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Abstract
Time–frequency representations of the speech signals provide dynamic information about how the frequency component 
changes with time. In order to process this information, deep learning models with convolution layers can be used to obtain 
feature maps. In many speech processing applications, the time–frequency representations are obtained by applying the 
short-time Fourier transform and using single-channel input tensors to feed the models. However, this may limit the potential 
of convolutional networks to learn different representations of the audio signal. In this paper, we propose a methodology 
to combine three different time–frequency representations of the signals by computing continuous wavelet transform, Mel-
spectrograms, and Gammatone spectrograms and combining then into 3D-channel spectrograms to analyze speech in two 
different applications: (1) automatic detection of speech deficits in cochlear implant users and (2) phoneme class recognition 
to extract phone-attribute features. For this, two different deep learning-based models are considered: convolutional neural 
networks and recurrent neural networks with convolution layers.

Keywords Speech processing · Multi-channel spectrograms · Cochlear implants · Phoneme recognition

1 Introduction

In speech and audio processing applications, the data are 
commonly processed by computing compressed representa-
tions that may not capture the dynamic information of the 
signals. In the recent years, there has been an increasing 
number of works considering deep learning methods for 
speech and audio analysis such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNN), among 
others [1]. Particularly for CNNs, audio data are processed 
by feeding the convolution layers with time–frequency 
representations (spectrograms) of the signals providing 

information about how the energy distributed in the fre-
quency domain changes with time. After the convolution 
operation, the resulting feature maps contain low- and 
high-level features representing the acoustic information 
of the signals. Many works have shown the advantages of 
using CNNs and spectrograms in different speech process-
ing applications such as automatic detection of disordered 
speech [2–4], acoustic models for automatic speech rec-
ognition systems [5, 6], and emotion detection [7], among 
others. These studies, however, consider single-channel 
spectrograms to obtain the feature maps, e.g., the short-
time Fourier transforms (STFT) are applied to the audio 
signal and the resulting spectrogram is used as an input to 
the model. However, using only one representation may limit 
the potential of CNNs to learn more complex representations 
from the signals. One way to overcome this limitation is to 
use multiple spectrograms of each audio signal as input data 
to the CNN. For instance, multi-channel spectrograms were 
considered for audio source separation in [8, 9]. In those 
studies, audio recordings were captured with multiple micro-
phones; thus, the multi-channel spectrograms are extracted 
from the same signal recorded with different microphones. 
A similar approach was presented in [10]. In this case, far-
field automatic speech recognition is performed considering 

Authors must disclose all relationships or interests that could have 
direct or potential influence or impart bias on the work.

 * T. Arias-Vergara 
 tomas.ariasvergara@lmu.de

1 Faculty of Engineering, Universidad de Antioquia UdeA, 
Calle 70 No. 52-21, Medellín, Colombia

2 Pattern Recognition Lab, Friedrich-Alexander University, 
Erlangen-Nürnberg, Germany

3 Department of Otorhinolaryngology, Head and Neck 
Surgery, Ludwig-Maximilians University, Munich, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/428441539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-9405-4154
http://crossmark.crossref.org/dialog/?doi=10.1007/s10044-020-00921-5&domain=pdf


424 Pattern Analysis and Applications (2021) 24:423–431

1 3

3D-channel spectrograms, i.e., three different microphones 
were used to capture the speech signals. The main limitation 
of this approach is that it requires more than one microphone 
to obtain multiple spectrograms, which is not always pos-
sible (or necessary) in other applications, e.g., automatic 
detection of pathological speech. Multi-channel spectro-
grams can be also obtained from signals recorded with one 
channel. For instance, in [11] a methodology was presented 
to enhance noisy audio signals using complex spectrograms 
and CNNs. In that work, the real and imaginary part of the 
STFT is computed to form a 2D-channel spectrogram, which 
is then processed by the convolution layers; thus, the ampli-
tude and phase information of the signal are considered to 
extract the feature maps.

In this study, we propose to combine Mel-spectrograms, 
Gammatone spectrograms (Cochleagrams), and continuous 
wavelet transform (CWT) to form multi-channel spectrograms. 
The proposed approach is then evaluated in two speech pro-
cessing applications: automatic detection of disordered speech 
of cochlear implant (CI) users and phoneme class recognition 
to extract phone-attribute features. In our previous work [12], 
we showed that combining at least two different time–fre-
quency representations of the signals can improve the auto-
matic detection of speech deficits in CI users by training a 
bi-class CNN to differentiate between speech signals from CI 
users and healthy control (HC) speakers. This paper extends 
the use of multi-channel spectrograms to phoneme recogni-
tion using recurrent neural networks with convolutional layers 
(CRNN). For both, the CNN and CRNN, the first channel is 
the Mel-spectrogram, the second channel is the Cochleagram, 
and the third channel is the CWT of the speech signal. The Mel 
scale is inspired by findings of how humans perceive speech, 
which makes it suitable to represent the acoustic informa-
tion of the sounds produced during speech. Cochleagrams 
are obtained with a Gammatone filter bank, which is based 
on the cochlear model proposed in [13], which consists of an 
array of bandpass filters organized from high frequency at the 
base of the cochlea, to low frequencies at the apex (innermost 
part of the cochlea). Both Mel and Gammatone spectrograms 
are computed based on the STFT whose time and frequency 
resolutions are determined by the size of the analysis win-
dow and the time-shift. A small window size can improve tie 
localization while resulting in poorer frequency resolution. 
Conversely, the larger we make the size of the window the 
more we will know about the frequency value and less about 
the time. Thus, the CWT is considered in this study to over-
come this problem. The wavelet transform uses variations in a 
base function (called wavelet) highly localized in time. Each 
variation has a different scale, which allows to have high-fre-
quency resolution for small-frequency values at the cost of low 
time resolution. At the same time, the CWT allows to have 
high time resolution at the cost of low-frequency resolution 
for high-frequency values. Our main hypothesis is that using 

the spectrograms as a 3D-channel input will allow the CNN 
to complement the information from the two time–frequency 
representations. The rest of the paper is organized as follows: 
Sect. 2 describes the time–frequency analysis performed and 
the model architectures considered in this study. Section 3 
describes the two applications for multi-channel spectrograms 
considered in this study. The data, preprocessing steps, and the 
training of the models (for each application) are also described 
in this section. Section 4 describes the experimental setup and 
the results obtained for each application. Finally, the conclu-
sions derived from this work are presented in Sect. 5.

2  Methods

2.1  Time–frequency analysis

2.1.1  Mel/gammatone filterbanks

The STFT is the most commonly used time–frequency rep-
resentation in speech and audio processing applications due 
to its simplicity and low computational cost. Alternatively, 
time–frequency representations can be obtained by applying 
a set of bandpass filters in the Mel scale (for Mel-spectro-
grams) or in the equivalent rectangular bandwidth (ERB) 
scale (for Cochleagrams) [14]. The log-Mel-spectrum is 
computed in three steps: First, the signal X is framed into 
short-time windows, i.e., X = {x1, x2,… , xT} where T is the 
Tth speech frame. In this work, the size of the windows is 
40 ms, which are extracted every 10 ms. In the next step, 
Hamming windows are applied to the framed signal in order 
to compute the STFT. In the last step, a set of 128 triangular 
filters in the Mel scale is applied and the logarithm of the 
resulting signal is computed in order to obtain the Mel-spec-
trum. Frequencies in Hz can be converted to Mel scale as:

The steps to obtain the Cochleagram are similar to the Mel-
spectrum; however, it consists of bandpass filters in the ERB 
scale and the shape is obtained as the multiplication of sine 
and gamma functions. The Gammatone filter bank is defined 
in the time domain by Eq. 2 as:

where fc is the filter’s center frequency in Hz, � is the phase 
of the carrier in radians, a is the amplitude, n is the order 
of the filter, b is the bandwidth in Hz, and t is the time. The 
Gammatone filters are implemented following the procedure 
described in [15]. The number of filters used for both Mel-
scale and Gammatone based features is n = 128 . Figure 1 
shows the triangular and Gammatone filter banks considered 
in this study.

(1)M
(

fHz
)

= 1125 ln
(

1 + fHz∕700
)

(2)g(t) = atn−1 exp(−2�bt) cos(2�fct + �)
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2.1.2  Continuous wavelet transform

Contrary to the STFT, the time and frequency resolutions 
of the CWT are not determined by the size of the analysis 
window and the time-shift. Instead, the CWT considers 
a base function called wavelet in order to decompose the 
speech signal. This procedure is performed by convolving 
the signal with shifted and compressed versions of the 
wavelet. Formally, the CWT is defined as

where x(t) is the speech signal, u and s are the shift and scale 
parameters, respectively, and � is the mother wavelet (base 
function), which in this study is the Morlet wavelet. Figure 2 
shows the Mel-spectrum, Cochleagram, and resulting CWT 
of a speech signal. The Mel-spectrum and the Cochleagram 
are obtained after applying filter banks to the STFT of the 
speech signal. The output of the CWT consists of a two-
dimensional time-scale representation of the speech signal. 
In our case, the number of scales used ranges from 1 to 128, 
in order to match the dimensions of the Mel-spectrum and 
the Cochleagram in the frequency dimension.

2.2  Model architectures

Two different models are used to test the suitability of multi-
channel spectrograms for speech processing applications. 
The first method consists of a CNN for automatic detection 
of disordered speech. The convolution layer in a CNN acts 
like a filter bank, which allows to capture high- and low-level 
features from the spectrograms [16, 17]. The second method 
consists of a convolutional recurrent neural network with 
gated recurrent units (CGRU) for phoneme recognition. The 
main advantage of using recurrent networks is their ability 
to learn contextual information from speech sequences [18], 
which makes them suitable for speech recognition applica-
tions. For both methods, the input tensor of the convolu-
tional layers consists of the Mel-spectrogram in one channel, 
the Cochleagram in the second channel, and the CWT in the 

(3)CWT(u, s) =
1
√

s ∫
+∞

−∞

x(t)�∗
�

t − u

s

�

dt

Fig. 1  Set 128 triangular filters in the Mel scale and 128 Gammatone 
filters in the ERB scale are applied to the STFT in order to obtain the 
Mel-spectrum and the Cochleagram, respectively

Fig. 2  Mel-spectrum, Cochleagram, and CWT of a speech signal. 
The Mel-spectrum is obtained after applying a set of triangular filter 
bank (in the Mel scale) to the STFT of the speech signal. The Coch-
leagram is obtained after applying a Gammatone filter bank (in the 

ERB scale) to the STFT. The CWT is obtained after convolving a 
Morlet wavelet (with a linear scale from 1 to 128) with the speech 
signal
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third channel. The framework PyTorch [19] is considered to 
implement the proposed architectures. From the documenta-
tion, it can be observed that the output of the convolutional 
layer for an input signal is described as:

where Bs is the batch size and C is the number of channels of 
the input tensor (C = 3) . The following subsections describe 
the architectures implemented in this study.

2.2.1  Convolutional neural network

There are no standard guidelines to determine the optimal 
architecture of a CNN. Commonly, the best configuration 
is chosen experimentally based on performance evaluation. 
Instead of trying different architectures, we test the multi-
channel spectrograms by adapting the LeNet-5 convolutional 
network [20]. The configuration of our network consists of 
two convolution layers with rectifier linear (ReLU) activa-
tion functions, two max-pooling layers, dropout to regu-
larize the weights, and two fully connected hidden layers 

(4)

h
(

Bsi,Coutj

)

= bias
(

Coutj

)

+

Cin−1
∑

k=0

weights ∗ (Cout, k) ∗ input(Bsi, k)

followed by the output layer to make the final decision using 
a softmax activation function. The CNN is trained using 
the Adam optimization algorithm [21] with a learning rate 
of � = 10−4 . The cross–entropy between the training labels 
y and the model predictions ŷ is used as the loss function. 
The size of the kernel in the convolution layers is kc = 1 × 3 . 
For the pooling layers, the kernel’s size is kp = 1 × 2 . Note 
that the convolution and pooling operations are performed 
only in one dimension (frequency/scale). The reason is that 
we want to keep as much information from the time dimen-
sion as possible. Figure 3 summarizes the configuration of 
the network used in this work. The number of output chan-
nels in the first and second convolution layers is 8 and 16, 
respectively. The size of the second layer is twice the size 
of the first convolution layer in order to allow the network 
to extract high-level features from the speech signals [17].

2.2.2  Recurrent neural network with convolution layers

The architecture of the CGRU is summarized in Fig. 4. 
The multi-channel spectrograms are processed by two con-
volution layers with ReLU activation functions, two max-
pooling layers, and dropout to regularize the weights. The 

Fig. 3  Architecture of the CNN implemented in this study. The size of the kernel in the convolutional (Conv. i) and pooling layers (Max. pool) is 
1 × 3 and 1 × 2 , respectively

Fig. 4  CGRU architecture considered in this work. The input 
sequences are 3D-channel inputs formed with Mel-spectrograms, 
Cochleagrams, and CWT with Morlet wavelets. Convolution is per-
formed only on the frequency axis to keep the time information. The 

resulting feature maps are then feed into a 2-stacked bidirectional 
GRU. A softmax function is then used to predict the phoneme label 
for every speech segment in the input signal
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convolution and max-pooling operations are performed 
only on the frequency axis of the 2D-channel spectrograms 
in order to keep a one-to-one relation between the length 
of the input (speech sequences) and the output (phoneme 
prediction). The size of the kernel in the convolutional 
(Conv. i) and pooling layers (Max. pool) is 1 × 3 and 1 × 2 , 
respectively. After convolution, the resulting feature maps 
are concatenated to form the sequence of feature vectors 
� = {�1, �2,… , �T} , where T is the total number of frames. 
The sequence � is then processed by two bidirectional 
recurrent layers (BiGRU-1 and BiGRU-2) with shared 
weights on each time frame t. Thus, for every input data 
�t in the sequence, the network has sequential information 
about the data points before ( �1,… , �t−2, �t−1 ) and after 
( �t+1, �t+2,… , �T ) [22]. A softmax activation function is 
used to compute the sequence of phoneme posterior prob-
abilities � = {�1, �2,… , �T} . Bidirectional recurrent nets are 
used in this work because they have shown better results than 
standard GRUs in similar speech processing tasks [23, 24].

Similar to the CNN, the CGRU is trained using the same 
optimization algorithm, learning rate, and loss function. 
Note that some phonemes are more frequently produced 
than others. For instance, the number of vowels is higher 
than the number of nasal sounds in the database. As a result, 
the performance of the system to detect the phoneme classes 
that are underrepresented is lower than the phonemes that 
are more commonly produced. Thus, class weights are intro-
duced into the loss function, which is described as:1

(5)loss(p, class) = w[l]

(

−p[l] + log

(

∑

j

exp(p[j])

))

where p are the posterior probabilities of the sequences 
obtained from the output layer y = {y1, y2,… , yT} , l are the 
target labels, and w are the class weights.

3  Applications

3.1  Automatic detection of disordered speech in CI 
users

Cochlear implants (CI) are the most suitable devices for 
severe and profound deafness when hearing aids do not 
improve sufficiently speech perception. However, CI users 
often present altered speech production and limited under-
standing even after hearing rehabilitation. People suffering 
from severe to profound deafness may experience differ-
ent speech disorders such as decreased intelligibility and 
changes in terms of articulation [25]. Acoustic analysis is 
performed in order to detect articulatory problems in the 
speech of CI users by detecting the voiceless-to-voiced 
(Onset) and voiced-to-voiceless (Offset) transitions, which 
are considered to model the difficulties of the CI users to 
start/stop the movement of the vocal folds [26, 27]. The 
method used to identify the transitions is based on the pres-
ence of the fundamental frequency of speech (pitch) in 
short-time frames as it was shown in [28]. The transition is 
detected, and 80 ms of the signal are taken to the left and 
to the right of each border, forming segments with 160 ms 
length (Fig. 5).

3.1.1  Data: CI speech

Standardized speech recordings of 107 CI users (56 male) 
and 94 HC (46 male) are considered for the experiments. All 

Fig. 5  Onset and offset transi-
tions extracted from a speech 
recordings. The transitions 
consist of speech segments of 
160 ms containing voiceless and 
voiced segments
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of them are German native speakers. The speech signals of 
the CI users were recorded at the clinic of the Ludwig-Max-
imilians University in Munich (LMU). The recordings of the 
HC speakers were extracted from the PhonDat 1 (PD1) cor-
pus from the Bavarian Archive For Speech Signals (BAS), 
which is freely available for European academic users.2 The 
speech recordings include the reading of Der Nordwind und 
die Sonne (The North Wind and the Sun) text.

3.1.2  Preprocessing

Note that some of the recordings from the HC speakers were 
collected in different acoustic conditions than the speakers 
recorded in the clinic; thus, noise reduction and compres-
sion techniques are applied to the speech signals in order to 
reduce the effect of the channel in the recordings.

Noise reduction Background noise is reduced based 
on the spectral gating algorithm implemented in the SoX 
codec.3 The core idea of the algorithm is to attenuate the 
speech segments in the signal with spectral energy below 
certain thresholds, which are obtained by computing the 
mean power on each frequency band from the STFT of a 
noise profile extracted from a silence region of the speech 
signal.

Compression After noise reduction, the GSM full-rate 
compression technique is considered to normalize the chan-
nel conditions of the recordings [29]. First, the denoised 
signals are down-sampled to 8 kHz and the resolution is low-
ered down to 13 bits, with a compression factor of 8. Next, 
a bandpass filter between 200 Hz and 3.4 kHz is applied 
in order to meet the specifications of a GSM transmission 
network. Figure 6 shows the STFT spectrograms of a speech 
recording before and after applying noise reduction and 
compression. The figures correspond to a speech segment 

of 600 ms extracted from the recording of one of the healthy 
speakers in the database.

3.1.3  Training of the CNN

Onset and offset transitions are extracted from the speech 
recordings in order to train the CNN described in Sect. 2.2.1. 
A tenfold cross-validation strategy is considered in order to 
train and test the models. The performance of the CNN is 
measured by means of precision, recall, and F1-score. Preci-
sion measures the proportion of predicted speech segments 
(onset/offset transition) that are correctly classified. Recall 
measures the proportion of actual speech segments that are 
correctly classified. The F1-score measures the performance 
of the CNN to classify all speech segments, which reaches 
its best value at 1 and worst score at 0. These three measures 
are computed as in [30].

3.2  Phone‑attribute features

Previous work has shown the suitability of phone-attribute 
features to evaluate articulation precision in people learn-
ing a second language [31] as well as to evaluate speech 
problems in patients affected by different medical condi-
tions such as Parkinson’s disease [32] and hearing loss [33]. 
In this work, phone-attribute features are computed using 
the CGRU described in Sect. 2.2.2 which converts speech 
sequence X = {x1, x2,… , xT} into a sequence of pos-
terior probabilities y = {y1, y2,… , yT} , where T is the 
number of frames extracted from the speech signal. The 
speech sequences consist of Mel-spectrograms, Cochlea-
grams, and CWT. The vector of phone-attribute features 
yn = {y1

n
,… , yk

n
,… , yK

n
} consists of K phoneme probabili-

ties (posteriors). The CGRU estimates the posterior yk
n
 as the 

probability of occurrence of the kth phone-attribute feature. 
The main hypothesis is that normal speakers can produce 
phonemes correctly; thus, the posterior probabilities of 
occurrence of phonemes (phone-attribute features) are close 
to 1. On the other hand, if the model is tested with a speech 

Fig. 6  Time–frequency repre-
sentation of a segment from a 
speech signal. The figure shows 
a the original signal, b the 
signal after noise reduction, and 
c the signal after compression
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signal from a speaker with pronunciation problems, then the 
posterior probability will be lower compared with respect to 
the normal speaker. In this paper, the phone-attribute feature 
are computed for nine phoneme classes (including “silence”) 
which are grouped according to the standard German lan-
guage system. A short description of the phone-attribute 
features is presented in Table 1.

3.2.1  Data: Verbmobil

The Verbmobil corpus consists of speech recordings from 
586 German native speakers (308 male, 278 female). The 
database contains about 29 hours of dialogues with their cor-
responding phonetic transcriptions. The data were captured 
in controlled acoustic conditions with a close-talk micro-
phone at a sampling frequency of 16 kHz and a resolution 
of 16-bit. The age of the speakers ranges from 20 up to 40 
years [34].

3.2.2  Training of the CGRU 

Chunks of data of 1 s are extracted from the speech record-
ings in order to train the CGRU, i.e., the input data consist 
of speech sequences with a fixed length. Each sequence is 
then time-aliment with their corresponding phonetic tran-
scription; thus, each time-frame is labeled according to one 
of the nine phoneme classes described in Table 1. The input 
tensors and their corresponding target labels are then used 
to train the CGRU for phone-attribute feature extraction. 

Table 2 shows the information about the train, validation, 
and test sets considered in this study. The performance of 
the model is evaluated by means of the precision (the ability 
of the CGRU not to label as positive a sample that is nega-
tive), recall (the ability of the CGRU to correctly label the 
phonemes classes), and F1 score (weighted harmonic mean 
of the precision and recall) [30].

4  Experiments and results

4.1  Multi‑channel spectrograms with CNN

Table 3 shows the results obtained when the CNN is trained 
to classify speech segments (onset/offset transitions) from 
CI users and HC speakers. The highest classification per-
formance is obtained with three-channel spectrograms 
extracted from the offset transitions ( F1 = 0.84 ). Note also 
that the results obtained with the Mel-spectrum and the 
Cochleagram are similar for both onset and offset transitions. 
This can be explained considering that these time–frequency 
representations are obtained from the same transformation, 
i.e., the STFT. Furthermore, the lowest performance was 

Table 1  Phone-attribute features considered in this study

Feature Brief description

Stop Refers to sounds produced by a total oral closure that is rapidly released
Trill Phonemes produced by a vibration of the two articulators, caused by the current of air
Nasal Refers to sounds produced by a lowered velum such that air can flow through the nasal cavity
Vowel Sounds produced by the vibration of the vocal folds and the changes in the shape of the vocal tract
Silence Regions of the signal with the absence of speech
Lateral The air passes at the sides of the tongue which forms a central closure
Fricative A constriction in the articulator causes a turbulence in the flowing air, producing a hissing sound
Sibilants Similar to fricatives, however, these phonemes have more acoustic energy in higher frequency bands
Approximants Similar to fricatives, however, the constriction is not narrow enough to cause turbulences in the air flow

Table 2  Information on the partitions

Test Test set, Val validation set, Train train set

Test Val Train

Male speakers 14 19 275
Female speakers 15 3 260
Hours of speech 1.5 1.5 26
Number of recordings 585 584 10,845

Table 3  Classification results between speech segments of CI users 
and HC speakers

Prec Precision, Rec recall, F1 F1 score, CWT  continuous wavelet 
transform, 3D-spectrum mel-spectrum, Cochleagram, and CWT 

Model Channel Prec Rec F1

Onset CWT 0.78 0.77 0.77
Mel-spectrum 0.82 0.80 0.81
Cochleagram 0.81 0.81 0.81
3D Spectrum 0.84 0.82 0.82

Offset CWT 0.80 0.78 0.78
Mel-spectrum 0.84 0.82 0.82
Cochleagram 0.84 0.80 0.81
3D Spectrum 0.86 0.83 0.84
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obtained when only the CWT is considered as input to the 
CNN ( F1-Onset = 0.77 ; F1-Offset = 0.78).

4.2  Multi‑channel spectrograms with CGRU 

Table 4 shows the results obtained for the automatic detec-
tion of the phoneme classes described in Table 1. On the one 
hand, it can be observed that the performance of the CGRU 
is similar when is trained with Mel-spectrograms, Cochlea-
grams, and 3D-channel spectrograms; thus, the contribution 
of three channels is not decisive enough to improve the pho-
neme class recognition. On the other hand, the performance 
of the CGRU trained with the CWT is lower than for Mel-
spectrum and Cochleagram in all classes. Particularly, it can 
be observed that it was not possible to detect any phoneme 
from the class “Trills.”

5  Conclusion

In this paper, Mel-spectrograms, Cochleagrams, and CWT 
are combined to form three-channel spectrograms. Two dif-
ferent applications were considered: (1) automatic detection 
of disordered speech of CI users and (2) phoneme class rec-
ognition to extract phone-attribute features. In the first appli-
cation, speech signals of CI users and HC were considered 
to train a CNN to perform binary classification. The CNN 
was trained considering Mel-spectrograms, Cochleagrams, 
CWT, and the combination of the three representations. 
Additionally, onset and offset transitions are extracted from 
the speech signals in order to perform acoustic analysis to 
evaluate the articulatory precision of the speakers. Accord-
ing to the results, the highest performance was achieved 
when the CNN was trained with the 3D-channel spectro-
grams extracted from the offset transitions. In the second 
application, a CGRU was trained to automatically recognize 
phonemes grouped in seven different classes. The model 
was trained with recordings of normal speakers, i.e., people 

without any speech disorder or neurological disease. From 
the results, it was observed that the contribution of the multi-
channel spectrograms was not decisive enough to improve 
the recognition of phoneme classes. One hypothesis is that 
the way the spectrograms are combined does not provide 
sufficient information for the network to learn a proper rep-
resentation of the phoneme classes; thus, future work should 
focus on different configurations of the network or include 
different time–frequency representations. Furthermore, the 
models should be trained and tested with noisy signals in 
order to test the robustness of the classifiers for speech sig-
nals captured in non-controlled acoustic conditions.
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Table 4  Performance of the 
CGRU for phoneme class 
recognition

Prec Precision, Rec recall, F1 F1 score

Phoneme class CWT Mel-spectrum Cochleagram 3D spectrum

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Silence 0.89 0.86 0.87 0.91 0.86 0.88 0.90 0.87 0.88 0.90 0.86 0.88
Stop 0.81 0.80 0.80 0.83 0.82 0.82 0.83 0.82 0.82 0.84 0.80 0.82
Nasal 0.80 0.83 0.82 0.82 0.85 0.83 0.81 0.85 0.83 0.81 0.85 0.83
Trill 0.00 0.00 0.00 0.80 0.67 0.73 0.76 0.68 0.72 0.78 0.69 0.73
Fricative 0.79 0.80 0.79 0.84 0.82 0.83 0.83 0.83 0.83 0.82 0.83 0.82
Sibilant 0.84 0.89 0.86 0.86 0.90 0.88 0.85 0.90 0.88 0.85 0.90 0.88
Approximant 0.81 0.79 0.80 0.79 0.84 0.81 0.80 0.82 0.81 0.84 0.78 0.81
Lateral 0.69 0.60 0.64 0.71 0.68 0.70 0.73 0.68 0.70 0.68 0.70 0.69
Vowel 0.82 0.86 0.84 0.84 0.87 0.85 0.85 0.86 0.85 0.84 0.86 0.85

http://creativecommons.org/licenses/by/4.0/


431Pattern Analysis and Applications (2021) 24:423–431 

1 3

References

 1. Purwins H, Li B, Virtanen T, Schlüter J, Chang S, Sainath T 
(2019) Deep learning for audio signal processing. IEEE J Sel Top 
Signal Process 13(2):206–219

 2. Vásquez-Correa JC, Orozco-Arroyave JR, Nöth E (2017) Con-
volutional neural network to model articulation impairments in 
patients with Parkinson’s disease. In: Proceedings of the eight-
eenth annual conference of the international speech communica-
tion association, pp 314–318

 3. Wu H, Soraghan J, Lowit A, Di Caterina G (2018) A deep learning 
method for pathological voice detection using convolutional deep 
belief networks. In: Proceedings of the nineteenth annual confer-
ence of the international speech communication association, pp 
446–450

 4. Alhussein M, Muhammad G (2018) Voice pathology detection 
using deep learning on mobile healthcare framework. IEEE 
Access 6:41034–41041

 5. Abdel-Hamid O, Mohamed A, Jiang H, Deng L, Penn G, Yu D 
(2014) Convolutional neural networks for speech recognition. 
IEEE/ACM Trans Audio Speech Lang Process 22(10):1533–1545

 6. Han K, He Y, Bagchi D, Fosler-Lussier E, Wang D (2015) Deep 
neural network based spectral feature mapping for robust speech 
recognition. In: Sixteenth annual conference of the international 
speech communication association, pp 2484–2488

 7. Weißkirchen N, Bock R, Wendemuth A (2017) Recognition of 
emotional speech with convolutional neural networks by means 
of spectral estimates. In: 2017 seventh international conference 
on affective computing and intelligent interaction workshops and 
demos (ACIIW), pp 50–55

 8. Adavanne S, Politis A, Virtanen T (2018) Multichannel sound 
event detection using 3D convolutional neural networks for learn-
ing inter-channel features. In: 2018 international joint conference 
on neural networks (IJCNN), pp 1–7

 9. Xu K, Feng D, Mi H, Zhu B, Wang D, Zhang L, Cai H, Liu S 
(2018) Mixup-based acoustic scene classification using multi-
channel convolutional neural network. In: Pacific Rim conference 
on multimedia, pp 14–23

 10. Ganapathy S, Peddinti V (2018) 3-D CNN models for far-field 
multi-channel speech recognition. In: 2018 IEEE international 
conference on acoustics, speech and signal processing (ICASSP), 
pp 5499–5503

 11. Fu S, Hu T, Tsao Y, Lu X (2017) Complex spectrogram enhance-
ment by convolutional neural network with multi-metrics learning. 
In: 2017 IEEE 27th international workshop on machine learning 
for signal processing (MLSP), pp 1–6

 12. Arias-Vergara T, Vasquez-Correa JC, Gollwitzer S, Orozco-
Arroyave JR, Schuster M, Nöth E (2019) Multi-channel convolu-
tional neural networks for automatic detection of speech deficits 
in cochlear implant users. In: Iberoamerican congress on pattern 
recognition, pp 679–687

 13. Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang 
C, Allerhand M (1992) Complex sounds and auditory images. 
Elsevier, Amsterdam, pp 429–446

 14. Virtanen T, Vincent E, Gannot S (2018) Time-frequency process-
ing-spectral properties. In: Audio source separation and speech 
enhancement, pp 15–29

 15. Slaney M, et al (1993) An efficient implementation of the Patter-
son–Holdsworth auditory filter bank. Apple Computer, Perception 
Group, Technical Report 35(8)

 16. Latif S, Rana R, Khalifa S, Jurdak R, Qadir J, Schuller B (2020) 
Deep representation learning in speech processing: challenges, 
recent advances, and future trends. arXiv :2001.00378 

 17. Palaz D, Collobert RN, et al (2015) Analysis of CNN-based 
speech recognition system using raw speech as input. Technical 
Reports, Idiap

 18. Graves A (2012) Supervised sequence labelling with recurrent 
neural networks, vol 385

 19. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin 
Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentia-
tion in PyTorch

 20. LeCun Y, Bottou Ln, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE 
86(11):2278–2324

 21. Kingma DP, Ba J (2015) Adam: a method for stochastic opti-
mization. In: International conference on learning representation 
(ICLR)

 22. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural 
networks. IEEE Trans Signal Process 45(11):2673–2681

 23. Cernak M, Tong S (2018) Nasal speech sounds detection using 
connectionist temporal classification. In: IEEE, pp 5574–5578

 24. Vásquez-Correa JC, Klumpp P, Orozco-Arroyave JR, Nöth E 
(2019) Phonet: a tool based on gated recurrent neural networks to 
extract phonological posteriors from speech, pp 549–553

 25. Hudgins CV, Numbers FC (1942) An investigation of the intel-
ligibility of the speech of the deaf. In: Genetic psychology 
monographs

 26. Arias-Vergara T, Gollwitzer S, Orozco-Arroyave JR, Vasquez-
Correa JC, Nöth E, Högerle C, Schuster M (2019) Speech differ-
ences between CI users with pre-and postlingual onset of deaf-
ness detected by speech processing methods on voiceless to voice 
transitions. Laryngo-Rhino-Otologie 98(S02):11435

 27. Arias-Vergara T, Orozco-Arroyave JR, Gollwitzer S, Schuster M, 
Nöth E (2019) Consonant-to-vowel/vowel-to-consonant transi-
tions to analyze the speech of cochlear implant users. In: Interna-
tional conference on text, speech, and dialogue, pp 299–306

 28. Orozco-Arroyave JR (2016) Analysis of speech of people with 
Parkinson’s disease. Logos Verlag, Berlin

 29. Huerta JM, Stern RM (1998) Speech recognition from GSM codec 
parameters. In: Fifth international conference on spoken language 
processing, pp 1–4

 30. Pedregosa F et al (2011) Scikit-learn: machine learning in python. 
J Mach Learn Res 12:2825–2830

 31. Arora V, Lahiri A, Reetz H (2017) Phonological feature based 
mispronunciation detection and diagnosis using multi-task DNNs 
and active learning

 32. Garcia-Ospina N, Arias-Vergara T, Vásquez-Correa JC, Orozco-
Arroyave JR, Cernak M, Nöth E (2018) Phonological I-vectors to 
detect Parkinson’s disease. In: International conference on text, 
speech, and dialogue, pp 462–470

 33. Arias-Vergara T, Orozco-Arroyave JR, Cernak M, Gollwitzer S, 
Schuster M, Nöth E (2019) Phone-attribute posteriors to evalu-
ate the speech of cochlear implant users. In: Proceedings of the 
20th annual conference of the international speech communication 
association, pp 3108–3112

 34. Wahlster W (2013) Verbmobil: foundations of speech-to-speech 
translation. Springer, Berlin

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2001.00378

	Multi-channel spectrograms for speech processing applications using deep learning methods
	Abstract
	1 Introduction
	2 Methods
	2.1 Time–frequency analysis
	2.1.1 Melgammatone filterbanks
	2.1.2 Continuous wavelet transform

	2.2 Model architectures
	2.2.1 Convolutional neural network
	2.2.2 Recurrent neural network with convolution layers


	3 Applications
	3.1 Automatic detection of disordered speech in CI users
	3.1.1 Data: CI speech
	3.1.2 Preprocessing
	3.1.3 Training of the CNN

	3.2 Phone-attribute features
	3.2.1 Data: Verbmobil
	3.2.2 Training of the CGRU


	4 Experiments and results
	4.1 Multi-channel spectrograms with CNN
	4.2 Multi-channel spectrograms with CGRU

	5 Conclusion
	Acknowledgements 
	References




