designing the BF by allocating more bits than necessary. For a given m

the knee point depends on number of CAM units and multipliers used. These figures show that it

is possible to choose a smaller BF bit array size of 65,535, to reduce circuit complexity, without

significant impact on the execution time.

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Fraction of common basis vectors

E
xe

cu
ti

o
n

 c
lo

ck
 c

yc
le

s

Cyc

Cyc_part

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1

Fraction of common basis vectors

A
ve

ra
g

e

C
A

M
 L

o
o

ku
p

s CAM
CAM_part
CAM_pred
CAM_part_pred

240

Fig. 7.10 Number of CAM lookups for various BF sizes

Fig. 7.11 Number of execution cycles for various BF sizes

Fig. 7.12 shows the effect of variations of number of BF hash functions k on CAM lookups and

Fig. 7.13 shows the same for execution clock cycles. We observe that an optimum value of k

(between 7 and 10, for given n, m) exists for number of CAM lookups, however as k determines

the number of clock cycles, so there is a benefit in choosing lower value of k, for example k = 7

for that design.

0

100

200

300

400

0 40000 80000 120000

Number of BF bits (m)

E
xe

cu
ti

o
n

 c
lo

ck
 c

yc
le

s Cyc

Cyc_part

0

2000

4000

6000

8000

10000

0 40000 80000 120000

Number of BF bits (m)
A

ve
ra

g
e

o

f
C

A
M

 lo
o

ku
p

s

CAM
CAM_part
CAM_pred
CAM_part_pred

241

Fig. 7.12 Number of CAM lookups for various number of BF hash functions

Fig. 7.13 Number of execution cycles for various number of BF hash functions

We have characterized the time response behavior for the proposed architecture for a wide range

of input and design parameters to demonstrate the worst and average case behaviors. For example,

on an average the c parameter value will in the lower side depending on the SRN and routing

table lookup implementations. So to read out the average execution time for a large number of

comparisons (e.g., 1000) from Fig. 7.9, we should use a very low c value (e.g. 0.1% of n).

Whereas to read out the worst case response time for a single comparison, we should use a c value

of 100% n.

0

20

40

60

80

100

0 5 10 15 20

Number of hash functions (k)

E
xe

cu
ti

o
n

 c
lo

ck
 c

yc
le

s

Cyc

Cyc_part

0

200

400

600

800

0 5 10 15

Number of hash functions (k)
A

ve
ra

g
e

o

f
C

A
M

 lo
o

ku
p

s

CAM
CAM_part
CAM_pred
CAM_part_pred

242

7.6.1.4 Execution speed of alternative comparator architectures

The average number of CAM lookups and execution clock cycle for all the architecture

alternatives, as discussed earlier in section 4.5.5.5, are presented below in Table 7.5. The

execution time reported here are for m = 131072, k =7, n = 10,000 and c = 5% of n. As option 16

gives the best time ~61 clock cycles and it is also the least expensive in terms of circuit

complexity, so it is the best architecture to implement.

Table 7.5 Performance comparison of alternative architectures

Architecture
alternatives #

Complexity

rank

Average CAM
lookups

Cycles

1 D 524.023 79.994

2 D 548.859 68.723

3 C6 522.552 79.977

4 C5 519.907 79.963

5 C4 521.751 79.966

6 C3 520.298 79.963

7 C2 520.207 79.96

8 C1 520.295 79.955

9 C1 520.018 67.968

10 B 528.148 72.004

11 A6 520.216 71.966

12 A5 520.066 71.969

13 A4 522.322 71.978

14 A3 519.898 71.953

15 A2 522.995 71.982

16 A1 565.965 61.113

7.6.2 Setup time for the comparator

The time required to load the BF values in the bit addressable memory and the coefficient table

values in the CAM and RAM units is 17 clock cycles (4.25 nanosec) for in all cases with

243

unpartitioned BF design and only 11 clock cycle (2.75 nanosec) for all other cases which

implements the partitioned BF design. The rationale for this small setup time has been explained

in section 4.5.4 in Chapter IV.

7.6.3 Memory space scalability analysis for the proposed comparator

To evaluate the feasibility of the descriptor comparison processing on a single chip, here we

examine the memory space requirement of the proposed approach. When standard controlled

terms, as used at the leaves in the concept tree (as explained in Chapter III), convey composite

meanings themselves, then small sized trees (number of leaves ~15) represent meanings of

objects with sufficient specificity. These trees tend to generate limited number of basis vectors

(<104) (e.g. as observed in [13]). For an object key tensor with 104 basis vectors (assumed worst

case), 16 bit fixed point scalar representation and with extremely conservative BF parameters: m

= 131072 and k = 7, the uncompressed key size is 104·(64+7log2(131072)+16)/8≈249KBytes.

This space requirement of registers and RAM units can be accommodated on a single chip. This

indicates that memory space requirement is not a hurdle towards feasibility of this dot product

co-processor chip. Average keys with smaller BFs would be much smaller and a large number of

them can fit in high density memories after compression. The memory requirement to store

~1000 destination keys in the semantic router will be in order of 249Mbytes. Such requirement

can be easily satisfied by the existing memory device capacities. So buffering a large number of

routing table row keys does not pose a significant problem.

For purpose of transmission across network or a system interconnect, we use a compact version

of the descriptor which do not include the BF indices (the third column of the coefficient table as

in Fig. 4.3 in Chapter IV). This third column can be regenerated from the vector ids (the first

column of the coefficient table). So for purpose of transmission the size of key is much smaller,

244

in order of 104·(64+16)/8≈100KBytes only. These key sizes are also stored in the buffer

associated with the network interface as shown in Fig. 6.10 in section 6.7.2.1 of Chapter VI.

Therefore buffering a large number of messages containing these keys will not be a problem as

these can be easily accommodated in available high density memory devices.

7.7 Experiments and setups for Semantic Routed Network evaluation

7.7.1 Semantic Routed Network simulator

To evaluate the performances of the proposed mechanisms we developed a Semantic Routed

Network (SRN) simulator to carry out simulation studies. The router and index nodes are

bestowed with certain semantic descriptors. Each router and index node was bootstrapped to

some random router nodes. The network links have finite delay. A global virtual clock and

scheduler maintains the pace of the network maturity, node activity, network delay and response

timeouts. All nodes are activated at once at the beginning of the simulation. Periodically message

delivery requests were injected to random router nodes and delivery times were noted after a

brief timeout period. Only a small sub-set of the routers and index nodes periodically send out

search queries at any given point of time (as mentioned in section 6.1.3 in Chapter VI). This

ensures that such queries from all the index nodes and routers are spread out across time.

7.7.2 Experiments and rationale

We compare the performance of the SRN against three criteria: (i) estimated expected end-to-

end routing response time or message delivery time (hops required by a message to reach

destination, lesser is better); (ii) end-to-end routing success rate (instances of destinations

reached if they exist, higher is better) observed within a time frame of 6 messaging delays; and

(iii) message overhead (number of messages generated in the network to carry out a search). The

245

network is dynamic because the routers are constantly seeking each other and exchanging

index/routing table entries. By this way the network is using its own capabilities to evolve,

therefore virtual clock cycles indicate network maturity and usage.

Two different sets of simulations were run. In the first case we wanted to see the best

performance of the network. Here we evaluate a SRN paradigm which is built with a large

number of small semantic routers. When the semantic routers are small and inexpensive it is

possible to deploy them in large quantities, in an order of magnitude which is similar to that of

the deployed destinations/resource nodes. Values of some parameters used were: number of

index nodes = 800, number of routers = 200, known router list size = 2, routing table max row

length = 5, routing table max column width = 5, periodicity of resource and router nodes were 10

virtual clock cycles, message delivery request injection rate was 5 queries per 20 clock cycles,

the timeout period after which the message delivery success was noted = 20 cycles, network link

delay = 3, duplicate message cache timeout = 10 clock cycles respectively. Routing table size,

cache time out and effective cache size were kept very small to simulate the scalability hurdle.

In the second set of experiments we wanted the network to under-perform by turning off some of

the performance enabling and optimization features, so that we can observe the performance

with and without some of these performance enabling features. For the experiment with large

routers, we used 20 routers and table row length and width = 50, instead of 5 and timeout

period=6.

246

7.8 Results for Semantic Routed Network

7.8.1 Message routing capability and self organizing behavior

For this simulation the first set of simulation parameters were used. Fig. 7.14 shows how routing

success improves as the SRN self-organizes to full maturity at 841 cycles. At full maturity the

success rate reaches ~100%. This increase in routing success translates to increase in search

success rates, because higher percentage of query messages can reach the destination objects,

and they can then respond back.

Fig. 7.14 Improvement of routing success rate with network maturity.

Fig. 7.15 shows how the expected search response also improves over the life-time of SRN. The

“expected” number of hops to traverse before reaching destination drops to ~1.89 hops after the

SRN has self-organized for 1000 virtual clock cycles.

0

20

40

60

80

100

0 200 400 600 800 1000

Network Maturity (cycles)

S
u

cc
es

s
R

at
e

(%
)

247

Fig. 7.15 Improvement of routing response time with network maturity

The network had a random topology to begin with, so the routing success rate and response

times for a random topology are given by the points at 25 clock cycles (when the first

observation took place) in Fig. 7.14 and Fig. 7.15. These points correspond to 25% and 3 hops.

Therefore we can compare these performances for random and small world network topologies

as presented in Table 7.6 (from the values from Fig. 7.14 and Fig. 7.15). Based on this we

conclude that small world topology (success rate ~100%, number of hops =1.89) performs better

than random network topology (success rate 25%, number of hops = 3 hops).

Table 7.6 Routing and search performance comparison

Topology Message routing success rate
(≈search recall rate)

Message routing response time
(≈ search response time)

Random network 25% 3 hops

Small world network ~100% 1.89 hops

0

1

2

3

4

0 200 400 600 800 1000

Network Maturity (cycles)

A
ve

ra
g

e
R

es
p

o
n

se
 T

im
e

(h
o

p
s)

248

7.8.2 Effectiveness of duplicate message suppression techniques

Fig. 7.16 shows the improvement trend of the message overhead for the proposed SRN. When

the SRN matures, only 4.8 messages are generated per query. This small value can be compared

with a very large overhead in order of hundreds and thousands in other search networks [108].

Fig. 7.16 Message overhead, duplicate, TTL & looping message drop ratios

This demonstrates the effectiveness of the duplicate message detection cache, time to live (TTL)

and loop detection mechanism working together. We see that the messages dropped due to

duplicate detection by cache (indicated by “Duplicate Drops” in the figure) are large compared

to drops due to TTL (“TTL Drops”). This proves that TTL alone is not sufficient to eliminate

network storms in a small world. Around 0.03% of messages were dropped because they were

found looping (shown as “Looping Drops” in the figure). These looping messages were not

eliminated by the cache and TTL mechanism. This indicates the need for a separate loop

detection mechanism.

7.8.3 Effectiveness of routing table optimization techniques

Fig. 7.17 compares the success rate in three different SRNs: (a) the first one with routers which

neither enjoys prioritized eviction, nor have routing table compression algorithms (“RT w/o

4.5

4.7

4.9

5.1

5.3

5.5

5.7

5.9

40 90 140 190 240

Network Maturity (Cycles)

Q
u

er
y

O
ve

rh
ea

d
(m

sg
/q

ry
)

0

0.4

0.8

1.2

D
ro

p
 r

at
io

s
(d

ro
p

p
ed

m

sg
s/

q
ry

)

Query Overhead
Duplicate Drops
TTL Drops
Looping Drops

249

optimization”); (b) the second one with routers that only have prioritized eviction of routing

table and “known router” list entries (“RT w/ prioritization”); and (c) the third one which has

routers with full routing table optimization (“RT fully optimized”).

Fig. 7.17 Role of different routing table optimization algorithms

This experiment was conducted without the process that explicitly programs the semantic routing

tables with the shortest paths. This was done to observe the impact of only the semantic routing

table optimization algorithm. In the first case hardly any successful semantic routing took place,

even though the routers were looking for interesting resources and routers. In the second case

some successful semantic routing took place, and the routing performance improved when the

destination reallocation algorithm was applied in the third case. This comparison demonstrated

the roles of the prioritized eviction and row and column reallocation algorithms.

7.8.4 Performance of small routers

Fig. 7.18 compares the routing success rate for two SRN paradigms: (a) large number of small

semantic routers having small number of optimized routing tables; (b) small number of large

routers having large non-optimized routing tables.

0

10

20

30

40

50

0 50 100 150 200 250

Network Maturity (number of cycles)

S
u

cc
es

s
R

at
e

(%
)

RT w / eviction+reallocation
RT w / prioritized eviction
RT w / no optimization

250

Fig. 7.18 Performance comparison between small & large Semantic Routers

This experiment was also conducted without the process that explicitly programs the semantic

routing tables with the shortest paths to observe only the impact of routing table optimization

algorithm. This shows that small optimized routers (35% success rate, response time of 3.3

messaging delays) outperform large routers (17.5% success rate, response time 4.4 messaging

delays) when used in large numbers. Therefore it is possible to replace large routers with large

numbers of small routers. For the case (a), after 80 virtual clock cycles the success rate saturates

to the limiting value, which indicates the capacity limit of the semantic routers and the given set

of optimization techniques.

The fact that smaller routers can yield better performance than the larger ones when equipped

with the aforementioned optimizations techniques, have significance in our SRN design. This

means that we can use inexpensive small routers in lieu of large ones. In certain applications

these routers may not need special comparator hardware, because slow software based

comparison can still be workable solution when number of comparisons are small.

7.9 Storage scalability of the proposed distributed index

The proposed distributed index with SRN will use similar clustering architecture to implement

the index pools, as proposed in [4] (i.e. Google’s architecture) for storage and throughput

0

20

40

60

0 50 100 150 200 250

Network Maturity (number of cycles)
S

u
cc

es
s

R
at

e
(%

)

Small Router
Large Router

251

scalability. This architecture has the ability to index billions of documents/webpages [3] and

serve 3500 queries per second [1]. Therefore we argue that our proposed architecture will have

the similar throughput and ability to index to large volume (~billions) of documents/web, as it

proposes to implement the same clustering scheme. However, in our proposed design we are

responsible for ensuring that the semantic routers, which are our inclusion, should have the

required response time and throughput capacity. We present that analysis in this section below.

7.10 Semantic Routed Network response time and throughput analysis

7.10.1 Analysis approach

In the following section we will show that the proposed distributed search engine design which

incorporates SRN, will satisfy the time response and throughput requirements. This analysis uses

estimated ball park figure of the response and execution times of SRN and semantic routers.

These approximate time estimates are used to make the point that workable design of a SRN and

semantic routers are indeed possible. Here we work with order of magnitudes of the times

instead of their exact and accurate figures. This is because the accurate times estimation is

possible only when a detailed engineering design of all the components of the proposed system

is carried out and some of them have been implemented to measure their time response

behaviors. On the other hand the order of magnitudes can give us a fair feasibility assessment of

the proposed scheme quite early in the planning stage (i.e. the present moment) so that we can

decide whether to invest resources to carry our a more detailed engineering design, or not. Here

we deliver that feasibility assessment which is useful for planning purpose.

Here we will demonstrate that insertion of SRN in the search engine does not significantly

perturb the time response and throughput capacity of the entire system. Fig. 7.19 shows the time

252

response analysis of a typical distributed search engine. The response time of this system has

three components, as illustrated by equation (7.4) and repeated here-

 docserverindexqryprocess tttT , where tqryprocess, tindex, tdocserver are the response times of query

processor, index and document server sub-systems respectively.

Fig. 7.19 Time response analysis of a typical search engine

On the other hand, Fig. 7.20, shows the response time analysis of the proposed distributed search

engine that incorporates SRN.

Fig. 7.20 Time response analysis of proposed search engine which incorporates SRN

Pool 2 Pool
Np

Pool 1 Q/Ns

Index Servers

User Searching

Query
Processor

Document
Server

Query Rate Q

Q

1 NS2

Search
engine

Document server
response time

tdocserver

Query processor
response time

tqryprocess

Index response
time

 tindex

System Response time components

Search
Engine

Query processor
response time

tqryprocess

SRN response time

tSRN-resp

Index response
time

 tindex

Document
server

response time

tdocserver

System Response time components User Searching

Selective queryy
delivery

Sends query
Returns list of
matching URLs

SRN

Query rate Q

Pool 2 Pool Np
Q/(Npns)

1 ns 2

Query rate Q/Np

Semantic Router

Pool 1

Query Rate Q

Index Servers

Query Processor Document
Server

Returns list of
matching document ids
to retrieve

Step III processing
response time

 tStepIII-resp

253

Incorporation of the SRN increases the response time of the search engine by an additional

amount (tStepIII-resp + tSRN-resp), where tStepIII-resp is the response time of the step III processing which

is incorporated in the query processor sub-system (refer Fig. 3.2 in section 3.3, Chapter III) and

tSRN-resp is the response (or flow) time of the SRN. Thus the response time Tprop of the proposed

design is:

 docserverindexresp-SRNresp-StepIIIqryprocess tttttTprop (7.11)

In the following sections we will show that this response time Tprop is not significantly different

than the response time T of a typical search engine, as given by equation (7.4). We will also

show that it is possible to design the SRN with sufficient throughput capacity to handle the query

traffic rate, so that the SRN does not become the bottleneck.

For simplicity we assume that the additional response time needed to carry out step III is similar

to its execution time (refer section 2.11.3, Chapter II for the rationale). Therefore this time is

considered equal to the one given by equation (4.1) in section 4.5.1.3, Chapter IV. Therefore the

average response time is given as:

 exeStepIIIresp-StepIII u
n

Tt byte (7.12)

Where nbyte is the average number of bytes in the basis vector terms in the tensor model which is

considered = 40 bytes based on our experiences from [13]. Whereas u is the loop unroll factor

which is taken as = 1 here. Therefore tStepIII-resp = 40 clock cycles, which is equivalent to 10

nanoseconds.

For simplicity we model the entire SRN as a single queue M/M/n system. This queue system had

been explained in Chapter II, section 2.11. Therefore we can assert that the flow time tSRN-resp

254

required to route a message through the SRN includes two components: the time tSRN-wait that the

message have to wait for the SRN to actually begin the routing process and the time tSRN-exe,

which is the actual execution time that the SRN takes to service (route) the message. Therefore

the three variables: tSRN-resp, tSRN-wait, tSRN-exe are related to each other by:

exeSRNwaitSRNrespSRN ttt (7.13)

We shall show that the time tSRN-exe, is indeed small, therefore we can design a SRN to have

small response time tSRN-resp and high throughput capacity. This is based on the insights gained

from queuing theory, as presented earlier in Chapter II, section 2.11. There, we had shown how

we can deliver the required throughput capacity and response time by choosing n, the number of

processors (i.e. routers in case of SRN) in a system, as long as the execution time is small

compared to the required response time.

To establish this we will show that tSRN-exe << T, so that it is possible to chose a small value of n,

so that we get a tSRN-resp ≈ tSRN-exe. This tSRN-resp << Tprop and therefore response time of the search

engine with SRN is Tprop = T + tSRN-resp ≈ T. In other words, as tSRN-exe is very small compared to

response time T of a typical search engine that does not use SRN, therefore we can deploy a very

small number of concurrent routers (acting as processors or servers) to get the required SRN

throughput capacity and yet manage to leave the response time of the search engine unperturbed.

We will establish this for different kinds of SRN and router implementations as explained in the

following sections.

7.10.2 Alternative SRN implementations

We considered a distributed index system model where there are ~1000 index nodes (i.e. NP

=1000, Fig. 7.20). In this system two alternative SRN implementations are possible. One

255

implementation involves a single large router. This single semantic router will forward queries to

any one of the 1000 index server pools (destinations). Therefore this semantic router will have

1000 rows in its semantic routing table and will need at most 1000 key comparisons, due to the

chosen semantic routing table mechanism as explained earlier in Chapter V, section 5.1.7.

The other SRN implementation involves 200 small routers, connected to each other in P2P

fashion, as modeled in the SRN simulation presented in section 7.7. Each of these small semantic

routers will have 5 rows in its semantic routing table.

For each of these SRN implementations, the descriptor comparator in the semantic routers can be

implemented by two methods. In one design, the meaning descriptor comparison can be carried

out using the proposed comparator accelerator hardware as explained in Chapter IV, section

4.5.4. In the other design, we can use the meaning comparison software code, as presented in

Fig. 7.4, in section 7.5.2. The time response estimate calculations are presented in the following

sections for all these four cases (i.e. 2 SRN designs * 2 router implementations). The

assumptions behind these calculations are also presented.

7.10.3 Semantic router hardware and timing related assumptions

All semantic router related the time calculations assumes the high-level design of the semantic

router as presented in Chapter VI, section 6.7.2. Within the SRN, a message needs h number of

hops to reach the final destination. For each routing hop, the key needs to be transmitted over the

network. Therefore, for each hop, the time needed to execute a message in the SRN has two

major components: (1) tnet, the time that the message spends in the network that connects the

semantic router nodes; and (2) tmsgprocess, the time spent by the semantic router nodes to process

the message. In section 6.7.2.20 of Chapter VI, we had shown that the message processing inside

256

the semantic routers involves transferring the message data through the system interconnect and

comparing the message key against routing table row keys and deciding the next destination

address. The time response analysis of this system is briefly repeated here for sake of continuity.

For simplicity, we assume that the system bus interconnect is the bottleneck because each

message may have large size ~100KB and for large messages, the message data transfer time to

the memory is significantly larger than the message protocol processing time. Hence the transfer

time is in the order of tI/O, the time taken by the interconnect system. Similarly, we assume that

the time to decide the route has the order of tcomp, the time taken to compare the message’s key

against all the keys in the semantic routing table and tmin-dest-id is the time necessary to identify the

minimum value and corresponding addresses from the destination column of the routing table.

Therefore we can assert the followings:

) (~ id-dest-mincompI/Omsgprocess tttt (7.14)

) () (compI/OnetmsgprocessnetexeSRN ttthttht (7.15)

7.10.4 Response time analysis of SRN having large router

7.10.4.1 Analysis for semantic routers using hardware comparator

In this case, a big semantic router having 1000 routing table rows is sufficient to send the

message to one of the 1000 destination index nodes using only one routing hop, hence number of

semantic routing hops h = 1. If we assume that the query key has a size of 100Kbytes (as

explained in section 7.6.3), and the network protocol overhead is around 20%, then tnet, the time

spend in the network is in order of 100KB/(0.8*10Gbps) = 100 microseconds for one networking

hop.

257

Whereas message transfer time tI/O will be for a two way transfer – the first one from the network

interface sub-system to the buffer RAM during the message receiving and the second one from

buffer RAM to network interface card during message transmission (refer section 6.7.2, Chapter

VI. This involves 2 memory access operations over the system bus and memory interconnect

(which is assumed to have a speed of 25.6GByte/sec [152]). Considering a 20% protocol

overhead, the message transfer time tI/O for a 100KByte sized key would take

100*103*(1/0.8)*2*1/(25.6*109) ≈ 9.76 microseconds. The time tmin-dest-id is calculated using

equation (6.2) presented in section 6.7.2.2 of Chapter VI. For our design we assume each

modules packs in q = 64 comparators. Therefore to achieve a router with n = 1000 routing table

rows, we need r to be = 16. This gives the tmin-dest-id = log2q + log2r = log232 + log232 =

5+5 =10 clock cycles = 2.5 nanoseconds.

For semantic descriptors having say 1000 basis vectors, the expected value of the number of

common basis vectors, c, is small in order of 1/(NP) = 10-3 (as explained earlier in Chapter II,

section 4.5.2.3). In such case, the expected execution time is around 42.39 clock cycles (refer

Table 7.3), which is less than 10.6 nanosecond for 4Ghz clock. The setup time for the

comparator is ignored because it only one time setup cost and thus does not occur for every

message processing. For the routing table lookup which involves 1000 key comparisons, the

time to compare all 1000 pair of keys concurrently will be in order of 10.6 nanosec itself. This is

because we choose to concurrently compare against all semantic routing table rows keys, as

explained in section 6.7.2, Chapter VI.

Thus the estimated execution time tSRN-exe is ~ (100 + 9.76 + 10.6*10-3 + 2.5*10-3) = 109.77

microseconds. This is also the average service period of each processor in the M/M/n queue

model as explained Chapter II, section 2.11. We assume an indeterministic execution time due to

258

following reason. In section 7.6.1.3 we have seen that the execution time of the comparison task

varies with the number of common basis vector. The number of common basis vector is a

random variable, hence the execution time is also a random variable and it is assume to obey

exponential distribution.

We know from [1], that the long term query arrival rate λ = 3500 per second. So the utilization

figure λ*t = 3500 * 109.77 *10-6 = 0.384. From Table 2.1 of Chapter II, section 2.11, we can see

that the average waiting time is 0.6666 times the execution time for an utilization figure of 0.40

(which is the nearest to 0.384), if we use only one semantic router hardware replica (i.e. number

of servers/processor = 1).

This means that when one single router replica is used then average tSRN-resp = tSRN-wait + tSRN-exe =

(1+0.6666) *tSRN-exe = 1.6666 * 109.77 *10-6 = 182.94 micro seconds and there is 60% chance

that the message will not have to wait. If two semantic router replicas are used to share the traffic

load, then the tSRN-resp would be = (1+0.1905)* 109.77 *10-6 = 130.68 micro seconds and there

would be 77.14% chance that the message would not have to wait. This load sharing by replicas

is explained in Fig. 7.21. Here the traffic distributor will send an incoming message to a

randomly selected router replica, so that each replica encounters only a fraction of the message

arrival rate.

259

Fig. 7.21 Semantic Router replication technique for load sharing

7.10.4.2 For semantic routers using software comparator

On the other hand, the software implementation of the semantic key comparator takes

1000*7.7*106 clock cycles (refer Table 7.3) which is ~1.925 seconds (for 4Ghz clock), to

compare 1000 key comparisons. In this case the tnet and tI/O components remain same as the

hardware comparator implementation case. Thus the execution time tSRN-exe is ~ (100 microsec +

9.76 microsec + 1.925 sec) ≈ 1.925 seconds. The tmin-dest-id time is built in the 1.925 seconds time,

because comparison simply requires maintaining the latest minimum value in a register which

does not need a significant time.

The utilization figure λ*t = 3500 * 1.925 = 6737.5 which is >> 1. This means that to maintain

the required throughput more than 6738 semantic router replicas are necessary to share the load

as shown in Fig. 7.21. This need for large number of replicas is not attractive arrangement. Even

with such arrangement, the execution time will be always be at least 1.925 seconds irrespective

to the number of semantic routers deployed. Thus this scheme is not acceptable.

Incoming message

Repica 1

Arrival rate q/n

1 n 2

Arrival rate q

Traffic
distributor

Repica 2
Repica n

Concentrartor

Outgoing message

A semantic router
pool acting as a

single router

260

7.10.5 Response time analysis of SRN with small routers

7.10.5.1 For semantic routers using hardware comparator

If the SRN with small routers is used, as shown by the SRN simulation (Fig. 7.14 and Fig. 7.15),

then on average, there would be around 2 routing hops (we take the nearest higher integer h = 2

instead of the value of 1.89) . Each router will have to carry out only 5 key comparisons in this

case. In this SRN design, there will be around 5 copies of each query, because the message

overhead is around 5 per query (refer Fig. 7.16). We take the nearest integer value of 5 instead of

4.8. This means each of the 200 routers will encounter 3500*5/200 = 87.5 queries per second.

Out of these only (5/200)th fraction of the queries will have a c value which is 100%. On average,

one out of 5 rows in the semantic routing table will have a match, therefore average c value will

be 5/(200*5) = 0.5%. The comparator execution time tcomp for this c = 0.05%, is around 26.32

cycles (= 6.58 nanoseconds). The tmin-dest-id is still 10 clock cycles = 2.4 nanoseconds. The tnet is

100 microseconds and the tI/O is 9.76 microseconds as the earlier case. So the total execution

time tSRN-exe for two semantic routing hop = 2* (6.58 nanosec + 2.5 nanosec + 100 microsec +

9.76 microsec) = 219.54 micro seconds.

The utilization figure λ*t = 87.5 * 219.54 *10-6 = 0.019. The minimum utilization that is

tabulated in Table 2.1 of Chapter II, section 2.11, is only 0.1. If we take that value, then we get

an average waiting time as 0.1111 times of the execution time, if we do not use any additional

replicas for load sharing (i.e. number of processor = 1). This indicates that the average tSRN-resp is

less than (1+ 0.1111)* 219.54 *10-6 = 243.93 micro seconds and there would be more than 90%

chance that the message would not have to wait.

261

7.10.5.2 For semantic routers using software comparator

Whereas the software based comparator will require (2*5*7.7*106*0.25*10-9=19.25 milliseconds

for key comparisons + 2*109.76 microseconds for network and I/O transfer) = 19.47

millisecond. In this case the λ*t = 87.5 * 19.47 *10-3 = 1.703. This means that at least 2 semantic

router replicas are necessary to maintain the necessary throughput. As waiting time table does

not provide estimates for utilization greater than 0.95, so we use an approximation method to get

a rough estimate of the average execution time. Suppose we consider using 8 replicas of

semantic routers for load sharing, then the average utilization is (87.5/8)*19.47 *10-3) = 0.213.

Waiting time is available from Table 2.1 for utilization value of 0.3 which is greater than 0.213.

We take that conservative value for our purpose. The estimated waiting time for utilization of 0.3

and 1 processor case is 0.4286 times of the execution time. Thus the estimated average tSRN-resp =

(1+0.4286) * 19.47 = 27.82 milli seconds, and there is 70% chance that a message would not

have to wait.

7.10.6 SRN does not significantly perturb search engine performance

The entire search is completed in a typical search engines in order of 200 milli seconds [5].

Therefore the query delivery network (Semantic Routed Network) in the proposed model should

also have response time (tSRN-resp) which should be significantly small compared to 200 millisec.

In the Table 7.7 below, we summarize the response time estimate of the proposed search engine

which uses SRN. These estimates have been carried out in the earlier sections.

Here we examine how these response times of the proposed search engine compare with this 200

millisec time response of existing search engines. From the this table it is clear that both SRN

designs which implements the semantic routers with hardware based descriptor comparators, is

acceptable because insertion of SRN does not significantly increase the search engine response

262

time from 200 millisec. This is because SRN’s and step III’s combined response time is in order

of hundred micro seconds which is an insignificant value compared to 200 millisec.

Table 7.7 Time response of the proposed search engine design using SRN

SRN
implemented

with-

Descriptor
comparator

Implementation

Step III &
SRN

response =
tStepIII-resp +

tSRN-resp

of load
sharing
replicas

needed for
each

semantic
router

Utilization
factor =
arrival
rate/

service
rate

Response
time of the
proposed

search engine
with SRN

Comment

A single
large single
semantic
router

Hardware 182.94
microsec + 10

nanosec

1 0.384 (200 millisec
+ 182.95
microsec)

Acceptable
but not
scalable

Software > 1.925 sec > 6738 < 1 > (1.925 sec +
200 millisec)

Not
acceptable

200 small
semantic
routers

Hardware < 243.93
microsec + 10

nanosec

1 0.019 (200 millisec
+243.94

microsec)

Acceptable
& scalable

Software 27.82 millisec
+ 10 nanosec

8 0.213 (200 + 27.82)
millisec

May be
acceptable

From a more practical engineering viewpoint we will interpret this as follows. We consider the

hardware based single semantic router SRN case (row 1 in Table 7.7). There is a quite a

difference between the required response time 200 millisec and the 182.94 microsec response

time of the available comparator circuit. This significant difference leaves enough room to

absorb the time overheads that will get added on top of this basic 182.94 microsec. These

overheads will be incurred when the proposed comparator circuit is implemented as a module

and many of such modules are integrated as a deployable product. It may appear that the parallel

design as presented in section 6.7.2, Chapter VI, is an over-engineered design, but it may not be

so under certain circumstances. That kind of parallelism may be still necessary if the overheads

are large and we need to cut down the core execution time to leave enough room to

accommodate the overheads. We believe that the best design will be a hybrid scheme of a mix of

263

sequential and parallel designs to get an optimum balance between lower response time and

lower hardware complexity.

These SRN implementations satisfy the throughput requirements when the required number of

router replicas is deployed (as indicated in the 4th column of the above table). In all cases the

utilization is less than 1 indicating the SRN has sufficient throughput (or service) capacity which

is greater than the message arrival rate. The SRN design with small routers and software based

comparator may be also acceptable. However, the most preferable option is the SRN with small

routers using hardware comparator, because that design has much more capacity than what is

needed at this moment. This additional capacity may be useful when the infrastructure is scaled

up by adding many more index pools, in addition to the 1000 index nodes, that are currently

present.

7.11 Estimated power consumption of the proposed semantic router

Here we show that the semantic table lookup mechanism, as proposed in section 6.7.2, Chapter

VI, is feasible from point of view of power consumption and packing density. Based on our past

hardware design experiences [131] and new hardware design related work, we have estimated

that the power consumption of a descriptor similarity comparator having 10,000 slices, 32 CAM

units and 16 multipliers will be within 10 Watts. The power consumption estimation of the

comparator is beyond the scope of this thesis, however we will use this figure of 10W to show

that it is possible to pack 32 such comparators in a comparator module, and 32 such modules in a

19 inch rack system as used in data centers.

Each comparator module packing 32 comparators will consume at least 10*32 = 320 Watts,

which is in addition to the power consumption of around 200Watts for rest of the server

264

motherboard. This server need not have a powerful host processor so an estimate of 200 Watt

consumption is reasonable. This total of 200+320= 520 Watt power requirement is well within

the capacity of a blade server form factor. A 19-inch data center rack can physically

accommodate 32 comparator modules having either blade server or 1U form factors. The total

power consumption of 32 comparator modules is 32 * 520 = 16.64 Kilo watts, which is well

within the 20 Kilo Watt power density limit for a 19-inch rack.

7.12 Suitability of the proposed comparison technique

In the previous sections, we have substantiated the followings:

1) The proposed tensor model incorporates generative meaning composition therefore

performs better than vector models in representing and comparing meanings.

2) The tensor model can represent many aspects of meaning comparison and interpretation

that takes place within human mind and thus can be used to solve many problems in

information retrieval.

3) Some of the key assumptions behind the tensor model is congruent with the theories in

cognition science, thus the tensor model is realistic.

4) The proposed dot product computation approach yield correct results.

5) The setup and execution time of the proposed comparator is significantly smaller

compared to those of the efficient software implementation and existing hardware designs.

6) The proposed approach is suitable in terms of memory requirement and satisfaction of the

timing constraints for use in semantic routers.

All these taken together indicate that the proposed tensor model is physiologically more realistic

compared to vector models and can be used to design a semantic router.

265

7.13 Suitability of the index self-organization technique

In the past sections we also substantiated the followings:

1) The proposed semantic routing table compaction algorithm enables small semantic routers to

carry out the routing in a better manner compared to the large routers.

2) The proposed self-organizing scheme enables automatic generation of a small world

semantic routed network topology.

Thus all these aforementioned arguments together indicate that the proposed network

organization techniques can enable self-organization of a meaning based index.

7.14 Summary

Systematic, meaning based distribution of index entries in a distributed index system, leads to a

resource efficient index structure. To create and operate this index structure a meaning based

message routing network is needed. By using the proposed protocols, algorithms and techniques

as presented in this chapter, it is possible to design a semantic routed network that route

messages based on their meanings. Furthermore, the proposed network self-organization

technique will allow automatic creation of this optimum distributed index system using the

semantic routed network. In addition, by adopting the proposed semantic routing table

compaction algorithm it is possible to built this semantic routed network by small routers instead

of larger ones without trading off routing (and index) performances. To create and operate the

aforementioned semantic routed network and semantic routers, a method is needed to represent

and compare meanings. The proposed tensor model can be a good candidate for this purpose.

The proposed information processing architecture enables high speed computation of the tensor

based meaning comparison and needs a memory space which can be implemented using existing

266

devices. Thus this architecture is suitable to be used in the semantic routers which can then be

used to materialize the semantic routed network and the distributed index system.

267

CHAPTER VIII

CONCLUSION

8.1 Open research problems

This dissertation covered a variety of problems and delved deeper to explore several of them.

However, there is couple of unexplored problems which should be investigated further. The

significant ones are mentioned below:

1. Design and evaluation of alternative techniques to generate concept tree from a given

text in addition to the method suggested in Chapter III. This will involve application of

natural language processing and machine learning techniques and human user based

experimentations.

2. Evaluating the need to integrate existing methods like, term vector models, latent

semantic indexing, etc., along with the proposed tensor model to improve performance

of meaning comparison, and design of a method to materialize their integration. This

will need user based experiments on a variety of text document corpus. This can be

carried out only after the previous task has been completed.

3. Design of hash functions that can be parallelized at circuit level to implement extremely

fast and efficient hash function circuitry that is needed in the proposed meaning

comparator architecture.

4. Design of a pipelined scheme for the proposed comparator architecture.

5. Power consumption and silicon area estimates of the alternative architectures as

proposed in Chapter IV, table 4.1.

268

6. Finally, a more detailed design of the semantic router using the aforementioned artifacts.

Here, a challenge would be to maintain high I/O throughputs between network interface

to memory and memory to the comparator hardware. This can be best done if all these

three – network interface, memory and comparator are closely integrated.

7. Apply the index distribution technique in an actual search system and evaluate the

improvements in performance.

8.2 Contributions

There is a significant demand for meaning based search systems. The key challenges in building

such systems are scalability and ability to provide relevant search results. Existing schemes for

distributing the search indexes are not resource efficient. Therefore an alternative efficient index

distribution and organization scheme is needed. This scheme requires a meaning based message

delivery network and an appliance called semantic router to materialize this network.

Constructing this semantic router will require a superior method to represent and compare

meanings of text documents and objects, compared to existing vector meaning representation

models. In addition, novel networking organization and operation mechanisms (algorithms and

protocols) are also necessary.

This dissertation presented the following foundational technologies necessary to enable superior

meaning representation, comparison and meaning based message delivery network:

1. An algebraic theory, design of a data structure and related algorithms for representing

composite meaning in a psychologically realistic manner. This technique will enable

more precise meaning based searching.

269

2. An efficient technique to compare two data structures for similarity of their meanings.

This will enable implementation of fast response semantic routers, Semantic Routed

Network and index server systems that enable more precise meaning based searching.

3. Design of an overlay networking scheme that deliver messages based on their meanings.

This enables implementation of a meaning based distributed index.

4. Techniques to construct a scalable and self-organizing meaning based index.

We showed that the proposed meaning comparison techniques can compare composite meanings

~105 times faster than an equivalent software code and existing hardware designs. Whereas, the

proposed index organization approach can lead to 33% savings in number of servers and power

consumption in a model search engine having 700,000 servers. Therefore, using all these

techniques, it is possible to design a Semantic Routed Network which has a potential to improve

relevance of search results and search response time, while saving resources.

270

REFERENCES

[1] A. Patriquin, “March Search Market Share: Record query growth and the Yahoo/Microsoft
search deal by the numbers,” Available: http://blog.compete.com/2009/04/13/search-
market-share-march-google-yahoo-msn-live-ask-aol-2/, Apr. 2009.

[2] J. C. Perez, “Google joins crowd, adds semantic search capabilities,” Computer World,
Mar. 2009.

[3] P. Lenssen, “Checking Google’s Index Size,” Blogoscoped, 2006. Available:
http://blogoscoped.com/archive/2006-12-27-n44.html [Apr. 2009].

[4] L. A. Barroso, J. Dean, and U. lzle, “Web search for a planet: The google cluster
architecture,” IEEE Micro, vol. 23, no. 2, 2003.

[5] A. Agarwal, “Single Google query uses 1000 machines in 0.2 seconds,” Digital
Inspiration, Available: http://www.labnol.org/internet/search/google-query-uses-1000-
machines/7433/, [Feb. 2009].

[6] D. MacKay, “Google Searches, energy cost, carbon footprint, and cups of tea,” Available:
http://withouthotair.blogspot.com/2009/01/google-searches-energy-cost-carbon.html, Jan.
2009, [Apr. 2009].

[7] Wikipedia, Information retrieval, Available:
http://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=274343961, [Apr.,
2009].

[8] B. Rosario, “Latent Semantic Indexing: An overview,” School of Information
Management & Systems, U.C. Berkeley, Available:
http://people.ischool.berkeley.edu/~rosario/projects/LSI.pdf, Spring, 2000,

[9] G. Salton, and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information Processing & Management, vol. 24, no. 5, 513–523, 1988.

[10] B. Botelho, “Gartner predicts data center power and cooling crisis,” 2007, Available:
http://searchdatacenter.techtarget.com/news/article/0,289142,sid80_gci1260874,00.html,
[Mar. 2009].

[11] Wikipedia, “Bag of words model,” Available:
http://en.wikipedia.org/wiki/Bag_of_words_model, [Mar. 2010].

[12] J. Mitchell, M. Lapata, “Vector-based models of semantic composition,” Proc. 46th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, Columbus, OH, 2008.

271

[13] A. Biswas, S. Mohan, A. Tripathy, J. Panigrahy, R. Mahapatra, “Semantic key for
meaning based searching,” Proc. 3rd IEEE International Conference on Semantic
Computing, Berkeley, CA, USA, 2009.

[14] Pubmed, http://www.ncbi.nlm.nih.gov/pubmed/ [Mar 2010]

[15] A. Biswas, S. Mohan, R. Mahapatra, “Semantic technologies for distributed search P2P
networks,” Handbook of Research on P2P and Grid Systems for Service-Oriented
Computing: Models, Methodologies and Applications, N. Antonopoulos, G. Exarchakos,
M. Li and A. Liotta Eds., IGI Publisher, Hershey, PA, USA, 2009.

[16] A. Biswas, S. Mohan, and R. Mahapatra, “Semantic technologies for searching in e-
Science grids,” Semantic e-Science, H. Chen, Y. Wang and K.H. Cheung Eds., Springer
AoIS Book Series, New York, 2009.

[17] E. Saffran, “The organization of semantic memory: In support of a distributed model,”
Brain and Language, vol. 71, no. 1, pp. 204–212, 2000.

[18] C. Bai, I. Bornkessel-Schlesewsky, L. Wang, Y.-C. Hung, M. Schlesewsky and P.
Burkhardt, “Semantic composition engenders an N400: evidence from Chinese
compounds,” Neuro Report, vol. 19, no. 6, pp. 695, 2008.

[19] M.M. Piango, “The neural basis of semantic compositionality,” In session hosted by the
Yale Interdepartmental Neuroscience Program, Yale University, 2006.

[20] G. Murphy, “Comprehending complex concepts,” Cognitive Science, vol. 12, no. 4, pp.
529–562, 1998.

[21] P.W. Culicover and R. Jackendoff, “The simpler syntax hypothesis,” Trends in Cognitive
Science, vol. 10, no. 9, pp. 413-418, 2006.

[22] P.W. Culicover and R. Jackendoff, “Simpler syntax,” Oxford linguistics, Oxford
University Press, Oxford, UK, 2005.

[23] G. Kuperberg, “Neural mechanisms of language comprehension: Challenges to syntax,”
Brain Research, vol. 1146, pp. 23–49, 2007.

[24] H.S. Kirshner, “Language studies in the third millennium,” Brain and Language, vol. 71,
no. 1, pp. 124-128, 2000.

[25] P. Hagoort, “On Broca, brain, and binding: A new framework,” Trends in Cognitive
Sciences, vol. 9, no. 9, pp. 416–423, 2005.

[26] Y. Grodzinsky, “The neurology of syntax: Language use without Broca's area,”
Behavioral and Brain Sciences, vol. 23, no. 01, pp. 1-21, 2001.

[27] A. Caramazza and R.S. Berndt, “Semantic and syntactic processes in aphasia: A review of
the literature,” Psychological Bulletin, vol. 85, no.4, pp. 898-918, 1978.

272

[28] A.D. Friederici, B. Opitz and D.Y. Cramon, “Segregating semantic and syntactic aspects
of processing in the human brain: An fMRI investigation of different word types,”
Cerebral Cortex, vol. 10, pp. 698-705, 2000.

[29] J. Brennan, and L. Pylkknen, “Semantic composition and inchoative coercion: An MEG
study,” Proc. 21st Annual CUNY Conference on Human Sentence Processing, University
of North Carolina, Chapel Hill, 2008.

[30] Z. Ye and X. Zhou, “Involvement of cognitive control in sentence comprehension:
Evidence from erps,” Brain Research, vol. 1203, pp. 103–115, 2008.

[31] M. Ekiert, “The bilingual brain,” Working Papers in TESOL and Applied Linguistics,
vol.3, no.2, 2003.

[32] K.H.S. Kim, N.R. Relkin, and J. Hirsch, “Distinct cortical areas associated with native and
second languages,” Nature, vol. 338, pp.171-174, 1997.

[33] E. Zurif, “Syntactic and semantic composition,” Brain and Language, vol. 71, no. 1, pp.
261–263, 2000.

[34] D. Bickerton, Language & species, The University of Chicago Press, Chicago & London,
1990.

[35] R. Jackendoff, “Compounding in the parallel architecture and conceptual semantics,” The
Oxford handbook of compounding, Ed. R. Lieber, R. Stekauer, Oxford: Oxford University
Press, 2009.

[36] A.M. Collins and E.F. Loftus, “A spreading-activation theory of semantic processing,”
Psychological Review, vol. 82, no. 6, pp. 407-428, 1975.

[37] J.R. Anderson, “A spreading activation theory of memory,” Journal of Verbal Learning
and Verbal Behavior, vol. 22, 261-295, 1983.

[38] J.R. Anderson and P.L. Pirolli P L, “Spread of activation,” Journal of Experimental
Psychology: Learning, Memory, & Cognition, vol. 10, pp.791-799, 1984.

[39] R.A. Rodriguez, “Aspects of cognitive linguistics and neurolinguistics: conceptual
structure and category-specific semantic deficits,” Estudios Ingleses de la Universidad
Complutense, vol. 12, pp. 43–62, 2004.

[40] Wikipedia, Semiotics, http://en.wikipedia.org/wiki/Semiotics, Accessed on Mar 12, 2010.

[41] Wikipedia, Machine learning, Available: http://en.wikipedia.org/wiki/Machine_learning,
[Mar. 2010].

[42] R. Rajapske and M. Denham, “Fast access to concepts in concept lattices via bidirectioanl
associative memory,” Neural Computation, vol. 17, pp. 2291-2300, 2005.

273

[43] R. Rajapske and M. Denham, “Text retrieval with more realistic concept matching and
reinforcement learning,” Information Processing and Management, vol.42, pp. 1260-1275,
2006.

[44] C. Andersen, “A computational model of complex concept composition,” M.S. thesis,
Department of Computer Science, University of Texas, Austin,1996.

[45] Wikipedia, “Latent Dirichlet allocation,” Available:
http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation, [Mar 2010]

[46] D. Widdows, “Semantic vector products: Some initial investigations,” Quantum
Interaction: Papers from the Second International Symposium, Oxford, 2008.

[47] D. Widdows, “A mathematical model for context and word-meaning,” Lecture Notes In
Computer Science, pp. 369-382, 2003.

[48] A. Augello, G. Vassallo, S. Gaglio and G. Pilato, “Sentence induced transformations in
"conceptual" spaces,” Proc. IEEE International Conference on Semantic Computing, pp.
34-41, 2008.

[49] K. Coursey, R. Mihalcea and W. Moen, “Using encyclopedic knowledge for automatic
topic identification,” Proc. 13th Conference on Computational Natural Language
Learning, pp. 210–218, Boulder, Colorado, 2009.

[50] Coursey, K and Mihalcea, Rada, “Topic identification using graph centrality,” Proc.
Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pp. 117-120, 2009.

[51] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
Proc. 6th Symposium on Operating System Design and Implementation, San Francisco,
CA, 2004.

[52] D. Widdows, “Geometric ordering of concepts, logical disjunction, and learning by
induction,” Compositional Connectionism in Cognitive Science, AAAI Fall Symposium
Series, Washington, DC, 2004.

[53] D. Widdows, “Orthogonal negation in vector spaces for modeling word meanings and
document retrieval,” Proc. 41st Annual Meeting of the Association for Computational
Linguistics, 2003.

[54] G.L. Murphy and D.L. Medin, “The role of theories in conceptual coherence,”
Psychological Review, 1985.

[55] H. Ogata, W. Fujibuchi, S. Goto and M. Kanehisa, “A heuristic graph comparison
algorithm and its application to detect functionally related enzyme clusters,” Nucleic Acids
Research, vol. 28, no. 20, pp. 4021-4028, 2000.

274

[56] P. Foggia, C. Sansone and M. Vento, “A performance comparison of five algorithms for
graph isomorphism,” Proc. 3rd IAPR TC-15 Workshop on Graph-based Representations in
Pattern Recognition, pp. 188-199, 2001.

[57] K.E. Wolff, “A first course in formal concept analysis,” Proc. StatSoft '93, Ed. F.
Faulbaum, pp. 429-438, Gustav Fischer Verlag, 2004.

[58] J. Qi, L. Wei and Y. Bai, “Composition of concept lattices,” Proc. 7th International
conference on machine learning and cybernatics, Kunming, 2008.

[59] P. Gerrans and V. E. Stone, “Generous or parsimonious cognitive architecture? Cognitive
neuroscience and theory of mind,” British Journal of Philosophical Science, vol. 59, pp.
121–141, 2008.

[60] Wikipedia, “Resource description framework,” Available:
http://en.wikipedia.org/wiki/Resource_Description_Framework, [Apr. 2009].

[61] Wikipedia, “RDFa,” Available: http://en.wikipedia.org/wiki/RDFa, [Apr. 2009].

[62] W3C, “HTML 5: A vocabulary and associated APIs for HTML and XHTML,” Editor's
Draft 9, http://dev.w3.org/html5/spec/Overview.html, [Aug. 2009].

[63] Wikipedia, “Microformat,” Available: http://en.wikipedia.org/wiki/Microformat, [Apr.
2009].

[64] Wikipedia, “HTML5,” Avaialable: http://en.wikipedia.org/wiki/HTML_5, [Apr. 2009].

[65] J. T. L. Wang, K. Zhang, K. Jeong and D. Shasha, “A system for approximate tree
matching,” IEEE Transactions on Knowledge and Data Engineering, vol. 6, no. 4, pp.559
- 571, 1994.

[66] D. Chen, J. G. Burleigh, M. S. Bansal and D. Fernández-Baca, “PhyloFinder: An
intelligent search engine for phylogenetic tree databases,” BMC Evolutionary Biology, vol.
8, no. 90, 2008.

[67] D. R. Robinson and L. R. Foulds, “Comparison of phylogenetic trees,” Mathematical
Biosciences, vol. 53, pp. 131-147, 1981.

[68] V. Krishna, N. Ranganathan and A. Ejnioui, “A tree-matching Chip,” IEEE Transactions
On Very Large Scale Integration (VLSI) Systems, vol. 7, no. 2, 1999.

[69] L. Knecht, “PubMed: Truncation, automatic explosion, mapping, and MeSH headings,”
NLM Technical Bulletin, pp.302, May-Jun. 1998.

[70] Medical subject headings, U.S. National Library of Medicine, Available:
www.nlm.nih.gov/mesh/, [Apr 2009].

275

[71] E. Alvarez-Lacalle, B. Dorow, J.-P. Eckmann and E. Moses, “Hierarchical structures
induce long-range dynamical correlations in written texts,” Proc. National Academy of
Sciences of the United States of America, 2006.

[72] Wikipedia, “Named entity recognition,” Available:
http://en.wikipedia.org/wiki/Named_entity_recognition, [Feb. 2010].

[73] M. Ruiz-Casado, E. Alfonseca, P. Castells, “Automatic assignment of Wikipedia
encyclopedic antries to WordNet synsets,” Advances in Web Intelligence, pp. 380-386,
2005.

[74] Wikipedia, “Information extraction,” Available: http://en.wikipedia.org/wiki/Information
_extraction, [Feb. 2010].

[75] D. Balasuriya, N. Ringland, J. Nothman, T. Murphy and J.R. Curran, “Named entity
recognition in Wikipedia,” Proc. Workshop on The People's Web Meets NLP:
Collaboratively Constructed Semantic Resources, Suntec, Singapore. 2009.

[76] H.W. Chun, Y. Tsuruoka, J.D. Kim, R. Shiba, N. Nagata, T. Hishiki, J. Tsujii, “Extraction
of gene-disease relations from Medline using domain dictionaries and machine learning,”
Pacific Symposium on Biocomputing, 2006.

[77] M. Huang, X. Zhu, Y. Hao, D. G. Payan, K. Qu and M. Li “Discovering patterns to extract
protein-protein interactions,” Bioinformatics, vol. 20. pp. 3604–3612, 2004.

[78] T.C. Rindflesch, L.Tanabe, J.N.Weinstein and L.Hunter, “EDGAR: Extraction of drugs,
genes, and relations from the biomedical literature,” Proc. Pacific Symposium on
Biocomputing, pp. 514-525, 2000.

[79] C. Ramakrishnan, K. J. Kochut and A. P. Sheth “A Framework for schema-driven
relationship discovery from unstructured text,” Proc. International Semantic Web
Conference, pp. 583–596, 2006.

[80] W. Wong, W. Liu and M. Bennamoun, “Acquiring semantic relations using the web for
constructing lightweight ontologies,” Proc. 13th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2009.

[81] M. Balakrishna, and M. Srikanth, “Automatic ontology creation from text for National
Intelligence Priorities Framework (NIPF),” Proc. Conference on Ontology for the
Intelligence Community, 2008.

[82] Pedro, V., Niculescu, S. and Lita, L. Okinet: Automatic extraction of a medical ontology
from Wikipedia. WiKiAI08: A workshop of AAAI2008, 2008.

[83] Roberson, S., Dicheva, D.: Semi-automatic ontology extraction to create draft topic maps.
Proc. 45th ACM Southeast Conference, Winston-Salem, NC, March 2007, pp. 23–24,
2007.

276

[84] D. Mladenić, M. Grobelnik, “Evaluation of semi-automatic ontology generation in real-
world setting,” Proc. 29th International Conference on Information Technology Interfaces,
2007.

[85] A. Maedche, E. Maedche and S. Staab, “Learning ontologies for the semantic web,” Proc.
Semantic Web Worskhop, 2001.

[86] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” Proc. 14th
International Conference on Computational Linguistics, pp. 539-545, Nantes, France, July
1992.

[87] P. Buitelaar and P. Cimiano, “Ontology learning and population: Bridging the gap between
text and knowledge,” Series information for Frontiers in Artificial Intelligence and
Applications, IOS Press, 2008.

[88] P. Buitelaar, P. Cimiano, and B. Magnini, “Ontology learning from text: Methods,
evaluation and applications,” Series information for Frontiers in Artificial Intelligence and
Applications, IOS Press, 2005.

[89] R. Navigli and P. Velardi, “Learning domain ontologies from document warehouses and
dedicated web sites,” Computational Linguistics, vol. 30, no. 2, MIT Press, pp. 151-179,
2004.

[90] Wikipedia, “Automatic summarization,”
http://en.wikipedia.org/wiki/Automatic_summarization, [Mar. 2010].

[91] D. Marcu, “From discourse structures to text summaries,” Proc. of ACL’97/EACL’97
Workshop on Intelligent Scalable Text Summarization, pp. 82–88, Madrid, Spain, July
1997.

[92] D. Marcu, “The rhetorical parsing, summarization, and generation of natural language
texts,” PhD thesis, Department of Computer Science, University of Toronto, Dec. 1997.

[93] K. Ono, K. Sumita and S. Miike, “Abstract generation based on rhetorical structure
extraction,” Proc. International Conference on Computational Linguistics, vol. 1, pp. 344–
348, Kyoto, Japan, 1994.

[94] K. S. Jones, “What might be in a summary?”, Proc. Information Retrieval ’93, Eds. G.
Knorz, J. Krause and C. Womser-Hacker, Von der Modellierung zur Anwendung, pp. 9–
26, Universit¨atsverlag Konstanz, Konstanz,1993.

[95] UNL Wiki, “Tools”, Available: http://www.undl.org.br/wiki/index.php?title=Tools, [Mar.
2010].

[96] Wikipedia, “Universal Networking Language,” Avaliable:
http://en.wikipedia.org/wiki/Universal_Networking_Language, [Mar. 2010].

[97] U. Priss, “Lattice-based Information Retrieval,” Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.2145, 2000.

277

[98] S. Joseph, “Neurogrid: Semantically routing queries in peer-to-peer networks,” Proc.
International. Workshop on Peer-to-Peer Computing, pp. 202-214, 2002.

[99] F. M. Cuenca-Acuna, C. Peery, R. P. Martin and T. D. Nguyen, “Planetp: Using gossiping
to build content addressable peer-to-peer information sharing communities,” Proc. 12th
IEEE International Symposium on High Performance Distributed Computing, 2003.

[100] E. Michlmayr, S. Graf, W. Siberski, and W. Nejdl, “Query routing with ants,” Proc. 1st
Workshop on Ontologies in P2P Communities in 2nd Annual European Semantic Web
Conference Greece, 2005.

[101] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner, “Distributed queries and
query optimization in schema-based p2p-systems,” Proc. Databases, Information Systems
and. Peer-to-Peer Computing, pp. 184-199, 2003.

[102] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Content-based addressing and routing:
A general model and its application,” Technical Report CU-CS-902-00, University of
Colorado, Computer Science department, Jan. 2000.

[103] D. Faye, G. Nachouki, and P. Valduriez, “Semantic query Routing in SenPeer, a P2P data
management system,” Lecture Notes in Computer Science, vol. 4658, pp. 365-374, 2007.

[104] S. Montanelli and S. Castano, “Semantically routing queries in peer-based systems: The h-
link approach,” Knowledge Engineering Review, vol. 23, no. 1, pp. 51-72, 2008.

[105] P. Fraigniaud and P. Gauron, “D2b: A de bruijn based content-addressable network,”
Theoritical Computer Science, vol.355, no.1, pp. 65-79, 2006.

[106] N. T. Borch, “Improving semantic routing efficiency,” Proc. 2nd International Workshop
on Hot Topics in Peer-to-Peer Systems, pp. 80-86, 2005.

[107] N. T. Borch and L. K. Vognild, “Searching in variably connected P2P networks,” Proc.
International Conference on Pervasive computing and communications, 2004.

[108] W. Acosta, and S. Chandra, “Improving search using a fault-tolerant overlay in
unstructured P2P systems,” Proc.International Conference on Parallel Processing, Sept.
2007.

[109] “Gnutella protocol specification,” Available:
http://wiki.limewire.org/index.php?title=GDF, [Apr 2009].

[110] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A scalable content-
addressable network,” Proc. Annual conference of the ACM Special Interest Group on
Data Communication (SIGCOMM), SanDiego, California.,2001.

[111] D. Zeinalipour-Yazti, V. Kalogeraki and D. Gunopulos, “Information Retrieval in Peer-to-
Peer Networks,” Available: http://www.cs.ucr.edu/~csyiazti/papers/cise2003/cise2003.pdf,
2003.

278

[112] J. Li, S. Vuong, “A scalable semantic routing architecture for grid resource discovery,
parallel and distributed Systems,” Proc. 11th International Conference on, pp. 29- 35, vol.
1, pp. 20-22, 2005.

[113] C. Tempich, S. Staab and A. Wranik, “REMINDIN': Semantic query routing in peer-to-
peer networks based on social metaphors,” Proc. 13th International World Wide Web
Conference, pp. 640-649, 2004.

[114] A. Kothari, D. Agrawal, A. Gupta and S. Suri, “Range addressable network: A P2P cache
architecture for data ranges,” Proc. 3rd Iinternational Conference on Peer-To-Peer
Computing, Washington, DC, pp.14, 2003.

[115] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan and J. Lilley, “The design and
implementation of an intentional naming system,” Proc. 17th ACM symposium on
Operating systems principles, vol. 33, pp. 186-201, New York, NY, 1999.

[116] S. Waterhouse, M.D. Doolin, G. Kan, Y. Faybishenko, “Distributed search in P2P
networks,” IEEE Internet Computing, vol. 6, no. 1, pp. 68-72, 2002.

[117] R. Albert, and A.L. Barabasi, “Statistical mechanics of complex networks,” Reviews of
Modern Physics, vol. 74, pp. 47-97, 2002.

[118] D. J. Watts, “Six Degrees: The Science Of A Connected Age,” W.W. Norton & Company,
2003.

[119] D. J. Watts and S.H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature,
vol. 393, pp. 440-442, 1998.

[120] Wikipedia, “Clustering coefficient,” Available:
http://en.wikipedia.org/wiki/Clustering_coefficient, [Mar. 2010].

[121] J. Klienberg, “The small-world phenomena: an algorithmic perspective,” Proc. 32nd ACM
Symposium on Theory of Computing, pp. 163-170, 2000.

[122] P. Fraigniaud, C. Gavoille and C. Paul, “Eclectism shrink even small worlds,” Distributed
Computing, vol. 18, no. 4, pp. 279-291, 2006.

[123] Wikipedia, “Geographic routing,” Available:
http://en.wikipedia.org/wiki/Geographic_routing, [Mar. 2010].

[124] Wikipedia, “Taxicab geometry,” Available:
http://en.wikipedia.org/wiki/Taxicab_geometry, [Mar. 2010].

[125] Wikipedia, “Poisson distribution,” Available:
http://en.wikipedia.org/wiki/Poisson_distribution, [Mar. 2010].

[126] Wikipedia, “Exponential distribution,” Available:
http://en.wikipedia.org/wiki/Exponential_distribution, [Mar 2010].

279

[127] Wikipedia, “Kendalls notation,” Available:
http://en.wikipedia.org/wiki/Kendall%27s_notation, [Mar 2010].

[128] E. Page, “Tables of waiting times for M/M/n, M/D/n and D/M/n and their use to give
approximate waiting times in more general queues,”Journal of Operations Research
Society, vol. 33, pp. 453-473, 1982.

[129] A. Broder, M. Mitzenmacher, “Network applications of Bloom Filters: A survey,” Internet
Mathematics, vol.1, no.4, pp.485-509, 2002.

[130] A.F. Webster and S.E. Taveres, “On the design of S-boxes,” Proc. Annual International
Cryptology Conference, pp. 523-534, 1985.

[131] S. Mohan, A. Biswas, A. Tripathy and R. Mahapatra, “A parallel architecture for meaning
comparison,” Proc. 24th IEEE International Parallel and Distributed Processing
Symposium, 2010.

[132] Amazon, www.amazon.com, [Mar 2010].

[133] Gene Ontology, http://www.geneontology.org/, [Apr 2009].

[134] Disease Ontology, http://diseaseontology.sourceforge.net/, [Apr 2009].

[135] N. Bottini et al. “A functional variant of lymphoid tyrosine phosphatase is associated with
type I diabetes,” Nature Genetics, vol. 36, pp.337– 338, 2004.

[136] Wikipedia, “Dewey decimal classification,”
http://en.wikipedia.org/wiki/Dewey_Decimal_Classification, [Mar. 2010].

[137] F. Irgens, “Tensors,” Continuum Mechanics, Springer, New York, 2004.

[138] Wikipedia, “Fowler-Noll-Vo hash function,” Available:
http://en.wikipedia.org/wiki/Fowler-Noll-Vo_hash_function, [Mar. 2010].

[139] A. Biswas, S. Mohan, A. Tripathy, J. Panigrahy, R. Mahapatra, “Representation and
comparison of complex concepts for Semantic Routed Network,” Proc. 10th International
Conference on Distributed Computing and Networking, Hyderabad, 2009.

[140] T. Kumaki, K. Iwai and T. Kurokawa, “A flexible multiport content- addressable
memory,” Systems and Computers in Japan, vol. 37, no 11, 2006.

[141] H.J. Mattausch, et al. “Area-efficient multi-port SRAMs for on-chip data-storage with high
random-access bandwidth and large storage capacity,” IEICE Transaction on Electronics,
vol. E84-C, no. 3, pp. 410-417, 2001.

[142] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance: Building a better
Bloom Filter,” Proc. 14th Annual European Symposium on Algorithms, Zurich, 2006.

280

[143] Wikipedia, “Uniform resource identifier,” Available:
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier, [Mar. 2010].

[144] Wikipedia, “Heap (data structure),” Available:
http://en.wikipedia.org/wiki/Heap_(data_structure), [Mar. 2010].

[145] A. Biswas, S. Mohan, R. Mahapatra, “Search co-ordination by Semantic Routed
Network,” Proc. 18th International Conference on Computer Communication and
Network, San Francisco, CA, Aug 2009.

[146] A. Biswas, S. Mohan, R. Mahapatra, “Optimization of semantic routing table,” Proc. 17th
International Conference on Computer Communication and Network, US Virgin Islands,
2008.

[147] S. Deerwester, T. Dumais, R. Harshman, “Indexing by latent semantic analysis,” Journal
of the American Society of Information Science, vol. 41, pp. 391-407, 1990.

[148] P. Jaccard, “Étude comparative de la distribution florale dans une portion des Alpes et des
Jura,” Bulletin del la Société Vaudoise des Sciences Naturelles, vol. 37, pp. 547-579.

[149] D. G. Perera and K. F. Li, “On-chip hardware support for similarity measures,” Proc.
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp.
354-358, 2007.

[150] M. Freeman, M. Weeks and J. Austin, “Hardware implementation of similarity functions,”
Proc. IADIS International Conference on Applied Computing, pp. 329-332, 2005.

[151] D. G. Perera and K. F. Li, “Parallel computation of similarity measures using an fpga-
based processor array,” Proc. IEEE 22nd International Conference on Advanced
Information Networking and Applications, pp. 955-962, 2008.

[152] Wikipedia, “Intel quickpath interconnect,” Available:
http://en.wikipedia.org/wiki/Intel_Quickpath_Interconnect, [Mar 2010].

281

VITA

Name: Amitava Biswas

Address: HRBB 301, TAMU 3112, Texas A&M University,

 College Station, TX 77843-3112

Email Address: amitavabiswas@ieee.org

Education: B.Tech.(Hons.), Indian Institute of Technology, Kharagpur, 1993.

 M.B.A., Indian Institute of Management, Ahmedabad, 1997.

 M.S., Concordia University, Montreal, 2005.

 Ph.D., Texas A&M University, 2010.

