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CONSISTENT TESTING FOR AN IMPLICATION OF SUPERMODULAR
DOMINANCE

DANBI CHUNG, OLIVER LINTON, AND YOON-JAE WHANG

Abstract. Supermodularity, or complementarity, is a popular concept in economics which

can characterize many objective functions, including utility, social welfare, and production

functions. Further, supermodular dominance captures a preference for greater interdepen-

dence among inputs of those functions, and it can be applied to examine which input set

would produce higher expected utility, social welfare, or production. However, contrary to

the profuse literature on supermodularity, to the best of our knowledge, there is no existing

work on either testing or empirical analysis for supermodular dominance. In this paper, we

propose a consistent test for a useful implication of supermodular dominance and suggest a

correlation dominance testing for Gaussian random variables as a special case. The test is

based on a novel bootstrap critical value, which has potentially enhanced power performance

by exploiting the information on the contact set on which the null hypothesis is binding. We

also conduct Monte Carlo simulations to explore the finite sample performance of our tests.

We then apply our test to analyze two economic questions. We first investigate whether the

interdependence of stock returns among major firms has increased after the COVID-19, and

find evidence supporting this conjecture. We also compare the interdependence of patent

citations depending on distance, where greater interdependence can imply greater expected

social welfare effect. The results suggest that, in most cases, between-state citations seem

to have greater interdependence than within-state citations, implying that lively interaction

between firms across states might engender greater expected social welfare than knowledge

spillover within a geographically confined area.

Keywords: Supermodularity, Supermodular Dominance, Stochastic Dominance, Bootstrap,

Contact Set, COVID-19, Patent Citation
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1. Introduction

The concept of supermodularity has been widely used in economics to analyze how one

agent’s decision affects the incentive of the others. It is often called strategic complemen-

tarity, indicating that agents’ strategies are complements to each other. In economics, many

objective functions including utility, social welfare, and production functions, can be regarded

as supermodular (or submodular1) functions. For instance, as Meyer and Strulovici (2017)

pointed out, any financial loss function that is convex is supermodular in the individual

losses. Another example includes a submodular production function, which appears when an

increase in a firm’s output has a negative effect on the outputs of the other firms. In general,

supermodularity of a function is closely linked to positive interdependence among inputs.

Likewise, supermodular dominance, or supermodular ordering, is a general notion to cap-

ture preference for greater interdependence among inputs of those functions. It is an ordering

between two sets of variables based on the ordering of the expected values of the variables

evaluated with supermodular functions, details of which will be reviewed in Section 2. Thus,

supermodular dominance can be applied to examine which input set would produce higher

expected utility, social welfare, or production, a question of great interest in many areas of

economics.

In this paper, we propose a formal test of an implication of supermodular dominance

that is consistent against general alternatives. The test is based on a necessary condition of

supermodular dominance, so that rejecting the test would imply that the underlying variables

do not characterize supermodular ordering. We also suggest a test of correlation dominance,

which is a special case of the supermodular dominance when the underlying variables are

Gaussian. The limiting null distributions of our test statistics are shown to be non-pivotal

and we propose a novel bootstrap critical value, which has a potentially enhanced power

property by exploiting the information on the contact set on which the null hypothesis is

binding.

We then investigate the finite sample performance of our tests by Monte Carlo simulations.

The simulation designs include weakly dependent and strictly stationary data as well as

1A function f is submodular if −f is supermodular.
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independently and identically distributed multivariate normal data. In both cases, we confirm

that our tests have reasonably good size and power performance under various settings.

Finally, we present two economic applications of our test. We first investigate whether the

interdependence between the standardized stock returns of major firms have increased before

and after the COVID-19 pandemic. Our tests suggest evidence in favor of this conjecture,

on par with our intuition. We also compare the interdependence of patent citations based on

distance, using patent citation data from the National Bureau of Economic Research (NBER),

where greater interdependence can imply greater expected social welfare effect. The results

suggest that, in most cases, between-state citations seem to have greater interdependence

than within-state citations, indicating that lively interaction among firms across broad areas

can engender higher expected social welfare than knowledge spillover, measured by patent

citation, within a geographically confined area.

Literature Review. There is an extensive literature on supermodularity or complemen-

tarity in various branches of economics including game theory, macroeconomics, and com-

parative statics analysis. For instance, games with strategic complementarity, those wherein

the best response of a player increases in another agent’s strategy, gained interest starting

from Topkis (1979), Vives (1985), and Vives (1990). Vives (1990) proposes a method to

analyze Nash equilibria in noncooperative games utilizing lattice theory which best works in

the presence of strategic complementarities. Vives (2005) also gives an introduction to the

analysis of supermodular games and applies the result to the issues of industrial organization.

Among the literature on comparative statics, Athey (2002) mentions that the robustness of

comparative statics in economic theory is guaranteed by the (log-)supermodularity of prim-

itive functions such as utility functions and probability distributions. Amir (2005) gives a

non-technical survey.

In macroeconomics, Cooper and Haltiwanger (1996) provide theoretical propositions along

with empirical evidence that, in the presence of complementarity, agents will show positive

co-movement and have synchronized decisions, and aggregate shocks will be magnified and

propagated. Acemoglu and Azar (2020) develop a model of endogenous production net-

works and show that supermodularity in all arguments of the production function implies
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the technology-price single-crossing condition, which implies that a positive technology shock

or a reduction in distortions encourages technology adoption by all industries.

In finance, supermodularity plays an important role in providing general bounds on the

price of stochastic annuities, Goovaerts and Dhaene (1999), and multiasset options such as

basket or spread options, Rapuch and Roncalli (2004). In the Brownian motion (or Gaussian

random variable) case it is known that the supermodular ordering of payoffs with identical

marginals is equivalent to the ordering of the pairwise correlations, Muller and Scarsini

(2000, Theorem 4.2). Kızıldemir and Privault (2015) and Kızıldemir (2017) showed that

these conditions are also necessary and sufficient conditions for supermodular ordering of

Poisson random vectors and extended the sufficiency results to a much larger family that

captures the prototypical jump diffusion models widely used in the option pricing literature.

Relative to the profuse references on supermodularity, supermodular dominance has re-

ceived little attention in the literature. Meyer and Strulovici (2017), in their pioneering

research, study interdependence in economic settings using supermodular objective functions

and suggest possible applications to various economic questions. However, there appears to

be no existing statistical inference procedure available for supermodular dominance, partially

because there is lack of the necessary and sufficient condition for the concept. Moreover, we

have not been able to find any empirical studies that test for supermodularity or supermod-

ular dominance using actual economic data. Our paper tries to fill this gap.

The paper is organized as follows. In Section 2, we review basic concepts and necessary

conditions of supermodular dominance. Section 3 formulates the hypotheses of interest,

introduces the test statistics, and defines bootstrap critical values. Section 4 discusses a

test of correlation dominance for Gaussian random variables. Section 5 reports the Monte

Carlo simulation results, and Section 6 presents two empirical applications. Section 7 is a

conclusion. Finally, Appendix provides proofs of the main theorems.

2. Supermodular dominance

In this section, we review some basic concepts. A set X ⊂ RK is called a lattice if

x ∧ x′ ∈ X and x ∨ x′ ∈ X for any x, x′ ∈ X .2

2x ∧ x′ and x ∨ x′ denote the element-wise minimum and element-wise maximum of two vectors x and
x′, respectively.
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Definition 2.1. A function f : X → R is supermodular on a lattice X if for any x, x′ ∈ X ,

f(x) + f(x′) ≤ f(x ∧ x′) + f(x ∨ x′).

For a twice continuously differentiable f , supermodularity of f corresponds to non-negative

cross-partial derivatives between all possible pairs of inputs, i.e.,

∂2f(x1, . . . , xK)

∂xi∂xj
≥ 0 ∀ i 6= j.

Let X = (X1, . . . , XK)ᵀ and Y = (Y1, . . . , YK)ᵀ denote two random vectors in RK .

Definition 2.2. Y supermodularly dominates X, denoted X ≤sm Y , if

Ef(X) ≤ Ef(Y )

for all measurable, supermodular functions f : RK → R for which the expectations exist.3

It is well known that, so far, there are no necessary and sufficient conditions found for

supermodular dominance, but there are several implications at hand. The following lemma

states some necessary conditions of the supermodular dominance proved by Bäuerle (1997):4

Lemma 2.1. If X ≤sm Y, then

1) Xi
d
= Yi for each i = 1, . . . , K. (1)

2) max{X1, . . . , XK} ≥st max{Y1, . . . , YK} and min{X1, . . . , XK} ≤st min{Y1, . . . , YK}.

3) (Xi1 , . . . , Xik) ≤sm (Yi1 , . . . , Yik) ∀ 1 ≤ i1 < ... < ik ≤ K.

Condition 1) implies that the variables in the supermodular dominance relationship have the

same marginal distributions. Combining 2) and 3), we obtain

max{Xi1 , . . . , Xik} ≥st max{Yi1 , . . . , Yik} and

min{Xi1 , . . . , Xik} ≤st min{Yi1 , . . . , Yik} (2)

3The usual first order stochastic dominance of Y over X, denoted X ≤st Y , holds if the same inequality
is satisfied for all measurable, increasing functions f : RK → R for which the expectations exist.

4For any two random variables X and Y , we denote X
d
= Y when X and Y have the same marginal

distribution.
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for all 1 ≤ i1 < ... < ik ≤ K, k = 1, . . . , K, which is the main implication of our interest.

That is, if there is supermodular dominance between two random vectors, the maximum of the

elements of the supermodularly dominated random vector first order stochastically dominates

that of the supermodularly dominating random vector for all possible combinations of the

elements, and vice versa for the minimum.

Depending on the purpose of the research, one can test (2) for its own implication or

test supermodular dominance by testing both (1) and (2) and see if both of them are sat-

isfied. Since there are many existing tests for the equality of the distributions (1), e.g.,

the Kolmogorov-Smirnov two-sample test, below we shall focus on consistent testing for the

property (2).

3. Testing for an implication of supermodular dominance

3.1. Hypotheses of Interest and the Test Statistic. In this section, we formulate the

hypotheses of interest and define our test statistic.

Let I = {(i1, . . . , ik) ∈ Zk+ : 1 ≤ i1 < ... < ik ≤ K, k = 1, . . . , K} denote the set of

k-tuples of positive integers. For each i ∈ I, let FU
i and GU

i denote the distributions of

max{Xi1 , . . . , Xik} and max{Yi1 , . . . , Yik}, respectively. Similarly, we denote FL
i and GL

i to

be the distributions of min{Xi1 , . . . , Xik} and min{Yi1 , . . . , Yik}, respectively.

Let

DU
i (x) := FU

i (x)−GU
i (x); DL

i (x) := GL
i (x)− FL

i (x). (3)

The hypotheses of interest are as follows:

H0 : DU
i (x) ≤ 0 and DL

i (x) ≤ 0 for all x ∈ X and i ∈ I, (4)

H1 : Negation of H0.

In this formulation, rejecting the null hypothesis would imply that Y does not supermodularly

dominate X, while failing to reject the null implies that there is not enough evidence against

the necessary condition for the supermodular dominance of Y over X.
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Consider the population quantity:

d0 :=
∑
i∈I

∫
X
{[DU

i (x)]2+ + [DL
i (x)]2+}dx. (5)

Then, the hypotheses of interest can be equivalently stated as

H0 : d0 = 0 vs. H0 : d0 > 0. (6)

Let Xt = (X1,t, . . . , XK,t)
ᵀ and Yt = (Y1,t, . . . , YK,t)

ᵀ for t = 1, . . . , T , where {Xi,t : t =

1, . . . , T} and {Yi,t : t = 1, . . . , T} denote the sample realizations of Xi and Yi, respectively,

for i = 1, . . . , K. We impose the following assumptions:

Assumption 3.1. (a) {(Xt,Yt) : t ≥ 1} is a strictly stationary and strong mixing sequence

with coefficients {α(s) : s ≥ 1} satisfying
∑∞

s=1 s
Q−1α(s)γ/(Q+γ) < ∞ for some even integer

Q > 2 + γ and some γ > 0. (b) The distributions of (Xi1,t, . . . , Xik,t) and (Yi1,t, . . . , Yik,t)

have bounded densities with respect to Lebesgue measure for each (i1, . . . , ik) ∈ I.

Our test statistic is based on the sample analogue of (5):

ST := T
∑
i∈I

∫
X
{[D̂U

i (x)]2+ + [D̂L
i (x)]2+}dx,

where D̂U
i (x) := F̂U

i (x) − ĜU
i (x) and D̂L

i (x) := ĜL
i (x) − F̂L

i (x), with F̂U
i , Ĝ

U
i , F̂L

i , and ĜL
i

denoting the empirical distribution functions of max{Xi1,t, . . . , Xik,t}, max{Yi1,t, . . . , Yik,t},

min{Xi1,t, . . . , Xik,t}, and min{Yi1,t, . . . , Yik,t}, respectively.

The limit distribution of the test statistic under the null hypothesis can be characterized

using fact that
√
T
(
D̂i(·)−Di(·)

)
⇒ νi(·)

jointly for all i ∈ I, where D̂i(·) = (D̂U
i (·), D̂L

i (·))ᵀ, Di(·) = (DU
i (·), DL

i (·))ᵀ, and νi(·) =

(νUi (·), νLi (·))ᵀ is a mean zero Gaussian process with covariance kernel C(x1, x2) = Eνi(x1)νi(x2)
ᵀ

(Lemma A1 in Appendix).

A decision rule of the test would be rejecting H0 if ST > cT,α where cT,α is a critical value

that will be discussed in the next section. Since the asymptotic null distribution of the test

statistic depends on the true DGPs, we suggest resampling methods to compute the critical

values.
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3.2. Bootstrap Critical Values. We assume that the observations are weakly dependent

and strictly stationary with arbitrary contemporaneous dependence. To compute the critical

values, we therefore consider the stationary bootstrap procedure (Politis and Romano, 1994a)

applicable to time series settings.

Let W = (W1, . . . ,WT )ᵀ denote the T × 2K matrix of the original sample, where Wt =

(Xᵀt ,Y
ᵀ
t )
ᵀ ∈ R2K , Xt = (X1,t, . . . , XK,t)

ᵀ and Yt = (Y1,t, . . . , YK,t)
ᵀ for t = 1, . . . , T . Let

Bi,l := (Wi,Wi+1, . . . ,Wi+l−1)
ᵀ denote the block (i.e., submatrix) of W that starts from the

i-th row and has a total of l rows. When j > T, we let Wj = Wj(mod T ) and W0 = WT .

Let {Li : i ≥ 1} denote a sequence of block lengths,5 which are iid random variables

independent of W having a geometric distribution with a scalar parameter p ∈ (0, 1), i.e.,

P (Li = l) = (1− p)l−1p for l = 1, 2, . . . ; i ≥ 1.

We assume that the parameter p satisfies the following growth condition:

Assumption 3.2. p+ (
√
Tp)−1 →∞.

Let {Ii : i ≥ 1} be iid random variables independent of W and Li’s, having a uniform

distribution on {1, . . . , T}, i.e.,

P (Ii = s) =
1

T
for s = 1, 2, . . . , T ; i ≥ 1.

Then we take W∗ =
(
BᵀI1,L1

, BᵀI2,L2
, . . . , BᵀIk,Lk

)ᵀ
:= (W∗

1, . . . ,W
∗
T )ᵀ as our bootstrap sample,

where W∗
t := (X∗t

ᵀ,Y∗t
ᵀ)ᵀ, X∗t = (X∗1,t, . . . , X

∗
K,t)

ᵀ and Y∗t = (Y ∗1,t, . . . , Y
∗
K,t)

ᵀ, i.e., the first L1

rows of W∗ are BI1,L1 , the next L2 rows are BI2,L2 , and so on. This procedure is stopped

when total T observations are generated for each column, and we discard the remaining.

Politis and Romano (1994a) show that W∗ is stationary, conditional on W.

The bootstrap version of the empirical distribution F̂U
i is given by

F̂U∗
i (x) =

1

T

T∑
t=1

1
(
max{X∗i1,t, . . . , X

∗
ik,t
}} ≤ x

)
.

Likewise, ĜU∗
i , F̂L∗

i and ĜL∗
i can be defined.

5If the data are independently and identically distributed, then we may take Li = 1, which essentially
leads to the standard nonparametric bootstrap.
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One may consider the following (re-centered) bootstrap test statistic:

Ŝ∗T,LF = T
∑
i∈I

∫
X
{[D̂U∗

i (x)− D̂U
i (x)]2+ + [D̂L∗

i (x)− D̂L
i (x)]2+}dx, (7)

where D̂U∗
i (x) := F̂U∗

i (x) − ĜU∗
i (x) and D̂L∗

i (x) := ĜL∗
i (x) − F̂L∗

i (x). Then, the LFC-based

bootstrap critical value c∗T,α,LF is defined to be the (1−α) quantile of the bootstrap distribution

of Ŝ∗,LFT .

However, the test statistics based on the LFC-based bootstrap critical value can be too

conservative, mainly because the null hypothesis (4) may comprise of a large number of in-

equalities restrictions (especially when K is large) and only a few of them may be binding. In

this paper, we propose a bootstrap critical value with potentially enhanced power properties

by exploiting the information on the contact set over which the inequalities are binding. 6.

For positive sequences {(aT,1, aT,2) : T ≥ 1}, let

Bi,1 = {x ∈ X : |DU
i (x)| ≤ aT,1 and DL

i (x) < −aT,2}, (8)

Bi,2 = {x ∈ X : |DL
i (x)| ≤ aT,1 and DU

i (x) < −aT,2}, (9)

Bi,3 = {x ∈ X : |DU
i (x)| ≤ aT,1 and |DL

i (x)| ≤ aT,1}, (10)

denote the (population) contact sets, where DU
i and DL

i are as defined in (3).

Lemma 3.1. Suppose that Assumption 3.1 holds. Suppose further that aT,1, aT,2 are positive

sequences satisfying Assumption 3.3 below. Then, under the null hypothesis H0, we have

P

{
ST = T

∑
i∈I

(∫
Bi,1

[D̂U
i (x)]2+dx+

∫
Bi,2

[D̂L
i (x)]2+dx+

∫
Bi,3
{[D̂U

i (x)]2+ + [D̂L
i (x)]2+}dx

)}
→ 1.

Lemma 3.1 shows that, under the null hypothesis, the test statistic ST can be approximated

by the sum of the integrals with domains restricted to the contact sets with probability that

goes to one as the sample size goes to infinity. This suggests that we may consider a bootstrap

procedure that mimics the approximate representation of ST in Lemma 3.1.

6See Linton, Song and Whang (2010) for the original definition of the contact set in the context of testing
for stochastic dominance.
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Let

B̂i,1 = {x ∈ X : |D̂U
i (x)| < âT and D̂L

i (x) < −âT},

B̂i,2 = {x ∈ X : |D̂L
i (x)| < âT and D̂U

i (x) < −âT},

B̂i,3 = {x ∈ X : |D̂U
i (x)| < âT and |D̂L

i (x)| < âT}.

denote the estimated contact sets, where {âT : T ≥ 1} is a positive (possibly stochastic)

sequence that satisfies the following assumption:

Assumption 3.3. For each T ≥ 1, there exist non-stochastic sequences aT,1, aT,2 > 0 such

that aT,1 ≤ aT,2 and

P {aT,1 ≤ âT ≤ aT,2} → 1 and aT,1
√
T + a−1T,2 →∞ as T →∞.

Then, our modified bootstrap statistic is defined by

S∗T = T
∑
i∈I

(∫
B̂i,1

[D̂U∗
i (x)− D̂U

i (x)]2+dx+

∫
B̂i,2

[D̂L∗
i (x)− D̂L

i (x)]2+dx

+

∫
B̂i,3
{[D̂U∗

i (x)− D̂U
i (x)]2+ + [D̂L∗

i (x)− D̂L
i (x)]2+}dx

)
. (11)

It can be easily seen that the modified bootstrap statistic 11 is generally smaller than the LFC

based bootstrap statistic 7, because the estimated contact sets are subsets of X . Therefore, it

allows employing smaller critical values that the LFC based critical values without sacrificing

the size, which in turn enhances the power performance of the test.

Let S∗T be the (1− α) quantile from the bootstrap distribution S∗T . In some interior cases

of the null hypothesis, both the original test statistic ST and the modified bootstrap statistic

S∗T may degenerate to zero as the sample size increases. To control the size, therefore, we

suggest taking the bootstrap critical value as the maximum of S∗T and an arbitrary small

positive constant:

c∗T,α,η = max{c∗T,α, η},

where η = 10−6 is a small fixed number. The decision rule of the test is to reject the null

hypothesis if the test statistic ST exceeds the bootstrap critical value c∗T,α,η.
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The following theorem shows that our test has asymptotically correct size under the null

hypothesis7 and is consistent against the fixed alternative hypothesis.

Theorem 3.2. Suppose that Assumptions 3.1, 3.2, and 3.3 hold. (i) Then, under the null

hypothesis H0,

lim sup
T→∞

P
{
ST > c∗T,α,η

}
≤ α.

(ii) Under the alternative hypothesis H1, we have

P
{
ST > c∗T,α,η

}
→ 1.

4. Testing for correlation dominance

In this section, we consider a test of correlation dominance, which is a special case of the

supermodular dominance when the random variables are Gaussian.

Let X = (X1, . . . , XK)ᵀ ∈ RK and Y = (Y1, . . . , YK)ᵀ ∈ RK be two Gaussian random

vectors with the same marginal distributions Xi
d
= Yi, i = 1, . . . , K. Then, by Müller and

Scarsini (2000, Theorem 4.2), we have X ≤sm Y if and only if,

cov(Xi, Xj) ≤ cov(Yi, Yj) ∀i, j = 1, .., K; i 6= j. (12)

We say that Y correlation dominates X, or X ≤cd Y , when (12) holds.

Let {Xi,t : t = 1, . . . , T} and {Yi,t : t = 1, . . . , T} be the sample realizations of Xi and

Yi, respectively, for i = 1, . . . , K. To test the correlation dominance (12), we consider the

following test statistic:

CT =
√
T max

1≤i<j≤K
{Σ̂i,j(X)− Σ̂i,j(Y )},

where Σ̂i,j(X) = 1
T

∑T
t=1(Xi,t−X̄i)(Xj,t−X̄j), X̄i = 1

T

∑T
t=1Xi,t, and Σ̂i,j(Y ) = 1

T

∑T
t=1(Yi,t−

Ȳi)(Yj,t− Ȳj), Ȳi = 1
T

∑T
t=1 Yi,t for i, j = 1, . . . , K. Using a standard argument, it can be seen

that the asymptotic distribution of the test statistic CT under (the least favorable case of)

the null hypothesis (12) is a maximum of Gaussian distributions.

7Under additional regularity conditions, we may show that the test has asymptotically correct size uni-
formly under the null hypothesis. For brevity, we do not discuss the result in this paper.
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We consider the following bootstrap test statistic based on the bootstrap sample W∗

defined in Section 3.2:

C∗T =
√
T max

1≤i<j≤K
{Σ̂∗i,j(X)− Σ̂∗i,j(Y )− (Σ̂i,j(X)− Σ̂i,j(Y ))}, (13)

where Σ̂∗i,j(X) = 1
T

∑T
t=1(X

∗
i,t − X̄∗i )(X∗j,t − X̄∗j ), X̄∗i = 1

T

∑T
t=1X

∗
i,t and Σ̂∗i,j(Y ) is defined

similarly. The bootstrap critical value with nominal significance level α is defined to be the

(1− α) quantile of the bootstrap distribution of C∗T .8

5. Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to explore the finite sample perfor-

mance of our test. In our simulations, we consider both iid data and serially dependent

data.

5.1. IID data. We randomly generate T samples of vectors of dimension K = 3 from the

following multivariate normal (MVN) distributions:

X ∼MVN(0,ΣX),

Y ∼MVN(0,ΣY ). (14)

We consider several cases to examine the size and power of our test. In Case 1, both X

and Y follow the multivariate standard normal distribution (14) with ΣX = ΣY = IK . In

other cases, we vary the covariances to modify the dependence structure. In Case 2, the

off-diagonals of ΣX are set to a positive constant in {0.1, 0.3, 0.5}, so that X supermodularly

dominates Y . In Case 3, the off-diagonals of ΣX move between ±0.2 or ±0.4 in an orderly

fashion. In both Cases 2 and 3, we expect the rejection rates to increase as the covariances

differ greater from 0. Case 4 varies from Case 2 in that some of the off-diagonals of ΣX are

set to zero. This mimics the situation where there is a non-negligible contact set, i.e., the

tangent area between the null and alternative hypothesis. Therefore, we expect to reject the

null hypothesis in Case 2 to 4. Finally, in Case 5, the covariances of Y are equal to 0.35 so

8It would also be possible to define a modified bootstrap test statistic utilizing the information on the
binding inequalities, similar to (11). Since the correlation dominance test can be used as a preliminary
screening tool and such an extension complicates the exposition, we do not discuss the case in this paper.
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that Y has strict supermodular dominance over X, which characterizes an interior case of

the null hypothesis. In sum, we consider

Σ
(2)
X =


1 x x

x 1 x

x x 1

 ,Σ
(3)
X =


1 y −y

y 1 y

−y y 1

 ,Σ
(4)
X =


1 0.5 0

0.5 1 0

0 0 1

 ,Σ
(5)
Y =


1 0.35 0.35

0.35 1 0.35

0.35 0.35 1


with x = 0.1, 0.3, 0.5, and y = 0.2, 0.4, where the superscripts denote the corresponding cases.

ΣX and ΣY in other cases are identity matrices.

5.1.1. Simulation Results. We take B = 500 bootstrap repetitions and R = 1, 000 simulation

replications, and consider the sample size T ∈ {100, 500}. Since we are considering a multi-

variate standard normal distribution along with its variations, a grid of values is selected on

the interval [-2.5, 2.5] such that −2.5 = t0 < t1 < ... < tn = 2.5. The number of gridpoints

is fixed at n = 40.

We take the nominal significance level α = 0.05. As the tuning parameter for the

contact set approach, we take aT = a0T
−1/2 log(log(T )). In the simulations, we consider

a0 ∈ {0.6, . . . , 1.0} to see the robustness of the results with respect to the choice of the

tuning parameter constant.

Table 1 summarizes the simulation results. BS and BS C refer to the tests with the LFC-

based bootstrap critical value c∗T,α,LF and the contact set-based bootstrap critical value c∗T,α,η,

respectively. In Case 1, the rejection probabilities are close to the nominal significance level,

confirming that our test has reasonably good size in finite samples. In Case 2, as expected,

the rejection rates increase as x = (ΣX)ij changes from 0.1 to 0.5, or as the sample size T

increases. In Case 3, we have a similar finding: the power increases as the distance between

the null and alternative models increases or the sample size increases. In Case 4, we find

that the contact set based bootstrap critical values give significantly higher power than the

LFC-based critical values, which is consistent with our theoretical results. In Case 5, as

expected, the rejection probabilities of BS C are closer to the nominal size than BS, which

implies that BS C test is asymptotically similar over a wider set of null distributions than

BS.
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Table 1. Rejection Probabilities of ST : IID Data

a0 = 0.6 a0 = 0.7
T 100 500 100 500

BS BS C BS BS C BS BS C BS BS C
Case 1 0.054 0.124 0.041 0.079 0.048 0.091 0.044 0.077
Case 2: x = 0.1 0.094 0.197 0.183 0.306 0.099 0.186 0.205 0.282
Case 2: x = 0.3 0.330 0.544 0.988 0.999 0.310 0.463 0.991 0.997
Case 2: x = 0.5 0.829 0.950 1.000 1.000 0.814 0.914 1.000 1.000
Case 3: y = 0.2 0.075 0.177 0.246 0.374 0.090 0.162 0.244 0.331
Case 3: y = 0.4 0.218 0.431 0.964 0.995 0.211 0.358 0.961 0.993
Case 4 0.205 0.378 0.917 0.969 0.217 0.355 0.916 0.961
Case 5 0.010 0.037 0.002 0.011 0.011 0.042 0.001 0.013

a0 = 0.8 a0 = 0.9
T 100 500 100 500

BS BS C BS BS C BS BS C BS BS C
Case 1 0.049 0.088 0.046 0.070 0.056 0.084 0.047 0.061
Case 2: x = 0.1 0.078 0.123 0.170 0.211 0.088 0.120 0.192 0.206
Case 2: x = 0.3 0.319 0.405 0.987 0.991 0.319 0.383 0.989 0.991
Case 2: x = 0.5 0.832 0.899 1.000 1.000 0.806 0.856 1.000 1.000
Case 3: y = 0.2 0.086 0.125 0.212 0.278 0.105 0.142 0.221 0.253
Case 3: y = 0.4 0.185 0.282 0.968 0.986 0.223 0.292 0.965 0.978
Case 4 0.190 0.293 0.890 0.927 0.189 0.260 0.917 0.948
Case 5 0.009 0.020 0.000 0.011 0.010 0.021 0.003 0.007

a0 = 1.0
T 100 500

BS BS C BS BS C
Case 1 0.047 0.059 0.054 0.061
Case 2: x = 0.1 0.089 0.112 0.196 0.200
Case 2: x = 0.3 0.330 0.361 0.986 0.987
Case 2: x = 0.5 0.831 0.862 1.000 1.000
Case 3: y = 0.2 0.079 0.101 0.205 0.223
Case 3: y = 0.4 0.229 0.263 0.973 0.976
Case 4 0.173 0.204 0.931 0.943
Case 5 0.007 0.018 0.004 0.009

Table 2. Rejection Probabilities of CT : IID Data

T 100 250 500
Case 1 0.076 0.070 0.052
Case 2: x = 0.1 0.206 0.403 0.633
Case 2: x = 0.3 0.871 0.999 1.000
Case 2: x = 0.5 0.999 1.000 1.000
Case 3: y = 0.2 0.463 0.846 0.982
Case 3: y = 0.4 0.980 1.000 1.000
Case 4 0.955 1.000 1.000
Case 5 0 0 0

We next provide the simulation results of the correlation dominance test CT . Table 2

summarizes the rejection probabilities. Overall, the test has reasonably good size and power

performances in finite samples.
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5.2. Dependent data. We next consider the cases where observations for X and Y are mu-

tually and serially dependent. For this purpose, we generate Wt = (X1,t, . . . , XK,t, Y1,t, . . . , YKt)
ᵀ ∈

R2K as follows:

Wt = AWt−1 + εt, t = 1, . . . T,

with W0 = 0, where A = diag{ρ, . . . , ρ} is a 2K × 2K diagonal matrix, and εi is a 2K ×

1 vector randomly generated from the multivariate normal distribution with mean 0 and

variance-covariance matrix Σε = (γij) with γii = 1.

To investigate the size performance of the test, we set ρ = 0.3 and take γij = 0.2

for all i 6= j. On the other hand, for the power performance, we vary the values of

γcov := γij, i 6= j, so that the covariances between the elements of Xt = (X1,t, ..., XK,t)
ᵀ

are greater than those of Yt = (Y1,t, ..., YK,t)
ᵀ. The extent to which we deviate from the null

hypothesis of supermodular (and correlation) dominance is characterized by the parameter

γcov ∈ {0.3, 0.5}.9 For other parameters, we take B (number of bootstrap repetition) = 500,

R (number of simulation repetition) = 1000, T ∈ {100, 250, 500}, a0 ∈ {1.0, 1.1, 1.2} and

1/p ∈ {5, 15}.

Table 3 summarizes the size and the power of the test ST . Overall, it shows that our test

has reasonably good performance under various settings and the test BS C is more powerful

than BS especially when the value of a0 is smaller, as expected.

Tabel 4 summarizes the size and the power of the test CT for the same parameter setting.

As before, the finite sample performance of the correlation test seems reasonably good.

6. Applications

In this section, we apply our tests to two empirical questions. Since we will consider time

series data, we use the stationary bootstrap to obtain the bootstrap critical values.

6.1. Stock returns of major firms before and after the COVID-19. Big Tech, also

known as the Tech Giants or the Big Five are the largest and most dominant companies in

the information technology industry of the United States: Amazon (AMZN), Apple (AAPL),

Alphabet (GOOG), Facebook (FB), and Microsoft (MSFT). For the last ten years, these five

have been the most valuable public companies globally, with market capitalizations reaching

9In specific, we partition the variance covariance matrix into four rectangles and set the off-diagonals of
the upper left partition as γcov, that of the lower right partition as 0.1, and the rest as 0.05.
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Table 3. Rejection Probabilities of the test ST : Dependent Data

1/p = 5
a0=1.0 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.086 0.066 0.07 0.213 0.302 0.505 0.517 0.912 1

BS C 0.12 0.08 0.078 0.253 0.327 0.539 0.555 0.929 1
a0=1.1 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.086 0.063 0.072 0.211 0.31 0.562 0.531 0.905 1

BS C 0.104 0.068 0.078 0.245 0.331 0.575 0.572 0.912 1
a0=1.2 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.08 0.071 0.073 0.204 0.309 0.527 0.527 0.919 1

BS C 0.086 0.077 0.074 0.223 0.313 0.529 0.55 0.921 1

1/p = 15
a0=1.0 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.113 0.073 0.062 0.264 0.293 0.51 0.565 0.9 1

BS C 0.134 0.087 0.07 0.293 0.319 0.549 0.617 0.921 1
a0=1.1 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.123 0.087 0.059 0.247 0.282 0.531 0.614 0.884 0.999

BS C 0.14 0.099 0.064 0.276 0.304 0.551 0.652 0.896 1
a0=1.2 H0 H1: γcov = 0.3 H1: γcov = 0.5
T 100 250 500 100 250 500 100 250 500
BS 0.124 0.061 0.052 0.274 0.299 0.52 0.59 0.893 0.998

BS C 0.132 0.063 0.055 0.28 0.303 0.525 0.606 0.9 0.998

Table 4. Rejection Probabilities of the test CT : Dependent Data

1/p=5
T H0 H1: γcov = 0.3 H1: γcov = 0.5
100 0.076 0.670 0.994
250 0.058 0.929 1.000
500 0.057 0.998 1.000
1/p=15
T H0 H1: γcov = 0.3 H1: γcov = 0.5
100 0.113 0.737 0.995
250 0.081 0.941 1.000
500 0.069 0.998 1.000

over $2.0 trillion. They now collectively represent 25% of the market value of the S&P500

index.

The COVID-19 pandemic has changed the world economy. Many stock markets around

the world suffered big drops in value at various points during the pandemic, but Big Tech

seems to keep on growing in importance, since many more transactions are taking place

online rather than face-to-face. We investigate how the Big Five stock prices fared during
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2019 and 2020. According to the WHO, the pandemic started on December 31st 2019, and

so we interpret 2020 as pandemic related and 2019 as pre-pandemic. Although the US did

not suffer many cases until March 2020, the Big Five receive much of their earnings from

international sources and so the calendar year division seems reasonable.

We consider their daily closing prices during 2019 and 2020. We calculate the return

matrices R2019and R2020with 254 × 5 and 178 × 5 dimensions. Below we report the sample

moments of the daily returns from the two years.

There seems to be some indication that the mean returns have increased in 2020, although

the volatility has also increased. There does not seem to be a common pattern in the behavior

of the higher cumulants. We test whether the means have changed significantly using the

Hotelling statistic

H = (R̄2020 − R̄2019)
′(
C2020

T2
+
C2019

T1
)−1(R̄2020 − R̄2019),

where Ti, i = 1, 2is the number of observations in each year. The value is 2.773, which is not

significant compared with the critical value from X 2(5).We also considered the standard event

study methodology, where we compute abnormal return for 2020 as ARk,t = Rk,t− µ̂2019,t and

the cumulative abnormal return as
∑t

s=1ARk,s. To set the confidence bars we used the 2020

standard deviations. Figure 1 shows that there was an early negative effect of the pandemic

on the stock returns of each company but they mostly stayed within the confidence bands.

The sample correlation matrices for X = R2019
10 and Y = R2020are, respectively,

σ̂X =

AMZN AAPL GOOG FB MSFT



1.000 0.578 0.493 0.509 0.548 AMZN

0.578 1.000 0.685 0.545 0.741 AAPL

0.493 0.685 1.000 0.549 0.675 GOOG

0.509 0.545 0.549 1.000 0.602 FB

0.548 0.741 0.675 0.602 1.000 MSFT

,

10We take 178 returns backwards from December 2019 to construct R2019.
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Figure 1. Abnormal returns in 2020

σ̂Y =



1.000 0.684 0.788 0.794 0.861

0.684 1.000 0.660 0.710 0.733

0.788 0.660 1.000 0.825 0.778

0.794 0.710 0.825 1.000 0.872

0.861 0.733 0.778 0.872 1.000


.

We can observe that most of the off-diagonal entries have changed to more positive correla-

tion. Thus, the values of sample correlations appear to be consistent with the null hypothesis

of correlation dominance cov(Xi, Xj) ≤ cov(Yi, Yj) for all 1 ≤ i ≤ j ≤ 5. To verify this,

we perform the correlation dominance test CTand the supermodular dominance test ST to

X = R2019 and Y = R2020. As can be seen from Figure 2, we cannot reject the null of

cov(Xi, Xj) ≤ cov(Yi, Yj) while we do reject the null of cov(Yi, Yj) ≤ cov(Xi, Xj) in most

cases.

Since we use daily data, there may some concern about microstructure noise and its effects

on our estimated covariance matrix. Therefore, we consider a multivariate version of the Roll
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Figure 2. p-values of the correlation dominance test CT

(1987) model that allows for bid ask bounce and use this to adjust the covariance matrix

estimators. Suppose that

pit = p∗it +
si
2
Qit, p∗it = p∗i,t−1 + εit,

where Qitis the trade direction indicator, which is assumed for now to be iid with +1 and -1

equally likely and si are the individual spreads. Then

∆pit = εit +
si
2

∆Qit,

which implies that observed returns rit = ∆pitare autocorrelated like an MA(1)process. We

can identify si, σ
2
εifrom the variance and autocovariance of observed returns asset by asset as

was done in the original Roll paper. We consider the multivariate extension of this where we

suppose that for any assets i, jthe order flow is potentially contemporaneously correlated so

that

E (QitQjt) = ωij,

and we suppose that the efficient returns are themselves contemporaneously correlated with

E (εitεjt) = σij.Let Ω = (ωij)and Σ = (σij),where the univariate models imply that ωii = 1.It

follows that

E
(
rtr

ᵀ

t−j
)

=


Σ + 1

2

(
ss

ᵀ � Ω
)

if j = 0

−1
4

(
ss

ᵀ � Ω
)

if j = 1

0 if j > 1,

,
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where � denotes the matrix Hadamard product. Therefore, it follows that

Σ = E(rtr
ᵀ

t ) + E(rtr
ᵀ

t−1) + E(rt−1r
ᵀ

t ). (15)

The efficient covariance matrices of X and Y estimated based on (15) are as follows:

Σ̂X =



0.923 0.572 0.379 0.335 0.449

0.572 0.979 0.740 0.465 0.598

0.379 0.740 0.834 0.388 0.579

0.335 0.465 0.388 0.936 0.557

0.449 0.598 0.579 0.557 0.865


, Σ̂Y =



0.409 0.174 0.229 0.145 0.127

0.174 0.637 0.189 0.302 0.198

0.229 0.189 0.555 0.263 0.117

0.145 0.302 0.263 0.285 0.083

0.127 0.198 0.117 0.083 0.082


.

We can see that Σ̂Y differs more from σ̂Y than Σ̂X does from σ̂X . We conduct the correlation

dominance test (denoted E BS) based on Σ̂X and Σ̂Y and Figure 2 shows the resulting p-

values for various stationary bootstrap parameters.

This phenomenon has been remarked upon before during other crisis periods, for example

Morgan (2010) discussed the so-called correlation bubble that was experienced during the

GFC. We have found evidence of a very strong effect whereby the pairwise correlations

between these pivotal companies have uniformly increased between 2019 and 2020.

Given the correlation dominance results, we further test if there is a significant evidence of

supermodular dominance. We used a0 = 0.9 and the resulting p-values are plotted in Figure

3.11 We find evidence in favor of X ≤sm Y because we can reject the null of Y ≤sm X, while

we do not reject the null of X ≤sm Y across different choices of the stationary bootstrap

parameters.

6.2. Knowledge spillover depending on distance. In this subsection, we compare the

effect of geographic and distant knowledge spillover, measured by patent citations, on social

welfare. The issue of geographic knowledge spillover has received considerable attention in the

literature; Black (2005) provides an extensive summary of the relationship between geography

and innovation, see chapter 3 of this book for details. Some of the literature focusses on patent

citations as a measure of knowledge spillover, including Jaffe et. al. (2000) who used the

survey method to verify if patent citations can be an indicator of knowledge spillover. They

11The results are robust to the various choices of a0 we considered.
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Figure 3. p-values of the supermodular dominance test ST

imply that the aggregate citation flows can serve as proxies for the intensity of knowledge

spillover between groups of organizations or between countries. Jaffe et. al. (1993) also found

evidence that in the U.S., citations to patents are geographically localized and these effects

are quite large and quite statistically significant. They compare the frequency of localized

citing between the original patents and the citing patents with that between the original

patents and control group. Here, the control groups consist of patents with the same class

and application year, and thus have the same temporal and technological distributions, with

each citing patent. They found that citations are quantitatively and statistically significantly

more localized than the controls.

While they approached this by manually matching a control group to the original patents,

we believe that directly comparing localized and distant citing could provide a novel per-

spective to the literature. Therefore, we focus on comparing the effect of geographic and

distant knowledge spillovers, measured by patent citations, on social welfare. Although the

previous research matches temporal distributions of different patents only by their assigned

dates, we directly utilize the overtime distributions of distant and localized citations on a

monthly level, and test their equivalences by the Kolmogorov-Smirnov test. We also match

the technological distributions of patents by comparing those with the same subclass, which

is a four-digit classification of patent characteristics.

Theoretically, let fbe a supermodular, monotone, and symmetric social welfare function.

Then if either localized or distant citing supermodularly dominates the other, by the definition
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of supermodular dominance, it is expected to engender higher social welfare, i.e., Ef(X) ≤

Ef(Y )holds for respective Xand Y . We will test the hypotheses of both directions; one that

tests the dominance of localized citing, and the other that tests the dominance of distant

citing, to see if the result is reverted. If we reject in one case and fail to do so in another case,

then we could conclude that there is indirect evidence of the supermodular dominance existing

between the numbers of citations coming from within and outside of the state. In this case,

by the definition of supermodular dominance, we can conjecture that Ef(X) ≤ Ef(Y )or

Ef(Y ) ≤ Ef(X)holds for supermodular, monotone, and symmetric social welfare function

f , and thus, either localized or distant citing might engender greater expected social welfare

than the other.

The data is obtained from the National Bureau of Economic Research (NBER) Patent

Database. The NBER patent data comprise detail information on millions of U.S. patents,

including patent number, date of assignment, assignee ID, country, state, and city of inven-

tors, category12 and subclass13 of patents, citing patents, etc. There have been enormous

efforts to increase the usability of this data set and among them we use Lee (2019) which

provides information for patents assigned from 1976 to 2017. We drop the data with missing

state and assignee ID information and confine our interest to the 50 American states.

Table 5 summarizes the descriptive statistics of the rank of the 50 states by the total

number of patents, and the number of patents assigned in total and by patent category.

Here, and throughout this paper, the location of a patent is identified as that of the first

inventor of the patent. Out of the 50 American states, the top five states that have issued the

most patents over the time period of the data are California (CA), New York (NY), Texas

(TX), Massachusetts (MA), and New Jersey (NJ).

Table 6 reports the descriptive statistics of the rank of 50 states by the number of localized

and distant citing. The third and the second columns represent the number of citations from

within state and the rank of states by that, and the last two columns represent those of

citations coming from different states. Overall, the two ranks seem to match closely. CA

12There are six different categories of patents: (1) chemical, (2) computers and communications, (3) drugs
and medical, (4) electrical and electronics, (5) mechanicals, and (6) others.

13The subclass of a patent is defined as the first four letters of International Patent Classification (IPC).
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Table 5. The number of patents assigned in the 50 U.S. states (1976-2017)

Number of patents assigned
State Rank

in total
by category

1 2 3 4 5 6

CA 1 1,598,717 88,601 652,928 273,735 320,094 205,796 48,565

NY 2 522,921 71,844 150,219 54,419 120,551 102,138 19,918

TX 3 456,013 73,601 157,721 30,924 73,911 106,158 10,698

MA 4 336,669 29,664 95,146 88,890 55,751 52,655 12,506

NJ 5 327,075 67,480 84,292 78,332 37,613 43,479 13,325

MI 6 298,931 41,128 26,619 21,922 38,464 156,149 12,438

IL 7 295,160 47,353 61,659 35,008 39,416 87,898 21,534

PA 8 278,438 57,861 34,305 59,110 46,838 68,099 10,037

WA 9 261,464 11,728 150,752 26,207 30,233 33,908 7,301

OH 10 254,696 64,137 23,909 37,556 27,862 84,661 14,217

MN 11 225,106 29,741 51,472 54,722 28,905 48,349 10,618

FL 12 169,346 16,711 42,830 26,400 26,588 46,065 9,681

NC 13 153,366 14,246 54,494 21,803 22,532 31,673 7,766

CT 14 151,120 20,420 21,466 32,961 24,222 44,113 6,752

CO 15 132,055 10,612 49,846 19,086 22,451 24,217 5,031

WI 16 127,858 17,714 12,284 21,840 17,822 48,315 8,904

IN 17 114,555 14,738 9,449 30,013 17,561 35,751 6,064

AZ 18 114,428 7,558 39,455 8,724 29,870 24,342 3,849

OR 19 112,103 5,260 47,415 6,688 26,099 18,898 7,134

MD 20 108,792 12,046 23,323 31,286 17,986 19,448 3,812

GA 21 99,730 14,801 29,577 11,879 13,584 23,088 6,093

VA 22 92,326 11,509 28,217 8,871 15,560 21,646 5,886

MO 23 67,321 10,736 8,431 15,632 7,869 18,608 5,490

TN 24 57,304 13,375 4,247 12,058 7,010 16,963 3,281

UT 25 56,184 6,457 12,866 11,701 6,438 14,869 3,515

ID 26 55,349 2,630 10,039 1,126 31,092 8,746 1,240

IA 27 48,049 3,544 7,765 5,851 5,295 18,812 6,399

OK 28 44,478 14,785 2,754 2,465 3,951 18,751 1,348

NH 29 44,352 4,058 13,029 5,602 8,170 11,763 1,473

SC 30 42,372 8,869 2,812 3,104 5,341 19,009 2,937

KS 31 35,069 3,470 12,714 3,555 3,305 9,802 1,957

KY 32 35,026 4,927 8,262 3,628 3,503 12,503 1,930

DE 33 34,285 13,873 1,907 7,984 2,616 5,851 1,779

VT 34 32,421 1,352 7,771 1,033 17,320 3,838 894

LA 35 28,088 9,751 1,194 2,752 1,725 10,983 1,449

AL 36 26,536 4,229 4,653 4,242 3,953 8,048 1,215

NM 37 25,045 3,609 4,761 2,515 6,862 6,480 648

NV 38 24,260 1,638 5,365 1,477 2,574 4,289 8,787

RI 39 18,577 2,587 2,676 2,868 3,036 4,895 2,394

NE 40 14,191 1,259 2,388 1,856 2,222 4,912 1,460

WV 41 11,202 5,523 511 922 761 3,027 355

AR 42 10,034 1,413 1,040 1,215 1,249 4,130 926

ME 43 9,789 1,346 1,554 1,118 1,994 3,025 663

MS 44 9,191 1,581 909 1,389 1,114 3,117 1,019

MT 45 7,097 1,172 692 878 688 2,922 701

HI 46 5,029 449 1,049 930 622 1,424 535

ND 47 5,007 609 642 224 473 2,675 348

SD 48 4,513 415 655 499 415 1,957 544

WY 49 3,777 583 475 409 450 1,570 256

AK 50 2,302 300 166 229 190 1,198 190
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Table 6. The number of citations patents received from within and outside
of a state for the 50 U.S. states (1976-2017)

State Rank ss Ncite ss Rank ds Ncite ds

CA 1 742,164 1 497,126

OH 2 161,042 7 70,067

TX 3 135,210 2 208,397

MN 4 126,761 5 142,594

ID 5 86,765 9 51,987

NY 6 80,437 3 204,390

WA 7 80,309 4 154,191

MA 8 51,426 6 75,498

OR 9 39,912 8 69,347

NJ 10 31,493 10 48,066

NV 11 30,485 15 22,701

IL 12 30,224 13 30,697

MI 13 24,285 20 10,069

CT 14 21,295 11 40,017

OK 15 17,497 22 9,296

PA 16 12,652 17 14,626

NC 17 11,186 12 38,673

AZ 18 10,724 14 24,716

WI 19 10,121 21 9,730

IN 20 9,408 23 8,639

FL 21 8,176 16 15,421

CO 22 6,992 19 12,895

UT 23 6,299 24 8,000

GA 24 4,142 27 4,834

IA 25 3,902 29 3,845

NH 26 3,439 31 2,984

MD 27 3,213 26 4,918

VT 28 3,104 18 13,614

VA 29 2,358 30 3,782

TN 30 2,181 25 5,917

MO 31 1,767 28 4,208

DE 32 1,377 33 1,676

RI 33 1,281 34 1,415

KS 34 1,245 32 1,814

SC 35 1,183 35 694

KY 36 595 39 483

NM 37 571 40 352

MT 38 535 36 560

NE 39 511 38 486

LA 40 441 37 495

WV 41 235 43 141

AL 42 170 41 160

AR 43 118 45 61

WY 44 113 44 68

ME 45 95 42 147

ND 46 59 50 13

MS 47 44 46 48

HI 48 32 48 23

SD 49 27 47 29

AK 50 4 49 19
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stands as the top state which have assigned patents that were cited most both from CA itself

and from the other states.

Since a single firm can be located in more than one state and have issued patents of different

subclasses, we take subgroups of firms based on the assignee ID, state, and subclass of patent,

as we mentioned above. Firms are then selected based on this subgroup unit.14 Focusing in

on each state, we gather information on monthly numbers of citations firms received from

the same state and from the other states. In specific, Y = (Y1, . . . , YK)is the collection of

the numbers of citations that Kfirms received from patents assigned in the same state, while

X = (X1, . . . , XK)is the vector of mean citations that the same Kfirms received from the

other states.15 Note that here, xk = (Xk,1, . . . , Xk,T )ᵀand yk = (Yk,1, . . . , Yk,T )ᵀdenote the

vectors of numbers of citations of the same firm kfor the months t = 1, . . . , 504(i.e., from

Jan. 1976 to Dec. 2017). We also confine our interest to those firms with at least 5 citations

in total in order to focus on the effect of quality innovation.

For each state, after taking X and Y as described above for each firm, we apply our test

on the numbers of citations, from the same state and the other states, that each firm received

for its patents.16 A grid is selected as follows: 0 to 50 by 1, 51 to 100 by 5, and by 10 after

101. We adopt a grid with denser grid points for lower values because in most cases, the

number of citations a firm received in a month does not exceed a digit. We use stationary

bootstrap critical values with B = 500bootstrap repetitions, a0 = 1.1, and 1/p = 5.17

The above procedure is carried out for the 50 US states. For most states with lower ranks in

terms of the number of patents, we cannot perform the analysis because there is not much firm

with patents that received at least five citations over the time period. Table 7 lists subclasses

and their classifications for which firms satisfy the implications of supermodular dominance

at least in one state. We observe several cases of supermodular dominance holding between

distant and localized citing especially for subclasses that fall under the category of human

14For example, if firm i has issued patents of subclasses s ∈{AB12, CD34} in states NY and OH, then
the four possible subgroups {i, AB12, NY}, {i, AB12, OH}, {i, CD34, NY}, and {i, CD34, NY} are each
treated as different entities, which are each referred to as a firm throughout this paper.

15The mean is taken over the number of states that have at least one record of citing the patents, for each
firm.

16Due to the computational issue, we conduct our analysis on the subclasses which are assigned by no
greater than 10 firms.

17The results are similar under different choices of the tuning parameters.
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Table 7. Classification of subclass with potential supermodular dominance
relationship between distant and localized citings

Classification Subclass
A. Human necessities A01H, A01K, A01N, A01N, A47B, A47L, A61B, A61C,

A61F, A61K, A61L, A61M, A61N, A62B, A63B, A63F
B. Performing operations,
Transporting

B01D, B01J, B01J, B05C, B05D, B08B, B22F, B23K, B23P,
B24B, B25B, B26D, B27C, B29D, B31F, B32B, B32B, B41J,
B60G, B60Q, B60R, B65D, B65H, B82B

C. Chemistry; Metallurgy C01B, C03B, C07C, C07D, C07H, C07K, C08F, C08G, C08J,
C08L, C08L, C09D, C09K, C10G, C10M, C11DC11D, C12N,
C12P, C12Q, C25D, C25F

D. Textiles; Paper D06L, D21F, D21H
E. Fixed constructions E01F, E04C, E05B, E21B, E21B
F. Mechanical engineering;
Lighting; Heating;
Weapons; Blasting

F01B, F01N, F02G, F02K, F02M, F15C, F16H, F16J, F16K,
F16L, F21V, F25B

G. Physics G01B, G01K, G01L, G01N, G01R, G01S, G01V, G02B,
G02C, G04C, G05B, G05F, G06F, G06K, G06Q, G06T,
G07F, G08B, G09G, G10L, G11B, G11C

H. Electricity H01C, H01G, H01H, H01J, H01L, H01M, H01Q, H01R,
H02H, H02J, H03K, H03M, H04B, H04J, H04L, H04M,
H04N, H04W, H05B, H05K

Source: World Intellectual Property Organization

necessities, performing operations and transporting, chemistry and metallurgy, physics, and

electricity. Patents whose subclasses are classified as textiles and paper or fixed constructions

constitute relatively limited cases of potential supermodular dominance.

Table 8 reports the test results where the implications of Y ≤sm Xholds and Table 9

reports those where the implications of X ≤sm Y holds. Here, Y ≤sm Xmeans that we reject

the null of Y dominates and accept the null of X dominates for all the bootstrap critical

values, and similarly for X ≤sm Y.The second columns of Table 8 and 9 are the rank of each

state in terms of the total number of patents issued there. The results of the Kolmogorov-

Smirnov tests are failure to reject the null of equal marginal distributions for most cases, and

so is omitted.

It is notable that in most cases, distant citing supermodularly dominates localized citing,

which means that citing between faraway states may lead to greater expected social welfare

than localized citing. We observe some exceptions in 18 states but the numbers of subclasses
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Table 8. Test result (Y ≤sm X)

State Rank Number Subclass
CA 1 30 A63B, B01D, B05D, B08B, B24B, B29D, B41J, C07C, C07H,

C07K, C10G, C12P, C25F, E01F, G01B, G01S, G02C, G05F,
G06T, G09G, G10L, H01C, H01J, H01M, H01Q, H01R, H03M,
H04J, H04M, H05K

NY 2 21 B01D, B01J, B05D, B23K, B32B, B65H, C07C, C09D, C12Q,
D21F, F16J, G01N, G01R, G01V, G02B, H01M, H01R, H03M,
H04B, H04N, H05B

TX 3 19 A61B, A61K, A61N, A63B, B22F, C01B, C08F, C08L, C09K,
F15C, G01N, G01V, G06K, G06Q, G11C, H01R, H03K, H04L,
H05K

MA 4 13 A61M, B01D, G01B, G01N, G02B, G05B, G06K, G11B, H01L,
H01M, H02J, H04B, H04W

NJ 5 15 A61C, A61F, B01J, C07D, C10M, C11D, C12Q, G02B, G06K,
G10L, H01L, H04B, H04J, H04L, H04N

MI 6 9 A61B, B60Q, C07D, C08G, F01N, F02M, F16H, G02B, G06F
IL 7 11 A61B, A61K, A61M, B01D, B65D, C07D, G01N, H01L, H01R,

H04L, H04M
PA 8 13 A01N, A61B, A61K, A61M, B25B, C07D, C08F, G02B, G06F,

H01H, H01L, H01R, H02J
WA 9 12 A61K, B32B, C07D, G06K, G06Q, G10L, H01L, H01R, H04L,

H04M, H04N, H04W
OH 10 7 A01N, A61B, B23K, D21H, G05B, G06F, G06Q
MN 11 11 A47L, A61K, B32B, F01B, F25B, G01L, G11B, H01G, H01L,

H01M, H04L
FL 12 9 A61F, A61K, A61M, G02C, G06F, G08B, H01Q, H04B, H04L
NC 13 8 A61B, A61K, G02B, G06F, H01L, H01R, H04B, H04L
CT 14 11 A61B, A61K, A61L, A63F, C07D, F02K, G06F, G06Q, G07F,

H01L, H02H
CO 15 4 A61B, A61K, G06Q, H04M
WI 16 6 A01H, B32B, C08J, D21F, G06F, H01M
IN 17 3 A61B, A61F, G01N,
AZ 18 5 A61B, G01B, G06F, H01L, H01M
OR 19 4 A63F, B41J, G01R, H04L,
MD 20 4 A61K, G06F, H04L, H04M,
GA 21 6 B60R, B65D, H02H, H04L, H04M, H04W,
VA 22 2 G06F, H04L
MO 23 2 A61B, G06F
TN 24 3 A61B, A61F, C08L
UT 25 4 A61M, B60R, E21B, G06F
IA 27 2 A01H, G08B
NH 29 3 B01J, C07C, E21B
NH 29 4 F02G, G06F, H01L, H01R
KS 31 4 G06F, H04J, H04M, H04W
DE 33 1 B32B
RI 37 1 A61B
NE 39 2 A63F, G07F
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Table 9. Test result (X ≤sm Y )

State Rank Number Subclass
CA 1 2 B05C, F16K
NY 2 2 D21H, F16K
TX 3 3 A61M, B82B, G02B
MA 4 2 B05D, F16L
MI 6 1 E04C
IL 7 1 A63F
PA 8 2 F16L, G01K
OH 10 4 C03B, D06L, G05F, G06K
MN 11 1 A62B
FL 12 1 C07C
NC 13 2 A01K,B60G
CO 15 1 H05K
WI 16 1 G04C
IN 17 1 B23P
OR 19 6 B26D, C07H, C09D, C12N, C25D, G02B
MD 20 2 B25B, C11D
GA 21 2 B31F, E05B
VA 22 1 F21V
TN 24 1 B27C
UT 25 1 A47B
NM 35 1 H01L
VT 42 1 F02G

for such cases are minor compared to the other way around. The number of potential su-

permodular dominance relationships tend to increase as the rank of a state, in terms of the

liveliness of patent activity, increases.

For patents issued in states and of subclasses not listed in Table 8 and 9, there is no

evidence of supermodular dominance holding between citations from the same state and

different states. In specific, they fall under either one of the following two cases: one where

we reject the null of implication of supermodular dominance holding in both directions, and

the other where we accept the null in both directions. The former case indicates there is no

supermodular dominance between localized and distant citations whatsoever, and the latter

case implies that there is not enough evidence to conclude so or the two citations may have

an equal distribution. In these cases, we cannot draw on the welfare implication regarding

the effect of localized and distant citing.
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Overall, our result implies that there are some subclasses in certain states, especially in

states where patent activities are lively, that exhibit the evidence of implications of su-

permodular dominance holding between localized and distant citing, while for most other

subclasses in most states, we cannot find evidence that such relationship exists. Also, the

effect of localized and distant citing on social welfare varies depending on patent locations

and characteristics. Yet, it is worth noting that we are only testing necessary conditions

of supermodular dominance. Analysis on a smaller than state-level could provide further

information on the pattern of the dominance depending on the degree of localization.

7. Concluding Remarks

In this paper, we propose a consistent test of an implication of supermodular dominance,

a notion that captures positive interdependence among inputs of supermodular functions.

It can be utilized to see which input set creates greater utility, social welfare, production,

etc. In the simulation, we found that the test has desirable asymptotic and finite sample

properties under various parameter settings. We first applied our test to compare the inter-

dependence of stock returns of major five firms before and after the COVID-19. We found

the evidence that the returns after the COVID-19 supermodularly dominates that before

the event, which suggests that the pandemic increased the interdependence between major

stock returns. Another application of our test to comparing the effect on social welfare of

geographic and distant knowledge spillover, measured by patent citation, indicates that firms

having patents of certain subclasses in certain states, especially where patent activities are

active, might have supermodular dominance holding between the localized and distant citing

to their patents. In this case, we can conjecture that either localized or distant citing might

engender greater expected social welfare than the other. For other cases, either there is no

supermodular dominance relationship between localized and distant citing, or there is not

adequate evidence to conclude so or the two may have an equal distribution.

References

[1] Amir, R. (2005). Supermodularity and Complementarity in Economics: An Elementary

Survey. Southern Economic Journal , Jan., 2005, Vol. 71, No. 3 (Jan., 2005), pp. 636-660

29



[2] Andrews, D. W. K. and Pollard, D. (1994). An Introduction to Functional Central Limit

Theorems for Dependent Stochastic Processes, International Statistical Review 62, 119-

132.

[3] Athey, S. (2002). Monotone Comparative Statics Under Uncertainty, The Quarterly

Journal of Economics 117(1), 187-223.

[4] Bäuerle, N. (1997). Inequalities for Stochastic Models via Supermodular Orderings, Com-

munications in Statistics, Stochastic Models 13, 181-201.

[5] Black, G. (2005). The Geography of Small Firm Innovation, Kluwer Academic Publish-

ers.

[6] Cooper, R. and Haltiwanger, J. (1996). Evidence on Macroeconomic Complementarities,

The Review of Economics and Statistics 78(1), 78-93.

[7] Donald, S. G. and Hsu, Y. -C. (2016). Improving the Power of Tests of Stochastic

Dominance, Econometric Reviews 35(4), 553-585.

[8] Goovaerts, M.J. and , J. Dhaene (1999). Supermodular ordering and stochastic annuities.

Insurance: Mathematics and Economics 24 (1999) 281–290

[9] Jaffe, A., Trajtenberg, M. and Fogarty, M. (2000). Knowledge Spillovers and Patent

Citations: Evidence from a Survey of Inventors, The American Economic Review 90(2),

215-218.

[10] Han, H., Linton, O. B., Oka, T. and Whang, Y. -J., (2016). The Cross-Quantilogram:

Measuring Quantile Dependence and Testing Directional Predictability Between Time

Series, Journal of Econometrics, 193(1), 251-270.

[11] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application, Academic

Press.

[12] Jaffe, A., Trajtenberg, M. and Henderson, R. (1993). Geographic Localization of Knowl-

edge Spillovers as Evidenced by Patent Citations, The Quarterly Journal of Economics

108, 577-598.

[13] Kizildemir, B. (2017). Supermodular comparison inequalities in option pricing and in-

formation inequalities. Doctoral thesis, Nanyang Technological University, Singapore.

[14] Kızıldemir, B. and N. Privault (2015). Supermodular ordering of Poisson arrays. Statis-

tics and Probability Letters 98, 136-143.

30



[15] Meyer, M. and Strulovici, B. (2017). Beyond Correlation: Measuring Interdependence

Through Complementarities, Working Paper.

[16] Müller, A. and Scarsini, M. (2000). Some Remarks on the Supermodular Order, Journal

of Multivariate Analysis 73, 107-119.

[17] Morgan, J.P. (2010). Why We Have a Correlation Bubble.

https://www.newconstructs.com/wp-content/uploads/2010/10/JP-Morgan-and-

Correlation

[18] Lee, J. (2019). Korea Patent Data Project (KoPDP)

https://doi.org/10.7910/DVN/AUYERV, Harvard Dataverse, V2,

UNF:6:UYOuBGIK7GjpdWdAMYQX2A== [fileUNF].

[19] Linton, O. B., Maasoumi, E., and Whang, Y.-J. (2005). Consistent Testing for Stochastic

Dominance Under General Sampling Schemes, The Review of Economic Studies 72(3),

735-765.

[20] Linton, O. B., Song, K. and Whang, Y.-J. (2010). An Improved Bootstrap Test of

Stochastic Dominance, Journal of Econometrics 154, 186-202.

[21] Patton, A., Politis, D.N. and White, H. (2009). Correction to “Automatic Block-Length

Selection for Dependent Bootstrap” by D. Politis and H. White, Econometric Reviews

28, 372-375.

[22] Politis, D.N. and Romano, J.P. (1994a). The Stationary Bootstrap, Journal of American

Statistical Association 89, 1303-1313.

[23] Politis, D.N. and Romano, J.P. (1994b). Limit Theorem for Weakly Dependent Hilbert

Space Valued Random Variables with Application to the Stationary Bootstrap, Statistica

Sinica 4, 461-476.

[24] Politis, D.N. and White, H. (2004). Automatic Block-Length Selection for Dependent

Bootstrap, Econometric Reviews 23, 53-70.

[25] Müller, A. and M. Scarsini (2000). Some Remarks on the Supermodular Order, Journal

of Multivariate Analysis 73, 107-119.

[26] Rapuch, G., and T. Thierry Roncalli (2004). Some Remarks on Two - Asset Options

Pricing and Stochastic Dependence of Asset Prices. Journal of Computational Finance,

Vol. 7, No. 4,

31



[27] Topkis, D. (1979). Equilibrium Points in Nonzero-sum n-person Submodular Games,

Siam J. Control and Optimization 17(6), 773-787.

[28] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical

Processes, Springer.

[29] Vives, X. (1985). Nash Equilibrium in Oligopoly Games with Monotone Best Responses,

CARESS Working Paper, No.85-10.

[30] Vives, X. (1990). Nash Equlibrium with Strategic Complementarities, Journal of Math-

ematical Economics 19, 305-321.

[31] Vives, X. (2005). Games with Strategic Complementarities: New Applications to Indus-

trial Organization, International Journal of Industrial Organization 23, 625-637.

[32] World Intellectual Property Organization. (n.d.). IPC Publication.

https://www.wipo.int/classifications/ipc/ipcpub.

32



Appendix

In Appendix, we provide proofs of Theorems in the main text.

Lemma A1. (i) Suppose that Assumption 3.1 holds. Then, we have

νi,T (·) :=
√
T
(
D̂i(·)−Di(·)

)
⇒ νi(·) in l∞(X )

jointly for i ∈ I, where D̂i(·) = (D̂U
i (·), D̂L

i (·))ᵀ, Di(·) = (DU
i (·), DL

i (·))ᵀ, and νi(·) =

(νUi (·), νLi (·))ᵀ is a mean zero Gaussian process with covariance kernel C(x1, x2) =

limT→∞Eνi,T (x1)νi,T (x2)
ᵀ.

(ii) Suppose that Assumptions 3.1 and 3.2 hold. Then, we have

√
T
(
D̂∗i (·)− D̂i(·)

)
⇒ νi(·) in l∞(X )

conditional on W in P jointly for i ∈ I, where D̂∗i (·) = (D̂U∗
i (·), D̂L∗

i (·))ᵀ, and νi(·)

denotes a mean zero Gaussian process with covariance kernel C(x1, x2) defined in (i).

Proof of Lemma A1: (i) Let ξi,tfor i ∈ Ibe a generic random variable that denotes

max{Xi1,t, . . . , Xik,t}, max{Yi1,t, . . . , Yik,t}, min{Xi1,t, . . . , Xik,t}or min{Yi1,t, . . . , Yik,t}. Un-

der Assumption 3.1, the class functions Fi = {1 (ξi,t ≤ x) : x ∈ X}satisfies the L2(P )-

continuity condition

sup
t≥1

E sup
x′∈X :|x−x′|≤r

|1 (ξi,t ≤ x′)− 1 (ξi,t ≤ x) |2 ≤ Cr

and hence its bracketing number satisfies N[] (ε,Fi, L2(P )) < Cε−2. Also, let

νξi,T (·) :=
√
T (P− P )f =

1√
T

T∑
t=1

[1 (ξi,t ≤ ·)− E1 (ξi,t ≤ ·)] ,

denote the empirical process indexed by f ∈ Fi. Then, by the CLT for bounded strong

mixing sequences (Hall and Heyde, 1980, Corollary 5.1) and Assumption 3.1(b), the finite

dimensional distribution of (νξi,T (x1), . . . , ν
ξ
i,T (xJ))converges to a normal distribution for all

(x1, . . . , xJ) ∈ RJ . Therefore, using the functional CLT of Andrews and Pollard (1994,

Collorary 2.3) and the mixing condition in Assumption 3.1(a), we can show that the stochastic

process νξi,T (·)converges weakly to a Gaussian process νξi (·)with mean 0, covariance kernel

Cξ
i (x1, x2) = limT→∞Eν

ξ
i,T (x1)ν

ξ
i,T (x2)and continuous sample paths. The weak convergence
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holds jointly over i ∈ Iand different choices of ξi,t, because the limiting Gaussian processes

are separable and hence the joint convergence is equivalent to marginal convergence of each

process (van der Vaart and Wellner (1996, Theorem 1.4.8)). This establishes Lemma A1(i).

(ii) The result of Lemma A1(ii) follows from the result of Lemma A1(i) and the bootstrap

CLT of Politis and Romano (1994b, Theorem 3.1) because {Zt(·) := 1 (ξi,t ≤ ·) : t ≥ 1}can be

regarded as stationary Hilbert space valued random variables which are bounded and satisfy

the mixing condition
∑∞

s=1 αZ(s) <∞under Assumption 3.1(a). �

Proof of Lemma 3.1: Let Bi := ∪3j=1Bi,j. Write

ST =
∑
i∈I

(
T

∫
X\Bi

{
[D̂U

i (x)]2+ + [D̂L
i (x)]2+

}
dx+ T

∫
Bi

{
[D̂U

i (x)]2+ + [D̂L
i (x)]2+

}
dx

)
=: (A1,T + A2,T ) .

Note that whenever x ∈ X \ Bi, we have max{DU
i (x), DL

i (x)} < −aT,1 under the null hy-

pothesis. Therefore, for each i ∈ I, we have

A1,T ≤
∑
i∈I

∫
X\Bi

{
[
√
T (D̂U

i (x)−DU
i (x))−

√
TaT,1]

2
+ + [

√
T (D̂L

i (x)−DL
i (x))−

√
TaT,1]

2
+

}
dx

≤ C
∑
i∈I

{[
sup
x∈X

√
T
∣∣∣D̂U

i (x)−DU
i (x)

∣∣∣−√TaT,1]2
+

+

[
sup
x∈X

√
T
∣∣∣D̂L

i (x)−DL
i (x)

∣∣∣−√TaT,1]2
+

}
.

(A.1)

This implies that P (A1,T = 0) → 1, because supx∈X ,i∈I
√
T
∣∣∣D̂U

i (x)−DU
i (x)

∣∣∣ = Op(1) by

Lemma A1 and
√
TaT,1 →∞ by Assumption 3.3.

On the other hand,

A2,T ≥
∑
i∈I

T

{∫
Bi,1

[D̂U
i (x)]2+dx+ T

∫
Bi,2

[D̂L
i (x)]2+dx+ T

∫
Bi,3

{
[D̂U

i (x)]2+ + [D̂L
i (x)]2+

}
dx

}
.

=: S̄T . (A.2)
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Also, we have

A2,T − S̄T =
∑
i∈I

T

{∫
Bi,1

[D̂L
i (x)]2+dx+

∫
Bi,2

[D̂U
i (x)]2+dx

}

≤ C
∑
i∈I

{[
sup
x∈X

√
T
∣∣∣D̂L

i (x)−DL
i (x)

∣∣∣−√TaT,2]2
+

+

[
sup
x∈X

√
T
∣∣∣D̂U

i (x)−DU
i (x)

∣∣∣−√TaT,2]2
+

}
.

(A.3)

Now, by (A.2), (A.3) and the arguments similar to those for (A.1), we have P (A2,T = S̄T )→

1. This establishes Lemma 3.1, as desired. �

Proof of Theorem 3.2: Let

S̃T :=
∑
i∈I

T

{∫
Bi,1

[D̂U
i (x)−DU

i (x)]2+dx+

∫
Bi,2

[D̂L
i (x)−DL

i (x)]2+dx

}

+
∑
i∈I

T

∫
Bi,3

{
[D̂U

i (x)−DU
i (x)]2+ + [D̂L

i (x)−DL
i (x)]2+

}
dx.

By Lemma 3.1, under the null hypothesis, we have

P
(
ST ≤ S̃T

)
→ 1. (A.4)

Let B0
i,j denote Bi,j with aT,1 replaced by aT,2 for j = 1, 2, 3. We have

P
(
Bi,j ≤ B̂i,j ≤ B0

i,j

)
→ 1 (A.5)

using the arguments of Linton, Song and Whang (2010, Proof of Theorem 2). Define S̃∗T to

be the bootstrap statistic S∗T (defined in (11)) with B̂i,j replaced by Bi,j for j = 1, 2, 3. Let

c̃∗T,α be the (1− α) quantile of the bootstrap distribution of S̃∗T . Then, (A.5) implies that

P
(
c∗T,α ≥ c̃∗T,α

)
→ 1. (A.6)

There exists a subsequence {kT : T ≥ 1} ⊂ {T : T ≥ 1} such that

lim sup
T→∞

P
{
ST > c∗T,α,η

}
= lim

T→∞
P
{
SkT > c∗kT ,α,η

}
, (A.7)

where SkT and c∗kT ,α,η are the same as ST and c∗T,α,η, except that the sample size T is replaced

by kT . Let σ̃T = V ar(S̃T ). Since {σ̃T : T ≥ 1} is a bounded non-negative sequence, there
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exists a further subsequence {lT : T ≥ 1} ⊂ {kT : T ≥ 1} such that σ̃lT converges. Consider

first the case limT→∞ σ̃lT > 0. Then,

P
{
SlT > c∗lT ,α,η

}
≤ P

{
SlT > c̃∗lT ,α

}
+ o(1)

≤ P
{
S̃lT > c̃∗lT ,α

}
+ o(1) (A.8)

≤ α + o(1), (A.9)

where the first inequality follows from the fact that c∗T,α,η ≥ c∗T,α ≥ c̃∗T,α with probability

approaching one by (A.6), the second inequality follows from (A.4), and the last inequality

holds by the bootstrap consistency result in Lemma A1 and the uniform continuous mapping

theorem (Linton, Song and Whang (2010, Lemma A1)).

Next, consider the other case limT→∞ σ̃lT = 0. We have

P
{
SlT > c∗lT ,α,η

}
≤ P

{
S̃lT > c∗lT ,α,η

}
+ o(1)

≤ P
{
S̃lT > η

}
+ o(1)

→ 0, (A.10)

where the first inequality follows from (A.4), the second inequality holds by the definition of

c∗lT ,α,η, and the last convergence to zero follows from the condition limT→∞ σ̃lT = 0 and the

fact η > 0 .

Now, (A.9) and (A.10) combine to yield

lim sup
T→∞

P
{
SlT > c∗lT ,α,η

}
≤ α. (A.11)

Since P
{
SkT > c∗kT ,α,η

}
converges along {kT}, it also converges along the subsequence {lT} .

Therefore, the result of Theorem 3.2(i) holds because the limsup in (A.11) is equal to the

limit in (A.7).
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(ii) Using an elementary inequality [a+ b]2+ ≤ 2[a]2+ + 2[b]2+, we have

ST = T
∑
i∈I

∫
X
{[D̂U

i (x)]2+ + [D̂L
i (x)]2+}dx

≥ 1

2
T
∑
i∈I

∫
X
{[DU

i (x)]2+ + [DL
i (x)]2+}dx

− T
∑
i∈I

∫
X
{[D̂U

i (x)−DU
i (x)]2− + [D̂L

i (x)−DL
i (x)]2−}dx. (A.12)

The last term of (A.12) is Op(1) by the weak convergence result in Lemma A1(i). Also, under

the alternative hypothesis H1, we have

T
∑
i∈I

∫
X
{[DU

i (x)]2+ + [DL
i (x)]2+}dx→∞.

The result of Theorem 3.2(ii) now holds because c∗T,α,η = Op(1) by Lemma A1(ii). �
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