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Supplementary Methods
Chromatin Multiscale Methodology
We develop a multiscale method to investigate self-organization and liquid–liquid phase separation (LLPS) of
chromatin at a range of resolutions, and to link atomistic properties with the emergence of collective behavior
(Figure 1 and Supplementary Figure 1). In previous work, we performed simulations at level 1—all-atom simulations
of a 211-bp nucleosome in explicit solvent with ions—that enabled the differentiation between histone globular
domains and the histone tails [1]. Information was distilled from level 1 to develop level 2—our ‘chemically-specific’
coarse-grained model, which considers amino-acid and DNA base-pair level resolution. To reach the system sizes
needed to investigate LLPS of chromatin arrays, further coarse-graining was developed to produce level 3—our
‘minimal’ coarse-grained model at nucleosome level resolution.

Computational implementation
We implement both the chemically-specific and minimal model in the molecular dynamics (MD) package ‘Large-scale
Atomic/Molecular Massively Parallel Simulator’ (LAMMPS; https://lammps.sandia.gov/) [2]. Finite size ellipsoidal
particles—essential for the implementation of orientation dependent potentials—from the ASPHERE package are
used to represent coarse-grained segments of chromatin. Additionally, the RIGID package is used to enable the
building of composite rigid bodies.

We use LAMMPS stable version 3rd March 2020 compiled with our custom code (see Code Availability section
of the main text). All simulations were performed on the Cambridge Service for Data Driven Discovery (CSD3).

Chemically specific model
Chemically-specific model potential energy function
The total potential energy function for the chemically-specific coarse-grained model is,

E = EProtein bonds + EDNA bonds + EElectrostatic + EHydrophobic. (1)

Both the electrostatic and hydrophobic terms have a cutoff distance—beyond which the energy goes to zero—which
is necessary for efficient computational implementation. The protein bonds are a standard harmonic interaction,

EProtein bonds =
∑

all bonds

1

2
k(r − r0)2, (2)

where k = 20 kcal/mol/Å2 is the spring constant and r0 is the (bond dependent) equilibrium bond length.
The DNA bonds are modeled by the Rigid Base Pair (RBP) potential [3–7], which represents DNA base-pairs

(bp) as rigid planes and the interactions between two adjacent base-pairs in terms of harmonic deformations of six
helical parameters (three displacements: shift, slide, rise, and three angles: tilt, roll, twist).

EDNA bonds =
∑

all bonds

ERBP =
∑

all bonds

1

2
∆φᵀK∆φ, (3)
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∆φ = (φ− φ0);

φ = (shift, slide, rise, tilt, roll, twist),

where φ is a 6-dimensional vector of the 6 DNA helical parameters, φ0 are the equilibrium values and K is the 6× 6
stiffness matrix. This model is DNA sequence dependent so K and φ0 are dependent on the base pair step. The
helical parameters are determined using the SCHNAaP method [8]. The DNA–DNA bonds use the RBP potential
parameters from the Orozco group [6, 7].

Electrostatics are modeled by the Debye–Hückel potential, which accounts for screening due to an implicit
monovalent salt solvent,

EElectrostatic =
∑
i

∑
j<i

{
1

4πε0εr

qiqj
r e−κr, r < rc,

0, rc ≤ r,
(4)

where ε0 and εr are the permittivity of free space and the relative permittivity respectively, qi and qj are the charges
of particles i and j, r is the distance between the interacting pair of particles, κ is the inverse Debye length and rc is
the cut-off distance (necessary for efficient computational implementation). Electrostatic interactions are considered
between all charged particles within the cutoff distance.

To describe short-range non-bonded interactions, we follow the work of Dignon et al. [9] and use their version of
the Miyazawa-Jerningan potential [10] with the functional form and parameters of Kim and Hummer [11]. This
consists of a sequence-dependent hydrophobic attraction between specific amino acid pairs (Kim-Hummer model [11]),
and a standard Lennard-Jones interaction [9].

EHydrophobic =
∑
i

∑
j<i


4εij

[(σij

r

)12 − (σij

r

)6]
+ (1− λij)εij , r < 21/6σij

λij4εij

[(σij

r

)12 − (σij

r

)6]
, 21/6σij ≤ r < rc,

0, rc ≤ r;

(5)

where εij is the dispersion energy, σij is the distance at which a standard Lennard-Jones interaction is zero, λij is a
hydrophobic parameter, rc is the cutoff distance (numerical value different to that for the electrostatic potential)
and the sum is over all pairs of particles. Note that when λ = 1, we recover a standard Lennard-Jones potential, and
when λ = 0, we obtain a purely repulsive Weeks-Chandler-Anderson (WCA) potential. Each amino-acid pair has
unique values for εij and λij . σij is defined using the combination rule σij = (σi + σj)/2, where σi, σj are the van
der Waals radii of particles i,j respectively. For interactions involving DNA, λij = 1.

The two non-bonded interactions EElectrostatic and EHydrophobic are turned off between directly bonded beads.
A summary of all the chemically-specific model parameters is given in Supplementary Table 9.

Rigid base-pair potential forces and torques
Typically the RBP model is used in Monte Carlo simulations, which only require the potential energy and not its
derivatives. To implement the RBP potential in MD simulations, forces and torques must be defined. Following the
method of Fathizadeh et al [12], the force in the kth direction on a base-pair, due to the RBP potential ERBP is,

Fk = −∂ERBP

∂rk
= −

3∑
i=1

Tik

6∑
j=1

Kij∆φj , (6)

where T (see Eq. 44 in Section Computation of helical parameters) is the mid step orientation matrix between the
two base-pairs that comprise the bond. T can be thought of as the average orientation of the two base-pairs. The
torque on a base-pair around the kth axis is computed numerically using the central finite difference,

τk = −∂ERBP

∂θk
≈ −ERBP(+∆θk)− ERBP(−∆θk)

2∆θ
, (7)

where ∂θk represents an infinitesimal rotation about the kth axis and +∆θk represents rotating the current base-pair
about its kth axis by the small rotation ∆θ = 0.00001 rad.

3/30



Model building & implementation of the chemically-specific model

The chemically-specific coarse-grained model resolves DNA at the base-pair level and proteins at the amino acid
level. The DNA beads are modeled using an ellipsoidal particle that approximates the shape and mass of a base-pair.
The ellipsoid is rigidly connected to two point particles each with charge -1, which approximates the phosphate
backbone and major/minor grooves. The DNA ellipsoids are spatially defined by a position vector r, and a unit
quaternion q which encodes the orientation and can be concerted into an orthogonal rotation matrix A, whose
columns are the unit axis vectors of the ellipsoids frame of reference.

We begin by taking our reference nucleosome structure as the most populated structure from our previous
all-atom bias-exchange molecular dynamics metadynamics simulations of a 211-bp nucleosome [1]. From there,
we define the position and orientation of the DNA ellipsoids by using the software 3DNA [13], which determines
the coordinates of the rigid base pairs that fit the atomistic structure. The two phosphate point particles act as
virtual charge sites, and for computational reasons have a negligible but non-zero mass of 1 × 10−6 g/mol. The
three RBP particles (the ellipsoid plus the two point charges) are combined together as a rigid body using fix
rigid/nve/small from the RIGID package in LAMMPS. The individual particles within the rigid body each
contribute to the resultant potential and forces acting on the combined body, which is treated as a single rigid body
for the dynamics.

Using the same atomistic reference structure from our 211-bp nucleosome simulations, the protein beads are
defined as point particles centered at the Cα of each atomistic amino acid. The identity of the amino acid type is
preserved by defining a different particle type for each unique amino acid. Each amino acid was classified as either
belonging to a globular domain or histone tail (Supplementary table 1). The sequence-dependent mass, charge, van
de Waals radius and hydrophobicity values for each amino acid type are given in Supplementary Table 2, which are
taken from Ref. [9]. The classification was performed by estimating the persistence of protein secondary structures
from our 211-bp nucleosome simulations [1].

The histone tails are modeled as fully flexible polymer chains (i.e., no energetic penalty for bending) with a bond
energy modeled as in Eq. 2, with stiffness constant k = 20 kcal/mol/Å2 and equilibrium bond length r0 = 3.5Å.
Bonds are defined between adjacent amino acids along the protein backbone. The globular domains of the histones
are regions which exhibit small structural fluctuations, and are largely α-helical. Using the 211-bp nucleosome
reference structure, a Gaussian elastic Network Model (GNM) [14] is created by connecting all globular domain
amino acid pairs that are closer than 7.5Å, again using Eq. 2 where k = 20 kcal/mol/Å2 and r0 is the bond length
in the reference structure.

We develop two versions of the model: (a) breathing (i.e., with nucleosomal DNA that are allowed to unwrap
spontaneously) and (b) non-breathing (i.e., with nucleosomes that are constrained to remain fully wrapped). In
practice, these two versions differ in how the DNA beads are bound to the histone protein core. In the breathing
case, DNA ellipsoids and amino acid beads interact exclusively via the electrostatic (Eq. 4) and Lennard-Jones
potentials (hydrophobicity potential with λ=1, Eq. 5) defined above—this leaves the DNA free to bind and unbind
spontaneously due to thermal fluctuations (i.e., “breathe”), and slide around the nucleosome core. In contrast,
non-breathing simulations further constrain nucleosomal DNA by permanently bonding it to the histone core using
a GNM with the same 7.5Å threshold and bond parameters provided above, preventing these nucleosomes from
breathing and sliding, and hence, forcing them to remain fully wrapped.

To simulate the presence of an implicit solvent and allow sampling of the canonical ensemble, we use Langevin
dynamics. We use the following LAMMPS fixes: fix nve and fix langevin (using the Gronbech-Jensen/Farago
formulation [15]) for the amino acid particles, and fix rigid/nve/small and fix langevin with angular
momentum for the DNA beads.

To create the initial 12-nucleosome chromatin structure, we replicate a single nucleosome and join these copies
together following the DNA double-helix. Care must be taken to avoid steric clashes so we use short non-equilibrium
MD runs to pull the two DNA end points on adjacent nucleosomes, in opposite directions before joining them; this
creates the chromatin array in a linear conformation that resembles an extended ‘beads-on-a-string’ structure.

Equilibration of structures is achieved by slowing decreasing, in steps, the friction coefficient of the Langevin
thermostat whilst increasing the timestep. Unless otherwise specified, all production runs are performed at 300K
with a Langevin damping period of 100000 fs and a timestep of 40 fs; these values are the largest that ensure
simulation stability. It is important to note that the timescales in these coarse-grained simulations are not directly
comparable to timescales in atomistic simulations. The units of femtoseconds here are implemented to achieve
compatibility with the units of the potentials.
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Chemically-specific model parameters: Hydrophobic interactions
The parameters for all amino acid pair interactions are taken from Ref. [9], which provide the Kim-Hummer model
parameter set A for interactions involving globular domains, and the parameter set D for interactions involving only
histone tails. The mass, σ, and charge are given in Supplementary Table 2. Cross terms for σ, for use in Eq. 5, are
calculated using the combination rule σ = (σi + σj)/2, where σi and σj are the individual σs for the two amino
acids involved in the interaction. The cutoff distance is set at rc = 3σ. The values of ε and λ for each amino acid
pair can be found in the Supplementary Information of Ref. [9].

Due to the dominance of the electrostatic DNA self-repulsion at the salt conditions we explore in this work, we
approximate the DNA–DNA pairwise hydrophobic interaction as zero: σDNA–DNA = 0, λDNA–DNA = 1, εDNA-DNA = 0,
with mass and charge as given in Supplementary Table 3.

To parameterize the hydrophobic interaction between DNA and the different amino acids—i.e., the parameters
for the potential EHydrophobic between DNA and amino acids—we fit these parameters to optimize the DNA ellipsoid–
amino-acid and the DNA phosphate–amino acid radial pair-wise distance distribution functions (RDF) of the
coarse-grained simulations to match that computed from our 211-bp all-atom simulations of single nucleosomes. We
compute the RDF as:

g(r) =
nr

4πr2∆rρ
, (8)

where nr is the number of particles found at distance r in a spherical shell of thickness ∆r. To find nr we construct
a histogram of all pair distances, where nr is the bin height and ∆r the bin width. ρ is the average density of the
system. The fitted values are given in Supplementary Table 4.

Chemically-specific model parameters: Electrostatic interactions
We set the relative permittivity as that for water εr = 80, to model the low concentration of monovalent ions within
cells. The inverse Debye length κ, is varied with the monovalent salt concentration c (measured in units of mol/L)
according to:

κ−1 = λD =

√
ε0εrkBT

2× 103NAe2c
; (9)

where kB is the Boltzmann constant, T is the temperature, NA is the Avogadro constant and e is the elementary
charge. We set the cutoff distance, rc = 3.5λD.

Minimal Model
Minimal model potential energy function
The total potential energy of the minimal chromatin model is

E = ELJ + EBonds + Eanisotropic. (10)

ELJ is a Lennard-Jones interaction

ELJ =
∑
i

∑
j<i

{
4ε
[(
σ
r

)12 − (σr )6] , r ≤ rc
0, rc < r,

(11)

where r is the distance between the pair of interacting particles, ε, σ and rc depend of the type of interacting particle.
EBonds is similar to the RBP potential of the chemically-specific model, indeed it has the same functional form,

EBonds =
∑ 1

2
∆φᵀK∆φ. (12)

This RBP-like potential is instead parameterized to model DNA at a resolution of 1 bead per 5 base pairs. At this
resolution the effects of DNA sequence average out, therefore all DNA bonds have the same values for K and φ0.

The anisotropic term is a pairwise potential that depends on the relative orientations and shape of the interacting
pair of ellipsoidal particles.

Eanisotropic =
∑
i

∑
j<i

Ur(Ai,Aj , r)η(Ai,Aj , r)χ(Ai,Aj , r), (13)
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where Ai and Aj are the orientation matrices of particles i and j with center to center separation vector r. This
potential is a modified version of the well-know Gay–Berne potential [16] where we have replaced the Lennard-Jones
like term with a cosine-squared term [17]. This allows for greater control over the depth and range of the potential.
The η and χ terms are unchanged from the original version in LAMMPS [18].

Ur =


−ε h < 0,

−εcos
(
πh
2rc

)2
0 ≤ h < rc,

0 rc ≤ h.

(14)

h = r − σ, (15)

r = |r|, (16)

σ =

[
1

2
r̂ᵀG−1r̂

]−1/2
, (17)

G = Gi + Gj = Aᵀ
i S

2
iAi + Aᵀ

jS
2
jAj , (18)

where Si = diag(ai, bi, ci) is the shape matrix of particle i given by the ellipsoid radii and rc is the cutoff distance
(numerical value is potential specific). The η and χ terms contain the Gay-Berne parameters µ,ν, and the relative
energy matrices Ei = diag(ε

−1/µ
i,x , ε

−1/µ
i,y , ε

−1/µ
i,z ) where εi,k is the depth of the potential well in the direction of the

ith ellipsoids kth axis. The anisotropic term only acts between the core particle and the DNA as it simulates DNA
binding around the histone core.

The resulting potential of ELJ and Eanisotropic acting on DNA beads due to the core bead is graphed in
Supplementary Figure 2.

A summary of all minimal model parameters is given in supplementary Table 10.

Anisotropic potential forces and torques
The forces and torques for the anisotropic potential are modified from the Gay–Berne implementation in LAMMPS [18,
19]. The force is

f = −η
(
Ur
∂χ

∂r
+ χ

∂Ur
∂r

)
, (19)

where

Ur
∂r

=
∂UCS
∂r

r̂ + r−2
∂UCS
∂ϕ

[κ− (κᵀr̂)r̂] , (20)

∂UCS
∂ϕ

=
σ3

2

UCS
∂r

, (21)

∂UCS
∂r

=


0, h < 0,
πε
2rc

sin
(
πh
rc

)
0 ≤ h < rc,

0, rc ≤ h,
(22)

κ = G−1r. (23)
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∂χ/∂r is the same as in [18]. The torque on particle i is given by

τ i = Urη
∂χ

∂qi
+ χ

(
Ur

∂η

∂qi
+ η

∂Ur
∂qi

)
, (24)

where

∂Ur
∂qi

= Ai

(
−κᵀGi ×

[
−r−2 ∂UCS

∂ϕ
κ

])
, (25)

and ∂χ/∂qi and ∂η/∂qi are the same as in [18].

Model building & implementation of the minimal model
The minimal model uses two types of ellipsoidal particles. One represents the nucleosome core and is disk shaped
(referred to as a core bead), the other type represents 5 DNA base pairs (referred to as a DNA bead) and is actually
spherical but still uses the LAMMPS ellipsoidal type for computational compatibility. The radii of the core beads is
28× 28× 20Å and the radii of the DNA beads is 12× 12× 12Å, these have been optimized as part of the fitting
procedure. The beads are further categorized into linker and nucleosomal DNA, the nucleosomal DNA is fixed
rigidly together with the core bead it is wrapped around to form a rigid nucleosome. The linker DNA beads are left
free, bonded in sequence by the minimal RBP potential. The reference structures for creating the minimal model
structures are the equilibrium structures from the chemically-specific model simulations (Supplementary Figure 3).
The minimal coarse-grained DNA beads are positioned by grouping base-pairs in sets of 5 and taking the average
position and orientation. The minimal coarse-grained core beads are positioned by taking the center of mass of the
nucleosome core globular domain. The orientation is set by using specific amino acid beads to consistently construct
x,y,z orientation axis vectors of each nucleosome.

The difference between the non-breathing and breathing in the minimal coarse-grained model is only the initial
structures that are used, both have the nucleosomal DNA rigidly fixed to the nucleosome core. For the breathing
structures the effects of DNA unbinding/sliding is fixed into the structure from the equilibrated chemically-specific
coarse-grained structure that was used as the reference. This means that although during a minimal coarse-grained
simulation the DNA cannot further dynamically breathe, it is in configurations that represent the thermodynamic
fluctuations that occur due to DNA breathing.

Once again Langevin dynamics is used, but for the minimal coarse-grained model the damping time constant
is 5 ns and the timestep is 500 fs, the temperature is still 300K. The particle masses are kept consistent with the
chemically-specific model with the DNA beads having a mass of 3250 g/mol and the core beads having a mass of
100,000 g/mol.

Fitting of the minimal model parameters from chemically-specific model simulations
We fit the parameters of the minimal model such that it approximates the salt dependent behavior of the chemically-
specific model.

To obtain initial values for Eq. 11 we first computed the inter-nucleosome potentials of mean force (PMFs) using
the chemically-specific model for high and low salt, these are shown in Supplementary Figure 4 a1 and a2. The
method used to calculate these is described in Section Details of the chemically-specific model nucleosome-nucleosome
potential of mean force simulations. We then performed a similar calculation using the minimal model. Due to the
fact that the minimal nucleosomes are completely rigid, umbrella sampling is not needed, instead we simply compute
the potential energy as a function of the inter-nucleosome distance. We optimize the values of σ and ε such that the
minimal model best approximates the shapes of chemically-specific inter-nucleosome PMFs. Armed with these initial
guesses of σ and ε, which are the end points of the salt range we wish to model, we proceed to find an adequate
interpolation to model the salt dependent behavior. To do this we use the radius of gyration of non-breathing
12-nucleosome chromatin as the observable to compare between the minimal model and the chemically specific
model. Using a combination of manual adjustment and grid search techniques we obtain the optimal parameters (in
Supplementary Table 5) that give the Rg values in Supplementary Figure 4 b2; yielding good agreement with the
chemically specific model.

Moving on to the breathing model and comparing the radii of gyration between the minimal model and the
chemically-specific model (red and green lines in Supplementary Figure 4 b2), we find a significant difference in
the behavior at higher salt values. This is due to the unwrapped DNA not having strong enough interactions to
the exposed nucleosome cores. To account for this we developed the anisotropic potential which provides a strong
short range attractive binding potential around the nucleosome core where the DNA is located in an archetypal
nucleosome.
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To fit the parameters of the aniostropic potential we first use our knowledge of the shape of the nucleosome core
and the region where the DNA binds. This allows us to set the values of the ellipsoid shape matrices Score and
SDNA, and the anisotropic energy matrices Ecore and EDNA. Specifically Ecore is constructed such that there is no
attraction at the z-poles of the ellipsoid. We then ensure that it is short ranged enough to have no effect on the
non-breathing minimal model. That is, the potential well is completely covered by the bound nucleosomal DNA.
This gives us the value of cutoff rc, and the correspondence of the green and blue points in Supplementary Figure 4b1
demonstrates the value ensures the anisotropic potential has no effect on the non-breathing minimal model. To
fit the remaining parameter ε, the depth of the potential, we compute the PMF of nucleosome unwrapping for a
minimal model nucleosome where the DNA is completely free from the core and only the pairwise interactions
keep it bound. We perform a grid search parameter sweep and chose the value of 6 kcal/mol which gives the PMF
that best approximates the chemically-specific PMF in the low extension regime. The resulting PMF is shown in
Supplementary Figure 4c.

Finally, the minimal RBP-like helical parameters are optimized by directly fitting to chemically-specific coarse-
grained simulations of 200bp DNA strands. 10 simulations of random DNA sequences are performed for 10 million
timesteps. The chemically-specific coarse-grained trajectories are then mapped into the minimal representation. For
each timestep and each bond, the helical parameters between the minimal ellipsoids are computed. We now have
histograms of the equilibrium distributions for each of the six helical parameters. We observe that shift, slide, tilt,
and roll are centered about roughly zero, so we set these equilibrium values to zero. Rise and twist are set to the
calculated mean values. The stiffness matrix is constructed by computing the variance of each helical parameter.

K = kBT


kshift-slide 0 0 0 0 0

0 kshift-slide 0 0 0 0
0 0 krise 0 0 0
0 0 0 ktilt-roll 0 0
0 0 0 0 ktilt-roll 0
0 0 0 0 0 ktwist

 , (26)

kshift-slide = [(Var(shift) + Var(slide))/2]−1, (27)

krise = Var(rise)−1, (28)

ktilt-roll = [(Var(tilt) + Var(roll))/2]−1, (29)

ktwist = Var(twist)−1, (30)

where Var represents taking the variance. Note that here, unlike the original base-pair resolution RBP model,
we neglect the off diagonal covariance terms. Furthermore, shift and slide are set equal, and tilt and roll are set
equal. At this coarse-grained level we are unable to resolve the DNA major/minor grooves so the approximation of
symmetry around the z-axis is acceptable. These approximations are an important step as it allows us to redefine the
equilibrium value of twist to be zero and remap the minimal DNA in the structures by rotating each DNA bead by:

rotation correction = (position along sequence counting from zero)×−(initial twist value) (31)

This is needed because the initial twist value of 167◦ causes numerical instabilities in the current computational
implementation of the RBP model due to the angles wrapping around from 180◦ to -180◦. We confirm that the
DNA persistence length of the minimal model is the similar to that of the chemically-specific model.

Parameters of the minimal model potentials

The Lennard-Jones interaction parameters are in Supplementary Table 5, some are dependent on the salt concentration
c.

The RBP-like bonds are have the following parameters:

φ0 = (0, 0, 16.4, 0, 0, 0). (32)
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K =


0.198 0 0 0 0 0

0 0.198 0 0 0 0
0 0 1.148 0 0 0
0 0 0 0.00448 0 0
0 0 0 0 0.00448 0
0 0 0 0 0 0.0027

 (33)

where the units are Å for distances, degrees for angles, kcal/mol/Å2 for spatial stiffness matrix elements, and
kcal/mol/degrees2 for angle stiffness matrix elements.

The parameters for the anisotropic potential are in Supplementary Table 7.

Simulation protocols
Debye-length replica exchange simulation method
We implement our Debye length Hamiltonian Replica Exchange Molecular Dynamics (HREMD) method via a
modified version of the existing LAMMPS parallel tempering command from the REPLICA package.

Simultaneous simulations are performed on different replicas of the system, with the implicit salt concentration
varying (by changing the Debye length) between replicas. Each time a Hamiltonian exchange between two replicas is
attempted, the potential energies of the replicas are calculated as if they have swapped Debye lengths. The exchange
probability is then determined using the Metropolis criteria,

P (i↔ i+ 1) = min
(

1, exp

[
1

kBT

(
Uλi

D
(xi)− Uλi

D
(xi+1) + Uλi+1

D
(xi+1)− Uλi+1

D
(xi)

)])
, (34)

where xi is the chromatin coordinates of the ith replica and Uλi
D

the potential energy function at Debye length
λiD—the original Debye length of the ith replica. Unlike temperature replica exchange, HREMD requires the
recalculation of the potential energy. However, here only the re-computation of EElectrostatic is necessary, and as a
replica exchange attempt is only made infrequently this does not significantly degrade performance.

Details of chemically-specific model 12-nucleosome chromatin simulations
HREMD simulations with 16 replicas with Debye lengths ranging from 8–15Å (see Supplementary Table 8) are
performed for 12-nucleosome chromatin arrays with NRLs of 165 bp and 195 bp in both the breathing and non-
breathing cases. The simulations were run for ∼ 100 million timesteps and a set of exchanges were attempted every
10,000 timesteps. Each set of exchanges either attempts to exchange replicas {1-2,3-4...15-16} or {2-3,4-5...14-15},
with each set picked with a 50% probability. Coordinate snapshots were recorded to the trajectories every 100,000
timesteps. The last 50 million timesteps were used for analysis.

For qualitative assessment of chromatin dynamics an equilibrium structure was taken from the 0.1mol/L
simulations for both the breathing and non-breathing simulations, and run using standard MD (non replica exchange)
for ∼ 40 million timesteps. They were used for the generation of the k = 2 interaction time series plotted in main
text Figure 5.

Details of the chemically-specific model nucleosome unwrapping potential of mean force simulations
The force–extension simulations of mononucleosomes were performed following the umbrella sampling procedure
proposed by Lequieu et al. [20] but with a tension of zero. The collective variable is the DNA extension which is the
distance between the first and last base-pair. We implement the umbrealla sampling simulations using the COLVARS
library in LAMMPS [21] (version 2019-08-05). Starting from an equilibrium structure with an extension of 25Å,
initial configurations for the windows were prepared via constant velocity steered MD (SMD) until the extension was
at 750Å. A spring constant of 0.01 kcal/mol/Å2 was used with a pulling velocity of 9.0× 10−6 Å/fs, giving a total
pulling time of 100 ns. The extension range was split into 50 equally spaced windows. Each window was run with a
fixed harmonic biasing potential at the corresponding extension with a spring constant of 0.025 kcal/mol/Å2 for
100 ns. These values were chosen by assessing histogram overlap and checking that the calculated potential of mean
forces (PMF) were the same on longer timescales. The entire procedure was repeated 5 times and the aggregate
data was used for computing the PMF via the Weighted Histogram Analysis Method (WHAM) [22]. The same
procedure was done for all nucleosome configurations and environments.
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Details of the chemically-specific model nucleosome-nucleosome potential of mean force simulations
Due to the disk like shape of nucleosomes the interaction is divided into three orientation dependent configura-
tions: face-face, face-side, and side-side. A PMF is constructed for each configuration using umbrella sampling as
follows. An initial single nucleosome structure is equilibrated, it is then replicated and each copy is positioned such
that the center to center distance is 200Å. The nucleosomes are rotated into the correct orientations and held fixed
using COLVARS’ [21] angleOrient collective variable with a harmonic restraint of strength 1 kcal/mol/degrees2

with center 0◦. We use LAMMPS fix spring tether to restrain the nucleosomes in the simulation box x and y
directions to lie along the simulation box z axis with harmonic restraints of strength 1 kcal/mol/Å2. Motion in the z
direction is unaffected by this fix. The final collective variable is distance between the nucleosome centers, R.

To prepare initial configurations for the windows, R is varied using a SMD protocol from its initial value of 200Å
to its final value of 10Å over 1 million timesteps with a force constant of 0.1 kcal/mol. The range of R was split into
39 equally spaced windows, from 10 to 200, and each window was run for 10 million timesteps at the corresponding
value of R with a force constant of 0.05 kcal/mol/Å2. The orientational collective variables are kept with the same
restraints as in the setup stage. Finally the PMFs were computed from the window trajectories using WHAM [22].

Estimation of radius of gyration from simulations with our minimal model
For the radius of gyration simulations plotted in Supplementary Figure 4 we first obtain 50 random initial 12-
nucleosome structures by generating them (as described in Section Model building & implementation of the minimal
model) from randomly selected, equilibriated, structures from the chemically-specific model HREMD simulations at
the corresponding salt. We then run the 50 minimal model 12-nucleosome structures for 500,000 timesteps. These
50 repeats are done for each plotted salt value.

Details of the minimal model nucleosome unwrapping potential of mean force simulations
To calculate the PMF plotted in Supplementary Figure 4 we once again use the COLVARS library and follow a very
similar procedure to Section Details of the chemically-specific model nucleosome unwrapping potential of mean force
simulations. The distance between the first and last DNA bead R, is varied from 100Å to 700Å in 60 steps, with
each step lasting 10,000 timesteps. The time series of R is split into the corresponding 60 windows and WHAM [22]
is used to calculate the PMF.

Direct coexistence simulations
In order to compute the phase diagram of 12-nucleosome chromatin we employ the direct coexistence method [23–25]
using 125 independent 12-nucleosome chromatin arrays with 165-bp NRL at different conditions. The chromatin
array initial structures are obtained by generating them from randomly selected, equilibrated, structures from the
chemically-specific model HREMD simulations at the corresponding salt.

In a direct coexistence simulation one places both phases; i.e., the dilute liquid and condensed liquid phase
in the same box. The simulation is performed until they reach equilibrium at their coexistence densities. Once
equilibrium is reached to measure the density of coexistence we compute an average density profile along the long
side of the simulation box with the center of mass fixed. The density profiles for our simulations are shown in
Supplementary Figure 5. Once equilibrated the simulations were run for approximately 100 million timesteps and
coordinate snapshots were recorded every 10,000 timesteps. This is greater than the minimal model Rg correlation
time of 2 ns (see Section Timescale difference between chemically-specific and minimal model) which is equal to
4000 timesteps (1 timestep = 500 fs). The simulation box dimensions were (1200Å× 1200Å× 5000Å).

We estimate the critical salt concentration cc by fitting the density difference between the coexisting low-density
ρl(c) and high-density ρh(c) phases to the expression [26],

(ρh(c)− ρl(c))3.06 = d

(
1− c

cc

)
, (35)

where d is a fitting parameter. The critical density ρc is estimated using the law of rectilinear diameter,

(ρl(c) + ρh(c)) /2 = ρc + s (cc − c) , (36)

where s is a fitting parameter.

Additional Algorithms
Quaternion to rotation matrix
The unit quaternion

q = (qw, qx, qy, qz), (37)
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|q| =
√
q2w + q2x + q2y + q2z = 1, (38)

can be converted into an orthogonal rotation matrix:

A =

q2w + q2x − q2y − q2z 2(qxqy − qwqz) 2(qxqz + qwqy
2(qxqy + qwqz) q2w − q2x + q2y − q2z 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) q2w − q2x − q2y + q2z

 . (39)

Computation of helical parameters
We compute the helical parameters of the RBP model using the SCHNAaP procedure [8]. The two base-pairs (DNA
ellipsoids) have positions and orientation quaternions r1, q1 and r2, q2 respectively. The following method computes
the helical parameters φ = (Dx, Dy, Dz, τ, ρ,Ω) that describe their relative orientation:

1. Convert quaternions q
1
and q

2
to matrices T1 and T2 whose columns are the x̂, ŷ, ẑ axis direction vectors.

2. Calculate the roll-tilt angle Γ:

Γ = cos−1(ẑ1 · ẑ2). (40)

3. Calculate the roll-tilt axis rt:

rt = ẑ1 × ẑ2. (41)

4. Rotate base-pair 1 and 2 about rt by +Γ/2 and −Γ/2 respectively:

T′1 = R(rt,+Γ/2)T1, (42)
T′2 = R(rt,−Γ/2)T2, (43)

where R(a, θ) is an orthogonal matrix that describes a rotation of θ about axis a.

5. The mid-step matrix T is the mean of the rotated matrices:

T =
1

2
(T′1 + T′2). (44)

6. Twist Ω is the angle between the transformed y axis (ŷ′1 is the second column of T′1):

Ω = cos−1(ŷ′1 · ŷ
′
2), (45)

7. Calculate φ the angle between the roll-tilt axis and the mid-step y-axis (ŷms is the second column of T):

φ = cos−1(r̂t · ŷms). (46)

8. Roll ρ and tilt τ are given by:

ρ = Γ cos(φ), (47)
τ = Γ sin(φ). (48)

9. Shift Dx, slide Dy, and rise Dz are calculated as:

(Dx,Dy,Dz)ᵀ = T(r2 − r1)ᵀ. (49)
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Analysis of the chemically-specific model simulations
Orientation dependent nucleosome-nucleosome interactions
The relative orientation of two nucleosomes can be categorized into three states: face-face (ff), face-side (fs), and
side-side (ss) as illustrated in Supplementary Figure 6. To characterize these, we compute the nucleosome orientation
matrices—the columns of which are the orthogonal unit axis vectors of the nucleosome. The center of a nucleosome
is defined as the center of mass of the globular domain beads. The x axis passes through the nucleosome dyad and
the z axis points perpendicularly out of the nucleosome “face” as shown in Supplementary Figure 6.

Below, we explain the procedure used to categorize the relative orientation of the nucleosomes. We define the
angles {α, βi, βj} as

ẑi · ẑj = cosα, (50)
ẑi · r̂ = cosβi, (51)
ẑj · r̂ = cosβj , (52)

where r̂ is the unit vector pointing from the center of the ith nucleosome to the center of the jth nucleosome, and ẑi
and ẑj are the unit z-axis vectors of ith and jth nucleosomes respectively. We then use following procedure:

if α < 45◦ or α > 135◦ :

if βi < 45◦ or βi > 135◦ or βj < 45◦ or βj > 135◦ :

Face-face
else:

Side-side
else:

Face-side

(53)

We then construct three interaction matrices Mµ
ij between the ith and jth nucleosomes, one for each relative

orientation µ = {ff, fs, ss}:

Mµ
ij =

1

Nt

∑
t

Cµij(t), (54)

Cµij(t) =

{
1, if nucleosomes i and j are in contact, and have a type µ relative orientation,
0, otherwise,

(55)

where t is the timestep. The sum is taken over all Nt snapshots used in the analysis. Two nucleosomes are defined
to be in “contact” when the center to center distance between them is < 110Å. The interaction matrices can then
be projected onto a 1D map to describe the relative intensity of interactions between nucleosomes separated by
(k − 1) neighbors,

Iµ(k) =
1

Nn

∑
i

Mµ
i,i+k. (56)

Sedimentation coefficient
The sedimentation coefficient is computed using the HullRad method [27]:

s = 108
(
M −Mv̄ρ20,w
NA6πη0RT

)
, (57)

where M is the total molar mass, v̄ is the total partial specific volume, ρ20,w is the density of water at 20C, and η0
is viscosity of water at 20C.

M =
∑
i

mi, (58)
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v̄ =
1

M

∑
i

mivi, (59)

where mi and vi are the molar masses and specific volumes of the individual beads. RT is the translational
hydrodynamic radius which is computed via generating the convex-hull of the molecule. Full details of this
calculation can be found in [27].

Amount of unwrapped DNA
For the simulations of breathing chromatin it becomes slightly difficult to define which DNA beads are nucleosomal
and which are linker. This is because at the higher salt values the dense chromatin structures have DNA in contact
with the nucleosome core proteins that is not part of that nucleosome, so simply computing the protein-DNA contacts
will not work. To overcome this we developed the follow procedure: first we record which protein beads are bonded
to the DNA in simulations of non-breathing nucleosomes, these protein beads are located circularly around the
nucleosome in the locations where the DNA is typically wrapped. Then, for each frame in the breathing trajectory,
we compute the contacts between the DNA and the aforementioned protein beads. For each nucleosome we now have
a list of bound DNA beads. We then compute the median DNA bead in terms of index along the DNA sequence.
This is approximately the center bead of that nucleosome’s DNA. We then look forwards and backwards along the
DNA sequence, within the range of maximum and minimum indices of the bound DNA beads, and unless a large
continuous region of unbound DNA (>100bp) is found, all the DNA between the maximum and minimum limits
is added. Each nucleosome now has a contiguous section of nucleosomal DNA assigned to it. Finally the list of
nucleosomal DNA is checked for overlaps and any are removed to ensure that each DNA bead can only be a member
of one nucleosome. The average amount of unwrapped DNA per nucleosome is then computed as:

Nunwrapped = (147Nn −Nnucleosomal DNA)/Nn, (60)

where Nn is the number of nucleosomes, Nnucleosmal DNA is the total number of nucleosomal DNA beads, and 147 is
the typical number of base pairs of DNA wrapped round one nucleosome.

Nucleosome valency
Nucleosome valency V , is defined as the average number of other nucleosomes a nucleosome is in contact with, as
defined in Section Orientation dependent nucleosome-nucleosome interactions .

V =
1

NtNn

Nt∑
t

Nn∑
i,j

Cij(t), (61)

Cij(t) =

{
1, if nucleosomes i and j are in contact,
0, otherwise.

(62)

Nucleosome–nucleosome contacts
To calculate the inter-nucleosome molecular contacts we use a similar procedure to the nucleosome-nucleosome
interactions but at bead level rather than nucleosome level. For each timestep in the simulation trajectory the total
contact matrix is computed for all beads.

Mij =

{
1, if beads i and j are in contact
0, otherwise,

(63)

where “in contact" here is true when the distance between beads i and j is less than ((σi + σj)/2 + 1Å). For each
bead three sums are performed. One each counting up the contacts with: DNA, Histone tail, and Globular domain
beads. Importantly the contacts are only counted if they are located in different nucleosomes. For the breathing
DNA this is non-trivial. To proceed we defined nucleosomal DNA using the same method as in Section Amount of
unwrapped DNA. The remaining linker DNA is then assigned to the nucleosome it is closest to (in term of DNA
sequence, not spatial distance). This process enables the contacts to be computed for interactions between different
nucleosomes that would otherwise be dominated by the intra-nucleosome contacts.

Cx(i) =
∑

j in x and in different nucleosome to i

Mij , x = {DNA,Histone tails,Globular domain}. (64)
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Cx(i) is then averaged over all nucleosomes and all timesteps in the trajectory, and normalized by its maximum
value CMAX. The values of Cx(i) are plotted in Figure 4a and 4c. To generate the visualizations in Figure 4b and
4d each bead is given a RGB color according to:

colori = (red, green, blue) = 255
log10

(
CMAX × (CDNA(i), CGlobular domain(i), CHistone tails(i))

)
log10(CMAX)

. (65)

Where RBG values are integers in the range 0-255.

Analysis of minimal simulations
Radius of gyration
To enable comparison with the chemically-specific model the radius of gyration is computed using only the core
beads:

Rg =

√√√√ 1

N

〈
N∑
i

(ri − rmean)2

〉
. (66)

Estimation of liquid-network connectivity
We define the connectivity as the mean number of connections per chromatin array in the high-density phase
multiplied by the density of high-density phase, which gives the connectivity as the number of inter-chromatin bonds
per unit volume. The number of connections of a chromatin array is defined as the number of distinct chromatin
arrays it is in contact with. Two nucleosomes are defined to be “in contact" if the nucleosome–nucleosome distance
(i.e. any nucleosome in one chromatin array relative to any nucleosome in another chromatin array), is less than
110Å.

Supplementary Notes
Timescale difference between chemically-specific and minimal model
To approximate the difference in timescales going from the chemically-specific model to the minimal model we
compute the autocorrelation function of the radius of gyration of a 12-nucleosome chromatin system at low salt
conditions in both models. The radius of gyration is calculated from the center of masses of the nucleosomes in both
models. The time series are plotted in Supplementary Figure 7a and b for the chemically-specific model and the
minimal model respectively. We compute the autocorrelation function C(τ) using

C(τ) =
〈
(
Rt − R̄

) (
Rt+τ − R̄

)
〉

Var(R)
, (67)

where τ is the time lag, Rt are the values of the radius of gyration at timestep t, R̄ is the mean radius of gyration,
Var(R) is the variance, and the averages are taken over t. The auto-correlation functions are plotted in 7 c and d,
the values of the correlation time tc are approximated by reading of the graphs where the value of C(τ) reaches 1/e.

Nucleosome formation
We investigate the ability of the chemically specific model to spontaneously form nucleosomes starting from
configurations where the DNA is completely unwrapped and unbound from the histone core. These simulations
are performed by setting up the structures, as pictured in the left panel of Supplementary Figure 8a, in a periodic
simulation box. The box dimensions are approximately double the length of the fully extended DNA, the periodicity
ensures the DNA and nucleosome will eventually come in to close enough contact so they can interact. The
simulations are run until binding occurs and then run for a further 10 million timesteps to ensure the resulting
structures are well equilibrated. 64 trials were run and categorized by visual inspection into the pie chart categories
in Supplementary Figure 8a. We observe that a nucleosome is only correctly formed approximately one third of the
time, the other resulting configurations include: a reversome, which is when the DNA is wrapped in a right-handed
helix; “knotted" configurations where the DNA coiling is nucleosome-like but has DNA overlap; finally “wrong"
where the DNA coiling is not nucleosome-like. This suggests additional processes are required to ensure the model
always forms nucleosomes. Experimental literature shows that with completely relaxed DNA the formation of
nucleosomes is significantly slowed, with positive supercoiled DNA nucleosomes do not form, and with negative
supercoiled DNA the nucleosomes form instantaneously [28]. To investigate the response of the model to DNA
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supercoiling we repeat the simulations with the addition of torsional restraints to the DNA strand which is setup
with either negative or positive supercoiling. The supercoiling is achieved by either increasing (for positive) or
decreasing (for negative) the twist angle between base-pairs by 10%. The torsional restraints fix the rotation of
the end-two base-pair by the addition of strong additional forces such that they cannot rotate about their z-axis.
Additionally we start the simulation with the DNA in contact with the histone core. Performing 64 repeats we
observe that negative super-coiling always forms a nucleosome, consistent with the experimental literature, and
positive supercoiling always forms the chirally inverted reversome (Supplementary Figure 8b). The reversome is a
metastable state of a nucleosome that is observed in experiments [29–31].

Persistence length of DNA
To test our chemically-specific coarse-grained DNA model we compute the persistence length of DNA as a function
of monovalent salt concentration (Supplementary Figure 9a) and DNA sequence (Supplementary Figure 9b). The
simulations are performed using 300 bp long strands of isolated DNA. 10 repeats are done for each data point for
a total simulation time of ∼100 million time steps. The persistence length P of polymer is the length at which
correlations on the direction of the polymer tangent are lost. We use the following definition:

〈n(xi) · n(xj)〉 = e−l/P , (68)

l = |xi − xj |.

Where n(xi) is the tangent vector of the polymer at location xi—note that location here is in terms of contour
distance with units of base-pairs (symbol bp). E.g., x1 = 1 is the 1st base-pair and x10 = 10 is the 10th base-pair. l
is the contour distance. To compute the value of P from our simulations we use the DNA ellipsoids’ quaternion
orientation to directly give the tangent vectors. The end 20 base-pairs are excluded from analysis. For each time
step all pairs of n(xi) · n(xj) are computed and the average is taken over all timesteps for each l value. We then plot
the scatter graph of l verses 〈n(xi) · n(xj)〉 and fit an exponential curve to obtain P .

We see reasonable agreement with the experimental data for the salt dependence, the differences between our
values and the experimental are of the same order as the differences between the the two experimental plots. This
highlights the difficulty in accurate measurement of the persistence length of semi-flexible polymers with the existence
of multiple techniques and alternative definitions to our Eq. 68 [32–34]. For the sequence dependent behavior our
results follow the general trend where stiffness decreases going from left to right across the sequences. All but
one data point is either in agreement with the experimental or the MD results. There are significant differences
between all the different plots which can be explained by the aforementioned difficulty in accurate persistence length
calculations.

Comparison with force-spectroscopy experiments of mononucleosomes
The force-extension curves in Supplementary Figure 10a are computed as the numerical derivative of the PMF curves
in figure 2a of the main text. The rupture forces listed in Figure 2c are the values at the peaks, labeled as F1 and
F2 in Supplementary Figure 10a, that occur at the transition states.

During the first regime (state 1), the force increases moderately as the DNA extends until it reaches a local
maximum. The force then drops signaling the DNA-protein interactions being broken as the outer DNA turn
unwraps. In the second regime (state 2), a similar behavior occurs with the force increasing significantly as the
DNA continues to extend, and then reaching a second maximum and dropping again. This second drop in the force
corresponds to the rupture of the DNA-protein interactions in the inner DNA turn. The third and final regime
(stage 3) reflects the stretching of the fully unwrapped, but still histone-bound, nucleosomal DNA.

The forces required to unwrap the outer and inner DNA turns according to our model—e.g., ∼5 pN and ∼30 pN at
0.15mol/L for the outer and inner DNA turn, respectively—are in accordance with the values from force spectroscopy
experiments [35–37].

Force-extension simulations of oligonucleosomes
As further validation, we conducted force-extension simulations of 4-nucleosome chromatin arrays by performing
constant velocity steered MD. The spring constant was 0.001 kcal/mol/Å2 and the pulling velocity was 3.0×10−6 Å/fs.
The initial structures were equilibrated for 100 ns and then the SMD procedure was run for 1000 ns. Values of the
applied SMD force and current extension are stored at each timestep (Supplementary Figure 10b).

In Supplementary Figure 10b, we compare the force-extension response of a 4-nucleosome system using our
breathing model and the non-breathing model. Our force-extension curves exhibit the typical saw-toothed pattern
observed in optical tweezer experiments of chromatin [38]; that is, the force exhibits an abrupt drop accompanied
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by a certain increase in the extension due to the partial unwrapping of individual nucleosomes. When we use
the non-breathing model where the nucleosomal DNA remain permanently bound to the histone core the pattern
disappears, and a much stiffer chromatin emerges.

Results for a longer NRL
Using our chemically-specific model, we performed additional simulations for 12-nucleosome arrays with uniform
NRL of 195 bp (Supplementary Figure 11).
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Supplementary Tables

Histone Tail region residues
H3 1-40
H4 1-25
H2A 1-20, 114-128
H2B 1-25

Supplementary Table 1. Definition of histone tail regions. All other residues are classified as belonging to the
central globular region.

Amino acid Mass (g/mol) σ (Å) Charge (e)
ALA 71.08 5.04 0
ARG 156.2 6.56 1
ASN 114.1 5.68 0
ASP 115.1 5.58 -1
CYS 103.1 5.48 0
GLN 128.1 6.02 0
GLU 129.1 5.92 -1
GLY 57.05 4.50 0
HIS 137.1 6.08 0.5
ILE 113.2 6.18 0
LEU 113.2 6.18 0
LYS 128.2 6.36 1
MET 131.2 6.18 0
PHE 147.2 6.36 0
PRO 97.12 5.56 0
SER 87.08 5.18 0
THR 101.1 5.62 0
TRP 186.2 6.78 0
TYR 163.2 6.46 0
VAL 99.07 5.86 0

Supplementary Table 2. Amino acid parameters taken from Ref. [9].

Particle Mass (g/mol) Charge (e)
DNA ellipsoid 650 0
DNA phosphate 10−6 -1

Supplementary Table 3. Chemically-specific model DNA parameters.
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Interaction σ (Å) ε (kcal/mol) λ
DNA ellipsoid–amino acid 8 0.01 1
DNA phosphate–amino acid 4 0.1 1

Supplementary Table 4. Chemically-specific model DNA–amino acid interaction parameters.

Interaction pair ε (kcal/mol) σ (Å) rc (Å)
Core–core 0.1 55 21/6σ
Core–DNA E(c) 40 3σ
DNA–DNA 0.1 S(c) 21/6σ

Supplementary Table 5. Minimal model Lennard-Jones parameters. c is the salt concentration. E(c) and S(C) are
linear interpolations of the data in Supplementary Table 6. Note that rc = 21/6σ implies that the potentials are
repulsive only.

c (mol/L) E(c) (kcal/mol) S(c) (Å)
0.15 0.4 24
0.115 0.375 24.5
0.082 0.35 25
0.07 0.3 26
0.06 0.25 27
0.052 0.2 28
0.05 0.1 30
0.042 0.01 34

Supplementary Table 6. E(c) and S(c) in Supplementary Table 5 are found by linear interpolation of this data.

Parameter Value
SCore diag(28, 28, 20)
SDNA diag(12, 12, 12)
ε 6 kcal/mol
rc 5 Å
Ecore diag(1−1/µ, 1−1/µ, 0.0001−1/µ)
EDNA diag(1−1/µ, 1−1/µ, 1−1/µ)
µ 1
ν 1

Supplementary Table 7. Minimal model anisotropic potential parameters. diag(a,b,c) means diagonal 3x3 matrix
with the elements a,b,c on the diagonal.

Replica 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
λD (Å) 8.00 8.34 8.70 9.07 9.46 9.86 10.29 10.73 11.19 11.67 12.16 12.69 13.23 13.79 14.38 15.00

Supplementary Table 8. HREMD Debye Length (λD) values.
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Interaction Parameter(s) Value Justification
Rigid Base-
Pair (eq. 3)

K 6x6 matrix for each of the 16
possible DNA base-pair steps

We use values from the Orozco group [6]
which are available on the NAFlex web
server [7]. These were computed from a large
set of all-atom molecular dynamics
simulations of DNA.

φ0 Different equilibrium values
for each of the 16 possible
DNA base-pair steps

Protein
bonds
(eq. 2)

r0 3.5Å Values from the Kim-Hummer protein
model [9, 11]

.

k 20 kcal/mol/Å2

Hydrophobic
(eq. 5)

ε, σ, λ, rc Protein: Supplementary Ta-
ble 2
DNA: Supplementary Table 4

Pure protein parameters taken from the Kim-
Hummer model [9, 11].
DNA-Protein values are fitted to radial-
distribution functions from our all-atom nu-
cleosome simulations [1].

Electrostatic
(eq. 4)

Charge Protein: Supplementary Ta-
ble 2
DNA: Supplementary Table 3

Charges are set to the intrinsic charge of the
molecule, the Debye–Hückel approximation is
reasonable in the monovalent salt ranges
found in cells.κ Salt-dependence via eq. 9

Supplementary Table 9. Summary of chemically-specific model parameters.

Interaction Parameter(s) Value Justification
Minimal
RBP
(eq. 12)

Kminimal 6x6 diagonal matrix, see
eq. 26

Fit to helical parameter distributions from
chemically-specific coarse-grained simulations
of 200 bp DNA strands.

φ0,minimal (0,0,16.4Å,0,0,0)
LJ (eq. 11) σ, ε Particle dependent, see Sup-

plementary Table 5
Initial estimates obtained by comparison of in-
ternucleosome PMFs of the chemically-specific
and minimal models. Salt-dependent val-
ues obtained by fitting the radius of gyra-
tion of 12-nucleosome chromatin arrays from
the chemically-specific model to the minimal
model.

rc Particle dependent, see Sup-
plementary Table 5

DNA-DNA and Core-Core interactions are re-
pulsive only (same-sign charges), whilst DNA-
Core interactions contain an attractive tail
(opposite-sign charges).

Anisotropic
(eq. 13)

SCore diag(28, 28, 20)

Optimized to approximate the geometry and
free energy profile of DNA–histone core
binding, see Supplementary Figure 4c.

SDNA diag(12, 12, 12)
ε 6 kcal/mol
rc 5 Å
Ecore diag(1−1/µ, 1−1/µ, 0.0001−1/µ)
EDNA diag(1−1/µ, 1−1/µ, 1−1/µ)
µ 1
ν 1

Supplementary Table 10. Summary of minimal model parameters.
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Supplementary Figures

Supplementary Figure 1. Additional details on the multiscale coarse-grained mapping,
complimentary to Figure 1 (main text). The three panels provide schematic representations of the different
particles featured in our multiscale approach, which spans three levels of resolution. (Level 1) All-atom
representations of histone tails, histone globular domains (GD), and DNA. (Level 2) Chemically-specific
representations of histones, both tails and GD, with the difference in bond topology illustrated, and DNA. (Level
3) Minimal coarse-grained model showing the histone core and DNA mapping.

20/30



Supplementary Figure 2. Description of minimal model anisotropic potential. a,b Graphs of the
potential acting on the DNA beads due to the core bead; this includes both the LJ and anisotropic potential. The
potential has a strong attractive region around the nucleosome xy plane and weak attraction at the z poles. It is
symmetric around the z axis. c Illustration of DNA binding to the attractive region of the anisotropic potential.

Supplementary Figure 3. Mapping of minimal model initial structures from chemically-specific model
equilibrium structures. The important difference between the non-breathing (a) and the breathing (b)
chromatin is the amount of linker DNA, at higher salt the non-breathing chromatin has significantly more.

21/30



Supplementary Figure 4. Fitting of the minimal model potentials and parameters to the behavior of
chromatin within the chemically-specific model. a Orientational-dependent interactions between two
nucleosomes at high (0.15M) and low (0.05M) concentration of NaCl, a1 and a2 respectively, for the chemically
specific (red) and minimal (blue) models. The chemically-specific model curves are PMFs computed using the
center-to-center nucleosome distance among nucleosome pairs in the three different relative orientations described in
a3. The minimal model curves represent the total pairwise energy as a function of center-to-center nucleosome
distance in the three same orientations. b Salt-dependent radius of gyration of 12-nucleosome 165-bp chromatin for
the chemically–specific model and the minimal model. The figure compares the values computed with and without
the anisotropic potential for chromatin with non-breathing b1 and breathing b2 nucleosomes. This illustrates the
need of the anisotropic potential to recover the behavior of chromatin with breathing nucleosomes at higher salt.
The data points and corresponding error bars are the mean±s.d. obtained from n=500 independent configurations.
c Nucleosome unwrapping PMFs for both models showing good agreement in the low extension regime.
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Supplementary Figure 5. Equilibration of simulations and determination of chromatin density.
Density profiles along the box long axis z, of a phase-separated system obtained via direct coexistence simulations at
varying salt concentrations for chromatin with (a) non-breathing and (b) breathing nucleosomes. The presence of
sharp, non-fluctuating interfaces (the two regions between the green dashed lines and the red dashed lines) is
indicative of phase separation. The density of the condensate (middle region enclosed by the two red dashed lines)
and dilute phase (outer regions from the extremes of the box to the green dashed lines) are averaged to determine
the respective chromatin densities and the uncertainty on the measured density are given by the standard deviation.
The interface regions are excluded from these calculations.

Supplementary Figure 6. Definition of nucleosome pair orientations. a Nucleosome orientation axis: x
points from the center of the nucleosome to the dyad position, z points out of the top face, and y = z × x. b-d
Nucleosome–nucleosome interaction configurations, r is the center-to-center distance between two nucleosomes.
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Supplementary Figure 7. Timescale comparison between chemically-specific and minimal models. a,
b Time series of the radius of gyration R for 12-nucleosome chromatin using the chemically-specific model and the
minimal model respectively. c, d Autocorrelation functions C(τ) of R for the chemically-specific model and minimal
model respectively. The correlation time tc is labeled; estimated from where the curves reach 1/e height.
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Supplementary Figure 8. Spontaneous formation of nucleosomes predicted by our chemically-specific
coarse-grained model at 0.15mol/L NaCl and 300K. a Starting from an unbound DNA to histone core
configuration, i.e., where the DNA and histone octamer are completely separated, as time progresses, the DNA
wraps around the histone core in one of four possible ways: left-handed supercoiling (a canonical nucleosome) with a
∼34% probability, right-handed supercoiling (a reversesome) with a ∼30% probability, a knotted configuration
which is neither a left-handed or right-handed supercoil but still resembles a nucleosome-like shape with a ∼28%
probability, and other configurations which differ significantly from a nucleosome topology (“wrong") with a 8%
probability. b Starting with a fully unwrapped nucleosome, but with the histone core bound to the DNA at a single
point, we apply a weak super-coiling. In this case, as time progresses, the model always form nucleosomes when
DNA is underwound, and reversomes when DNA is overwound.
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Supplementary Figure 9. Experimental validation of the modified DNA rigid base pair model with
added phosphate charges. a Persistence length of DNA in units of base-pairs (bp) as a function of NaCl
concentration in mol/L at 300K. Blue circles are the values obtained with our simulations on a set of 300 bp DNA
strands with varying sequences. The data points are the value of P fitted by a non-linear least squares fit of
equation 68, the error bars are the standard error in P reported by the least squares fitting method. 10 independent
simulation trajectories were used. Red crosses (experimental 1) are values from single-molecule high-throughput
tethered particle motion experiments on DNAs of 1201 and 2060 bp at room temperature [39]. Green squares
(experimental 2) are values from Rayleigh light scattering experiments for a T7 bacteriophage DNA from [40]. b
Persistence length of DNA as function of DNA sequence from our simulations (blue crosses) using a random
sequence and six poly(XY) sequences for DNA of 300 bp in length. The data points are the value of P fitted by a
non-linear least squares fit of equation 68, the error bars are the standard error in P reported by the least squares
fitting method. 10 independent simulation trajectories were used. We compare to values from experimental
cyclization assays [41], coarse-grain Monte Carlo simulations [42], and all-atom MD simulations [42].
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Supplementary Figure 10. Force-induced unwrapping behavior of mononucleosomes and chromatin
under varying conditions with our chemically-specific coarse-grained model. a Model predictions for
the force-induced unwrapping behavior of mononucleosomes under varying conditions. Top: Representative
simulation snapshots of nucleosome configurations (color coded as in Figure 1 of the main–Level 2) at three different
stages of the unwrapping process, showing a fully wrapped nucleosome (state 1) at low pulling forces (≤ F1), a
nucleosome with the first turn unwrapped (state 2) at intermediate forces (F1–F2), and a fully unwrapped
nucleosome (state 3) at higher forces (≥ F2). Bottom: Force (computed from the gradient of the PMF) in pN for
nucleosome unwrapping as a function of the end-to-end DNA distance (or extension). The dashed brown, solid
orange, and dashed purple curves correspond to 1KX5 DNA sequence [43] nucleosome simulations at 0.05M, 0.15M,
and 0.3M of NaCl, respectively. The green curve corresponds to simulations of a poly-A DNA sequence nucleosome
at 0.15M NaCl. The red curve was calculated for a nucleosome with all histone tails clipped at 0.15M NaCl. b
Force-extension for 4 nucleosome chromatin. There are 5 curves overlaid for chromatin with breathing nucleosomes
(orange) and one curve using the fixed non-breathing version of the model for reference (black). Illustrated
conformations are shown at the top with the extension indicated by the dashed lines.
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Supplementary Figure 11. 12-nucleosome 195 bp NRL chromatin simulations. a Representative simulation
snapshots of 195-bp 12-nucleosome chromatin with non-breathing (top) versus breathing (bottom) nucleosomes at
three different salt concentrations: 0.05mol/L, 0.10mol/L and 0.15mol/L of NaCl. b Sedimentation coefficients
versus NaCl concentration (right) for chromatin with non-breathing (green) versus breathing (magenta) nucleosomes.
The data points and corresponding error bars are the mean±s.d. obtained from n=100 independent configurations.
c Histograms comparing the distributions of sedimentation coefficient values for chromatin with non-breathing
(green solid) and breathing (magenta solid) at 0.15mol/L in our simulations with the experimental value from
reference [44] (black dashed). d Number of average DNA bp that unwrap per nucleosome in our simulations at
varying concentration of NaCl. The data points and corresponding error bars are the mean±s.d. obtained from
n=100 independent configurations. e Average nucleosome valency versus concentration of NaCl. The data points
and corresponding error bars are the mean±s.d. obtained from n=100 independent configurations.
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