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Supplementary Figure 1. Physical interaction partners of TBP and their conservation
between organisms

a)

TBP functions as a hub of physical interactions for various transcriptional protein
complexes. Some of these protein complexes with TBP include several chromatin-
remodeling complexes such as ASTRA, ADA2 and SAGA complexes, basal transcription
apparatus such as RNA Pol I, II and III holoenzymes and RNA processing machineries
such as CCR4-NOT1.

b) Numerous components of such transcriptional complexes are conserved between organisms

and also physically interact with TBP. For instance, about 65% of interaction partners are
conserved and physically interact with their respective TBPs between yeast and human
TBPs.

Basal transcription apparatus and its components that are common between two
superkingdoms, i.e. archaea and eukaryotes, are shown. The presence of numerous
additional components in eukaryotic basal transcription machinery is possibly due to the
existence of parallel transcription systems, i.e. Poll, Polll and Pollll and complex chromatin
dynamics during the transcription process.



a N-terminal lobe C-terminal lobe

| L3|
: Cl3.2
TBP lobes u_J 1)
sequence g DNA C
alignment Ancestral sequence reconstruction
'ﬁ 8 . Bacterial ancestral TBP sequence
acteria Archaeal ancestral TBP sequence
=> Eukaryotic ancestral TBP sequence
J Similarly,
Archaea 13 A
L3 alignments
S4 L5 S5 L6 H2 ere
)
produced for
—— TBP-interacting
— — factors:
—— TFIIA
EUU@@W@E@S — — TFIIB (TFB)
—— Brfl
TBP_YEAST(N TTALIFASG--KMVVTGA---KSEDDSKLA - Brf2
] —_— TBP_YEAST(C) IVLLIFVSG--KIVLTGA---KQREEIYQA- Mot1
® Viruses - TBP_HUMAN(N) T TALIFSSG--KMVCTGA---KSEEQSRLA- NC2
TBP_HUMAN(C) IVLLIFVSG--KVVLTGA---KVRAEIYEA-
Viral TBP sequences ‘1‘,‘5%‘,‘?;&’5‘7&?;7&‘9\(?5\(?'}\%’5\??‘\(;9\?,L) ,\‘;jq;;;};é?;? (-"‘,,6@’,,’%/-\ o \?q, \9'3, \9?‘\9?&& %‘%‘v& «f&%\ {.\&g,
used as outgroup .
Common TBP Numbering (CTN)
b . C
g 2oz 3 Define spatio-temporal context by selecting
" Be8iisiy subsets of TBP alignment based on...
: 225548
: £15888¢¢
Eefssiss

..evolutionary range

eg.
M Archaea i
Eukaryotes
..TBP lobes
eg.

ASUYM2 MONBE ¢
B3RRW2 TRIAD C
TBP2 ARATH C
TBP1ARATH C
TBP YEASTC
7P DROME C
8as0LT TRIAD C
op HUMANC

©
o B
o° oo -

AGH910 CHICK N
B3RRW2 TRIAD N

TBP2 ARATH N
A9UYM2 MONBE N

CV2 BRAFL
B206P4 Cpgg
Wa\rq,\,9 STRey M

ORoyg N
Oage,,




Supplementary Figure 2. Ancestral sequence reconstruction, common TBP-lobe
numbering system and dendrogram of TBP-lobe like regions

a) Alignment of TBP-lobe like regions in RefMSA was used to construct ancestral sequences
for each of the superkingdoms i.e. bacteria, archaea and eukaryotes (see Methods and
Main text). While the horizontal bars indicate TBP-lobe like sequences, blue and red
colours respectively denote N-terminal and C-terminal lobes for archaea, eukaryotes and
viruses. The most conserved residues in the ancestral sequences between three
superkingdoms were considered as universally conserved residues (see Methods). The
ancestral sequences were integrated with the common TBP-lobe numbering (CTN) system
for further analyses. A snapshot of actual CTN assignment for a part of RefMSA is shown.
In the CTN system, each residue position in RefMSA is referred as <Lobe>.<Secondary
structure type and secondary structure number>.<Alignment position> (e.g. N.L5.1 refers to
Phe 116 in yeast; See Methods and above).

b) Dendrogram of TBP-lobe like regions: TBP-lobe RefMSA was used to construct this
dendrogram (see Methods). The dendrogram indicates that TBP-lobe like regions of
bacteria and viruses form distinct clusters, suggesting their significant divergence from TBP
lobes of eukaryotes and archaea. For the construction of the dendrogram, we considered
only sequences from representative organisms in the RefMSA alignment. We made sure to
select sequences from the RefMSA that span the whole diversity of lineages represented in
the RefMSA. Poxvirus sequences were not considered for the generation of the dendrogram
as they are the most divergent versions of TBP-lobe like sequences (see Methods).

¢) Approach to uncover molecular signatures for functional innovations of TBP involved
utilization of two independent contexts i.e., spatial and temporal. To identify molecular
signatures of TBP, evolutionary range and TBP-lobe regions from the RefMSA were used
to define the temporal and spatial contexts, respectively. Here, two insets together define a
particular spatio-temporal context, wherein temporal context is confining the analyses to
evolutionary range of archaea and eukaryotes. The spatial context is the C-terminal TBP-
lobe centric investigations.
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Supplementary Figure 3. C-terminal lobe specific molecular signature in viral TBPs
C-terminal lobe specific molecular signatures from archaea and eukaryotes (Figure 3a)
mapped onto C-terminal lobes of representative viral TBPs from the RefMSA. This
mapping indicates there is not high conservation of Glu or Asp at L3.2 or L3.4 in the C-
terminal lobe of viral TBP-lobe sequences.



BLOSUM score

Conservation between eukaryotic
paralogous TBP-TF2B/BRF2 interactions

Natural variation of TBP-interacting —
TBP TFIIB . . X )
residues with factors in the C-terminal lobe
1.0- 5
0.6-
0.5-
2
B
b5 interf
° 8 04- interface
M-
= . yes
=1
£
007 02-
o
-05- | | | | . 8P TF2B BRF1 BRF2
TBP TFIIB BRF1 RRN7 BRF2 factor
(eukaryotes) (eukaryotes) (eukaryotes) (eukaryotes) (eukaryotes)

factor



Supplementary Figure 4. Evolutionary conservation and natural variation of
interaction interface residues in the C-terminal lobe of TBP

a)

b)

The box-plots display the distribution of evolutionary conservation at the residue-level,
measured in terms of normalized BLOSUM scores, of interaction mediating interface
residues for eukaryotic: (i) orthologs of TBP and TFIIB and (ii) paralogs of TFIIB. The
distribution of the evolutionary conservation was derived based on co-complex crystal
structure (PDB: 1¢9b) data of human TBP-TFIIB interactions as the reference for the
comparison. The structure of human TBP-TFIIB was used to identify interaction mediating
residues in both TBP and TFIIB. These residues were mapped on to equivalent residue
positions in the following subsets of sequence alignments to evaluate their respective
normalized BLOSUM scores across the alignment: (i) eukaryotic C-terminal TBP-lobes
from RefMSA (for TBP only), (ii) TFIIB orthologs alignment in eukaryotes, (iii) alignment
of TFIIIB/BRF1 orthologs, (iv) alignment of BRF2 orthologs and (v) alignment of
TAF1B/Rrn7 orthologs (see Supplementary data). Horizontal line within each of the box
plots indicates median score of conservation. TBP displays highest conservation, relative to
the other interacting factors, at these interface residue positions.

The bar plot depicts mutation densities for natural variation of residues at the interaction
interfaces of C-terminal lobe of TBP with TFIIB and its paralogs. Mutation density (rate of
mutations normalized to the sequence length) bar plots has been made based on data from
known co-complex structures of TBP C-terminal lobe with various factors such as TFIIB,
BRF1, BRF2 (PDB: 1c¢9b, 6f40 and 4roc). “Red bar” indicate mutation density for the
interface residues, while “gray bar” indicates the same measure for non-interface residues.
The bar plots indicate that TBP (C-terminal lobe) has the least natural variation at the
interface as compared to the other factors (Methods). Hence similar to the pattern of
evolutionary conservation within eukaryotes, natural variations indicate that interface
residues of TBP interacting factors does display a greater mutational tendency compared to
TBP interface residues for the C-terminal lobe interactions.
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Supplementary Figure S. Interaction residues of various factors that mediate

interactions with the molecular signature positions in the N-terminal lobe of TBP.
The plot displays detailed view of number of interaction contacts of the 5 conserved molecular
signature positions (shown in the right y-axis; see Figure 4) in the N-terminal lobe TBP and their
interacting residues in various factors (shown in the x-axis). The darker the color of boxes higher
the evolutionary conservation of that residue. These interactions are deduced based on available co-
complex structures of these factors with TBP (Figure 4 and Methods). The majority of the residues
displayed in the plot are either acidic or aromatic residues suggesting the existence of a significant
number of electrostatic interactions between N-terminal lobe of TBP and these factors (see Figure
4). These acidic or aromatic residues in some cases do not display a strong evolutionary
conservation as these residues fall in intrinsically unstructured or disordered regions. However,
while not conserving individual acidic or aromatic residues, overall they preserve negatively
charged or aromatic characteristics in these residue sequence neighborhoods (see Supplementary
Figure 6 and Figure 4).
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Supplementary Figure 6. Disorder propensities of the interacting segments of various
factors that interact with the N-terminal lobe of TBP in eukaryotes.
Each plot indicates the disorder propensity, a measure of the unstructured nature of a given residue,
for interacting residues of every TBP interacting factor with N-terminal lobe of TBP. The disorder
propensity is calculated using [IUPRED (see Methods) and higher values in y-axis indicate greater
tendency for being intrinsically unstructured or disordered for that given residue. Typically, values
in the y-axis greater than 0.5 signify assignment of disorder tendency to a given residue. Disorder
propensities across organisms, as in the alignment of TBP interacting factors (see Supplementary
data), are shown as black shaded regions in each plot and central white lines indicate mean value of
disorder propensity for the respective positions (across organisms). The residue conservation is
indicated by BLOSUM score is shown as green for high conservation to red for poor conservation.
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Supplementary Figure 7. Evolutionary conservation and natural variation of
interaction interface residues at TBP N-terminal lobe

a)

b)

Evolutionary conservation, measured in terms of BLOSUM score, of interaction mediating
interfaces residues for TBP and its various interacting factors at the N-terminal lobe of
TBP. This is identified based on co-complex structure data of TBP with various factors; in
particular, the extent of evolutionary conservation or divergence for various intermediating
residues in various factors are evaluated based on sequence alignment (see Supplementary
data). It should be noted that conservation plots are made for TBP and its interacting
factors with an identical phylogenetic range in order to have a meaningful comparison.
Horizontal lines within the box plot indicate median score of conservation for each factor’s
interface residues. In the majority of cases, TBP displays better evolutionary conservation
than its interaction partners at the interaction mediating interface residue positions.

The bar plots of natural variation of residues measured as mutational densities (see
Methods and above) at the interface for various factors that interact with the N-terminal
lobe of TBP. “Blue bars” indicate mutation density for the residue at the interface
mediating interactions, while “gray bar” represents mutation density for non-interface
residues. The barplots indicate TBP has the least natural variation at the interface as
compared to other factors. Hence, similar to the pattern of evolutionary conservation and
natural variation of interaction interfaces at the C-terminal lobe of TBP, these plots indicate
that the interface residues of TBP interacting factors does display a greater mutational
frequency compared to TBP interface residues.
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Supplementary Figure 8. Molecular signature residue positions mapped to the N-

terminal lobe of TBP of dsDNA viruses.

Highly conserved residue positions in the N-terminal lobe of TBP (see Figure 4) mapped on their
dsDNA viruses orthologs. The five residue positions that are either positively charged positions or
contains asparagine are indicated within rectangular boxes. It is clear from these indicated positions
that, in the viruses, these positions, by and large, are devoid of positively charged residues. Given
the positively charged residues are critical for mediating TBP interactions (Figure 4 and
Supplementary Figure 5) with various factors, which in turn function as regulatory controls, this is
suggestive that viruses potentially avoid the host regulatory controls. These regulatory controls
could otherwise place restrictions on functions of viral TBPs in their respective hosts.
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Supplementary Figure 9. Mapping of Mutational data.
a) Molecular signature residues of TBP and experimental data. Highlighted residues that are
prominent molecular signatures for interactions that have support from experimental data.
For more comprehensive data please see the table in b) below.
b) Mutational data that provide support for molecular signatures.
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Supplementary Figure 10. Conserved regions, protein-protein interactions and tissue
expression in TBP and its paralogs.

a)

b)

d)

Dendrograms depicting relationship between TBP and its paralogs (Supplementary Data).
These dendrograms have been constructed using representative sequences that capture
diversity of animal lineages in which these proteins were detected (see Methods). TBP and
TBPL2 are found in early or primitive animals, while TBPL1 is found only in invertebrates
and vertebrates suggesting that TBPL1 is the most recent paralog of TBP as well as the
most divergent.

Multiple sequence alignment of N-terminal PolyGln stretches containing regions of TBP.
Only a part of the alignment of this evolutionary conserved region is shown (see
Supplementary Data for full alignment of this domain). This region is present only in
vertebrates. It is clear that there is an approximate linear increase in sequence length of
PolGln (PolyQ) stretches in TBP from zebra fish to humans.

Multiple sequence alignment of N-terminal proline rich regions of TBPL2. Only a part of
the alignment of this evolutionary conserved region is shown (see Supplementary data for
full alignment of this region). This region is present only in vertebrates and particularly
prominent in mammals.

Physical interactions of human TBP, TBPL1 and TBPL2. While the data is sparse for
TBPL1 and TBPL2, their shared interactions with TBP appears statistically significant.
However, albeit with limited protein-protein interaction data, we observe the existence of
unique interaction partners of TBPL1 and TBPL2. This is suggestive of potential distinct
function contexts for TBPL1 and TBPL2. Given the higher sequence divergence and
distinct pattern of protein expression across human tissues of TBPL1, interaction
divergence could be additional contributing factor for functional divergence between TBP
and TBPL1 (see Supplementary Figure 10e). The physical interaction data has been
obtained from BIOGRID and Intact databases (Oughtred et al, 2019; Kerrien et al, 2012).
Protein level expression of human TBP, TBPL1 and TBPL2 across 17 different tissues
(Kim et al, 2014). TBPL1 is almost ubiquitously expressed in majority of these tissues,
while TBP and TBPL2 are more restricted. This may be due to their low-level of
expression, which might be hard to detect by high throughput methods. Nevertheless,
TBPL1 appears to have a divergent expression pattern indicated by Pearson correlation of
0.2 with TBP. This along with the earlier observation that TBPL1 is most divergent of the
paralogs of TBP is suggestive of distinct functional niche of TBPL1. TBPL2 has a robust
co-expression with TBP with a Pearson correlation of 0.7 and this might suggest some level
of functional overlap between TBP and TBPL2 for e.g. DNA sequence recognition, protein-
protein interaction, etc.
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Supplementary Figure 11: Overview of datasets used and analyses performed in
Ravarani et al.
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Overall strategy for the construction of RefMSA
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Supplementary Figure 12: Overview of Methods.

12



