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A Practical Review on Linear
and Nonlinear Global
Approaches to Flow Instabilities
This paper aims at reviewing linear and nonlinear approaches to study the stability of 
fluid flows. We provide a concise but self contained exposition of the main concepts and 
specific numerical methods designed for global stability studies, including the classical 
linear stability analysis, the adjoint based sensitivity, and the most recent nonlinear 
developments. Regarding numerical implementation, a number of ideas making resolu 
tion particularly efficient are discussed, including mesh adaptation, simple shift invert 
strategy instead of the classical Arnoldi algorithm, and a simplification of the recent non 
linear self consistent (SC) approach proposed by Mantič Lugo et al. (2014, “Self 
Consistent Mean Flow Description of the Nonlinear Saturation of the Vortex Shedding in 
the Cylinder Wake,” Phys. Rev. Lett., 113(8), p. 084501). An open source software imple 
menting all the concepts discussed in this paper is provided. The software is demon 
strated for the reference case of the two dimensional (2D) flow around a circular 
cylinder, in both incompressible and compressible cases, but is easily customizable to a 
variety of other flow configurations or flow equations. 

1 Introduction

The concept of stability bears on the response of a system to
small perturbations of its state. If the generic disturbance grows in
time, the system is unstable. The concept of stability can be sim
ply formulated for a system of ordinary differential equations.
Such systems can be at equilibrium, where the state does not
depend on time, or can present a periodic state, with all compo
nents returning to the same values, after every period.

The stability of fluid flows usually depends on the value of a
given parameter. A bifurcation occurs when a critical value is

reached and the original solution becomes linearly unstable, the
system then starts evolving toward a new state, either steady
or unsteady. In the second part of the 19th century, specific analyt
ical and numerical methods have emerged to study these bifurca
tions and have continuously evolved up to the present days. A
crucial point, that drove the development in this field, is the avail
ability of significantly increasing and improving computing
resources. Initially, the linear stability theory focused on plane
parallel flows, e.g., plane Poiseuille flow [1]. In this case, thanks
to the Fourier decomposition in the two homogeneous directions,
it is possible to reduce the stability problem to a one dimensional
problem, an approach usually referred to as local stability
approach. On the other hand, when there are at least two spatial
variables, the class of methods suited to solve such problems is







eigenvalue solver of FreeFem (i.e., ARPACKþþ). For the case of
the 2D incompressible flow, resolution of the eigenvalue problem
is done by the FREEFEMþþ solver Stab2D.edp; an excerpt of this
solver featuring the implementation of the shift invert algorithm
is displayed in Appendix E. The latter is wrapped by the OCTAVE/
MATLAB driver SF Stability.m which accepts a number of
optional parameters. For instance, the selection between shift
invert and Arnoldi is made according to the parameter nev (i.e.,
number of requested eigenvalues) transmitted to the driver. (an
excerpt of this code featuring the implementation of the Newton
loop is given in Appendix E).

2.3 Mesh Adaptation Procedure. As for any numerical
method, a crucial aspect for numerical efficiency is the design of
the mesh. The finite element method allows using unstructured
mesh and hence to have a local adaptation. The most common
procedure is to decompose the domain into several parts with dif
ferent grid densities; for instance for the wake of a cylinder, we
will design a near wall region with very small size, a wake region
with intermediate mesh size, and an outer region with large mesh
size. The drawback of such mesh generation guidelines is that the
design relies on an a priori expectation of the regions where gra
dients will be large.

In our implementation, we use an automated mesh adaptation
method. The implementation relies on the AdaptMesh procedure
of the FREEFEMþþ software. This procedure is detailed in Ref. [15].
In short, the classical Delaunay Voronoi algorithm produces a
mesh with gridpoint distribution specified by a Metric matrix M.
The AdaptMesh algorithm consists in using as a metric the Hes
sian (second order spatial derivatives) of an objective function uh

defined over the domain, i.e., M ¼ rruh. The precision can be
controlled by specifying an objective value for the interpolation
error of the function on the new mesh.

To build an optimal mesh for the base flow calculation, the idea

(BF), or D, A, S, E strategies) is decided by the nature of the
objects given as input to this function. In the current implementa
tion, it is possible to adapt the mesh to as much as eight fields of
diverse nature (for instance, multiple eigenmodes along with their
adjoint fields, harmonic balance Fourier components, etc.).

3 Illustration for the Wake of a Cylinder

(Incompressible Case)

3.1 Problem Description. Here, we consider the two
dimensional flow of an incompressible fluid of density q past a
circular cylinder. All flow quantities are normalized using the uni
form incoming velocity U1 and the cylinder diameter D, which
are the characteristic velocity and length scales used for the defini
tion of the Reynolds number Re¼U1D/�. The origin of the
Cartesian frame of reference is considered located on the cylinder
axis, the x axis is chosen to be parallel to the incoming free
stream velocity, while the y axis with the cross stream velocity.
The dimensions of the computational domain are the following:

40
 x/D
 80 and 0
 y/D
 40 (boundary conditions and their
implementation are detailed in Appendix D). Note that we take
advantage of the symmetry properties of the problem to only solve
it on the positive y half domain.

The hydrodynamic loads can be obtained by integrating the
stress tensor over the cylinder surface. In particular, the hydrody
namic lift and drag forces read4

Fx ¼ DRe u; pð Þ �
ð

Ccyl

pnþ 2

Re
D uð Þ � n

� �
� exd‘ (17)

Fy ¼ LRe u; pð Þ �
ð

Ccyl

pnþ 2

Re
D uð Þ � n

� �
� eyd‘ (18)

where Ccyl is the boundary of the cylinder.

3.2 Mesh Adaptation Procedure. Let us now consider the
OCTAVE/MATLAB code reported in Fig. 1. First, we build an initial
mesh (line 1), and compute base flow solutions for increasing val
ues of the Reynolds number up to Re¼ 60 (lines 2 5). Then, we
perform the mesh adaptation with S strategy, as explained previ
ously (lines 6 7). The resulting mesh, depicted in Fig. 2, is used
for the rest of the computations presented in this paper (except for
plotting the structure of the direct eigenmode in Fig. 6(a) and
computing the energy of the nonlinear perturbation displayed in
Fig. 11(d) which adopted a finer mesh obtained with the strategy
D). Appendix A presents additional tests regarding mesh conver
gence and demonstrates that results obtained with the resulting
mesh are reliable within 0.3% accuracy tolerance for the eigen
value. It must be emphasized that the mesh generated through this
adaptation process is very light, with only 2048 vertices, which is
significantly less than reported in previous works (for instance, in
their mesh convergence studies, [4] and [5] used, respectively,
190,868 and 6731 vertices).

3.3 Base Flow. Having thus produced a convenient mesh, we
can now illustrate the properties of the base flow as a function of
Reynolds number. Figure 1 shows how to compute and plot with
STABFEM the two most commonly studied quantities, namely the
recirculation length Lx(Re), i.e., the location of the stagnation
point at the rear of the recirculation region, and the drag force
Fx(Re). Note that the object bf is defined as a structure with fields
Fx and Lx. The resulting plots are given in Fig. 3, and are in good

4Note that Fx and Fy are actually nondimensional forces per unit length. For a
cylinder of diameter D and length L (assuming L�D so that the assumption of 2D
flow makes sense), the corresponding dimensional forces are F	x ¼ qU2

1DLFx and
F	y ¼ qU2

1DLFy . Alternatively, one may characterize the forces through the drag
and lift coefficients Cx and Cy. With the usual convention, The connection between
the nondimensional forces and the force coefficients is Cx¼ 2Fx; Cy¼ 2Fy.

is to use as the objective function uh the solution ub itself, as com
puted on a previous mesh. The base flow is then recomputed on 
the adapted mesh, providing a better approximation of the solu
tion. The procedure can be repeated over a few steps to ensure a 
right convergence.

The mesh generated in the previous way may not be optimal for 
the stability calculations as the structure of the eigenmode may be 
more complex than that of the base flow. To remedy with this, the 
idea is to subsequently adapt the mesh to both the mesh flow and 
the results of the stability calculation. This is easily done with 
FreeFem, as the AdaptMesh procedure can be used with several 
objective functions. We have experimented four different strat
egies. The first (D strategy) is to adapt the mesh to the base flow 
and the structure of the leading direct eigenmode. A second strat
egy (A) is to use the adjoint mode instead of the direct mode for 
mesh adaptation. However, as the sensitivity of the eigenvalue to 
perturbations of the operator (including discretization errors) is 
more closely linked to structural sensitivity concepts, it sounds a
better idea to use the “wavemaker” Sw to adapt the mesh, leading 
to the last experimented strategy, called S. Mesh adaptation using 
the scalar product of the direct and adjoint eigenmodes (called E
strategy) was also proposed in Ref. [16] (this quantity has also 
been discussed by Marquet and Lesshafft [17]). A detailed com
parison of the four strategies is reported in Appendix A. It  is  
shown that for the case of a cylinder, all strategies give the same 
values for base flow drag, eigenvalues, and several properties of 
the nonlinear limit cycle (see Sec. 4) with less than 0, 3% devia
tion, but that the A, E, and especially the S strategy lead to signifi
cantly lower number of grid points compared to the D strategy. 
Note that a valid alternative (not yet available in the STABFEM pro
ject) is offered by the error sensitivity to refinement recently pro
posed by Luchini et al. [18].

In our implementation, the whole process of mesh adaptation 
(including projection and recomputation of the base flow on 
the new mesh) is monitored using the OCTAVE/MATLAB driver 
SF AdaptMesh.m; the kind of adaptation (to base flow only



Fig. 1 Illustration of the usage of the STABFEM software to produce an adapted mesh and study the base
flow and the linear stability properties of the wake flow around a cylinder (extracted from script
SCRIPT CYLINDER ALLFIGURES.m)

Fig. 2 Illustration of the stucture of mesh M2 (adapted to both the base flow and structural sensitivity)

Fig. 3 Recirculation length Lx (a) and nondimensional drag Fx (b) of the base flow over a cylinder as function of Re



agreement with known results for this classical problem. In partic
ular, for low Reynolds, the recirculation Lx(Re) is equal to 0.5
(which is the radius of the cylinder) indicating the absence of a
recirculation region. The latter appears for Re> 4.8, in accord
ance with known results.

An illustration of the structure of the base flow is given in
Fig. 4, for the case Re¼ 60. This figure is obtained using the
MATLAB/OCTAVE function SF Plot.m, which is built over the
function ffpdeplot.m developed by Meister and also distributed on
an open source basis.5 This function provides a number of possi
bilities for plotting data on unstructured meshes, including color
plots, isolevels, streamlines, quiver plots, etc. The choice of
parameters used here (lines 8 10 of the script in Fig. 1) allows
plotting both the pressure field and selection of streamlines
(through isocontours of the streamfunction w). This representation
allows to easily visualize the extension of the recirculation region.
In accordance with Fig. 3(b), for Re¼ 60 the recirculation length
is Lx � 4.07.

3.4 Linear Stability Results. We investigate the stability of
the base flow field by performing a parametric study of the eigen
problem (9). In this way, we determine the critical Reynolds num
ber Rec from which the steady base flow first becomes unstable:
to this end, it is useful to remember that a flow state is linearly
unstable when the real part of the leading eigenvalue, i.e., the
growth rate, is positive. In our implementation, a parametric study
is performed by looping over increasing Reynolds, corresponding
to lines 21 30 of the script in Fig. 1. Note that at line 26 the
options “shift,” “cont,” “guess,” em transmitted to the driver
SF Stability allow to use an optimum value for the shift
interpolated using the previous computations, and a guess value to
initialize the shift invert procedure corresponding to the previ
ously computed eigenmode. Both these ideas very efficiently
accelerate the calculations (the shift invert procedure typically
converges after only 2 3 iterations).

Figure 5 shows growth rate and the Strouhal number St¼ ax/
2pU1 as a function of the Reynolds number. It is easy to check
that the critical Reynolds number is about 47 for the first mode.
The associated direct eigenmode is depicted in Fig. 6. The spatial
structure of this mode extends downstream of the bluff body and
is characterized by streamwise extended spatial disturbances. On
the other hand, the adjoint mode is highly localized near the cylin
der on the upper (and lower) side of the body surface. We recall
that the adjoint field provides useful information about the mecha
nism to flow receptivity to momentum forcing and mass injection.
We note also that this receptivity decays rapidly both upstream
and downstream of the bluff body.

The structural sensitivity Sw introduced in Sec. 2.2 is displayed
in Fig. 7. As discussed in Sec. 2.2, both these quantities allow
identifying the “active” flow regions responsible for the instability

mechanism. The real quantity Sw indicates that the most active
region roughly coincides with the recirculation bubble.

4 Extension: Compressible Flows

The main concepts of global linear stability analysis, exposed
in Sec. 2 for the case of incompressible flows, are directly general
izable to more complex situations involving compressibility,
fluid structure interactions, deformable free surfaces, etc. Such
more complex situations can be studied using the same class of
numerical methods and the same methodology. One of the ambi
tions of the STABFEM software if to provide a unified procedure to
perform such stability studies, so that despite the fact that the
underlying equations may be different, the corresponding OCTAVE/
MATLAB scripts will be almost the same in all cases. In this section,
we will illustrate this point for the case of a compressible flow,
keeping the geometry as a 2D cylinder, and will reproduce the
results of the recent study of Ref. [19].

4.1 Analysis and Implementation. In the compressible case,
the Navier Stokes equations have to be formulated in terms of a
state vector [u, p, q, T] with larger dimension. The equations
involve a larger number of terms but can be written in a compact
way as follows:

@tB½u; p; q; T� ¼ NS½u; p; q; T� (19)

Here, B is a “weight” operator specifying the coefficients in front
of the time derivatives of [u, p, q, T], and the operator
NS½u; p;q;T� specifies the time evolution of [u, q, T] coming
from the momentum, energy, and mass balances as well as the
state equation linking [p, T, q]. The detailed form of this equation
is given in Ref. [19].

Starting with this form, the two main steps of the analysis,
namely computation of a base flow and eigenvalue computation,
can be done in the same way as explained in Sec. 2. Namely:

� The base flow [ub, pb, qb, Tb] is the solution of
NS½ub; pb; qb;Tb� ¼ 0 (Eqs. (4a) (4d) of Ref. [19]) which
can readily be computed using Newton iteration.

� Eigenvalues k and eigenvalues ½û; p̂; q̂; T̂ � are solutions of

the eigenvalue problem kB½û; p̂; q̂; T̂ �T ¼ LNS½û; p̂; q̂; T̂ �T
(Eqs. (5a) (5d) of Ref. [19]) which can be solved using
either single mode shift invert iteration or multiple mode
Arnoldi iteration.

In our implementation, these calculations are done by the FREE-

FEMþþ solvers Newton2DComp.edp and Stab2DComp.edp,
which are quite different from their incompressible counterparts.
However, these solvers are wrapped by the same generic drivers
SF BaseFlow.m and SF Stability.m. The selection of
which solver to use is made according to the parameters transmit
ted to them.

4.2 Example: Two-Dimensional Compressible Flow
Around a Cylinder. As an illustration, we consider the compress
ible flow around a 2D cylinder (same geometry as in Sec. 3). The
reader may find on the website of the project a script6 reproducing
the main results of the study of Ref. [19]. We restrict here to the
illustration of the structure of the unstable eigenmode for
Re¼ 150; M¼ 0.2. Figure 8 shows the axial velocity associated
with the eigenmode in a domain centered on the body. Figure 9
displays the structure of the pressure field on a much larger
domain, allowing to detail the structure of the radiated acoustic
field. The structure is in perfect agreement with the results of Ref.
[19] (see Figs. 6(a) and 9 of this paper). The value of the

Fig. 4 Base flow for the flow over a cylinder at Re 5 60. Pres-
sure field (color or grayscale levels) and streamlines (iso-levels
of the streamfunction w).

5https://github.com/samplemaker/freefem\ matlab\ octave\ plot

6https://gitlab.com/stabfem/StabFem/blob/master/STABLE CASES/
CompressibleCylinder/SCRIPT Fani.m





illustrated with results obtained for the wake of a cylinder in an
incompressible flow.

In this part, to simplify the notations, we symbolically write the
Navier Stokes equations as @tu ¼ NSðuÞ, therefore, dropping the
systematic reference to the incompressibility constraint and asso
ciated pressure field. The same is done with the linearized opera
tor LNSUðuÞ.

5.1 General Definitions in the Nonlinear Regime. In the
nonlinear regime, the base flow introduced in the linear theory is no
longer relevant, especially when the oscillation amplitudes become
large. Instead, one may define a mean flow by using a time average

um xð Þ ¼ 1

T

ðT

0

u x; tð Þdt (20)

where T¼ 2p/x is the period of the oscillation cycle. The differ
ence between the instantaneous solution and the mean flow is then
called the nonlinear perturbation, defined as

u0ðx; tÞ ¼ uðx; tÞ umðxÞ (21)

A convenient measure of the unsteady part of the flow, which
has been adopted in both the WNL and SC models, is the energy
amplitude, defined as the square root of the total energy associ
ated with the nonlinear perturbation

AE ¼
1

T

ðT

0

ð
X
ju0j2 dS

� �
dt

s
(22)

In Secs. 5.2 and 5.3, we will document the predictions of the
WNL and SC models regarding the quantities AE and Lx adopted
in past studies. In addition, we will document two other quantities
of practical interest: the Drag and Lift forces Fx and Fy exerted on
the cylinder. Both are periodic functions of time and, owing to
symmetry consideration, the drag contains only even harmonics
and the lift only odd harmonics

Fx ¼ Fx;0 þ
X1
n 1

ðFx;2n;c cosð2nxtÞ þ Fx;2n;s sinð2nxtÞÞ (23)

Fy ¼
X1
n 1

ðFy;2n�1;c cosðð2n 1ÞxtÞ þ Fy;ð2n�1Þ;s sinðð2n 1ÞxtÞÞ

(24)

In the sequel, we will focus on the mean drag Fx,0 and on the
fundamental components of the lift Fy,1,c and Fy,1,s. These quanti
ties are easily retrievable from a numerical simulation or an
experiment, and we will show how they can be predicted from the
nonlinear global approaches.

5.2 The Weakly Nonlinear Model. We first review the
weakly nonlinear model of Sipp and Lebedev [4], also discussed by
Gallaire et al. [20]. The initial derivation of Ref. [4] makes use of a
multiple scales method in order to obtain an amplitude equation.
This complete analysis is reproduced in Appendix B. In the present
paragraph, we give a simplified derivation of this model restricted
to the description of the periodic saturated cycle. The starting point
can be taken as the following expansion of the velocity flow field:

u ¼ ubc þ e½Awnlûeiðxcþe2xeÞt þ c:c:�
þ e2½ue þ jAwnlj2u2;0 þ ðA2

wnlu2;2e2iðxcþe2xeÞt þ c:c:Þ� þ Oðe3Þ
(25)

This expansion is built as an asymptotic expansion in terms of

the small parameter e ¼ 1=Rec 1=Re
p

corresponding to the

distance to the critical Reynolds number. The zero order term ubc

is the base flow at the threshold Rec.
In the first order term, û is the neutral eigenmode at Rec con

veniently normalized (see discussion in Appendix B), Awnl is an
amplitude which can be assumed as real, xc is the frequency
predicted by the linear approach at Re¼Rec, and xe is a small
deviation on the frequency.

The second order term contains three contributions: ue is the
modification to the base flow related to the increase of Re, u2,0

represents the nonlinear interaction of û with its conjugate, u2,2 is
the nonlinear interaction of û with itself. These three terms
are computed as solutions of nonsingular linear systems (see
Eqs. (B2) (B4) in Appendix B).

At Oðe3Þ, compatibility conditions need to be enforced to
ensure that the problem is correctly posed. These conditions lead to
an amplitude equation which relates the amplitude Awnl to three
parameters K, �0 and �2 which depend uniquely on ue, u2,0 and u2,2,
respectively (see Eqs. (B6) (B8) in Appendix B). Restricting to the
description of the limit cycle, the amplitude equation takes the form

ixeAwnl ¼ KAwnl ð�0 þ �2ÞjAwnlj2Awnl (26)

The amplitude Awnl and the correction to the frequency are
then determined by considering the real and imaginary parts of

this equation, leading to Awnl ¼ Kr=ð�0;r þ �2;rÞ
p

and xe ¼
Ki Krðð�0;i þ �2;iÞ=ð�0;r þ �2;rÞÞ where the subscripts r and i
represent the real and imaginary parts. Reintroducing the scaling,
the amplitude A¼ eAwnl and the frequency x of the limit cycle are
thus predicted as

A ¼ eAwnl ¼
Kr

�0;r þ �2;r

s
1

Rec

1

Re

r
(27)

x � xðwnlÞ ¼ xc þ Ki Kr
�0;i þ �2;i

�0;r þ �2;r

� �
1

Rec

1

Re

� �
(28)

Finally, as specified above, we explain how the mean drag Fx,0

and fundamental components (Fy,1,c, Fy,1,s) of the oscillating lift
can be predicted by the WNL approach. The mean drag can be
obtained by Fx;0 ¼ DReðum; pmÞ, where D is the drag operator
defined in Eq. (17) and [um, pm] is the mean flow which corre
sponds to the time average of expansion (25), namely: ½um; pm� ¼
½ubc; pbc� þ e2ð½ue; pe� þ A2

wnl½u2;0; p2;0�Þ: Developing the terms as
an asymptotic expansion leads to

Fx;0 Reð Þ � Fx;0;Rec
þ Fx;0;e

1

Rec

1

Re

� �
(29)

with Fx0;Rec
¼ DRec

ðubc; pbcÞ; and

Fx0;e ¼ DRec
ðue; peÞ D1ðubc; 0Þ þ A2

wnlDRec
ðu2;0; p2;0Þ

Similarly, the required components of the lift force are obtained
by applying the lift operator L defined in Eq. (18) to the order one
component of the expansion, leading to

Fy;1;c iFy;1;s ¼ 2AwnlLRec
û;p̂ð Þ 1

Rec

1

Re

r
(30)

5.2.1 Implementation and Results for the Cylinder. Lines 1 8
of the script shown in Fig. 10 (extracted from the script
SCRIPT CYLINDER ALLFIGURES.m) illustrate the sequence
of commands to perform the weakly nonlinear study for the cylin
der wake. On line 2, we first determine the instability threshold,
and the corresponding base flow and eigenmode.7 On line 3, we

7This routine uses Newton iteration to directly compute the base flow, the
eigenmode, the frequency, and the critical Reynolds. The algorithm is very similar to
the one presented for the HB, with an additional unknown (Re) and an additional
constraint (normalization of the mode). The interested reader should reconstruct
easily the whole procedure from the code provided.













Appendix C: Additional Details About the

Self-Consistent Method

The objective of this appendix is to provide additional details
about the SC model in its original form as given by Mantič Lugo
et al. [5], and to explain the connection with the simpler version
discussed in Sec. 4.2. The full model is obtained by introducing
the decomposition (31) into the Navier Stokes equations,
leading to

NSðumÞ A2Cð~u1; ~u1Þ ¼ 0 (C1a)

ðrsc þ ixscÞ~u1 ¼ LNSum
ð~u1Þ (C1b)

Equation (C1a) provides the mean flow field um, while the
pseudo eigenpairs ðksc; ~u1Þ can be computed by solving the eigen
value problem (C1b). Mantič Lugo et al. [5] initially proposed a
resolution method involving two nested loops, which is advanta
geously replaced by the direct Newton resolution of Sec. 5.3.

The self consistent model has the following properties:

� For A  1, it is equivalent to the linear eigenvalue problem
(9), and the generalized eigenvalue coincides with the one
predicted by linear stability: rSCþ ixSC¼ rlinþ ixlin.

� For rSC¼ 0 (corresponding to a specific choice of the ampli
tude A¼Asc), the expansion (31) is equivalent to the Fourier
expansion (32) taken as the starting point in this paper.

� For 0<A<Asc, the resolution leads to a relation rSC(A);
xSC(A) such that 0< rSC(A)< rlin. Although in this case the
expansion (31) cannot represent the flow for all t, Mantič
Lugo et al. [5] argued that the relation between rSC and A
can be used to build an amplitude equation which captures
the transient approach to the limit cycle.

Note that in our numerical implementation, the programs can
actually be used to solve the SC model in the general case (with
r 6¼ 0). This can be controlled by assigning a nonzero value to the
optional parameter sigma of the SF SelfConsistent.m
OCTAVE/MATLAB function. The interested reader will find on the
website of the STABFEM project a program SCRIPT CYLINDER
NONLINEAR.m which computes A as function of r for Re¼ 100,
yielding identical results as displayed in Fig. 3 of Ref. [5].

Appendix D: Details of the Weak Formulation

In the presentation of the numerical methods in Secs. 2.1 and
2.2, and introduction of the weak form, we have omitted an impor
tant point, namely the issue of boundary conditions. In this appen
dix, we explain more rigorously how the weak formulation is
obtained. We consider here the full time dependent nonlinear
Navier Stokes equations, but the treatment of the base flow equa
tions and the linearized equations is essentially the same.

Noting C the boundary of the numerical domain, the latter can
be decomposed in five parts: C ¼ Cin [ Ccyl [ Caxis [ Cout [ Clat.
Noting r ¼ 2Re�1DðuÞ p1 the stress tensor, the relevant bound
ary conditions are as follows:

On Cin (inlet): u¼ ex (Dirichlet).
On Ccyl (surface of the cylinder): u¼ 0 (Dirichlet).
On Cout (outlet): r� n¼ 0 (Neumann).
On Clat (lateral boundary): r� n¼ 0 (Neumann).
On Caxis (symmetry plane): uy¼ 0 and rxy¼ 0 (Mixed).

We will introduce the following notation for integrals along
any portion of the boundary Ci of the product of two quantities
/1, /2 (either scalar or vectorial)

h/1;/2iCi
¼
ð

Ci

/1 � /2 d‘;

Instead of the simplified version (3), the more precise form of the
weak formulation can be first written as follows:

8 v; q½ �; @thv;ui ¼ hv;N S u; pð Þi þ hq;r � ui

þ 1

e
hv; uiCcyl

þ hv; u exð ÞiCin
þ hvy; uyiCaxis

	 

þ hv; r � niCout[Clat[Caxis

(D1)

where e¼ 10�30 is a small parameter used to impose the
Dirichlet boundary conditions by penalization. An integration by
parts of the pressure gradient and viscous stress terms of the
Navier Stokes equation eventually leads to the weak form effec
tively used in the programs Newton2D.edp and Stab2D.edp

8 v; q½ �; @thv; ui ¼ hv; C u; uð Þ=2i 2Re�1hD vð Þ : D uð Þi
þ hr � v; pi þ hq;r � ui

þ 1

e
hv; uiCcyl

þ hv; u exð ÞiCin
þ hvy; uyiCaxis

	 

(D2)

Note that the Neumann boundary conditions do not appear any
more thanks to the integration by parts.

Appendix E: Numerical Implementation in FREEFEM11

In this appendix, we provide pieces of codes illustrating how
the basic algorithms are implemented in the FREEFEMþþ solvers.
These explanations will be useful both for readers who wish to
use directly FREEFEMþþ solvers without using the overlayer of
OCTAVE/MATLAB drivers provided by the STABFEM software, and also
for the reader who wants to understand the logics of the imple
mentation and to customize the software to implement their own
cases. The full version of the codes is available in the web reposi
tory of the STABFEM project. A full documentation of the software
is also in progress.10

Figure 14 details the implementation of the Newton algorithm for
base flow computation, as implemented in the FREEFEMþþ solver
Newton2D.edp which is a generic solver usable for the whole class
of 2D incompressible problems. Note that the syntax makes use of
macros D, div, Conv, resulting in a very similar to the weak formula
tion written in Appendix D. The boundary conditions are also imple
mented using a macro BoundaryconditionsBaseFlow. To
allow an easy customization, this macro is not defined
in the generic solver Newton2D.edp but is reported in a
file Macros StabFem.idp regrouping case dependant
macros (essentially boundary conditions and postprocessing
options).

Table 4 Results of the WNL approach for three different choices of eigenmode normalization

Norm. k �0 �2 xe Fx,0,e Fy,1,c/e Fy,1,s/e jFy;1j=e

[4] 9.10988þ 3.28004i 9.3996 32.0289i 0.305116 0.866118i 36.2307 5.2848 0.0349973 0.536113 0.537254
[20] 9.10988þ 3.28004i (0.488701 1.66524i)� 10 3 ( 1.58635 4.50309i)� 10 5 36.2307 5.2848 0.537254 0 0.537254
[34] 9.10988þ 3.28004i 32.62 111.152i 1.05886 3.00574i 36.2307 5.2848 0.537254 0 0.537254

10https://gitlab.com/stabfem/StabFem/blob/master/99 Documentation/
MANUAL/main.pdf



Figure 15 details the implementation of the shift invert algo
rithm for eigenvalue computation, as implemented in the generic
solver Stab2D.edp for 2D incompressible flows. Here again,
boundary conditions (which may differ from a case to another
within the generic class of 2D incompressible flows) are defined
by a macro BoundaryconditionsStability which has to
be defined in the Macros StabFem.idp file.

We do not provide here the listing for the Newton resolution of
the HB1 model, but the interested reader is encouraged to look at
the program HB1 2D.edp on the project site.
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