
Higher-Order Calculations in
Quantum Chromodynamics

Herschel Aditya Chawdhry

Department of Physics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Trinity College November 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/428440166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text.
It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge
or any other University or similar institution except as declared in the Preface and
specified in the text. I further state that no substantial part of my thesis has already
been submitted, or, is being concurrently submitted for any such degree, diploma or
other qualification at the University of Cambridge or any other University or similar
institution except as declared in the Preface and specified in the text. It does not
exceed the prescribed word limit for the relevant Degree Committee.

Chapter 2 is based on the paper [1], which was written in collaboration with
A. Mitov. Section 2.2 of that chapter is based on the Part III Project Report that I
submitted as part of my MSci degree at the University of Cambridge in 2016.

Sections 3.1 and 3.3 of Chapter 3 are based on the paper [2], which was written in
collaboration with M. A. Lim and A. Mitov.

Chapter 4 is based on the paper [3], which was written in collaboration with
M. Czakon, A. Mitov, and R. Poncelet.

This thesis is typeset using LATEX with a template designed by Krishna Kumar [4].

Herschel Aditya Chawdhry
November 2020





Abstract

Higher-Order Calculations in Quantum Chromodynamics

Herschel Aditya Chawdhry

In this thesis, several techniques and advances in higher-order Quantum Chromody-
namics (QCD) calculations are presented. There is a particular focus on 2-loop 5-point
massless QCD amplitudes, which are currently at the frontier of higher-order QCD
calculations.

Firstly, we study the Brodsky-Lepage-Mackenzie/Principle of Maximum Conformal-
ity (BLM/PMC) method for setting the renormalisation scale, µR, in higher-order QCD
calculations. We identify three ambiguities in the BLM/PMC procedure and study
their numerical impact using the example of the total cross-section for tt̄ production at
Next-to-Next-to-Leading Order (NNLO) in QCD. The numerical impact of these ambi-
guities on the BLM/PMC prediction for the cross-section is found to be comparable to
the impact of the choice of µR in the conventional scale-setting approach.

Secondly, we introduce a novel strategy for solving integration-by-parts (IBP)
identities, which are widely used in the computation of multi-loop QCD amplitudes.
We implement the strategy in an efficient C++ program and hence solve the IBP
identities needed for the computation of any planar 2-loop 5-point massless amplitude
in QCD. We also derive representative results for the most complicated non-planar
family of integrals.

Thirdly, we present an automated computational framework to reduce 2-loop 5-point
massless amplitudes to a basis of pentagon functions. It uses finite-field evaluation
and interpolation techniques, as well as the aforementioned analytical IBP results. We
use this to calculate the leading-colour 2-loop QCD amplitude for qq̄ → γγγ and then
compute the NNLO QCD corrections to 3-photon production at the LHC. This is the
first NNLO QCD calculation for a 2 → 3 process. We compare our predictions with
the available 8 TeV measurements from the ATLAS collaboration and we find that the
inclusion of the NNLO corrections eliminates the existing significant discrepancy with
respect to NLO QCD predictions, paving the way for precision phenomenology in this
process.
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Chapter 1

Introduction

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) describes the behaviour of quarks and gluons,
which are the fundamental constituents of protons, neutrons, and a variety of more
exotic particles, collectively known as hadrons. A core pillar of the Standard Model of
Particle Physics, QCD has been very successful in explaining the spectrum of hadrons
discovered during the last 100 years1 as well as in predicting numerous observations
and measurements at high-energy particle colliders such as the Large Hadron Collider
(LHC).

High-energy QCD calculations exploit the property of asymptotic freedom: at
energies above ΛQCD ≈ 200 MeV, the QCD strong coupling constant αs governing
the strength of the Strong Force becomes small2, as will be explained in Section 1.3.
This allows high-energy observables to be calculated as a perturbative series in αs.
Calculations at leading order in αs are comparatively simple, while higher-order
calculations quickly increase in complexity but provide predictions of higher precision
and accuracy. These higher-order calculations are the subject of this thesis.

The field of higher-order QCD calculations has seen steady progress over time. For
processes involving 3 or more particles observed in the final state, current fixed-order
QCD predictions are at Next-to-Leading Order (NLO) in αs and can have uncertainties
in excess of 20% [6]. During the last 20 years, pioneering work by a large number of

1Last year marked the 100th anniversary of the discovery [5] of the proton by Ernest Rutherford.
2The term ‘strong coupling constant’ is thus somewhat misleading. The name arose in analogy to

the well-known electromagnetic fine-structure constant α ≈ 1
137 , whose value shows little variation at

the energy scales of interest outside the field of High-Energy Physics.
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Introduction

research groups has gradually enabled most processes with 1 or 2 observed final-state
particles to be computed at Next-to-Next-to-Leading Order (NNLO), yielding state-
of-the-art predictions with uncertainties typically in the region of just a few percent.
The next frontier in NNLO QCD calculations will involve processes with 3 particles
observed in the final state and work in this direction currently constitutes a very active
area of research. These so-called 2 → 3 processes are a major focus of this thesis,
and in Chapter 4 we will present the first-ever NNLO QCD calculation for a 2 → 3
process: 3-photon production at the LHC. These high-precision calculations are of
direct interest to the experimental community: the LHC is due to spend the next
two decades producing high-precision measurements which can be compared against
high-precision QCD predictions in order to either further validate the Standard Model
or provide the first hints of the physics that lies beyond.

The rest of this introductory chapter will summarise the fundamentals of QCD
as well as introducing several topics that underpin the material appearing in later
chapters.

1.2 The QCD Lagrangian

QCD is based on the gauge group SU(Nc), where Nc = 3 is the number of quark
colours. As we will see in Section 1.7, it is often helpful to work with generic Nc.

The Lagrangian of QCD can be written as:

LQCD = L0 + Lgauge-fixing+ghost + Lcounterterms . (1.1)

Let us start with the classical part, L0.

L0 = −1
4F A

µνF µν
A +

∑
q

q̄a (iγµDµ − mq) qa (1.2)

Here, F A
µν is the QCD field strength tensor (defined below), {q} are the quark fields,

mq is the mass of quark flavour q, the index a = 1, ..., Nc represents the colours of
the quarks, and the index A = 1, ..., N2

c − 1 represents the colours of the gluons. The
covariant derivative Dµ is here given by:

Dµ = ∂µ + igsAA
µ tA, (1.3)

2



1.2 The QCD Lagrangian

with tA defined below. The QCD field strength tensor F A
µν is defined in terms of the

N2
c − 1 gluon fields AA

µ as:

F A
µν = ∂µAA

ν − ∂νAA
µ − gsf

ABCAB
µ AC

ν , (1.4)

where fABC are the structure constants of the SU(Nc) gauge group, gs is the strong
coupling constant (although we will typically work with αs = g2

s

4π
), and µ and ν are

Lorentz indices.
The tA are the generators of SU(Nc) in the defining representation3. There ex-

ist many possible explicit matrix representations for the tA. By definition, these
representations must satisfy the SU(Nc) Lie algebra

[
tA, tB

]
= ifABCtC , (1.5)

and they also satisfy the following additional relations:

Tr
(
tAtB

)
= 1

2δAB (1.6)

tA
abt

A
bc = CF δac (1.7){

tA, tB
}

= 1
Nc

δAB + dABCtC . (1.8)

The factor of 1
2 in Equation 1.6 is a matter of convention and sets the overall normali-

sation of the tA matrices. The defining representation Casimir is CF = N2
c −1

2Nc
and the

symmetric tensor dABC is defined as

dABC = 2 Tr
[
tA
{
tB, tC

}]
. (1.9)

Besides the defining representation, QCD calculations also employ the adjoint
representation, whose matrices T A are explicitly defined as follows:

(T A)BC = −ifABC . (1.10)

3The defining representation of SU(Nc) is a fundamental representation and is often referred to as
the fundamental representation.

3
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They can be used to form a Casimir operator

Tr
(
T AT B

)
= CAδAB (1.11)

CA = Nc (1.12)

and they also satisfy the SU(Nc) Lie algebra (Equation 1.5).

Gauge fixing

The gluon fields AA
µ contain extra, unphysical degrees of freedom. In order for the

Green function of the gluons (and hence the gluon propagator) to be well defined,
it is necessary to fix the gauge by including additional terms in the Lagrangian. To
ensure the physics is not modified by the gauge-fixing terms, one must at the same
time introduce unphysical ghost fields which are scalar but obey Fermion statistics.

A common choice is the covariant set of gauges:

Lgauge-fixing+ghost = − 1
2ξ

(
∂µAA

µ

)2
+ (∂µη̄A)Dµ

ABηB , (1.13)

where η and η̄ are ghost and anti-ghost fields, respectively. Here, one can view 1
2ξ

as
a Lagrange multiplier enforcing the gauge-fixing condition

(
∂µAA

µ

)2
= 0. One can

further fix the gauge by choosing a specific value of ξ, such as ξ = 1 (Feynman gauge)
or ξ → 0 (Landau gauge). Physical predictions are gauge-invariant and therefore do
not depend on the value of ξ.

Another common choice of gauge is the axial gauge where we instead define

Lgauge-fixing+ghost = − 1
2λ

(
nµAA

µ

)2
+ (nµη̄A)Dµ

ABηB , (1.14)

where λ is analogous to the ξ appearing in Equation 1.13, while nµ is an arbitrary
fixed vector. The axial gauge has the advantage that, if one chooses λ → 0, the ghost
fields decouple and can therefore be neglected. Furthermore, calculations can often be
simplified by making a judicious choice for nµ. The special case where nµnµ = 0 and
λ = 0 is known as the lightcone gauge.

4



1.2 The QCD Lagrangian

Renormalisation and counterterms

In order to cancel divergences from loop integrals contributing to physical predictions,
it is necessary to add counterterms δi to the Lagrangian. As will be further explained
in Section 1.6, we use dimensional regularisation to regulate UV and IR divergences
by working in d = 4 − 2ϵ space-time dimensions, and this requires introducing a
renormalisation scale, µR. The complete QCD Lagrangian, including the combined
effects of gauge-fixing and renormalisation, can be found in textbooks such as Ref. [7].
The counterterms have the net effect of changing the normalisation of the fields
(including ghost fields), masses, and coupling constant:

q(bare)
a = Z

1/2
2 q(Renormalised)

a (1.15)
A(bare)

µ = Z
1/2
3 A(Renormalised)

µ (1.16)
η(bare) = Z

1/2
3η η(Renormalised) (1.17)

m(bare)
q = Zmm(Renormalised)

q (1.18)
g(bare)

s = Z1/2
g µ

(4−d)/2
R g(Renormalised)

s , (1.19)

where Zi = 1 + δi. It is helpful to define Z1 = ZgZ2Z
1/2
3 .

When working in dimensional regularisation, the poles in ϵ of the counterterms δi

are determined by requiring the Green functions involving loop diagrams to be finite.
Here we will state the 1-loop values for the counterterms δ1, δ2 and δ3, which we will
use in Section 1.3 to derive the first term of the QCD β function. We use the covariant
gauges defined in Equation 1.13.

δ1 = −1
ϵ

(
αs

4π

)(
ξCF + 3 + ξ

4 CA

)
(1.20)

δ2 = −1
ϵ

(
αs

4π

)
ξCF (1.21)

δ3 = −1
ϵ

(
αs

4π

)((3ξ − 13)
6 CA + 2

3nf

)
. (1.22)

Here αs ≡ 1
4π

[
g(Renormalised)

s

]2
and nf is the number of active quark flavours. The factor

of nf appearing in Equation 1.22 gives rise to the nf -dependence of the β0 coefficient
of the QCD β function, which we will describe in the next section. This is used in the
BLM/PMC renormalisation scale-setting method that we will study in Chapter 2.

5
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1.3 The running of αS

Quantitative predictions for high-energy QCD observables are typically calculated
as a perturbative series in the strong coupling constant αs ≡ g2

s

4π
, which quantifies

the strength of the Strong Force, analogously to the well-known electromagnetic fine-
structure constant α ≈ 1

137 . Although the bare strong coupling α(bare)
s is an (infinite)

constant, the renormalised strong coupling αs is dependent on the renormalisation
scale µR (when working in dimensional regularisation). The µR-dependence of αs can
be obtained using the renormalisation group equation:

0 = dα(bare)
s

d log(µ2
R) = d

d log(µ2
R)

(
µ4−d

R

Z2
1

Z2
2Z3

αs

)
. (1.23)

Setting d = 4 − 2ϵ and expanding in αs, we obtain the following:

β(αs) = −ϵαs − d

d log(µ2
R) (2δ1 − 2δ2 − δ3) + O

(
α2

s

)
, (1.24)

where we have defined
β(αs) ≡ dαs

d log(µ2
R) . (1.25)

This function, β(αs), is the QCD β-function and can in general be expanded as a series
in αs:

β(αs) = −ϵαs −
∑
n=0

(
αs

4π

)n+2
βn. (1.26)

By substituting Equations 1.20–1.22 into Equation 1.24 and comparing with Equa-
tion 1.26, the one-loop beta-function coefficient β0 can be seen to take the value shown
in Equation 1.27. For reference, the value of the two-loop coefficient, β1, is also stated
as this will be used in Chapter 2. In recent years, the β function has been computed
to five loops [8–10].

β0 = 11
3 CA − 2

3nf (1.27)

β1 = 34
3 C2

A − 10
3 nf − 2CF nf (1.28)

The renormalisation scale is an arbitrary parameter and could, in principle, be set
to any value of one’s choosing. However, in practice one usually sets µR = Q, where
Q is a typical momentum scale in the process. This choice makes αs(Q) an effective

6



1.4 Partons and factorisation

coupling constant which absorbs some of the scale-dependent effects of loop corrections
to propagators and vertices.

If αs is measured at one energy, the differential equation 1.26 can be used to
calculate αs at any other energy. Remarkably, the β-function is negative4 and as a
result, QCD is strongly interacting at low energies but becomes asymptotically free at
high energies. At energy scales Q ≫ ΛQCD ∼ 200 MeV, we have αs < 1 and so we can
calculate observables as a perturbative series in αs(Q). It is helpful to explicitly state
the first few terms of the solution to the differential equation 1.26:

αs(µ2) = αs(µ1) − β0L
α2

s(µ1)
4π

+
(
β2

0L2 − β1L
) α3

s(µ1)
16π2 + O

(
α4

s

)
, (1.29)

where µ1 and µ2 are any two energy scales and L = log
(

µ2
2

µ2
1

)
. We will use this solution

in Chapter 2.

1.4 Partons and factorisation

The particles that are collided by the LHC, and the particles that are measured
in its detectors, are not the free quarks and gluons shown in the QCD Lagrangian
(Equation 1.2). As a result of the running of αs, the interactions of quarks and gluons
become strong at energies below ΛQCD, causing them to form bound states: protons,
neutrons, and other hadrons. The LHC is a proton-proton collider5 and any quarks or
gluons that are produced in a collision will form hadrons before reaching the detector.

The QCD factorisation formula shown in Equation 1.30 is essential for the successful
modelling of proton collisions, allowing them to be described in terms of the collisions
of two partons.

σ =
∑

i

∑
j

∫ 1

0
dξ1

∫ 1

0
dξ2fi(ξ1)fj(ξ2)σ̂ij + O

(
ΛN

QCD

QN

)
(1.30)

Here, σ is the hadronic cross-section while σ̂ij are partonic cross-sections. The two
partons, labelled i and j, can each be a quark, anti-quark, or gluon. The higher-twist
corrections O

(
ΛN

QCD
QN

)
can be neglected as long as ΛN

QCD ≪ QN , where Q is a typical

4Since Nc = 3 in QCD, the β-function is negative for nf < 17. To date, 6 flavours of quarks have
been discovered.

5Approximately 10% of the running time at the LHC is dedicated to collisions involving heavy
ions, but they are outside the scope of this thesis.
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momentum scale in the process and N ∈ N is a process-dependent constant. The fi(ξ)
are called Parton Distribution Functions (PDFs). If an incoming proton has momentum
P µ, one can loosely view fi(ξ) as the probability density of finding a parton i with
momentum ξP µ inside the proton. This probabilistic interpretation of the meaning
of fi is less applicable when working beyond leading order in αs, as the formalism
requires initial-state collinear divergences to be absorbed into the PDFs. Note that
at the Tevatron, where one of the incoming particles is an anti-proton, it is necessary
to replace one of the proton PDFs in Equation 1.30 by the corresponding anti-proton
PDF.

The usefulness of the Equation 1.30 is due to the fact that the PDFs are universal:
they are independent of the specific process being described by σ and σ̂ij. Since
the PDFs describe low-energy, non-perturbative physics, they cannot at present be
computed directly. However, the universality of the PDFs ensures that they can be
fitted to data from one process and then used to make predictions for a different
process (even at a different collider). The fitting of high-quality PDFs is a major topic
of research [11–14] and plays an important role in reducing the size of theoretical
uncertainties in physical predictions. There is also a promising field of lattice QCD
research, which aims to directly compute non-perturbative QCD properties, such as
PDFs, by using numerical simulations of QCD in a discretised space-time.

The factorisation of σ into a partonic cross-section σ̂ij and PDFs comes at a
cost of introducing an arbitrary and unphysical factorisation scale, µF . This scale
separates the high-energy, perturbative physics described by σ̂ij and the low-energy,
non-perturbative physics described by the PDFs. The PDFs and partonic cross-sections
carry a dependence on µF . In principle, the µF -dependence should cancel at the level
of the hadronic cross-section, but in practice any perturbative calculation at finite
order in αs will carry a residual dependence on µF . We note that the µF -dependence
of the PDFs is calculable [15–17] and so, unlike the ξ-dependence, does not need to be
fitted from data. Although in many applications it is common to set µF = µR, it is
important to remember that the two scales have different origins and are distinct. The
BLM/PMC scale-setting method studied in Chapter 2 applies only to µR and not µF .

The techniques developed in this thesis relate primarily to the high-energy partonic
cross-sections σ̂ij, since these can be calculated perturbatively in αs. If σ̂ij describes
the production of quarks or gluons, these will typically produce jets containing many
more quarks and gluons, which will form colourless bound states (hadrons) before
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reaching the detector. This is described by parton showers and hadronisation models,
but they are outside the scope of this thesis.

1.5 Higher-order corrections

To make quantitative predictions for a scattering process, one computes the correspond-
ing squared scattering amplitude, |M|2, which is then integrated over phase-space as
necessary to obtain the desired total or differential cross-section. To go beyond leading
order in αs, two sources of corrections must be considered: real and virtual.

Virtual corrections arise from Feynman diagrams containing closed loops. Each
loop adds an additional power of αs at the level of the amplitude M. Each loop
also introduces a free momentum parameter (loop momentum) over which one must
integrate. These loop integrals are a major bottleneck in higher-order QCD calculations
and are the subject of Chapter 3. In the limit of large loop momentum, loop integrals
have ultraviolet (UV) divergences which are removed using the counterterms that were
added to the Lagrangian above. The loop integrals also have infrared (IR) divergences,
which arise due to singularities in the integrands.

Real corrections arise from additional unresolved particles appearing in the final
state. These additional particles are not individually resolved, either because their
energy is too low to be detected (soft particles), or because they are collinear to one
of the resolved particles. It is, of course, possible for a particle to be both soft and
collinear. Since the additional particles are unresolved, these higher-multiplicity pro-
cesses contribute to the cross-section describing the resolved particles. Each unresolved
particle introduces a factor of gs at the level of the matrix element M and hence a
factor of αs at the level of the cross-section. Each unresolved particle also introduces
an extra phase-space integral which must be performed over the momentum of the
unresolved particle. These phase-space integrals give rise to IR divergences whenever
an unresolved particle is either soft or collinear to a resolved particle.6

Amplitudes of different multiplicities are calculated independently and are only
summed at the level of the cross-section. In an NNLO calculation, one must consider
double-real corrections (two unresolved additional particles), real-virtual corrections
(one unresolved particle and one loop), and double-virtual corrections (two loops). The
double-virtual corrections include the square of the one-loop amplitude, and also the

6It is also possible to have initial-state collinear divergences but, as mentioned in Section 1.4, one
can define higher-order PDFs which absorb them.
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contraction of the two-loop amplitude with the tree-level (zero-loop) amplitude. These
corrections are separately divergent but it can be proven [18, 19] that after summing
all the corrections contributing to the cross-section at a given order in αs, the IR
divergences cancel and the result is finite. To control and cancel these divergences is
highly non-trivial in practice, however: it requires a regulator to be introduced so as to
separate, and eventually cancel, the divergences arising from the various contributions.
The regulator is treated as a symbolic (rather than numerical) variable throughout the
calculation and it allows divergences at intermediate stages of the calculation to be
made manifest, typically as poles or logarithms of the regulator variable.

1.6 Dimensional regularisation

In this field, the most commonly used regularisation scheme is dimensional regularisa-
tion [20], where the intermediate parts of the calculation are analytically continued to
d = 4 − 2ϵ space-time dimensions.7 More precisely, we work in d − 1 spatial dimensions
and 1 time dimension. Divergent quantities such as loop integrals are Laurent-expanded
in ϵ and the divergences appear as poles in ϵ.

In dimensional regularisation, the integration measure for the Lagrangian is modified
∫

d4x →
∫

ddx, (1.31)

which causes the mass dimensions of the fields to change. In order to sensibly perform
calculations perturbatively in αs, we would like to keep the couplings dimensionless.
This requires us to make the replacement

gs → µϵ
Rgs (1.32)

in the Lagrangian, where µR is the renormalisation scale, an arbitrary parameter with
dimensions of mass. Individual parts of a calculation will become dependent on µR

but this dependence should, in principle, cancel at the level of a physical observable.
In practice, as we discuss in Chapter 2, any fixed-order calculation will have a residual
dependence on µR, which can have a significant impact on the numerical values of
physical predictions.

7Another convention sometimes adopted is d = 4−ϵ but in this thesis we will always use d = 4−2ϵ.
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The loop and phase-space integration measures also get modified in dimensional
regularisation

αL
s

∫
d4k1 . . . d4kL → αL

s µ2Lϵ
R

∫
ddk1 . . . ddkL (1.33)∫ ∏

i

[
d3pi

(2π)3
1

2Ei

]
→
∫ ∏

i

[
dd−1pi

(2π)d−1
1

2Ei

]
, (1.34)

where the factors of µR are due to Equation 1.32 but are more conveniently treated
as being part of the loop integral. Divergences – whether UV or IR – appear in loop
integrals in the form of poles in ϵ. The ability to use the same regulator to treat UV
and IR poles is one of the benefits of dimensional regularisation.

The UV divergences in loop integrals are handled by adding appropriate countert-
erms, as described in Section 1.2. It is observed that these UV poles always appear in
the combination

1
ϵ

− γE + ln(4π), (1.35)

where the Euler–Mascheroni constant γE is related to the derivative of the Gamma
function:

γE = − dΓ(x)
dx

∣∣∣∣∣
x=1

≈ 0.57721566. (1.36)

In the Minimal Subtraction (MS) scheme [21, 22], the counterterms are chosen so as to
only remove the poles in ϵ. In this thesis we will use the Modified Minimal Subtraction
(MS) scheme, in which the constants in Equation 1.35 are subtracted alongside the
poles.

Besides modifying the coupling constants, loop integrals, and phase-space integrals,
dimensional regularisation also gives rise to factors of d when summing over Lorentz
indices

gµνgµν = d (1.37)
dkµ

dkµ
= δµ

µ = d, (1.38)

where kµ is a d-dimensional momentum variable. Furthermore, a careful handling is
required for momenta, polarisation vectors, and gamma matrices, and there exist a
number of schemes that vary in their treatment of these quantities. Examples include
the ’t Hooft-Veltman scheme [20], Conventional Dimensional Regularisation [23], and
Dimensional Reduction [24]. Note that although Dirac spinors have 4 components, this
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number is unrelated to the space-time dimension and so is unaffected by dimensional
regularisation.

1.7 Planar graphs and the large-Nc approximation

When working with SU(Nc) theories such as QCD, it is helpful to consider the limit
Nc → ∞. More precisely, we define an auxiliary coupling α̃s = Ncαs and we take the
limit Nc → ∞ while holding α̃s constant.8 Calculating a multi-loop amplitude while
treating 1/Nc as a small parameter, one usually finds that the leading term in 1/Nc

is simpler to compute than the full result. This leading-colour or large-Nc limit often
provides a good approximation for the full amplitude, the sub-leading terms typically
being colour-suppressed by a relative factor of 1/N2

c , where Nc = 3 for QCD.
The reason for the simplification is that there is a direct relation between the power

of Nc accompanying a Feynman diagram (as determined by the Feynman rules) and
the genus of the surface required to draw the diagram without making lines cross over
each other. Feynman diagrams embedded in higher-genus surfaces are associated with
more complicated loop integrals, but these diagrams are colour-suppressed by powers
of 1/Nc. In the large-Nc limit, only planar Feynman diagrams are required: those
that can be drawn on a flat sheet without making any lines cross, while extending all
external particle lines to infinity.

An intuitive understanding for the colour-suppression of non-planar graphs can be
gained by drawing some planar and non-planar graphs on a sheet of paper and counting
the number of closed colour cycles. Each colour cycle enhances the contribution of the
graph by a factor of CA = Nc or CF = N2

c −1
2Nc

≈ 1
2Nc. It is quickly seen that whenever

two lines cross (the distinguishing feature of non-planar graphs), the number of colour
cycles is reduced. A more formal discussion can be found in Ref. [25], which first
introduced the large-Nc limit.

The greater complexity of non-planar integrals compared to planar integrals is borne
out by experience in a wide variety of multi-loop calculations [26–31]. The contrast
between the running times of the calculations for planar and non-planar integrals in
Chapter 3 is illustrative of this.

8This subtlety is important for ensuring that the limit is well-defined, particularly in non-
perturbative calculations, although it can be ignored when comparing terms of a given perturbative
order in αs.
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These considerations will be used in Chapter 4, where we will apply the large-Nc

approximation when calculating the scale-independent part of the two-loop finite
remainder for qq̄ → γγγ. (The scale-dependent part can be deduced in full colour from
the tree-level part and the one-loop finite remainder.)

1.8 Polylogarithms and their generalisations

The irrational parts of loop amplitudes in QCD calculations are often expressible
in terms of the polylogarithms Lin(z), the Riemann zeta function ζ(n), and their
generalisations. In this section we will briefly introduce these functions and discuss
some of their basic properties.

The polylogarithm Lin(z) can be defined as a series in z ∈ C

Lin(z) =
∞∑

k=1

zk

kn
, (1.39)

which is convergent for |z| < 1 and can be extended to the rest of the complex plane
by analytic continuation. This defines the polylogarithm for n ∈ C, although in QFT
applications we restrict ourselves to n ∈ N. For n = 1 this reduces to the Taylor
expansion of the ordinary natural logarithm:

Li1(z) = − ln(1 − z). (1.40)

For n ∈ N, the polylogarithm can also be defined as nested integrals via

Lin(z) =
∫ z

0

1
y

Lin−1(y)dy, (1.41)

where now we explicitly define Li1(z) with Equation 1.40.
The polylogarithms satisfy a number of relations, such as

Li2(1 − z) + Li2
(

1 − 1
z

)
+ log(z)2

2 = 0. (1.42)

It is useful to introduce the concept of transcendental weight: a rational function has
weight 0, while Lin has weight n. The weight of the product of two functions is the
sum of the weights of the individual functions. All terms in a polylogarithmic identity
have the same weight. For example, each term in Equation 1.42 has weight 2.
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As can be seen by setting z = 1 in Equation 1.39, the polylogarithms are related to
the Riemann zeta function ζ via the relation

Lin(1) = ζ(n). (1.43)

These numbers ζ(n) often appear in polylogarithmic identities. We assign ζ(n) the
transcendental weight n.

An important generalisation of the polylogarithms, with applications to amplitude
calculations, is the class of Multiple Polylogarithms (MPLs) [32], defined by analogy
to Equation 1.39 as

Lin1,...,nN
(z1, . . . , zN) =

∑
0<k1<···<kN

∏
i

zki
i

kni
i

. (1.44)

One can then straight-forwardly define the Multiple Zeta Value ζ(n1, . . . , nN) as

ζ(n1, . . . , nN) = Lin1,...,nN
(1, . . . , 1) =

∑
0<k1<···<kN

1
kn1

1 kn2
2 . . . knN

N

. (1.45)

As with the ordinary polylogarithms, the MPLs have equivalent integral representations
and there are furthermore many known identities describing these functions. The
Feynman integrals of interest in Chapters 3 and 4 can ultimately be expressed in
terms of so-called pentagon-functions [33], which are linear combinations of MPLs.
In Section 4.3.1 of Chapter 4, we will derive new identities between these pentagon
functions in order to obtain simpler amplitudes for 2 → 3 processes.

1.9 Fields and vector spaces

In this section we will introduce two useful algebraic structures which will be encountered
in this thesis: fields and vector spaces.

A field is a set F equipped with two operations called addition (+ : F × F → F)
and multiplication (∗ : F × F → F), with the following properties:

1. Under addition, the elements of F form an abelian group. The identity element
of this additive group is labelled 0.
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2. Under multiplication, the elements of F \ {0} form an abelian group, and

a ∗ 0 = 0 ∗ a = 0 ∀a ∈ F. (1.46)

3. Multiplication is distributive over addition:

a ∗ (b + c) = a ∗ b + a ∗ c ∀a, b, c ∈ F. (1.47)

Common examples of fields include the rational numbers Q, the real numbers R, and the
complex numbers C. In each of these fields, the standard addition and multiplication
operations can easily be verified to satisfy the field properties stated above. On the
other hand, the integers Z do not form a field since, for instance, the integer 2 does
not have a multiplicative inverse within Z.

In this thesis, two special types of fields will arise. Firstly, there are the finite fields,
Fq, which we will discuss in the next section. Secondly, there is Q(x1, . . . , xn), which is
the field of fractions of the ring of n-variable polynomials with rational coefficients. To
define Q(x1, . . . , xn), let us first define Q[x1, . . . , xn] to be the set (formally a ring) of
polynomials in some variables x1, . . . , xn with coefficients in Q.9 The field Q(x1, . . . , xn)
then consists of the set of rational functions

r(x1, . . . , xn) ≡ p(x1, . . . , xn)
q(x1, . . . , xn) , (1.48)

where p, q ∈ Q[x1, . . . , xn]. The reason Q(x1, . . . , xn) constitutes a field is as follows.
Q[x1, . . . , xn] constitutes an integral domain: multiplication in Q[x1, . . . , xn] is commu-
tative, and the product of any two non-zero polynomials p1, p2 ∈ Q[x1, . . . , xn] \ {0}
is non-zero. It is known from mathematics that if R is an integral domain, then the
set of fractions {a/b : a, b ∈ R} constitutes10 a field, known as the field of fractions,
Frac(R). Therefore Q(x1, . . . , xn) ≡ Frac(Q[x1, . . . , xn]) is a field.

Given any field F, a vector space over F is defined to be a set V equipped with two
operations: vector addition (+ : V ×V → V ) and scalar multiplication (· : F×V → V ).
These operations must satisfy the following properties:

9We emphasise that while the coefficients are in Q, no assumptions are made about the variables
x1, . . . , xn themselves – they are formally indeterminates. We also advise the reader to carefully
observe the subtle distinction in notation between a ring of polynomials, which is denoted with square
brackets, and the associated field of fractions, which is denoted with round brackets.

10Formally, the elements of the field of fractions are equivalence classes, where given a, b, c, d ∈ R,
a/b is equivalent to c/d iff ad = bc.
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1. V forms an abelian group under vector addition.

2. Scalar multiplication is distributive over vector addition:

a · (u + v) = a · u + a · v ∀a ∈ F and u, v ∈ V. (1.49)

3. Scalar multiplication is distributive over field addition:

(a + b) · u = a · u + b · u ∀a, b ∈ F and u ∈ V. (1.50)

4. Scalar multiplication and field multiplication are compatible:

a · (b · u) = (a ∗ b) · u ∀a, b ∈ F and u ∈ V. (1.51)

5. The identity element 1 ∈ F of the field multiplication operation ∗ satisfies:

1 · u = u ∀u ∈ V. (1.52)

We will see in Chapter 3 that dimensionally-regulated loop integrals, multiplied
by coefficients c ∈ Q(x1, . . . , xK , d), where x1, . . . , xK are kinematic invariants and d is
the space-time dimension, constitute a vector space over Q(x1, . . . , xK , d). This will
provide a convenient language for discussing loop integrals and the linear relations
between them, which are the focus of Chapter 3.

1.10 Finite-field techniques

In many particle physics calculations, the final symbolic answers (e.g. the multi-loop
integrals or multi-loop amplitudes considered in this thesis) are found to be significantly
simpler than the intermediate expressions produced during the calculation. Finite-field
techniques present a fruitful means to harness this observation. Finite fields have long
been studied by mathematicians, are well-known in the field of computer algebra [34],
and have been recently popularised in particle physics by a number of works [35–39].
In this section we will introduce finite fields and explain how they can be employed in
our calculations.
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The prime field11 Fp consists of the set {0, 1, 2, . . . , p − 1} equipped with the four
elementary arithmetic operations: addition, subtraction, multiplication, and division,
all of which are performed modulo p, a prime number defining the field. Addition,
subtraction, and multiplication modulo p are easily understood. Division is the inverse
of multiplication: for example in F7 we have 2 ÷ 5 ≡ 6 (mod 7) because 5 ∗ 6 ≡ 2
(mod 7). The result of division modulo p is uniquely defined (as long as p is a prime
number) and can easily be computed using the Extended Euclidean Algorithm. Just
as with the fields of real and complex numbers, division by zero is undefined in a finite
field.

Given a prime number p, any rational number x whose denominator is not a multiple
of p can be uniquely mapped onto an element x̃ ∈ Fp. To do so, we write x = a/b

(with a, b ∈ Z s.t. p ∤ b) and then define x̃ = (a mod p) ÷ (b mod p), where the symbol
‘÷’ indicates division in Fp. Conversely, given x̃, it is possible to uniquely reconstruct x

(again using the Extended Euclidean Algorithm), provided that |a| and |b| are known
to be bounded from above by amax and bmax respectively, with 2amaxbmax < p. If the
value of x̃ is known in several prime fields Fp1 ,Fp2 , . . . ,Fpn then a looser bound suffices:
2amaxbmax < p1p2 . . . pn.

When working with univariate polynomials over the real numbers, it is well known
that a polynomial of degree n can be interpolated by sampling its value at n + 1
points. The same is true for polynomials over a prime field. This can be generalised
to multi-variate polynomials and there exist a number of algorithms for performing
the reconstruction of multi-variate polynomials (as well as rational functions) in finite
fields. In Section 4.3.2 of Chapter 4, we will present an efficient method that allows a
polynomial of degree N to be interpolated in O (N log N) time, which is significantly
better than the standard O (N2) or O (N3) scaling.

Calculations of amplitudes, as we will see in Chapter 4, produce either rational
functions of kinematic variables, or irrational functions whose coefficients are rational
functions. Rather than performing the full calculation symbolically, one can use finite
fields to perform the calculation at a large number of numerical points and then use
rational reconstruction and interpolation to obtain the final answer symbolically. The
numerical calculations are fast, even at intermediate stages of the calculation, since
all finite-field variables are restricted to lie in the discrete set {0, 1, 2, . . . , p − 1} and

11In general, a finite field Fpk can be defined for any prime number p and positive integer k. Finite
fields with k > 1 find use in many areas including number theory, Galois theory, and cryptography,
but they have yet to be applied to the problems of interest in particle physics. In this thesis we will
restrict ourselves to prime fields, i.e. finite fields with k = 1.
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so they remain bounded in size throughout the calculation. Unlike floating-point
calculations, finite-field calculations have no rounding errors and therefore produce
exact answers. The number of numerical evaluations required depends only on the
complexity of the final result; it is independent of the complexity of the intermediate
results. In Section 4.3 of Chapter 4, we will develop an automated framework that
uses finite fields to calculate 2-loop 5-point massless amplitudes and we will apply it to
calculate the amplitude qq̄ → γγγ at 2 loops in the large-Nc limit of QCD.

1.11 Structure of this thesis

The rest of this thesis is organised in the following way. In Chapter 2, we will
discuss the theoretical uncertainties arising from the arbitrary choice of value for
the renormalisation scale, µR. In particular, we will examine the Brodsky-Lepage-
Mackenzie/Principle of Maximum Conformality (BLM/PMC) approach for removing
the ambiguity over the choice of µR and we will discuss the extent to which the method
reduces theoretical uncertainties in perturbative QCD predictions. In Chapter 3, we will
study Integration-By-Parts (IBP) identities, which are widely used when calculating
the myriad multi-loop integrals appearing in higher-order QCD calculations. We will
develop new techniques for solving IBP identities and apply them to the integrals
required to calculate the 2 → 3 processes that are at the frontier of higher-order QCD
calculations. The results are then used in Chapter 4 to perform the first-ever NNLO
QCD calculation for a 2 → 3 process: 3-photon production at the LHC.
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Chapter 2

Ambiguities of the BLM/PMC
renormalisation scale-setting
procedure

In any calculation in perturbative Quantum Chromodynamics (QCD) a choice
needs to be made for the unphysical renormalisation scale, µR. The Brodsky-
Lepage-Mackenzie/Principle of Maximum Conformality (BLM/PMC) scale-
setting procedure is one proposed method for selecting this ambiguous scale. In
this chapter, we identify three ambiguities in the BLM/PMC procedure itself.
Their numerical impact is studied using the example of the total cross-section for
tt̄ production through Next-to-Next-to-Leading Order in QCD. One ambiguity
is the arbitrary choice of the value of the highest-order PMC scale. The numeri-
cal impact of this choice on the BLM/PMC prediction for the cross-section is
found to be comparable to the impact of the choice of µR in the conventional
scale-setting approach. Another ambiguity relates to the definitions of the other
PMC scales and is similarly found to have a large impact on the cross-section.

Declaration

This chapter is based on the paper [1], which I wrote jointly with A. Mitov. Section 2.2
of this chapter is based on the Part III Project Report that I submitted as part of my
MSci degree at the University of Cambridge in 2016.
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Ambiguities of the BLM/PMC scale-setting procedure

2.1 Introduction

When performing calculations in Quantum Chromodynamics (QCD), any partonic
observable ρ is usually calculated as a perturbative series in the strong coupling constant
αS:

ρ =
∑

n

cn(µR)
(

αS(µR)
4π

)n

. (2.1)

The renormalisation scale µR is an arbitrary parameter which enters this equation
following renormalisation, as discussed in Section 1.3 of Chapter 1. Formally, when
working to all orders in αS, the µR-dependence of the coefficients cn exactly compensates
that of αS so that ρ is independent of µR. In practice, however, the perturbative series
is truncated beyond some finite order, N , and this causes ρ to become µR-dependent.

Conventionally, in processes with a single hard scale Q, one chooses µR = Q on
dimensional grounds.1 The value of µR is then varied in a range [Q/2, 2Q] and the
resulting variation in the value of ρ is taken to be representative of the error which
arises from omitting the O

(
αN+1

S

)
terms from Equation 2.1. While the choice of this

variation range is a matter of convention, its adequacy is justified a posteriori by
higher-order calculations.

The Brodsky-Lepage-Mackenzie/Principle of Maximum Conformality (BLM/PMC)
method [58–60] has been proposed as a way of removing the renormalisation scale
ambiguity. The method is based on an appealing physical motivation and, as explained
in Section 2.2, it algorithmically prescribes a “correct” value for the scale µR. The
method has been applied to a number of processes including Higgs production [61], me-
son production [62–65], pion form factors [66, 67], b-physics [68, 69], and tt̄ production
[70–75]. Some possible generalisations of the BLM/PMC method have been discussed
in Refs. [76–80].

In this chapter we address the following question: are there any ambiguities associ-
ated with the BLM/PMC method and what is their numerical impact?

Since scale variations are usually interpreted as representing theory uncertainties, the
BLM/PMC method might appear to eliminate uncertainties in theoretical predictions.
In Sections 2.2 and 2.4, we will discuss the extent to which this is true.

1Although not essential for the goals of the present work, we would like to mention that more
refined arguments for choosing this scale have been given in the literature [40–57]. Such arguments
tend to modify the choice µR = Q by a factor of O(1) and are especially relevant for observables with
several kinematic scales.
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In order to keep our discussion less abstract we will consider the process of top-pair
production at hadron colliders, which is well-suited for this study given that it is
fully known through NNLO, has generic kinematics and colour structure, and is very
precisely measured. The application of the BLM/PMC method to this process has
been extensively studied [70–75]. We expect that many of our findings transcend this
particular process.

2.2 The BLM/PMC procedure at NNLO

One applies the BLM/PMC method to a partonic observable ρ like the one in Equa-
tion 2.1. If this is a hadron collider observable, as we will be considering here, then
two qualifications are required.

Firstly, in order to construct the proper hadron-level observable, Equation 2.1
needs to be convolved with parton distribution functions (PDFs) and summed over
all possible initial partonic states. Such partonic observables are not uniquely defined
since they depend on the scheme used to subtract collinear singularities; we will not be
concerned with this here and will assume a given factorisation scheme (the MS scheme
is standard).

Secondly, the perturbative coefficients cn also depend on the unphysical factorisation
scale µF , which separates the long-distance physics absorbed into the PDFs from the
short-distance physics in the perturbative coefficients cn. The BLM/PMC method
does not prescribe a value for µF . In this chapter we will focus exclusively on the scale
µR and will fix the factorisation scale at some standard value, as was also done in the
previous BLM/PMC work on the subject [70–75]. For the total top-pair cross-section
this is µF = mt (although a smaller value µF = mt/2 may be more appropriate [55]).
In the following we will suppress the explicit dependence of the coefficients cn and the
observable ρ on the partonic channel and factorisation scale.

The idea behind the BLM/PMC method is to first identify the terms proportional
to the QCD β-function coefficients βi inside the partonic coefficients cn and absorb
them into the running coupling by making a suitable choice for the renormalisation
scale µR.

At Next-to-Leading Order (NLO) in QCD, one can use the BLM method [58] and,
for any given process, uniquely fix the value of µR by requiring the LO and NLO
perturbative coefficients cn to be independent of βi. As it turns out, however, beyond
NLO one cannot absorb all βi coefficients into the running coupling with a single
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choice of scale. The PMC method [81] extends the BLM idea to higher-order QCD
calculations by using a different value for the renormalisation scale at each order in αS.
After such a choice the partonic observable ρ in Equation 2.1 takes the form:

ρ =
∑

n

c̃n

(
αS(qn)

4π

)n

, (2.2)

for some new coefficients c̃n and scales qn. These new scales and coefficients are chosen
by requiring that

1. the coefficients c̃n are independent of βi , and

2. Equations 2.1 and 2.2 agree through order αN
S .

It is convenient to express the coefficients cn in Equation 2.1 through a new set of
βi-independent coefficients sn,k(µR). As mentioned above, in the rest of this paper we
will specialize our discussion to the inclusive cross-section for top-quark pair production.
This means that the sum in Equations 2.1 and 2.2 goes from n = 2 (the LO term)
through n = N = 4 (the NNLO term). In this context the coefficients sn,k(µR) are
defined by means of the following implicit equations:

c2 = s2,0 ,

c3 = s3,0 + 2s3,1β0 ,

c4 = s4,0 + 2s3,1β1 + 3s4,1β0 + 3s4,2β
2
0 . (2.3)

The µR-dependence of the coefficients sn,k follows from the requirement that ob-
servables are independent of µR. In particular, one finds that sn,0 have no dependence
on µR.

We remark on a practical aspect of the procedure outlined above. The βi depen-
dence is inferred from the known nf dependence of the cross-section by inverting the
dependence of βi on nf :

β0 = 11 − 2
3nf , β1 = 102 − 38

3 nf . (2.4)

The above procedure requires the exclusion of nf contributions from light-by-light type
of diagrams that are not associated with coupling renormalisation. In the process at
hand, no light-by-light contribution is present in the qq̄-initiated contribution. The
gg-initiated contribution does contain such diagrams at NNLO but these contributions
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2.2 The BLM/PMC procedure at NNLO

have not been separated in the existing literature. We thus neglect to separate them
in this work. To the best of our knowledge they have likewise not been separately
accounted for in the previous applications of the BLM/PMC method to top-quark pair
production.

The authors of the BLM/PMC method [81] define the PMC coefficients c̃n and
scales qn in the following way:

c̃n = sn,0 , (2.5)

log
(

q2
2

µ2
0

)
= −s3,1

s2,0
+ 3

2

(s3,1

s2,0

)2

− s4,2

s2,0

 β0
αS(µ∗)

4π
, (2.6)

log
(

q2
3

µ2
0

)
= −s4,1

s3,0
, (2.7)

where sn,k = sn,k(µ0).
Two new scales, µ0 and µ∗, appear in Equations 2.6 and 2.7. The µ0-dependence of

Equations 2.6 and 2.7 is purely formal: it can be shown that the scales q2 and q3 are
completely independent of µ0. In other words, the µ0 dependence of the functions sn,k

is such that all µ0 dependence in Equations 2.6 and 2.7 cancels between the two sides
of those equations. Equation 2.6 also depends on the scale µ∗, whose value is arbitrary.
This is so since a change in µ∗ only affects the relation cn ↔ c̃n with terms beyond
NNLO.

One can use Equation 1.29 to verify that the scales q2 and q3 as defined in Equa-
tions 2.5 and 2.6 satisfy the above-stated requirement that Equations 2.1 and 2.2 agree
through order αN

S .
The term in the square bracket in Equation 2.6 vanishes for observables that respect

the so-called large-β0 approximation. As follows from Refs. [82–85] this is not the case
for top-quark pair production. In the qq̄ partonic reaction (introduced in Section 2.3
below) the square bracket term is a pure number (see the related discussion in Ref. [86])
while the corresponding result for the gg reaction is only known as a precise numeric
fit [85], rather than analytically.

Following Ref. [71], one also needs to subtract the so-called “Coulomb” terms
from all functions sn,k that enter Equations 2.6 and 2.7 for all partonic reactions that
contain such terms. The subtraction procedure of the Coulomb terms in top-quark
pair production is explained in detail in Section 2.3 below.

Clearly the choice of the scale µ∗ does have an impact on the values of the scales qn

and this represents one ambiguity in the PMC procedure. We find its numerical impact
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Ambiguities of the BLM/PMC scale-setting procedure

to be small and we suspect it is responsible for the very small “initial renormalisation
scale dependence” reported in Ref. [72]. When presenting numerical results in Section
2.4, we will therefore focus on two other ambiguities, which we will now describe and
whose numerical impact is larger.

We note that the PMC scales qn defined above are not the only way to absorb the
βi-dependence of the coefficients cn into the running coupling. For example, one could
modify Equations 2.6 and 2.7 by defining an alternative set of scales q′

n:

log
(

q′2
2

µ2
R

)
= −s3,1

s2,0
, (2.8)

log
(

q′2
3

µ2
R

)
= −s4,1

s3,0
+ s2,0

s3,0

(s3,1

s2,0

)2

− s4,2

s2,0

 β0 , (2.9)

which have the advantage of not containing the arbitrary scale µ∗. As before, one can
use Equation 1.29 to verify that the scales q′

n satisfy the requirement that Equations 2.1
and 2.2 agree through order αN

S . Clearly, the choice of whether to work with the scales
qn or q′

n represents a second ambiguity in the application of the PMC procedure.2 In
what follows, we carry out our calculations using the original scales qn as well as the
alternative scales q′

n and explore the numerical difference between the two.
The last PMC scale, q4, which appears at NNLO remains arbitrary at this order.

Its fixing requires the knowledge of the βi-dependent terms in the N3LO coefficient
functions for tt̄ production. These are not available at present. The arbitrariness of the
scale q4 represents the third, and most significant, ambiguity which we have identified
in the PMC procedure. In Ref. [81], the choice is made to set it equal to the previous
known scale, q3. While this is a plausible choice, we are not aware of a motivation in
its favour. In what follows, in order to illustrate the significance of this ambiguity, we
explore two choices: q4 = q3 and q4 = mt, where mt is the (pole) mass of the top quark.

We wish to make one remark on the subject of theoretical uncertainties. The
BLM/PMC framework asserts that there is a unique “correct” way of choosing the
renormalisation scale, and that one should not try to estimate theoretical uncertainties
by varying this scale in the manner described in Section 2.1. Nevertheless, we emphasise
that the “renormalisation-scale uncertainty” conventionally quoted in perturbative
QCD predictions is only a proxy for the error arising from the truncation of the sum in
Equation 2.1. Prescribing a procedure to choose µR may remove the way to estimate

2Arguments in favour of using qn have been given in Ref. [81].
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this error but it cannot remove the error itself, even in the absence of any ambiguities
in the scale-setting procedure.3

2.3 Details about the implementation

All partonic contributions to the total inclusive NNLO cross-section for tt̄ produc-
tion have been calculated in Refs. [82–85], keeping their nf -dependence explicit. As
explained above Equation 2.4, we convert this nf -dependence into a dependence on
the coefficients βi. The factorisation scale is set to mt in all partonic reactions. The
value of the renormalisation scale for each partonic reaction is different, according to
what is prescribed for it by the PMC approach. In fact we apply the PMC procedure
only to the two dominant partonic channels gg → tt̄ + X and qq̄ → tt̄ + X. All other
contributing partonic reactions are included, as appropriate, only in the predictions for
the complete hadron-level cross-section. For these sub-dominant channels, the standard
choice µR = µF = mt is made.

In addition to depending on µR and µF , the partonic cross-section coefficients cn

also depend on mt and the partonic centre-of-mass energy ŝ through the following
variable:

v =
√

1 − 4m2
t /ŝ . (2.10)

As mentioned in the previous section, in order to derive the PMC scales q2, q3 (or
q′

2, q′
3), in each of the qq̄ and gg partonic reactions we first subtract the “Coulomb”

terms from the functions s3,0 and s4,1. The explicit expressions for these Coulomb
terms can be found in Ref. [87]. The Coulomb terms in the function s4,0 are not
subtracted since they do not enter the scales q2 and q3 (nor q′

2 and q′
3) through NNLO.

The Coulomb terms are identified as the terms proportional to 1/v or log(v)/v in
the series expansion of the functions s3,0/v and s4,1/v around v = 0. The subtracted
Coulomb contributions include terms ∼ log (µR), as appropriate.

We only apply PMC scale-setting to the part of the partonic cross-section remaining
after the subtraction of the Coulomb terms. The Coulomb terms are then added back.
Since they constitute only a small part of the partonic cross-section, we do not apply
the PMC procedure to the Coulomb terms themselves.

3In principle, a scale-setting procedure could improve the convergence of a perturbative series. As
we will see in Section 2.4, there is no such improvement for this particular procedure and process.
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Ambiguities of the BLM/PMC scale-setting procedure

The reason for the separate treatment of the Coulomb terms is that at sufficiently
high orders, the integrability of the cross-section requires their factorisation into a
toponium-like wave-function. A detailed analysis can be found in Ref. [88].

We find that the subtraction of the Coulomb terms has a large impact on the PMC
scales q2 and q3: in fact, failure to subtract the Coulomb terms leads to q3 ≪ ΛQCD

and hence a divergent cross-section.
Finally, in our numerical predictions for the hadronic tt̄ cross-section we use the

PDF set NNPDF3.1 [13] and we set mt = 173.3 GeV. We have verified that the PDF
set CT14 [89] produces similar results to those shown here. We base our numerical
calculations on a modified version of the program Top++ [90].

2.4 Results and Discussion

2.4.1 PMC scales for gg and qq̄ channels

Applying the formulae from Section 2.2, we now derive the PMC scales for the gg

and qq̄ channels. We remind the reader that these scales depend on the parton level
kinematics (through the variable v for the case of the inclusive tt̄ cross-section) but
are independent of PDFs and, by extension, of the type of collider (pp versus pp̄) or
collider energy. The results are shown in Figs. 2.1 and 2.2 for, respectively, the gg and
qq̄ channels.

For the qq̄ channel (Fig. 2.2), it is interesting to observe that in the kinematic
region v ∈ [0.7, 0.8], the scale q3 reaches values as low as 4.6 GeV. In fact, without the
Coulomb subtraction procedure outlined in Section 2.3, q3 takes values below 10−10

GeV in this kinematic region. Similar singularities have previously been found when
applying BLM scale-setting in vector meson production [64]. Since the separation of
the Coulomb terms is motivated by the physics of tt̄ production in the kinematic limit
v → 0, it is surprising that their treatment should so strongly affect the behaviour of
the PMC scales in the region v ∈ [0.7, 0.8].

2.4.2 Cross-sections for tt̄ production at LHC13 and Tevatron

Having derived the PMC scales for the gg and qq̄ channels, we will now calculate hadron-
level cross sections at the 13 TeV LHC and also at the Tevatron. For each collider,
we will compare the results from PMC scale-setting to those from the conventional
approach (µR = mt). For the latter, uncertainties are computed by varying µR in the
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Fig. 2.1 The PMC scales q2, q′
2, q3, q′

3 for the gg channel as functions of the relative
velocity of the final-state top quarks.

range (mt/2, 2mt).4 We remind the reader that throughout this chapter we have fixed
µF = mt.

In this section, we use the “standard” choice of PMC scales, i.e. the scales q2 and
q3 as defined in Equations 2.6 and 2.7, and setting q4 = q3. The effect of alternative
choices will be explored in Section 2.4.3.

At the 13 TeV LHC, using the BLM/PMC method, we obtain the following
prediction for the total hadron-level cross-section for pp → tt̄ + X:

σBLM/PMC = 813 pb . (2.11)

For comparison, the predicted cross-section using conventional scale-setting is:

σConventional = 794+28
−39 pb , (2.12)

4No numerical estimate is made for the theoretical uncertainty in the BLM/PMC predictions, as
explained at the end of Section 2.2.
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Fig. 2.2 As in Fig. 2.1 but for the qq̄ channel.

Table 2.1 Contribution of the qq̄ and gg channels to σpp→tt̄+X at the 13 TeV LHC at
each order in αs.

qq̄ channel gg channel
PMC Conv. PMC Conv.

α2
s [pb] 62.4 68.5 405.7 406.9

α3
s [pb] 41.7 8.5 256.4 220.8

α4
s [pb] −32.3 4.7 76.4 81.5

NNLO [pb] 71.8 81.8+1.9
−2.2 738.4 709.2+28.1

−37.2

and the most recent precise experimentally-measured values from ATLAS [91] and
CMS [92] are:

σATLAS = 818 ± 8 ± 27 ± 19 ± 12 pb , (2.13)
σCMS = 803 ± 2 ± 25 ± 20 pb . (2.14)

At the Tevatron, we find the following BLM/PMC prediction for the total pp̄ →
tt̄ + X cross-section:

σBLM/PMC = 6.48 pb . (2.15)
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Table 2.2 As in Table 2.1 but for σpp̄→tt̄+X at the Tevatron.

qq̄ channel gg channel
PMC Conv. PMC Conv.

α2
s [pb] 4.55 4.89 0.39 0.39

α3
s [pb] 3.31 0.96 0.41 0.33

α4
s [pb] −2.24 0.42 0.19 0.18

NNLO [pb] 5.62 6.27+0.16
−0.20 0.98 0.91+0.07

−0.07

For comparison, the cross-section using conventional scale-setting is:

σConventional = 7.06+0.21
−0.25 pb , (2.16)

and the experimentally-measured value [93] is:

σExperimental = 7.60 ± 0.41 pb . (2.17)

To examine the origin of these values, the contributions of the two dominant
partonic channels (gg and qq̄) to these cross-sections are shown in Table 2.1 for the
LHC and Table 2.2 for the Tevatron. In each case, a breakdown is provided, showing
the contributions from each power of αS.

In both tables it can be seen that the BLM/PMC procedure leads to a slower
convergence than in conventional scale-setting. Similar behaviour has previously been
discussed in Refs. [76, 94, 95].

2.4.3 Effect of ambiguities

We next explore the effects of the ambiguities in the BLM/PMC procedure which were
outlined in Section 2.2. In order to do so, we recompute the above cross-sections using
a variety of choices for the PMC scales (q2, q3, q4):

1. (q2, q3, q3) Firstly, we restate the results using the “standard” choice of PMC
scales which were used in the previous section.

2. (q2, q3, mt) Secondly, we study the numerical impact of the arbitrary choice of
the scale q4 by setting q4 = mt rather than q4 = q3.

3. (q′
2, q′

3, q′
3) Thirdly, we explore the other main ambiguity discussed in Section 2.2,

by using the scales q′
n rather than qn.
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Table 2.3 The gg channel’s contribution to the LHC13 cross–section for various PMC
scale choices.

PMC Conv.
(q2, q3, q3) (q2, q3, mt) (q′

2, q′
3, q′

3) mt

α2
s [pb] 405.7 405.7 405.4 406.9

α3
s [pb] 256.4 256.4 256.7 220.8

α4
s [pb] 76.4 53.8 76.4 81.5

NNLO [pb] 738.4 715.9 738.5 709.2+28.1
−37.2

Table 2.4 As in Table 2.3 but for the qq̄ channel.

PMC Conv.
(q2, q3, q3) (q2, q3, mt) (q′

2, q′
3, q′

3) mt

α2
s [pb] 62.4 62.4 65.1 68.5

α3
s [pb] 41.7 41.7 28.4 8.5

α4
s [pb] −32.3 −5.2 −14.8 4.7

NNLO [pb] 71.8 98.9 78.7 81.8+1.9
−2.2

4. (mt) For the purposes of comparison, we also present the results using the
conventional choice µR = mt.

The contribution of the gg channel to the 13 TeV LHC cross-section, as predicted
by each of these choices of scales, is shown in Table 2.3. Similarly, the contribution
of the qq̄ channel is shown in Table 2.4. The total cross-section, incorporating the
contributions from all partonic channels, is shown in Table 2.5, where alongside the
LHC results, we also provide results for the Tevatron.

The ambiguity over whether to choose the scales qn or the scales q′
n has effects that

vary in size between partonic channels. In the gg channel, where q′
n ≈ qn (see Fig. 2.1),

the scales q′
n produce similar results to the scales qn, as can be seen in Table 2.3. In

Table 2.5 Total hadronic cross-section (including all partonic channels) through
NNLO.

LHC13 Tevatron
σPMC[q2, q3, q3] 813 6.48
σPMC[q2, q3, mt] 818 8.30
σPMC[q′

2, q′
3, q′

3] 820 6.97
σConventional[mt] 794+28

−39 7.06+0.21
−0.25

σExperimental
818 ± 36 [atlas]
803 ± 32 [cms]

7.60 ± 0.41
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the qq̄ channel, however, the scales q′
n differ more substantially from qn (see Fig. 2.2)

and the impact on the cross-section is therefore larger, as shown in Table 2.4. The
effect of this ambiguity on the overall cross-section, shown in Table 2.5, is therefore
more significant at the Tevatron (where the qq̄ channel dominates) than at the LHC
(where the gg channel dominates).

The ambiguity over the choice of q4 has a large impact on the value of the cross-
section in both of the dominant partonic channels (see Tables 2.3 and 2.4). We note that
the numerical impact of the choice of q4 on the BLM/PMC predictions is comparable to
that of the choice of µR on the conventional predictions. When the contributions from
all partonic channels are combined into a hadron-level cross-section (Table 2.5), the
effect of the q4 ambiguity somewhat cancels between channels in the LHC cross-section,
but is significantly larger in the Tevatron cross-section. In principle, the BLM/PMC
method does prescribe a value for q4, but it requires information from the currently
unknown N3LO cross-section. Note, however, that a new arbitrary scale, q5, would
appear at N3LO — any calculation using the BLM/PMC method will always involve
one arbitrary scale.

2.4.4 Comparison of strategies to handle the q4 ambiguity

It was found in the previous section that the ambiguity over the highest-order scale,
q4, has a significant impact on the prediction for the cross-section. In the literature
describing the BLM/PMC method, it is suggested [59, 81] that the ambiguity could
have been resolved if we had information from the next perturbative order in αS. In
this section, we will explore 4 ways of handling the ambiguity over the highest-order
scale, including the suggested approach of “peeking” at the next perturbative order.
We choose to work with the NLO cross-section, allowing us the possibility to “peek” at
the NNLO cross-section when setting the PMC scales.

Only 2 scales appear in the NLO cross-section: q2 and q3. At this order in
perturbation theory, q3 is arbitrary since it relies on information appearing in the
NNLO cross-section (see Equations 2.7 and 2.9). We will calculate the NLO cross-
section while exploring the following possible choices for the PMC scales (q2, q3):

1. (q′
2, q′

2) Of the PMC scales defined in Section 2.2, the only one that does not
require information from the NNLO calculation is the scale q′

2 (see Equation 2.8).
(In fact, q′

2 was the scale prescribed in the original BLM paper [58].) Hence, one
option is to set both PMC scales to be q′

2.
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Table 2.6 The gg channel’s contribution to the LHC13 cross–section at NLO using
various scale choices

PMC Conv.
(q′

2, q′
2) (q′

2, mt) (q′
2, q′

3) (q2, q3) mt

α2
s [pb] 405.4 405.4 405.4 405.7 406.9

α3
s [pb] 221.3 222.3 256.7 256.4 220.8

NLO [pb] 626.7 627.7 662.1 662.1 627.7+67.6
−63.6

Table 2.7 As in Table 2.6 but for the qq̄ channel.

PMC Conv.
(q′

2, q′
2) (q′

2, mt) (q′
2, q′

3) (q2, q3) mt

α2
s [pb] 65.1 65.1 65.1 62.4 68.5

α3
s [pb] 11.2 12.2 28.4 41.7 8.5

NLO [pb] 76.3 77.2 93.5 104.1 77.0+1.3
−3.9

2. (q′
2, mt) To explore the impact of the arbitrary scale q3 without relying on any

NNLO information, we can set q3 = mt and compare against the results of the
previous scale choice.

3. (q′
2, q′

3) If we allow ourselves to peek at the NNLO cross-section, we can use the
full NNLO PMC scales q′

2 and q′
3 defined in Equations 2.8 and 2.9.

4. (q2, q3) Alternatively, again peeking at the NNLO cross-section, we could choose
to use the scales qn (defined in Equations 2.6 and 2.7) rather than q′

n.

The resulting contributions of the gg and qq̄ channels to the LHC cross-section are
shown in Tables 2.6 and 2.7 respectively. The total NLO cross-section, incorporating
the contributions from all partonic channels, is shown in Table 2.8, where alongside
the LHC results, we also provide results for the Tevatron.

Comparing the choices (q′
2, q′

2), (q′
2, mt), and (q′

2, q′
3), one sees that the numerical

impact of the choice of q3 on the PMC prediction can be similar to the impact of the
choice of µR on the conventional prediction. This is analogous to the findings of the
previous section in relation to the q4 ambiguity at NNLO.

We note that the scale choices (q′
2, q′

2) and (q′
2, mt) — obtained using only information

available at NLO — lead to very different cross-sections compared to the scale choices
(q′

2, q′
3) and (q2, q3), which were obtained by peeking at the next perturbative order.

In other words, when handling the ambiguous highest-order PMC scale, the two
approaches appearing in the literature (to either use an existing PMC scale or instead
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Table 2.8 Total hadronic cross-section (including all partonic channels) through NLO.
For NNLO, see Table 2.5.

LHC13 Tevatron
σPMC[q′

2, q′
2] 709 6.52

σPMC[q′
2, mt] 711 6.51

σPMC[q′
2, q′

3] 762 7.86
σPMC[q2, q3] 773 8.59
σConventional[mt] 711+71

−69 6.51+0.30
−0.44

σExperimental
818 ± 36 [atlas]
803 ± 32 [cms]

7.60 ± 0.41

peek at the next perturbative order) yield very different results to one another, as
well as to other plausible choices for this scale. The arbitrary choice of a value for the
highest-order PMC scale thus remains an open problem.

2.5 Conclusions

The BLM/PMC procedure is a proposed method for eliminating the renormalisation
scale ambiguity in perturbative QCD. In this chapter, we have presented three ambigu-
ities in the BLM/PMC procedure itself. We have studied these ambiguities using the
example of tt̄ production at NNLO in QCD and have found two of the ambiguities to
have a significant numerical impact on the computed cross-sections.

One of these ambiguities lies in the definition of the PMC scales qn: we give an
example of an alternative set of scales, q′

n, which satisfy the PMC requirement that
terms proportional to the QCD β-function coefficients are to be absorbed into the
running coupling. The other ambiguity arises because in any calculation employing the
BLM/PMC scale-setting procedure, the highest-order scale (in this case, q4) remains
arbitrary. We find the numerical impact of each of these ambiguities to be comparable
to the impact of the choice of µR in the conventional scale-setting approach.

In the existing literature on the BLM/PMC method, it is asserted that the q4

ambiguity could in principle be resolved using information from even higher perturbative
orders, and that it should otherwise by handled by using an existing PMC scale. We
find that the cross-sections arising within these two approaches can differ markedly
from one another, as well as from the cross-sections arising from other plausible choices
for this scale.
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In summary, while the BLM/PMC procedure is well-motivated, it contains important
ambiguities with significant numerical impact on the predicted values for physical
observables. We also emphasise that even an unambiguous scale-setting prescription
would not remove the theoretical uncertainties in physical predictions, since these
uncertainties ultimately arise from missing higher orders in αS. We hope our work
will lead to an improved understanding of the problem of scale settings which, in turn,
should result in improved higher-order predictions for QCD processes.
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Chapter 3

IBPs for 2-loop 5-point massless
QCD amplitudes

In this chapter, we introduce a novel strategy for solving integration-by-parts
(IBP) identities, which are widely used in the computation of multi-loop QCD
amplitudes. We implement the strategy in an efficient C++ program and hence
solve the IBP identities needed for the computation of any planar 2-loop 5-point
massless amplitude in QCD. We also derive representative results for the most
complicated non-planar integral family.

Declaration

Sections 3.1 and 3.3 of this chapter are based on the paper [2], which I wrote in
collaboration with M. A. Lim and A. Mitov. The strategy described in Section 3.3
was conceived by A. Mitov. The design and implementation of the IBP-solving C++
program, described in Section 3.5, are my own.

3.1 Introduction

Multi-loop integrals are core ingredients in higher-order QCD calculations. These
integrals are used to evaluate multi-loop amplitudes, which provide virtual corrections
to processes in perturbative QCD. The evaluation of multi-loop integrals is often
the biggest bottleneck in the calculation of virtual QCD corrections. Since these
integrals can contain numerous divergences, a direct numerical evaluation is typically
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IBPs for 2-loop 5-point massless QCD amplitudes

not possible. Instead, calculations must to some extent be performed analytically, with
divergences usually being regulated with the help of dimensional regularisation. In this
chapter, we present our work on solving the integrals contributing to 2-loop 5-point
massless QCD amplitudes. We make use of integration-by-parts (IBP) identities, which
will be described shortly. We solve the IBP identities with the help of a novel strategy,
explained in Section 3.3, and an efficient C++ program which we describe in detail in
Section 3.5. The strategy and the C++ program are generic and we hope that they can
aid the solving of IBPs for other amplitudes beyond the 2-loop 5-point case considered
here. The results obtained in this chapter enabled the calculation of NNLO QCD
corrections to 3-photon production, which is the first NNLO QCD calculation for a
2 → 3 process and will be presented in Chapter 4.

The IBP approach [96, 97] has long been the method of choice for computing multi-
loop QCD amplitudes. The method has produced countless results; some recent reviews
can be found in Refs. [98, 99]. The IBP approach can be described in the following way.
A generic squared or suitably decomposed multi-loop UV-unrenormalised amplitude
can be written as

M =
N∑

i=1
fiIi . (3.1)

The above expression follows from a straightforward application of Feynman rules
applied to the process at hand and, if appropriate, after summation over spin and/or
colour. Throughout this work we assume that all divergences are regulated by working
in d = 4−2ϵ dimensions, as discussed in Section 1.6 of Chapter 1. The coefficients fi are
rational functions of kinematic invariants {x1, . . . , xK} and the space-time dimension,
while Ii are scalar Feynman integrals. The number N of such integrals tends to be very
large and grows quickly with the number of loops, legs, and parameters in the problem.

As will be explained in Section 3.2, the IBP approach makes it possible to express
the Feynman integrals Ii appearing in Equation 3.1 as linear combinations of a small
number of Feynman integrals Îm

Ii =
N̂∑

m=1
ci,mÎm . (3.2)

The integrals Îm are known as master integrals (or simply masters) and the coefficients
ci,m are rational functions of the kinematic invariants and the space-time dimension,
i.e. ci,m ∈ Q(x1, . . . , xK , d). Thus, in the language of Section 1.9, the integrals Ii and
the amplitude M lie in a vector space over Q(x1, . . . , xK , d), for which the master

36
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integrals Îm form a basis. We will denote this vector space V . The utility of the IBP
approach stems from the fact that the dimension of V is small: N̂ ≪ N . For example,
for the processes that we consider in this chapter, N̂ ∼ O(102) while N ∼ O(104).

Finally, substituting Equation 3.2 into Equation 3.1, one gets the desired minimal
form for the amplitude

M =
N̂∑

m=1
ĉmÎm , with ĉm =

N∑
i=1

ci,mfi . (3.3)

The evaluation of the bare amplitude M consists of two steps: firstly, solving
the IBP equations in order to derive the required set of coefficients ci,m appearing in
Equations 3.2 and 3.3, and secondly evaluating the master integrals Îm.

The subject of this chapter is the calculation of the coefficients ci,m. We note that
they are process-independent in the sense that they are the same for every massless
two-loop five-point amplitude. Their universality is one of the advantages of the IBP
method. All process-specific information is encoded into the coefficients fi, which are
comparatively easy to compute.

The master integrals (or basis vectors) Îm are also process-independent. We note
that in a vector space, the choice of a basis is not unique; moreover, it can happen that
two or more master integrals are linearly related to each other via discrete symmetries,
such as a permutation of the internal momenta. In the context of the IBP approach,
however, such masters have to be treated as independent basis vectors. In this chapter
we will not be concerned with the evaluation of the masters themselves, since that is a
separate problem, albeit a related one [100–107]. All planar master integrals relevant
for the present work were already known in analytic form [108].

The solving of the IBP identities in the past 20 years or so has been based on
the Laporta algorithm [109], which will be described in Section 3.2. Many computer
implementations of this algorithm exist [110–116]. Although the results are analytic in
the kinematic variables, they remain numeric in the powers of the propagators and
cannot, therefore, be expected to solve problems of arbitrary complexity. Experience
suggests that the evaluation of the massless two-loop five-point QCD amplitudes is
at the boundary of what is possible with the existing implementations of the Laporta
approach.

Many novel ideas for the solving of the IBP equations have been proposed in
the recent past [35, 117–122]. These new ideas and methods have made possible the
evaluation of specific/planar all-gluon five-point amplitudes [123–129] as well as some
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non-planar ones [130]. Ideas towards solving the IBP identities in abstract form have
also been put forward [131].

In this chapter we explore a different strategy for solving the IBP identities. We
implement this strategy in an efficient, custom-written C++ program and use it to solve
the IBP identities needed to compute the complete set of planar two-loop five-point
amplitudes in massless QCD (with quarks and/or gluons) in analytic form. We also
present new non-trivial non-planar results. Based on our findings, we expect that our
framework could be used to compute the remaining non-planar IBPs in analytic form
in a time frame of a few months on a cluster of a few hundred CPUs.

The rest of this chapter is organised in the following way. Section 3.2 explains the
origin of the IBP equations and discusses the standard (Laporta) algorithm used to
solve them. Section 3.3 presents our strategy for solving IBP systems. Section 3.4 lays
out the specifics of the 2-loop 5-point massless integrals to which we will be applying the
IBP-solving methods developed in this chapter. Section 3.5 describes the C++ program
written by the author of this thesis for solving IBP systems. Section 3.6 presents the
results obtained. Concluding remarks for this chapter are given in Section 3.7.

3.2 Background: IBPs and the Laporta algorithm

In this section, we will explain how the IBP equations are derived, after which we will
briefly discuss the standard method for solving these equations.

Let us start by introducing some notation. The index i labelling the integral Ii (in
Equations 3.1 and 3.2) is a composite index. It is natural to express it through the
powers of the propagators appearing in the corresponding integral. For example, for a
generic L-loop integral we have

Ii ≡ I(n1, . . . , nP ) =
∫

ddk1 . . . ddkL
1

Πn1
1 . . . ΠnP

P

. (3.4)

The functions Πj are called propagators and they are bilinear functions of the loop
momenta and external momenta. The explicit form of the propagators appearing
in 2-loop 5-point massless integrals will be given in Section 3.4. We note that the
indices nj are not restricted to taking positive values: they are also allowed to be
negative, causing the corresponding bilinears Πj to appear in the numerator of the
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3.2 Background: IBPs and the Laporta algorithm

integrand.1 When working with loop integrals where the numerator is a function of the
loop momenta (e.g. k2

1(k2 · p), where p is an external momentum), it is often helpful to
express these numerators as a linear combination of the bilinears {Πj}. Sometimes it is
necessary to enlarge the set {Πj} by introducing a few fictitious propagators in order
to obtain a full basis of bilinears through which any numerator can then by expressed.
These extra propagators only appear in the numerators of the integrals, and never
in the denominators. In the case of the B and C integral families discussed below
in Section 3.6, we introduce 3 extra propagators in each family to supplement the 8
propagators originally present.

IBP identities arise from the observation that given a set of propagators {Πj} and
a set of indices {nj}, we can write down the the following identity [96, 97]:

0 =
∫

ddk1 . . . ddkL
∂

∂kµ
l

(
vµ

Πn1
1 . . . ΠnP

P

)
, (3.5)

where l ∈ {1, . . . , L} and vµ is any linear combination of internal and external momenta.
This identity follows from the fundamental theorem of calculus together with the fact
that the surface term (which would normally appear on the left-hand side of the
identity) can always be neglected when working in dimensional regularisation.2 The
vanishing of the surface term is evident if ∑j nj is a sufficiently large positive number,
and can in fact be shown to hold for all nj ∈ C by treating the loop integrals as
functions of complex nj and analytically continuing in nj. Alternatively, Equation 3.5
can be seen as a consequence of the translational invariance of dimensionally-regularised
integrals: ∫

ddkl f(kµ
l ) =

∫
ddkl f(kµ

l + qµ) , (3.6)

where qµ can be an arbitrary constant momentum vector. Equation 3.5 contains the
derivative of a product, which can be expanded by repeatedly applying the standard
identity ∂(fg)

∂x
= ∂f

∂x
g + f ∂g

∂x
. The right-hand side of Equation 3.5 thus becomes a

linear combination of integrals, whose coefficients are polynomial functions of external
kinematic invariants3 {x1, . . . , xK} and the space-time dimension4. Thus, given any set

1Thus, negative indices correspond to numerator powers, whilst positive indices correspond to
denominator powers. Although at first sight somewhat confusing, this is the standard convention in
this field of research.

2Many of the manipulations performed here would be incorrect if performed on unregularised
integrals but are valid in dimensional regularisation where all divergent expressions are well-defined.

3Any internal momenta should, of course, remain inside the integral and can be re-expressed as a
linear combination of inverse propagators, as described earlier.

4Note that in dimensional regularisation, ∂kµ

∂kµ = δµ
µ = d.
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of indices {nj} (this set is known as a seed), any choice of vµ, and any choice of l, we
can write down a linear combination of integrals (with coefficients in Q[x1, . . . , xK , d])
that sums to zero. This is known as an IBP equation.

It is helpful to notice that differentiating an integrand (and then, if necessary,
re-expressing any resulting numerator as a linear combination of inverse propagators)
can never introduce new propagators into the denominator (although it may remove,
or change the power of, an existing propagator). This observation suggests a natural
ordering criterion for the integrals: those with fewer propagators in the denominator
are to be considered as being simpler than those with more propagators. In assessing
the complexity of an integral, one can furthermore check whether any denominators
appear with nj > 1 (we label such denominators as having nj − 1 dots), and also
compute the total numerator power. The number of propagators, number of dots, and
total numerator power thus provide three criteria for assessing the complexity of an
integral: in all three cases, a smaller number indicates a simpler integral. A partial
order can be defined on the integrals by considering these three criteria in the order
given (i.e. the number of propagators takes precedence over the number of dots, which
in turn takes precedence over the total numerator power).

For a given family of integrals (defined by the set {Πj}), an infinite number of
IBP equations can be written down by combining different choices of vµ, l, and seed.
The Laporta algorithm [109], which we will now describe, allows one to solve the IBP
equations for any specific, finite set of desired integrals. The first step in the algorithm
is to enumerate a set of seeds covering the desired integrals. Typically, this is done
by examining these integrals and identifying largest number of dots (dmax) and the
largest total numerator power (nmax). One then generates all possible seeds with up
to dmax dots and total numerator powers of up to nmax. These seeds are then used
together with Equation 3.5 to obtain a large system of IBP equations which are linear
in the integrals (although polynomial in the kinematic invariants and in d). Next, one
performs Gaussian elimination on this linear system. Gaussian elimination requires
one to select elements about which to pivot. The Laporta algorithm opts at each stage
to pivot about the most complicated integral (as defined by the above partial ordering)
present in an equation.5 This choice ensures that more “complicated” integrals in
an equation are always eliminated in favour of “simpler” ones. After the Gaussian

5Since we have a partial order rather than a total order, it is possible for two integrals to be found
to have the same complexity. We break ties, arbitrarily but deterministically, by directly treating
each of the indices {nj} as an additional measure of the complexity of an integral. (We consider these
indices one at a time, from left to right, until the tie is broken.)
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elimination has been performed, all the integrals of interest should6 be found to have
been expressed in terms of a small basis of so-called master integrals, which are “simple”
according to the partial ordering criteria described earlier.

The Laporta algorithm thus achieves the goal, stated in Equation 3.2, of writing
each of the desired integrals as a linear combination of master integrals, with coefficients
that are rational functions of the external kinematic invariants and the space-time
dimension. In the notation of Equation 3.4, we can now re-write Equation 3.2 in the
form

I(n1, . . . , nP ) =
N̂∑

m=1
cm(n1, . . . , nP )Îm . (3.7)

We note in passing that just like the index i, the index m is also a composite one and
in what follows we will sometimes use its explicit form.

It is important to emphasise that in practice, IBP systems are easy to generate but
very difficult to solve. The difficulty arises because although the IBP equations are linear
in the integrals, the coefficients of these integrals are polynomials in several variables.
Thus, whereas Gaussian elimination is ordinarily applied to matrices containing real
or complex numbers, in the case of IBP systems we apply Gaussian elimination to
a “matrix” whose entries are multi-variate rational functions. During the process of
solving the IBPs, these rational functions rapidly grow in size and complexity. This
complexity is the core reason for the computational bottleneck that IBP systems
produce in the solving of multi-loop amplitudes.

Finally, let us mention that one would ideally let the indices nj remain symbolic,
rather than enumerating an exhaustive list of seeds and solving a specific set of integrals.
Solving the IBP equations in this form would give so called closed-form solutions,
which are explicit functions not only of d and the kinematic invariants, but also of
the indices {nj}. Currently, such closed-form solutions are only known for the very
simplest families of integrals, and are far beyond reach for problems with many legs,
loops, and scales.

3.3 Strategy for solving the IBP identities

We will now present our strategy for solving IBP identities. Our starting point is
the assumption that the IBP system has a solution, i.e. every loop integral Ii can be

6If too restrictive a range of seeds is used (e.g. 0 dots and 1 numerator power), the system might
not get fully solved. If this occurs, one typically has to repeat the calculation with a larger range of
seeds.
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expressed through a set of basis master integrals as in Equation 3.2 and that such
a basis set of masters is known. The existence and construction of a finite basis of
master integrals is a well-studied problem [132–134]. It was proven in Ref. [135] that
the number of master integrals is always finite. There are several ways to construct
such a basis. For example, one could solve the IBP system over a restricted set of
integrals and/or use numerical values for the kinematic invariants. In any case, finding
a basis is not a bottleneck and we consider this step to be trivial. This is certainly
true for the two-loop five-point massless amplitudes considered here, where we have
easily identified the sets of masters for all topologies.

To solve the IBP identities means that for all required integrals {Ii}, one must
derive all the coefficients ci,m appearing in Equation 3.2 and Equation 3.7. In exist-
ing approaches for solving IBP identities, all of the coefficients ci,m are calculated
simultaneously. In this work we pursue a different strategy7 for their solving: we
choose a particular master, m̃, and calculate the coefficients Cm̃ ≡ {ci,m̃} of that master
independently of the coefficients of all other masters. We then repeat for each of the
other masters, in turn. Put differently, we split the problem of solving the system of
IBP equations into N̂ independent problems, one for each of the N̂ masters.

This strategy is implemented by constructing the usual set of IBP identities and
then taking coefficients with respect to the basis of master integrals. For example, in
order to derive {ci,1} – the coefficients of master Î1 – we would in principle impose
ci,m = 0 for all m ̸= 1 and for all i. In practice, we simply remove from the IBP
equations all master integrals except Î1. We then solve the resulting IBP equations,
obtaining a solution that is of the form

I(n1, . . . , nP ) = c1(n1, . . . , nP )Î1 , (3.8)

i.e. we obtain the coefficients c1(n1, . . . , nP ), which are the Î1-components of the full
solution. Repeating the same approach but imposing ci,m = 0 ∀m ̸= 2, one derives the
coefficients c2(n1, . . . , nP ) and so on. To obtain the complete solution of the IBP system,
one simply needs to put together all N̂ independently-derived sets of coefficients.

It is easy to see why this strategy leads to the correct solution of the IBP equations.
Its correctness follows from the fact that in any vector space, a vector can be written
uniquely as a vector superposition of a basis. This means each integral Ii has an

7Although the strategy presented here was new at the time this work was carried out, we note
that the program Kira implemented a similar feature around the same time, offering the option of
computing the coefficients of a subset of masters.
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expansion in the set of masters Îm, i.e. at each step the IBP equations could in
principle be rewritten as a homogeneous linear combination of all master integrals.
Since the IBP equations are themselves linear and homogeneous in terms of the integrals
Ii, one can see that the IBP equations never mix the coefficients of different master
integrals. In essence, our strategy exploits the fact that each of the sets Cm can be
computed in isolation from the others.

The IBP solving strategy described here is independent of the approach used for
solving the system of IBP equations. In practice, we will use the standard Laporta
algorithm but one does not have to. In fact, we arrived at this idea while trying to
find a way for solving the IBP system in closed form. We hope to return to this in a
future work.

We have checked the correctness of our strategy in a number of non-trivial examples,
such as the complete two-loop four-point amplitude (cross-checked with the program
Reduze [112, 113]) and a number of two-loop five-point planar and non-planar cases
as explained in detail in Section 3.6.

At this point it will be beneficial to contrast our strategy to the usual way of solving
IBP identities and to discuss the origin of increased efficiency. To this end we need to
introduce the notion of a sector which is well-known in the IBP literature.

A sector is effectively a sub-topology indexed by 0s and 1s and defined by the
position of a subset of propagators. (The terms propagator and topology will be defined
in Section 3.4.) For example, [1, 1, 1, 0, . . . , 0] represents a sector. In the notation of
Equation 3.4 this sector contains all integrals I(n1, . . . , nP ) for which n1,2,3 > 0 while
n4,...,P ≤ 0. The number of different propagators that define a sector is called its weight.
For example, the sector [1, 1, 1, 0, . . . , 0] is of weight 3. A sector is called a zero-sector
if all integrals that belong to it vanish. For the massless two-loop five-point amplitudes,
all sectors with weight < 3 are zero-sectors and some sectors with weight ≥ 3 are also
zero-sectors.

Our strategy can lead to a more efficient solving of the IBP system for several
reasons. Firstly, when working with the coefficients of a single master, many sectors
become zero-sectors and thus do not need to be computed.

Secondly, restricting ourselves to the coefficients an individual master at the outset
of the calculation simplifies the intermediate steps. The reason is that, taking the
example of the Laporta algorithm, the IBP equations that will be solved first are
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generated from seeds that are in some sense close to the master integrals.8 In this way
the information about the absence of other masters is incorporated into the resulting
IBP equations early on in the solving process. In large systems with many masters, our
strategy could lead to a significant reduction in the size of the intermediate expressions.
This, in turn, would reduce the computer memory requirement that is the limiting
factor in solving large problems.

Thirdly, by solving with one master in a given computing job, one can parallelise
the problem by running several independent jobs (corresponding to different masters)
at the same time. The amount of parallelisation achieved depends primarily on the
number of master integrals in the integral family (or families) being solved. However,
one should keep in mind that, as we explain in Section 3.6, the running times for
different masters can be vastly different. In Section 3.5.3, an additional parallelisation
method will be described, which allows the IBPs associated with a single master to be
solved using large numbers of CPUs in parallel.

3.4 Application to 2-loop 5-point integrals

Although our IBP-solving strategy and C++ program are generic, we have applied them
in particular to the case of 2-loop 5-point massless integrals that contribute to NNLO
QCD corrections for several 2 → 3 processes. In this section, we will classify and briefly
describe these integrals.

We will use here the example of the squared two-loop amplitude M = ⟨A(2)|A(0)⟩ for
the process qq̄ → q′q̄′g, which is one of the processes contributing to 3-jet production.9

From the viewpoint of the IBPs it is representative of the other two-loop five-point
massless amplitudes.

The integrals appearing in M belong to several families. We label the non-planar
family B and the planar family C. Each family is defined by a set of 11 propagators,
shown in Table 3.1.

The momenta p1 and p2 are incoming while p3, p4 and p5 are outgoing. They satisfy
p1 + p2 = p3 + p4 + p5. We define Lorentz-invariant kinematic variables sij = (pi + pj)2.
For any integral in a family, the numerator and denominator will each be a product of

8Assuming that, as is usually the case, the masters are chosen with the help of the same ordering
criterion that is used to generate the seeds for solving the IBP equations.

9To identify the integrals appearing in this amplitude, we used the program Reduze [112, 113]
for the generation of the Feynman diagrams, for their squaring and for the summation over colour
and spin traces. Some of those calculations were sped up with the help of the program Form [136].
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Table 3.1 Propagators {Πj} defining the integral families B and C

j Π(B)
j Π(C)

j

1 k2
1 k2

1
2 k2

2 k2
2

3 (k1 + p1)2 (k1 + p1 + p2)2

4 (k1 + p1 + p2)2 (k1 − k2)2

5 (k2 − p3)2 (k2 + p1)2

6 (k2 − k1 − p3)2 (k2 + p1 + p2)2

7 (k2 − k1 − p1 − p2 + p4)2 (k2 − p3)2

8 (k2 + p4)2 (k1 + p1 + p2 − p3)2

9 (k2 + p1 + p2)2 (k1 + p1 + p2 − p3 − p4)2

10 (k2 + p1)2 (k2 − p3 − p4)2

11 (k1 + p3)2 (k1 + p1)2

the propagators shown. In each family, the 11 propagators form a complete basis of
bilinears that can be used to construct any other expression appearing in the numerator
of an integral. For example, k2 · p3 = 1

2k2
2 − 1

2(k2 − p3)2 since all particles are massless
here.

An integral family can be sub-divided into topologies. The denominator of any
integral will contain a subset of the propagators defining the integral family. A
topology10 groups together integrals whose denominators share propagators. As was
mentioned in Section 3.2, the identity (Equation 3.5) that generates the IBP equations
cannot generate new denominator propagators that are not already present in the
denominators of the seeds. One therefore generates a separate system of IBP equations
for each topology. We label the non-planar topologies as Bn and the planar topologies
as Cn, where the subscript n is a positive integer to distinguish the topologies within
in a family, while B and C refer to the families defined above.

There are two non-planar topologies (B1 and B2) and two planar topologies (C1

and C2), each having 8 propagators. The topologies are defined by their highest-weight
sectors:

B1 = B [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]
B2 = B [1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1]
C1 = C [1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0]
C2 = C [1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1] (3.9)

10The term topology here is unrelated to the branch of mathematics sharing the same name.
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Fig. 3.1 The integral topologies B1, B2, C1, and C2.

A diagrammatic representation is given in Fig. 3.1. All master integrals needed in the
computation of the two planar C topologies have been computed in analytic form [108]
within the approach of Ref. [137]. There also exists a numerical library [33] for the
evaluation of the C1 master integrals (albeit using a different basis of masters). Work
towards the remaining non-planar ones is ongoing [138, 139].

For each of the topologies in Equation 3.9, we have identified the master integrals.
We find 113 masters in B1, 75 in B2, 62 in C1, and 28 in C2. Their explicit definitions,
in the notation of Table 3.1 and Equation 3.9, can be found in an electronic file attached
to the paper [2]. Two of the masters in the C1 topology are equal, being related to
one another by the discrete permutation k1 ↔ k2, but for the purposes of the IBP
reduction using our strategy they must be treated as being distinct.

In order to compute the process qq̄ → q′q̄′g, one must solve the B1, B2, C1, and
C2 topologies up to the values of nmax and dmax shown in the Table 3.2. The same
range of integrals is required for the calculation of NNLO QCD corrections to 3-photon
production, which we present in Chapter 4. We believe this range is in fact sufficient
to allow the computation of any 2-loop 5-point massless QCD amplitude.
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Table 3.2 Ranges of integrals required for computing the squared 2-loop unpolarised
amplitude qq̄ → q′q̄′g

Topology nmax dmax

B1 4 1
B2 5 1
C1 5 1
C2 4 1

Prior to our work, solutions to the IBP equations were not available for the required
range of integrals shown in Table 3.2. A central result in this thesis is the analytical
solution to the IBPs for all Cn integrals within these required ranges. This allows
2-loop 5-point massless QCD amplitudes to be computed in the leading-colour (or
large Nc) approximation, where non-planar integrals (i.e. those in the Bn topologies)
do not contribute. The NNLO QCD corrections to 3-photon production at the LHC,
which we present in Chapter 4, are a direct example of the application of these results.
Of the Cn topologies, the most difficult to compute is C1, and in the next section
we will be using the C1 topology as a benchmark to measure the capability of the
computational strategies described there. In addition, we have obtained partial results
for the non-planar (Bn) topologies, whose difficulty surpasses even C1, and will report
on this work as part of Section 3.6.

3.5 Computational implementation

To solve the 2-loop 5-point massless IBPs that are the focus of this chapter required
going beyond the capabilities of publicly-available IBP programs [110–116]. To this
end, the author of this thesis designed and implemented a new IBP-solving program
incorporating a number of advanced features to maximise speed and minimise the use
of computational resources. In this section, these design features will be described in
detail. We note that although our program includes an implementation of the strategy
described in Section 3.3, the features that we present in this section are independent
of the strategy and could, if desired, be used independently of it.

As was mentioned above, throughout this section we will be using the C1 topology
of integrals, which contribute to the 2-loop amplitude for the process qq̄ → q′q̄′g, as a
benchmark problem in order to illustrate the performance impact of the computational
features that we describe.
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3.5.1 Computer algebra

Solving the IBP equations requires performing billions of arithmetic operations (addi-
tions, subtractions, multiplications, and divisions) on multi-variate polynomials and
rational functions. Such operations, which are performed symbolically rather than
numerically, are highly non-trivial to implement computationally and they constitute
a research area in their own right.

Initially we carried out some experimentation with writing algorithms to perform
these arithmetical operations. Additions on polynomials are simple to perform: two
polynomials, each of length N , can trivially be added in O (N) operations. Polynomial
multiplication was also easy to implement and can be carried out on two polynomials,
each of length N , in O (N2) operations by using the standard long-multiplication
method learned by schoolchildren.11 However, multi-variate polynomial division is
highly non-trivial to implement, since it requires a robust method for cancelling common
factors between the dividend and the divisor. This cancellation of common factors is
particularly important when working with rational functions rather than polynomials,
as we discovered with the first prototype of our IBP program: the prototype did not
implement the cancellation of common factors and when we tested it by solving a
simple one-loop example, we found the solved IBPs to contain kinematic variables with
exponents as high as 260. After cancelling common factors using Mathematica, the
corresponding exponents were found to be no larger than 3. This example demonstrates
that a powerful computer algebra system is indispensable when solving large systems
of IBPs symbolically.

In view of the the difficulties associated with implementing arithmetical operations
on multivariate polynomials and rational functions, we decided to use an external
computer algebra package, Fermat [140], which is a leader in this particular area and is
used by some of the public IBP programs [113, 115, 116]. Although Fermat is powerful,
its primary interface is designed for a human using it interactively via a terminal.
The existing IBP programs communicate with Fermat by simulating a human: each
polynomial operation is sent as a string, e.g. "(x^2 - y^2) * (x^2 + y^2)", and all
outputs are likewise received as strings, e.g. "x^4 - y^4". An alternative C-based
interface to Fermat exists that allows the direct manipulation of objects (polynomials
and rational functions) inside Fermat’s internal memory via pointers. We wrote
a custom set of C++ classes to interact with this alternative interface, in order to

11In fact, polynomial multiplication can elegantly be performed in O (N log(N)) operations by
using finite fields and Fast Fourier Transforms. We did not, however, implement this here.
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maximise speed while automating memory management (in order to avoid memory
leaks). These C++ classes represent multi-variable polynomials and rational functions
which can be added, subtracted, multiplied, and divided just like native C++ types such
as int and float, with the underlying operations being performed by Fermat. As a
result of careful optimisations, over 99% of the program’s running time can be spent
on computationally-expensive symbolic arithmetic operations (i.e. within Fermat,
which runs as a separate process), with our own code accounting for less than 1% of
the running time.12

The features described so far, combined with the strategy described in Section 3.3,
allowed us to solve all C1 integrals with up to 4 numerator powers (i.e. nmax = 4)
and 1 squared denominator (i.e. dmax = 1), with the slowest job (associated with C1

master 3) requiring 35 days on a single CPU and 113 GB of RAM.

3.5.2 Lazy evaluation

Although the features described in Section 3.5.1 enabled us to solve all C1 integrals
with up to 4 numerator powers and up to 1 squared denominator, this would not be
sufficient to solve our amplitudes of interest, where the most complicated integrals
have 5 numerator powers and 1 squared denominator. In this section we will describe
a lazy evaluation strategy that improved the running speed by an order of magnitude
and thus allowed us to solve the additional required integrals. The lazy evaluation
setup also laid the foundations for the parallelisation strategy which will be described
in Section 3.5.3.

As explained earlier, almost all of the running time of our IBP program is spent
on performing symbolic arithmetic operations on multi-variable rational functions,
using the Fermat library. Therefore, in order to achieve a further improvement in
speed without modifying the Fermat library itself, we sought to reduce the number of
arithmetic operations performed. Two observations provide clues as to how this could
be achieved:

1. Firstly, IBP systems typically contain many redundant equations. When perform-
ing Gaussian elimination, these equations acquire the form 0 = 0, but only after

12In order to solve the most difficult non-planar IBP systems, we run the parallelised version of our
program (described in Section 3.5.3) on High-Performance Computing facilities, where jobs are subject
to a time limit of 36 hours. Our jobs can require weeks or months of running and must therefore be
paused and resumed every 36 hours. On these machines, O (10%) of a job’s running time is spent on
this pausing/resuming procedure, but we accept this in view of the ∼ 100-fold speed increase offered
by the parallelisation.
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many substitutions that eventually lead to the cancellation of all terms in the
equation. Although these redundant equations can provide a useful verification
of the consistency of the IBP system (since an inconsistency will typically lead
to a contradictory result like 1 = 0), they represent unnecessary operations that
could in principle be eliminated from the outset, if one knows which equations
are redundant.13

2. Secondly, it is well-known that in a generic IBP system, many of the equations
will contain integrals that do not themselves appear in any amplitude. Although
these integrals are of no direct interest, the equations in which they appear are
often necessary in order to ensure that the IBP system has minimal rank, i.e. to
ensure that all of the integrals which are of interest get fully solved. Ideally, one
would like to avoid unnecessary auxiliary computations, while still performing all
of the computations that are needed to solve the integrals of interest.

In light of this, we adopted a so-called lazy evaluation approach, which is well known in
the field of computer science. In this approach, no computationally-expensive symbolic
arithmetic operations are performed until (and unless) they are required for producing
the final output of the program. Until then, the program maintains a network of
placeholder objects representing the unknown expressions and their interdependencies.
An example of such a network is shown in Fig. 3.2 and will be described shortly.

The IBP calculation has two stages, which we will refer to as the forwards stage
and the backwards stage. In the forwards stage, Gaussian elimination is used to solve
the IBP system, but all algebraic operations on rational functions are replaced by
computationally-cheap operations that merely manipulate the network of placeholder
objects. The IBP solutions produced during this stage are implicit (encoded in the
structure of the network), rather than explicit rational functions. Once the forwards
stage is complete, we identify the specific placeholder objects that are of interest:
those representing the solutions to the integrals we seek to solve. We then proceed to
the backwards stage, where we traverse the network and perform the minimal set of
algebraic operations needed to obtain explicit rational functions for expressions that
have been identified as being of interest. The majority of the running time is occupied

13We mention the presence of redundant equations because they were one of our motivations
for considering lazy evaluation. However, before we implemented lazy evaluation, we tried to use a
numerical run (solving the C1 IBPs in the range (nmax, dmax) = (4, 1), with the variables sij and d
replaced by numbers) in order to identify and remove all redundant equations. Surprisingly, although
40–50% of the IBP equations were found to be redundant, we obtained almost no performance gain
by removing them: the speed of solving the IBP equations was unchanged to within 1%.
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by the backwards stage, which can take many weeks, whereas the forwards stage takes
just a few hours.

An example of a network of lazily-evaluated expressions is shown in Fig. 3.2. The
network contains three types of expressions:

1. Symbolic variables, depicted in the figure as squares. There are 5 symbolic
variables: 4 kinematic variables14 (s23, s34, s45, s51) and the space-time dimension
d. All other expressions in the network are ultimately expressible in terms of
these 5 variables.

2. Immutable, unevaluated expressions, depicted in the figure as circles. These
constitute the bulk of the network. In the case of non-planar 2-loop 5-point
IBPs, the graph can contain up to O (109) such expressions. Each unevaluated
expression points to two other expressions, and also has a label to denote whether
it is the sum, difference, product, or quotient of the two expressions to which it
points.

3. Mutable expressions, depicted in the figure as stars. These are the expressions
that appear directly in the system of IBP equations.

The distinction between mutable and immutable expressions warrants further
explanation. During the forwards stage, where we perform Gaussian elimination on
the IBP system, the equations in the system will repeatedly be added on to each other
(in various linear combinations) until the system has been solved. The expressions in
the equations will, of course, therefore undergo many changes. If the expressions are
lazily evaluated, we must not only keep track of the current value of each expression
but also of all previous values of each expression. The following example operations
illustrate why this is the case.

1. q1 := s23 + s34

2. q2 := s34 − s45

3. q3 := q1 + q2

4. q1 := q2 + q3

14We have set s12 = 1 in order to improve the speed and performance of the calculation. The
missing factors of s12 in the final solutions can easily be restored using dimensional considerations.
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Fig. 3.2 Network of lazily-evaluated expressions. The stars in the top row represent
coefficients of the integrals in the IBP equations. The circles represent immutable,
unevaluated expressions. The squares on the bottom row represent the kinematic
variables sij and the space-time dimension d. The arrows emanating from an expression
identify the other expressions on which it directly depends.
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(b) After

Fig. 3.3 Modifying an expression (here, q1) in a lazy-evaluation network.

Here, qn are polynomials (in sij) which would constitute the coefficients of the integrals
in some system of IBP equations. In this example, q1 initially takes the value s23 + s34

and this is used to define q3 in step 3. In step 4, the value of q1 changes. If we were
explicitly performing the arithmetic operations during the course of the job, we would
only need to keep track of the current values of q1, q2, and q3. However, when using
lazy evaluation, our network of expressions must contain the current value of each
expression as well as all of its historical values, since one expression might depend on
a historical value of another expression. We therefore build most of the lazy-evaluation
network using immutable expressions, whose value is fixed upon creation (although not
explicitly known). In addition, we have class of mutable expressions, which represent
changeable expressions appearing in the IBP equations. Each mutable expression
points at a single immutable expression containing its value. Whenever we wish to
modify a mutable expression, we follow the procedure illustrated in Fig. 3.3: we
create a new immutable expression to represent the modified value, and then we point
the mutable expression towards the newly-created immutable expression. The old
immutable expression remains unchanged, which ensures that all other expressions in
the network remain unchanged.
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At first sight, it may appear puzzling that we are able to perform the forwards stage
(Gaussian elimination) without explicit knowledge of the expressions being manipulated.
In particular, Gaussian elimination requires frequent checks that an expression is not
identically zero, in order to avoid dividing by zero. To determine this, we equip each
mutable expression with a numerical cache which stores the numerical value of that
expression at a few pre-defined numerical points, shown in Table 3.3. The integer values
in Points 1-6 are randomly and uniformly drawn from the range [1, 106], while the
numerators and denominators in Points 7-9 are integers randomly and uniformly drawn
from the range [1, 105]. Although we have occasionally used all 9 points, we usually
use only Points 1-6, which (as we will shortly explain), we find to be adequate for
our purposes. Whenever we create or update a mutable expression (using the process
depicted in Fig. 3.3), we also compute its numerical value at each of the numerical
points. This allows us to check at any time whether a mutable expression is likely to be
identically zero, simply by checking whether it is zero at all of the numerical points. An
expression that is identically zero will, in this procedure, always be correctly identified
as such. However, the procedure has a very small chance of producing a fake zero,
if a non-zero expression happens to vanish at all of the pre-defined numerical points.
We estimate the likelihood of a fake zero by keeping a log of near misses, where an
expression is found to be zero at one or more (but not all) numerical points. In nearly
all the jobs that we have run, no near misses occur. In a small number of jobs, 1 or 2
expressions (out of, typically, between 106 and 109 expressions) are near misses. All of
the near misses that we have recorded occur because a non-zero expression vanishes at
1 (out of 6) numerical points; we have never seen a case where an expression vanishes
at 2, 3, 4, or 5 points. Based on this, we conservatively assume that any non-zero
expression will vanish at a single given numerical point with probability 10−6. We
surmise that the probability for a non-zero expression to vanish at all 6 numerical
points, and thus produce a fake zero, is extremely small

(
(10−6)6 = 10−36

)
and can

safely be ignored.
So far, our discussion has focussed on the forwards stage, where we solved the IBP

system numerically at a few numerical points (which were shown in Table 3.3), while
building up a large network of placeholder objects representing the history all of the
arithmetical steps taken to arrive at the numerical solutions. Let us now consider
the backwards stage, where we use the network of placeholder objects as a guide to
determine the operations to perform (now symbolically rather than numerically) in
order to obtain the desired symbolic solutions to the IBP system.
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Table 3.3 Numerical points used in lazy evaluation network to check whether an
expression is likely to be identically zero. We normally use Points 1-6, although we
have experimented with also including Points 7-9.

Point s23 s34 s45 s51 d
1 400221 25015 978834 635833 968990
2 108036 941985 414720 249186 175239
3 337524 325850 577194 494707 957317
4 10775 306600 191884 374714 375070
5 300113 294501 45932 529533 752691
6 403090 788821 251635 929621 474782
7 65383/52453 94515/90421 50366/64456 53125/82490 11966/31470
8 65142/2845 99665/28690 1043/20268 64893/81290 8846/78172
9 64281/75827 27131/66428 31754/18921 3501/12273 80740/25083

As a first step in the backwards stage, we prune the network of placeholder objects:
we identify objects representing solutions to the IBP equations and we keep these
objects as well as all their dependencies, while discarding all other objects. An example
of this is shown in Fig. 3.4. In practice, this pruning process is achieved by making each
object in the network keep a count of the number of expressions pointing at it. (This
is implemented by means of C++ smart pointers.) If the count ever reaches zero, the
object automatically immediately deletes itself (including all arrows emanating from
the object), which may in turn cause other objects to also delete themselves. In the
example shown in Fig. 3.4, the explicit deletion of M1 and M2 triggers the automatic
deletion of all of the parts of the network shown in red. In general, smart pointers
carry the risk of circular dependencies, where two (or more) objects point at each other
and thus prevent each other’s deletion. In our program, however, the use of immutable
expressions (which can only point at other immutable expressions) ensures that circular
dependencies cannot form: the expressions are added to the graph one at a time, and
each expression can only point at earlier expressions and not at future ones.

Following the pruning of the network, we proceed to perform the symbolic arithmeti-
cal operations required to obtain explicit solutions to the IBP expressions of interest.
This is simply carried out by identifying the expressions that are of direct interest,
and attempting to evaluate each one in terms of its two direct dependencies. If the
dependencies themselves have yet to be evaluated (which, initially, is most likely to
be the case), then we first evaluate these dependencies (proceeding recursively, as
necessary). All symbolic evaluations are carried out by Fermat. As soon as any
expression becomes explicitly known, we delete its pointers to its dependencies. This
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Fig. 3.4 Pruning the network of lazily-evaluated expressions. In this example, M3 is
of interest, while M1 and M2 are not. All of the objects shown in red can therefore be
deleted.
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automatically causes the dependencies to be deleted (via the pruning mechanism
described above) unless the dependencies are shared with other expressions. All of
the expressions of interest are thus evaluated, while optimising the use of RAM by
continuously pruning expressions that are no longer required.

The lazy-evaluation strategy worked surprisingly well: it increased the program’s
speed by an order of magnitude and thus allowed us to solve all required15 C1 integrals
with up to 5 numerator powers and up to 1 squared denominator in only twice as
much time as was previously spent reaching 4 numerator powers and up to 1 squared
denominator. (Ordinarily, the running time increases by an order of magnitude when
one extends an IBP system by 1 additional numerator power.) Lazy evaluation also
laid the foundation for the parallelisation strategy described below in Section 3.5.3.

3.5.3 Parallelisation of individual jobs

In Section 3.3, we described how a system of IBPs can be replaced with N̂ smaller
systems of equations by taking coefficients with respect to the basis of master integrals.
Although this allows for some amount of parallelisation (since the equations associated
with different masters are solved independently), most of the computation time is spent
on a small fraction of the jobs — those associated with the masters with the fewest
propagators. In this section, we will describe a mechanism for further parallelisation,
which enables the use of modern computing clusters with hundreds of CPUs running
in parallel.

Although the lazy evaluation framework was originally conceived with the aim of
minimising the number of computationally-expensive symbolic arithmetical operations,
the framework also gives rise to the possibility of large-scale parallelisation. As we
discussed in Section 3.5.2, calculations in this framework can be divided into a forwards
stage, where the lazy evaluation graph is constructed, and a backwards stage, where
the operations represented by the graph are performed symbolically. Since the forwards
stage takes a few hours whereas the backwards stage takes several weeks or months,
we would like to parallelise the backwards stage. The key observation is that many of

15The most difficult IBPs to compute are the projections of the top-sector integrals (those with
the maximum number of propagators – here 8) onto the lowest-sector master integrals (those with the
fewest propagators – here 3). When working with the lowest-sector masters, the lazy-evaluation setup
allowed us to restrict ourselves to just solving these difficult top-sector integrals. This is sufficient
to fully solve the QCD amplitude qq̄ → q′q̄′g. We removed this restriction after implementing the
parallelisation procedure described in Section 3.5.3.
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Fig. 3.5 Parallel evaluation of expressions in a lazy evaluation graph. The three
expressions highlighted in yellow are independent of one another. They can be therefore
be evaluated in parallel.

the symbolic operations represented in a lazy evaluation network are independent of
one another and can therefore be performed in parallel. This is illustrated in Fig. 3.5.

We implement the parallel evaluation of the lazy evaluation graph across many
computing threads by designating one thread as the master thread and all the other
threads as worker threads. Each worker thread runs a copy of Fermat and uses
this to evaluate questions (i.e. symbolic arithmetic operations) received from the
master thread. All inter-process communication is carried out using the OpenMPI
library [141, 142].

The master thread stores the lazy evaluation graph and manages the progression of
the calculation. At the beginning of the backwards stage, after the pruning procedure
discussed in Section 3.5.2, the master thread arranges all of the unevaluated expressions
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from the lazy evaluation graph into a one-dimensional list, taking care to avoid double-
counting.16 An evaluation queue is then constructed, containing all expressions whose
dependencies are known in explicit form. (Initially, the only expressions known in
explicit form are the 4 variables sij and the dimension d.) The master thread distributes
the expressions in the queue to the worker threads and waits for the results. As soon as
a worker sends back an evaluated expression, the master thread saves the result, checks
whether the result enables more questions to be added to the evaluation queue, and
then finally dispatches more questions to the workers (as long as there are questions
available in the queue and workers available to receive them). Throughout the job, the
master thread operates the pruning mechanism described in Section 3.5.2 in order to
remove any unnecessary expressions from the computer memory.

To maximise the speed, we wish at all times to maximise the number of workers
employed in parallel. The length of the evaluation queue determines how much
parallelisation is possible: as long as some expressions are still present in the evaluation
queue, any additional workers that we add will bring a linear increase in speed. For the
integral families that are the focus of this chapter, a typical lazy evaluation network
can initially contain O (108) unknown expressions, although at a given time only a
small fraction of these will have explicitly known dependencies and so appear in the
evaluation queue. We observe that at the start of a job, the queue may contain O (104)
tasks, and that this gradually decreases as the job progresses.

This parallelised version of our program is equipped with a check-pointing feature
which allows jobs to be paused, saved to disk, and later resumed. The feature is
implemented with the help of the Cereal library [143] and is useful for several reasons.
Firstly, it is essential on computing clusters such as the Cambridge High-Performance
Computing (HPC) cluster, which allows up to 1,200 CPUs to be used in parallel but
imposes a time-limit of 36 hours on all jobs. Here, check-pointing allows jobs to run
for many days or weeks, simply by pausing and resuming the job every 36 hours.17

Secondly, we can use check-pointing to change the number of CPUs used by a job.
Since, as mentioned above, the parallelisability gradually drops as the job progresses,
we can avoid idle worker threads by using check-pointing to pause a job and restart
it with a smaller number of CPUs. The job can be moved to a different machine
before resuming, if desired. Thirdly, check-pointing allows backups to be kept during
long-running jobs.

16I am grateful to Artjoms Iškovs for fruitful discussions on this topic.
17This strategy is not an underhand workaround of the Cambridge HPC policies and is in fact

actively encouraged.
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Table 3.4 Running times and range of solutions in benchmark C1 topology following
successive improvements of IBP program. In all cases, dmax = 1.

Program version
Maximum
numerator

power

Sectors
solved

Time (in days)
for slowest

job
Original (single-core) 4 all 34.5

Lazily evaluated (single-core) 5 top sector 71.5
Lazily evaluated (parallelised) 5 all 12.9

Parallelisation produced a good improvement in the speed and capability of our
IBP program. In the planar topology C1, where previously we exploited lazy evaluation
to restrict ourselves to solving only the integrals appearing in the amplitude qq̄ → q′q̄′g,
we were now able to remove this restriction and solve all C1 integrals with up to 5
numerator powers and 1 squared denominator (i.e. nmax = 5 and dmax = 1). We
believe this range of integrals is sufficient to solve any 2-loop 5-point massless planar
QCD amplitude. Furthermore, despite the enlarged set of integrals being solved, the
time required to solve the C1 topology using the parallel version of the code (running
on a cluster with up to 75 parallel CPUs) was under 2 weeks, compared to 2-3 months
for the single-cored version. This can be seen in Table 3.4.

The performance gain from parallelisation was particularly evident in the non-planar
topologies, Bn. Here, parallelisation enabled us to obtain solutions for a few of the
most complicated non-planar IBP systems. Obtaining these results required thousands
of CPU-days and would therefore have needed nearly a decade if running on a single
CPU, whereas parallelisation allowed us to solve these systems in just a few weeks. A
more detailed account will be given in Section 3.6.2.

3.6 Results

Having described our framework for solving the IBP equations, we will now discuss our
results, firstly for the planar topologies, Cn, and secondly for the non-planar topologies,
Bn. We will then describe the checks that we have performed on our results.

3.6.1 Planar results

In the planar topologies, we have solved all integrals in the ranges specified in Table 3.2,
i.e. (nmax, dmax) = (5, 1) for the C1 topology and (nmax, dmax) = (4, 1) for the C2
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Table 3.5 Running times (in days) for the IBPs in C1 topology. Only the 3-propagator
masters are shown. Solutions range: (nmax, dmax) = (5, 1). Using lazy evaluation and
parallelisation across up to 75 CPUs.

Master Forwards stage Backwards stage Total
1 0.6 2.0 2.5
2 0.7 12.2 12.9
3 0.7 7.7 8.4
4 0.4 0.7 1.1
5 0.2 0.4 0.7
6 0.3 1.0 1.3

topology. Each integral has been expressed as a linear combination of master integrals,
with coefficients ci,m that are rational functions of the space-time dimension d = 4 − 2ϵ

and the kinematic invariants sij = (pi + pj)2. Our IBP solutions allow, in the leading-
colour limit of QCD, the evaluation of any 2-loop 5-point massless amplitude such as
qq̄ → q′q̄′g and qq̄ → γγγ. As a direct application of this, in Chapter 4 we will present
the NNLO QCD corrections to 3-photon production at the LHC.

Although the strategy described in Section 3.3 enables the IBP system to be
divided into many separate jobs (one per master integral), we observe (for planar
and non-planar topologies alike) that the running times for different master integrals
are vastly different. The calculation of the coefficients of the master integrals in
the highest-weight sector (i.e. those with the maximum number of propagators in
their denominator) is simplest and takes only a few minutes on a single CPU. The
calculations corresponding to masters with fewer propagators are far more complex,
however, and are many orders of magnitude slower. The projected IBP systems which
are most difficult to solve are those corresponding to the masters of lowest weight. In
the case of the topologies considered here, this means the masters with 3 propagators.
Timings for the lowest-weight masters in the C1 topology are shown in Table 3.5. Even
though they have the same weight, the running times for these 6 masters span an order
of magnitude.

The sizes of the solutions ci,m associated with different master integrals vary in a
similar way to the variation of running times. Master 3 in the C1 topology produced
the largest solutions: they are 9.5 GB in size. The combined solutions for all Cn

integrals have a total size in excess of 80 GB.
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3.6.2 Non-planar results

In view of the variation in running times for the IBP systems associated with different
masters of a given topology, we chose to approach the non-planar (B1 and B2) IBPs
from two opposing angles.

Firstly, we have solved IBP systems associated with the masters belonging to the
highest-weight sector (with weight 8) for topologies B1 (9 masters) and B2 (3 masters).
The IBP systems associated with these masters are computationally the simplest, and
each required a few minutes of computation time while running on a single CPU. Here
we have solved all integrals with numerator powers as high as 6 and/or a squared
denominator (i.e. nmax = 6 and dmax = 1), which exceeds the range of integrals
required for QCD amplitudes (see Table 3.2). The speed with which these results were
obtained demonstrates an advantage of the strategy presented in Section 3.3.

Secondly, we have applied the lazily-evaluated, highly parallelised version of our
program (described in Section 3.5.3) to the IBPs associated with the lowest-weight
masters (with weight 3 or 4) in the Bn topologies. The B1 topology is the most
complicated topology applicable to 2-loop 5-point massless amplitudes, and the lowest-
weight masters in this topology give rise to the most computationally-demanding IBP
systems. We have obtained solutions for a few of these most-complicated IBP systems.
The solutions give the coefficients of masters 1, 5, and 14 for all B1 integrals in the
required range (i.e. nmax = 4, dmax = 1).18 As shown in Table 3.6, these calculations
are very computationally demanding, taking several weeks or months while running
on tens or hundreds of CPUs. (We vary the number of CPUs over time in response
to variations in the needs of a job. The Max CPUs column shows the peak number
of CPUs used for a particular job.) The table clearly illustrates the benefits of the
parallelisation of individual jobs as described in Section 3.5.3: if using a single CPU,
we would have needed 8 years (i.e. 2,900 days) to solve the IBP system associated with
master 1 in the B1 topology. For some B1 masters, we find that more than 104 CPUs
could usefully be employed in parallel if available, but the Cambridge HPC service
limits us to a maximum of 1,200 parallel CPUs.

The results that we have obtained for the B1 topology, particularly in relation to
the weight-3 master integrals, suggest that the IBPs associated with the other masters

18In these IBP systems in the B1 topology, to provide future flexibility, we ran the forwards stage
using (nmax, dmax) = (5, 1) and then used lazy evaluation during the backwards stage to only solve
the integrals in the required range (nmax, dmax) = (4, 1). We have retained the remaining parts of the
lazy evaluation graph relating to nmax = 5. Should we wish to in the future, we can evaluate the
remaining parts of the graph in order to extend our solutions to (nmax, dmax) = (5, 1).
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Table 3.6 Non-planar solutions obtained for B1 topology. Solutions range:
(nmax, dmax) = (4, 1).

Master Weight Wall time Computing time Max CPUs Results size
days CPU days CPUs GB

1 3 77.8 2,900 160 3.0
5 3 41.0 1,800 640 3.4
14 4 3.4 100 60 0.4

could similarly be solved in a reasonable time frame (i.e. a few months). We observe
that although the non-planar results require far more CPU time than the planar results,
there is no corresponding increase in the size of the final results. As we will see in
Chapter 4, the planar IBP solutions are – although large – still of a size that allows
them to be easily used in the numerical evaluation of amplitudes. We therefore expect
it to be possible to make similar use of a full set of non-planar IBP solutions. However,
we note that the B1 and B2 topologies each have 8 masters of weight 3. Based on our
results, we estimate that solving the IBP systems associated with each of these masters
would require O (105) CPU hours per master, and a full solution for the non-planar
IBPs would therefore require a few million CPU hours.

3.6.3 Cross-checks and verification

Our results have been cross-checked in a number of ways. Firstly, the masters for all four
topologies in Equation 3.9 have been independently identified using Reduze [112, 113].

Secondly, using the results in Refs. [118, 131] we have related all five C1 integrals
with irreducible numerators of power 5 appearing in the amplitude qq̄ → q′q̄′g to
integrals with lower numerator powers. Using our calculation for those integrals with
lower numerator powers we find complete agreement with our direct calculation of the
integrals with numerators of power 5. We have checked that this agreement holds for
the projections on to the full set of masters in topology C1. This is a highly non-trivial
check for both our calculation and the results in Refs. [118, 131].

Thirdly, we have also checked that our calculation for topology B2 agrees with the
results in Ref. [130] by comparing all integrals with numerator powers of 4 (which is
the highest numerator power computed in that paper). We find full agreement.

We note that Ref. [122] has claimed to compute the planar integrals with numerator
power 5 with the help of the program Fire [111, 115]. However, since that reference
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does not provide explicit results or details about their calculation, we were unable to
compare.

3.7 Conclusions

In this chapter, we have developed a framework for evaluating IBP equations, which
are often a key bottleneck in the evaluation of multi-loop QCD amplitudes.

We introduced a strategy to break systems of IBP equations into multiple, smaller
systems, each of which corresponds to one master integral. These smaller systems
are simpler to solve and are mutually independent, which allows them to be solved in
parallel to one another. However, most of the running time is spent on a small fraction
of these, which are associated with the lowest-weight master integrals.

We designed and implemented an efficient C++ program for solving IBP equations.
The program incorporates the aforementioned strategy as well as a number of features
that greatly improve the range of solvable integrals and the time required to compute
them. In particular, arranging the symbolic algebraic operations into a network of lazily
evaluated expressions produces an order-of-magnitude increase in speed. Parallelising
the evaluation of the expressions in the lazy-evaluation network (which is unrelated to
the parallelisation obtained by separating masters) produces a further speed increase
of two orders of magnitude.

Our strategy and computer program enabled us to obtain new solutions for the
planar and non-planar topologies of 2-loop 5-point massless integrals. We have cross-
checked these results for consistency with previous results from other groups, where
such results are available, and we find full agreement.

In the planar topologies, we have solved all C1 integrals in the range (nmax, dmax) =
(5, 1), and all C2 integrals in the range (nmax, dmax) = (4, 1). Since the planar master
integrals are already known, our solutions allow the evaluation of the leading-colour
contribution to any 2-loop 5-point massless QCD amplitude such as qq̄ → q′q̄′g and
qq̄ → γγγ. The NNLO QCD corrections to 3-photon production, which we will present
in Chapter 4, are a direct application of these results.

In the non-planar topologies, our strategy of separating the IBPs by master integrals
has allowed us to approach the problem from two opposing angles. In the IBP systems
associated with the highest-weight B1 and B2 masters, we have solved all integrals in
the range (nmax, dmax) = (6, 1), which exceeds the range required for QCD amplitudes.
In addition, we have obtained solutions in the range (nmax, dmax) = (4, 1) for the IBPs
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associated with a few lowest-weight B1 master integrals. The former required a few
minutes of computation on a single CPU, whereas the latter required several weeks of
evaluation on up to 600 CPUs.

As future work, one would like to be able to solve the subleading-colour contributions
to 2-loop 5-point massless QCD amplitudes, which would require extending our non-
planar solutions to cover all remaining B1 and B2 masters. The low-weight B1 masters
for which we have solved the IBPs are representative of the most difficult of these. Our
results show that a full solution to non-planar IBPs (for the full ranges of (nmax, dmax)
required for QCD amplitudes) is within the technical capabilities of our framework and
is limited only by the availability of computing resources. Although a computation
of this complexity will require a large quantity of CPU resources (a few million CPU
hours, by our estimate), the high parallelisation offered by our program would allow a
full solution to be obtained over the course of a few months by running on a computing
cluster with several hundred CPUs. We observe that the most complicated B1 solutions
are similar in size to the most complicated planar solutions. The latter can be usefully
employed in amplitude computations (see Chapter 4) and so we expect a full set of
non-planar solutions to be of a size that would allow them to be used in a similar way.
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Chapter 4

NNLO QCD corrections to
three-photon production at the
LHC

In this chapter, we compute the NNLO QCD corrections to three-photon produc-
tion at the LHC. This is the first NNLO QCD calculation for a 2 → 3 process.
Our calculation is exact, except for the scale-independent part of the two-loop
finite remainder which is included in the leading-colour approximation. The
required two-loop amplitude is calculated using an automated computational
framework. The framework is generic and allows the calculation of any two-loop
five-point massless planar amplitudes. We compare our predictions with the
available 8 TeV measurements from the ATLAS collaboration and find that
the inclusion of the NNLO corrections eliminates the significant existing dis-
crepancy with respect to NLO QCD predictions, paving the way for precision
phenomenology in this process.

Declaration

This chapter is based on the paper [3] which was written in collaboration with M. Cza-
kon, A. Mitov, and R. Poncelet. My primary contribution to this calculation was
the creation of an automated computational framework for solving 2-loop 5-point
massless amplitudes in terms of transcendental “pentagon functions”. This framework
is presented in Section 4.3 and one of its key components is the set of 2-loop 5-point
IBP solutions obtained in Chapter 3.
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4.1 Introduction

Over the last decade, Next-to-Next-to-Leading Order (NNLO) QCD calculations
for hadron collider processes have sustained tremendous progress. Owing to the
development of many independent approaches [56, 144–173] almost all non-loop-induced
2 → 1 and 2 → 2 processes have now been computed, typically in more than one
computational approach. Such massive theoretical progress has led to the creation of
public codes and has started to produce valuable and solid LHC phenomenology on a
massive scale.

The computation of 2 → 3 hadron collider processes represents a natural step
beyond the current state of the art in NNLO calculations. Since many of the available
computational approaches are generic, they should in principle be able to handle
the calculation of double real radiation in 2 → 3 processes. The calculation of the
real-virtual correction to such processes should in principle also be possible, since
numerically stable libraries are available for one-loop amplitudes. The only ingredient
for such calculations which is not readily available are the two-loop five-point amplitudes.
Thanks to the development of various new methods [2, 33, 108, 122, 130, 138, 139, 174–
180], first results for selected helicities, colour structures or kinematics (typically
Euclidean) have started to appear. This includes 5-point amplitudes computed in QCD
[126–129, 181–187], in pure Yang-Mills [123, 125, 188], in supersymmetric theories
[189–192] and in gravity [193–195]. As part of the work presented in this chapter,
we calculate the two-loop planar amplitude qq̄ → γγγ. This is the first time a 2-
loop 5-point QCD amplitude has been derived explicitly, in analytic form, in the
physical region. We discuss this result at length in Section 4.2.2 below. To calculate
this amplitude we have built an automated computational framework, described in
Section 4.3, which can be re-used to calculate other 2-loop 5-point massless amplitudes
in an automated manner.

The goal of this work is to demonstrate the feasibility of existing calculational
technologies to deal with 2 → 3 hadron collider processes. We have decided to apply
this first-ever NNLO 2 → 3 calculation to the process pp → γγγ + X. Our motivation
for choosing this process is twofold. Firstly, the production of colourless final states
has always occupied a special place among hadron collider processes and has been
the pioneering work for both 2 → 1 and 2 → 2 processes. The calculation of the
required two-loop amplitudes is made more feasible by the fact that the number of
scales involved is relatively small.
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Secondly, the process pp → γγγ + X is of direct phenomenological interest. The
cross-section for three isolated photons at the LHC 8 TeV was measured in detail by
the ATLAS collaboration [196] (and previously in Ref. [197]) and was found to be very
significantly above the NLO QCD prediction in a wide kinematic region. Since at NLO
the theory error is completely dominated by missing higher-order terms, this process
represents a prime case for an NNLO QCD calculation. Indeed, we find that with the
help of our calculation this discrepancy can be addressed, as can be seen in the results
presented in Section 4.4.

The chapter is organised as follows. In Section 4.2 we explain our calculation, with
an emphasis on the derivation of the two-loop amplitude. The automated computational
framework developed by the author of this thesis for calculating 2-loop 5-point massless
amplitudes is presented in Section 4.3. We then present in Section 4.4 our predictions
for the fiducial and differential cross-section. The important question of perturbative
convergence in this process is discussed in Section 4.4.4. Our conclusions are given in
Section 4.5.

4.2 The calculation

In this work we follow the Stripper approach [152–154] previously applied at NNLO
in QCD to top-pair [55, 86, 198–200] and inclusive jet [201] production at the LHC.
The approach is implemented in a fully-differential partonic Monte Carlo program
which can calculate any infrared-safe partonic observable. The technical details about
its implementation can be found in Ref. [201].

The complete calculation converges very well in terms of phase-space integration.
Not counting the CPU time needed to evaluate the two-loop finite remainder (see
Section 4.2.2 for details), it took only about 2k CPU hours to complete. The slowest
contribution (about 1k CPU hours) is the real-virtual finite contribution due to the slow
evaluation of the 6-point one-loop amplitude with OpenLoops 1. That contribution,
however, converges fast in terms of required phase-space points.

The ingredients needed for the present calculation are tree-level amplitudes as
well as the finite remainders of one-loop and two-loop amplitudes. Their calculation
is described in detail in Section 4.2.1 and Section 4.2.2, respectively. Here we only
point out that all required one-loop amplitudes are included exactly, with full colour
dependence. The finite remainder of the two-loop amplitude qq̄ → γγγ is included in
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the leading-colour approximation, additionally excluding diagrams with closed fermion
loops. The justification for this approximation is given in Section 4.2.2 below.

The infrared subtraction operator (sometimes called Z-operator) is given in Ref. [154]
and its leading-colour approximation can be found in Ref. [182]. We work in a theory
with 5 massless active quark flavours and renormalise the amplitudes accordingly. No
loops with massive fermions are included in our calculation. Their effect in the context
of diphoton production has been discussed in Ref. [202].

4.2.1 Tree-level and one-loop amplitudes

All tree-level diagrams are computed with the help of the library avhlib [203, 204].
For the derivation of the two-loop finite remainder, the one-loop amplitude qq̄ → γγγ

is needed to order ε2 (where d = 4 − 2ε is the space-time dimension). We have
computed it following the standard Feynman diagram plus Integration-by-Parts (IBP)
identities [96, 97] approach. All required master integrals expanded to that order in
ε are available in electronic form in Ref. [184]. The finite remainders for all one-loop
amplitudes are obtained from the library OpenLoops [205, 206], while the one-loop
squared qq̄ → γγγ contribution is taken from the library Recola [207].

Unlike the case of diphoton production, the gluon-initiated one-loop amplitude
gg → γγγ vanishes and thus does not contribute to the process studied in this paper.
Since the gg-flux is sizeable, the vanishing of this contribution is of phenomenological
significance and we will discuss it in more detail in Section 4.4.

4.2.2 The two-loop amplitude for qq̄ → γγγ

An important novelty in this work is the calculation of the two-loop amplitude for
the process qq̄ → γγγ. Although our calculation is restricted to the leading-colour
approximation, this is the first time a two-loop five-point amplitude is put in a form
that can be used in a phenomenological application. For this reason we describe it in
detail in this section.

Structure of the two-loop amplitude

We need the two-loop amplitude |M (2)(qq̄ → γγγ)⟩, multiplied by the Born ampli-
tude |M (0)(qq̄ → γγγ)⟩, and summed/averaged over helicities and colour. Its colour
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decomposition reads:

∑
2Re⟨M (2)|M (0)⟩ = M (lc, 1)

(
N3

c − 2Nc + 1/Nc

)
+ M (lc, 2)

(
N3

c − Nc

)
+M (f)

(
N2

c − 1
)

+ M (np) (Nc − 1/Nc) , (4.1)

where Nc = 3 is the number of colours.
In this work we simplify the calculation by employing the following approximation:

∑
2Re⟨M (2)|M (0)⟩ ≈ N3

c

(
M (lc, 1) + M (lc, 2)

)
, (4.2)

i.e. we neglect the non-planar contribution M (np) as well as all contributions M (f) with
a fermion loop (both planar and non-planar).

The non-planar contribution M (np) is suppressed by a factor of 1/N2
c relative to

the leading-colour contributions. It is thus expected to be numerically subdominant.
The non-planar contribution cannot be computed at present since the required IBP
solutions (topologies B1 and B2 in the notation of Chapter 3) are not yet fully known.

The contribution M (f) contains all diagrams with one closed fermion loop. Both
planar and non-planar diagrams contribute to it. It cannot be currently derived since
the required non-planar IBPs (specifically, the topology B2) are not yet known. The
term M (f) is suppressed with respect to the leading-colour terms by a single power
of 1/Nc. At the same time some diagrams1 are enhanced by the number of massless
fermion flavours nf = 5. Therefore, although in the strict Nc → ∞ limit M (f) is
suppressed relative to the leading-colour contribution, its numerical value may not
necessarily be sub-dominant with respect to Equation 4.2. For this reason, to be
conservative, one should assume that it is comparable numerically to the leading-
colour contribution. As we show in Section 4.4 below (see in particular Fig. 4.15), the
numerical impact of the leading-colour approximation Equation 4.2 to the differential
cross-section is itself negligible, at the percent level, which a posteriori justifies the
approximation M (f) ≈ 0. In the future, once the contributions M (f) and M (np) become
known, we can easily update our cross-section predictions.

Calculation of the two-loop amplitude

We will now give a detailed step-by-step account of the calculation of the two-loop
amplitude. In Section 4.3, we will describe an automated framework that we have

1These are the diagrams that involve no photon coupling to the closed fermion loop.
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written to automatically perform most of these steps. We have verified that the results
of the automated framework exactly match those obtained by sequentially following
the steps in the manner described here.

To compute the two-loop amplitude we use a standard Feynman diagram-based
approach. The diagrams are generated with the help of a private software. After
multiplying with the Born amplitude and then computing the traces of spin tensors
and colour factors, the resulting scalar integrals are mapped to master integrals using
the IBP results of Chapter 3. Next, one must insert of the results for the required
master integrals. To this end we utilise the results of Ref. [33] where a set of integrals
has been explicitly computed in terms of the so-called pentagon functions fij . This set
of integrals can be algebraically related to our set of master integrals with the help of
the IBP solutions derived in Chapter 3.

At this point the bare amplitude can be computed numerically using the routines
for the numerical evaluation of the set of integrals provided with Ref. [33]. We do not
follow this approach here for two reasons. Firstly, we would like to provide an explicit
analytic result in terms of basic functions, like the set of pentagon functions. Secondly,
the complete result involves not just the 61 master integrals but also many integrals
that are obtained from them by crossings of the external legs. In practice we have more
than 90 sets of crossings that need to be applied to the set of master integrals. While
not every master integral will need to be crossed for all crossings, the complete set of
integrals, accounting for all crossings, far exceeds the dimension of functions needed to
describe the amplitude. For this reason such an approach would not be minimal and
could lead to more severe loss of precision during the numerical evaluation.

For the above reasons, we use the explicit representation of master integrals in terms
of pentagon functions fij from Ref. [33] and have applied the momentum crossings
directly to those functions. To minimise the set of functions, we have derived various
functional identities between those functions with different arguments. The derivation
of these identities is described in Section 4.3.1 and we list the identities in Appendix A.
As a result, we have derived an explicit expression for the squared amplitude (defined
in Equation 4.2) as a polynomial in transcendental constants and fij functions with
various arguments. The coefficients of this polynomial are rational functions of the
kinematic invariants. We have factorised and simplified them, in some cases using the
finite-field reconstruction package FiniteFlow [38].

Besides the usual ζ(2) and ζ(3), a new set of constants collectively called bc4
appears at weight 4 [33]. Their treatment requires special attention. These constants

72



4.2 The calculation

are associated with the master integrals at weight 4 and, despite being called constants,
they in general vary with kinematic region. We have accounted for this possibility
in the process of applying momentum crossings to the master integrals. Many of
these constants take the same value in the various physical regions. We have used the
numerical values which are included in the numerical code accompanying Ref. [33].
Similarly, the analytic continuation of the pentagon functions fij across the various
physical regions is performed automatically by the numerical library of Ref. [33]. To
check the correctness of our manipulations, we have compared in each physical region
the numerical predictions for each master integral, constructed by us as described
above, with the numerical value for the master returned directly by the library of
Ref. [33] and have found complete agreement. We have also checked many integrals
against the numerical program pySecDec [208], finding agreement in all cases.

In summary, we have expressed the complete analytic result for the bare 2-loop
amplitude in a basis of around 1800 transcendental terms involving ζ(2), ζ(3) and fij

functions plus about 100 terms involving bc4 “constants” of weight 4.

Evaluation of the two-loop amplitude

Most of the rational coefficients in the two-loop amplitude are small (i.e. kB size)
but some exceed 1MB. When numerically evaluating the amplitude to calculate cross-
sections, the loss of numerical precision due to cancellation between the various terms
is thus of particular concern. To minimise such cancellation we evaluate all rational
coefficients with exact rational arithmetic. Specifically, we rationalise each phase-space
point to preserve the accuracy of the original floating point numbers, and then use this
rational form to compute the rational coefficients as exact rational numbers. This is
implemented with the help of the CLN library [209]. The evaluation is much slower
than an evaluation in double precision would be, yet the overall timing is negligible
compared to the evaluation of the slowest pentagon functions of weight 4. We have
performed various tests for the depth of numerical cancellations and have found them
to be under control in all test cases.

The numerical evaluation of the functions fij is performed with the help of the C++
library provided with Ref. [33]. The time it takes to evaluate these functions depends
strongly on their weight. All functions through weight 3 are standard polylogarithms
and can easily be computed with full double precision in negligible time. The functions
of weight 4 are the slowest and can take several minutes per phase-space point. Their
precision is less than full double precision due to conflicting requirements of precision
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and speed as well as the numerical stability of the integration routines used for their
calculation. With the help of extensive experimentation we have found that computing
them with at least 7 significant digits is sufficient for our purposes. To test the depth
of numerical cancellations we have also computed the weight 4 functions requiring 5
significant digits. This results in a finite remainder with, typically, 2 significant digits.

It takes about 10-50 min, depending on the phase space point, to compute the
finite remainder at a single phase-space point on a single CPU (i.e. without any
parallelisation). The average time is about 17 min when a relative precision of 10−7

for the weight 4 functions is requested. In general, several hundred thousand points
are required in order to integrate the three-photon phase space over the required bins.
Such a calculation requires significant, cluster-size computer resources. While a one-off
evaluation is possible it poses non-trivial problems, especially if re-evaluation of the
amplitude is needed (for example for a different setup or collider energy). To minimise
this computational effort we have utilised a two-fold strategy.

Firstly, we have produced an optimised set of phase-space points which have been
generated according to the Born cross-section. Such an approach has already been used
in Refs. [210–214] and it allows us to obtain a good quality double-virtual contribution
with a reduced number of events. In this case, we have computed 30k events.

Secondly, for the implementation of two-loop finite remainder we have employed
an approach whereby the above-mentioned 30k phase space points have been used
to construct a (four-dimensional) interpolating function for the real part of the finite
remainder. Constructing multi-dimensional interpolating functions is a hard problem.
In our case we have used the purposely-developed library GPTree [215] which uses
advances in machine learning to optimise the interpolation tables and to produce an
estimate of the interpolation error. The output of the GPTree library is a C++ library
which is portable and very easy to link to a C++ code and to use. It has the advantage
that if more phase-space points are computed in the future, the interpolation tables can
be refitted and thus be further improved. We have also found it useful as an additional
means to monitor for the appearance of numerical instabilities.

In view of the phenomenological application of the two-loop amplitude Equation 4.1
— see Section 4.4 — we make explicit the scale dependence of its finite reminder H(2):

H(2)(µ2
R) = H(2)(s12) +

4∑
n=1

cn lnn

(
µ2

R

s12

)
, (4.3)
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where s12 is the partonic centre-of-mass energy squared. Since the coefficients cn can
be determined exactly from the tree-level and one-loop amplitudes, throughout this
work the scale dependence of the two-loop finite reminder is included with full colour
dependence. Therefore, the approximation Equation 4.2 is applied only to the first
term of the RHS of Equation 4.3. As can be seen in Fig. 4.15 below, the numerical
impact on the NNLO cross-section of the scale-independent part of the two-loop finite
remainder H(2)(s12) is rather small, at the percent level.2

4.3 Amplitude reduction to pentagon functions

Having given a detailed overview of our calculation, in this section we will describe
our framework for the automated reduction of amplitudes to pentagon functions. Our
framework is designed to work with any two-loop five-point massless planar amplitudes.
If an amplitude has not been summed/averaged over helicities, it needs to have been
decomposed into helicity structures, each of which we will then treat as a separate
amplitude.

As a preparatory step, it was important to construct a minimal basis of pentagon
functions. If one were to instead use a non-minimal set of functions, experience suggests
that the resulting expressions for the amplitude would be large in size and therefore
more computationally expensive to derive and to use. To construct a minimal set
of functions, we derived identities between the pentagon functions so as to eliminate
any basis functions that were redundant. Our method for deriving these identities is
presented in Section 4.3.1 and the resulting identities are tabulated in Appendix A.

Our main amplitude-reduction framework is based around the finite-field approach,
which was introduced in Section 1.10. Calculations within this approach require two in-
gredients: firstly, an algorithm for the reconstruction of exact symbolic amplitudes from
a large number of numerical (i.e. finite-field) evaluations, and secondly an automated
method for performing the finite-field evaluations themselves. In Section 4.3.2 we will
describe our work on the first problem – interpolation and reconstruction algorithms –
after which the remainder of this section will be devoted to our automated framework
for performing numerical (i.e. finite-field) evaluations of 2-loop 5-point massless planar
amplitudes.

2The other NNLO contributions – namely the double-real, real-virtual, and scale-dependent
double-virtual corrections – turn out to be much larger, causing the NNLO prediction for the fiducial
cross-section to exceed the NLO prediction by 60%, as we will see in Section 4.4.
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4.3.1 Pentagon function identities

The pentagon functions, labelled fj,k(v1, v2, v3, v4, v5), appear in the amplitude with
various cyclic and non-cyclic permutations of their arguments vi. Some of the fj,k can
be directly mapped onto the polylogarithms Lin which were described in Section 1.8 of
Chapter 1 and for which there are many well-known identities, such as Equation 1.42.
The higher-weight functions, particularly f4,k, are more complicated but are still
expected to obey identities of a similar nature. Although analytical methods could in
principle be employed to derive and prove some of these identities, here we adopted a
numerical (floating-point) approach. The resulting identities are, however, exact. For
the avoidance of confusion, we emphasise that these identities were derived with the
help of floating-point numerics, since the pentagon functions are irrational, whereas the
rest of our amplitude-reduction framework (described in later sections) uses finite-field
numerics.

Our starting point is the observation that polylogarithms and their generalisations
can be assigned a transcendental weight, w ∈ N, and that the known identities are
linear combinations (with coefficients in Q) of terms of uniform transcendental weight.
In the case of the pentagon functions, the weight of fj,k is simply j. The Riemann
zeta function values ζn ≡ ζ(n), which sometimes appear in these identities, also have
transcendental weight: ζn has weight n. We treat these constants on an equal footing
with the fj,k functions. If two functions of weight w1 and w2 are multiplied, the product
has weight w1 + w2.

To find identities, we begin by picking a weight, n, and constructing a set Sn of all
weight-n functions. This includes the pure weight-n functions, as well as products of
lower-weight functions whose weights add to give n. For example, if n = 2 we construct
a set S2 containing:

1. the pure weight-2 functions of the form f2,1(a, b)

2. the pure weight-2 constant ζ2 = π2

6

3. products of two weight-1 functions: f1,1(a)f1,1(b).

Here, a and b can each be any of the 10 kinematic invariants sij. We then randomly
generate a set K of kinematic points, where a kinematic point corresponds to assigning
a floating-point value to each of the 10 kinematic invariants sij . We need the set K to
be larger than the set Sn. At each kinematic point k ∈ K, we evaluate all functions in
Sn numerically (i.e. with floating-point arithmetic). These evaluations can be entered
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in a matrix, where each row corresponds to a kinematic point k and each column
corresponds to an element of our set Sn. The identities that we seek can be identified
from this matrix by finding columns that are linear combinations of other columns.
In other words, the vectors in the kernel of this matrix directly represent pentagon
function identities.

To calculate the kernel vectors, we find the Mathematica function NullSpace
to be useful, although we observe that it performs poorly unless the kernel is very
small. This is especially true when working with the functions f4,k, whose evaluation
precision is lower than that of the lower-weight functions. We therefore take an iterative
approach, initially restricting ourselves to a subset S̃n of Sn and using NullSpace to
find any identities in this restricted set of functions. Each identity found allows us to
remove one redundant function from S̃n. We then insert a few more functions from Sn

into S̃n and search for further identities. This process is repeated until all the functions
from Sn have been inserted into S̃n. The Mathematica function MatrixRank is
helpful for verifying that the final matrix has full rank, i.e. that the functions in the
final set S̃n are not related by any further identities. As an aside, we note that since
the pentagon function identities are linear (and real), one can separately apply the
identities to the real and imaginary parts of the elements of Sn. In practice, we derive
the identities using the real parts alone, and then confirm that the same identities
correctly describe the imaginary parts.

In deriving the identities, it was sometimes useful to work in the Euclidean kinematic
region, where sij is positive if i is an incoming particle and j is outgoing (or vice-versa)
and negative otherwise. In this region, the functions fj,k can be calculated more quickly
and to a higher precision; they also have no imaginary part. As a result, many of the
identities can more easily be obtained in the Euclidean region and later extended to
the physical kinematic region. However, not all 10 invariants sij can simultaneously lie
in the Euclidean region, and so working in this region requires restricting ourselves to
a subset of Sn. Some of the identities that we have derived only appear when working
in the physical kinematic region, where all sij are positive.

All of the identities obtained are presented in Appendix A and it can be seen that
all appearing numerical coefficients are simple rational numbers such as 1

2 , 33
8 , and 51

4 .
We note that a few of the identities require introducing new “constants” hj,k which
vary with the kinematic region, just like the bc4 constants. We expect that it should
be possible to either express the hj,k in terms of bc4, or instead absorb the hj,k into the
corresponding functions fj,k, although we have not done so here. All of the identities
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listed have been verified numerically using new random kinematic points. We find
the identities to be correct at the expected level of precision: at least 6 digits for the
weight-4 identities, and at least 12 digits for the weight-2 and weight-3 identities.3

4.3.2 Finite-field interpolation and reconstruction

Let us now turn to the problem of finite-field interpolation and reconstruction, a key
ingredient in the finite-field approach to calculating amplitudes. Recent months
have seen the emergence of several public [37–39] and private libraries that can
interpolate and reconstruct multi-variate polynomials and rational functions from
their numerical values in a finite field. We ultimately opted to use the FireFly
library [37, 39] for this purpose, which allowed us to focus on the other half of the
problem: performing numerical (i.e. finite-field) evaluations of the amplitudes, as we
will discuss in Sections 4.3.3 onwards. In this section, however, we would like to describe
our work on devising an efficient method for polynomial interpolation in finite fields,
which is an important ingredient in the above libraries. Our method combines several
ideas from the field of computer algebra: Fast Fourier Transforms (FFTs) [34, 216],
the Number-Theoretic Transform [217, 218], and the use of Fourier transforms for
polynomial interpolation [34, 219, 220]. A method similar to ours was already known
in the computer algebra literature (see, for instance, Sections IX.1.2 and IX.1.3 of
Ref. [221]), although our work was carried out independently of it and we believe that
our proposal to apply such a method to particle physics calculations is new. Indeed,
FFT-based techniques are not used in any of the above interpolation libraries, as far
as we are aware, and we hope that this work can aid their future development.

Conceptually, polynomial interpolation is an easy problem to solve. Suppose there
is a polynomial q(x) of degree N whose explicit form we do not know, but whose values
yj = q(xj) we know at some points {x0, . . . , xN}. We can write down an ansatz

q(x) =
N∑

i=0
aix

i, (4.4)

where ai are unknown coefficients. This gives us a linear system of equations

yj =
N∑

i=0
aix

i
j (4.5)

3As mentioned earlier, the weight-2 and weight-3 functions are evaluated at double floating-point
precision, whereas the weight-4 functions are evaluated at single floating-point precision.
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which we can solve using Gaussian elimination to obtain the unknown coefficients ai.
Although this method is easy to implement, its performance is poor because Gaussian
elimination requires O (N3) operations. We wrote a simple implementation for this,
which we found to take ∼1 second to interpolate a polynomial where N = 103, but
several minutes when N = 104. This is consistent with the O (N3) scaling and we
would furthermore expect it to take several days if N = 105, and several decades if
N = 106.

Several of the finite-field libraries used in High-Energy Physics implement the
so-called Newton interpolation method, whose running time scales as O (N2). A more
detailed discussion of the Newton method can be found in [37, 38]. While O (N2) is
clearly an improvement, we will present a method that allows the reconstruction to
be performed in quasi-linear time: O (N log N). Our method is inspired by the fast
algorithm [219, 220] for interpolating polynomials over C, which we adapt4 to work
with polynomials over Fp. In a test implementation that we wrote, this method was
able to interpolate a polynomial with N = 106 in less than 1 second.

Our method is based on the well-known Fast Fourier Transform (FFT) class of
algorithms, which can compute the Fourier transform

ỹm =
N∑

n=1
e2πimn/Nyn (4.6)

of a sequence of numbers {y1, . . . , yN} in O (N log N) time. The standard algo-
rithm [216] recursively divides the sequence into two interleaved halves and computes
the Fourier transform of each half separately before merging them to obtain the Fourier
transform of the original sequence. This requires N to be divisible by a large power of
2, although generalisations exist that merely require N to have many divisors.

Although the most familiar applications of Fourier transforms use complex numbers
(i.e. yj ∈ C), it is known from number theory that one can also apply a Fourier
transform to sequences of finite-field numbers (i.e. yj ∈ Fp). To be able to do so, the
finite field needs to contain a primitive root of unity, which is analogous to the complex
root of unity e2πi/N . We define a number u to be a primitive N -th root of unity if
the elements in the set {u, u2, . . . , uN} are mutually distinct and uN = 1. For such
a root to exist in a field Fp, a necessary5 and sufficient condition is that N divides

4As mentioned above, similar methods can be found in the computer algebra literature, e.g.
Ref. [221], although our work was carried out independently.

5Lagrange’s theorem proves this. The elements (excluding 0) of a finite field Fp form a multiplicative
group of order p − 1, while the elements {u, u2, . . . , uN } constitute a subgroup of order N .
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Table 4.1 Examples of prime fields Fp for fast polynomial interpolation

p Largest N permitted Primitive N -th root in Fp

15 · 227 + 1 227 11
17 · 227 + 1 227 3
13 · 228 + 1 228 3
3 · 230 + 1 230 5

29 · 257 + 1 257 3
71 · 257 + 1 257 3
75 · 257 + 1 257 7
27 · 259 + 1 259 5

p − 1. Recalling that the standard FFT algorithm requires N to be divisible by a large
power of 2, our fast interpolation method requires the finite field Fp to be specially
chosen such that p − 1 is divisible by a large power of 2 (and, of course, p itself must
be prime).6 Some examples of suitable choices of Fp are given in Table 4.1.

Having set out a way to compute FFTs in finite fields, we can apply this to the
problem of polynomial interpolation. The key observation7 is that if we choose to
sample our polynomial q(x) at the specially-chosen values xj = uj, where u is a
primitive N -th root of unity as defined above, then the linear system to be solved
(Equation 4.5) acquires the form of a Fourier transform (Equation 4.6). In short, by
choosing our prime field Fp such that p − 1 is divisible by a large power of 2 and by
choosing to evaluate our polynomial at the roots of unity xj = uj, we can interpolate
the polynomial in O (N log N) operations by performing an FFT.

In a practical calculation, there may be finite-field points at which it is not possible
to evaluate the amplitude. In particular, there are usually poles present in the IBP
solutions, master integral solutions, and the amplitude as a whole. Even though a
polynomial, by definition, has no poles, polynomial interpolation is often required as
part of a larger problem, such as the interpolation of rational functions. Since our
method requires the polynomial to be evaluated at the roots of unity, rather than
at arbitrary points, we need a procedure to handle cases where some of the required
points happen to coincide with poles.

6Ideally, one would like primes p such that p − 1 = 2N . These are known as Fermat primes and
surprisingly, only five are known: (21 +1), (22 +1), (24 +1), (28 +1), (216 +1). It has been conjectured
that no other Fermat primes exist.

7This obervation was originally made in the context of interpolating polynomials over C. [219, 220]
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Let us start by considering the simple case where only one root of unity, say xk,
coincides with a pole. The unknown polynomial q(x) can be broken into a sum of two
linearly-independent polynomials:

q(x) = q0(x) + λ1q1(x), (4.7)

where λ1 is an arbitrary coefficient to be found, and the polynomials q0(x) and q1(x)
are required to have the following values when x is a root of unity:

q0(xj) =
 q(xj) if j ̸= k

0 if j = k
(4.8)

q1(xj) =
 0 if j ̸= k

1 if j = k.
(4.9)

Since q0(x) and q1(x) can be evaluated at all roots of unity, they can both be interpolated
using our FFT-based method. If we now choose a random new point x̃ that is not
a root of unity (and furthermore is not a pole) and evaluate q0 (x̃), q1 (x̃), and q (x̃),
we can substitute these values into Equation 4.7 to determine λ1 and thus obtain an
analytical expression for q(x), as required.

This procedure can be generalised to the case where several roots of unity, say
{xk1 , . . . , xkn}, coincide with poles. We can generalise Equation 4.7 in the following
way:

q(x) = q0(x) +
n∑

i=1
λiqi(x), (4.10)

requiring q0(x) and qi(x) to have the following values when x is a root of unity:

q0(xj) =
 q(xj) if j ̸∈ {k1, . . . , kn}

0 if j ∈ {k1, . . . , kn}
(4.11)

qi(xj) =
 0 if j ̸= ki

1 if j = ki,
(4.12)

where i > 0. As before, we interpolate q0(x) and qi(x) using our FFT-based method.
By evaluating Equation 4.10 at any n new points that are not roots of unity, we
obtain a system of n linear equations constraining the values of {λi}. Since we expect
n ≪ N , this small system can straight-forwardly be solved by Gaussian elimination to
determine the values of {λi}.
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This completes our method for the efficient interpolation of polynomials in finite
fields. As mentioned, our method can interpolate polynomials with N = 106 in less
than 1 second, whereas an approach based on Gaussian elimination would take many
years to solve the same problem. There now exist a number of libraries for finite-field
interpolation and we ultimately opted to use the FireFly library [37, 39]. The rest of
Section 4.3 will therefore focus on the production of numerical (finite-field) results for
2-loop 5-point massless amplitudes, which are then supplied to FireFly in order to
obtain analytical results for the amplitude. Nevertheless, we hope that the efficient
method for polynomial interpolation that we have presented here can aid the future
development of these interpolation libraries.

4.3.3 Epsilon expansion

We would like our final amplitude to be produced as a Laurent series in ϵ. One approach
would be to treat ϵ on an equal footing with the kinematic invariants sij . The rational
functions appearing in the reconstructed amplitude would then be functions of ϵ and
sij . After reconstructing these rational functions, they could be expanded in ϵ in order
to obtain the desired Laurent series. However, we find that this approach would cause
the degree of the numerators and denominators of the rational functions to increase by
as much as 20, resulting in a need for many more numerical evaluations in order to
perform the reconstruction.

It is interesting to consider whether Laurent expansions could be obtained nu-
merically when working in finite fields. Specifically, one might hope to treat ϵ as a
numerical (i.e. finite-field valued) variable in the numerical implementation of the
amplitude and then obtain the Laurent expansion of the amplitude at a (finite-field
valued) kinematic point by combining a few numerical probes of the amplitude at
different values of ϵ. Unfortunately, such an approach is precluded by the presence
of poles in ϵ at intermediate stages of the computation (i.e. in the IBP solutions, in
the solved master integrals, or in the coefficients of the unreduced amplitude), which
prevents us from performing numerical evaluations at ϵ = 0. If ϵ were a real or complex
number, we might try to compute limits of the form

lim
ϵ→0

f(ϵ) (4.13)

but in our case ϵ takes discrete values in a finite field, and so the meaning of such a
limit is not defined. In fact, let us consider the simple case where f(ϵ) is a polynomial
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but we can perform evaluations only at non-zero values of ϵ. For such a case, it can
be shown that the only way to obtain any information about f(0) is to first perform
sufficiently many evaluations to fully interpolate the polynomial f(ϵ).8 This, of course,
would remove all of the simplification and efficiency that we hoped to gain in producing
the amplitude in the form of a series in ϵ.

Therefore, we instead used Mathematica to analytically ϵ-expand (as will be
described below) the required IBPs, masters, and amplitude coefficients; their numerical
evaluation in a finite field thus produces series in ϵ rather than pure finite field numbers.
Thus, while our C++ numerical implementation of the amplitude uses finite-field values
for the kinematic invariants sij, it keeps ϵ as a symbolic variable and must be able to
dynamically add and multiply Laurent series in ϵ, each of which takes the form

N∑
i=n

aiϵ
i + O

(
ϵN+1

)
, (4.14)

where each ai is a finite-field number. We implement a small C++ class to represent
such a Laurent series. For each series, we store the leading power n together with
the N − n + 1 coefficients {ai}. We perform addition and multiplication on these
series by implementing the same procedures that one uses when adding or multiplying
Laurent series by hand. We take care to include an extra check after each addition or
multiplication, verifying that the highest power N of the output series is consistent
with the highest powers of the input series. The underlying finite-field arithmetic on
the numbers ai is performed using the tools supplied with the FireFly library.

4.3.4 Evaluation of the IBPs

The numerical (i.e. finite-field) evaluation of an amplitude requires us to numerically
evaluate the IBP solutions in ϵ-expanded form, as mentioned in Section 4.3.3. The
analytical IBP solutions produced in Chapter 3 were rational functions of the space-time
dimension d (and of the kinematic invariants sij) so here we have used Mathematica
to set d = 4 − 2ϵ and to expand to ten orders in ϵ. In fact, for the 3-photon amplitude
we find that it is sufficient to expand to five orders in ϵ, and during the numerical
evaluation of the amplitude we obtain a 2-fold increase in speed and RAM usage by

8This fact is the basis of a clever cryptographic scheme [222] which allows a secret message to be
divided into N pieces in such a way that any k pieces (for a pre-determined value k < N) can be used
to reconstruct the secret message, while nothing can be deduced about the message by an attacker
who has fewer than k pieces.
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discarding the remaining terms. Although we obtained solutions to ∼750,000 integrals
in Chapter 3, we find that only O (1%) of these contribute to the 3-photon amplitude.
We therefore opt to ϵ-expand only these specific integrals. This procedure is fully
automated, allowing the ϵ-expansion to easily be performed for any additional integrals
required for future amplitude calculations.

As mentioned in Section 4.2.2, many of the integrals in the amplitude appear with
crossings applied to the external legs. One approach to computing these integrals would
be to apply these momentum crossings analytically to all IBP solutions (e.g. using
Mathematica), as a preparatory step before starting any numerical calculations.
Here, however, we instead choose to simply apply the appropriate crossing to the
kinematic variables sij during the numerical evaluation of the IBPs associated with
these crossed integrals. If an integral appears multiple times in an amplitude, with
different crossings, we evaluate the IBPs independently at each crossing. (The crossings
must also be applied to the master integrals, as will be described below.) Since in
Chapter 3 we had set s12 = 1, we restore the missing factors of s12 when using the IBP
solutions. Any momentum crossing is, of course, applied only after the restoration of
these factors of s12. By applying the momentum crossings numerically rather than
analytically, we avoid needing to parse and store (in RAM) numerous crossed versions
of the analytical IBP solutions, for use during the numerical evaluation of the amplitude.
When evaluating the unpolarised 3-photon amplitude, we observe that even without
crossings, these solutions account for the majority of the RAM usage by our program.

4.3.5 Evaluation of the masters

Let us now turn to the numerical (i.e. finite-field) evaluation of the master integrals in
the planar C1 and C2 topologies (as defined in Equation 3.9 of Chapter 3). We use
the results from Ref. [33], which express a special basis set of 61 integrals in the C1

topology in terms of irrational pentagon functions and boundary constants (denoted
bc4). It is in terms of these irrational functions and constants that we eventually wish
to express the entire amplitude. We start by using our IBP solutions to analytically
map the special basis set of integrals from Ref. [33] onto our own set of 62 C1 master
integrals, which are listed in the supplementary material attached to Ref. [2]. Two of
our 62 masters integrals are equal to each other, their integrands being interchanged
under the symmetry k1 ↔ k2, and although these masters had to be kept distinct
in order to use the strategy presented in Section 3.3 of Chapter 3, we now use the
symmetry in order to set the two masters equal. This allows us to invert the relations
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and map our C1 masters onto the basis from Ref. [33], and thence onto the pentagon
functions and bc4 constants. This mapping only needs to be produced once, and we
have done so analytically using Mathematica.

The mapping from our C1 masters to pentagon functions needs to be expanded as a
series in ϵ. The original results in Ref. [33] are already expanded through 5 orders in ϵ,
and to these results we add book-keeping terms to account for the missing higher-order
terms in ϵ. These book-keeping terms therefore appear (in various combinations) in
the mapping that we produce from our own masters to pentagon functions and bc4
constants. When reconstructing an amplitude, we treat these book-keeping terms as
extra irrational functions (on an equal footing with the pentagon functions and bc4
constants) and reconstruct their rational coefficients at order ϵ−4 through ϵ0; we then
verify that these reconstructed coefficients are identically zero, so as to confirm that
the missing higher powers of ϵ in the solutions from Ref. [33] are not required in the
amplitude.

It was mentioned above that momentum crossings are applied numerically to the
IBPs at the time of numerical evaluation. For the master integrals, however, we
apply the momentum crossings analytically in advance: rather than producing a single
mapping from the C1 master integrals to pentagon functions and bc4 constants, we
produce 120 copies, one for each of the possible 5! permutations of the 5 external
momenta. In each case, the relevant momentum crossing is applied to the kinematic
arguments of the irrationals as well as to their rational coefficients. We then use
the pentagon-function identities described in Section 4.3.1 to re-express the pentagon
functions in terms of our chosen minimal functional basis. Being of minimal size, our
set of basis functions is not closed under the 120 crossing operations, which is why the
crossings of the masters had to be performed analytically rather than numerically. The
analytical, momentum-crossed, ϵ-expanded solutions thus obtained for our C1 master
integrals are then used in the numerical evaluation of the amplitude.

The C2 masters can be mapped onto the C1 masters, in some cases after applying
a momentum crossing to the C1 masters. We use the mapping shown in Table 4.2,
although other choices are also possible. These mappings are straight-forward and
are implemented directly in the C++ code performing the numerical evaluation of the
masters. Since the mapping from C2 to C1 requires the application of a momentum
crossing, and yet the C2 masters may themselves be required with another momentum
crossing, our C++ framework includes a utility that combines two crossings into a single
effective crossing. This is used by the numerical code to retrieve the pre-computed C1

85



NNLO QCD corrections to three-photon production at the LHC

solutions with the correct momentum crossing, ensuring that we can automatically
calculate an amplitude where arbitrary crossings may have been applied to the C2

integrals. Having mapped the C2 masters onto the C1 masters, their reduction to
pentagon functions and bc4 constants can be calculated numerically using the existing
C1 solutions described above.

4.3.6 Simultaneous reconstruction of multiple amplitudes

When evaluating the unpolarised 3-photon amplitude, we observed that the evaluation
of the IBPs occupied the majority of the running time for each numerical (i.e. finite-
field) probe. Since many amplitudes share integrals in common, one can save significant
resources by computing multiple amplitudes simultaneously while only evaluating the
IBPs once at each numerical point.

A natural way to implement this would be to build a numerical cache that stores
recent numerical IBP results. A cache ensures that at each numerical point, having spent
a few minutes evaluating the first amplitude, one can evaluate the other amplitudes
much more quickly, since the IBP results for any shared integrals can be immediately
retrieved from the cache rather than needing to be evaluated again. One could
furthermore envisage making the numerical cache large and saving its contents to
disk, so that other amplitudes could in the future be reconstructed by using the
same finite-field evaluation points and re-using the saved numerical IBP solutions.
We implemented a cache but encountered two practical problems. Firstly, since our
computational framework uses multiple CPUs in parallel (with each CPU evaluating
the amplitude at a different numerical point), the cache has to be thread-safe to avoid
corruptions when multiple CPUs try to write to the cache simultaneously. We resolved
this issue using thread-locking to prohibit simultaneous writing from different CPUs.
The second problem was the large size of the cache, even if only storing results for the
2 most recent kinematic points computed by each thread. Although a single finite-field
number only requires a few bytes of space, the total size of the cache reached hundreds
of GB due to the number of integrals (∼6,000), crossings (∼100), threads (∼30), master
integrals (61), and powers of epsilon (5). This makes the numerical cache strategy
unfeasible to use.

We therefore decided to re-organise the way the amplitudes are numerically evalu-
ated. Instead of using a numerical cache to allow the sharing of IBP results between
different amplitudes, we opted to re-organise our calculations so that each IBP result is
immediately used and then discarded. Specifically, in the notation of Equation 3.3 from
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Table 4.2 Mapping of C2 masters onto C1 topology. The notation C1x15432 indicates
that the permutation 1 → 5 → 4 → 3 → 2 → 1 is applied to the external legs of the
given C1 integral.

C2 master Mapping onto C1 topology
C2[0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] C1[0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
C2[0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0] C1[0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0]
C2[0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0] C1[0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0]
C2[0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0] C1[0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]
C2[1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0] C1[1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]
C2[1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0] C1[1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0]
C2[0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0] C1[0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0]
C2[0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0] C1[0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0]
C2[0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1] C1x15432[0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0]
C2[0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1] C1x15432[1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0]
C2[1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0] C1[1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0]
C2[0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0] C1[0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0]
C2[1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0] C1[1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0]
C2[0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0] C1[0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0]

C2[−1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0] C1[−1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0]
C2[0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0] C1[0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0]
C2[1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0] C1[1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0] C1[0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0] C1[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1] C1x15432[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1] C1x15432[1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0]
C2[0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1] C1x15432[1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0]
C2[1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0] C1[1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0]

C2[1, −1, 1, 1, 1, 0, 0, 1, 1, 0, 0] C1[1, −1, 1, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0] C1[0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0]

C2[−1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0] C1[−1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0]
C2[0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1] C1x15432[1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0]

C2[−1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1]
(

C1x15432[0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0]−
2C1x15432[1, −1, 1, 1, 1, 0, 0, 1, 1, 0, 0]

)
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Chapter 3, we maintain running totals of the values of ĉm for each amplitude. After
the evaluation of an IBP reduction coefficient ci,m, we multiply by the (amplitude- and
integral-dependent) coefficients fi and immediately substitute into Equation 3.3 in order
to update the running totals ĉm for all the amplitudes. The coefficient ci,m can then be
discarded and a new coefficient can be computed. After performing this procedure for
all appearing integrals, we then evaluate the master integrals integrals themselves and
thus obtain an evaluation for all the amplitudes in terms of pentagon functions and
bc4 constants. This implementation allowed us to simultaneously evaluate and then
reconstruct a complete set of polarised 2-loop QCD amplitudes for qq̄ → γγγ, which
we intend to publish in a forthcoming paper. We have confirmed that the results agree
with our computation of the unpolarised 3-photon amplitude, the latter being sufficient
for the phenomenological study presented in the next section. We plan to re-use our
framework to produce similar amplitudes involving the production of hard jets.

4.4 Phenomenology

4.4.1 LHC setup

Our calculational setup follows the 8 TeV ATLAS measurement [196]. The definition of
histograms and experimental data is taken from the corresponding HEPData entry [223].
Our event selection is based on the following phase-space cuts:

• ET cut for the three photons: ET,γ1 > 27 GeV, ET,γ2 > 22 GeV and ET,γ3 > 15
GeV, where γ1 represents the hardest photon while γ3 is the softest one.

• All photons are required to have |ηγ| < 2.37, excluding the range 1.37 < |ηγ| <

1.56.

• Photon separation: the angular distance ∆R between any two photons is required
to be ∆Rij > 0.45, where ∆Rij =

√
(ηi − ηj)2 + (ϕi − ϕj)2.

• A minimum three-photon invariant mass is required: mγγγ > 50 GeV.

• Following Frixione [224], we impose smooth photon isolation. Specifically, for any
angular distance ∆R away from each photon, subject to ∆R ≤ ∆R0, we require

Eiso
T (∆R) < Emax

T

1 − cos(∆R)
1 − cos(∆R0)

, (4.15)
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where ∆R0 = 0.4 and Emax
T = 10 GeV. The energy Eiso

T (∆R) is defined as

Eiso
T (∆R) =

∑
i

ET,iΘ(∆R − ∆Ri,γ) . (4.16)

The sum in the above equation is over all final-state partons i, and ET,i and
∆Ri,γ are parton i’s transverse energy and angular distance with respect to the
photon.

Our calculation uses the NNPDF31_nnlo_as_0118 PDF set [13]. We have not
computed the PDF error; it was estimated in Ref. [196] and found to be below the
(NLO) scale variation.

In this work we have utilised two different forms for the dynamic factorisation and
renormalisation scales:

HT ≡
3∑

i=1
ET,γi

, (4.17)

MT ≡
√

p2
γγγ,T + m2

γγγ with pγγγ =
3∑

i=1
pγi

and m2
γγγ = p2

γγγ . (4.18)

Our default central scale choice is µ0 = HT /4, which follows from the findings
of Ref. [55]. In fact, in the following we have studied the choices µ0 = HT /n, with
n = 1, 2, 4 as well as the alternative choices µ0 = MT /n, with n = 1, 2, 4, that are based
on the transverse mass of the three-photon system. The MT -based scale was used
in the latest diphoton production study [225]. We find that the differences between
calculations with central scales MT /n and HT /n, with n = 1, 2, 4, are relatively
small. Scale variation of the factorisation and renormalisation scales is derived with
a standard 7-point variation around the central scale µ0: we evaluate the cross-
sections using all combinations of µF , µR ∈ {1

2µ0, µ0, 2µ0} except for the 2 combinations
(µF , µR) = (1

2µ0, 2µ0) and (µF , µR) = (2µ0,
1
2µ0); the resulting range of the cross-

sections is reported as the scale uncertainty.

4.4.2 Fiducial cross-section

In Fig. 4.1 we compare ATLAS data [196] with the predictions for the fiducial cross-
section as defined in Section 4.4.1. We compare predictions based on 6 different
renormalisation and factorisation scales, in LO, NLO and NNLO QCD. In all cases we
observe large shifts from LO to NLO and from NLO to NNLO which are much larger
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Fig. 4.1 Predictions for the fiducial cross-section in LO (green), NLO (blue) and
NNLO (red) QCD versus ATLAS data (black). Shown are predictions for six scale
choices. The error bars on the theory predictions reflect scale variation only. For two
of the scales only the central predictions are shown.

than the scale variations at, respectively, LO and NLO. Specifically, for our default
scale µ0 = HT /4 we have an NLO/LO correction of about 2.8 while the NNLO/NLO
correction is about 1.6. We discuss this important feature in Section 4.4.4 below.

Predictions based on the two different scale functional forms shown in Equations 4.17
and 4.18 are rather similar relative to the sizes of scale variations and experimental
uncertainties. Therefore, in the following, we will mainly focus our discussion on the
HT -based scales.

The scales µ0 = HT /4 and µ0 = HT /2 both agree with data, especially the HT /4
one. The scale µ0 = HT is only just outside the measurement’s uncertainty band. For
simplicity in this work we did not compute the full scale variation around the scale HT

(same for MT ) which is why only the central value is shown for these two scales. We
do not expect the scale variation around the two scales will be much different that the
pattern already emerging from Fig. 4.1.

In general we observe that the scale variation increases when going from LO to
NNLO and that all scales are consistent at a given order within their scale uncertainties.
For a proper interpretation of the reliability of the theoretical predictions it is therefore
imperative to understand the issue of perturbative convergence. We devote Section 4.4.4
to this issue but here we only say in advance that we believe the NNLO predictions
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are probably the first order for which the theory prediction, with its associated scale
variation, is reliable.

To summarize, based on the above discussion we conclude that our default scale
choice is in perfect agreement with the experimental measurement

σfid(ATLAS) = 72.6 ± 6.5(stat.) ± 9.2(syst.) fb ,

σfid(NNLO QCD; HT /4) = 67.5+7.4 (11%)
−5.7 (8%) (scales) fb . (4.19)

Clearly, the inclusion of the NNLO QCD correction plays a crucial role in this agreement.
The Monte Carlo error on the fiducial NNLO prediction is below 1%. The fiducial

predictions based on the various scale choices are provided in the supplementary
material attached to our paper [3].

4.4.3 Differential distributions

A very large number of differential distributions have been measured by the ATLAS
collaboration in Ref. [196]. In this work we have computed the theory predictions in
NNLO QCD for all of them.

We start by showing the predictions for the pT distributions of the three individual
photons: the hardest one γ1 (Fig. 4.2), γ2 (Fig. 4.3) and the softest one γ3 (Fig. 4.4).
We show the absolutely normalised distributions at LO (green), NLO (blue) and NNLO
(red) in QCD. The top and middle panels show the central scale predictions and their
corresponding 7-point scale variations for our default scale choice µ0 = HT /4: the top
panel shows the absolutely normalised distributions while the middle one shows the
same results but normalised to the NLO central predictions. Shown in black is the
ATLAS data. The bottom panels show the central scale predictions for the other 5
scale choices normalised to the central scale value for the default scale HT /4. For a
more quantitative comparison we also show the scale variation band of the default
scale as well as the ATLAS data.

The plots for all other differential distributions shown next follow the same pattern:
in Figures 4.5–4.7 we show the three ∆Φ angles between the three pairs of photons; in
Figures 4.8–4.10 we show the three rapidity differences |∆η| between the three pairs of
photons; in Figures 4.11–4.13 we show the invariant mass distributions between the
three pairs of photons; and finally in Fig. 4.14 we show the invariant mass distribution
of the three-photon system.
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Fig. 4.2 The pT distribution of the hardest photon, γ1. Top panel shows absolute
distributions. Middle panel shows distributions normalised to the NLO. Bottom panel
shows NNLO predictions for 6 different scale choices (without further scale variation),
normalised to the predictions of the default central choice µ0 = HT /4. The bands
represent 7-point scale variation about the central scale choice.

92



4.4 Phenomenology

10−4

10−3

d
σ
/d
p T

(γ
2
)

[p
b

/G
eV

] LHC 8 TeV
Scale: HT/4 PDF: NNPDF31

LO

NLO

NNLO

ATLAS

0.5

1.0

1.5

2.0

2.5

ra
ti

o
to

N
L

O

40 60 80 100 120 140 160 180 200

pT (γ2) [GeV]

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

ra
ti

o
to

N
N

L
O

(H
T
/4

)

HT/4 HT/2 HT MT/4 MT/2 MT

Fig. 4.3 As in Fig. 4.2 but for the second-hardest photon, γ2.
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Fig. 4.4 As in Fig. 4.2 but for the softest photon, γ3.
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Fig. 4.5 As in Fig. 4.2 but for the ∆Φ(γ1, γ2) distribution.
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Fig. 4.6 As in Fig. 4.2 but for the ∆Φ(γ1, γ3) distribution.
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Fig. 4.7 As in Fig. 4.2 but for the ∆Φ(γ2, γ3) distribution.
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Fig. 4.8 As in Fig. 4.2 but for the |∆η(γ1, γ2)|.
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Fig. 4.9 As in Fig. 4.2 but for the |∆η(γ1, γ3)| distribution.
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Fig. 4.10 As in Fig. 4.2 but for the |∆η(γ2, γ3)| distribution.

100



4.4 Phenomenology

10−5

10−4

10−3

d
σ
/d
m

(γ
1
,γ

2
)

[p
b

/G
eV

]

LHC 8 TeV
Scale: HT/4 PDF: NNPDF31

LO

NLO

NNLO

ATLAS

1.0

1.5

2.0

2.5

3.0

ra
ti

o
to

N
L

O

100 200 300 400 500 600

m(γ1, γ2) [GeV]

0.8

1.0

1.2

1.4

ra
ti

o
to

N
N

L
O

(H
T
/4

)

HT/4 HT/2 HT MT/4 MT/2 MT

Fig. 4.11 As in Fig. 4.2 but for the m(γ1, γ2) distribution.
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Fig. 4.12 As in Fig. 4.2 but for the m(γ1, γ3) distribution.
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Fig. 4.13 As in Fig. 4.2 but for the m(γ2, γ3) distribution.
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Fig. 4.14 As in Fig. 4.2 but for the m(γ1, γ2, γ3) distribution.
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Overall, a very consistent picture arises from all differential distributions, both
in relation to the properties of the theory predictions as well as in relation to their
agreement with data.

The most notable feature evident in all differential distributions are the large jumps
from LO to NLO and from NLO to NNLO. The difference between orders is much larger
than the corresponding scale variations at LO and NLO which, in principle, raises the
question of the validity of perturbative convergence in this process. This behaviour
closely resembles the behaviour already discussed for the fiducial cross-section. At
this point we will only mention that we believe the NNLO QCD predictions is likely
already a reliable prediction which can be confidently compared to data. We provide a
detailed discussion of this point to Section 4.4.4.

The second notable feature is the good overall agreement between the NNLO
QCD predictions, based on a scale HT /4, and the data. While in most distributions
there are bins that do not agree with the NNLO prediction, the overall shape and
normalisation of all distributions are clearly correctly described at NNLO. In fact, the
deviations observed in some of the bins could be due to larger statistical fluctuations
in data.9 An improved future measurement would clearly be very useful to clarify this.
Interestingly, the best-described distributions are ∆Φ and ∆η and we in fact observe
perfect agreement there between the NNLO predictions and the data, for all pairs of
photons.

The relative Monte Carlo error on the differential NNLO predictions shown here is
below 3 percent. The theoretical predictions for all distributions, based on our default
scale HT /4, are available in the supplementary material attached to our paper [3].

We would like to stress that in this calculation we have only accounted for the
QCD corrections through NNLO. Other theoretical contributions should at this point
also be revisited. These include electroweak corrections and the effects arising from
photon isolation. Effects due to PDFs appear to be subdominant to the scale variation
at NNLO but this should also be cross-checked in a more complete study. The issue of
the “best” scale choice remains an open question, just as we saw in Chapter 2, and at
this level of precision seems to be a dominant source of theoretical uncertainty. For a
detailed phenomenological study, the Monte Carlo error of the predictions shown here
can be improved further. Finally, for completeness, one would like to have the complete

9At low pT , the differential NNLO prediction for each photon is slightly lower than the mea-
surements (see Figs. 4.2–4.4), albeit almost always consistent within 1σ. Transverse-momentum
resummation may be beneficial here, although the deviation is too small (compared to the theoretical
and experimental uncertainties) for us to make a definitive statement.
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NNLO prediction by including the subleading-colour scale-independent contributions
to the two-loop finite remainder that were neglected in this work, although we expect
them to be phenomenologically insignificant.

4.4.4 Discussion of perturbative convergence

As in diphoton production [202, 225, 226], the inclusive production of three photons
exhibits behaviour that at first glance seems inconsistent with perturbative convergence.
Indeed, as emphasised above, we observe large jumps from LO to NLO and from NLO
to NNLO. These jumps are much larger than the corresponding scale variation bands
at LO and NLO. This behaviour is evident in all differential distributions as well as
in the fiducial cross-section. Specifically, we recall that for our default scale choice,
the fiducial cross sections at NLO exceed those at LO by a factor of 2.8 while the
NNLO/NLO K-factor is about 1.6. This behaviour is very similar to the behaviour
encountered in diphoton production.

Various arguments have been given in the past for the appearance of such large K-
factors in diphoton production. Two of those arguments are the presence of asymmetric
cuts imposed on the two photons as well as the sizeable loop-induced gg → γγ

contribution. While these arguments have their merit, it is easy to see that they are
not the drivers behind the behaviour we are trying to understand in diphoton (as
well as three-photon) production. For example, the asymmetric cuts should not play
an appreciable role for three-photon production because the Born state is naturally
asymmetric. Similarly, while the loop-induced reaction is very large relative to the
LO diphoton cross-section, its relative contribution at NNLO is not that sizeable —
only on the order of 10% [225]. While such a contribution is important it is not large
enough to be the driver behind the large K-factors observed in both processes. In fact,
this issue can be cleanly understood in three-photon production process where the
corresponding loop-induced amplitude gg → γγγ vanishes.

The above analysis of the gg-driven correction shows a very important point, namely
the role the initial-state flux plays in the apparent perturbative convergence of these
two processes. To quantify this in Fig. 4.15 we show the composition of the fiducial
cross-section at LO, NLO and NNLO organised by initial-state partonic reactions.
We show the results for three different HT -based central scales; the results for the
corresponding MT -based scales are very similar.

What we observe in Fig. 4.15 is very illuminating. First, we note that the gg flux
does contribute (due to double real emissions and collinear subtractions) although
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Fig. 4.15 Anatomy of higher-order QCD corrections to the three-photon fiducial
cross-section at LO (green), NLO (blue) and NNLO (red) by partonic channels for
three different central scale choices. Also shown is the contribution from the scale-
independent part of the two-loop finite remainder (VV) computed in our approximation
defined in Section 4.2.2.

its effects are marginal, in the range of a few percent, depending on the choice of
scale. Clearly, despite the fact the gg flux is very large, its effect on the cross-section is
nevertheless negligible because the corresponding partonic cross-sections are simply
very small. The large gluon PDF does have a substantial impact on the three-photon
cross-section but this happens through the gq reaction. As also emphasised in Ref. [225]
for the case of diphoton production, the gq reaction starts to contribute only at NLO.
This leads to a very unique interplay between purely partonic contributions, including
their radiative corrections, and partonic fluxes. Specifically, the qq̄ contribution receives
a sizeable (although not huge) NLO radiative correction. At NLO this contribution
is now dwarfed by the newly generated gq correction which at this point is only LO.
At NNLO the qq̄ result gets another significant yet moderate correction, and the gq

reaction also receives sizeable but reasonable perturbative correction. At NNLO two
new channels open: gg and qq′, the latter being much more significant than the former.
As also concluded in Ref. [225] for the case of diphoton production, NNLO is the
first order where all large partonic reactions have already been included together with
higher-order corrections to the largest ones. Once can therefore reasonably expect that
from this point onwards, the yet-higher order N3LO corrections to be derived in the
future are likely to start showing a more convergent behaviour.

107



NNLO QCD corrections to three-photon production at the LHC

Before closing this section we would like to emphasise that the pattern of scale
dependence observed when going from LO through NNLO should not be viewed as
anomalous. The fact that scale dependence increases towards NNLO is simply due to
the fact that the scale variation at the lower orders is artificially small and that, as
explained in this section, at each new order through NNLO new large partonic reactions
enter the process, thus increasing the overall scale dependence. The arguments given
here imply that starting at N3LO, the scale variation should start to decrease. This
will be very interesting to check in the future. In summary, in our view, the above
arguments imply that the scale dependence of the NNLO prediction is likely not to be
artificially small.

4.5 Conclusions

In this chapter, we have calculated the NNLO QCD corrections to three-photon pro-
duction at the LHC. Our calculation is complete except for the scale-independent part
of the two-loop finite remainder which is included in the leading-colour approximation.
We estimate the effect of the missing two-loop contributions and we expect that they
are phenomenologically insignificant.

Our calculation is the first NNLO calculation for a 2 → 3 scattering process.
Although the production of colourless final states is not as complicated as a generic
2 → 3 reaction, we believe that our calculation clearly demonstrates that current
computational technology is capable of dealing with the complicated structure of
infrared singularities in multi-final-state processes. In particular, based on previous
experience with dijet production (which was computed within the same Stripper
framework as the present calculation) we think that the NNLO computation of three
jets at the LHC is feasible.

An important part of this work is the creation of an automated computational
framework to calculate 2-loop 5-point massless amplitudes. The framework uses
finite-field methods to numerically evaluate the unreduced amplitude coefficients, IBP
solutions, and master integral solutions, applying momentum crossings where necessary.
These numerical results are combined and interpolated in order to simultaneously
generate multiple amplitudes in exact, fully analytic form, defined directly in the
physical region. We have used this framework to calculate the 2-loop amplitude
qq̄ → γγγ in the leading-colour approximation, which is a key ingredient in this NNLO
2 → 3 calculation. To the best of our knowledge, this is the first time that a 2-loop
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5-point amplitude has been expressed in a form readily available for phenomenological
applications. Our computational framework is automated and we plan to use it in the
near future to produce polarised and unpolarised amplitudes involving the production
of combinations of photons and jets.

Beyond the production of the 2-loop amplitude in analytical form, we have exten-
sively investigated the question of numerical stability and have been able to evaluate
the amplitude numerically in about 30k phase-space points with sufficient numerical
precision. This problem is highly non-trivial due to the large size of the amplitude and
the large number of independent transcendental functions that appear in it.

The evaluation of the two-loop amplitude is expensive in terms of CPU time. We
have investigated two possibilities to mitigate this problem: one involves specially
generated phase-space points that accelerate the convergence of the phase-space inte-
gration, while the other involves the construction of a four-dimensional interpolating
function which internally utilises machine-learning techniques. We find that these
two approaches lead to compatible predictions within the corresponding Monte Carlo
errors.

We observe that the structure of higher-order corrections in inclusive three-photon
production is very interesting and closely resembles the structure known from diphoton
production. We find very large higher-order corrections: the NLO prediction for the
fiducial cross-section is larger than the LO prediction by a factor of 2.8 while the
NNLO prediction exceeds the NLO prediction by a factor of 1.6. We have presented a
detailed analysis of the anatomy of the higher-order corrections in this process and
have concluded that the NNLO prediction is likely to be reliable.

Finally, we have compared our predictions with the high-quality LHC data available
from the ATLAS Collaboration. We find that the sometimes huge discrepancies
between QCD predictions and data noted previously at NLO are absent at NNLO
and that the NNLO prediction agrees well with data for all distributions. This result
clearly demonstrates how indispensable higher-order corrections are to quantitative
phenomenological LHC analyses.
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Chapter 5

Conclusion

In this thesis, higher-order QCD calculations were performed with the ultimate aim
of increasing the precision of theoretical predictions for high-energy collider processes.
After an initial study discussing the extent to which scale-setting methods can reduce
theoretical uncertainties in higher-order QCD predictions, the majority of this thesis
focussed on developing calculational techniques to enable the NNLO QCD frontier to
be advanced to encompass 2 → 3 processes.

The dependence of perturbative QCD calculations on the arbitrary renormalisation
scale µR is conventionally used as a means to estimate the theoretical uncertainties
arising from the missing higher-order terms. The BLM/PMC scale-setting method
is sometimes advocated as a way to eliminate the ambiguities over the value of µR,
by stipulating that all terms proportional to the QCD β-function coefficients are to
be absorbed into the running coupling. Here, the BLM/PMC method for setting
the renormalisation scale µR was studied and three ambiguities were identified in
the BLM/PMC procedure itself. The numerical impact of these three ambiguities
was examined using the example of the total cross-section at NNLO in QCD for tt̄

production at the LHC and Tevatron. One of the ambiguities was found to have a
negligible numerical impact on the cross section and we suspect that it is responsible
for the very small “initial renormalization scale dependence” reported in Ref. [72].
The effect of the other two ambiguities was found to be much larger, and was in fact
comparable to the impact of the choice of µR on the conventional cross-section. To
try to resolve the most significant ambiguity, several approaches were studied but the
cross-sections arising within these approaches were found to differ markedly from one
another. Thus, while the BLM/PMC procedure is interesting and well-motivated,
its effect on cross-sections might be better viewed as changing the central values

111



Conclusion

of predictions, rather than removing theoretical uncertainties. It is important to
emphasise that even an unambiguous scale-setting prescription would not remove the
theoretical uncertainties in fixed-order QCD predictions, since these uncertainties arise
from missing higher orders in αS. Calculating processes to higher orders in αS is
therefore indispensable in order to reduce these uncertainties.

A central ingredient in higher-order QCD calculations is the evaluation of multi-loop
integrals and multi-loop amplitudes. Here, a novel strategy was introduced for solving
IBP identities, which are widely used in computing multi-loop QCD integrals. The
strategy was implemented in an efficient C++ program, which incorporates a number of
features that greatly increase the range of integrals that can be solved and reduce the
time required to compute them. In particular, arranging symbolic algebraic operations
into a network of lazily-evaluated expressions was found to improve the speed by an
order of magnitude. By employing large-scale parallelisation of the evaluation of the
expressions in the lazy-evaluation graph, the speed was increased by a further two
orders of magnitude. A complete set of IBP solutions was hence produced for the
calculation of any planar 2-loop 5-point massless QCD amplitude. These solutions
enabled the calculation of the NNLO QCD corrections to 3-photon production described
below. Furthermore, illustrative results for the associated non-planar integrals were also
obtained, demonstrating that the program would be capable of producing a complete
solution to the non-planar IBPs on a timescale of several months, subject to the
availability of a computing cluster with several hundred CPUs.

Calculating multi-loop amplitudes is highly non-trivial, even after the required
multi-loop integrals have been solved. Here, a computational framework was created
for the automated calculation of 2-loop 5-point massless planar amplitudes. With the
help of the IBP results from Chapter 3, the master integral solutions from Ref. [33],
and finite-field interpolation [37], this framework produces amplitudes in fully-analytic
form, defined directly in the physical kinematic region. The 2-loop leading-colour
amplitude qq̄ → γγγ was thus calculated.

The culmination of the above work was the calculation of the NNLO QCD corrections
to 3-photon production at the LHC. This is an important milestone, marking the first
NNLO QCD calculation for a 2 → 3 process. Beyond this symbolic significance, the
NNLO QCD 3-photon result is of phenomenological interest, particularly because the
cross-section at NNLO exceeds the NLO predictions by about 60%. This increase
brings the predictions (fiducial and differential alike) into line with the experimental
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measurements at the LHC, thus resolving a notable discrepancy between theory and
experiment.

The last 20 years have seen remarkable progress in NNLO QCD calculations as
increasingly-complicated 2 → 1 and 2 → 2 processes have been computed. It is
anticipated that the coming years will see similar developments for 2 → 3 processes.
Our automated framework for 2-loop 5-point amplitude calculations can be be used to
compute multiple amplitudes simultaneously, which makes it well-suited for several
avenues of future work. One avenue is the calculation of helicity amplitudes, since each
5-particle process requires the calculation of up to 25 = 32 helicity amplitudes.1 We are
currently calculating helicity amplitudes for 3-photon production and our preliminary
results suggest that the helicity amplitudes will be much more compact than the
spin-averaged amplitude calculated in Chapter 4. Another avenue is the calculation of
2-loop amplitudes for processes involving jets: 3-jet production, jjγ-production, and
jγγ-production. Unlike 3-photon production, which (in the absence of real radiation)
involves a single partonic process qq̄ → γγγ, the production of jets involves a multitude
of partonic channels. For example, 3-jet production requires calculating amplitudes
for gg → ggg, qq̄ → ggg, qq̄ → qq̄g, and qq̄ → q′q̄′g, as well as all of their possible
momentum crossings. As well as enabling the calculation of NNLO QCD corrections to
more 2 → 3 processes, these 2-loop 5-point amplitudes will also be key ingredients for
calculating N3LO corrections for 2 → 2 processes. Looking further ahead, many 2 → 3
processes of interest involve massive particles such as W and H bosons, introducing
fresh challenges for NNLO QCD calculations, including the need to calculate 2-loop
5-point integrals in the presence of additional kinematic (mass) scales. We are hopeful
that the rapid ongoing advances in the calculation of real and virtual corrections will
soon allow these processes to be computed. These high-precision theoretical predictions

— together with increasingly high-precision measurements at the LHC — will enable
the most stringent tests to date between theory and experiment for these complicated
processes. This will either further confirm the validity of the Standard Model of Particle
Physics or perhaps provide the first clues about what might lie beyond it.

1We say up to 32 because these helicity combinations are not always independent: depending on
the process, some helicity amplitudes might be related to each other by symmetries such as momentum
crossings, charge conjugation, and parity.
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Appendix A

Pentagon function identities

Here we present the pentagon function identities which we derived as described in
Section 4.3.1 of Chapter 4. The identities will be grouped by their transcendental
weight.

A.1 Notation

The pentagon functions are defined in Ref. [33] in the generic form f
(i)
j,k(v1, v2, v3, v4, v5),

where the index (i) cyclically permutes the arguments {vn}. We find it convenient to
introduce a modified notation for two reasons: firstly, in many functions, some of the
5 variables vn are in fact dummy variables. Secondly, the identities that we present
here include non-cyclic permutations of the arguments {vn} as well as including linear
combinations of vn. We label our functions fj,k and distinguish them from the original
functions f

(i)
j,k by the lack of the superscript (i). Our functions are defined in terms of

f
(i)
j,k in the following way:

f1,1(a) ≡ f
(1)
1,1 (a, _, _, _, _)

f2,1(a, b) ≡ f
(1)
2,1 (a, _, b, _, _)

f3,1(a, b) ≡ f
(1)
3,1 (a, _, b, _, _)

f3,2(a, b) ≡ f
(1)
3,2 (a, _, b, _, _)

f3,3(a, b, c) ≡ f
(1)
3,3 (a, b, _, c, _)

f3,4(a, b, c, d, e) ≡ f
(1)
3,4 (a, b, c, d, e)

f4,1(a, b) ≡ f
(1)
4,1 (a, _, b, _, _)

f4,2(a, b) ≡ f
(1)
4,2 (a, _, b, _, _)
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Pentagon function identities

f4,3(a, b) ≡ f
(1)
4,3 (a, _, b, _, _)

f4,4(a, b, c) ≡ f
(1)
4,4 (a, b, _, c, _)

f4,5(a, b, c) ≡ f
(1)
4,5 (a, b, _, c, _)

f4,6(a, b, c) ≡ f
(1)
4,6 (a, _, b, _, c)

f4,7(a, b, c) ≡ f
(1)
4,7 (a, _, b, c, _)

f4,8(a, b, c) ≡ f
(1)
4,8 (_, a, _, b, c)

f4,9(a, b, c) ≡ f
(1)
4,9 (a, _, b, c, _)

f4,10(a, b, c, d, e) ≡ f
(1)
4,10(a, b, c, d, e)

f4,11(a, b, c, d, e) ≡ f
(1)
4,11(a, b, c, d, e)

f4,12(a, b, c, d, e) ≡ f
(1)
4,12(a, b, c, d, e).

Here we have used the symbol _ to denote any dummy arguments appearing in the
functions that were defined in Ref. [33].

Some of the weight-4 identities require introducing a set of ‘constants’ hj,k. The
value of each ‘constant’ varies with the kinematic region, just like the bc4 ‘constants’.
We retain the regional dependence of the constants by giving them kinematic arguments:
hj,k(a, b, . . . ). These kinematic arguments are only present in order to determine the
kinematic region and they do not otherwise affect the value of the hj,k constants. We
define these hj,k constants implicitly via the weight-4 identities themselves. We expect
that it should in fact be possible to express all of the hj,k constants in terms of the bc4
constants.

A.2 Weight 2

There is one weight-2 identity:

f2,1(a, b) + f2,1(b, a) = 1
2 [f1,1(a) − f1,1(b)]2 . (A.1)

A.3 Weight 3

The weight-3 identities are as follows:

f3,2(b, a) = f3,1(a, b) (A.2)
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f3,3(a, b, c) = 7ζ3 − ζ2f1,1(a) − ζ2f1,1(b) + 3ζ2f1,1(c) − f1,1(a)f1,1(b)f1,1(c)
+ f1,1(a)f1,1(c)2 + f1,1(b)f1,1(c)2 − f1,1(c)3 − ζ2f1,1(c − a − b)
+ f1,1(a)f1,1(b)f1,1(c − a − b) − f1,1(a)f1,1(c)f1,1(c − a − b)
− f1,1(b)f1,1(c)f1,1(c − a − b) + f1,1(c)2f1,1(c − a − b)
− f3,3(a, c − a − b, c) − f3,3(c − a − b, b, c) (A.3)

f3,3(a, b, c) = f3,3(b, a, c) (A.4)
f3,4(a, b, c, d, e) = f3,4(e, d, c, b, a) (A.5)
f3,4(a, b, c, d, e) = f3,4(e, a, b, c, d). (A.6)

A.4 Weight 4

The weight-4 identities are as follows:

f4,2(a, b) = f4,1(b, a) (A.7)
f4,3(a, b) = −f4,3(b, a) (A.8)

f4,4(a, b, c) = f4,4(b, a, c) (A.9)

f4,6(a, b, c) = h4,6(a, b, c) + 1
2f1,1(a)3f1,1(c) − 3

2f1,1(a)2f1,1(b)f1,1(c)

+ 3
2f1,1(a)f1,1(b)2f1,1(c) − 2f1,1(b)3f1,1(c) + 3

2f1,1(b)2f1,1(c)2

− 3f1,1(a)f1,1(c)f2,1(a, b) + 6f1,1(b)f1,1(c)f2,1(a, b) − 3f1,1(c)2f2,1(a, b)
+ 6f1,1(c)f3,1(a, b) + 3f1,1(c)f3,1(b, a) + f4,5(a, c, b) (A.10)

f4,8(a, c, b) = h4,8(a, c, b) + 3ζ3f1,1(a) + 3
2ζ2f1,1(a)2 + 9

8f1,1(a)4 − 17
4 f1,1(a)3f1,1(b)

+ 21
8 f1,1(a)2f1,1(b)2 − 3

4f1,1(a)f1,1(b)3 + 3
16f1,1(b)4 − 15

4 f1,1(a)3f1,1(c)

+ 15f1,1(a)2f1,1(b)f1,1(c) − 9f1,1(a)f1,1(b)2f1,1(c) + 2f1,1(b)3f1,1(c)
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+ 21
8 f1,1(a)2f1,1(c)2 − 9f1,1(a)f1,1(b)f1,1(c)2 + 3f1,1(b)2f1,1(c)2

− 3
4f1,1(a)f1,1(c)3 + f1,1(b)f1,1(c)3 + 3

16f1,1(c)4 − 3
2f1,1(a)2f2,1(a, b)

+ 3f1,1(a)f1,1(b)f2,1(a, b) − 3
2f1,1(b)2f2,1(a, b) + 6f1,1(a)f1,1(c)f2,1(a, b)

− 6f1,1(b)f1,1(c)f2,1(a, b) − 3f1,1(c)2f2,1(a, b) − 3
2f1,1(a)2f2,1(a, c)

+ 9f1,1(a)f1,1(b)f2,1(a, c) − 3f1,1(b)2f2,1(a, c) + 3f1,1(a)f1,1(c)f2,1(a, c)

− 3f1,1(b)f1,1(c)f2,1(a, c) − 3
2f1,1(c)2f2,1(a, c) + 3f2,1(a, b)f2,1(a, c)

+ 3f1,1(a)f3,1(a, b) − 3f1,1(b)f3,1(a, b) − 6f1,1(c)f3,1(a, b)
+ 3f1,1(a)f3,1(a, c) − 3f1,1(b)f3,1(a, c) − 3f1,1(c)f3,1(a, c)
+ 3f1,1(a)f3,1(b, a) − 3f1,1(b)f3,1(b, a) − 6f1,1(c)f3,1(b, a)
+ 3f1,1(a)f3,1(c, a) − 9f1,1(b)f3,1(c, a) − 3f1,1(c)f3,1(c, a)
+ 3f1,1(a)f3,3(b, c, a) − 3f1,1(b)f3,3(b, c, a) − 3f1,1(c)f3,3(b, c, a)

− 3
2f4,3(b, a) − 3

2f4,3(c, a) + 1
2f4,4(c, b, a) − f4,5(c, b, a) + f4,7(a, b, c)

(A.11)

f4,9(a, b, c) = h4,9(a, b, c) + 4
3f1,1(a)3f1,1(b) − 4

3f1,1(a)3f1,1(c) − 4f1,1(a)f1,1(b)2f1,1(c)

+ 2
3f1,1(b)3f1,1(c) + 4f1,1(a)f1,1(b)f1,1(c)2 − 2

3f1,1(b)f1,1(c)3

+ 8f1,1(a)f1,1(c)f2,1(a, b) − 4f1,1(b)f1,1(c)f2,1(a, b)
− 8f1,1(a)f1,1(b)f2,1(a, c) + 4f1,1(b)f1,1(c)f2,1(a, c) − 8f1,1(c)f3,1(a, b)
+ 8f1,1(b)f3,1(a, c) − 8f1,1(c)f3,1(b, a) + 8f1,1(b)f3,1(c, a) + f4,9(a, c, b)

(A.12)

f4,10(a, b, c, d, e) = f4,10(a, e, d, c, b) (A.13)

f4,11(c, b, e, a, d) = h4,11(c, b, e, a, d) + 6ζ3f1,1(b) + 9
2f1,1(a)3f1,1(b) + 3ζ2f1,1(b)2

− 45
8 f1,1(a)2f1,1(b)2 + 9

2f1,1(a)f1,1(b)3 − 15
16f1,1(b)4 − 6ζ3f1,1(c)

− 9
2f1,1(a)3f1,1(c) − 3ζ2f1,1(c)2 + 15

4 f1,1(a)2f1,1(c)2
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+ 3
2f1,1(a)f1,1(c)3 − 21

16f1,1(c)4 − 3ζ3f1,1(d) + 9
2ζ2f1,1(a)f1,1(d)

− 3
2f1,1(a)3f1,1(d) + 3f1,1(a)2f1,1(b)f1,1(d) − 6f1,1(a)f1,1(b)2f1,1(d)

+ 21
4 f1,1(b)3f1,1(d) − 3

2ζ2f1,1(c)f1,1(d) − 3
4f1,1(a)2f1,1(c)f1,1(d)

− 3f1,1(a)f1,1(b)f1,1(c)f1,1(d) + 3
4f1,1(b)2f1,1(c)f1,1(d)

+ 3
2f1,1(a)f1,1(c)2f1,1(d) + 3

4f1,1(b)f1,1(c)2f1,1(d) − 1
2f1,1(c)3f1,1(d)

− 3
2ζ2f1,1(d)2 + 3

2f1,1(a)2f1,1(d)2 + 9
4f1,1(a)f1,1(b)f1,1(d)2

− 33
4 f1,1(b)2f1,1(d)2 + 3

4f1,1(c)2f1,1(d)2 − 3
2f1,1(a)f1,1(d)3

+ 31
4 f1,1(b)f1,1(d)3 − 1

2f1,1(c)f1,1(d)3 − 21
8 f1,1(d)4 + 3ζ3f1,1(e)

− 9
2ζ2f1,1(a)f1,1(e) + 3

2f1,1(a)3f1,1(e) + 3
2ζ2f1,1(b)f1,1(e)

+ 3
4f1,1(a)2f1,1(b)f1,1(e) − 9

4f1,1(a)f1,1(b)2f1,1(e) + 1
2f1,1(b)3f1,1(e)

+ 3
4f1,1(a)2f1,1(c)f1,1(e) + 3f1,1(a)f1,1(b)f1,1(c)f1,1(e)

− 3
4f1,1(b)2f1,1(c)f1,1(e) − 21

2 f1,1(a)f1,1(c)2f1,1(e)

− 3
4f1,1(b)f1,1(c)2f1,1(e) + 15

4 f1,1(c)3f1,1(e)

+ 21
4 f1,1(b)2f1,1(d)f1,1(e) + 3

2f1,1(a)f1,1(c)f1,1(d)f1,1(e)

− 9
4f1,1(c)2f1,1(d)f1,1(e) + 3

4f1,1(a)f1,1(d)2f1,1(e)

− 9f1,1(b)f1,1(d)2f1,1(e) + 19
4 f1,1(d)3f1,1(e) + 3

2ζ2f1,1(e)2

− 27
8 f1,1(a)2f1,1(e)2 − 21

8 f1,1(b)2f1,1(e)2 + 51
4 f1,1(a)f1,1(c)f1,1(e)2

− 6f1,1(c)2f1,1(e)2 − 3
4f1,1(a)f1,1(d)f1,1(e)2

+ 27
4 f1,1(b)f1,1(d)f1,1(e)2 + 3

2f1,1(c)f1,1(d)f1,1(e)2

− 33
8 f1,1(d)2f1,1(e)2 − 15

4 f1,1(a)f1,1(e)3 − f1,1(b)f1,1(e)3

+ 11
4 f1,1(c)f1,1(e)3 + 5

4f1,1(d)f1,1(e)3 − 9
8f1,1(e)4

+ 3f1,1(a)2f2,1(a, b) − 6f1,1(a)f1,1(b)f2,1(a, b) + 3f1,1(b)2f2,1(a, b)
+ 9f1,1(a)f1,1(d)f2,1(a, b) − 12f1,1(b)f1,1(d)f2,1(a, b)
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− 3
2f1,1(c)f1,1(d)f2,1(a, b) + 15

4 f1,1(d)2f2,1(a, b)

+ 3
2f1,1(a)f1,1(e)f2,1(a, b) − 3f1,1(b)f1,1(e)f2,1(a, b)

+ 3
2f1,1(c)f1,1(e)f2,1(a, b) − 3f1,1(a)2f2,1(a, c)

+ 6f1,1(a)f1,1(c)f2,1(a, c) − 3f1,1(c)2f2,1(a, c)

− 3
2f1,1(a)f1,1(d)f2,1(a, c) − 3

2f1,1(b)f1,1(d)f2,1(a, c)

+ 3f1,1(c)f1,1(d)f2,1(a, c) − 9f1,1(a)f1,1(e)f2,1(a, c)

+ 3
2f1,1(b)f1,1(e)f2,1(a, c) + 12f1,1(c)f1,1(e)f2,1(a, c)

− 15
4 f1,1(e)2f2,1(a, c) + 15

4 f1,1(a)2f2,1(c, e)

− 12f1,1(a)f1,1(c)f2,1(c, e) + 9
2f1,1(c)2f2,1(c, e)

+ 3
2f1,1(a)f1,1(d)f2,1(c, e) + 9

4f1,1(d)2f2,1(c, e)

+ 9f1,1(a)f1,1(e)f2,1(c, e) − 9f1,1(c)f1,1(e)f2,1(c, e)

− 3f1,1(d)f1,1(e)f2,1(c, e) + 9
2f1,1(e)2f2,1(c, e) + 15

4 f1,1(a)2f2,1(d, b)

− 12f1,1(a)f1,1(b)f2,1(d, b) + 9
2f1,1(b)2f2,1(d, b)

+ 9f1,1(a)f1,1(d)f2,1(d, b) − 9f1,1(b)f1,1(d)f2,1(d, b)

+ 9
2f1,1(d)2f2,1(d, b) + 3

2f1,1(a)f1,1(e)f2,1(d, b)

− 3f1,1(d)f1,1(e)f2,1(d, b) + 9
4f1,1(e)2f2,1(d, b) + 3

2f1,1(b)2f2,1(d, e)

+ 3
2f1,1(c)2f2,1(d, e) + 3

2f1,1(a)f1,1(d)f2,1(d, e)

− 3f1,1(b)f1,1(d)f2,1(d, e) + 3f1,1(c)f1,1(d)f2,1(d, e)

+ 3f1,1(d)2f2,1(d, e) + 3
2f1,1(a)f1,1(e)f2,1(d, e)

+ 3f1,1(b)f1,1(e)f2,1(d, e) − 3f1,1(c)f1,1(e)f2,1(d, e)
− 3f1,1(d)f1,1(e)f2,1(d, e) + 3f1,1(e)2f2,1(d, e) − 6f1,1(a)f3,1(a, b)
+ 6f1,1(b)f3,1(a, b) − 12f1,1(d)f3,1(a, b) − 3f1,1(e)f3,1(a, b)
+ 6f1,1(a)f3,1(a, c) − 6f1,1(c)f3,1(a, c) + 3f1,1(d)f3,1(a, c)
+ 12f1,1(e)f3,1(a, c) − 6f1,1(a)f3,1(b, a) + 6f1,1(b)f3,1(b, a)
− 9f1,1(d)f3,1(b, a) − 3f1,1(e)f3,1(b, a) − 9f1,1(a)f3,1(b, d)

136



A.4 Weight 4

+ 9f1,1(b)f3,1(b, d) − 9f1,1(d)f3,1(b, d) + 3f1,1(e)f3,1(b, d)
+ 6f1,1(a)f3,1(c, a) − 6f1,1(c)f3,1(c, a) + 3f1,1(d)f3,1(c, a)
+ 9f1,1(e)f3,1(c, a) + 9f1,1(a)f3,1(c, e) − 9f1,1(c)f3,1(c, e)
− 3f1,1(d)f3,1(c, e) + 9f1,1(e)f3,1(c, e) − 12f1,1(a)f3,1(d, b)
+ 9f1,1(b)f3,1(d, b) − 9f1,1(d)f3,1(d, b) + 3f1,1(b)f3,1(d, e)
− 3f1,1(c)f3,1(d, e) − 6f1,1(d)f3,1(d, e) + 6f1,1(e)f3,1(d, e)
+ 12f1,1(a)f3,1(e, c) − 9f1,1(c)f3,1(e, c) + 9f1,1(e)f3,1(e, c)
+ 3f1,1(b)f3,1(e, d) − 3f1,1(c)f3,1(e, d) − 6f1,1(d)f3,1(e, d)
+ 6f1,1(e)f3,1(e, d) − 6f1,1(a)f3,3(a, d, b) + 6f1,1(b)f3,3(a, d, b)

− 6f1,1(d)f3,3(a, d, b) − 3
2f1,1(e)f3,3(a, d, b) + 6f1,1(a)f3,3(a, e, c)

− 6f1,1(c)f3,3(a, e, c) + 3
2f1,1(d)f3,3(a, e, c) + 6f1,1(e)f3,3(a, e, c)

+ 3f1,1(b)f3,3(b, e, d) − 3f1,1(d)f3,3(b, e, d) + 3f1,1(e)f3,3(b, e, d)

− 3
2f1,1(d)f3,3(c, b, a) + 3

2f1,1(e)f3,3(c, b, a) − 3f1,1(c)f3,3(d, c, e)

− 3f1,1(d)f3,3(d, c, e) + 3f1,1(e)f3,3(d, c, e) + 3f4,3(b, a) + 9
2f4,3(b, d)

− 3f4,3(c, a) + 9
2f4,3(e, c) − 3

2f4,3(e, d) + 1
2f4,4(c, d, e) + f4,4(d, a, b)

− f4,4(e, a, c) − 1
2f4,4(e, b, d) − f4,5(a, d, b) + f4,5(a, e, c)

+ f4,5(b, e, d) − f4,5(c, d, e) − f4,5(d, a, b) + f4,5(e, a, c)
+ f4,11(b, c, d, a, e) (A.14)

f4,12(a, b, c, d, e) = f4,12(e, d, c, b, a) (A.15)

f4,12(a, b, c, d, e) = f4,12(e, a, b, c, d). (A.16)
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