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Adaptive designs are playing an increasingly important role in the planning of
clinical trials. While there exists various research on the optimal determination
of a two-stage design, non-optimal versions still are frequently applied in clinical
research. In this article, we strive to motivate the application of optimal adap-
tive designs and give guidance on how to determine them. It is demonstrated
that optimizing a trial design with respect to particular objective criteria can
have a substantial benefit over the application of conventional adaptive sample
size recalculation rules. Furthermore, we show that in many practical situa-
tions, optimal group-sequential designs show an almost negligible performance
loss compared to optimal adaptive designs. Finally, we illustrate how optimal
designs can be tailored to specific operational requirements by customizing the
underlying optimization problem.
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1 INTRODUCTION

The sensitive environment of medical research renders careful and responsible statistical planning of clinical trials nec-
essary. An important task is the determination of the required sample size. Choosing the sample size too large may cause
unnecessarily high costs and long time-to-market for potentially beneficial drugs. Vice versa, a too small sample size may
imply that potentially underlying effects are not detected due to low power. This may lead to the erroneous and prema-
ture termination of development for actually beneficial drugs. Adaptive trial designs with their possibility to modify the
sample size of an ongoing trial are an attractive option to decrease the average sample size while guaranteeing sufficient
power. Within an adaptive design, one or several interim analyses are performed. At each interim analysis, it is decided
whether the trial continues and how many further patients have to be recruited. This procedure implies that the sample
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size within an adaptive design is a random variable depending on the interim results. Adaptive trial designs can thus be
seen as tailoring the parameters of a design such that the characteristics of the random sample size are deemed agree-
able. Recent overviews of the development of adaptive designs are given in Bauer et al1 and, more detailed, in the book by
Wassmer and Brannath.2 In this article, we exclusively focus on the case of an adaptive two-stage design with one interim
analysis.

A known issue in the analysis of adaptive two-stage designs is the fact that the stage-two data is not generally indepen-
dent of the stage-one data. The methodology on how to test correctly within an adaptive design without type I error rate
inflation is well-developed. Two main methods for ensuring strict type I error rate control in adaptive testing are put for-
ward in the literature. The combination test approach3-5 exploits the fact that the stage-wise test statistics are identically
distributed under the null hypothesis. It then reduces the stage-wise test statistic to a single overall test statistic using a
so-called combination function. In contrast, the conditional error principle6 achieves type I error rate control by modi-
fying the critical value for the final analysis. Both approaches have been shown to be equivalent for pre-planned interim
analyses.7

Besides the various methods developed to assure type I error rate control, different proposals for the choice of the
stage-wise sample sizes have been made. Initially, group-sequential designs8-10 were proposed to allow early termina-
tion of a trial for overwhelming good or bad interim outcomes. Since the second-stage sample size is constant for
group-sequential designs, the power conditional on the observed outcome (conditional power) might drop below an
acceptable threshold for some interim results. This drawback may make more flexible sample size rules that incorpo-
rate conditional power considerations desirable. Note that conditional power may be calculated in various ways, for
example, inserting the treatment effect assumed in the planning phase, the interim estimate of the treatment effect, or
integrated over the posterior distribution of the treatment effect. Throughout this article, we use the first approach and
define conditional power as the probability to reject the null hypothesis under the initially assumed treatment effect con-
ditioned on the interim result. The following considerations, however, hold for other definitions of conditional power
as well. Requiring a minimal conditional power for each interim outcome implies that the sample size varies with
the observed test statistic at interim.6 Bauer and König11 analyzed the conditional power as random quantity varying
with the stage-one outcome. The fact that the interim estimate of conditional power has a heavy-tailed distribution has
severe consequences for early stopping rules. For instance, underestimating the true conditional power and thus the
prospects of a successful second stage may lead to an incorrect early termination of the trial. Vice versa, overestimat-
ing the conditional power may imply that a second stage is conducted even though the chances of finally rejecting the
null hypothesis are low. Further approaches based on conditional power such as the “promising zone design”12 suf-
fer from the same limitations and have in addition been criticized to be inferior to suitably chosen group-sequential
designs.13

Besides these rules, suggestions have been put forward in the literature on the optimal determination of adaptive
and group-sequential trial designs (cf. Section 2.2). Despite their theoretical appeal, optimal clinical trial designs are
up to now rarely employed in practice. In this article, we discuss important aspects of optimal two-stage designs. In
Section 2, we review the general optimization approach to trial design and existing approaches. We illustrate in Section 4
that the application of an optimal adaptive design may gain substantial benefit over the use of heuristic rules based
on conditional power. Section 5 considers the issue of optimal group-sequential designs being an appropriate approx-
imation to optimal adaptive ones even if a constraint on conditional power is included. In Section 6, we demonstrate
how to incorporate additional constraints to tailor optimal designs to a specific situation. We conclude with a discussion
in Section 7.

2 OPTIMAL PLANNING OF ADAPTIVE DESIGNS

2.1 Setting

Throughout this article, we consider the situation of a treatment group T to be compared against a control group C. The
outcomes of interest, XT

i and XC
i , are assumed to be normally distributed with mean values𝜇T and𝜇C and common known

variance 𝜎2. The superiority null hypothesis on the mean difference 𝜃 is

0 ∶ 𝜃 ∶= 𝜇T − 𝜇C ≤ 0.
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In the following, we denote the standardized mean difference by 𝛿 ∶= (𝜇T − 𝜇C)∕𝜎 and introduce an effect size 𝛿1 > 0 for
which power constraints are required to be fulfilled.

To construct a two-stage design, assume that n1 patients per group are to be included in the first and n2 patients per
group in the second stage. Then, the test statistics for the two stages are given by

Zi =
√

ni
X

T
ni − X

C
ni√

2𝜎2
, i ∈ {1, 2},

where X
⋅

n denotes the mean value of n observations. At the interim analysis, it has to be decided whether the trial should
be stopped early. Therefore, early stopping boundaries cf and ce are introduced where the trial is stopped for futility if
Z1 < cf and for efficacy if Z1 > ce. Otherwise, if cf ≤Z1 ≤ ce, the trial enters the second stage and n2(Z1) further patients
per group are recruited. At the final analysis, the null hypothesis is rejected if Z2 ≥ c2(Z1). An adaptive two-stage design
can thus be seen as a five-tuple  ∶=

(
n1, cf , ce,n2(⋅), c2(⋅)

)
where the stage-two parameters n2(⋅) and c2(⋅) are functions

of the first-stage outcome Z1 = z1. This definition corresponds with the concept of “planned flexible designs”14 where all
decisions regarding the trial design are already specified during the planning stage. Note that the presented methodology
can be applied to all (asymptotically) Gaussian distributed test statistics. Examples for such tests are the t-test, the log-rank
test, and the two-sample binomial test.

A commonly applied strategy on how to plan an adaptive two-stage design is the following. In the planning phase,
the first-stage elements n1, cf , and ce are fixed. To ensure type I error rate protection, a combination function C(Z1, Z2)
(or, equivalently, a conditional error function) is specified a priori. At the final analysis, the test statistics Z1 and Z2 are
combined via C. These approaches control the maximum type I error rate. However, the choice of design parameters is
not guided by a trial-specific performance criterion.

To define an efficient design, a strategy on how to identify all parameters of a two-stage design should be employed.
Here, we define efficiency in terms of a performance criterion f () mapping any particular design to a numeric per-
formance value. In the following, we assume smaller values of f to indicate good performance. The optimal design
∗ ∶=

(
n∗

1, c∗f , c∗e ,n∗
2(⋅), c∗2(⋅)

)
is then given by the design minimizing f potentially under a set of trial-specific constraints.

Hence, it is defined by the solution of the constrained optimization problem

minimize


f () (1)

subject to g1() ≤ a1 (2)

…
gk() ≤ ak, (3)

where gi, i∈ {1, … , k}, are performance criteria. Note that although the optimal design’s sample size function is
response-adaptive, all parameters are pre-specified during the planning stage. Therefore, the perspective of deriving an
optimal design before any data is collected is inherently unconditional since all possible interim outcomes have to be con-
sidered simultaneously. Consequently, the objective criterion should also be unconditional, that is, integrating over all
potential interim outcomes weighted with their respective likelihood.

Constraints, however, may be both unconditional as well as conditional on the observed outcome Z1 = z1. Impor-
tant unconditional constraints are maximum type I error rate, minimal power, or maximum sample size. Furthermore,
desirable conditional properties such as a threshold on minimal conditional power can be incorporated for all values
z1 ∈ [cf , ce]. This may help in making a design more appealing for a sponsor since it only enters a second stage with a
sufficient chance of detecting a truly existing effect. However, any further constraint reduces the solution space of the
optimization problem (1)-(3). Hence, the unconditional performance is deteriorated by any additional constraints that
are binding in the optimal solution. This interplay will be illustrated in Section 6.3. In particular, it may even occur that
the solution space of (1)-(3) is empty. For instance, a strict constraint on the maximum sample size may imply that a
certain power boundary cannot be reached. It is in the statistician’s responsibility to choose criteria that are not so restric-
tive or even contradictory that a design fulfilling all these criteria may show disadvantageous features or may not exist
at all.
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2.2 Previous work

Since n2(⋅) and c2(⋅) are functions, the task of computing optimal n∗
2(⋅) and c∗2(⋅) is a variational problem. There are

various approaches to tackle this problem and different ways have been pursued to solve specific variants of the
problem (1)-(3).

Different excellent publications solved the problem for one of the two functions n2(⋅) and c2(⋅) exclusively. Optimal
group-sequential designs, that is, designs with constant stage-two sample size function n2(⋅)≡n2, were proposed by Barber
and Jennison.15 They minimized a mixed criterion consisting of expected sample size under different effect sizes and
derived optimal group-sequential tests, that is, optimal functions c∗2(⋅). Note that they provide their results not only for
the two-stage case but in more generality for K ≥ 2 stages. Brannath and Bauer16 derived the formal computation of an
optimal conditional error function for a sample size rule based on conditional power.6 They obtained c∗2(⋅) by minimizing
the expected sample size under the alternative 𝛿 = 𝛿1 while the sample size function was defined by

n2(z1) = 2 ⋅

(
c∗2(z1) + Φ−1(1 − 𝛽c)

) 2

𝛿2
1

, (4)

where Φ denotes the cumulative distribution function of the standard normal distribution. As outlined in the introduc-
tion, this rule guarantees that after observing z1 at the interim analysis, a conditional power of 1 − 𝛽c is reached under
the initially applied alternative effect size 𝛿 = 𝛿1. Jennison and Turnbull13 approached the problem from the sample size
perspective and suggested an optimal n∗

2(⋅) fixing the conditional error function by an inverse normal combination test.
Hence, c2(⋅) was chosen as

c2(z1) =
c − 𝜔1z1

𝜔2
, (5)

where c is defined to protect the type I error rate and 𝜔1, 𝜔2 ∈ (0, 1) are chosen such that 𝜔2
1 + 𝜔2

2 = 1. Then, the stage-two
sample size n∗

2(⋅) was determined to minimize the expected sample size under the alternative under a constraint on the
design’s overall power. Hsiao et al17 proposed a design that shows similar performance as the design by Jennison and
Turnbull by incorporating a constraint that the stage-two sample size can only be increased if a certain conditional power
condition is satisfied.

Various extensions exist which are providing optimal n∗
2(⋅) and c∗2(⋅) simultaneously. “Optimal sequentially-planned

sequential tests” were already proposed in an abstract form by Schmitz.18 This proposal was applied by Jennison and
Turnbull19,20 who regarded the problem to derive optimal designs from the perspective of Bayesian decision theory and
solved it by the backward induction algorithm. They derived optimal adaptive designs for K ≥ 2 stages which minimize
the integral of expected sample size over a normal density for the treatment effect 𝛿.19 Furthermore, they figured out that
the efficiency gain produced by optimal adaptive designs in comparison with optimal group-sequential designs is quite
small.19 Another result by Jennison and Turnbull20 is the sound performance of well-chosen 𝜌-family error-spending tests
which achieve objective values close to optimal. Lokhnygina and Tsiatis21 also used the backward induction algorithm to
compute optimal two-stage designs for different optimality criteria and confirmed the finding by Jennison and Turnbull19

that optimal group-sequential designs are almost as efficient as optimal adaptive designs. Recently, Pilz et al22 applied
the Euler-Lagrange equations to provide a pure variational solution of the problem to minimize the expected sample size
under the alternative under constraints on maximum type I error rate and minimal power.

In parallel, optimal adaptive designs were developed for clinical trials with binary responses, that is, discrete outcomes,
as well. Simon23 proposed optimal two-stage group-sequential designs which either minimize the expected sample size
under the null hypothesis or the maximum sample size. Among others, Jung et al24 and Mander and Thompson25 analyzed
optimal group-sequential designs. Shuster26 proposed an adaptive design that minimizes the maximum expected sample
size under different effect sizes for a one-arm trial with binary outcome. This design was applied to continuous endpoints
by Wason and Mander27 and to the multi-stage case by Wason et al.28 Banerjee and Tsiatis29 applied the framework of
Bayesian decision theory to derive two-stage designs with adaptive second stage which minimize the expected sample
size under the null hypothesis. Their solution strategy was improved by Englert and Kieser30 and by Kunzmann and
Kieser31,32 who provided solutions for almost arbitrary objective criteria by applying integer linear programming to derive
optimal designs.

A general solution strategy for the problem (1)-(3) for asymptotically normally distributed outcomes is implemented
in the R33-package adoptr.34 There, the variational problem is made finite-dimensional by discretizing the functions inside
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the continuation region. This software package is used for all computations performed for the following examples. A brief
description of how the optimization problem (1) - (3) is solved numerically in adoptr is provided in the Appendix.

3 ILLUSTRATING CLINICAL TRIAL EXAMPLE

Currently, partial pancreaticoduodenectomy (PD) is the indicated surgical procedure for a wide range of benign and
malignant diseases and offers the only potential cure for pancreatic head cancer. The current gold standard, open PD
(OPD), is performed via laparotomy. This procedure is associated with a substantial morbidity of approximately 40%,
even in specialized centers.35 For robotic PD (RPD), the surgeon operates a surgical robot facilitating increased dexterity,
visualization, and range of motion as compared to laparoscopic PD. Thus, RPD might offer a viable alternative to OPD.
However, a thorough investigation comparing RPD with the current gold standard OPD is lacking.

To fill this gap, a randomized controlled trial to compare RPD and OPD was proposed in a recently accepted grant
proposal.36 The primary outcome is morbidity within 30 days after surgery. It is measured by the comprehensive compli-
cation index (CCI).37 The CCI was developed by surgeons and patients and considers the patient’s perspective as well as
objective parameters of surgical effectiveness. It ranges from 0 to 100 and can assumed to be normally distributed37 with
variance 𝜎2 = 400.38 A clinically relevant mean difference for the CCI is 𝜃 = 10.38

The intended clinical trial is of exploratory character and, therefore, no formal sample size calculation has been per-
formed. We assume, however, that this trial is successful and results in a subsequent confirmatory trial that should be
planned with a two-stage design. Note that the standardized clinically relevant effect size for the CCI is 𝛿 = 𝜃∕𝜎 = 0.5.
Following the ICH E9 guideline,39 the one-sided type I error rate is to be strictly controlled at 𝛼 = 0.025. A minimal power
at the effect size 𝛿 = 0.5 of 1 − 𝛽 = 0.9 is required.

A standard approach to define a two-stage design in this setting is the choice of a group-sequential design with
equally-sized stages. Such a design, labeled as D1, that controls the maximum type I error rate by the rule of Pocock8

can be obtained by the R-package rpact.40 It is depicted in Figure 1 and its characteristics are specified in Table 1. The
early-stopping boundaries are cf = 0.5 and ce = 2.17, and the stage-wise per-group sample size equals n1 =n2 = 48. The
design shows a maximum sample size of 96 that is not much larger than the fixed design’s sample size of 85 which would
be necessary to fulfill the constraints on type I error and power in a one-stage design. The expected sample size under the
alternative equals 65.5 patients per group and is, therefore, considerably lower than the single-stage design’s sample size.
The expected sample size under the null hypothesis amounts to 62.1 per-group patients.

While the group-sequential design shows a satisfactory performance with respect to maximum sample size and
expected sample size under the alternative, its conditional power to show an effect of 𝛿 = 0.5 drops to a value of 45.3%
at the early-futility boundary cf = 0.5, that is, for the smallest value of z1 that implies continuation of the trial. Note that
from a purely statistical perspective, a further restriction of the design would deteriorate its performance with respect
to the underlying unconditional objective criterion. In practice, however, two-stage designs with a too low conditional
power are often viewed critically and difficult to communicate. Conducting a second stage with a very small (or large)
conditional power would imply that the result of the trial would already be predictable at the interim analysis with a high
probability. However, recruiting additional patients may only be worth the effort if there is a sufficient chance that 0 can
be rejected at the final analysis. Consequently, a pre-planned design with a too low conditional power may cause a design
modification at the interim analysis when unblinded trial data becomes available. Such a design reassessment is discour-
aged by regulatory authorities.41 Furthermore, it implies a performance deterioration since the desire of a sufficiently
large conditional power could have been considered during the planning stage.

To overcome this drawback, it is a common approach to modify the design’s second-stage sample size such that the
conditional power in case of entering stage two should be at least above a certain boundary that is chosen to equal 1 − 𝛽c =
0.7 in this example. However, this is a user-specific threshold which might be chosen even smaller. To ensure a conditional
power of 70% for any possible interim outcome inside the continuation region, the sample size is modified according
to Formula (4) if the conditional power target value cannot be reached with the group-sequential design. Otherwise, if
the conditional power of the group-sequential design equals already at least 70%, the trial continues with the initially
planned stage-two sample size of the group-sequential design.12 The resulting design D2 is depicted in Figure 1 and its
key characteristics are summarized in Table 1. All first-stage parameters are equal to the underlying group-sequential
design by definition. The sample size function is monotonically decreasing and convex. Note that for large values of z1 the
stage-two sample size equals the initially planned n2 =n1 = 48 patients per group. Furthermore, the conditional power
constraint is indeed fulfilled within the entire continuation region. While a fixed design would require 85 patients per
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F I G U R E 1 Characteristics of different adaptive two-stage designs that control the type I error rate at 2.5% and achieve a power of 90%.
Apart from the group-sequential design, all designs require a conditional power of at least 70% in case of entering the second stage [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Characteristics of different adaptive two-stage designs

Design Introduced in n1 cf ce E𝜹=0.5[n] E𝜹=0[n] maxz1
{n1 + n2(z1)}

D1 Section 3 48 0.50 2.17 65.5 62.1 96

D2 Section 3 48 0.50 2.17 66.2 64.8 124

D3 Section 4 36 0.59 2.40 81.9 52.0 152

D4 Section 4 43 0.71 2.29 65.5 55.1 106

D5 Section 4 44 0.28 2.27 63.3 67.5 128

D6 Section 6.1 44 0.28 2.27 63.3 67.5 127

D7 Section 6.2 50 0.10 2.40 70.8 116.6 334

D8 Section 6.3 44 0.00 2.27 63.5 70.1 107

D9 Section 6.4 55 0.64 2.31 66.0 64.8 98

http://wileyonlinelibrary.com


3202 PILZ et al.

group, the expected sample size of this adaptive design under the point alternative 𝛿 = 0.5 equals 66.2 and the expected
sample size under the null hypothesis 𝛿 = 0 equals 64.8. In contrast to the group-sequential design, the maximum sample
size of this design increases to a large value of 124 subjects per group. Note that the power of the modified design equals
91.1% and thus the design is slightly over-powered. In practical application, the design’s overall power is often not taken
into account when the design’s sample size is recalculated. Since the power of a clinical trial design is highly relevant for
multi-stage designs as well,20 it should, however, be considered as a decision tool for design planning.

4 BENEFIT OF OPTIMIZING TWO-STAGE DESIGNS

The adaptive design D2 satisfies all desired constraints outlined earlier but its parameters were fixed heuristically inde-
pendent of a well-defined objective criterion. Instead of pre-planning a group-sequential design that fulfills a condition
on unconditional power and recalculating the sample size to ensure a certain conditional power, one can define an opti-
mal design that fulfills both constraints simultaneously. This approach takes the unconditional power as well as the
conditional power into account and thus, neither the entire trial nor its second stage (in case of entering it) show an
unacceptable probability to reject the null hypothesis if the alternative is true. Furthermore, due to the optimality of the
resulting design, it is more efficient than any heuristic procedure. Note that, as outlined above, a constraint on conditional
power may increase the acceptance of a two-stage design in practice since there is no risk to end up with an under-powered
second stage.

When an optimal design is to be defined, the choice of the objective criterion is of high importance and not
straightforward.42 Barber and Jennison15 proposed to minimize a weighted sum of expected sample size under the null and
under the alternative hypothesis. This can be interpreted as a point prior on the two effect sizes 𝛿 = 0 and 𝛿 = 0.5 where the
probability p∈ [0, 1] is assigned to the alternative hypothesis and the probability 1− p to the null hypothesis. Plugging this
together with the required constraints on the design’s operating characteristics in (1)-(3) yields the optimization problem

minimize


p E𝛿=0.5[n] + (1 − p) E𝛿=0[n]

subject to Type I error rate ≤ 2.5%

Power at 𝛿 = 0.5 ≥ 90%

Conditional power at 𝛿 = 0.5 ≥ 70%.

We solve this problem for three values of p:

• p= 0 corresponding to minimization of expected sample size under the null hypothesis; this results in design D3,
• p= 0.5 corresponding to equal weighting of the null and the alternative hypothesis; this results in design D4,
• p= 1 corresponding to minimization of expected sample size under the alternative hypothesis; this results in design D5.

The resulting designs are plotted in Figure 1 and their main characteristics are reported in Table 1. The features of
the optimal designs are highly dependent on the underlying objective criterion. In case of p= 0, the sample size function
is monotonically increasing. This property is intuitive since lower sample sizes for small values of z1 imply better perfor-
mance with respect to the objective criterion “expected sample size under the null hypothesis.” Larger values of z1 are
quite unlikely under 0 and for this reason, larger sample sizes for these values do hardly affect the objective criterion
while they compensate for the smaller sample sizes for z1 close to cf to fulfill the power constraint. The continuation
region of design D3 is [cf , ce]= [0.59, 2.4]. The maximum sample size of the optimal design D3 equals 152 and is hence
much larger than the fixed design’s sample size of 85. The critical value function c2(⋅) is very flat in this setting. When the
expected sample size under the alternative is part of the objective function, the critical value function becomes concave.
For optimization exclusively under the alternative, the sample size function is monotonically decreasing with a maxi-
mum sample size of 128. If the null and the alternative hypothesis are weighted equally, the sample size function is almost
constant for small effect sizes and decreasing for larger effect sizes. The regularizing aspect of weighting two effect sizes
against each other is clearly visible by the lower maximum sample size of 106. However, this value is still larger than
the maximum sample size of 96 of the classical group-sequential design form the previous section. The enormously large
maximum sample sizes of the designs D3 and D5 make these designs unattractive in practice due to the risk to conduct
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F I G U R E 2 Comparison of
achieved values of objective functions
for optimal and non-optimal designs.
All designs are chosen to control the
type I error rate at 2.5% and achieve a
power of 90%. The optimized designs
minimize the respective objective
criterion whose value is plotted on the
y-axis and, furthermore, require a
conditional power level of 70%
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an enormously large trial. Because of its high relevance, the maximum sample size will become part of the optimization
problem in Section 6.3.

The conditional power is strictly increasing with z1 for the three optimized designs D3, D4, and D5 and is for all designs
uniformly larger than the conditional power of design D2 within the entire continuation region. This inferiority in terms
of conditional power implies that D2 needs a larger stage-one sample size of n1 = 48 compared with n1 = 36 (D3), n1 = 43
(D4), and n1 = 44 (D5) to achieve the overall power condition. We would like to highlight the interesting observation that
the presented designs exhibit highly different characteristics even though they are restricted by the same constraints and,
therefore, show almost identical power curves.

To allow efficiency comparison, the optimal design was computed for further values of p∈ [0, 1] and the differences
between the optimal value of the objective function and the value achieved by the classical designs D1 and D2 were
calculated. The achieved values of the objective function in dependence of p for the respective optimal design and the
classical designs D1 and D2 are illustrated in Figure 2. The performance of D1 and D2 deteriorates with increasing weight
on the null hypothesis, that is, lower p. When the objective function is “expected sample size under the null hypothesis”
(p= 0), the classical adaptive design D2 shows an expected sample size of 64.8 while an optimal value of 51.9 with design
D3 is possible. The classical group-sequential design D1 achieves a value of 62.1. Note, however, that this design is not
restricted by a conditional power constraint as the other designs are. With increasing p, the objective function values of
the conventional designs D1 and D2 become closer to the optimal one. The performance gap is smallest when minimizing
solely under the alternative (p= 1) where D1 and D2 show an expected sample size of 65.5 and 66.2, respectively, compared
to an optimal value of 63.3. This observation allows the conclusion that choosing an adaptive two-stage design based
on conditional power considerations is not far from being optimal if the focus is on the expected sample size under
the alternative. However, if others than this single effect size are under consideration, more efficient design choices are
available.

5 OPTIMAL GROUP-SEQUENTIAL DESIGNS

Group-sequential designs, that is, designs with a constant n2(⋅)-function, are a special case of adaptive designs. The ques-
tion of the efficiency of group-sequential designs in comparison to generic two-stage designs has been addressed in various
publications.19,43,44 Applying a group-sequential design simplifies the interim analysis to a “go/no-go” decision where
it is only decided whether or not the second stage is conducted; the stage-two sample size does not further depend on
the interim result. In Section 3, it was shown that a conventional group-sequential design shows an acceptable perfor-
mance in terms of “expected sample size under the alternative” and a low maximum sample size that is a highly desirable
property. However, its performance can be improved by an optimal adaptive design if the expected sample size under the
null hypothesis becomes a noticeable part of the objective criterion. Furthermore, the classical group-sequential design
drastically misses the conditional power target value of 70% what may be a drawback of this design. Requiring a constraint
on conditional power in a group-sequential design may lead to a remarkably efficiency reduction due to the restriction to
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T A B L E 2 Stage-wise sample sizes and early-stopping boundaries of optimal group-sequential designs that fulfill a conditional
power constraint

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n1 37 38 39 40 42 43 44 45 46 46 47

n2 69 65 62 60 58 56 55 54 53 52 51

n2/n1 1.86 1.71 1.59 1.50 1.38 1.30 1.25 1.20 1.15 1.13 1.09

n1 +n2 106 103 101 100 100 99 99 99 99 98 98

cf 0.68 0.68 0.69 0.70 0.72 0.72 0.72 0.72 0.71 0.70 0.68

ce 2.40 2.40 2.39 2.32 2.27 2.24 2.22 2.20 2.19 2.18 2.17

constant n2(⋅)-functions. The conditional power is monotonically increasing in both n2 and z1 since more evidence against
the null hypothesis has already been collected if z1 is large. A generic two-stage design allows modifying the sample size
such that a conditional power constraint can be fulfilled within the entire continuation region (cf. Equation (4)). This
implies that a fixed conditional power constraint requires lower sample sizes for larger effect sizes observed at interim. In a
group-sequential design, however, the constant sample size n2 has to be chosen such that the conditional power constraint
is fulfilled within the entire continuation region. Therefore, one may expect a subpar performance of group-sequential
designs when conditional constraints are imposed.

To investigate the efficiency of optimal group-sequential designs, we minimize the previous objective criterion con-
sisting of a weighted sum of expected sample size under the null and the alternative hypothesis under constraints on
type I error rate, overall power, and conditional power by solving

minimize


p E𝛿=0.5[n] + (1 − p) E𝛿=0[n]

subject to Type I error rate ≤ 2.5%
Power at 𝛿 = 0.5 ≥ 90%
Conditional power at 𝛿 = 0.5 ≥ 70%
n2(z1) ≡ n2.

The above optimization problem is solved for p∈ {0, 0.1, … , 1} and the corresponding optimal adaptive and opti-
mal group-sequential designs are computed. In Figure 2, the value of the objective function is plotted against p for the
optimal generic two-stage design and the optimal group-sequential design from the respective optimization problem.
The performance differences appear to be quite small. The maximum difference occurs when p= 1 and equals to 1.9
patients per group. This difference is much smaller than the maximum difference between an optimized design and the
two-stage design D2 that was chosen without any optimality considerations. Interestingly, the additional restriction of
the conditional power does not imply a large increase in maximum sample size. While the maximum sample size of the
conventional group-sequential design D1 equals 96, the maximum sample size of the optimized group-sequential designs
varies between 98 and 106 (cf. Table 2). However, this implies that the early-futility-boundary of these optimized designs
is increased in comparison with the approaches from Sections 3 and 4. This can be explained by the large sample sizes that
would be necessary to ensure a conditional power of 70% for small values of z1. Consequently, an aggressive futility stop
avoids these situations and leads to acceptable maximum sample sizes and conditional power values for all z1 ∈ [cf , ce]
simultaneously.

These observations allow stating that the restriction to group-sequential designs does not cause notable efficiency
reduction even if a constraint on the conditional power is imposed. It is important to note that the group-sequential
designs were chosen to be fully optimal, in particular without any assumption on the ratio between the first- and
second-stage sample sizes. In practical applications, however, group-sequential designs are often chosen with equally
sized stages. Jennison and Turnbull19 observed that group-sequential designs with equally sized stages do not cause a
large efficiency reduction if the critical values are chosen optimally. However, no conditional power constraint was incor-
porated in their framework. Since a constraint on conditional power implies that the stage-two sample size n2 must be
sufficiently large, allowing the ratio between n1 and n2 to vary may be useful to avoid over-powered studies. In Table 2,
the first- and second-stage sample sizes of the optimal group-sequential designs for the example presented here are listed.
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Interestingly, the optimal second-stage sample size is always larger than the first-stage sample size. The ratio between the
sample sizes of the second and the first stage varies between 1.09 and 1.86. As outlined above, this may be caused by the
conditional power constraint that requires sufficiently large stage-two sample sizes to guarantee a conditional power of
70%. As a further interesting observation, the continuation region of an optimal group-sequential design slightly shrinks
with increasing p.

6 CUSTOMIZATION OF OPTIMAL DESIGNS

In this section, it is described how an optimal two-stage design can be modified if it shows properties that may not
be desired by the trial investigators. Different optimal adaptive designs will be presented that solve optimization prob-
lems guaranteeing specific characteristics. It is well-known that an optimized classical group-sequential design that
tests the test statistic from all n1 +n2 patient data at the final analysis against a critical value c is a sufficient approx-
imation of an optimal adaptive design.15,19,20 In this case, c2(⋅) only depends on the critical value c of this test and is
given by

c2(z1) =
√

n1 + n2

n2
⋅ c −

√
n1

n2
⋅ z1.

Therefore, such a design can be represented by the five values n1, cf , ce, n2, and c. To investigate whether this approx-
imation is also valid for the broad variety of optimization problems that are solved in the following, the corresponding
optimal five-parametric group-sequential design and the achieved objective value are reported in each subsection as
well. Note the difference to Section 5 where arbitrary critical value functions c2(⋅) were allowed. This increased flex-
ibility enabled the group-sequential design to fulfill a constraint on conditional power. In the simplified setting of a
five-parametric group-sequential design, such a conditional constraint that must be fulfilled for each z1 ∈ [cf , ce] separately
cannot be guaranteed in general.

6.1 Typical optimization problem

We still consider the pancreatic surgery trial from Section 3 and start planning an adaptive two-stage design based on the
typical optimization problem to minimize “expected sample size under the alternative” under constraints on maximum
type I error rate and minimal power. Therefore, the optimization problem to solve is

minimize


E𝛿=0.5[n]

subject to Type I error rate ≤ 2.5%

Power at 𝛿 = 0.5 ≥ 90%.

In Figure 3, the resulting design D6 is illustrated. The stage-two sample size function as well as the stage-two critical
value function are monotonically decreasing and concave. The maximum sample size of 127 appears at the boundary for
an early futility stop in the continuation region [cf , ce]= [0.28, 2.27]. Since the minimal level of the conditional power is
69%, the conditional power constraint in the previous examples was indeed necessary to achieve a conditional power of
at least 70%. The expected sample size under the alternative amounts to 63.3. Furthermore, the constraints on type I error
rate and overall power are met precisely. The properties of the optimal five-parametric group-sequential design that is
solving this optimization problem are summarized in Table 3. The performance gap with respect to the expected sample
size under the alternative is quite small and amounts to 3.3 patients per group.

6.2 Modification of the power curve

Intuitively, there are situations where the trial sponsor may not agree with constraints imposed solely on power and type I
error rate. In contrast, there may be specific further requirements. We already showed in Section 4 that a constraint on
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F I G U R E 3 Characteristics of optimal two-stage designs for different optimization problems. The concrete definitions of the underlying
optimization problems are given in the corresponding Sections 6.2 to 6.4 [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Characteristics of optimal group-sequential designs based on five parameters and comparison to optimal adaptive
designs

Introduced in n1 n2 cf ce c
Objective
value

Value of optimal
adaptive design

Efficiency
reduction

Section 6.1 47 64 0.81 2.06 2.33 66.57 63.31 5.1%

Section 6.2 54 83 0.65 2.14 2.19 78.44 70.83 10.7%

Section 6.3 46 49 −0.03 2.15 2.21 64.77 63.52 2.3%

Section 6.4 57 37 0.92 2.18 2.10 344 068.2 338 583.5 4.3%

conditional power can be incorporated in the optimization problem. Besides conditional power, there may be further
possible considerations. Mehta and Patel45 pointed out that an advantage of adaptive designs may be that anticipated
power values can be guaranteed not only for one particular alternative effect size. While fixed designs only allow fixing
two points on the power curve, it is possible to define more than two power values within an adaptive design. Imagine
in the surgery example that a mean difference of 𝜃 = 6 in CCI, corresponding to a standardized effect size of 𝛿 = 0.3, is
still of clinical relevance. The optimal design from Section 6.1 shows a power of 48.7% to detect this effect size and is,
therefore, comparable with a coin flip. However, it may be desirable to increase the power at 𝛿 = 0.3 to 60%. Adding this
requirement to the previous optimization problem yields

http://wileyonlinelibrary.com
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minimize


E𝛿=0.5[n]

subject to Type I error rate ≤ 2.5%
Power at 𝛿 = 0.5 ≥ 90%
Power at 𝛿 = 0.3 ≥ 60%.

Figure 3 shows the resulting design D7. The sample size function is monotonically decreasing as well as the critical
value function, which is hardly changed in comparison with D6. The price of the second power constraint measured in
maximum sample size is huge. While design D6 shows a maximum sample size of 127 per group, the maximum sample
size of design D7 amounts to 334 patients per group. With regard to the objective criterion εexpected sample size under
the alternativeε, the performance loss is not that drastically. While D6 achieved an objective function value of 63.3, the
design with a further power constraint shows an expected sample size at 𝛿 = 0.5 of 70.8. For all effect sizes 𝛿 ∈ (0, 0.5),
the difference between the expected sample size curves is, however, much larger. An optimal group-sequential design
that fulfills both power constraints shows an expected sample size at 𝛿 = 0.5 of 78.4. The conditional power of design
D7 to detect the effect size 𝛿 = 0.5 is very large within the continuation region since larger sample sizes are necessary to
obtain an overall power of 60% for the effect size 𝛿 = 0.3. The enormous increase in maximum sample size implies that
the standard deviation of the sample size is increased. For instance, the standard deviation under the alternative equals
43.7 compared with a value of 25 for the previous design D6.

6.3 Inclusion of further constraints

The example in Section 6.2 illustrated that even though an adaptive design allows the incorporation of multiple power
constraints, this comes with a massive increase in maximum sample size. However, the maximum sample size a design
may induce is an important feature for the trial investigators. If there are scenarios where the sample size of a two-stage
design is much larger than the fixed design’s sample size, investors may not be willing to conduct the trial with an adaptive
design due to the risk to end up with a too large trial duration. The results by Jennison and Turnbull10 and Barber and
Jennison15 show that for group-sequential designs a moderate decrease in maximum sample size above the fixed design’s
sample size is sufficient to obtain a substantial efficiency gain. Restricting the maximum sample size of an adaptive design
to a specific multiple of the fixed design’s sample size may therefore help to obtain designs that are still efficient but more
appealing from an investor’s view. In our example, we assume that the trial sponsor is not willing to invest more than 1.25
times the fixed design’s sample size of n= 85. This restriction is included as a further constraint. Another issue that is
often discussed in the planning stage of an adaptive design is the choice of the futility stop boundary. The optimal design
D6 from Section 6.1 shows an early-futility boundary of cf = 0.28. However, stopping a clinical trial early for futility even
if the interim effect points in the desired direction (ie, cf > 0) might be unattractive for an investigator. In order to avoid
situations where a clinical trial with a positive interim effect is stopped early for futility, a constraint cf ≤ 0 is required in
our example. This constraint as well as the constraint on the maximum sample size can be included in the optimization
framework, and the minimization problem to solve becomes

minimize


E𝛿=0.5[n]

subject to Type I error rate ≤ 2.5%
Power at 𝛿 = 0.5 ≥ 90%
max

z1
{n1 + n2(z1)} ≤ 107

cf ≤ 0.

The obtained design D8, which is depicted in Figure 3, is then the optimal two-stage design with respect to the expected
sample size under the alternative 𝛿 = 0.5 under all possible design choices that fulfill the above collection of constraints.
The continuation region now is [cf , ce]= [0, 2.27]. Hence, the optimal futility-stop boundary takes its maximum value of
cf = 0, and the efficacy-stop boundary has hardly changed in comparison with D5. The sample size function is no longer
strictly monotonically decreasing but quite flat for values of z1 close to cf . This is necessary to not exceed the maximum
sample size of 107. Conversely, the stage-two critical value function is still monotonically decreasing and concave. In
contrast to the examples in Sections 4 and 5, the resulting design shows an acceptable maximum sample size and a low
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probability of an early futility stop. However, this comes with the cost of a decreased conditional power that equals 29.2%
at the early-futility boundary. While the inclusion of further constraints changes the design’s properties by fitting them
to the trial sponsor’s preferences, this implies an increased value of the objective function. Indeed, one can exactly state
the price of the included constraints in terms of “expected sample size under the alternative.” The expected sample size
under the alternative 𝛿1 = 0.5 equals 63.5 subjects per group for this stronger restricted design D8 compared to 63.3 for the
optimal design D6 without those additional constraints. Therefore, the inclusion of these constraints causes an efficiency
loss of 0.2 expected subjects per group under the alternative. Interestingly, this difference appears to be very small. This
observation indicates that adding additional operational constraints to the basic optimization problem may be not very
expensive in terms of the objective criterion while on the other side making the design much more suitable for clinical
application. If the design is restricted to a group-sequential design based on five parameters, the expected sample size
under the alternative slightly increases to a value of 64.8 patients per group.

6.4 Customization of the objective function

A further possibility of adjusting an optimal two-stage design is the utilization of another objective function. From an
applicant’s view, the expected sample size under one or several effect sizes may be the most important objective to min-
imize. In order to flatten the sample size curve, one may, however, consider the minimization of a higher moment of
the sample size function n(z1)=n1 +n2(z1). Minimizing a higher than the first moment of n still leads to small expected
sample sizes but, in addition, larger sample sizes are penalized stronger. This should imply that the sample size curve is
flattened what may be preferred in practice. For our example, we assume that the third moment under the alternative,
that is E𝛿=0.5

[
n3], is to be minimized. Note that this is an arbitrary choice and minimizing higher or lower moments would

lead to more or less flattened sample size functions, respectively. To minimize the third moment of n under constraints
on type I error rate and power, the optimization problem to solve is:

minimize


E𝛿=0.5
[
n3]

subject to Type I error rate ≤ 2.5%
Power at 𝛿 = 0.5 ≥ 90%.

The resulting optimal design D9 is plotted in Figure 3. The sample size function is monotonically decreasing but much
flatter than for design D6. In particular, the first-stage sample size is increased to n1 = 55. Therefore, smaller stage-two
sample sizes are sufficient to fulfill the power condition. This implies that the maximum sample size decreases to 98 and
the standard deviation under the alternative decreases to 15.6. The critical value function c2(⋅) has hardly changed and is
monotonically decreasing and concave. The continuation region becomes [cf , ce]= [0.64, 2.31] and is thus slightly shifted
to the right compared with design D6. The minimal conditional power in case of continuation has a disappointing value of
42.3% at the early futility stop boundary for design D9. The expected sample size under the point effect size 𝛿1 = 0.5 equals
66 and is therefore sightly larger than for design D6 where a value of 63.3 was achieved. A group-sequential design with
five parameters that solves the same optimization problem shows an expected sample size at 𝛿 = 0.5 of 66.1. In terms of the
objective criterion “third moment of the sample size under the alternative,” the simpler group-sequential design is 4.3%
less efficient than an optimal adaptive design (cf. Table 3). In total, this example illustrates that flatter sample size curves
can be obtained by employing another objective function than “expected sample size.” While this is of high theoretical
appeal, this objective criterion may be difficult to interpret and communicate in practical application. Therefore, imposing
an upper bound to the maximum sample size may be better suited in a concrete clinical trial. However, it should be
mentioned that choosing another objective function instead of adding an additional constraint does not additionally
reduce the solution space of the optimization problem. Therefore, one may not end up with an optimization problem that
is unsolvable if the objective function is changed while constraints on, for example, conditional power and maximum
sample size might be contradictory.

7 DISCUSSION

In this article, we analyzed different aspects of the optimal choice of a two-stage design. When it is decided to specify
the entire design during the planning stage, the task of choosing a suitable design can be embedded in an optimization



PILZ et al. 3209

problem that leads to the best possible design for the selected objective criterion under specified constraints. We believe
that applying these designs or optimal group-sequential designs that are valid approximations of optimal adaptive designs
is an appealing option for clinical research. In the presented examples, we demonstrated that the optimal design’s charac-
teristics strongly depend on the underlying optimization problem. In particular, an adaptive design based on conventional
rules can be inefficient if the expected sample size under the alternative is not the only objective criterion (cf. Section 4).
Consequently, there is no “one-size-fits-all approach” to define a generic two-stage design. Instead, the trial design (ie,
the design parameters) should be chosen case-driven, ideally in an optimal way. Studying the optimal design for a partic-
ular situation can also be helpful to detect such situations where an originally chosen design performs inefficiently. By
comparing the classical design with the optimal one, the latter can serve as benchmark that allows quantifying the perfor-
mance loss of the non-optimal design. Similarly, optimal designs can be used to quantify the cost of additional constraints.
Deriving the optimal designs with and without the constraint in question allows to state the efficiency loss incurred by
the inclusion of the constraint in terms of the chosen objective criterion. In the examples considered in this manuscript,
we did not observe a substantial performance decline after adding further operational constraints (cf. Section 6.3), or
restricting to group-sequential designs (cf. Section 5) as long as the power curve remained identically. This shows that
the reduction in expected sample size of two-stage as compared to fixed designs mainly stems from the possibility of early
stopping and not from the shape of the stage-two functions. Modifying the power curve results in substantial additional
costs (cf. Section 6.2).

In this manuscript, a variety of adaptive and group-sequential designs was presented. All of them showed differ-
ent characteristics that were fitting to particular optimization problems. The choice of the objective criterion is not
straightforward. Indeed, different objective criteria lead to very different designs that may show unfavorable properties.
Therefore, defining an optimization problem that takes different performance criteria into account may be a reason-
able procedure. Note that the optimization approach is naturally limited by the solution space that is spanned by its
constraints. In Section 3, a conventional group-sequential design was introduced that was not derived by any opti-
mization approach. While this design showed a low maximum sample size, its conditional power was low for small
values of z1 inside the continuation region. Including a conditional power constraint (Section 5) led to increased con-
ditional power values without enormously exceeding the previous maximum sample size (cf. Table 2). However, those
optimized design showed a quite aggressive early futility stop. This observation is as expected since small values of
z1 inside [cf , ce] require larger stage-two sample sizes n2 to exceed a certain conditional power level. Consequently, a
design with a liberal futility stop, a low maximum sample size, and a large conditional power for any value z1 ∈ [cf , ce]
does not exist. Therefore, each time when an adaptive (or a group-sequential) design is planned by optimization, one
has to choose the underlying constraints very carefully and weigh them against each other with caution. It depends
on the concrete situation which of the large number of desired properties is dispensable in the specific clinical
trial.

In particular the conditional power often plays a pivotal role in adaptive sample size adjustments during unblinded
interim analyses (cf. for instance Chapter 7 of the book by Wassmer and Brannath2). Instead of raising the sample size
post-hoc during an interim analysis, one can choose an optimal design under a constraint on the minimal conditional
power. If the design is pre-planned optimally under a conditional power constraint, a foreseeable mid-course design
reassessment can be avoided. This is recommended by regulatory authorities.41 Of course, adaptive designs still enjoy the
feature of the possibility to modify the trial design at the interim analysis. A constraint on conditional power, however, can
already be formulated and ensured during the planning phase as long as the planning assumptions do not change. Fur-
thermore, the optimization approach implies that the corresponding design shows the best possible performance under
the given objective criterion and constraints. Any design modification during the ongoing trial would lead to a perfor-
mance deterioration. An optimal design with a constraint on minimal conditional power thus joins both the conditional
and the unconditional perspectives on design performance. While a conditional power constraint is not required by reg-
ulatory authorities, it can effectively prevent rare situations in which conditional power would drop so low that a sponsor
might again be tempted to conduct an ineffective sample size recalculation. The small costs in terms of (unconditional)
expected sample size are outweighed by the additional intuitive appeal and the protection against a potentially perceived
need to conduct an ineffective post-hoc sample size recalculation.

Besides the conditional power, the futility stop is another important characteristic of a two-stage design. It must be
noted that the futility stop is necessarily binding in the setting of this article. An entirely non-binding futility stop cannot
be provided in the outlined setting because the stage-two functions need to be defined on a compactum. This fact might
be problematic in a phase III confirmatory trial where one might wish to consider many other factors, such as safety
data or results from secondary endpoints, before terminating a trial for futility. In Section 6.3, it has been shown that
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an upper-bound on the early-futility-stop boundary can be included in the optimization procedure. This seems to be the
most suitable option in practice since this upper boundary can be chosen very small. Therefore, the choice of a strict
upper bound on the futility stop may be acceptable in practice since entering the second stage with an interim effect that
drastically points in the wrong direction is highly questionable from an ethical perspective.

The presented approach to optimal planning of two-stage designs can be restricted to group-sequential designs (cf.
Sections 5 and 6). Those designs with constant sample size functions are a special case of generic two-stage designs. With
regards to design performance, restricting the stage-two sample size to be constant appears to cause only a marginal dif-
ference in terms of efficiency. This result corresponds with the observations of Jennison and Turnbull,19 Lokhnygina and
Tsiatis,21 and Posch et al.46 Note that for the optimal designs considered in this manuscript, the design modifications
are already outlined hypothetically for all possible interim outcomes during the planning stage. From this perspective,
there is no need to choose a constant stage-two sample size function. Furthermore, a group-sequential design does not
necessarily show a lower variability in terms of sample size than an adaptive design. If the first-stage sample size of a
group-sequential design is quite small and a constraint on overall power is included, there may be a large jump in the
design’s sample size function (cf. Table 2). This makes the final sample size of the trial hardly predictable and hinders
reliable planning of trial resources. Less variability in the trial’s sample size can be achieved by, for example, including an
upper bound on the maximum sample size (cf. Section 6.3). Nonetheless, the restriction to group-sequential designs pro-
vides at least three interesting features. Firstly, there are merely two possible sample sizes that can occur: the first-stage
sample size n1 if the trial is stopped early or the total sample size n1 +n2 if the trial is continued at the interim analy-
sis. This may simplify the organization of the trial because only two potential scenarios have to be prepared. Secondly,
group-sequential designs allow the usage of error-spending tests.47,48 Those can handle unpredictable variations in the
actual group sizes. Barber and Jennison15 show that there are families of error-spending tests that are close to optimal
for various objective functions. Hence, applying an efficient error-spending test and an efficient stage-wise sample size
allocation in the group-sequential design may cause only small performance deterioration while simultaneously provid-
ing the option to react on unforeseen group sizes in the actual analysis. Finally, optimizing a simplified version of c2(⋅)
in the group-sequential framework may help to reduce the complexity of the optimization problem. It is computationally
much easier to obtain a single optimal stage-two sample size n∗

2 instead of a function n∗
2(⋅). Since the presented optimal

stage-two critical value functions are not far from being linear, a sufficient approximation of optimal two-stage designs by
constant n2- and linear c2-functions is an option worth to be considered. In particular, it is known from the literature that
optimized classical group-sequential designs that test the test statistic from all n1 +n2 patient data at the final analysis
against a critical value c are sufficient approximations of optimal adaptive designs.15,19,20 In this case, c2(⋅) only depends
on the critical value c of this test. In the examples of Section 6, it has been confirmed that such designs are a valid approx-
imation of optimal adaptive designs with arbitrary n2(⋅)- and c2(⋅)-functions for a broad variety of optimization problems.
This reduces the parameter space of the optimization problem to five parameters (n1, cf , ce, n2, and c). Investigating the
computation of optimal designs for multi-arm multi-stage trials under these simplified assumptions may be an interesting
topic for future research.

Planning based on a single-point alternative hypothesis 𝛿 = 𝛿1 is quite fragile to misspecification of 𝛿1. We presented
methods to regularize the optimization problem by imposing constraints (cf. Section 6.3) or customizing the objective
function (cf. Section 6.4). Both ideas may increase the design’s usability by providing desirable properties but come at
the cost of a decreased efficiency in terms of the original objective criterion. We further regularized the design by not
only minimizing under the point alternative hypothesis but under a weighted sum of null and alternative hypothesis (cf.
Section 4). These considerations may be extended to a Bayesian approach, which allows becoming more robust against
wrong planning assumptions on 𝛿1. Instead of a point effect size, one may choose a prior distribution 𝛿 ∼ 𝜋(𝛿). This
approach includes the task of optimizing under the point alternative 𝛿 = 𝛿1 as a special case when choosing a point
prior 𝜋(𝛿) = 1{𝛿=𝛿1}. The presented optimization under a weighted sum of effect sizes in Section 4 is a special case of the
Bayesian approach with the prior 𝜋(𝛿) = p1{𝛿=𝛿1} + (1 − p)1{𝛿=0}. Optimizing not only under a single point effect size but
under multiple effect sizes or even a continuous prior distribution helps to avoid overfitting on a single effect size. It can,
therefore, also be seen as regularization of the design.

It is highly relevant to distinguish clearly between planning and reassessing two-stage designs. Flexible adaptations of
the trial design can be performed as long as the conditional error principle holds. Note that determining the trial design
during the planning stage by an optimization approach does not violate the conditional error principle. While the function
c2(⋅) serves as critical value for the stage-two test statistic, the conditional error function A(⋅) provides the critical value for
the p-value of the second stage. Therefore, these two approaches are equivalent: When the optimal critical value function
c∗2(⋅) has been calculated, the corresponding conditional error function A*(⋅) is given by
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A∗(z1) = 1 − Φ
(

c∗2(z1)
)
.

Hence, the conditional type I error rate can be computed for any value of z1. This allows changing all design elements
as long as the conditional type I error rate is maintained. Therefore, it is still possible to modify the design during the
ongoing trial and to react on new external information. However, leaving the path of the optimal design will inevitably
decrease the efficiency with respect to the original objective criterion used during planning. We thus recommend to
only deviate from the optimally planned design if this becomes necessary by new unforeseen information. Therefore,
we agree with Bauer et al1 who state that “[t]he question might arise if potential decisions made at interim stages
might not be better placed to the upfront planning stage.” These considerations imply that much effort should be put in
the planning of the trial design even if its adaptive character allows potential design modifications during the ongoing
trial.

Finally, we would like to remark that the implementation of optimal designs in the software package adoptr34 is a
beneficial contribution to the community of adaptive design research. All examples in this manuscript have been imple-
mented utilizing this package, and its generic character enables the users to solve their particular variant of the general
optimization problem (1)-(3). We hope that the supply of such a software package encourages further research on optimal
designs and in particular facilitates their application in clinical research.
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APPENDIX

In this Appendix, it is briefly described how the general optimization problem to two-stage design (1)-(3) is solved in the
R-package adoptr. For a detailed description of adoptr and its usage see its vignette.49

Pilz et al22 solved a particular expression of this problem by applying the Euler Lagrange equations. In their work,
the objective criterion was the expected sample size under the alternative, and constraints on maximum type I error rate
and minimum power were imposed. This approach cannot be generalized to problems (1)-(3). A general solution would
imply that the Euler Lagrange equations have to be defined from scratch for any expression of (1)-(3). This would be
time-consuming and numerically unstable for complex expressions of this problem. Furthermore, any conditional con-
straint (eg, conditional power) lets the corresponding Lagrangian multiplier become a function. Then, no mathematical
techniques as in Pilz et al22 can be applied to solve the Euler Lagrange equations.

Instead, a numerical approach is implemented in adoptr to solve (1)-(3). The continuation region [cf , ce] is
split into a set of k pivot points cf ≤ z(1)1 ≤ … ≤ z(k)1 ≤ ce. The stage-two functions n2(⋅) and c2(⋅) are evaluated
only on these pivots and thus discretized. Consequently, a two-stage design is described by 2k+ 3 parameters
n1, cf , ce,n2(z(1)1 ), … ,n2(z(k)1 ), c2(z(1)1 ), … , c2(z(k)1 ). All unconditional properties, as expected sample sizes or error rates, are
evaluated by numerical integration of order k. Concretely, the method of choice for the numerical integration is Gauss
Legendre quadrature. All conditional properties, as conditional power, are evaluated on the k pivot points. Cubic Hermite
spline interpolation50 of the stage two-functions n2(⋅) and c2(⋅) ensures the fulfillment of conditional constraints within
the entire continuation region. This approach transforms the optimization problem (1)-(3) into a finite-dimensional one
and can be solved by standard numerical libraries. Note that these libraries require the definition of lower and upper
boundaries for the parameters to be optimized. Usually, there are internal definitions in adoptr as, for example, that the
sample sizes must be at least 1. However, in complex optimization problems, a further restriction of the parameter space
may allow faster convergence and helps to avoid convergence to strange solutions. In such cases, a manual definition of
the lower and upper boundaries may be recommendable. Consequently, for some examples of this manuscript, specific
lower and upper boundaries are included in the R code that is provided as supplemental material.
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