
Deposit & Copying of
Thesis Declaration

Please note that you will also need to bind a copy of this Declaration into your final, hardbound copy of
thesis - this has to be the very first page of the hardbound thesis.

1 Surname (Family Name) Forenames(s) Title

2 Title of Thesis as approved by the Degree Committee

In accordance with the University Regulations in Statutes and Ordinances for the PhD, MSc and MLitt Degrees, I
agree to deposit one print copy of my thesis entitled above with the Secretary of the Postgraduate Committee who
shall deposit the thesis in the University Library under the following terms and conditions:

1. Thesis Author Declaration

I am the author of this thesis and hereby give the University the right to make my thesis available in print form as
described in 2. below.

My thesis is my original work and a product of my own research endeavours and includes nothing which is the
outcome of work done in collaboration with others except as declared in the Preface and specified in the text. I hereby
assert my moral right to be identified as the author of the thesis.

The deposit and dissemination of my thesis by the University does not constitute a breach of any other
agreement, publishing or otherwise, including any confidentiality or publication restriction provisions in sponsorship or
collaboration agreements governing my research or work at the University or elsewhere.

2. Access to Dissertation

I understand that one print copy of my thesis will be deposited in the University Library for archival and
preservation purposes, and that, unless upon my application restricted access to my thesis for a specified period of
time has been granted by the Postgraduate Committee prior to this deposit, the thesis will be made available by the
University Library for consultation by readers in accordance with University Library Regulations and copies of my
thesis may be provided to readers in accordance with applicable legislation.

3 Signature Date

Corresponding Regulation

Before being admitted to a degree, a student shall deposit with the Secretary of the Postgraduate Committee one copy
of his or her hard-bound thesis, in a form approved by the Committee. The Secretary shall deposit the copy of the
thesis in the University Library where, subject to restricted access to the thesis for a specified period of time having
been granted by the Postgraduate Committee, it shall be made available for consultation by readers in accordance
with University Library Regulations and copies of the thesis provided to readers in accordance with applicable
legislation.

University of Cambridge, Student Registry, New Museum Site, Cambridge CB2 ·
email: student.registry@admin.cam.ac.uk · https://www.cambridgestudents.cam.ac.uk/your-course/examinations/graduate-exam-information/after-

examination/degree-approval-and-1

LI CHENHAO MR

Sequential Modelling and Inference of High-frequency Limit Order Book with State-space
Models and Monte Carlo Algorithms

8 May 2021

Sequential Modelling and Inference of High-frequency

Limit Order Book with State-space Models and Monte

Carlo Algorithms

Signal Processing and Communications Laboratory, CUED

Chenhao Li

St. John’s College

September 2020

This thesis is submitted for the degree of Doctor of Philosophy.

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work

done in collaboration except as declared in the Preface and specified in the text. It is not

substantially the same as any that I have submitted, or, is being concurrently submitted

for a degree or diploma or other qualification at the University of Cambridge or any other

University or similar institution except as declared in the Preface and specified in the

text. I further state that no substantial part of my thesis has already been submitted, or,

is being concurrently submitted for any such degree, diploma or other qualification at the

University of Cambridge or any other University or similar institution except as declared

in the Preface and specified in the text. It does not exceed the prescribed word limit for

the relevant Degree Committee.

Chenhao (James) Li

Date: September 2020

Abstract

Sequential Modelling and Inference of High-frequency Limit

Order Book with State-space Models and Monte Carlo

Algorithms

Chenhao Li

The high-frequency limit order book (LOB) market has recently attracted increasing

research attention from both the industry and the academia as a result of expanding

algorithmic trading. However, the massive data throughput and the inherent complex-

ity of high-frequency market dynamics also present challenges to some classic statistical

modelling approaches. By adopting powerful state-space models from the field of signal

processing as well as a number of Bayesian inference algorithms such as particle filter-

ing, Markov chain Monte Carlo and variational inference algorithms, this thesis presents

my extensive research into the high-frequency limit order book covering a wide scope of

topics.

Chapter 2 presents a novel construction of the non-homogeneous Poisson process to

allow online intensity inference of limit order transactions arriving at a central exchange

as point data. Chapter 3 extends a baseline jump di↵usion model for market fair-price

process to include three additional model features taken from real-world market intuitions.

In Chapter 4, another price model is developed to account for both long-term and short-

term di↵usion behaviours of the price process. This is achieved by incorporating multiple

jump-di↵usion processes each exhibiting a unique characteristic. Chapter 5 observes the

multi-regime nature of price di↵usion processes as well as the non-Markovian switching

behaviour between regimes. As such, a novel model is proposed which combines the

continuous-time state-space model, the hidden semi-Markov switching model and the non-

parametric Dirichlet process model. Additionally, building upon the general structure of

the particle Markov chain Monte Carlo algorithm, I further propose an algorithm which

achieves sequential state inference, regime identification and regime parameters learning

requiring minimal prior assumptions. Chapter 6 focuses on the development of e�cient

parameter-learning algorithms for state-space models and presents three algorithms each

demonstrating promising results in comparison to some well-established methods.

4

The models and algorithms proposed in this thesis not only are practical tools for

analysing high-frequency LOB markets, but can also be applied in various areas and

disciplines beyond finance.

5

Dedication

I dedicate my thesis to my beloved and loving wife, Shiqi Li who has o↵ered me unwavering

support and encouragement throughout the past four years of my doctoral journey. She

keeps me company when I fail and cheers for even the tiniest success of my research. She

always believes in me even in the times when I doubt myself. She is the light of my world.

I also dedicate this thesis to my parents, Yu Li and Meifen Lu who always o↵er me

their unconditional and undying love. They provided for me and supported me to become

whoever I wanted to be. Their wisdom inspires me and their attitude to life shapes me.

They are my twin pillars, without whom I could not stand.

Contents

1 Introduction 12

1.1 Motivations . 12

1.2 Background . 13

1.2.1 Basics of limit order book . 15

1.2.2 State-space modelling and particle filtering 16

1.3 Summary of contributions . 17

1.4 Thesis outline . 18

2 Bayesian sequential inference for non-homogeneous Poisson process in-

tensity 20

2.1 Background . 20

2.1.1 Non-homogeneous Poisson process 21

2.1.2 Thinning and simulation . 22

2.2 Review of existing methods . 24

2.2.1 Sigmoidal Gaussian Cox process (SGCP) 26

2.3 Model . 27

2.3.1 Continuous-time state space model 27

2.3.2 Doubly-stochastic process with SSM dynamics 28

2.4 Inference . 29

2.4.1 A generic SMCMC algorithm . 31

2.4.2 Joint proposal of latent variables 34

2.4.3 Metropolis-within-Gibbs refinement 35

2.4.4 Refinement with rejection sampling (RS) 39

2.4.5 Sequential batch scheme . 41

2.5 Results and discussions . 42

2.5.1 Synthetic Data . 43

2.5.2 Application to Order Book Data . 45

2.5.3 Convergence Evaluation . 47

2.5.4 Hyperparameter Settings . 49

2.6 Conclusions and future work . 51

8

Appendices 54

2.A Proof of Theroem 1 . 54

2.B SDE solution . 55

2.C Thinning from rejection sampling . 56

3 Extended state-space model for LOB market price inference 58

3.1 Background and LOB imbalance investigation 58

3.1.1 The e↵ect of LOB imbalance on price movements and trends 59

3.2 Proposed state-space models . 61

3.2.1 Review of the jump di↵usion model 61

3.2.2 Imbalance-driven volumetric model 64

3.2.3 Extended trend model . 66

3.2.4 Jump trend resetting model . 67

3.2.5 Full model . 67

3.3 Inference . 68

3.3.1 Generic bootstrap particle filter . 68

3.3.2 Rao-Blackwellised particle filter (RBPF) 69

3.4 Results and discussions . 72

3.5 Conclusions and future work . 78

4 Multi-jump di↵usion process for long-short term price dynamics 81

4.1 Introduction and motivation . 81

4.2 Model formulation . 83

4.2.1 Multi-jump reversion process . 83

4.3 Inference . 86

4.3.1 Jump proposals and semi-deterministic particle filtering 87

4.4 Results and discussions . 92

4.4.1 Simulation and inference . 93

4.4.2 FOREX market price . 97

4.4.3 Connections to the NHPP intensity inference model 101

4.5 Chapter summary and future work . 102

5 State-space regime-switching model with infinite mixture dynamics 103

5.1 Introduction and motivations . 104

5.2 Background and review . 105

5.2.1 Hidden semi-Markov model . 106

5.2.2 Dirichlet process model . 108

5.3 Model . 111

5.3.1 Continous-time State-space Model 111

5.3.2 Integration of models . 112

9

5.4 Inference . 116

5.4.1 RBPF: time-series state inference 117

5.4.2 Blocked Metropolis-within-Gibbs: DPM inference 120

5.4.3 Particle-MCMC: an iterative framework 124

5.4.4 Deterministic filtering and optimal resampling 125

5.5 Results and discussions . 128

5.5.1 Synthetic data . 128

5.5.2 Animal GPS data . 132

5.5.3 FOREX market price . 134

5.6 Generalisation of di↵usion models . 138

5.7 Conclusions . 140

Appendices 142

5.A Stratified sampling algorithm . 142

6 Marginal filters and variational parameter learning for state-space mod-

els 143

6.1 Marginal Kalman filter . 144

6.1.1 Model setup . 145

6.1.2 Marginal filtering . 146

6.1.3 Posteriors, backward smoothing and marginal state inference 147

6.1.4 Simulation results . 150

6.2 Parameter learning in the particle filter . 153

6.2.1 Marginal Rao-Blackwellised particle filter 154

6.2.2 Particle filter based variational inference 161

6.2.3 Hybrid PF-VI . 171

6.3 Results and discussions . 173

6.3.1 Jump-di↵usion example . 173

6.3.2 Gordon-Kitagawa example . 179

6.4 Conclusions and future work . 184

Appendices 186

6.A Expected transition density and likelihood 186

6.B ELBO evaluation for jump-di↵usion model 187

7 Summary 190

Bibliography 193

10

List of Acronyms

ACF: Autocorrelation Function

AD: Automatic Di↵erentiation

APF: Auxiliary Particle Filter

AR: Autoregressive (model)

BBO: Best Bid O↵er (data)

BMwG: Blocked Metropolis-within-Gibbs

CAVI: Coordinate Ascent Variational Inference

CI: Confidence Interval

CDA: Continuous Double Auction

CDF: Cumulative Density Function

DP: Dirichlet Process

DPM: Dirichlet Process Model

EM: Expectation Maximisation

ET: Eastern Time

EUR: Euro

ELBO: Evidence Lower Bound

FOREX: Foreign Exchange

GP: Gaussian Process

GPS: Global Positioning System

GARCH: generalised autoregressive conditional

heteroskedasticity (model)

HDP: Hierarchical Dirichlet Process

HMM: Hidden Markov Model

HsMM: Hidden Semi-Markov Model

HPP: Homogeneous Poisson Process

IACT: Integrated Autocorrelation Time

IG: Inverse-Gamma (distribution)

IRS: Importance Resampling

IMM: Interacting Multiple Model

KDE: Kernel Density Estimation

KF: Kalman Filter

KL-divergence: Kullback-Leibler divergence

LGCP: Log Gaussian Cox Process

LOB: Limit Order Book

LSTM: Long Short-term Memory

MAE: Mean Absolute Error

MALA: Metropolis-adjusted Langevin Algorithm

MCMC: Markov Chain Monte Carlo

MH: Metropolis-Hastings

MKF: Marginal Kalman Filter

ML: Maximum Likelihood

MwG: Metropolis-within-Gibbs

MSE: Mean Square Error

NHPP: Non-homogeneous Poisson Process

NIG: Normal-inverse-Gamma (distribution)

OU: Ornstein-Uhlenbeck (process)

PDF: Probability Density Function

PED: Prediction Error Decomposition

PF: Particle Filter

PF-VI: Particle Filter Variational Inference (algo-

rithm)

PG: Particle Gibbs

PL: Particle Learning

PMCMC: Particle Markov Chain Monte Carlo

PMMH: Particle Marginal Metropolis Hastings

RBPF: Rao-Blackwellised Particle Filter

RMSE: Root Mean Square Error

RS: Rejection Sampling

RTS: Rauch-Tung-Striebel (smoother)

SDE: Stochastic Di↵erential Equation

SGCP: Sigmoidal Gaussian Cox Process

S-LD: Sequential Langevin

SMC: Sequential Monte Carlo

SMCMC: Sequential Markov Chain Monte Carlo

SNP: Snapshot (data)

SSM: State-space Model

SSSM: Switching State-space Model

TKS: Ticks (data)

USD: United States Dollar

VB: Variational Bayes

VI: Variational Inference

VRPF: Variable Rate Particle Filter

11

Chapter 1

Introduction

1.1 Motivations

Financial market, as one of the most complicated and volatile systems in the world, at-

tracts more than just practitioners but also researchers from various disciplines. While

most of the mid and long-duration markets and commodities are still strongly correlated

to macroeconomic conditions, high-frequency financial markets, on the other hand, are

constantly subject to short-term or even instantaneous volatility and pressure from dif-

ferent sources. Consequently, their trends or behaviours cannot typically be captured by

human eye and identified with only macroeconomic intuitions.

As a result of recent advancements in algorithmic trading and quantitative finance,

trading operations based on algorithm-generated decisions and algorithmically identified

signals have become more and more common especially in high-frequency markets. A

study in 2016 [1] showed that over 80% of the trading volume in the FOREX (foreign

exchange) market was performed by trading algorithms, while the report from [2] pre-

dicts the total market worth of algorithmic trading to grow from $11.1 billion in 2019 to

$18.8 billion by 2024. However in recent years, major failures of algorithmic trading had

also resulted in substantial losses, fines and reputational damage for credit institutions

and investment firms e.g. the Knight Capital trading glitch in 2012 [3]. Such factors

have motivated the growing interest in formulating robust models and reliable algorith-

mic solutions suitable for high-frequency financial markets not only by the practitioners

for better predictive performance and risk evaluation capability, but also by the market

regulators for necessary supervision and improved market stability.

In particular and evolving over the past few decades, the limit order book (LOB) plays a

key role in modern financial markets. The open LOB market, as a financial structure, has

replaced various financial and economic systems that had dominated for several decades,

to meet the rising demand for improved transparency and liquidity, more centralised clear-

12

Figure 1.1: A typical example of LOB at a single timestamp from the EUR-USD FOREX
market. It only shows the five closest price levels to the mid-price from each of the bid and ask
sides.

ing and lower transaction cost. In an order-driven LOB market, all buying/biding and

selling/asking orders submitted by the market participants to the exchange are aggregated

and displayed in the LOB. This provides a transparent and complete view of current and

historic market information. The accurate modelling of LOBs has hence become the key

to high-frequency and algorithmic trading.

Due to the modest margins that the high-frequency traders and trading firms often

operate with, the fluctuation in the performance of the applied algorithms pertaining

to an adopted model to be carefully quantified to avoid any unnecessary risks. Moreover

with order execution times now measured in microseconds and market dynamics changing

constantly intraday or even intra-hour, the online inference of price models and market

structures becomes increasingly important in modern trading strategies and algorithms.

These requirements have vitally challenged classic frequentist approaches. Thus in this

thesis, technical tools from statistical signal processing and Bayesian stochastic modelling

are utilised to achieve e↵ective simulation and inference of the LOBs in high-frequency

finance. Next, the background information on LOB as well as stochastic modelling and

inference approaches are provided.

1.2 Background

In this section, selected relevant basic concepts from the open LOB market are first out-

lined with demonstrations of LOBs reconstructed from real-world market data. Secondly,

some related work on state-space modelling and sequential Monte Carlo (SMC)/particle

13

F
ig
u
re

1
.2
:
T
w
o
ex
am

p
le

p
lo
ts

of
L
O
B

sn
ap

sh
ot
s,
ea
ch

fo
r
a
d
u
ra
ti
on

of
on

e
h
ou

r
in

th
e
E
U
R
-U

S
D

F
O
R
E
X

m
ar
ke
t.

T
h
e
co
lo
rm

ap
in
d
ic
at
es

th
e

re
la
ti
ve

ou
ts
ta
n
d
in
g
li
m
it
or
d
er

vo
lu
m
es

re
m
ai
n
in
g
on

th
e
m
ar
ke
t.

14

filtering methods are highlighted.

1.2.1 Basics of limit order book

In an order-driven LOB market, market participants trade by submitting orders to the

exchange, where centralised processing takes place. Regardless of buying or selling, orders

can generally be divided into two classes based on their e↵ective time of existence on the

market: limit orders and market orders . A limit order states the intention to buy or sell

(i.e. type) a certain amount (i.e. volume) of an assert at a specific price for a limited

period of time (i.e. duration), and hence the name “limit order”. Such an order can be

executed by any matching orders of opposite type from other traders, or cancelled before

its expiration. Any outstanding limit orders are hence aggregated according to their prices

and volumes to form the limit order book as shown in Figure 1.1. The highest buying

price and the lowest selling price at a given timestamp are called the best bid price and

the best ask price respectively; in this thesis, the mid-price is defined as the arithmetic

mean of the best prices. Thereby, limit orders provide liquidity to the market by listing

traders’ o↵ers at a cost of time and uncertainty.

On the other hand, a market order, after its submission, is executed immediately at the

current best price in the market. A market order will always reduce the amount/volume

of the existing limit orders in the market and therefore demands/consumes liquidity.

Any limit buying/selling orders submitted with prices higher/lower than the best ask/bid

price will be made into marketable limit orders and executed immediately at the best

prices. The outstanding quantities of limit orders get updated accordingly every time a

market order is executed. Once the limit orders at the best prices deplete, the mid-price

correspondingly shifts. The continuous submission and depletion of limit orders over time

give rise to the complex price dynamics of a high-frequency financial market.

Figure.1.2 shows two plots of one-hour LOB reconstructed using raw data collected

from the EUR-USD FOREX market. With the colours indicating the outstanding vol-

umes of limit orders at di↵erent timestamps and price levels, there are empty (i.e. white)

regions around the mid-price where no limit order exists. The width of the region, i.e.

the di↵erence between best prices, is called the bid-ask spread . The bid-ask spread can

be used as an indicator for current market liquidity as can be seen from the figure. The

top panel shows the LOB during the first hour since the opening of the market; whilst

the bottom panel shows a maturer market with much higher order volumes (i.e. higher

liquidity) and much narrower bid-ask spread. This spread in any highly liquid markets

can be as small as one ticksize which is defined as the smallest price increment of that

specific market, e.g. one tick = 1⇥ 10�5 in the EUR-USD FOREX market.

The terms introduced above will be referred to directly or indirectly throughout this

thesis. While there are still many other concepts when it comes to trading in an open

15

LOB market such as stop-limit order and one-cancels-the-other order (OCO) that are

often used by experienced practitioners to mitigate trading risk, my research so far does

not feature the implications of these more practical concepts. For further information on

LOB and their use in real-world financial markets, readers may refer to [4, 5] and the

Investopedia website [6].

Based on the information content, LOB datasets used here for real-data testing can gen-

erally be classified into three di↵erent types:

(i) Best bid-o↵er (BBO) data: The BBO data includes only the orders (with

volumes) that are placed at the best bid and ask prices for each timestamp. The

BBO data gives a concise view of the general trend of the market with necessary

information for market-order traders.

(ii) Snapshot (SNP) data: The SNP data gives the full LOB including prices and

volumes of all limit orders from both sides of the mid-price at all timestamps when

the snapshots are taken. Figure 1.2 is a typical visualisation of the SNP data.

(iii) Ticks (TKS) data: The TKS contains the most complete information of the LOB

market. The dataset comprises a high-frequency stream of order transactions data

including limit order arrivals/submissions, cancellations and modifications.

As each transcation necessarily changes the LOB structure, the TKS data can be used

for LOB analysis at a much finer temporal resolution than the SNP data. However, as

most order operations are noise to the actual market dynamics, the crude use of TKS

data usually requires a large amount of computation and is ine�cient for models and

algorithms. For instance, later in Chapter 2 a model which helps transform the TKS

data into higher-level indicative information to LOB dynamics is introduced.

1.2.2 State-space modelling and particle filtering

The research reported in this thesis on high-frequency LOB closely revolves around two

key technical concepts: the state-space models and the particle filter algorithm. Thus

in this subsection, I present a concise literature review on these two terms, with more

detailed and focused reviews presented in the later chapters.

State-space model (SSM) refers to a general class of probabilistic models [7] that

describes the probabilistic dependence between the latent state variables and observations.

The concept of “state space” originates from control engineering [8], which defines the

state space as the Euclidean space where the variables on the axes are the state variables.

Since its development, SSM in conjunction with its inference routine has been employed

in many areas including system control [9], object tracking [10], image processing [11],

economics [12], finance [13] and neuroscience [14]. Among these, the most well-known

16

and most studied inference algorithm is the Kalman filter [8] which is based on linear

Gaussian SSMs and delivers optimal closed-form estimation performance. In addition to

its high inference accuracy in certain settings, Kalman filter’s popularity is also owing to

its simplicity and low computational complexity.

An important variant of the SSM is the hidden Markov model (HMM) where the

sequential states are specified to be discrete variables. Similarly a mixed continuous-

discrete state variable leads to another variant called the switching SSM [15].

With the increasing demand of realistic modelling of dynamic systems, the SSM is

developed further to accommodate non-linear and non-Gaussian systems. The need of

e�cient sequential inference algorithm to handle intractable likelihoods and transition

densities led to the development of the particle filter. Particle filter, which is also referred

to as the sequential Monte Carlo (SMC) method [16], is a sampling-based algorithm for

Bayesian state inference in sequential models. The technique was first proposed in [17]

for Bayesian state estimation in a non-linear non-Gaussian setting of the SSM. Due to

its ability to handle intractable probability densities, particle filtering received enormous

attention and has been studied extensively in various aspects. The authors of [18] present

an overview of various developments on the generic algorithm since its introduction; while

the authors of [19] compare the characteristics of di↵erent resampling schemes within the

particle filter. A more recent work [20] provides a concise survey of the ideas behind the

particle filtering method from 1930 up to the present day.

1.3 Summary of contributions

Here, I briefly summarise the contributions of this thesis:

• The thesis proposes several novel models for di↵erent tasks in the modelling and

inference of high-frequency LOB markets including intensity inference of limit order

transactions, market fair price inference and learning and identification of market

dynamic regimes.

• Capitalising on the sequential framework of the proposed model, I adopt various

sequential Monte Carlo approaches such as sequential Markov chain Monte Carlo

(SMCMC) and Rao-Blackwellised particle filter (RBPF) and propose novel exten-

sions on the generic algorithms to better address the specific needs of the models

and applications. I also propose adaptations of iterative algorithms, e.g. parti-

cle Markov chain Monte Carlo (PMCMC) and variational Bayes (VB), to perform

accurate learning of the SSM parameters with intractable posteriors.

• The performance of the proposed models and inference algorithms are evaluated on

both synthetic datasets and real-world high-frequency LOB datasets.

17

• The introduced models provide a solid foundation for practical applications to the

real-world LOB markets by achieving online (continuous-time) state inference as

well as batch-wise parameters learning. I also point out clear directions for future

work and present some preliminary examples of these potential extensions.

1.4 Thesis outline

This thesis studies various aspects related to the modelling and the inference of high-

frequency LOB market from a signal processing perspective. It is nonetheless emphasised

that the novel stochastic models and sequential inference algorithms proposed and intro-

duced here can be readily applied in various areas and disciplines beyond finance, such as

object tracking, localisation, dynamic group clustering and others. The layout of chap-

ters in this thesis attempts to accurately reflect the progression of the undertaken research

over the period of my PhD research. Here, I outline the main focus of research for each

chapter and present the continuity of investigation from chapter to chapter.

Chapter 2 focuses on the fundamental element of LOB market, namely the limit

orders and their operations. In order to process the highly granular point data of order

operations and translate them into interpretable market indicators, the non-homogeneous

Poisson process is adopted together with the development of a novel sequential approach

of performing Bayesian inference on the intractable intensity functions. By combining

the continuous-time SSM with the SMCMC algorithm, the proposed method is able to

e�ciently infer the time-varying intensities of various limit order operations on the market

and consequently serves as a foundation for the study of LOB structures and the prediction

of market trends.

Both Chapter 3 and 4 studies the fair price process of LOB market. Based on the

fundamental structure of the market, the research aims to capture the price dynamics

by incorporating various real-world market intuitions. Chapter 3 proposes several new

models that account for dynamical supply-demand imbalance, momentum/trends of dif-

ferent time scales, as well as a jump-resetting mechanism. These models help achieve

more realistic modelling, more accurate predictions and better retrospective analyses of

the underlying fair price process. In Chapter 4, an alternative perspective to the market

is taken with the aim to connect the arrival of limit orders operations with the innova-

tion of price movements. This leads to the development of a multi-jump di↵usion model

with the ability to capture both long-term and short-term price dynamics. Moreover,

this formulation allows the stochastic processes of order operations studied in Chapter

2 to be connected with their potential impacts on the market price. The inference of the

multi-jump di↵usion model is handled by the semi-deterministic particle filter algorithm

which is a novel adaption of the classic deterministic particle filter [21] to the continuous

jump-time space.

18

Whilst Chapter 3 and 4 each focuses on the design of a single di↵usion model to

incorporate more real-world market features, the multi-regime nature of the LOB market

is recognised and researched in Chapter 5. Like many other complex dynamical systems,

price processes in financial markets constantly exhibit di↵erent movement patterns intra-

day or even intra-hour. In order to accommodate this multi-regime nature while being

able to learn the di↵usion parameters without significant prior assumptions, a model is

proposed in this chapter, which elegantly integrates the continuous-time SSM, the hidden

semi-Markov model (HsMM) and the non-parametric Dirichlet process model (DPM). By

utilising the PMCMC algorithm framework, a sophisticated Bayesian inference algorithm

is also proposed to achieve accurate online state inference, regime allocation as well as

o↵-line parameters learning. Applied to both financial LOB data and animal movement

data, it is also demonstrated that the model can provide useful insights to various not

priorly known modes of motion.

Due to the ever-changing nature of the LOB market, parameter learning and hyperpa-

rameter tuning play crucial roles in the modelling of market dynamics. The continuous-

time construction of the model and the amount of time-series data have both challenged

the tractability and the complexity of parameter-learning algorithms. Therefore in Chap-

ter 6, I propose novel inference algorithms that, in both online and o↵-line settings,

perform Bayesian parameters learning on the dynamics-controlling parameters in SSMs.

Additionally, the algorithms’ performance is benchmarked against some well-established

algorithms.

19

Chapter 2

Bayesian sequential inference for

non-homogeneous Poisson process

intensity

2.1 Background

The predictions of LOB structure and the market fair price are two of the most challenging

tasks in studying high-frequency financial market. While the long-term prediction is

a↵ected by various factors either within or outside the market through some extremely

convoluted links, the short-term evolution of LOB is closely related to di↵erent operations

on limit orders such as submissions, cancellations and executions. As briefly outlined in

Section 1.2, the depletion of best order queues not only changes the general structure of

LOB but also shifts the market mid-price. The rate of depletion, injection and replacement

of limit order queues predominately determines the (short-term) dynamics of the high-

frequency LOB market. Therefore in this chapter, the research focuses on the orders, and

more specifically on the inference of intensities of limit order operations. The research

covered in this chapter has been published in [22]1 and [23]2 and the content of this chapter

reuses a proportion of the texts, figures and tables in these two papers.

In order to infer the sought intensities, it is necessary to work with the point data

of basic order operations. The datasets used in this chapter are thus extracted from the

LOB ticks data, which contains the fullest information of the market by recording every

single transaction/operation. The occurrences of these transactions are grouped together

based on their operation types and price to provide suitable datasets for evaluating the

e�cacy of the developed modeling and corresponding inference algorithms.

1 c� 20XX IEEE. Reprinted, with permission, from [22]
2 c� 20XX IEEE. Reprinted, with permission, from [23]

20

With the aim of developing a generic approach to perform intensity inference on or-

der operations, Poisson process stands out for its ability to model point data in both

temporal and spatial settings with applications across various disciplines. For instance,

the neuronal spike trains are often modelled as Poisson processes [24], as well as the

earthquake sequences [25]. It is also widely studied and applied in the field of teletra�c

engineering [26]. Owing to the convenient mathematical properties of the Poisson pro-

cess, it was often combined with other sophisticated models like SSMs to capture salient

features of dynamical systems with jumps [27, 13] and/or discrete occurrences such as

signal detection and false alarms [28] in the field of tracking.

Instead of using the standard Poisson process, a more powerful variant is employed

here – the non-homogenenous Poisson process (NHPP). As its name suggests, the NHPP

provides additional flexibility by allowing the intensity function to vary across time and/or

space instead of being constant (i.e. homogeneous). This gives a more realistic modelling

option for the application on high-frequency limit orders as intensities are typically ex-

pected to change significantly intra-day and even intra-hour. Next, the definition of NHPP

and its simulation procedure is briefly introduced before reviewing the related work on

such processes.

2.1.1 Non-homogeneous Poisson process

The NHPP can be defined in several equivalent ways, each fitting the general definitions

of a Poisson process. An intuitive definition of the NHPP is introduced here as in [29]:

Definition 1. Non-homogeneous Poisson Process: For a domain S = RD, define a NHPP

with an intensity function �(s) � 0, s 2 S, and the counting measure N(T) (i.e. number

of occurrences) in any bounded region T ⇢ S such that:

1. N(;) = 0

2. {N(Ti)}i are independent for any disjoint subsets {Ti} ⇢ S

3. N(T) ⇠ Poisson(⇤), with ⇤ =
R
T �(s) ds

Let {sk}Kk=1 be a set of K events/occurrences in a region T ; then with the definition

above, the likelihood function of the NHPP with intensity �(s) can be written as the

product of three probabilities: (1) the Poisson probability of observing K events in T :
e�⇤⇤K

K! ; (2) the density of the events {sk}
K
k=1:

QK
k=1

�(sk)
⇤ ; and (3) the K! number of

possibilities of ordering the K events. Thus the likelihood can be expressed as:

p({sk}
K
k=1 |�(s), T) =

e
�⇤⇤K

K!
⇥

KY

k=1

�(sk)

⇤
⇥K!

= exp
n
�

Z

T
�(s)ds

o KY

k=1

�(sk)

(2.1)

21

Clearly, the above likelihood cannot be computed directly as it requires not only pointwise

evaluations of the intensities at all event times/locations {sk}Kk=1, but also an integration of

the intensity function �(s) over the entire domain of interest T . This integration is gener-

ally intractable, except for certain intensity functions of simple forms. Such intractability

severely inhibits the inference of intensity via most likelihood-based or Bayesian inference

approaches.

It is nonetheless possible to obtain a tractable integration by assume a simple known

functional form (e.g. linear) of the intensity function with unknown parameters and

perform certain inference on these parameters. However, such assumption can largely

limit the practicality of the NHPP and can give a poor approximation of the true intensity

curve.

2.1.2 Thinning and simulation

Despite the intractability in the likelihood of NHPP, it is still possible to perform exact (i.e.

unbiased) simulation of a NHPP from a very board class of intensity functions without

computing the integral. This can be achieved by thinning [30]. The thinning operation

entails removing point(s) from an existing point process based on some predefined rules

in order to produce a new point process.

While there are many variants of thinning operations, this thesis focuses on indepen-

dent thinning, where the decision about removing each point is made by independent

Bernoulli trials and the interaction between points has no e↵ect on this decision [31].

Starting with the following theorem:

Theorem 1. Consider a homogeneous Poisson process (HPP) with constant intensity �⇤

over a domain S = RD, so that the counting measure over any bounded region T ⇢ S

is N
⇤(T) ⇠ Poisson(�⇤|T |), where |T | is the Lebesgue measure of T . If the points of

this process undergo an independent thinning operation with a spatially varying deletion

probability 1 � p(s), the remaining points form a NHPP with intensity function �
⇤
p(s)

within region T .

The proof of Theorem 1 can be found in Appendix 2.A. Following this theorem to

generate a NHPP with the desired intensity function �(s), the simulation can simply start

with a HPP having intensity �⇤ and perform the described thinning operation on each

homogeneous with a temporally or spatially varying Bernoulli (retaining) probability:

p(s) =
�(s)

�⇤
, �

⇤
� sup

s2S
{�(s)} (2.2)

The value of �⇤ should be chosen such that it serves as an upper bound on �(s). It is also

worth noting that the starting process (of counting measure N(T)) is not restricted to

22

Algorithm 1 Simulation of a NHPP

Inputs: domain of interest T ⇢ S, intensity �(s), upper-bound intensity �max

Outputs: A set of (random) K non-homogeneous events � = {sk}
K
k=1 within T

1: N ⇠ Poisson(�max|T |) . Compute the number of occurrences in homogeneous
Poisson process

2: {sn}
N
n=1 ⇠ Uniform(T) . Sample the homogeneous occurrence locations

3: � ; . Initialise an empty set for NHPP events
4: for n = 1 : N do
5: ⇢n ⇠ Uniform(0, 1)
6: if ⇢n �(sn)/�max then . Apply the thinning operation
7: � � [sn

8: end if
9: end for
10: Return: �

HPP and the method of generating non-homogeneous realisations via thinning can gen-

eralise to any NHPP as long as the starting intensity �⇤(s) is an envelope of the desired

intensity �(s) such that �⇤(s) � �(s), 8s 2 T [30]. From this, a close relation between

thinning and rejection sampling (RS) can be observed; the tighter the envelope �⇤(s) is,

the more e�cient simulation will be.

Consequently, without requiring any form of integration any NHPP, whose intensity func-

tion is upper-bounded and which can be evaluated point-wise, may be simulated. A set

of N homogeneous Poisson points {sn}Nn=1 are generated by first drawing the variable N

from a Poisson distribution with parameter (�⇤|T |), followed by N independent uniform

random draws within T . The homogeneous points are then thinned with Bernoulli prob-

abilities (1� �(s)/�⇤) to provide the NHPP events having the desired intensity function

�(s). Algorithm 1 shows the detailed procedure of simulating a NHPP, accompanied by

a graphical illustration in Figure 2.1.

It can be noted that the application of Theorem 1 requires an assumption of an attain-

able maximum intensity �
⇤ of the NHPP. Although this premise may seem restrictive,

it can generally be satisfied in most real-world applications especially as �⇤ is not neces-

sarily a tight upper bound or a supremum of the intensity function �(s). In practice, an

intuitive value of �⇤ is often inherently defined by the modelled systems, e.g. the max-

imum number of phone calls that can be processed by the call center at one time. For

the real data experiment presented in Section 2.5.2, the maximum number of limit order

arrivals is often restricted by the exchange. However, this intuitive bound may not be the

best choice for �⇤ since the tightness of this upper bound is closely related to algorithm

e�ciency (for both simulation and intensity inference). The value of �⇤ should be tuned

to accommodate the requirements of specific application.

23

Figure 2.1: The figure shows the generative procedure of the NHPP from a periodical intensity
function: (a) The homogeneous Poisson points generated from the upper-bound intensity �⇤.
(b) For each point, the non-homogeneous intensity is evaluated with the analytical function. (c)
Each point samples a variate uniformly from (0, �⇤). (d) Only points with the proposed variants
lower than their corresponding intensity �(sn) get accepted.

2.2 Review of existing methods

The attractive features of NHPP have led to an extensive amount of research interests

into the intensity inference of the NHPP. For example, the early frequentist approach

proposed in [32] uses kernel densities to construct an non-parametric intensity estimator

of the NHPP. Another frequentist method developed in [33] assumes a piecewise-linear

parametric form of the intensity function and estimates the function parameters via re-

gression. The continuous piecewise-linear method was later advanced in [34] and [35] by

24

formulating the intensity inference problem as a constrained quadratic programming prob-

lem and a convex optimisation problem respectively. Both of these frequentist method

have achieved relatively fast estimation of intensity, however without providing any uncer-

tainty quantification. This renders their inference accuracy rather sensitive to the choice

of hyperparameters and model assumptions.

The popularity of Poisson process in the field of tracking has also encouraged the de-

velopment of intensity inference approaches. The early work in [28] introduced a method

called the probability hypothesis density (PHD) filter which recursively estimates the un-

known time-varying number of targets (and their states) at discrete intervals of time. This

filter was later extended in [36, 37] (with practical applications in [38]) to the intensity fil-

ter which infers the posterior intensity of the Poisson process approximation as the scaled

marginal probability density. Although the intensity filter and its variants are formulated

as online recursive approaches and require little computation, such methods typically as-

sume a constant intensity value within the update interval and hence a piecewise constant

intensity function.

The piecewise constant assumption on intensity function is fairly common for inference

of the NHPP. The change-point approaches for the NHPP rely heavily on this assumption

with early studies in [39, 40, 41] where the models assume only two (homogeneous) Poisson

intervals (i.e. one change point). Based on these studies, multiple-interval models were

later developed [42] and a more recent paper [43] proposed a Bayesian inference approach

which also includes an optimised/learned number of intervals. Despite the similarity, the

change-point methods focuses mainly on the inference of exact timings of the changes;

while the computation of intensity is often trivial. It is worth noting that the work in

this chapter assumes a general unknown continuous intensity function, which involves a

completely di↵erent inferential task to the change-point methods.

One major challenge of inference for the NHPP is that it often involves a non-

preconceived form of the intensity function. This gives rise to the idea of doubly-stochastic

Poisson process, or a Cox process [29]. The Cox process allows its unknown intensity

function to be governed by another (continuous) stochastic process. The Gaussian Cox

process, where the intensity function is a transformation of a random realisation from a

Gaussian process (GP) [44], provides a convenient way to specify general prior belief on

the unknown intensity function. Non-parametric Bayesian intensity inference approaches

of such a process were studied in both [45] and [46] using the log Gaussian Cox process

(LGCP) model. Both approaches introduced finite-dimensional proxy distribution via

discretisation. The authors of [47], for the first time, proposed the sigmoidal Gaussian

Cox process (SGCP) model and a tractable approach to perform fully Bayesian inten-

sity inference via Markov chain Monte Carlo (MCMC) algorithms. Also in the paper,

the SGCP model demonstrated superior intensity inference performance than the LGCP

model. Based on the ideas in [47], the SGCP model was later extended in [48] to include

25

variational sampling of hyperparameters and parallel inference for multiple correlated pro-

cesses. However, both approaches scale poorly with the size of the dataset due to the high

complexity of the Gaussian process prior and Bayesian computation. Inspired by sparse

Gaussian process models, [49] uses generative inducing points to perform tractable vari-

ational inference on NHPP likelihood function, which achieves a complexity that scales

better with input dataset size. A more recent paper of [43] also proposes a Bayesian infer-

ence approach for Poisson point processes but requires a piecewise constant assumption

on intensity function.

2.2.1 Sigmoidal Gaussian Cox process (SGCP)

Before introducing the novel model developed in this work, I present a brief review on the

SGCP model in [47], which forms a starting point of the proposed approach.

Denote the unknown varying intensity function of a doubly-stochastic Poisson process

as �(s) which is governed by another stochastic process {g(s), s 2 T }. The SGCP model

incorporates a Gaussian process (GP) as the intensity prior:

g(s) : S ! R , g ⇠ GP

⇣
m(·), C(·, ·)

⌘
(2.3)

where m(·) : S ! R is the mean function and C(·, ·) : S ⇥ S ! R is the positive definite

covariance function. The scalar function g(s) is then mapped to the non-negative intensity

function through a scaled sigmoid function �(s) = �
⇤
�(g(s)), with �(x) = (1 + e

�x)�1.

Inspired by the constructive generative process of the NHPP introduced in Section

2.1.2, the SGCP model achieves tractability by considering the observed NHPP as the

output from a thinning operation applied to a latent HPP. In such a case, the retaining

probability for an observed (i.e. input) point is:

p(s) =
�(s)

�⇤
= �

�
g(s)

�
(2.4)

Define in 2 {0, 1} as an indicator associated with each Poisson event, taking value 0 for

an observed data point and 1 for a ‘thinned’ point. And thus write the augmented joint

probability of the SGCP model as:

p({sn}
N
n=1,g1:N , {in}

N
n=1 |�

⇤
, T)

= (�⇤)N e��
⇤|T |

| {z }
(1)

p(g1:N |{sn}
N
n=1)| {z }

(2)

NY

n=1

�{(�1)ing(sn)}

| {z }
(3)

(2.5)

where g1:N is the concatenated vector with g1:N = [g(s1), g(s2), . . . , g(sN)]T . The for-

26

mulation of Eq. (2.5) follows similar steps to the simulation in Algorithm 1, with the

addition of random simulation from the intensity function: (1) represents the probability

of generating N ordered points in T according to the upper-bound intensity �⇤; (2) is the

probability of generating stochastic process values g1:N at times {sn}Nn=1 from the prior;

and (3) is the probability of the Bernoulli trials, since 1��(x)=�(�x). Inference for the

SGCP model is achieved in [47] by o✏ine batch-based MCMC samplers for each latent

variable which alternate in a Gibbs sampling manner.

The SGCP model facilitates a tractable inference procedure for NHPPs. However

the practical application of the model is limited by the O(N3) complexity arising from

the GP prior and the corresponding MCMC inference routine. The value of N here is

the total number of homogeneous points, and this can be much larger compared to the

number of input points when the intensity function has regions of low values compared

to the upper-bound intensity �⇤. Furthermore, the batch-based MCMC sampler provides

only retrospective knowledge of the NHPP and cannot be readily adapted to a sequential,

online setting.

2.3 Model

In order to alleviate the aforementioned limitations of NHPP modelling, a new state-space

intensity model is developed in this thesis under the generative thinning framework. As

illustrated here, this allows us to employ e�cient sequential Bayesian inference techniques.

2.3.1 Continuous-time state space model

In order to construct a computationally tractable sequential framework for NHPP data

while allowing flexibility in the choice of prior characteristics, a continuous-time SSM is

employed to replace the fully correlated Gaussian process prior. Denoting g(t) as the

state vector at time t, the SSM can be formulated as the following stochastic di↵erential

equation (SDE):

dg(t) = Ag(t) dt+ h dWt (2.6)

where {Wt} is a Wiener process. Such a model, which is linear and Gaussian, can be dis-

cretised exactly in closed form using Itô calculus. The solution of the SDE (seeAppendix

2.B for derivations), integrating from arbitrary time P to Q for Q � P , is:

g(Q) = e
A(Q�P)

h
g(P) +

Z Q�P

0

e
�A⌧h dW⌧

i
(2.7)

27

and the conditional transition density p
�
g(Q)|g(P)

�
can be readily computed to be Gaus-

sian and Markovian:

p
�
g(Q) | g(P)

�
⇠ N

�
g(Q) | µµµ(Q,P),C(Q,P)

�
(2.8)

with mean and covariance calculated directly from the stochastic integral in Eq. (2.7):

µµµ(Q,P) = E{g(Q) | g(P)} = e
A(Q�P)g(P) (2.9)

C(Q,P) = E
n⇥

g(Q)� µµµ(Q,P)
⇤⇥
g(Q)� µµµ(Q,P)

⇤0o

= e
A(Q�P)K(Q,P)

�
e
A(Q�P)

�0 (2.10)

where

K(Q,P) =

Z (Q�P)

0

e
�A⌧hh0(e�A⌧)0d⌧ (2.11)

The computation of K(Q,P) is non-trivial and can be obtained using matrix fraction

decomposition [50] or approximated by series expansion of the exponential functions [51].

With the above definition of the conditional transition density, and a Gaussian initial

state prior, it is possible to obtain the joint probability of all or part of the state vector

by conditioning and probability chain rule, capitalising on the Markovian property.

While any Gaussian SSM could in principle be applied in the above framework, this

chapter have adopted for illustration a Langevin dynamical model that is similar to that

used in [13]. In such a model, the state vector gt = [g1,t, g2,t]T contains a value term g1,t

and a stochastic trend term g2,t at time t. The general SDE in Eq. (2.6) is reformulated

as:

d

"
g1,t

g2,t

#
=

"
0 1

0 ✓

#"
g1,t

g2,t

#
dt+

"
0

�

#
dW (t) (2.12)

where ✓ is the non-positive reversion coe�cient and � > 0 is the scale of the trend process.

The Langevin dynamics have the advantage of being analytically tractable while allowing

either long-term or short-term trend behaviours of the intensity depending on the choice of

✓. Denote the joint prior under this model omitting the dependency on hyperparameters

as:

p(g1:N | {sn}
N
n=1) = LD(g1:N | {sn}

N
n=1) (2.13)

where gn=
h
g1,sn , g2,sn

iT
and {sn}

N
n=1 are the time stamps.

2.3.2 Doubly-stochastic process with SSM dynamics

Under the Gaussian assumption, the stochastic process values g1,s can lie anywhere on

the real line. Hence, as in [47], the sigmoidal mapping onto [0,�⇤] is also adopted in this

28

Figure 2.2: A random realisation of the doubly-stochastic Poisson process with a Langevin
prior on T = [0, 100]. Simulated NHPP events are shown as scatter lines on the time/x axis.

model:

�(s) = �
⇤
�(g1,s) (2.14)

although note that any suitable function �(.) that maps to [0, 1] could be used in place of

the sigmoidal function. Under this formulation, one may use Algorithm 1 to generate re-

alisations of the NHPP with dynamics specified in (2.12). With event timestamps {sn}Nn=1

proposed from the HPP with intensity �⇤, the state vectors {gn}
N
n=1 and corresponding

intensities {�(sn)}Nn=1 are evaluated sequentially through the conditional transition den-

sity in (2.8) and the mapping function in (2.14). Figure 2.2 shows a typical realisation

of a NHPP generated with Langevin governing stochastic intensity (in solid purple line).

It is worth noting that the generation of both intensity process and NHPP events are

random/stochastic (and hence the name doubly-stochastic). Di↵erent realisations of this

process are used below in testing of the proposed model and inference methods.

2.4 Inference

As in the SGCP model, the proposed model works with the tractable augmented joint

probability in Eq. (2.5), with the prior being the SSM. However unlike the GP in [47], the

Markovian property of the SSM allows e�cient sequential inference of the intensity. By

inputting short batches of data delineated by times tk, k = 0, 1, ..., inference is updated

with arriving data for each batch. The time intervals Tk = (tk�1, tk] ⇢ T could be e.g.

regularly spaced, tk = k�T , or spaced according to the timings of the input (observed)

points {sn; in=0} supporting asynchronous data processing.

Further define the notation xk = {sn,gn, in; sn 2 Tk} as the locations, the state

29

vectors, and the indicators corresponding to all events in the interval Tk. Note that xk

includes both unobserved (latent) and observed components of the model. One can write

the recursion for the joint distribution as:

p(x1:k |�
⇤
, T1:k) = p(x1:k�1 |�

⇤
, T1:k�1) p(xk |�

⇤
, x1:k�1, Tk) (2.15)

where the second term of the conditional propagation can be conveniently factorised based

on Eq. (2.5) as:

p(xk |�
⇤
, x1:k�1, Tk)

= p(xk |�
⇤
, xk�1, Tk)

= (�⇤)Nk e
��⇤|Tk| ⇥ LD({g}Tk |{g}Tk�1 , {s}Tk)

⇥

Y

n:sn2Tk

�{(�1)ing1,n}

(2.16)

and Nk = |{n ; sn2Tk}| is the total number of HPP events in Tk. Note that the number

of events Nk in Tk is itself a random variable, therefore extra care is needed in performing

the correct sequential inference. Thereby, a suitable scheme is proposed below.

Suppose that at time interval k�1, there is a large collection of random and possibly

weighted samples (‘particles’) drawn from the posterior joint distribution at k�1 with the

pth particle and its corresponding weight denoted as:

�
x
p
1:k�1, w

p
k�1

⇠ p(x1:k�1|�

⇤
, T1:k�1), p = 1, ..., Np (2.17)

One can therefore approximate p(x1:k�1|�
⇤
, T1:k�1) (the ‘smoothing’ distribution at k�1)

with the empirical distribution of the particles:

p(x1:k�1|�
⇤
, T1:k�1) ⇡

NpX

p=1

w
p
k�1 �xp

1:k�1
(x1:k�1) (2.18)

with w
p
k�1 � 0 and

P
p w

p
k�1 = 1. Combining the above approximated posterior with

the factorised joint recursion of Eq. (2.15) and (2.16), an updated particle posterior

distribution at interval k is obtained:

p(x1:k|�
⇤
, T1:k) ⇡

NpX

p=1

w
p
k�1 �xp

1:k�1
(x1:k�1)⇥ p(xk|�

⇤
, x

p
k�1, Tk) (2.19)

The above equation gives a mixed discrete-continuous distribution containing the point

masses for the “past history” variables xk�1 = x
p
k�1 = {sn,gn, in; sn 2 Tk�1}

p and the con-

ditional distributions for the “new variables” xk. One can now propose samples jointly

from this entire approximated distribution of past and new variables and compute the

importance weights or MCMC acceptance probabilities, leading to standard particle fil-

30

tering methods or SMCMC procedures respectively. In either case, it is helpful to keep

in view that the samples produced are joint samples approximating the posterior for all

T1:k.

The posterior propagation proceeds by selecting one particle, say p = p̃, randomly

from the smoothing distribution in Eq. (2.18) represented empirically by the ‘history’

collection at the end of interval Tk�1. Based on the drawn particle x
p̃
1:k�1, a new set of

variables xk is proposed from either priors or pre-assigned proposal distributions with

its weight/acceptance ratio computed accordingly. Enough repetitions of this procedure

during interval Tk will yield a set of importance-weighted/converged samples from the

joint smoothing distribution p(x1:k|�
⇤
, T1:k). Note that for mathematical convenience, I

treat the observed events {sn; in = 0} jointly with the latent events as random variables

whose values are known with probability 1, and hence simply chosen deterministically

in the proposal step. Note that Eq. (2.19) approximates the joint distribution of input

points {sn; in = 0} and all the remaining unknowns in the system. Since this joint

distribution is directly proportional to the posterior distribution of the unknown state

elements, conditional on a particular realisation of the input points (the ‘data’), one may

obtain posterior Monte Carlo samples simply by extracting the Monte Carlo samples of

the unknowns and excluding the known fixed input points. Figure 2.3 shows graphically

the scheme of propagation as described in Eq. (2.19) across batches for di↵erent particles

in the algorithm.

So far, the described scheme can be easily implemented with the variable-rate particle

filter (VRPF) [27]. Such an approach however is not especially e↵ective for this task as

the factorisation in Eq. (2.16) requires the proposal of multiple latent variables of varying

dimension in a single propagation step, which will inevitably result in the inherent weight

degeneracy problem of the particle filter. Instead here, this high-dimensional proposal is

addressed with the SMCMC algorithm which targets sequentially the joint distributions

of Eq. (2.19), using both local and global Metropolis-Hastings (MH) accept-reject moves

instead of importance sampling or resampling [52, 53, 54, 55].

Furthermore, a mixture sampling procedure is adopted: at each MCMC iteration,

a decision is made on performing either a joint MH proposal step with probability PJ

or a sequence of individual refinement Metropolis-within-Gibbs (MwG) transitions with

probability 1�PJ . Such a scheme provides an e↵ective trade-o↵ between the speed and

accuracy of the inference via adjusting the value of PJ . Next, the generic algorithm of

SMCMC is briefly covered before proceeding to the detailed design of joint proposal and

refinement steps in Section 2.4.2, 2.4.3 and 2.4.4.

2.4.1 A generic SMCMC algorithm

Similar to many other Monte Carlo methods, the generic algorithm of SMCMC also tries

to approximate the posterior density with an empirical representation of the particles.

31

Figure 2.3: Propagation scheme of the SMCMC algorithm across the batch boundary between
Tk�1 and Tk. Number and locations of ‘thinned’ events are proposed independently for each
particle p.

However in contrast to a standard particle filter, the particles in SMCMC are not weighted

and each is guaranteed to be a representative sample of the posterior density with the

assumption that the MCMC run has converged.

Targeting the posterior joint density, e.g. Eq. (2.19) at each propagation, the SMCMC

algorithm selects historic particles from {x
p
1:k�1}

Np

p=1 and conditionally proposes new latent

variables xk from one joint MCMC kernel or several conditional kernels in turn. The

samples accepted after a burn-in period are included into the particle collection for the

next propagation step requiring neither weight assignments nor a resampling step in the

manner of the regular particle filter. However, one should note that any of the MCMC

moves that involve proposing the sequence x1:k�1 (or x0:k�1 if involves a random initial-

isation), i.e. the discretely approximated ancestor states, are in some sense equivalent

to a resampling operation. Thus, some degree of path/time degeneracy in the SMCMC

method should be expected, as for regular particle filtering. To the best of my knowledge

there is no theory that proves which method would be less degenerate. However, I would

postulate that the wide range of MCMC moves available in a single SMCMC scheme

may improve on path degeneracy in the SMCMC case compared with particle filtering,

although a full exploration of is a topic for future work.

Both generic algorithms of particle filter and SMCMC are shown in Algorithm 2

and 3 respectively. SMCMC may be favourable in the case of high-dimensional latent

variables, as in practice the proposal q(xk | x0:k�1) q(x0:k�1) will be split up into a number

of blockwise Gibbs steps and Metropolis-within-Gibbs (MwG) moves. This allows us

to adopt suitable MCMC schemes based on domain knowledge, which is likely to lead to

better convergence [56]. In later sections, I will show how to design both joint MH samplers

and MwG samplers to give good inference performance with the SMCMC algorithm.

32

Algorithm 2 A generic particle filter (PF) algorithm

Inputs: A set of (observed) events {sk}Kk=1 in T .
Outputs: A collection of weighted particles {x

p
0:K}

Np

p=1 with normalised weights

{w
p
K}

Np

p=1

1: Initialisation: (k = 0) Sample Np particles {xp
0}

Np

p=1 from the prior p(x0) and assign
uniform weights wp

0 = 1/Np.
2: for k = 1 : K do
3: for particle p = 1 : Np do
4: Sample x

p
k ⇠ q(xk | x

p
0:k�1)

5: Compute weight ewp
k = w

p
k�1 ⇥

p(xp
k |xp

0:k�1)

q(xp
k |xp

0:k�1)

6: end for
7: Normalise weights: wp

k = ewp
k /

PNp

p0=1 ew
p0

k

8: Resample if necessary
9: end for

10: Return: {xp
0:K}

Np

p=1, {w
p
K}

Np

p=1

Algorithm 3 A generic SMCMC algorithm

Inputs: A set of (observed) events {sk}Kk=1 in T .
Outputs: A collection of (unweighted) particles ⌦.

1: Initialisation: (k = 0) Sample Np particles {x
p
0}

Np

p=1 from the prior p(x0) to form the
initial particle collection ⌦0.

2: for k = 1 : K do
3: ⌦k = ;
4: for iteration p = 1 : (Np +Nburn) do
5: Sample x

⇤
0:k ⇠ q(xk | x0:k�1) q(x0:k�1)

6: if p = 1 then
7: x

p
0:k = x

⇤
0:k . Accept the initial condition

8: else

9: Compute ⇢ = min
n
1,

p(x⇤
0:k)q(x

p�1
k |xp�1

0:k�1) q(x
p�1
0:k�1)

p(xp�1
0:k)q(x

⇤
k|x

⇤
0:k�1) q(x

⇤
0:k�1)

o

10: Draw u ⇠ Uniform(0, 1)
11: if u < ⇢ then . MH accept-reject
12: x

p
0:k = x

⇤
0:k

13: else
14: x

p
0:k = x

p�1
0:k

15: end if
16: end if
17: if p > Nburn then
18: ⌦k ⌦k [x

p
k

19: end if
20: end for
21: end for
22: Return: ⌦ = ⌦0 [⌦1 [· · · [⌦K

33

Algorithm 4 SMCMC algorithm for sequential intensity inference

Inputs: A set of events {sk}Kk=1 in T .
Outputs: Posterior filtering samples of underlying intensity.

1: Initialisation: (k = 0) Create a particle collection ⌦0 of Np particles from the prior.
2: for batch Tk = T1 : TK do
3: Initialise a new (empty) particle collection ⌦k = ;
4: for iteration p = 1 : (Np +Nburn) do
5: if p = 1 then . Initial condition
6: Draw a sample x

⇤
k�1 discretely from collection ⌦k�1

7: Propose No. thinned points fM⇤
⇠ Poisson{�⇤|Tk|}

8: Propose positions of thinned points {s̃⇤m}
fM⇤
m=1 ⇠

fM⇤
⇥ Uniform(Tk)

9: Propose {g}⇤Tk from LD prior (2.8) conditioned on x
⇤
k�1

10: x
p
k = {s,g, i}⇤Tk

11: else
12: u ⇠ Uniform(0, 1)
13: if u < PJ then . A joint proposal
14: Draw a sample x

⇤
k�1 discretely from collection ⌦k�1

15: Propose No. thinned points fM⇤
⇠ Poisson{�⇤|Tk|}

16: Propose positions of thinned points {s̃⇤m}
fM⇤
m=1 ⇠

fM⇤
⇥ Uniform(Tk)

17: Propose {g}⇤Tk from LD prior (2.8) conditioned on x
⇤
k�1

18: x
⇤
k = {s,g, i}⇤Tk

19: Compute MH acceptance probability ⇢J from Eq. (2.21)
20: if Uniform(0, 1) < ⇢J then
21: x

p
k = x

⇤
k . Accept proposed variables

22: else
23: x

p
k = x

p�1
k . Reject proposed variables

24: end if
25: else . Metropolis-within-Gibbs
26: Perform MwG refinement moves
27: end if
28: end if
29: if p > Nburn then
30: ⌦k ⌦k [x

p
k . Include the converged sample into particle collection

31: end if
32: end for
33: end for
34: Map all posterior state vector samples to intensity �p(sk) with Eq. (2.14)
35: Return: Intensity samples {�p(sk)}

Np

p=1 at each input event sk

2.4.2 Joint proposal of latent variables

The joint MH kernel is firstly introduced here. It provides fast proposals of the ‘new’

latent variables xk in each interval Tk and consists of a discrete uniform draw of the

converged sample x1:k�1 from the ‘past’ particle collection obtained from the previous step

at the end of interval Tk�1, followed by proposals of xk conditioned on the sampled particle

34

x
p
1:k�1.

More specifically, this latter proposal step is split into three sampling sub-steps, applied

in sequence: 1) the total number of thinned events fM in Tk sampled from a Poisson

distribution; 2) the locations of thinned events {s̃m}
fM
m=1 sampled uniformly within Tk;

and 3) the state vectors {g}Tk of all events (both observed and latent) in Tk sampled from

the LD prior conditioned on the events’ locations and the sampled particle x
p
1:k�1. This

gives an overall proposal density as:

qJ(xk) =
Poisson(fM |�

⇤
, Tk)

|Tk|
fM

LD
�
{g}Tk |{g}Tk�1 , {s}Tk

�
(2.20)

Note that since the thinned events and input events jointly contribute to form the prior

homogeneous Poisson process, there is no tractable prior distribution for the number of

thinned events fM . However, it can still be sampled from the Poisson distribution with

the upper-bound intensity �⇤ (or an arbitrary discounted intensity) as the MH acceptance

probability will adjust for the values of fM proposed. Incorporating Eq. (2.16), one can

write down the MH acceptance probability for joint latent variable xk at the pth MCMC

iteration:

⇢J = min

(
1 ,

(�⇤)N
⇤
kLD

�
{g}⇤Tk | {g}

⇤
Tk�1 , {s}

⇤
Tk

� Q
n �

�
(�1)i

⇤
n g

⇤
1,n

qJ(x

p�1
k)

(�⇤)N
p�1
k LD

�
{g}p�1Tk | {g}p�1Tk�1 , {s}

p�1
Tk

�Q
n �

�
(�1)i

p�1
n g

p�1
1,n

qJ(x⇤

k)

)

(2.21)

where the superscript ‘⇤’ indicates the samples proposed in the current iteration and

‘p�1’ indicates the previous iteration of the MCMC. Note that the nature (i.e. latent or

observed) of the events are known a priori, hence the indicators {i}Tk of the events in Tk

are assigned determinstically with values of either 0 or 1.

As is common practice, it is suggested to take Nburn iterations before including any

MCMC output into the new particle set, in order to neglect non-converged MCMC sam-

ples. Algorithm 4 outlines the pseudo-code of the general scheme for performing SM-

CMC inference with the joint proposal. Tuning of the proposal intensity and alternative

proposals incorporating domain knowledge could improve the convergence rate and infer-

ence performance, although this is not investigated here.

2.4.3 Metropolis-within-Gibbs refinement

A second step in the MCMC procedure involves refinement moves using MwG. As the

dimension and number of latent variables in the batch increases, the joint proposal de-

scribed in the previous section can sometimes have extremely low acceptance rates and

consequently result in low particle diversity, which is analogous to the weight degeneracy

problem encoutered in importance sampling particle filters [18], although I stress that the

SMCMC procedure operates entirely without particle weights. Therefore in this section,

35

I propose the use of a MwG refinement step in conjunction with the joint MH kernel, as

indicated in Algorithm 4.

The refinement moves are designed to consist of: a reversible-jump step for adding or

removing thinned events (positions and state vectors); a MwG step for refining the posi-

tions of the thinned events; and finally a MwG step for moving the state vectors {g}Tk
using a Metropolis-adjusted-Langevin-algorithm (MALA) procedure (see [55] and refer-

ences therein). While these three Gibbs sampling steps are likely to make smaller moves

than those of the joint MH sampler, they are also able to achieve more local exploration

of the latent sample space through higher acceptance probabilities. A similar MwG con-

struction was adopted in the non-sequential SGCP model of [47]. These three sub-steps

are detailed below.

Reversible-jump MCMC for fM

The value of fM determines the number of thinned event locations and state vectors that

need to be proposed in the other two MwG samplers. Therefore, the reversible-jump

MCMC [57] algorithm is adopted to navigate the variable dimension of the sample space.

The sampler first makes a Bernoulli decision on whether to insert or delete a latent

event. An insertion proposal qins consists of a uniform proposal of the event location

s̃
0 in Tk, followed by a draw of its corresponding state vector g(s̃0) from the LD prior

conditioned on the state vectors of the two events immediately preceding and following s̃
0,

whilst a deletion proposal qdel simply consists of a uniform random selection and removal

of an existing latent event, say s̃m, out from a total of fM events. Thus, the proposal

densities are as follows

qins(fM+1 fM) =
PB

|Tk|
LD(g(s̃0) | s̃0, {g}Tk) (2.22)

qdel(fM�1 fM) =
1� PB

fM
(2.23)

where PB is the Bernoulli probability of making an insertion move which is set to 0.5

throughout this chapter. Incorporating the joint recursion in (2.15) and (2.16), the ac-

ceptance ratios for both moves are:

⇢ins = min
n
1 ,

(1� PB) |Tk|�
⇤

PB (fM + 1)(1 + exp{g1(s̃0)})

o
(2.24)

⇢del = min
n
1 ,

PB
fM (1 + exp{g1(s̃m)})

(1� PB) |Tk|�
⇤

o
(2.25)

Algorithm 5 shows the pseudo-code for performing one iteration of the reversible-jump

move. It is found advisable to perform several iterations of this MH kernel before pro-

36

Algorithm 5 Single-iteration reversible-jump MCMC for fM
Inputs: Event positions {s}Tk and state vectors {g}Tk in Tk; the number of thinned

events fM
Outputs: Updated number of thinned events fM (and corresponding event positions
and state vectors).

1: Draw u ⇠ Uniform(0, 1)
2: if u < PB then . Insertion
3: Draw s̃

0
⇠ Uniform(Tk)

4: Draw g(s̃0) ⇠ LD(g(s̃0)|s̃0, {g}Tk)
5: Compute ⇢ins from Eq. (2.24)
6: if Uniform(0, 1) < ⇢ins then
7: Accept s̃0 and g(s̃0) as a new thinned event

8: fM = fM + 1
9: end if
10: else . Deletion
11: Draw s̃m discretely uniformly from {m = 1, 2, ..., fM}

12: Compute ⇢del from Eq. (2.25)
13: if Uniform(0, 1) < ⇢del then
14: Remove s̃m and g(s̃m) from the thinned events

15: fM = fM � 1
16: end if
17: end if
18: Return: fM

ceeding to the other two samplers.

Metropolis-Hastings for {s̃m}
fM
m=1

Conditioned on the total number of thinned events M̃ , the posterior thinned event loca-

tions are sampled from a standard MH kernel. For each thinned event s̃m, a new location

s̃
0
m is proposed from a pre-assigned conditional transition kernel qloc(s̃0m s̃m) followed

by a draw of the new state vector g(s̃0m) at time s̃
0
m from the conditional Langevin prior:

LD

⇣
g(s̃0m) | s̃

0
m, {g}Tk\g(s̃m)

⌘
(2.26)

where {g}Tk\g(s̃m) stands for all state vectors in the batch Tk except for the one at s̃m.

The acceptance probability can then be described as:

⇢loc = min
n
1 ,

qloc(s̃m s̃
0
m)(1 + exp{g1(s̃m)})

qloc(s̃0m s̃m)(1 + exp{g1(s̃0m)})

o
(2.27)

In the case where qloc is symmetric, the acceptance probability is further reduced to the

ratio of two sigmoidal thinning probabilities.

37

Metropolis-adjusted-Langevin-algorithm (MALA) for state vectors

Conditioned on the number and locations of the thinned events, the posterior state vectors

of all events within the batch can now be sampled. The exploration of the state vectors

takes place in a multi-dimensional continuous space and hence requires a well-tuned sam-

pling method to ensure fast convergence. Based on the conditional propagation equation

in Eq. (2.16), one can write the Log-posterior of the state vector subject to an additive

constant (normalising constant):

L

⇣
{g}Tk | xk�1, {s}Tk , {i}Tk ,�

⇤
, Tk

⌘

=ln
n
LD({g}Tk |{g}Tk�1 , {s}Tk)

o
�

NkX

n=1

ln
⇥
1 + (�1)in exp{g1,n}

⇤
+ Const.

(2.28)

As Eq. (2.8) shows the conditional progression of the state vectors, one can concatenate

{g}Tk into a 2Nk-dimensional multivariate Gaussian vector Gk:

p({g}Tk |{g}Tk�1 , {s}Tk) = N (Gk | µ̂, ⌃̂) (2.29)

which essentially allows further simplification over the Log-posterior:

L

⇣
{g}Tk | xk�1, {s}Tk , {i}Tk ,�

⇤
, Tk

⌘

=�
1

2
(Gk � µ̂)T ⌃̂�1(Gk � µ̂)�

NkX

n=1

ln
⇥
1 + exp{(�1)ing1,n}

⇤
+ Const.

(2.30)

Taking advantage of the Log-gradient information, the MALA is used to accelerate the

convergence by proposing from a gradient-adjusted transition kernel:

q(G⇤
k|G

p�1
k) = N

⇣
G⇤

k | G
p�1
k +

✏
2

2
⌃rlog⇡̃(Gp�1

k), ✏2⌃c

⌘
(2.31)

where rlog⇡̃(.) is the gradient of Eq. (2.30), ✏ is the integration step size and ⌃c is

a pre-defined (constant) covariance matrix. MALA is then completed with a standard

accept/reject step with acceptance probability:

⇢MALA = min

(
1,

⇡̃(G⇤
k)q(G

p�1
k |G⇤

k)

⇡̃(Gp�1
k)q(G⇤

k|G
p�1
k)

)
(2.32)

Additional, the gradient calculation and the MALA di↵usion is carried out over the

‘whitened’ space of the variable Gk. This is achieved by applying Cholesky decompo-

sition on the precision matrix ⌃̂�1 = LLT and rewrite the Log-posterior of Eq. (2.30)

38

Algorithm 6 Rejection Sampling

Inputs: target density f(x), proposal density q(x), bound B

Outputs: X as a sample from f(x)

1: flag = False
2: while not flag do
3: Draw X ⇠ q(x)
4: Compute ⇢(X) = f(X)

B⇥q(X)

5: Draw u ⇠ Uniform(0, 1)
6: if u < ⇢(X) then
7: Accept sample X

8: flag = True
9: end if
10: end while

Return: X

as:

L

⇣
{g}Tk | xk�1, {s}Tk , {i}Tk ,�

⇤
, Tk

⌘

=�
1

2
(Gk � µ̂)T LLT (Gk � µ̂)�

NkX

n=1

ln
⇥
1 + exp{(�1)ing1,n}

⇤
+ Const.

=�
1

2
(Gw

k � µ̂w)T (Gw
k � µ̂w)�

NkX

n=1

ln
h
1 + exp

�
(�1)in [L�TGw

k]2n�1
 i

+ Const.

(2.33)

where Gw
k = LTGk, µ̂w = LT µ̂ and the subscript 2n�1 represents the (2n�1)th element

of the 2Nk-dimensional vector. This allows us to carry out the same MH routine of MALA

on the whitened variable Gw
k instead of Gk, which gives a better-conditioned covariance

matrix (I) and fastens the convergence.

Another possible improvement that can be done on MALA is considering a Langevin

di↵usion on a Riemannian manifold [58] so that the pre-defined matrix ⌃ and step size

✏ take account of the local curvature (e.g. Hessian) of the target density to speed up

the convergence of the Markov chain. Such approach generally demands more intensive

computations, more details can be found in [55].

2.4.4 Refinement with rejection sampling (RS)

Recall the close relation between thinning and RS as mentioned in Section 2.1.2, it is in

fact possible to derive the thinning (or retaining) probability for the NHPP from the RS

perspective (see Appendix 2.C). Therefore, the possibility of using RS as an alternative

refinement approach is explored here.

RS is a technique used to generate samples from distributions that cannot be sampled

directly. Denoting the target density as f(x) and the proposal density where samples can

39

be readily drawn as q(x), the rejection sampling compute the acceptance probability ⇢(x)

as:

⇢(x) =
f(x)

B ⇥ q(x)
(2.34)

where 1 B < 1 is a finite bound over the probability ratio f(x)/q(x), i.e. f(x)

Bq(x), 8x. Therefore RS is usually more restrictive to use than other MCMC methods

as it requires the calculation of a tractable bound B. However, RS does not require any

burn-in for convergence as the generated samples are guaranteed to come from the target

distribution. Algorithm 6 shows the standard RS procedure to generate one sample from

the target distribution, the general structure of which is used repeatedly in the refinement

step below.

To apply RS in the refinement step, I again use three separate rejection samplers in a

Gibbs manner as in MwG: (i) sampling the number thinned events fM ; (ii) sampling the

location of the thinned events {s̃m}
fM
m=1; and (iii) sampling the state vectors of all events

in the batch {g}Tk
.

(i): Denoting the number of observed events in the batch Tk as K̂, these together

with the fM thinned events should constitute a HPP with counting measure N(Tk) ⇠

Poisson(�⇤|Tk|). The target density can thus be written as:

f(fM) = Poisson
⇣
(fM+K̂) | �⇤|Tk|

⌘
(2.35)

With a simple proposal of fM from a discretely uniform distribution with G 2 N+ bins

i.e. {0, 1, 2..., G�1}, the bound B(fM) and corresponding acceptance ratio ⇢(fM) are:

B(fM) =
(�⇤|Tk|)b�

⇤|Tk|c exp{��⇤|Tk|}G

(b�⇤|Tk|c) !
(2.36)

⇢(fM) =
b�

⇤
|Tk|c !⇥ (�⇤|Tk|)

fM+K̂�b�⇤|Tk|c

(fM + K̂) !
(2.37)

Note that unlike the corresponding MH sampler in MwG, the described rejection sampler

does not propose locations and state vectors of the fM thinned events.

(ii): As it is impossible to ‘fill’ thinned events into a NHPP to make it homogeneous

without knowledge of intensity function (or state vectors), the location s̃m and the state

vector g(s̃m) are jointly proposed for fM times conditioned on the existing state vectors

in the batch (for input points and already proposed latent points).

40

To this end, one can write the target density and the proposal density respectively as:

f
�
s̃m, g(s̃m)

�
=

1

|T |
⇥ LD

n
g(s̃m)|s̃m, {g}Tk

o

⇥ �(�g1(s̃m))

(2.38)

q
�
s̃m, g(s̃m)

�
=

1

|T |
⇥ LD

n
g(s̃m)|s̃m, {g}Tk

o
(2.39)

As the additional term in the target density is always less than 1, the proposal it-

self is already a finite bound of the target with B = 1, giving the acceptance ratio

⇢
�
s̃m,g(s̃m)

�
= �(�g1(s̃m))

(iii): With the locations of both input and latent events in the batch fixed, the proposal

of state vectors {g}Tk can simply be the conditional prior of the Langevin dynamics. In

this case, a simplified acceptance ratio is obtained as the product of Bernoulli probability

of each event, with the bound B equal to unity. Hence, one joint proposal of {g}Tk will

give an acceptance probability:

⇢({g}Tk) =
Y

n:sn2Tk

�{(�1)ing1,n} (2.40)

It is worth noting that the product of multiple sigmoid functions could result in an

extremely low acceptance ratio which stagnates the algorithm and increases computation.

To circumvent this issue, the rejection sampler is applied individually to each state vector

conditional on all others e.g. propose from the conditional prior as in Eq. (2.26). Such

rejection sampler provides a better acceptance ratio as a single sigmoid function at the

cost of reduced mixing among state vectors.

Furthermore, this RS process can be regarded as the reverse of the thinning operation:

instead of deciding whether the point should be thinned or retained given intensity, one

now tries to find the appropriate intensity (state vector) value given the fact that a point

is either latent (in = 1) or observed (in = 0).

2.4.5 Sequential batch scheme

Regarding the interval Tk, the choice of how to delineate the entire domain of interest is

largely arbitrary. However, the most intuitive choice that fixes these intervals to corre-

spond to the observed event times, may not yield best algorithmic performance. I propose

the use of regular sized batches of duration �T here. With the appropriate choice of �T ,

the scheme recovers the temporal correlation among points within the same batch and

thus tends to improve the sequential inference accuracy when compared to the point-wise

propagation scheme.

Moreover, the batch scheme provides the possibility to replace the global maximum

41

(a) S-LD (SMCMC-
MwG) on �1(s)

(b) S-LD (SMCMC-RS)
on �1(s)

(c) SGCP on �1(s)
(d) S-LD (VRPF) on
�1(s)

(e) S-LD (SMCMC-
MwG) on �2(s)

(f) S-LD (SMCMC-RS)
on �2(s)

(g) SGCP on �2(s)
(h) S-LD (VRPF) on
�2(s)

(i) S-LD (SMCMC-
MwG) on �3(s)

(j) S-LD (SMCMC-RS)
on �3(s)

(k) SGCP on �3(s)
(l) S-LD (VRPF) on
�3(s)

Figure 2.4: The intensity inference results estimated using di↵erent methods on three synthetic
datasets. True intensity curves and KDE results are displayed in all panels. Three Bayesian
approaches are shown individually with corresponding means in solid lines and ±1� (68%)
confidence intervals as shaded regions. The occurrences of input events are shown as scatter
lines on the x-axes

intensity �⇤ with maxima �⇤k that vary with batch number k and these can be updated

individually in a Gibbs manner with a Gamma prior specified for each �
⇤
k. The Gibbs

conditional parameters for the posterior are: ↵post = ↵prior+Nk, �post = �prior+ |Tk|. This

local maximum intensity considerably reduces the number of latent variables proposed for

inference and thus enables computational e�ciency.

2.5 Results and discussions

In this section, I present empirical performance analysis of the proposed sequential-

Langevin (S-LD) model. Section 2.5.1 assesses the relative performance of the S-LD,

the SGCP [47] and a baseline kernel density estimation (KDE) method [32] with syn-

thetic datasets where the ground truth intensity �(s) is available. In the same section,

I also demonstrate the time-degeneracy behaviour that exists in applying more standard

sequential Monte Carlo algorithms to the proposed model. The S-LD model is then ap-

plied to a financial dataset with high frequency input events in Section 2.5.2. Finally, the

convergence behaviour of the SMCMC algorithm is examined under di↵erent refinement

42

Table 2.1: Hyperparameters settings for each inference approach on synthetic datasets

S-LD (SMCMC) SGCP S-LD (VRPF)

�1(s)
✓ = �0.7, � = 0.5, K = 5

Pj = 0.5, Nburn = 200, Np = 200

Niter = 400,

Nburn = 200, lk = 2.0

✓ = �0.7, � = 0.5,

K = 5, Np = 800

�2(s)
✓ = �0.5, � = 0.8, K = 20

Pj = 0.7, Nburn = 200, Np = 200

Niter = 400,

Nburn = 200, lk = 1.0

✓ = �0.5, � = 0.8,

K = 20, Np = 800

�3(s)
✓ = �0.2, � = 0.2, K = 10

Pj = 0.5, Nburn = 200, Np = 200

Niter = 400,

Nburn = 200, lk = 15.0

✓ = �0.2, � = 0.2,

K = 10, Np = 1500

Table 2.2: Numerical results for models. Bold is the best.

S-LD (SMCMC-MwG) S-LD (SMCMC-RS) KDE SGCP S-LD (VRPF)

�1(s)
MSE 0.0257 0.0342 0.129 0.0704 0.187
L(p) 1.825 -6.379 – -9.440 -5498

Time (s) 15.86 36.46 0.01 60.23 14.89

�2(s)
MSE 0.6531 0.6018 0.8599 1.5257 1.7004
L(p) -248.1 -233.85 – -326.6 -9.3⇥1034

Time (s) 60.05 490.4 0.05 1326.28 64.25

�3(s)
MSE 0.0986 0.1157 0.2166 0.0637 0.4286
L(p) -69.20 -74.54 – -28.34 -5.93⇥1029

Time (s) 100.3 125.3 0.05 522.2 98.38

schemes (MwG or RS); and the e↵ect of hyperparameters on the S-LD model performance

is evaluated.

2.5.1 Synthetic Data

Three sets of one-dimensional data are generated based on Algorithm 1 with the fol-

lowing intensity functions:

1. A sum of an exponential and a Gaussian bump:

�1(s) = 2 exp{�s/15}+exp{�((s�25)/10)2} on the interval [0, 50] with 55 events.

2. A doubly-stochastic process with �2(s) governed by Langevin dynamics with pa-

rameters ✓=�0.5, �=0.5 and �⇤ = 5 on interval [0, 100] with 156 events.

3. A piece-wise linear intensity function �3(s) on interval [0, 100] with 230 events

Synthetic datasets similar to 1 and 3 were also used in the original SGCP paper [47];

while 2 is the dataset generated from the matching prior model. Furthermore, the three

synthetic intensity functions also test the models’ ability in generalising to underlying

intensities not drawn from the assumed prior structure of the model.

In these experiments, the intensity functions of the S-LD model are inferred using both

the proposed SMCMC algorithm and a batch-based variable-rate particle filter (VRPF).

Additionally, the SMCMC algorithm is tested separately using both MwG refinement

and RS refinement schemes. The number of particles used in VRPF is tuned to roughly

43

match the computational cost of SMCMC algorithm. The results are compared with

those obtained by the SGCP model using a square-exponential covariance function (with

lengthscale lk) and by the KDE approach with Gaussian smoothing kernel [59]. Table

2.1 lists the hyperparameter values used by each approach, except for KDE, for all three

synthetic cases. The hyperparameters are heuristically tuned to provide representative

results for comparison purpose. Figure 2.4 shows the graphical results of the four ap-

proaches and Table 2.2 quantitatively reports the performance averaged across 10 trials

in terms of the computational time, the mean squared error (MSE) to the true intensity

function, and a probabilistic metric L(p). The log-probability L(p) is computed as follows:

L(p) =
KX

k=1

log
n
N
�
�(sk) | µ̂k, �̂

2
k

�o
(2.41)

where �(sk) is the true intensity value at sk; µ̂k and �̂2
k are mean and variance empirically

approximated by the particles obtained from the inference algorithm. In addition to the

mean error, L(p) also quantifies the uncertainty of di↵erent Bayesian approaches.

Inferred with SMCMC, the proposed S-LD model is able to outperform the other two

models in both MSE and L(p) for the first two synthetic datasets while giving satisfactory

accuracy for the third dataset. VRPF on the other hand fails to provide good inference for

the S-LD model due to particle weight degeneracy as discussed in Section 2.4, which can

be seen from the noticeably low L(p) values. Computationally, the KDE always gives the

fastest run-time because of its algorithmic simplicity, but gives no confidence intervals as a

frequentist approach. The SGCP model is significantly more computationally expensive

and scales poorly with �
⇤, which can be observed from the results for datasets 2 and

3. Comparing between MwG and RS refinement, both schemes give similar estimation

accuracy whilst MwG refinement requires lower computational cost than RS. It is typically

more di�cult to maintain a salable computational cost using RS algorithms due to its

inherent sampling mechanism. The MwG refinement on S-LD model shows roughly linear

computational cost with the number of input events.

Visually from Figure 2.4, despite the prior mismatches for �1(s) and �3(s) compared

with the model used in inference, the S-LD model inferred with both refinements of the

SMCMC algorithm still captures the overall shape of the true intensity function and gives

a reasonable estimate of uncertainty. The SGCP model on the other hand, was found to

be sensitive to the choice of hyperparameters e.g. di↵erent forms of covariance functions

and values of lengthscale. The KDE method tends to over-smooth the intensity and

ignores short-term variations. From the figure, one can again notice the degeneracy in

particles for the S-LD(VRPF) as it provides overly narrow confidence intervals.

I also apply the S-LD model (inferred by SMCMC-MwG) to additional 4 realisations

of the doubly-stochastic Poisson process with the same parameters used to generate �2(s).

44

(a) 237 input events (b) 274 input events

(c) 353 input events (d) 180 input events

Figure 2.5: Additional tests of the S-LD model on doubly-stochastic Poisson processes. In
comparison to KDE, the S-LD model is able to achieve an average MSE of 0.6806 and an
average computational time of 0.863s per input point; while KDE only provides an average
MSE of 1.032 with an average computational time of 1.576⇥ 10�4s per input point.

Figure 2.5 shows the results obtained using the same set of inference hyperparameters

for �2(s) as listed in Table 2.1. The S-LD model is compared to KDE only as the SGCP

model was found to be impractically slow. In terms of both accuracy and computational

time, the results are consistent with those obtained from earlier three experiments on

synthetic datasets.

For the SMCMC algorithm, one can also obtain the empirical online smoothing distri-

bution p̂(x1:k | T1:k,�
⇤), which keeps track of the entire trajectory (historic lineage) of each

particle [60]. Although such results usually give more continuous estimated intensities

than the filtering results shown in Figure 2.4, they are known to exhibit some degen-

eracy in time and give poorer uncertainty estimates for early data points as k increases.

Figure 2.6 depicts five plots of the intensity trajectories for all particles at di↵erent times

k of the SMCMC algorithm applied on the S-LD model. It is clear that the trajectories

prior to the filtering batch are slightly degenerate and hence one can guess that posterior

means and uncertainty estimates would not be reliable as the batch inference progresses.

2.5.2 Application to Order Book Data

Limit order books [61] in modern financial markets, record and display order operations

performed by market participants all over the world. With momentum strategy as a

common technique used by the traders in high-frequency finance [62], being able to infer

45

Time (s)

In
te
n
si
ty

Figure 2.6: Plots show smoothing trajectories of 200 particles in coloured lines. Dashed red
lines represent the mean intensity of the trajectories while the solid black lines indicate the true
intensity. The variance of the trajectories reduces as the SMCMC algorithm progresses.

the intensities of limit order arrivals, cancellations and executions provides crucial insights

into the future market structure and price trends. This demands the development of a

computational-e�cient online intensity inference method for market analysis based on

time-of arrival trading data.

I apply the S-LD model on a set of LOB data collected from the EUR-USD FOREX

market on the 2nd of September 2015. The ticks data used in the experiments is a record

of every single limit order arrival at 51 di↵erent price levels (‘ticks’) around the mid-price

for a duration of 5 minutes (19:35–19:40) from one of the busiest hours of the day.

51 independent S-LD models are constructed for the 51 price levels of interest. A

volatile Langevin prior with � = 1.0, ✓ = �0.7 and �
⇤ = 5.0 is assigned to all models

to accommodate possible drastic changes of the intensity curves in the highly stochastic

market. The SMCMC algorithm with MwG refinement is used for inference with PJ = 0.7,

K = 20, Np = 400 and Nburn = 400 to ensure convergence.

Figure 2.7 shows the inference results from the above experiment presented as a 3D

surface plot and a heatmap. The surface plot appears to exhibit reasonable behaviours

with the mid-price lying in a ‘valley’ formed between the high-intensity ridges and peaks at

prices above and below the mid price: this price region close to the mid-price is where the

market orders are typically placed and matched (executed) immediately, presenting little

interest for limit-order traders. In contrast, the limit order arrivals have high intensity

a few ticksizes away from the mid-price as these levels are most likely to become the

best prices in future price fluctuations. Moreover from the heatmap, one can also observe

that the high intensity of bid or ask arrivals exerts pressure on the mid-price to go in the

46

opposite direction, as would be expected from the market supply-demand relationship.

Figure 2.8 shows in more details the intensity of limit order arrivals at a fixed price

of $1.12960 with the red solid line being bid orders and blue dashed line being ask orders.

It is easy to observe a similar distribution of intensities as a function of the distance to

the mid-price as described above. Within the 5-minutes period, the mid-price crosses the

selected price four times with di↵erent responses in the intensity. The first two transitions

are almost instantaneous but the start of a small bump in intensity can still be observed

prior to the change of bid-ask sides. The arrival of the third transition is progressive and

hence the intensity slowly drops as practitioners’ interests gradually shift away from the

selected price. The final transition is abrupt causing the intensity to spike continuously

even after the side changes as the market is very active after experiencing the jump.

Based on the results obtained from this example, it is reasonable to conclude that

the proposed S-LD model may be useful for providing predictive inference about market

behaviour, although I leave a full investigation of this for future work. The SGCP model

was not tested on this dataset due to its impractical computational cost.

2.5.3 Convergence Evaluation

When it comes to an iterative sampling method such as SMCMC, it is important to

ensure its convergence while maintaining reasonable computational e�ciency. In this

section, the convergence behaviours of di↵erent SMCMC refinement setups are evaluated

by computing their corresponding integrated autocorrelation times (IACTs).

The IACT for a sequence f(t) is defined as:

⌧f =
1X

k=�1

⇢f (k) = 1 + 2
1X

k=1

⇢f (k) (2.42)

where ⇢f (k) is the normalised autocorrelation function (ACF):

⇢f (k) =
E
⇥�
f(t)� µf

��
f(t+ k)� µf

�⇤

�
2
f

(2.43)

with µf and �2
f being the mean and variance of the sequence. With a sequence of values

(e.g. intensities) output from the SMCMC algorithm, ⌧f quantifies the factor by which

MCMC chain’s Monte Carlo error is degraded comparing to standard i.i.d. Monte Carlo

from the target posterior distribution. Therefore, the SMCMC refinement setup with

better mixing and faster convergence would give a smaller value of ⌧f . The IACT is

approximated with a finite summation using the method suggested in [63].

Running the SMCMC algorithm for 6000 iterations (i.e. particles + burn-in) on syn-

thetic dataset �1(s), Table 2.3 reports the IACTs of root-mean-square errors (RMSE)

and intensities under di↵erent configurations of the refinement move. Both RS and MCMC

47

(1) 3D surface plot of the limit order arrival intensities

(2) 2D intensity heatmap

Figure 2.7: Results obtained from parallel runs of S-LD model on limit order arrival data
at 51 di↵erent price levels. The top figure shows the surface plot of the inferred (filtering)
intensity with time and price on x, y axes and intensity on z axis; the bottom figure shows the
corresponding heatmap with market mid-price plotted in black solid line as reference

refinement show relatively poor convergence at low PJ due to the lack of resampling of

the ‘ancestor’ particle. At high PJ , MCMC su↵ers from inadequate mixing of Markov

chains (i.e. MwG); while RS provides lower IACTs as it is guaranteed to produce rep-

resentative posterior samples and it only requires convergence in the conditional Gibbs

step. An intermediate value of PJ yields the best result for MCMC and outperforms all

other configurations.

In summary, the refinement applied in the SMCMC algorithm provide improved mix-

ing of the Markov chains without dramatic increase in computation. Meanwhile, it is also

necessary to maintain enough resampling of the ‘ancestor’ particles from the previous

48

Figure 2.8: Top panel shows the S-LD model intensity inference result on limit order (both
bid and ask) arrival data at price $1.12960. Bottom panel shows the market mid-price for the
same duration.

Table 2.3: IACT values computed from RMSE sequence and intensity sequences obtained from
6000 iterations of SMCMC run on �1(s). Intensity IACT values are averaged across all input
points/events.

Refinement method
Joint move ratio

PJ = 0.1 PJ = 0.5 PJ = 0.9

MCMC
RMSE IACT 37.23 7.46 18.37

Intensity avg. IACT 43.91 15.88 29.88

RS
RMSE IACT 49.17 18.92 12.97

Intensity avg. IACT 50.08 15.24 15.08

batch. The overall low values of IACT computed in this experiment suggest that the

proposed SMCMC algorithm requires only a moderate amount of particles and burn-in

for inference.

2.5.4 Hyperparameter Settings

Tuning of hyperparameters is crucial in Bayesian inference and learning. The hyperpa-

rameters in the SSM determine loosely the prior dynamics of the state vector di↵usion,

and hence case-specific domain knowledge should be incorporated to improve the fit of

the prior model to the data. Alternatively, SSM hyperparameters can be learned directly

from the data with an extension of a variational structure [15] or particle-MCMC meth-

ods [64]. In this section however, I present a focused analysis on the algorithm-related

hyperparameters.

49

In Algorithm 4, the SMCMC inference routine is controlled by two hyperparameters:

joint proposal ratio PJ and batch size Tk. Both values a↵ect the inference accuracy and

computational speed. The S-LD model is run on the same set of NHPP realisations

from �1(s) with the same SSM settings described in Table 2.1. Algorithm-wise, MCMC

refinement is used with Np = 200 and Nburn = 800, which constitute to a total of 1000

iterations to ensure convergence. Each result presented here is averaged across 10 random

runs of the SMCMC algorithm.

Figure 2.9 shows two plots of computational cost and MSEs under a range of values

of PJ and K. The top panel shows that the inference time reduces linearly with the

increase of PJ as both MwG and RS refinements require more computation especially

in the MALA step and rejection sampling steps. MSE shows weaker correlation with

PJ but deteriorates drastically without refinement (i.e. PJ = 1), which emphasises the

importance of refinement steps in the SMCMC algorithm. At low values of PJ , the

MSEs for both refinement schemes rise slightly due to the lack of resampling of ‘ancestor’

particle. Despite the small di↵erence, RS refinement gives lower MSEs at high values of

PJ which supports the findings in Section 2.5.3.

With MALA being the computational bottleneck of MwG refinement, the sequential

batch scheme changes the complexity from O(N3) to roughly O(N
3

K3)⇥O(K). This gives

obvious drops in computational cost especially upon using the batch scheme (i.e. K

changes from 1 to 2) as shown in the bottom plot of Figure 2.9. RS refinement’s cost is

relatively less sensitive to this change as RS does not involve the O(N3) matrix inversion.

However, the low acceptance rate of the rejection sampler still renders it slower than

MwG. The cost later increases slightly withK, as the O(K) part becomes more dominant.

For MwG refinement, MSE generally improves with an increasing K value because the

sequential batch scheme reduces the dimension of latent variables in each batch and hence

improves MCMC samplers’ performance. However, the rising trend in MSE that is just

observable as K increases becomes more acute at larger K values (not shown on the plot),

as the batches tend to de-correlate local location information of the input points. As for

RS refinement, the problem of high-dimensional latent space is primarily reflected in the

high computational cost (i.e. low acceptance probability in rejection samplers) and hence

the small value of K has little influence on its MSE. The de-correlation of input points

will also have a negative impact on the MSE for RS refinement at larger K values.

Based on above the analyses, it is fair to conclude that despite higher computational

cost, RS refinement is able to provide more robust inference results across a range of

algorithmic tuning hyperparameters. A drawback of the current RS refinement scheme is

its relative slowness compared to MwG. This could potentially be overcome by using more

sophisticated proposals such as adaptive rejection sampling (ARS) [65, 66] and its variants.

In practice, one may choose to use a mixture of both RS and MwG refinement moves to

achieve the best trade-o↵ between computational time per iteration and convergence over

50

(1) Varying PJ with fixed K = 5

(2) Varying K with fixed PJ = 0.5

Figure 2.9: The S-LD model performances under di↵erent settings of hyperparameters on
synthetic dataset �1(s)

iterations.

2.6 Conclusions and future work

In this chapter, a novel approach of modelling the intensity function of a NHPP with a

continuous-time SSM has been presented. In addition to using a generative prior with

latent variables to mitigate the inherent intractability of NHPP, I utilised the Markvoian

property of the SSM and performed sequential Bayesian inference for the intensity function

with a novel design of SMCMC algorithm. The proposed algorithm not only deals with

the degeneracy problem caused by high-dimensional latent variables, but is also favourable

in practical applications that require online intensity estimations such as LOB prediction.

In addition to the basic SMCMC algorithm, a MwG refinement scheme and a sequen-

51

Time (s)

Figure 2.10: Realisations of ten NHPPs (in di↵erent colours) with correlated intensities shown
in the top panel. The intensity functions are governed by a virtual leader SSM dynamics. Events
are shown as scatter lines.

tial batch scheme have been further proposed to improve the inference performance by

increasing Markov chain mixing. In comparison with the KDE and SGCP approaches on

synthetic datasets, the proposed S-LD model has demonstrated better inference accuracy

and reasonable computational cost while maintaining a fully Bayesian framework. Fur-

thermore, the rejection sampling (RS) algorithm has also been studied in this chapter as

an alternative to the MH samplers for the refinement step. Despite its “uncontrollable”

computational cost, the RS algorithm is still able to provide competitive performance in

terms of accuracy to the standard MwG refinement especially for low values of PJ and/or

high dimension of the latent variables. This gives the opportunity of trade-o↵ between

computational time and algorithm convergence.

The results obtained using FOREX data has demonstrated that the proposed mod-

52

elling approach is capable of handling real-world challenging intensity inference tasks

while giving plausible interpretations of the data. In particular, the inferred intensi-

ties (e.g. 3D surface) around mid-price match the typical behaviours of major liquidity

providers/market makers who profit from the bid-ask spread. The inherent sequential

framework constructed for the S-LD model allows it to be readily integrated with other

online price models, such as those presented later in Chapter 3 and 4, to provide more

predictive power and better model interpretability.

For future work, one possible extension upon the current S-LD model is to add the learn-

ing of SSM hyperparameters from the data, including the possibility that the parameters

are themselves dynamic, i.e. time-varying. In the proposed framework this would intro-

duce an extra methodological challenge since dynamical (online) parameter learning can

be even more demanding than static cases.

Finally, a further promising possibility is to encapsulate multiple correlated point pro-

cesses within a single SSM (e.g. virtual leader, group dynamics [67]) and perform coupled

sequential inference simultaneously across multiple processes (see also [48]), as would be

highly beneficial in applications such as the financial order book examples considered ear-

lier. An interesting simulation of such correlated NHPPs is shown in Figure 2.10. This

and the parameter learning task are topics of my current research.

53

Appendix

2.A Proof of Theroem 1

Proof. In order to prove the resultant process after thinning is a NHPP with intensity

�
⇤
p(s), it is necessary to ensure its counting measure, denoted as Nd(T), satisfies the three

conditions specified in Definition 1. It is clear that via independent thinning, the first

two conditions are easily satisfied. The focus is thus on the proof of Poissonly distributed

counting measure i.e. Nd(T) ⇠ Poisson
⇣ R

T �
⇤
p(s)

⌘
. First, write the probability of

deleting any one point from the original HPP:

P (delete any one point)

=

Z

T
P (deletion | point at s)⇥ P (point at s)ds

=

Z

T

1� p(s)

|T |
ds

=1�

R
T p(s)ds

|T |

(2.44)

Denoting this probability as p̂, one can therefore write the following conditional probability

for non-negative values of n and k:

P{Nd(T) = n |N
⇤(T) = k}

=

8
<

:

�
k
n

�
(1� p̂)n p̂(k�n) if k � n � 0

0 if k < n

(2.45)

To obtain the probability for counting measure Nd(T), simply multiply the above condi-

tional probability by the Poisson probability of the counting measureN⇤(T) and marginalise

54

out the variable k for k � n:

P{Nd(T) = n}

=
1X

k=n

✓
k

n

◆� R
T p(s)ds

�n

|T |n
⇥

�
|T |�

R
T p(s)ds

�k�n

|T |k�n
⇥

e
��⇤|T |(�⇤|T |)k

k!

=
e
��⇤|T |� R

T �
⇤
p(s)ds

�n

n!

1X

k=n

�
�
⇤
|T |�

R
T �

⇤
p(s)ds

�k�n

(k � n)!

=
e
��⇤|T |� R

T �
⇤
p(s)ds

�n

n!
⇥ exp

n
�
⇤
|T |�

Z

T
�
⇤
p(s)ds

o

=
exp{�⇤d}(⇤d)n

n!

(2.46)

where ⇤d =
R
T �

⇤
p(s)ds. From Eq. (2.46), it can be seen that the counting measure

Nd(T) of the resultant process follows exactly the Poisson distribution with parameter

⇤d and hence the resultant process is a NHPP with intensity function �⇤p(s).

2.B SDE solution

For a stochastic process Xt governed by the following SDE:

dXt = AXt dt+ b dWt (2.47)

Re-write the noise process as dWt = ⇠(t) dt:

dXt = AXt dt+ b ⇠(t) dt

dXt

dt
� AXt = b ⇠(t)

e�AtdXt

dt
� e�At

AXt = e�At
b ⇠(t)

d(e�At
Xt)

dt
= e�At

b ⇠(t)

(2.48)

55

Integrate both sides of the above equation w.r.t. t, from an arbitrary time S to time T

with S < T :

Z T

S

d(e�At
Xt)

dt
dt =

Z T

S

e�At
b ⇠(t)dt

(e�AT
XT)� (e�AS

XS) =

Z T

S

e�At
b dWt

XT = eAT e�AS
XS + eAT

Z T

S

e�At
b dWt

XT = eA(T�S)
XS + eA(T�S)

Z T

S

eASe�At
b dWt

XT = eA(T�S)
h
XS +

Z T

S

e�A(t�S)
b dWt

i

(2.49)

Replace ⌧ = t� S !
d⌧
dt = 1, t 2 [S, T] 7! ⌧ 2 [0, T�S], and obtain:

XT = eA(T�S)
h
XS +

Z T�S

0

e�A⌧
b dW⌧+S

i

= eA(T�S)
h
XS +

Z T�S

0

e�A⌧
b dW⌧

i (2.50)

as the required solution to SDE.

2.C Thinning from rejection sampling

Consider the case where a N -event HPP {sn}
N
n=1 is generated according to a constant

upper-bound intensity �⇤; and �(s) �
⇤
, 8s 2 T is the varying intensity of the desired

NHPP. With aim to sample K (K N) events {sk}Kk=1, one can write the NHPP target

density as:

f({sk}
K
k=1) = exp

�
�

Z

T
�(s) ds

 KY

k=1

�(sk) (2.51)

Since it is impossible to sample directly from the target density, one can instead sample

a random combination of K events out from the total N events, with proposal:

q({sk}
K
k=1) =

1�
N
K

� (2.52)

To find the tractable bound B for RS, notice that f({sk}Kk=1) exp
�
�
R
T �(s) ds

(�⇤)K

and thus the value of B can be chosen such that:

B ⇥ q({sk}
K
k=1) = exp

�
�

Z

T
�(s) ds

(�⇤)K (2.53)

56

and gives the acceptance probability:

⇢({sk}
K
k=1) =

KY

k=1

�(sk)

�⇤
(2.54)

which is essentially the probability of the sampled combination {sk}
K
k=1 being retained in

the K independent thinning operations.

57

Chapter 3

Extended state-space model for LOB

market price inference

While the intensity inference model introduced in the previous chapter has demonstrated

notable potential for enabling reliable inference routines for LOB, it mainly serves as a

generic tool for online intensity estimation/prediction tasks of non-homogeneous Poisson

processes. In this chapter, I present a novel state-space modeling approach which facili-

tates incorporation of additional information from LOB markets such as supply-demand

imbalance and trends at varying time scales, with suitable SMC inference algorithms for

price estimation/prediction in LOB markets. The performance is evaluated on real LOB

datasets. In Section 3.1, I briefly explain the context of LOB inference with a concise

review of existing literature. A study of the e↵ect of LOB imbalance on the price move-

ments and trends is then presented, which gives the intuition behind one of the features of

the proposed models. Section 3.2 and 3.3 describe the novel state-space models and the

corresponding sequential Monte Carlo (SMC) strategy, specifically the Rao-Blackwellised

particle filter (RBPF). Results are presented and discussed in Section 3.4.

3.1 Background and LOB imbalance investigation

The continuous evolution of a LOB is the joint result of heterogeneous order operations

submitted by a large number of traders and institutions all over the world. The inherent

complexity of the LOB allows various approaches to the task of order book inference

under di↵erent disciplines, which has resulted in an extensive body of literature.

The authors of [68] present studies on the steady-state distributions and limiting sta-

tistical properties in a trading system known as the continuous double auction (CDA)

which is considered as the early prototype of the modern LOB market. In [69], the au-

thors try to tackle a similar task via a sequential model for the distributions of limit order

volumes around mid-price and by tracking the time-varying parameters of the proposed

58

Gamma/inverse-Gamma distributions with a particle filter. In particular, the simulation

and reconstruction of LOBs are both important research topics. Poisson processes are

employed in [70] and [71] to simulate the LOB structure evolution and price dynamics.

Whereas, a variation of the hidden Markov model (HMM) is proposed in [72] to infer the

trading information lost during asynchronous LOB updates. The paper of [73] takes a

di↵erent perspective and derives the optimal order submission strategies for agents trad-

ing in the high-frequency LOB market. While the classic price inference models such as

GARCH (reviewed in [74]) have been widely used in the financial industry for investment

decisions, black-box approaches from the opposite extreme such as deep learning models

have also been considered, e.g. in [75], with the use of long short-term memory (LSTM)

units. However, the lack of revealing uncertainty information and little transparency in

relation to market fundamentals in deep learning models has typically prevented them

from being applied to many financial problems in practice.

Since its first introduction in 1993 [76], the particle filter (PF) has been mostly stud-

ied and developed to accommodate non-linear and/or non-Gaussian settings in object

tracking problems [77]. It has been applied in numerous applications in finance e.g. [78,

79, 80]. In [13], the authors use the Rao-Blackwellised particle filter [81, 82, 83] to infer

the market fair price modelled as a non-linear continuous-time jump di↵usion process.

The latter modelling framework provides a starting point for the work in this chatper.

3.1.1 The e↵ect of LOB imbalance on price movements and trends

Despite promising performance achieved by the model in [13], it conducts fair price in-

ference solely based on the dynamics of the price process and does not account for the

state of LOB, which somewhat limits the model’s predictive ability when applied to dy-

namically changing LOBs. At any given timestamp, the limit order book contains the

state of all open limit orders for the traded commodity in that particular market. As

limit orders are entered, executed (i.e. fulfilled) and cancelled at di↵erent price levels,

the LOB evolves with these changes in the market micro-structure, which consequently

impacts the price dynamics and market trends. Figure 3.1.1 shows a typical snapshot of

limit order volumes at a range of price levels around the mid-price. As can be seen from

the figure, asymmetric limit order volumes cause imbalance of the supply and demand

(i.e. ask and bid) of the traded commodity, thereby inducing a price pressure towards the

opposite side. This can be more obviously observed in the 5 consecutive volume plots in

Figure 3.1.2 as the bid volume depletes and mid-price shifts towards the buyer’s side.

The design of the LOB price model capitalises on this simple intuition of supply-demand

relation to achieve better prediction performance.

To incorporate the LOB volume imbalance aspect e↵ectively, a weighted contribution

of order volumes at di↵erent price levels is considered here. Denoting the ‘weight’ of

59

Figure 3.1.1: Volume snapshot of limit orders at a given timestamp in EUR-USD FOREX
market.

Figure 3.1.2: Volume snapshots taken from 5 consecutive timestamps with intervals less than
0.5s. Time progresses from top to bottom.

volume at price Pk at time t as w(k)
t , the following exponential function is assigned to the

weight:

w
(k)
t = exp{�c⇥ d

(k)
t } (3.1)

where the d
(k)
t is the distance (i.e. number of ticks) between Pk and the mid-price at

time t and c is a constant. The instantaneous weights decrease exponentially with the

60

increasing distance to mid-price, which reflects the practitioners’ interests in di↵erent

price levels as well as the amount of price pressure imposed by each limit order. Similar

exponentially decaying functions have also been adopted in [73] and [84] to represent

traders’ interest/attention and they can be readily applied within the proposed modelling

framework in this thesis.

Define a function I(t) as the di↵erence between the aggregated bid volume pressure

and the ask volume pressure:

I(t) =
NBX

k=1

w
(k)
t,b V

(k)
t,b �

NAX

k=1

w
(k)
t,a V

(k)
t,a (3.2)

where V
(k)
t, ··· is the order volume at price Pk and the subscript a or b represents order type

(ask/bid); NA and NB are the “depths” or the number of price levels at ask and bid sides

respectively. Figure 3.1.3 shows two overlaid histograms of the function values computed

from one-hour high-frequency LOB data with c = 0.25. With zero being the reference line,

it is visible that the price drop (green) histogram is skewed towards the negative direction

of I(t), which implies that higher ask volume pressure is more likely to cause a price drop;

and vice versa for the red histogram. This confirms the importance of incorporating LOB

volume information for achieving enhanced price inference and prediction.

3.2 Proposed state-space models

In this section, I first introduce the basic jump di↵usion model presented in [13] which is

used as a starting point and baseline model for benchmarking purposes. Three novel mod-

els are then proposed: 1) imbalance-driven volumetric, 2) extended trend and 3) jump

trend resetting models. Their objective is to account better for stochastic dependence

of the price on the order book state, and incorporation of more behavioural information

through Bayesian priors, thereby leading to more realistic modelling and accurate cor-

responding inference procedures. It is noted that the proposed features from the three

models can be combined into one single model, termed the full model.

3.2.1 Review of the jump di↵usion model

Due to heterogeneous operations performed by traders, the structure and price of LOB

evolve constantly in continuous time, which demands the model’s ability to take irregular

inputs at arbitrary timestamps and make continuous inference. In order to accommodate

this, the authors of [13] proposed the use of a continuous-time SSM that is commonly

adopted for object tracking applications, e.g. the object temporal-spatial characteristics

such as position, velocity, and higher order kinematics. With a state vector Xt contain-

ing the “value” x1,t (e.g. sought fair price in LOB) and its “velocity” x2,t, the SSM is

61

Figure 3.1.3: Two overlaid histograms of the function values I(t) computed from EUR-USD
FOREX market for the duration of one hour. The green histogram contains the indicator values
which are followed by an immediate mid-price drop; while the red histogram contains those
followed by an immediate rise.

formulated with the following dynamics:

dXt = AXt dt+ b dWt + c dJt (3.3)

where dWt is a Wiener process accounting for the constant volatility of the market; and dJt

is the non-linear jump process accounting for impulsive changes in the price process. With

yt being the observed market mid-price at time t, the observation model is constructed

as the hidden “fair price” x1,t subject to Gaussian noise with a fixed variance:

yt ⇠ N
�
yt |GXt, �

2
obs

�
(3.4)

where G = [1 0] is the fixed observation matrix. With the inherent Markovian prop-

erty of the SSM construction, this model has provided a sequential framework for online

prediction and posterior tracking of the hidden state vector Xt.

It is worth noting that the SDE in Eq. (3.3) cannot be solved in a closed-form due

to the non-linear jump process dJt. However, the solution to the SDE without jumps

is readily available as detailed in Appendix 2.B of Chapter 2. It is thus possible to

compute the conditional transition density of Xt between two arbitrary timestamps S

62

and T , S T , conditioned on the jump(s) {⌧i}i (where i is the index of jumps) occurred

in the interval (S, T] and state of XS:

p(XT |XS, {⌧i}i) (3.5)

With no jumps in the interval i.e. {⌧i}i = ;, the above density takes exactly the same

Gaussian form N

⇣
XT |µµµ(T, S),C(T, S)

⌘
as derived in Eq. (2.8) with parameters:

µµµ(T, S) = e
A(T�S)XS , C(T, S) = e

A(T�S) K(T, S)
�
e
A(T�S)

�0
(3.6)

K(T, S) =

Z T�S

t=0

e
�Atbb0(e�At)0dt (3.7)

The calculation of transition density with jumps is more complicated as it is necessary to

consider di↵usion processes in each of the sub-intervals delineated by the jump times {⌧i}i.

Denoting the instance right before a jump ⌧ as ⌧� and after as ⌧+, the above formulae

can be used to obtain the pre-jump distribution parameters µµµ(⌧1,�, S) and C(⌧1,�, S) for

the first sub-interval (S, ⌧1]. While any jump process can be employed, the original model

proposed in [13] utilised a Poisson jump process with a constant intensity �J and normally

distributed jump size with parameters (µJ , �
2
J). This conveniently leads to a post-jump

distribution that is also Gaussian with mean and covariance given by:

µµµ(⌧1,+, S) = µµµ(⌧1,�, S) + cµJ

C(⌧1,+, S) = C(⌧1,�, S) + cc0 �2
J

(3.8)

The same process is repeated sequentially across all sub-intervals until time T is reached,

which leads to a Gaussian transition density from S to T , owing to the Gaussianity

maintained between and “during” jumps:

p(XT |XS, {⌧i}i) = N

⇣
XT |µµµ(T, S, {⌧i}i),C(T, S, {⌧i}i)

⌘
(3.9)

with

µµµ(T, S, {⌧i}i) = e
A(T�S)XS +

X

i

e
A(T�⌧i)cµJ

C(T, S, {⌧i}i) = e
A(T�S) K(T, S)

�
e
A(T�S)

�0
+
X

i

e
A(T�⌧i) cc0�2

J

�
e
A(T�⌧i)

�0 (3.10)

Since the jumps are assumed to follow a homogeneous Poisson process, the interval be-

tween two consecutive jumps follows a memoryless exponential distribution:

p(⌧1 � S) = Exponential(⌧1 � S |�J)

p(⌧i � ⌧i�1 | ⌧1:i�1) = Exponential(⌧i � ⌧i�1 |�J)
(3.11)

63

Given a set of observed mid-prices Y ={yn}
N
n=1 at timestamps {tn}Nn=1 and denoting X =

{Xtn}
N
n=0, the joint probability of the model and its conditional propagation factorisation

can hence be written as:

p(Y,X, {⌧}0:N |⌦)

=p(Xt0)⇥
NY

n=1

p({⌧}n�1:n | tn�1, {⌧}0:n�1) p(Xtn |Xtn�1 , {⌧}n�1:n) p(yn |Xtn)
(3.12)

where t0 is the starting time; ⌦ is the collection of hyperparamters; and {⌧}n�1:n =

{⌧i | tn�1 < ⌧ tn}.

3.2.2 Imbalance-driven volumetric model

The above baseline jump di↵usion model is constructed to perform price inference and

predictions using only the price input. It is reasonable to anticipate that the performance

of the model is largely dependent on the chosen prior dynamics and the tuning of hy-

perparameters to the specific market and period. Despite the novel addition of a jump

process to account for unexpected disturbances on top of the steady di↵usion in [13], the

model still lacks adaptability to the dynamic market and the LOB.

Recall that the fair price in free markets can be significantly a↵ected by the supply-

demand mismatch in both long-term and short-term. In the case of LOB markets, this

mismatch is directly represented by the imbalance of limit orders placed on the two sides of

the mid-price. Accordingly, a novel imbalance-driven volumetric model is proposed, which

takes sequential order volume information from LOB to account for imbalance-innovated

price changes.

The use of the following SSM dynamics was proposed in my early studies on volumetric

models:

d

"
x1,t

x2,t

#
=

"
0 1

0 ✓0

#"
x1,t

x2,t

#
dt+

"
0

�0

#
dWt +

"
0 0 . . . 0

�1 �2 . . . �K

#
2

66664

V1,t

V2,t

...

VK,t

3

77775
dt+

"
0

1

#
dJt (3.13)

where ✓0 is the non-positive zero-mean-reverting coe�cient on price velocity which repre-

sents the resistance force from market to prevent price from going unidirectional (i.e. to

maintain a stable price process); �0 is the positive scale of the market’s constant volatility.

The volume vector [V1,t, . . . , VK,t]T , which takes sequential inputs from di↵erent levels of

the LOB, is scaled linearly by coe�cients {�k}
K
k=1.

Although the volumetric model in Eq. (3.13) can provide a means for including the

64

volume inputs in the modelling of price dynamics, it uses the crude volume information

directly from LOB and a potentially high-dimensional coe�cient vector [�1, . . . ,�K] which

needs careful tuning or learning to avoid overfitting e↵ects. To improve such a formulation,

I take the intuition from the imbalance analysis presented in Section 3.1.1 by exponen-

tially scaling the volumes from two sides of the mid-price and separately summarising

them with the non-linear log-function:

VA,t = log
⇣ NAX

n=1

e
�c⇥n

Vn,t

⌘
, (3.14)

VB,t = log
⇣ NBX

n=1

e
�c⇥n

V�n,t

⌘
, (3.15)

where Vj,t is the volume of limit orders at j ticks away from the mid-price at time t; a

positive j represents a ask/sell price and a negative j represents a bid/buy price; NA and

NB are the total number of price levels for ask and bid respectively. While the exponent

c in e↵ect modulates the pressure passed by order volumes, the non-linear log-function

penalises its contribution towards price trend x2,t when large volumes are presented on

both sides (i.e. selling and buying).

Such input of volumetric information not only reduces the dimension/number of model

parameters, but also incorporates important prior knowledge of the relative weightings

(e.g. traders’ attention) of order volumes at di↵erent price levels. The volumetric

coe�cients are captured by the two parameters � = {�A,�B}. It is possible to re-

parameterise the model to include these two coe�cients in an augmented state vector,

i.e. Xt =
⇥
x1,t x2,t �A �B

⇤T
and perform joint inference on both sequential states Xt

and static parameters � via PF. However, such � in the extended state has no forgetting

property, which means that the parameter space is only explored during the initialisation

of the PF and each subsequent resampling step will monotonically reduce the diversity of

the particles (i.e. degeneracy).

In order to mitigate algorithm degeneracy while allowing a more dynamic input of the

LOB volume information, the following improved volumetric SSM is proposed:

dXt = AXt dt+ b dWt + cA dWA,t + cB dWB,t + d dJt

d

2

66664

x1,t

x2,t

�A,t

�B,t

3

77775
=

2

66664

0 1 0 0

0 ✓0 VA,t VB,t

0 0 ✓� 0

0 0 0 ✓�

3

77775

2

66664

x1,t

x2,t

�A,t

�B,t

3

77775
dt+

2

66664

0

�0

0

0

3

77775
dWt +

2

66664

0

0

��

0

3

77775
dWA,t +

2

66664

0

0

0

��

3

77775
dWB,t +

2

66664

0

1

0

0

3

77775
dJt (3.16)

where both �A,t and �B,t are time-varying and each of them follows an independent Orn-

stein–Uhlenbeck (OU) process [85] instead of being static. It can also be noticed that

the transferred volume information {VA,t, VB,t} is absorbed into the transition matrix A

65

which is now updated seamlessly with observations.

The new SSM in Eq. (3.16) preserves the conditional linear-Gaussian form and conse-

quently the solution to the above SDE and the model’s transition density can be readily

derived following the same procedure as in [13]. This nonetheless requires a change in the

calculation of the integral K(T, S):

K(T, S) =

Z T�S

t=0

e
�At

�
bb0 + cAc

0
A + cBc

0
B

�
e
�AT t

dt (3.17)

With the observed price normally distributed around the hidden fair price x1,t, the pro-

posed imbalance-driven volumetric model in this thesis shares the same form of the joint

probability as the baseline model.

3.2.3 Extended trend model

Small and fast fluctuations comprise a large proportion of the price movements within

a liquid LOB market. These behaviours are well-captured in the baseline model by the

OU process assigned to the price velocity x2,t. However, substantial market fluctuations

can not only spur larger and sharper changes to the price trend, but may also induce

longer-lasting residual e↵ects than general volatility does.

Here, the state vector is extended with an additional term x3,t as the ‘trend regulator’:

d

2

64
x1,t

x2,t

x3,t

3

75 =

2

64
0 1 0

0 ✓0 �✓0

0 0 ✓e

3

75

2

64
x1,t

x2,t

x3,t

3

75 dt+

2

64
0

�0

0

3

75 dWt +

2

64
0

0

�e

3

75 dWe,t +

2

64
0

1

0

3

75 dJt (3.18)

where ✓e is the non-positive mean-reverting coe�cient for x3,t, �e is the innovation scale

and dWe,t is a unit-variance Wiener process. Whereas, the dynamics of x2,t are formulated

as:

dx2,t = ✓0(x2,t � x3,t) dt+ �0 dWt + dJt (3.19)

In the case where ✓0 is non-negative and x3,t is a constant, the above dynamics resemble a

constant-mean OU process. However, by fitting another zero-mean OU process to x3,t with

perhaps less negative ✓e compared to ✓0, the momentum/trend term x2,t can additionally

gains longer-term trends (of a maybe smaller scale if �e < �0) by following the regulator

x3,t. And by tuning ✓0 within (�1, 0], it is possible for x2,t to achieve any dynamics

between a Brownian di↵usion with jumps (i.e. ✓0 = 0) and a quick follower of x3,t (i.e.

✓0 ! �1). The new extended trend model allows trends at di↵erent time scales to be

maintained and thus gives richer dynamics to the modelled fair-price process x1,t.

66

3.2.4 Jump trend resetting model

Sharp jumps in the market are often triggered by non-market factors which are hard to

account for. These occurrences are likely to disturb any balance or correlation established

in the market, which then reforms gradually afterwards.

In order to accommodate this particular characteristic of the market, a trend-resetting

mechanism is proposed for the jump process. For a jump at time ⌧ between two input

timestamps S and T (i.e. S ⌧ T), one can consider the segmented di↵usion from S to

the instance ⌧� right before the jump and obtain the Gaussian propagation density with

parameters µµµ(⌧�, S) and C(⌧�, S) according to Eq. (3.6). Instead of applying a normally

distributed jump size to the post-jump parameters, the new trend reset model proceeds

as follows:

µµµ(⌧+, S) =

"
µµµ(⌧�, S)(1)

µµµprior

#
, C(⌧+, S) =

"
C(⌧�, S)(1,1) 0T

0 Cprior

#
. (3.20)

where the superscripts indicate the indices of elements taken from the pre-jump parame-

ters. For aM -dimensional state vector, both µµµprior and 0 are (M�1)-dimensional (column)

vector and Cprior is a (M�1)-by-(M�1) matrix. In practice, Cprior can take the form

of �2
prior ⇥ I, where I is the identity matrix and �

2
prior should take a much larger value

(e.g. � 10⇥) than �2
0. Such a trend-resetting jump process helps avoid overfitting from

the converged dynamic parameters and allows faster adaptation towards a new market

dynamics. Multiple jumps within a single update interval can be handled analogously in

sequence.

3.2.5 Full model

Each of the three models proposed above accounts for di↵erent market behaviours with

a specific model design, e.g. extended state vector or Bayesian priors. The orthogonality

in the designs allows us to combine the models into a “full model”. In this case, the

state vector Xt =
⇥
x1,t x2,t x3,t �A,t �B,t

⇤T
has both extended trend regulator and volume

coe�cients in addition to the value and trend terms:

d

2

6666664

x1,t

x2,t

x3,t

�A,t

�B,t

3

7777775
=

2

6666664

0 1 0 0 0

0 ✓0 �✓0 VA,t VB,t

0 0 ✓e 0 0

0 0 0 ✓� 0

0 0 0 0 ✓�

3

7777775

2

6666664

x1,t

x2,t

x3,t

�A,t

�B,t

3

7777775
dt+

2

6666664

0

�0

0

0

0

3

7777775
dWt +

2

6666664

0

0

�e

0

0

3

7777775
dWe,t +

2

6666664

0

0

0

��

0

3

7777775
dWA,t +

2

6666664

0

0

0

0

��

3

7777775
dWB,t +

2

6666664

0

1

0

0

0

3

7777775
dJt

(3.21)

The jump resetting mechanism operates on all states except the “value” term x1,t following

Eq. (3.20). Section 3.4 also presents the results obtained from this full model and the

qualitative analyses on the interpretations of each individual feature.

67

3.3 Inference

The models proposed in this chapter all focus on the specific design of SSM and price

dynamics, which allows them to share the same joint probability format in (3.12). Given

the models’ formulations, the same inference routine can be applied to all of the proposed

models; two suitable particle filtering algorithms are detailed in this section.

3.3.1 Generic bootstrap particle filter

Taking advantage of the Markovian property of the SSM, sequential prediction and poste-

rior inference of the state vectors and jumps can be achieved by first writing the recursion

of the join posterior (online) smoothing density as:

p
�
X0:tn , {⌧}0:n | y1:n

�

= p
�
X0:tn�1 , {⌧}0:n�1 | y1:n�1

�
⇥

p({⌧}n�1:n|{⌧}0:n�1) p(Xtn |Xtn , {⌧}n�1:n) p(yn|Xtn)

p(yn|y1:n�1)

(3.22)

where the dependency on hyperparameters ⌦ has been omitted for simplicity. Although

the recursive posterior cannot be computed in closed-form due to the non-linear jumps,

empirical approximation of it can be readily obtained with a PF. Suppose that the poste-

rior filtering density at time tn�1 can be approximated by a large and random collection

of Np weighted particles:

p
�
X0:tn�1 , {⌧}0:n�1 | y1:n�1

�
⇡ p̂

�
X0:tn�1 , {⌧}0:n�1 | y1:n�1

�

=

NpX

p=1

w
p
n�1�

�
Xp

0:tn�1 , {⌧}
p
0:n�1

� (3.23)

where w
p
n�1 � 0 and

PNp

p=1 w
p
n�1 = 1. By substituting the empirical posterior (3.23) at

tn�1 into the posterior recursion (3.22), the propagation scheme of a bootstrap PF for a

particular particle p can be obtained as:

1. Initialise ⌧ 0 = tn�1 and {⌧}
p
n�1:n = ;.

2. While ⌧ 0 < tn, sample a new jump interval from the prior �⌧ ⇠ Exponential(�J);

compute the new jump time ⌧ 0 = ⌧
0 +�⌧ ; and append ⌧ 0 to {⌧}

p
n�1:n if ⌧ 0 tn.

3. Sample state vector from the conditional transition density in Eq. (3.9):

Xp
tn ⇠ p(Xtn |X

p
tn�1

, {⌧}
p
n�1:n)

4. Compute the unnormalised weight w̃p
n = w

p
n�1 ⇥ p(yn|X

p
tn , �

2
obs)

68

where the weights are re-normalised after all particles have been propagated w
p
n = w̃

p
n/
P

j w̃
j
n;

and the resultant weights and particle form the collection for the next propagation from

tn to tn+1.

3.3.2 Rao-Blackwellised particle filter (RBPF)

The bootstrap PF is known to su↵er from the curse of dimensionality [86] and its per-

formance can be compromised when the state vector dimensionality grows (e.g. in the

volumetric model) due to the lack of exploration of the continuous sample space. However

owing to the linear Gaussian form of both state transition density and likelihood defined

in Section 3.2, it is possible to marignalise out the state vectors in each propagation step

conditional on a given set of jump times e.g. {⌧}0:n and utilise the RBPF algorithm as

a combination of Kalman filter and particle filter [18, 27, 87]. Suppose that the pos-

terior filtering density of the vector Xtn�1 at time tn�1 can be expressed as a Gaussian

distribution:

p(Xtn�1 | y1:n�1, {⌧}0:n�1) = N
�
Xtn�1 |µµµn�1|0:n�1,⌃n�1|0:n�1

�
(3.24)

Given the jump times {⌧}n�1:n within the update interval (tn�1, tn], one can write the

predictive distribution of Xtn as:

p(Xtn | y1:n�1, {⌧}0:n) =

Z
p(Xtn�1 | y1:n�1, {⌧}0:n�1) p(Xtn |Xtn�1 , {⌧}n�1:n) dXtn�1

= N
�
Xtn |µµµn|0:n�1,⌃n|0:n�1

� (3.25)

where the Gaussian parameters can be written as linear transformations of the posterior

parameters µµµn�1|0:n�1 and ⌃n�1|0:n�1:

µµµn|0:n�1 = e
A(tn�tn�1)µµµn�1|0:n�1 +

X

⌧i2{⌧}n�1:n

e
A(tn�⌧i)cµJ (3.26)

⌃n|0:n�1 = e
A(tn�tn�1) ⌃n�1|0:n�1 e

AT (tn�tn�1) +C(tn, tn�1, {⌧}n�1:n) (3.27)

where c is defined as the vector coe�cient of the jump process dJt in each model and

C(tn, tn�1, {⌧}n�1:n) is defined in (3.10). As an exception, the jump trend resetting model

(and the full model) has a slightly di↵erent transition density conditional on jumps.

Nonetheless, the closed-form predictive Gaussian densities can still be obtained as the

resetting mechanism also preserves Gaussianity. Utilising these formulations, a classic

Kalman filter can be applied on the state vectors (conditional on the jump times) and

69

obtain the up-to-date posterior parameters that are “corrected” by the observation yn:

Qn = ⌃n|0:n�1G
T
⇣
G⌃n|0:n�1G

T + �
2
obs

⌘�1

(3.28)

µµµn|0:n = µµµn|0:n�1 +Qn

⇣
yn �Gµµµn|0:n�1

⌘
(3.29)

⌃n|0:n =
⇣
I�QnG

⌘
⌃n|0:n�1 (3.30)

Similar to the generic Kalman filter, it is necessary to specify the initial distribution

for the state Xt0 at time t0 in order to start the filtering process. The conditional Kalman

filter requires this initialisation to be Gaussian. Therefore, a prior mean µµµprior and a

prior covariance matrix ⌃prior are adopted as the initial parameters µµµ0|0 and ⌃0|0 for the

first prediction step of the filter i.e. (3.26) and (3.27). It is also worth noting that the

initialisation of the filter can vary depending on the specific application of the model. For

example, certain applications may demand an accurate initial state; other online inference

scenarios are less sensitive to initialisation.

With the state vectors Rao-Blackwellised/marginalised, one can then use a variable-rate

particle filter (VRPF) for the posterior recursion that targets only the jump times [27,

87]:

p({⌧}0:n|y1:n)

/ p({⌧}0:n�1|y1:n�1) p({⌧}n�1:n|{⌧}0:n�1)

Z
p(Xtn | y1:n�1, {⌧}0:n) p(yn|Xtn) dXtn

/ p({⌧}0:n�1|y1:n�1) p({⌧}n�1:n|{⌧}0:n�1)⇥ p(yn | y1:n�1, {⌧}0:n)

(3.31)

where the integral can be spotted as the prediction error decomposition (PED) of the

Kalman filter [88]:

p(yn | y1:n�1, {⌧}0:n) = N
�
yn |µyn ,⌃yn

�
(3.32)

µyn = Gµµµn|0:n�1 (3.33)

⌃yn = G⌃n|0:n�1 G
T + �

2
obs (3.34)

Subsequently, the posterior recursion of (3.31) can be empirically approximated in a sim-

ilar manner as for a generic bootstrap PF algorithm. Therefore, an arbitrary particle p

at timestamp tn that will be propagated in the RBPF algorithm should include: (1) a

sequence of proposed jump times {⌧}
p
0:n; (2) the posterior filtering parameters for state

vector Xtn , (µµµ
p
n|0:n,⌃

p
n|0:n); and (3) its current normalised weight wp

n. Express this as:

P
(p)
n =

n
{⌧}

p
0:n , µµµ

p
n|0:n , ⌃

p
n|0:n , w

p
n

o
(3.35)

70

Figure 3.4.1: The snapshot plot of the one-hour FOREX data used for the experiment. The
orders are plotted as rectangles around the mid-price with the corresponding volumes indicated
by the colourmap. Orders that are placed farther away from the mid-price (i.e. deeper into the
LOB) are not shown as they contribute negligibly to the market dynamics.

and the re-weighting of the particle at timestamps tn can be performed as follows:

w̃
p
n = w

p
n�1 ⇥

p({⌧}pn�1:n|{⌧}
p
0:n�1)⇥ p(yn|y1:n�1, {⌧}

p
0:n)

q({⌧}pn�1:n|{⌧}
p
0:n�1)

(3.36)

where p(yn|y1:n�1, {⌧}0:n) is the normal PED in (3.32) conditioned on the particular se-

quence of jump times in the pth particle; and q(.) is the proposal density of the jumps.

In the case of a bootstrap RBPF, the proposal used for jumps is identical to the jump

prior and the weight update essentially reduces to

w̃
p
n = w

p
n�1 ⇥ p(yn | y1:n�1, {⌧}

p
0:n) (3.37)

Algorithm 7 demonstrates the pseudo-code of the RBPF algorithm with an adaptive

resampling scheme used for the proposed models. The adaptive importance resampler

computes the e↵ective sample size Ne↵ = 1/
P

p(w
p
n)

2 at each timestamp tn and performs

resampling only if Ne↵ falls below a certain threshold Nthr, see [89] for further details

on adaptive importance resampling. With state vectors marginalised, RBPF e�ciently

mitigates the curse of dimensionality which is detrimental to the performance of particle

filters [86]. In the next section, the performance of the introduced SSMs and inference

algorithms are evaluated using real data.

71

Algorithm 7 Bootstrap Rao-Blackwellised particle filter

Inputs: timestamps {tn}Nn=0; mid-price {yn}
N
n=1

Outputs: A collection of inferred particles {P (p)
N }

Np

p=1

1: Initialisation: (n=0) Create a collection of identical particles: {⌧}
p
0 = ;, µµµp

0|0 = µµµprior, ⌃
p
0|0 =

⌃prior, w
p
0 = 1/Np.

2: for n = 1 : N do
3: for p = 1 : Np do
4: Set ⌧ 0 = tn�1 and {⌧}

p
n�1:n = ;

5: while ⌧ 0 < tn do
6: Sample jump interval �⌧ ⇠ Exponential(�J)
7: ⌧

0 = ⌧
0 +�⌧

8: if ⌧ 0 tn then
9: Append ⌧ 0 to {⌧}

p
n�1:n

10: end if
11: end while
12: Compute predictive parameters (µµµp

n|0:n�1,⌃
p
n|0:n�1) conditioned on {⌧}

p
n�1:n using (3.26) and

(3.27).
13: Compute (unnormalised) weight w̃p

n = w
p
n�1 ⇥ p(yn | y1:n�1, {⌧}

p
0:n)

14: Kalman update (µµµp
n|0:n,⌃

p
n|0:n) with (3.29) and (3.30)

15: end for
16: Normalise weights wp

n = w̃
p
n/

P
j w̃

j
n

17: Compute e↵ective sample size Ne↵ = 1.0/
P

p(w
p
n)

2

18: if Ne↵ < Nthr then
19: Perform Importance Resampling
20: end if
21: end for
22: Return: {P

(p)
N }

Np

p=1

Table 3.4.1: Hyperparameters used for predictive performance model comparisons.

�0 ✓0 �e ✓e �� ✓� �obs �J µJ �J µprior Cprior

0.08 -0.7 0.03 -0.4 0.005 -0.5 0.1 1.0 0 0.1 ~0 0.1⇥I

3.4 Results and discussions

In this section, I apply the proposed models as well as the baseline model in [13] on a set

of real-world high-frequency FOREX data and present empirical results obtained from

this dataset. The predictive outcome of the models are numerically compared based on

di↵erent metrics and the interpretations of the added model features are qualitatively

investigated.

The models are tested on a set of one-hour (19:00 – 20:00 ET) LOB data from the

EUR-USD FOREX market on the 2nd of September, 2015. The one-hour snapshot is

reconstructed using the raw LOB data depicted in Figure 3.4.1. As shown in the figure,

the bid-ask spread is very small during this period indicating high liquidity of the market.

It is also visible that the market matures progressively over the one-hour period as the

72

Figure 3.4.2: Figure shows the root mean squared error (RMSE), mean absolute error (MAE)
and approximated log-marginal evidence of of the models. The best models are indicated by
hatching. The dashed lines give the values of the standard model as references.

volumes of limit orders increase i.e. more solid red rectangles and the bid-ask spread closes

up further.

In order to ensure the model operates on a sensible numerical scale and to ease the

tuning of hyperparameters, the mid-price data are normalised to have zero mean and unit

variance. Additionally, the summarised LOB volume information is normalised by the

maximum value (i.e. the resultant range is from 0 to 1). In particular, the performance

of the following models is investigated:

• the baseline jump di↵usion model as proposed in [13];

• the volumetric model with summarised LOB volume inputs;

• the extended trend model;

• the extended trend model with jump trend resetting mechanism;

• and the volumetric model with extended trend and jump trend resetting mechanism,

which referred to as the “full model”.

The hyperparameters are heuristically tuned for comparative model evaluations and are

shown in Table 3.4.1 (i.e. no fine tuning is undertaken or learning routine for optimi-

sation utilised). The RBPF algorithm is applied for inference using 100 particles (i.e.

Np = 100) and 50%-threshold (i.e. Nthr = 0.5Np) adaptive resampling scheme. Figure

3.4.2 shows the predictive performance of the five models evaluated numerically based

on the three metrics:

73

R
M

S
E

�
L̂
(
Y
)

Figure 3.4.3: The prediction RMSE and the (approximated) log-evidence of the full model
under di↵erent settings of hyperparameters {��, ✓�,�e,�e}. The model hyperparameters took
the values listed in Table 3.4.1 except the one investigated which is indicated on x-axis.

1. The root mean squared error (RMSE) of the predictive mean µµµn|0:n�1.

RMSE =

vuut 1

N

NX

n=1

⇣
yn �G

NpX

p=1

w
p
n�1µµµ

p
n|0:n�1

⌘2

(3.38)

2. The mean absolute error (MAE) of the predictive mean.

MAE =
1

N

NX

n=1

���yn �G

NpX

p=1

w
p
n�1µµµ

p
n|0:n�1

��� (3.39)

3. The approximated (log) marginal model evidence computed from the unnormalised

74

Figure 3.4.4: The posterior (smoothing) results of the standard model for the second half hour
(19:30 – 20:00 ET). The middle panel shows both raw and smoothed posterior probability of
jumps within each update interval i.e. {(tn�1, tn]}Nn=1.

particle weights:

log
�
p(Y)

⇡ L̂(Y) = log

n NY

n=0

⇥ NpX

p=1

w̃
p
n

⇤o

=
NX

n=0

log
� NpX

p=1

w̃
p
n

(3.40)

The first two metrics measure the mean error of models’ prediction; while the marginal

evidence quantifies the model fit from a Bayesian perspective, which is analogous to the

p-value used in evaluating frequentist approaches but accounts for both potential overfit

and underfit. Comparing to the standard model, it can be seen from Figure 3.4.2

that the inclusion of volume information helps improve the accuracy of mean predictions

made by the model. However, the log-evidence is reduced due to perhaps the sequential

dynamics and stochasticity introduced into the volumetric variables {�A,t , �B,t}. The

extended trend term x3,t provides minor improvement on mean-prediction accuracy; while

its combination with trend-resetting jumps improves the overall model fit.

It can also be observed that for this dataset, the collective use of all proposed features

(i.e. the full model) does not necessarily yields better results. Therefore, additional tests

are performed on the full model with di↵erent settings of the hyperparameters. Figure

3.4.3 shows the RMSE and negative log-evidence obtained on the same set of data. It is

clear from the figure that both volumetric variables {�A,t,�B,t} and extended trend x3,t

75

Figure 3.4.5: The posterior (smoothing) results of the full model for the second half hour
(19:30 – 20:00 ET). In addition to the variables in the standard model, the figure also displays
the posterior mean of the extended trend x3,t and the two volumetric variables {�A,t,�B,t}.

in the full model favour dynamics with relatively strong zero-mean reversion and small

innovation. The small �e and large magnitude of ✓e both indicate that the price process

in the selected interval exhibits very little long-term trend. Even though the small ��

may be favoured due to the large scale of order volumes, the comparison of di↵erent ✓�’s

indicates that the volume-driven trend is also non-persistent throughout the one-hour

period of interest. This lack of long/medium-term dynamics in the price process is easily

observed from the snapshot plot in Figure 3.4.1.

76

In addition to the predictive performance, one may also be interested in the retrospective

interpretations of the posteriors of the model’s variables. Here, I compare the posteriors

of the standard model and the full model on the one-hour LOB data. Figure 3.4.4

and 3.4.5 show the posterior tracking results of the second half hour obtained using the

standard model and the full model respectively. In this experiment, the mean-reverting

coe�cient ✓� in the full model is set to �0.05 such that more characteristics of the vol-

umetric variables {�A,t,�B,t} can be expressed. The posterior jump probability of each

interval (tn�1, tn] is computed by summing the weights of all particles P (p0)
N that each has

at least one jump within (tn�1, tn], i.e.:

P

⇣
jump(s) in (tn�1, tn]

⌘
=

X

p02⌦n

w
p0

N , ⌦n =
�
p | {⌧}

p
0:N \ (tn�1, tn] 6= ;

(3.41)

It can be seen from the bottom panel of Figure 3.4.5 that even without constraining

the positivity of �B,t (or the negativity of �A,t) in its dynamics, the posterior means of the

volumetric variables are still able to take opposite directions with respect to zero. The

bid term �B,t modulates the buying pressure and contributes positively towards the price

trend; while the ask term �A,t modulates the selling pressure and takes mostly negative

values for downward trend. In the case of significant jumps in the price, both bid and ask

terms jointly drive the trend in the jump direction (e.g. the blue and red curves coincide).

In real-world markets, the pre-jump outstanding orders are likely to be either cancelled

(e.g. via stop-limit order) or fulfilled quickly when jumps take place and new orders are

often placed for market probing purposes. Therefore the volume coe�cients barely reveal

any adversarial imbalance information during these periods

In the standard model, as the single velocity process x2,t is unable to capture all the

price fluctuations, the designed jump process is employed to account for many small/medium

fluctuations in the price in addition to the significant jumps as can be seen from Fig-

ure 3.4.4. On the other hand, the posterior jumps inferred for the full model are much

clearer since the fluctuations are accounted by instantaneous LOB imbalance. Moreover,

recall that the “jumps” in the full model in fact represent the trend-resetting mecha-

nism, thus it can be observed in Figure 3.4.5 that some “jumps” happen prior to major

price changes. This resets the volumetric variables {�A,t,�B,t} (to prior) to allow adap-

tation of the sharp trends. Due to the lack of long/medium-term price dynamics in the

period, the extended trend term x3,t shows little interesting characteristics in its posterior.

Figure 3.4.6 depicts the posterior means of the volumetric variables using di↵erent set-

tings of (�� , ✓�), together with the corresponding aggregated signal (�A,t VA,t + �B,t VB,t)

that contributes to the trend x2,t. More specifically, the model is tested under two other

extreme settings: (i) no dynamics assigned to volumetric variables i.e. ✓� = �� = 0; (ii)

77

Time (Hr:Min)

Figure 3.4.6: Figure shows the posterior means of volumetric variables {�A,t,�B,t} and the
aggregated volume signal under di↵erent settings of hyperparameters.

the tuned fast reverting dynamics in Table 3.4.1 i.e. ✓� = �0.5. It can be observed from

Figure 3.4.6 that stronger reverting force tends to close up the separation between �A,t

and �B,t and remove the longer-term component within the aggregated signal. Without

dynamics (middle plots), the volumetric variables can still adapt to the LOB inputs to

some extent with occasional resets. However in such a case, it is hard for �A,t and �B,t

to capture any high-frequency sharp changes in the trend that may be caused by LOB

imbalance as shown in the aggregated signal plot.

3.5 Conclusions and future work

In this chapter, the baseline jump di↵usion model [13] was firstly review, which is a part

of the pioneer work in using the SSMs and the particle filter for financial price modelling.

Based upon this work, this chapter has presented three novel models each incorporating

an unique market intuition: (i) an imbalance-driven trend model that takes in dynamical

changes in LOB structure and translates the imbalance into price innovations; (ii) an

extended trend model which aims to capture trends at two di↵erent time scales; and (iii)

a jump trend resetting model that allows better re-adaptation of state variables after

78

significant market changes (i.e. jumps).

The imbalance-driven trend model employs a novel construction of the SSM by includ-

ing a set of time-varying parameters {�A,t,�B,t} in the state vector to modulate the trend

contribution taken from the instantaneous order volume imbalance at each observation of

the market. This inclusion allows the two parameters to be sequentially tracked together

with the price process in the generic inference algorithm. The extended trend model

further adopts a varying-mean OU process on the original trend term to incorporate ad-

ditional mean-reverting characteristics and consequently captures the price momentum at

di↵erent time scales. The jump resetting mechanism resets the filtering mean and covari-

ance of the state vector to prior values and enables faster adaptation to the new market

condition after significant price changes. All three models, as well as their combinations

(e.g. the full model), have maintained the linear-Gaussian structure of the SSM condi-

tioned on the non-linear jump times allowing e�cient sequential inference to be achieved

using the well-established RBPF algorithm.

The experimental results obtained using real-world LOB data extracted from the

FOREX market show that the proposed models/features improve both predication ac-

curacy as well as model fit compared to the baseline jump di↵usion model [13]. This is

due to incorporating salient Bayesian priors on the LOB market behaviours via a SSM ap-

proach. Furthermore, qualitative analyses on the posteriors have also demonstrated that

the new state variables are able to provide reasonable real-world market interpretations.

It is also important to note that the presented models in this chapter can be easily

extended to achieve simultaneous fair price inference of multiple (dependent or indepen-

dent) markets. The pairwise correlations (e.g. correlated volatility and/or jumps of two

markets) of the inferred markets can be either encoded in the SSM construction using

prior knowledge or learnt with optimisation algorithms.

However, as can be seen from the posterior tracking results in Section 3.4, the volumetric

variables in the proposed model can sometimes take unusual values (e.g. long-lasting neg-

ative �B,t and positive �A,t) that cannot be explained by market intuitions. Thus in future

work, assigning constrained di↵usion dynamics, such as a geometric Brownian motion, to

the volumetric variables can potentially be an interesting extension to the current models.

However, it would be challenging to fit the constrained di↵usion model into the general

RBPF framework.

Another goal of future work extending this research could be to examine the versatility

of the proposed models, not just to FOREX markets, but also to other types of LOBs such

as stocks and derivatives. It would also be desirable to implement a more comprehensive

mock trading algorithm to backtest the models and the inference algorithms in more

realistic scenarios, although this would make it necessary to consider more complex trading

e↵ects like slippage (execution delays). Studying (e.g. empirically) the sensitivity of the

79

proposed modeling and inference approach to variations in the model hyperparameters is

another potential area of future investigation.

80

Chapter 4

Multi-jump di↵usion process for

long-short term price dynamics

The jump-di↵usion process introduced in Chapter 3 is a popular choice in the area of

financial modelling to account for potential risks and uncertainties by generalising the

unknown impulsive impacts in the market with a simple jump process. In this chapter, I

propose an extension and generalisation of such a modelling approach, and then connect

the jump-di↵usion model with the heterogeneous arrivals/operations of limit orders in a

high-frequency LOB market.

4.1 Introduction and motivation

The field of financial modelling pays immense amount of attention to the modelling of

outliers. From a modelling perspective, the outliers indicate potential model mismatch

and overfitting which can be detrimental to the performance of model predictions. In

practice, a single observation that is considered to be statistically insignificant by the

model may still be fatal to the investment decisions made by practitioners. An empirical

motivation for using jump-di↵usion model in finance is to gain better accountability for

the occasional heavy-tailed behaviour of asset returns or commodity prices, which cannot

be reliably captured by a conventional di↵usion model.

Jump-di↵usion processes have been discussed in multiple studies since their intro-

duction to finance in [90] as an improvement on the classic Black-Scholes option pricing

formulae (reviewed in [91]). A Gaussian/normally distributed jump size was considered

in the first iteration of the model. This distribution of the jump size was later extended in

[92] and [93] to a double-exponential distribution and an asymmetric Laplace distribution

respectively, which were empirically shown to have better accountability for heavier-tailed

data. Jump processes were also integrated with stochastic-volatility models to provide

a general family of a�ne jump-di↵usion models [94]. The author of [95] generalised the

81

one-dimensional jump-di↵usion process to a multivariate case where both individual and

“common” jumps can occur on multiple assets. These early models often pursued the

closed-form statistical properties of jump-di↵usion process that can subsequently simplify

the applied estimation/prediction algorithm. With the development of particle filter (PF)

as SMC inference procedure, more diverse dynamics are incorporated in the jump-di↵usion

model for more realistic modelling of the financial market [96, 13].

Another motivation of the jump-di↵usion model comes from behavioral finance. It has

been well-studied that the market tends to respond actively towards the news outside the

market such as the changes of macroeconomic policies, etc.. With the help of Bayesian

modelling and posterior inference, the posterior jump (both times and size) estimation of

the model can also provide important retrospective information on market responses to

various known or unknown external sources. This idea was adopted in [13] and the price

models introduced in Chapter 3.

In a high-frequency financial market, the price dynamics are studied at a much finer

time-scale. While jump processes can still be incorporated to account for unknown dis-

turbances from outside the market, such occurrences can be rare compared to the jumps

or trends that are initiated within the market. On the other hand, large institutional or-

ders which create significant buying/selling pressure are more frequently placed by market

makers to drive the price process. Thus in this research, I connect the stochastic jump pro-

cess on a continuous time-grid with the heterogeneous submissions of (institutional) limit

orders. However, unlike the impulsive market responses to outside factors which are often

generalised with a single jump process, institutional orders are likely to induce jumps with

di↵erent scales, biases, frequencies and residual e↵ects depending on the levels, quantities

and duration of the limit orders placed. It is clear that the classic jump-di↵usion process

can no longer capture these specific characteristics of the high-frequency LOB market.

Therefore in this chapter, I consider jumps as a major source of price innovation and

propose a novel state-space model which incorporates multiple jump processes to account

for the part of market dynamics initiated by injection or cancellation of limit orders at

di↵erent levels of the LOB. The model also aims to capture the long-short term trends of

the price dynamics with the multi-jump construction. For inference, a semi-deterministic

particle filter with stratified resampling is proposed to allow more thorough exploration

of the continuous sample space of the latent variables.

The remainder of this chapter is organised as follows. I first introduce the general for-

mulation of the multi-jump di↵usion model in Section 4.2. Section 4.3 briefly recaps the

standard RBPF algorithm [13] introduced in Chapter 3 before focusing on its adapta-

tion to jump proposals with memory and the semi-deterministic filtering scheme. Results

obtained on both synthetic and real datasets are presented in Section 4.4.

82

4.2 Model formulation

Similar to the classic jump-di↵usion model, the proposed multi-jump di↵usion model can

also be disaggregated into two connected parts: (1) a constant-volatility mean-reverting

process; and (2) a jump-driven process. To begin with, first consider the following dy-

namics for the (latent) market fair price process x(t):

dx(t) = ✓
⇥
x(t)� z(t)

⇤
dt+ �v dWt (4.1)

where �v is the scale of innovation noise which represents the constant volatility in the

market; ✓ is the non-positive mean-reversion coe�cient; and dWt is a unit-variance Wiener

process. When the function z(t) takes a constant value, the above dynamics is simply an

Ornstein–Uhlenbeck (OU) process [85].

It can be seen from Eq. (4.1) the fair price process x(t) will stochastically adapt to

the “guiding” function z(t) with a rate depending on the value of ✓. Such a formulation

allows the clear (i.e. volatility-free) market/price signal z(t) to be explicitly modelled by a

di↵erent stochastic process. The fair price x(t) is constructed such that it is subject to the

inherent volatility of the market and reflects a delayed and cluttered version of the clear

signal. The value of ✓ thus determines the extent to which the fair price process follows

the volatility-free signal. In the case of ✓ = 0, x(t) simply follows a Brownian di↵usion

model taking no input from the jumps induced by the changes of LOB structure; while

a negative ✓ of large magnitude will make x(t) follow z(t) closely (or exactly as ✓!�1

and �v=0).

4.2.1 Multi-jump reversion process

Due to the various forms that z(t) can take, a closed-form solution to the stochastic

di↵erential equation (SDE) in (4.1) is not guaranteed in general. In order to ensure the

tractability of the SDEs while allowing salient features of the market to be described by

the process z(t), the following SSM is constructed:

dzt = Az zt dt+
KX

k=1

ck dJ
k
t (4.2)

where:

zt =

2

66664

z1,t

z2,t

...

zK+1,t

3

77775
, Az =

2

66666664

0 1 1 · · · 1

0 ✓1 0 · · · 0
... 0 ✓2

...
...

...
. . . 0

0 · · · · · · 0 ✓K

3

77777775

(4.3)

83

where z1,t is exactly the signal z(t) in (4.1) that “guides” x(t); {✓k}Kk=1 are the non-positive

mean-reverting coe�cients; and dJ
k
t is the kth jump process. The scaling vector ck for

each jump process is constructed as follows:

cik =

8
<

:
1 if i = k + 1

0 otherwise
, e.g. ck =

2

66666664

0
...

1
...

0

3

77777775

 (k+1)th element (4.4)

where the superscript i here indicates the ith element of the vector. The design of matrix

Az is based on the intuition that large changes in LOB structure (i.e. submission or

cancellation) often create momentum for the shift of market price; while this momentum

fades gradually with the depletion and fill-in of limit orders as the market’s reaction. In

order to model the characteristic responses to di↵erent levels of LOB changes, {zj,t}
K+1
j=2 are

each governed by an independent jump reversion process with a distinct set of parameters.

This use of multiple jump reversion processes provides an aggregated momentum/trend

of z1,t with multiple layers of time structures:

dz1,t

dt
=

K+1X

j=2

zj,t (4.5)

Although it is not immediately clear on how this multi-jump SSM can be integrated in the

constant-volatility dynamics of the fair price xt to give a tractable solution, it is possible

to concatenate zt and xt into a single state vector denoted as xt and construct a joint

SSM:

dxt = Axt dt+ b dWt +
KX

k=1

c̃k dJ
k
t (4.6)

where:

xt =

"
zt

xt

#
, A =

2

66664

0

Az
...

0

�✓ 0 · · · ✓

3

77775
, b =

2

66664

0
...

0

�v

3

77775
, c̃k =

"
ck

0

#
(4.7)

This resembles the similar general SDE for jump-di↵usion process described in Eq. (3.3)

of Chapter 3, except that now there are a total of K jump processes. Using the same

derivations in Appendix 2.B and Section 3.2, the SDE can be readily solved in closed-

form conditioned on the jumps in the K jump processes. The jump size also follows a

84

normal distribution with parameters determined by the specific process:

J
k
i

i.i.d.
⇠ N

�
J

k
i |µk , �

2
k

�
(4.8)

where J
k
i denotes the ith jump size for the kth jump process. Given the interval (S, T]

between two arbitrary timestamps S T and further denoting the jump times (from all

K processes) in this interval as {⌧
k
i }k,i, where k 2 {1, . . . , K} is the jump type and i is

the index of jumps of type k, the conditional transition density of the state vector xT can

be written as:

p(xT |xS, {⌧
k
i }k,i) = N

n
xT |µµµ(xS, T � S, {⌧

k
i }k,i) , C(T � S, {⌧

k
i }k,i)

o
(4.9)

The subscripts (k, i) represent all possible combinations for k 2 N+
, i 2 N+ to index a

jump in the interval (S, T]. The mean and covariance for the above density are:

µµµ(xS, T � S, {⌧
k
i }k,i) = e

A(T�S) xS +
X

k,i

e
A(T�⌧ki) c̃k µk (4.10)

C(T � S, {⌧
k
i }k,i) = e

A(T�S) K(T, S)
�
e
A(T�S)

�0
+
X

k,i

�
2
k e

A(T�⌧ki) c̃kc̃
0
k

�
e
A(T�⌧ki)

�0
(4.11)

The expression for K(T, S) is the same as that in the standard jump-di↵usion model:

K(T, S) =

Z T�S

t=0

e
�At bb0 (e�At)0 dt

Many of the jump-di↵usion models use the Poisson process to model the jump times be-

cause of its convenient memoryless property. However in real-world markets, the jumps

(i.e. injection or cancellation of large limit orders) are rarely memoryless and the future

occurrences are likely to depend on past history. Therefore, I propose the use of a shifted

Gamma distribution to model the interval between jumps instead of an exponential dis-

tribution:
p(⌧ ki | {⌧

k
j }j<i) = p(⌧ ki | ⌧

k
i�1)

=) ⌧
k
i � ⌧

k
i�1 � dk

i.i.d.
⇠ Gamma

�
↵k, �k

� (4.12)

where dk is the non-negative shift parameter for the kth jump process; ↵k and �k are the

shape and rate parameters of the Gamma distribution respectively. The shift parameter

is used here to ensure a minimum duration dk of “cool-down” time before the next jump

takes place i.e. p
�
[⌧ ki � ⌧

k
i�1] < dk

�
= 0. Institutional orders are introduced to the

market often as an incentive for trend or to push the price in a desired direction. These

orders of large volume are unlikely to be repeatedly injected within a short time-frame.

Hence, a shifted Gamma distribution with the memory of the last jump gives an intuitive

representation of the jumps in a real-world LOB market.

85

Finally, define the observational model for an observed market mid-price yt as the fair

price xt with additive Gaussian observation noise:

yt = xt + ✏t , ✏t
i.i.d.
⇠ N (0, �2

obs) (4.13)

p(yt |xt) = N
�
yt |Gxt , �

2
obs

�
(4.14)

where G = [0, . . . , 0, 1]. For simplicity of the expressions, let us allow the notations yn

and xn to denote the observed mid-price and latent state vector at time tn respectively.

Furthermore, denote all jump times in interval (tn, tm] from the kth jump process as

{⌧}
k
n:m. Given a set of N mid-price observations Y = {yn}

N
n=1 at timestamps {tn}Nn=1 and

an initialisation of x0 at t0, the joint model probability can thus be written as:

p
�
Y, {xn}

N
n=1,

�
⌧
 1:K

0:N
|x0,⌦

�

=
NY

n=1

n KY

k=1

⇥
p({⌧}kn�1:n | {⌧}

k
0:n�1)

⇤
p(xn |xn�1, {⌧}

1:K
n�1:n) p(yn |xn)

o (4.15)

where ⌦ represents all hyperparameters of the model.

4.3 Inference

Clearly, the proposed multi-jump di↵usion model shares a similar model structure to the

jump-di↵usion models reviewed and proposed in the previous chapter, This means that

the same general framework of the Rao-Blackwellised particle filter (RBPF) can also be

adopted to achieve sequential inference for this model.

As the multi-jump di↵usion SSM has the same linear-Gaussian form of the transition

density (4.9) and observational likelihood (4.14) as the standard jump-di↵usion model, the

same derivation of the conditional Kalman filter described in Section 3.3 can be applied

to obtain the recursive update formulae for the predictive distribution of the state vector

xn:

p(xn | y1:n�1, {⌧}
1:K
0:n) = N

�
xn |µµµn|0:n�1 , ⌃n|0:n�1

�
(4.16)

with predictive parameters:

µµµn|0:n�1 = e
A(tn�tn�1)µµµn�1|0:n�1 +

X

{k,i | ⌧ki 2{⌧}1:Kn�1:n}

e
A(tn�⌧ki)c̃k µk (4.17)

⌃n|0:n�1 = e
A(tn�tn�1) ⌃n�1|0:n�1 e

AT (tn�tn�1) +C(tn, tn�1, {⌧}
1:K
n�1:n) (4.18)

The posterior filtering density is subsequently obtained after the correction by the obser-

vation yn:

p(xn | y1:n, {⌧}
1:K
0:n) = N

�
xn |µµµn|0:n , ⌃n|0:n

�
(4.19)

86

Figure 4.3.1: The PDF of a shifted Gamma distribution with shift parameter dk. The red
dashed curve is the unnormalised density of jump interval that gives a jump time ⌧ki � tn�1;
while the area of the shaded region is the survival function value.

with the posterior parameters obtained with the same Kalman update formulae:

Qn = ⌃n|0:n�1G
T
⇣
G⌃n|0:n�1G

T + �
2
obs

⌘�1

(4.20)

µµµn|0:n = µµµn|0:n�1 +Qn

⇣
yn �Gµµµn|0:n�1

⌘
(4.21)

⌃n|0:n =
⇣
I�QnG

⌘
⌃n|0:n�1 (4.22)

The initialisation of µµµ0|0 and⌃0|0 can be readily set to some pre-determined values without

influencing the overall performance of the RBPF algorithm.

4.3.1 Jump proposals and semi-deterministic particle filtering

The distinct feature of the proposal model lies in the use of multiple jump processes.

From the inference perspective, the change is not only in the number of latent processes

but also in the jump dynamics which is no longer memoryless. The former increases

the dimension of latent sample space and imposes a bigger challenge in handling the

inherent particle degeneracy problem; while the latter requires an alternative design for

the jump proposals. In this subsection, I present solutions to these two problems within

the variable-rate particle filter (VRPF) part of the RBPF algorithm.

Inverse-CDF jump proposal

Unlike the memoryless Poisson process where jump intervals can simply be proposed from

an (unconditional) exponential distribution, the jump intervals in the proposed model

follow a shifted Gamma distribution. Due to the asynchronous arrivals of the observations

(i.e. update timestamps) and the jump times, the jumps proposed at time tn in the VRPF

should be later than the timestamp of the previous observation tn�1. This results in a

87

conditional (bootstrap) jump proposal from the prior (4.12):

p(⌧ ki | ⌧
k
i�1, tn�1)) p(⌧ ki � ⌧

k
i�1 | ⌧

k
i > tn�1)

= p
�
⌧
k
i � ⌧

k
i�1 | [⌧

k
i � ⌧

k
i�1] > [tn�1 � ⌧

k
i�1]

�

=
p
�
⌧
k
i � ⌧

k
i�1

T
[⌧ ki � ⌧

k
i�1] > [tn�1 � ⌧ ki�1]

�

p
�
[⌧ ki � ⌧

k
i�1] > [tn�1 � ⌧ ki�1]

�

=
G̃
�
⌧
k
i � ⌧

k
i�1 | dk , ↵k , �k , [tn�1 � ⌧ ki�1]

�

S
�
tn�1 � ⌧

k
i�1

�

(4.23)

where G̃(.) is the unnormalised density function of the jump interval which gives a ⌧ ki >

tn�1; and S(.) is the survival function of the shifted Gamma distribution. The relationship

between these two functions and the original shifted Gamma distribution for jump interval

is shown in Figure 4.3.1. Clearly, the resultant conditional probability for the jump

interval is a normalised density function which can be sampled analytically using the

inverse-CDF (cumulative density function) method. Denoting �⌧ ki = ⌧
k
i � ⌧

k
i�1, the CDF

is: (4.23) as:

F (T | ⌧
k
i > tn�1) =

Z T

�⌧ki =0

G̃
�
�⌧ ki | dk , ↵k , �k , [tn�1 � ⌧ ki�1]

�

S
�
tn�1 � ⌧

k
i�1

� d�⌧ ki

=

8
<

:
0 if T (tn�1 � ⌧ ki�1)
F (T)�[1�S(tn�1�⌧ki�1)]

S(tn�1�⌧ki�1)
otherwise

(4.24)

where F (T) is the CDF for the (unconditional) shifted Gamma distribution defined in

(4.12); the inverse-CDF sampling thus proceeds as follows:

1. Sample u ⇠ Uniform(0, 1);

2. Compute u
0 = (u� 1)⇥ S(tn�1 � ⌧ ki�1) + 1

3. Obtain the sample �⌧ ki = F
�1(u0)

It can be easily verified that �⌧ ki sampled from this algorithm always guarantees a ⌧ ki
greater than tn�1. And in the case where ⌧ ki�1 � tn�1 and consequently S(tn�1 � ⌧ ki�1) = 1,

the jump interval will be automatically sampled from the unconditional shifted Gamma

distribution, i.e. u0 = u ⇠ Uniform(0, 1).

Now with jump proposals sorted, the RBPF can be carried out with almost the same

procedure as that for the jump-di↵usion models introduced inChapter 3. However as the

model incorporates K independent jump processes, each particle in the algorithm should

also contain the jump-time sequences of the K jump processes during the sequential

propagation. Denote the content of a particle p at time tn as:

P
(p)
n =

n�
{⌧}

1:K
0:n

�p
, µµµ

p
n|0:n , ⌃

p
n|0:n , w

p
n

o
(4.25)

88

where µµµp
n|0:n,⌃

p
n|0:n are the posterior filtering parameters obtained from the Kalman filter

conditioned on the jump sequences
�
{⌧}

1:K
0:n

�p
; and w

p
n is the normalised particle weight.

A standard RBPF algorithm for the proposed multi-jump di↵usion model can be adapted

from Algorithm 7 in Chapter 3 with a slight change in the jump proposals.

Semi-deterministic particle filtering

Although Rao-Blackwellisation is adopted in PF to ease the curse of dimensionality arising

from the state vectors, it remains important to handle the high-dimensional sample-space

of the jump times which are proposed in the VRPF algorithm. Here, I propose a scheme of

semi-deterministic particle filtering inspired by the deterministic particle filter introduced

in [21].

Simply reviewing the conditional prior jump proposals (4.23) for VRPF algorithm, it

can be noticed that the proposed jump times ⌧ ki can exceed the timestamps of the current

update step tn. And based on the definition of the VRPF, any jumps (i.e. particles)

proposed outside the update interval (tn�1, tn] will be omitted and considered as no-jump

for the current propagation. This means that the e↵ective number of particles used to

explore the continuous spectrum/sample space of the jump times can be significantly

lower than the actual particle number Np specified in the VRPF algorithm. This lack

of exploration can lead to a number of undesirable outcomes including poor inference

accuracy and particle weight degeneracy.

The deterministic PF was originally applied to a hidden Markov model (HMM) in [21]

to allow online inference for the hidden state. A salient di↵erence between the HMM and

the SSM is that the hidden state in the HMM is discretely distributed with a finite support.

The deterministic PF thus performs thorough exploration of all possible descendants

(i.e. hidden states) of each ancestor particle from the previous timestamp, which gives a

significant improvement in inference accuracy at the cost of extra computation. A novel

variant of the deterministic PF is employed in Chapter 5, in which the algorithm is

more thoroughly studied. Here, let us focus on the adaptation of the generic algorithm

to further accommodate the continuous latent jumps in the proposed model.

Clearly, it is impossible to apply the deterministic PF directly to explore the sample

space of jump times as it has an infinite support. Assuming for now that the model has

only one jump process (i.e. K = 1), a semi-deterministic approach is developed with the

following steps at stage tn of the VRPF:

1. For each particle p = 1, . . . , Np, deterministically consider both possibilities of (i)

no jump within (tn�1, tn]; and (ii) having at least 1 jump within (tn�1, tn].

2. Compute the jump probability q
k,p
J (of particle p) given the time of the last jump

89

Algorithm 8 Semi-deterministic RBPF

Input: Time-stamps {tn}
N
n=1; observation {yn}

N
n=1; K-digits binary numbers encoding the jump

combinations {Bj}
2K
j=1.

Output: A collection of weighted particles {P (p)
N }

Np

p=1

1: Initialisation: (n=0) Create initial particle collection P
(p)
0 =

�
;, µµµprior, ⌃prior,

1
Np

for p = 1, . . . , Np

2: for n = 1, . . . , N do
3: for p = 1, . . . , Np do

4: Compute predictive parameters µ̂µµp
n|0:n�1 , ⌃̂

p
n|0:n�1 conditioned on no jump.

5: Pre-set all predictive parameters {µµµp,j
n|0:n�1}

2K
j=1 , {⌃

p,j
n|0:n�1}

2K
j=1 to µ̂µµ

p
n|0:n�1 , ⌃̂

p
n|0:n�1.

6: Pre-set all (unnormalised) weights {w̃p,j
n }

2K
j=1 to w

p
n�1.

7: Pre-set all jump times
�
{⌧}

1:K
0:n

�p,j
to

�
{⌧}

1:K
0:n�1

�p

8: for k = 1, . . . ,K do
9: Propose jumps {⌧}k,pn�1:n from the conditional prior (4.28) of the kth jump process.

10: Compute probability q
k,p
J using (4.26)

11: for j = 1, . . . , 2K do
12: if (the kth digit Bk

j = 1) then

13: µµµ
p,j
n|0:n�1 = µµµ

p,j
n|0:n�1 +

P
⌧i2{⌧}k,p

n�1:n
e
A(tn�⌧i)c̃k µk

14: ⌃p,j
n|0:n�1 = ⌃p,j

n|0:n�1 +
P

⌧i2{⌧}k,p
n�1:n

�
2
k e

A(tn�⌧i) c̃kc̃0k
�
e
A(tn�⌧i)

�0

15: w̃
p,j
n = w̃

p,j
n ⇥ q

k,p
J

16: Append proposed jump time(s):
�
{⌧}

k
0:n

�p,j
 ({⌧}k0:n

�p,j
[{⌧}

k,p
n�1:n

17: else
18: w̃

p,j
n = w̃

p,j
n ⇥ (1� q

k,p
J)

19: end if
20: end for
21: end for
22: Update the weights with Kalman PED: w̃p,j

n = w̃
p,j
n ⇥ PED (yn |µµµ

p,j
n|0:n�1,⌃

p,j
n|0:n�1), for all

j = 1, . . . , 2K

23: end for
24: Normalise weights wp,j

n = w̃
p,j
n /(

P
p

P
j w̃

p,j
n)

25: Resample Np particles {P (p)
n }

Np

p=1 from the total 2K ⇥Np particles.

26: Kalman update posterior parameters
�
µµµ
p
n|0:n,⌃

p
n|0:n

�� yn} from Eq. (4.21) and (4.22)

27: (Re-normalise weights {wp
n}

Np

p=1 if necessary)
28: end for
29: Return: {P

(p)
N }

Np

p=1

90

⌧
k,p
i�1:

q
k,p
J = Pr

�
⌧
k,p
i 2 (tn�1, tn]

�� ⌧ k,pi�1

= 1�

S(tn � ⌧
k,p
i�1)

S(tn�1 � ⌧
k,p
i�1)

(4.26)

where S(.) is the survival function of the prior density.

3. For (i), propagate the state vector conditioned on no jump (i.e. standard SSM

di↵usion). For (ii), propose jump time(s) from an augmented conditional prior

p
�
⌧
k
i | ⌧

k,p
i�1, ⌧

k,p
i 2 (tn�1, tn]

�
; and propagate the state vector conditioned on the pro-

posed jump time(s).

4. Evaluate the (unnormalised) weights for both scenarios: (i) w̃p
n (no jump) = w

p
n�1 ⇥

PED(yn)⇥ (1� q
k,p
J); (ii) w̃p

n (with jump) = w
p
n�1 ⇥ PED(yn)⇥ q

k,p
J .

5. Normalise weights and resample Np particles out of the total 2Np particles for the

next propagation step.

where PED is the prediction error decomposition obtained from the conditional Kalman

filter [88] with its formula derived in (3.32). In the K = 1 deterministic filtering case, for

each of the 2 (2K) descendants of particle p, its PED can be expressed as:

PED (yn |µµµ
p,j
n|0:n�1,⌃

p,j
n|0:n�1)

= p
�
yn

�� y1:n�1, ({⌧}1:K0:n)
p,j
�

=N

⇣
yn

��Gµµµ
p,j
n|0:n�1 , G⌃p,j

n|0:n�1G
T + �

2
obs

⌘
(4.27)

where j is the descendant index; and µµµ
p,j
n|0:n�1 and ⌃p,j

n|0:n�1 are the predictive parameters

computed from Eq. (4.17) and (4.18) conditioned on jump(s) or no jump. Such a filter-

ing scheme deterministically explores the existence of jumps within the update interval,

conditioned on which the jump particles are randomly sampled and re-weighted. This

enables e↵ective usage of particles by proposing jumps that only occur between tn�1 and

tn, with proposal density:

p(�⌧ ki | tn�1 < ⌧
k
i tn) =

p(�⌧ ki
T

tn�1 < ⌧
k
i tn)

S(tn�1 � ⌧ ki�1)� S(tn � ⌧ ki�1)

=
G̃(�⌧ ki | dk,↵k, �k, [tn�1 � ⌧ ki�1], [tn � ⌧

k
i�1])

S(tn�1 � ⌧ ki�1)� S(tn � ⌧ ki�1)

(4.28)

where samples can also be analytically obtained using the inverse-CDF method. However,

it is important to monitor the value of u0 in this case because it is possible that there is

no valid sample to draw from this conditional prior i.e. (tn�1 � ⌧ ki�1) < (tn � ⌧ ki�1) dk

and S(tn�1 � ⌧
k
i�1) � S(tn � ⌧

k
i�1) = 0. It is also worth noting that with a single jump

process, the superscript k is redundant as it only takes one value and the there are only

two deterministic branches for each “ancestoral” particle. While in the case where K > 1,

91

the superscript is then used to indicate the values and random variables of the kth jump

process. Furthermore with K > 1, the number of deterministic branches that require

exploration will be increased to 2K combinations of the binary states of the K jump

processes. This can be expressed with the K-digits binary numbers, for example:

00 . . . 00 No jump in any process

00 . . . 01 Jump(s) in the 1st process

00 . . . 10 Jump(s) in the 2nd process

...
...

11 . . . 10 Jump(s) in all processes but the 1st

11 . . . 11 Jump(s) in all processes

This allows the combinations of di↵erent jumps to be thoroughly explored when propa-

gating the state, which can subsequently improve the inference accuracy. However, the

limitation of this semi-deterministic filtering scheme is that it requires exponentially grow-

ing computation with the increasing number of jump processes. Therefore, the scheme is

only practical for a relatively small K. Algorithm 8 demonstrates the pseudo-code of a

semi-deterministic RBPF for the proposed multi-jump di↵usion model with an arbitrary

K number of jump processes. The algorithm utilises the linear structures of the predictive

mean and covariance, which means that certain “for” loops can be vectorised to provide

more e�cient computation.

Near the end of each propagation, the semi-deterministic filtering scheme requires the

resampling of 2K ⇥Np particles to produce Np particles as the posterior collection for the

next propagation step. While this can be achieved with a simple importance resampler,

the authors of [21] also proposed an “optimal” stratified resampling scheme which has

shown improved performance on HMM. The details of this resampler is introduced and

discussed in Appendix 5.A and Section 5.4.4 of this thesis respectively. In the next sec-

tion, a comparison between the performance of the two resamplers on a synthetic dataset

is presented.

4.4 Results and discussions

In this section, I present experimental results obtained with the proposed multi-jump

di↵usion model. First, the model’s behaviour is examined by simulating the process

with a fixed set of hyperparameters and the inference performance of di↵erent RBPF

configurations is evaluated on this synthetic dataset. Furthermore, the proposed model is

applied to a set of FOREX mid-price data and the model’s interpretability on a real-world

92

Table 4.4.1: Simulation hyperparameters

Process Hyperparameters

z2,t
↵1 = 60.0 , �1 = 1.0 , d1 = 1.5 ,

✓1 = �0.05 , µ1 = 0 , �1 = 0.5

z3,t
↵2 = 30.0 , �2 = 1.0 , d2 = 1.5 ,

✓2 = �0.3 , µ2 = 0 , �2 = 1.0

z4,t
↵3 = 10.0 , �3 = 1.0 , d3 = 10.0 ,

✓3 = �0.9 , µ3 = 0 , �3 = 2.5

xt ✓ = �0.5 , �v = 0.5 , �obs = 0.05

Figure 4.4.1: The simulated multi-jump di↵usion process using pre-assigned hyperparameters.
The top panel shows the synthetic observations and the volatility-free signal z1,t. The middle
panel shows the individual jump processes. While the bottom panel shows the aggregated
velocity (z2,t + z3,t + z4,t) with true jump times indicated in dashed lines (same colour codes for
jumps)

financial market is studied.

4.4.1 Simulation and inference

The multi-jump di↵usion model is designed to capture the trends in price dynamics at

di↵erent time-scales. Therefore, I perform the first experiment by simulated the price

process from the proposed model and study its behaviour in relation to the price dynam-

93

(a
)
G
en

er
ic

R
B
P
F
w
it
h
IR

S
(b

)
S
em

i-
d
et
er
m
in
is
ti
c
R
B
P
F

w
it
h
IR

S
(c
)
S
em

i-
d
et
er
m
in
is
ti
c
R
B
P
F
w
it
h

st
ra
ti
fi
ed

re
sa
m
p
li
n
g

F
ig
u
re

4
.4
.2
:
T
h
e
p
os
te
ri
or

in
fe
re
n
ce

re
su
lt
s
ob

ta
in
ed

u
si
n
g
d
i↵
er
en
t
co
n
fi
gu

ra
ti
on

s
of

th
e
R
B
P
F

al
go

ri
th
m
.
T
h
e
to
p
p
an

el
s
sh
ow

th
e
p
os
te
ri
or

m
ea
n
s
(i
n
re
d
)
of

th
e
cl
ea
r
si
gn

al
p
ro
ce
ss

z
1
,t
an

d
th
ei
r
co
rr
es
p
on

d
in
g
95

%
-C

I’
s
(i
n
gr
ey

sh
ad

ed
)
in

co
m
p
ar
is
on

to
th
e
tr
u
th

(i
n
b
la
ck
).

T
h
e
b
ot
to
m

p
an

el
s
sh
ow

th
e
p
os
te
ri
or

m
ea
n
s
(i
n
re
d
)
an

d
95

%
-C

I’
s
(i
n
gr
ey

sh
ad

ed
)
of

th
e
ag

gr
eg
at
ed

ve
lo
ci
ty

in
co
m
p
ar
is
on

to
th
e
tr
u
th

(i
n
b
la
ck
).

94

{⌧}
1
0:N with (i) {⌧}

1
0:N with (ii) {⌧}

1
0:N with (iii)

{⌧}
2
0:N with (i) {⌧}

2
0:N with (ii) {⌧}

2
0:N with (iii)

{⌧}
3
0:N with (i) {⌧}

3
0:N with (ii) {⌧}

3
0:N with (iii)

Figure 4.4.3: The posterior probabilities of jump times for each jump process. The probabilities
are calculated on time bins formed by input timestamps {tn}

N
n=0 (in coloured bars); while the

(Gaussian) smoothed probabilities are plotted in black lines. (i), (ii), (iii) correspond to the
RBPF configurations described in Section 4.4.1

Table 4.4.2: Numeric results for di↵erent inference configurations. Bold is the best.

(i) (ii) (iii) std. RBPF + (50%) adaptive IRS
l2-norm 0.5746 0.5767 0.5079 0.5560

avg. jump hit rate 14.5% 15.7% 16.7% 10.5%
avg. jump detection rate 20.8% 18.8% 25.4% 18.93%

avg. L̂(Y) (1�) -389.91 (1.977) 391.37 (1.363) -388.75 (0.443) -390.12 (1.171)

95

ics in a LOB market. The dataset is simulated to have three jump processes governed by

distinct sets of hyperparameters as shown in Table 4.4.1. The model is designed specif-

ically to allow trends of di↵erent time-scales to be induced by jumps arriving at di↵erent

frequencies i.e. z2,t causes long-term trends but has a high expected jump interval while

z4,t initiates sharp/instantaneous trends with a higher frequency and a longer cool-down

period (d3).

Figure 4.4.1 shows the simulated price process, volatility-free signal process, indi-

vidual and aggregated jump processes. A total of 500 data points (with 54 jumps) are

generated on an irregular time-grid with a maximum time interval of 1.5s. With the cho-

sen hyperparameter settings, it can be seen that the simulated process possesses certain

features that are often observed from a real-world LOB market including the superposi-

tion of long-short term trends and price volatility. The symmetric jumps resemble the

impacts of submissions and cancellations of limit orders at both sides of the order book,

which wears o↵ exponentially.

Regarding the Bayesian inference of the model, I present results obtained using three

di↵erent configurations of the RBPF: (i) a generic (bootstrap) RBPF with importance

resampling (IRS); (ii) a semi-deterministic RBPF with importance resampling (IRS); and

(iii) a semi-deterministic RBPF with “optimal” stratified resampling. Using a moderate

number of particles Np = 500, Figure 4.4.2 shows the posterior state inference results

on the synthetic dataset. Since the observation noise �obs is set to a small value for sim-

ulation, the posterior mean of xt can be expected to be very close to the observations yt,

which will not reveal much information. Instead, I present the posterior mean and 95%

confidence interval (CI) of the clear signal process z1,t, and the aggregated velocity term

(zw2,t+z3,t+z4,t). Furthermore, the posterior jump probabilities are computed for time bins

delineated by the input timestamps {tn}Nn=0. Figure 4.4.3 shows the posterior jump-time

probabilities of each jump process inferred using the three RBPF configurations. Visu-

ally from Figure 4.4.3, it can be observed that both RBPFs with semi-deterministic

filtering scheme generally outperform the generic RBPF in terms of the jump accuracy.

The importance resampling shows poor performance in handling the trajectory (time)

degeneracy as can be observed from both Figure 4.4.2 and 4.4.3. On the other hand,

the stratified resampler preserves more diverse particle trajectories by partitioning the

particle collection into di↵erent strata [97], which provides more reasonable quantifica-

tion of uncertainty e.g. more bins with high or moderate probabilities around the true

jump time.

Table 4.4.2 quantitatively reports the inference performance using di↵erent metrics:

the l2-norm computes the root-mean-squared error between the posterior mean and the

truth of the state vectors; the average jump hit rate is the average probability of success-

fully detecting a jump within an interval e.g. (tn�1, tn] as well as correctly identifying the

96

Table 4.4.3: LOB inference hyperparameters

Process Hyperparameters

z2,t
↵1 = 60.0 , �1 = 1.0 , d1 = 10.0 ,

✓1 = �0.02 , µ1 = 0 , �1 = 0.2

z3,t
↵2 = 20.0 , �2 = 1.0 , d2 = 1.0 ,

✓2 = �0.3 , µ2 = 0 , �2 = 0.4

z4,t
↵3 = 10.0 , �3 = 1.0 , d3 = 10.0 ,

✓3 = �0.9 , µ3 = 0 , �3 = 0.5

xt ✓ = �0.7 , �v = 0.15 , �obs = 0.1

jump type i.e. from the kth jump process; while the average jump detection rate does not

include the classification of jump types; the value L̂(Y) represents the log of estimated

model evidence (marginal likelihood) p̂(Y) which is computed as the product of the sums

of the unnormalised weights in PF [64]:

p̂(Y) =

8
>>>>><

>>>>>:

NY

n=1

h NpX

p=1

w̃
p
n

i
if std. RBPF

NY

n=1

h NpX

p=1

2KX

j=1

w̃
p,j
n

i
if semi-det. RBPF

(4.29)

The values of L̂(Y) reported in the table are obtained by averaging across 10 random

runs of each algorithm. As the exact value of the model evidence cannot be obtained,

the experiment compares the standard deviations of L̂(Y) and focuses on the variance

reduction aspect of these Monte Carlo algorithms. The table has also included an addi-

tional set of results obtained with a standard RBPF using adaptive IRS. It is clear that

the semi-deterministic RBPF with stratified resampling outperforms other configurations

in all metrics.

Based on the simulation results, the proposed model possesses the attractive feature of

being conditionally tractable and Markovian while allowing trends of di↵erent time-scales

to be expressed by multiple jump processes. Furthermore, empirical results suggest that

the semi-deterministic filtering scheme and the stratified resampler are able to improve

the posterior approximation accuracy on this di�cult jump inference task.

4.4.2 FOREX market price

The high liquidity and the small bid-ask spread of FOREX market make it one of the most

leveraged markets in finance. Hence, FOREX markets are often targeted and dominated

by institutional orders of large volume that lead to significant impacts on the price dy-

97

(a) Observations and posterior fair price process

(b) Posterior jump trends and probability

Figure 4.4.4: Posterior inference results of the multi-jump di↵usion model on the EUR-USD
mid-price data between 19:30 and 19:40 ET on 2nd of September, 2015. (a) shows the observed
mid-price (in black), posterior mean of the fair price xt (in red) and its 95%-CI. (b) shows the
posterior trend mean and probability of each jump process.

98

(a) Observations and posterior fair price process

(b) Posterior jump trends and probability

Figure 4.4.5: Posterior inference results on the EUR-USD mid-price data between 20:40 and
21:00 ET on 2nd of September, 2015.

99

namics. In order to investigate the connection between order operations and price actions,

the proposed multi-jump di↵usion model is applied to two sets of EUR-USD mid-price

data for analyses on the inference results.

The two sets of data used in this experiment are extracted from the EUR-USD LOB

on the 2nd of September 2015 for periods of 10 minutes (19:30 – 19:40 ET) and 20 min-

utes (20:40 – 21:00 ET) respectively. The model is constructed with 3 jump processes and

a set of heuristically tuned hyperparameters shown in Table 4.4.3 to allow salient fea-

tures to be captured. Inference is performed with 500 particles using semi-deterministic

RBPF with the “optimal” stratified resampling scheme. Both datasets are normalised to

have zero mean and unit variance.

Figure 4.4.4 shows the posterior inference results on the mid-price data collected

between 19:30 and 19:40. The mid-price in this period experiences several sharp jumps

which are well captured by trend terms z3(t) (green) and z4(t) (red). These jumps are

often caused by large buying/selling orders submitted very close to the mid-price (e.g.

market orders). On the other hand, one can also observe trends in longer time scales

e.g. from around 19:36 to around 19:38, as a result of continuous imbalance between the

buying and selling pressure. These more persistent trends are also recognised as jump

trends by the process z2(t) (purple) in the proposed model. Furthermore, it may be

noticed that certain periodicity of the jump times exists in the bottom panel; while the

jump sizes inferred are relatively small compared to other jumps from the same process.

Such a pattern can be an indication of “iceberg orders” placed by institutional traders to

minimise the impact of a single large limit order to the market.

Similarly, Figure 4.4.5 shows the posterior inference results on the data collected

in a 20-minutes interval from a busier period of the trading day. It is clear from the

figure that the price dynamics in this period involves several more short-term jumps as

a result of increased market liquidity and order transaction rate. While the short-term

jump trends z3(t), z4(t) are fairly noisy, the long-term trend z2(t) in this case provides

more informative signals for investment decisions.

Experiments with real-world LOB data illustrate that the proposed model is able to

perform sequential tracking of the market price with good accountability of the process

uncertainty as shown in the 95%-CI. The posterior inference of the jump processes in the

model provides reasonable insights towards the market trends of various time scales which

allow trend-following/momentum-based trading strategies to be executed at di↵erent fre-

quencies and time horizons.

100

Figure 4.4.6: The top panel shows the arrivals of limit orders in scattered pixels during the
period 19:30 – 19:40 ET. The opacity of the pixel is positively correlated to the volume of the
order submitted. The bottom three panels re-display the posterior jump probabilities inferred
in the proposed model with clipping applied at a threshold of 20%.

4.4.3 Connections to the NHPP intensity inference model

In Chapter 2, a model for sequential Bayesian inference on the intensity function of

non-homogeneous Poisson processes (NHPP) is introduced. Its application on LOB ar-

rival orders (i.e. submission) was also demonstrated to give good intuition of market

behaviours. Therefore, it is possible to establish a connection between the multi-jump

di↵usion model proposed in this chapter to the S-LD intensity inference model.

Figure 4.4.6 shows the clipped jump probabilities computed in the first LOB ex-

periment above using a (lower) threshold of 20%, together with a plot of arriving limit

orders (i.e. submissions) in the top panel. Limit orders that submitted too far from the

mid-price are filtered out and not shown in the plot. With the order volume positively

correlated to the opacity of the scattered pixels, it can be roughly seen that there is a

matching pattern between the inferred posterior jump times and the arrivals of large-

volume orders (opaquer pixels). The pattern is clearer at the sharp price jumps (e.g. for

z3(t) and z4(t)) where the market also experiences large influx of limit orders from both

bid and ask sides. This helps justify the intuition used when developing the proposed

model: apart from outside factors, the jumps of high-frequency LOB market may also be

initiated by operations of large institutional orders.

101

Therefore, a promising extension upon the current multi-jump di↵usion model would

be to integrate with the S-LD model proposed in Chapter 2 which targets the intensities

of large-volume order operations. The sequentially inferred NHPP intensities could thus

replace the prior-based jump proposals and provide an improved predictive ability to the

current model by incorporating real-time order book information.

4.5 Chapter summary and future work

In this chapter, I proposed a novel jump-di↵usion model for price inference in the high-

frequency LOB market. Taking special account of typical features of a liquid LOB market,

the new model consists of multiple jump-reversion processes and a varying-mean OU

process to accommodate multi-level trends of price dynamics as well as market’s inherent

volatility. The model is constructed with a single SSM that preserves the (conditional)

analytical tractability while allowing salient features to be incorporated.

Regarding the inference, I proposed a semi-deterministic filtering scheme beyond the

RBPF algorithm in [13]. The proposed method performs more thorough exploration of the

latent sample space and has been shown to achieve improved inference accuracy compared

to the standard RBPF algorithm at the cost of extra computations. The model has also

demonstrated good performance on real FOREX datasets by capturing trends at di↵erent

time scales and providing plausible interpretations to the market activities.

For future work, the current model can be extended to have time-varying parame-

ters/hyperparameters such as stochastic volatility �v,t and mean-reversion (✓t , {✓k,t}k).

Such an extension may provide additional accountability to the ever-changing nature of

the financial markets.

Time-varying jump proposals may also be achieved by introducing non-homogeneous

Poisson processes as jump processes with sequentially inferred intensities (e.g. with the

S-LD model) as discussed in the previous section.

Recall that with the volumetric model introduced in Chapter 3, the price trend in the

model takes the aggregated imbalance signal summarised from the outstanding limit order

volumes on the LOB. Hence, another future research area of interest would be to con-

sider both impulsive e↵ect from instantaneous order operations and persistent imbalance

pressure from the outstanding limit order volumes in the modelling of price dynamics,

which may provide informative disaggregation of market signals and sophisticated trading

strategies to be executed. This would typically require data with much finer details and

higher temporal resolution e.g. ticks data and impose challenges in algorithm complexity.

102

Chapter 5

State-space regime-switching model

with infinite mixture dynamics

So far in this thesis, I have covered multiple models that are built around the general

framework of SSM. SSMs have demonstrated their particular strength in various aspects

including simplicity in the design of system dynamics, good model interpretability and

reasonable complexity for inference. While retrospective analyses of financial markets are

important, the modelling of financial data stresses strongly the requirement to make ac-

curate predictions with quantifiable uncertainties. Although the Bayesian structure of the

SSM allows uncertainties to be readily quantified, its predictive power is heavily depen-

dent on the prior design of dynamics, or the tuned set of hyperparameters. The process

of tuning hyperparameters is typically time-consuming and prone to overfitting.

In this chapter, motivated by these limitations and inspired by the multi-modal di↵u-

sion behaviours of the price process in high-frequency financial markets, I propose a novel

sequential model that accommodates multi-regime di↵usion behaviours in a system re-

quiring minimal prior assumptions and knowledge. The model is then inferred with an

iterative inference algorithm that achieves both online sequential state inference and of-

fline parameter learning.

The remainder of the chapter is organised as follows. Section 5.1 reviews the exist-

ing literature on switching SSMs and introduces the motivation in the context of financial

price modelling. Two basic models which form important components of the full proposed

model are introduced in Section 5.2. The detailed definition of the proposed model and

its corresponding inference algorithm are presented in Section 5.3 and 5.4 respectively.

In Section 5.5, I evaluate the performance of the model and the inference algorithm and

present the experimental results obtained on both synthetic and real datasets. Finally,

Section 5.6 explores the possibility of model generalisation using a hierarchical construc-

tion of the prior and present an example.

103

5.1 Introduction and motivations

The SSM, as a powerful generative modelling framework, has allowed many real-world

systems to be probabilistically modelled using empirically estimated dynamics or theoret-

ically derived di↵erential equations. The development of the particle filter (PF) further

allows richer prior knowledge about the modelled system to be incorporated in the SSM

in a non-linear, non-Gaussian fashion, which could significantly improve model behaviour.

Di↵usion in real-world processes rarely follows a fixed dynamics, which means that a

single set of SSM hyperparameters can not capture all movement patterns exhibited by

the object. To accommodate this, interacting multiple models (IMM) [98, 99, 100] and

switching state-space models (SSSM) [15] were developed, in which the system dynamics

or inputs transition discretely in a Markovian manner from one regime to another. Such

models often require a substantial amount of prior knowledge about the dynamic system

and careful tuning of the model hyperparameters. In order to better track manoeuvring

targets and accommodate abruptly changes in di↵usion parameters, the authors of [101]

(with preliminary studies in [102, 103]) proposed a novel framework which incorporates

the change-point analysis [104, 105] in the particle learning (PL) algorithm [106] to achieve

online estimation of piecewise time-varying/constant parameters. While the change-point

construction provides convenience for model inference, it does not perform clustering of

the changes (i.e. each change is independent) and also gives up a certain amount of

predictive power compared to the Markovian switching dynamics. More importantly, all

these switching models rely on a more fundamental assumption – the exact number of

regimes in the modelled system can be identified a priori.

In a high-frequency financial market, the price process is always subject to multiple

known or unknown sources of innovations and disturbances. Di↵erent combinations of

innovations are likely to result in di↵erent dynamics which the price process follows for

a certain duration of time before switching into another. This limits the amount of prior

knowledge that can be assumed or incorporated during the construction of a price model

and imposes two major challenges for the SSM applications: (1) identification of the

number of dynamic regimes; and (2) tuning/learning of hyperparameters for each regime.

Unlike some other systems or processes where the number of dynamics can sometimes be

estimated or known a priori by linking to their corresponding physical interpretations,

market interactions make it di�cult to anticipate the number of price regimes in the fu-

ture market or to even identify the regimes from existing price data. On the other hand,

heuristic tuning of SSM hyperparameters for financial models is more challenging than

applications in other fields due to both the lack of process interpretability and the extra

precautions needed to prevent catastrophic overfitting [107].

104

I propose a novel model which aims to tackle the challenging task where the dynam-

ics of the di↵usion object are unknown. This includes the number of movement regimes,

the dynamics-controlling parameters associated with each regime and the transitional be-

haviours between regimes. Based on a standard linear Gaussian SSM, the proposed model

allows a potentially infinite number of dynamic regimes to exist in the modelled system.

The transition of regimes is designed to follow a continuous-time hidden semi-Markov

Model (HsMM) where duration can be explicitly modelled. Furthermore, I present a

complete inference algorithm that not only infers the latent states (i.e. regime, posi-

tion, velocity etc.) but also performs Bayesian learning of the regime parameter and

e↵ectively mitigates the unwanted overfitting. This algorithm elegantly combines RBPF,

particle-MCMC (PMCMC) [64] and blocked Metropolis-within-Gibbs (BMwG) samplers

to achieve accurate posterior inference with a reasonable computational cost. The pro-

posed model stands out not only in its minimal requirement for prior assumptions, but also

in its ability to accommodate abrupt changes in di↵usion behaviours and automatically

cluster the changes for retrospective analyses.

5.2 Background and review

The hierarchical structure of Bayesian modelling has allowed us to model complex systems

or data with novel integration of sophisticated models. In this section, I will review the

two key components that realise the infinite regime-switching feature desired in the SSM:

the HsMM and the Dirichlet process model (DPM).

Applications of the Dirichlet process (DP) as a non-parametric prior on switching

models have been seen in several papers. The hierarchical DP (HDP), as a Bayesian-

extended variant of the DP, was initially combined with a standard hidden Markov model

(HMM) in [108] to provide richer transition dynamics for the discrete hidden states.

Building on this work, a Bayesian non-parametric version of the HMM in which the HDP

defines a prior distribution on the transition matrices over countably infinite state spaces

was presented in [109], termed the HDP-HMM. Promising results have been obtained

by the HDP-HMM in various applied problems such as visual scene recognition [110],

music synthesis [111] and speaker diarisation [112]. The authors of [113] later improved

the standard model with the more powerful HsMM and used Gibbs sampling for full

Bayesian inference.

Extending the application of DP further to dynamical models, the DPM was employed

in [114] to serve as general priors for the unknown process noise and observation noise in

the SSM, which allows more interesting noise features, such as multimodaility and heavy-

tailedness, to be learned. The authors of [115] reviewed a number of HMM-governed

discrete-time dynamical models including the SSM and the autoregressive (AR) model.

However, the inference algorithm for these models and how inference can be achieved for

105

ssst1 ssst2 ssst3 ssstN

yt1 yt2 yt3 ytN

A

!k

K

. . .

. . .

Figure 5.2.1: Graphical model of a standard HMM

non-conjugate cases are omitted in the paper. Another study in [116] aimed to model a

linear-Gaussian dynamical system with unknown switching input regimes via the combi-

nation of the SSM and the HDP-HMM, and hence tackles a similar task as that described

earlier in this chapter. Nevertheless, the proposed model in this chapter further achieves

explicit modelling of regime duration under a non-linear continuous-time setting.

The remainder of this section will briefly review the two fundamental components that

allow the building of the proposed model.

5.2.1 Hidden semi-Markov model

As has been seen in many applications, the standard HMM is a generative model consisting

of two layers: a layer of hidden states {sssn}Nn=1; and a layer of state-dependent observations

{yn}
N
n=1 as shown in the graphical model of Figure 5.2.1. The hidden states {sssn}

N
n=1

are a sequence of time-indexed discrete random variables, each of which represents one

hidden class out of the total K classes that generates the observation yn. Denote the

hidden states using a sequence of “one-hot” vectors of finite dimension K, i.e. for the

state sssn to be assigned to class k, the kth element of the vector sss
k
n = 1 and all other

elements sss�k
n = 0. The transition of these hidden states is governed by a time-invariant

transition matrix AK⇥K forming a Markov chain. Denoting Aij as the element at ith row

and jth column of matrix A, we have Aij = p(sssin = 1 |sssjn�1 = 1) and
P

i Aij = 1. The

transition dynamics can thus be summarised with a simple expression:

p(sssn |sssn�1) = Categorical
⇣
Asssn�1

⌘
(5.1)

Further denote the emission distribution or likelihood for observation yn conditioned on

hidden state sssn using 1-of-K coding:

p
�
yn | sssn, {!k}

K
k=1

�
=

KY

k=1

p(yn | !k)
ssskn (5.2)

106

where {!k}
K
k=1 are the emission parameters for each class. Priors can also be placed on

both emission parameters and transition matrix A to enable full Bayesian inference for

the model.

The simplicity of the standard HMM allows it to be conveniently integrated into dif-

ferent time-series models including the SSM. Despite its popularity, one of the major

limitations of the HMM appears to be the lack of ability to explicitly model the runtime

of each class (i.e. the duration of continuously staying in one class). The inherent nature

of Markovian transitions prohibits any other modelling options for runtime except geo-

metric distributions. This therefore motivates the development of HsMM as a variant of

the standard HMM by allowing a random duration variable dn to be drawn from a class-

specific distribution p(dn|sssn). Once a transition occurs, the state vector sssn will remain

unchanged until the duration dn expires, at which point another Markovian transition will

take place to produce a new (and di↵erent) hidden state. It is worth noting that although

the transition at the end of a duration is Markovian, conditional independency does not

generally exist as the name “semi-Markov” suggests.

While most HMMs and HsMMs operate under a discrete-time framework (i.e. the

transitions occur at integer n of a regularly spaced time-grid), the use of a continuous-time

HsMM is proposed here to allow further generalisation to irregular data updates and better

adaptability to the continuous-time SSM used for the complete model. A continuous

probability density is thus assigned to the class-specific duration distribution with support

[0,+1) e.g. a truncated normal distribution with mean and variance (µk, vk):

p(dn |sss
k
n = 1) = N

+
⇣
dn |µk, vk

⌘
(5.3)

Figure 5.2.2 shows the graphical model of a continuous-time explicit-duration HsMM.

In such a model, let us allow the hidden states and observations to be indexed by both

the data index n and the timing tn. The duration dl is drawn from the class-dependent

distribution as in Eq. (5.3) and the hidden state transition dynamics are defined as

follows:

ssstl = ssstl+1
= ... = ssstn , n = max

i
{i | ti tl + dl} (5.4)

p(ssstn+1 |ssstn) = Categorical
⇣
Āssstn

⌘
(5.5)

where the transition matrix Ā is a re-normalised version of A matrix with 0 self-transition

probability e.g. the entry at ith row, kth column Āik :=
Aik

1�Akk
(1��i�k). Another duration

is randomly sampled at tn+1 conditioned on the just-switched hidden state ssstn+1 . There are

other ways of constructing a graphical model for HsMM: one typical discrete-time example

is introduced in [113] using the concept of “super-state” nodes that emit random-length

segments of observations; a di↵erent representation in [117] uses the idea of “finish” nodes

107

ssstl ssstn

ytl ytn

µk, vk

K

A

!k

K

ssstn+1 ssstm

ytn+1 ytm

dl dn+1

. . .

. . .

. . .

. . .

Figure 5.2.2: Graphical model for an explicit-duration HsMM

to signal state transitions. All these alternative graphical models demonstrate similar

features as the model presented in Figure 5.2.2.

As far as the inference is concerned, while it is possible to perform the message-passing

algorithm that is analogous to the forward-backward algorithm used for discrete-time

HMM, the continuous-time generalisation as well as the integration with DPM and SSM

presents challenges in terms of model tractability and algorithm complexity. Hence later

in Section 5.3, a variant of this HsMM is presented, which restores the Markovian property

with an accurate approximation of the duration model. The inference of the HsMM is

handled in conjunction with the other two components in Section 5.4 once the complete

model has been defined.

5.2.2 Dirichlet process model

In order to understand the “infinity” achieved by the DPM, the Dirichlet process (DP)

should be introduced first. The DP is an infinite-dimensional generalisation of the Dirich-

let distribution. Denoting P as the random probability measure over (⌦,B), a DP is

defined as P(·) ⇠ DP(P0,↵), which is parameterised by a base measure P0 and a positive

scale factor ↵. Such a process satisfies that for any measurable partition B1, ..., BK of the

sample space ⌦ and any value of K, the probability measure of this partition follows:

P(B1), ...,P(BK) ⇠ Dirichlet
⇣
↵P0(B1), ...,↵P0(BK)

⌘
(5.6)

Note that the sampled random probability measure P essentially represents a special form

of Bayesian histogram which only specifies that bin Bk is assigned with probability P(Bk)

but does not specify how probability mass is distributed within the bin Bk and thus

removes the sensitivity to the specific choice of bins/partitions. With such a formulation,

108

the DP prior allows the random probability measure P(·) to be centered on a parametric

model for the distribution of the data through the choice of P0, while using ↵ to control

the degree of shrinkage of P toward P0.

An intuitive realisation of the DP is achieved via the stick-breaking construction. This

representation allows us to induce P ⇠ DP(P0,↵) by letting:

P(·) =
1X

k=1

⇡k �✓k(·) (5.7)

⇡k = Vk

Y

l<k

(1� Vl) (5.8)

Vk ⇠ Beta(1,↵), ✓k ⇠ P0 (5.9)

where is �✓ is the Kronecker delta function that takes value 1 at ✓ and 0 elsewhere. It is

worth noting that the finite number of K partitions in (5.6) have degenerated into an in-

finite number of atoms {✓k}1k=1 each associated with a weight ⇡k. This realisation process

can be regarded as a process of breaking a unit-length stick (i.e. the total probability of 1)

into an infinite number of pieces (i.e. atoms/samples) of length {⇡k}
1
k=1 (i.e. probability

masses). The length of the kth segment is determined by the length of the remaining

stick
Q

l<k(1 � Vl) and the random proportion Vk to break o↵ from the remaining stick.

The parameter ↵ controls the relative distribution of the weights {⇡k}1k=1 via the expected

break-o↵ portion E(Vk) =
1

1+↵ .

Even though the stick-breaking process is intuitive, it is hardly useful as a model itself

due to the degeneration from subsets to atoms. Especially in the modelling of continuous

data, each atom should only be assigned with an infinitesimally small proportion of the

“stick” meaning that ↵!1 and consequently P(·)! P0.

However, with the stick-breaking DP as the prior, the DPM is developed by replacing

the infinite number of samples ✓k drawn from P0 with conditional kernels to obtain:

p(y) =
1X

k=1

⇡k K(y | ✓k) (5.10)

where ⇡k and ✓k are realisations of the DP; and K(·|✓k) is the data kernel conditional

on the parameter ✓k. With di↵erent kernels, the DPM acquires the ability of modelling

various types of multi-modal data. The infinite sum in Eq. (5.10) does not imply that

infinitely many clusters are occupied by the data y, but rather the model reserves the

flexibility to introduce additional mixture component(s) when needed.

The posterior inference for the DPM is non-trivial as it involves the computation of a

potentially infinite number of parameters; and the conjugacy between the base distribution

P0 and the observational model in (5.10) is not guaranteed in most cases. However, the

109

marginalisation of the mixing measure P(·) can be performed analytically to obtain a

Poly urn representation for the induced prior which is commonly termed as a Chinese

restaurant process [118, 119]: denoting ✓N = {✓1, . . . , ✓N} as the data-specific parameters,

the conditional predictive distribution for ✓h, h 2 {1, . . . , N} can thus be written as:

p(✓h | ✓1, ..., ✓h�1) ⇠
⇣

↵

↵ + h� 1

⌘
P0(✓h) +

h�1X

l=1

⇣ 1

↵ + h� 1

⌘
�✓l (5.11)

The distribution above states that: in order to generate a new data point yh based on

✓h given all previous parameters {✓l}
h�1
l=1 , one can either draw a new value ✓h from P0

with probability ↵/(↵+h�1); or take the same value as one of the existing ✓’s, each with

a probability that is proportional to the number of data points already generated from

using that (unique) value of ✓.

This formulation of the parameter prior does not necessarily solve the problem of non-

conjugacy but provides meaningful insight into how posterior inference for the DPM can

be achieved via Gibbs sampling methods. Later in this chapter, I present an integrated

inference algorithm that elegantly handles both non-conjugacy/intractability and infinity

when the models are combined with feasible (e.g. not infinite or exploding) and bounded

computation.

To help get an initial idea of how the DPM works and performs, I apply the DPM model

on a synthesised set of muti-modal 2-D Gaussian samples. In this example, the DPM is

constructed such that:

K(y | ✓k) = N (yyy |µµµk,⌃k)

✓k = {µµµk,⌃k} ⇠ P0(µµµ,⌃) = Normal-inverse-Wishart(µµµ,⌃)
(5.12)

Inferred with a collapsed Gibbs sampler (thanks to conjugacy), Figure 5.2.3 shows four

identified posterior clusters. The locations of the crosses represent the clusters’ means

while the two lines of each cross show the eigenvalues and eigenvectors of the corresponding

covariance matrix. In the figure, it can be seen that there are four occupied clusters in the

DPM posterior with the top cluster and the bottom right cluster successfully identified and

learned to the ground truth. The bottom left cluster pools the data points generated from

two true Gaussian components into one posterior Gaussian component. This is reasonable

as the simulated data points are very close together and the single Gaussian distribution

learned by the DPM can provide a very good fit to these data. The unidentified true

component (in the middle) generates only 1 data point out of the total 5000 points and is

therefore not picked up by the DPM. With this example, it is fair to say that the DPM is

able to assign an appropriate amount of clusters to multi-modal data without overfitting.

110

Figure 5.2.3: Inferred DPM posterior on 2D data simulated from a Gaussian mixture model
(GMM). Crosses show the clusters’ means and eigenvectors of the clusters’ covariance.

5.3 Model

It is relatively clear that the features provided by the HsMM and the DPM introduced

in Section 5.2 are capable of extending the standard SSM to provide a more powerful

model for complex dynamic systems. In this section, I will introduce the proposed model

in detail and demonstrate how individual models can be integrated together to provide

the desirable features.

5.3.1 Continous-time State-space Model

The continuous-time SSM is the core of the proposed model. The same Langevin dynam-

ical model that has been seen in both Chapter 3 and 4 for market price modelling is

used here. With x1,t being the market fair price and x2,t being the price trend term, the

SSM is constructed as:

dxt = Fxt dt+ h dWt (5.13)

111

where dWt is the Wiener process and

xt =

"
x1,t

x2,t

#
, F =

"
0 1

0 ✓

#
, h =

"
0

�

#
(5.14)

Based on the derivations from previous chapters, it should be clear that the conditional

transition/propagation density of the state vector from tn�1 to tn can be readily computed

as a linear-Gaussian distribution:

p(xtn |xtn�1 , ✓, �) = N

n
xtn |µµµ(F,�tn,xtn�1) , ⌃(F,�tn,h)

o
(5.15)

where �tn is defined as the interval length |tn � tn�1|; and the parameters are computed

as:

µµµ(F,�tn,xtn�1) = FFF n(✓)xtn�1 (5.16)

⌃(F,�tn,h) = FFF n(✓)Kn(✓, �)FFF n(✓)
T (5.17)

FFF n(✓) = e
F�tn (5.18)

Kn(✓, �) =

Z �tn

0

e
�F⌧ hhT (e�F⌧)Td⌧ (5.19)

In this particular construction, the price dynamics are primarily controlled by two param-

eters ✓ and �. Therefore in the complete model, it is aimed to allow di↵erent combinations

of these two parameters so that the Langevin model is able to generate and accommo-

date various behaviours of the market price including long-term and short-term trends,

fluctuations and even unstable processes. Naturally, these parameters are also learned in

a Bayesian manner using the proposed inference algorithm.

Finally, define the observation model for price data ytn as:

p(ytn |xtn) = N

⇣
ytn |Gxtn , �

2
obs

⌘
(5.20)

with G = [1 0]. Although it is possible to include the observation variance �2
obs in the

learning framework, this possibility is not considered here and �2
obs is assumed to be fixed.

The learning of observation variance is covered in Chapter 6 including a heavy-tailed

version of the PF.

5.3.2 Integration of models

As can be seen from the transition density (5.15), the conditional predictions of future

states in an SSM depend completely on the exact prior dynamic construction and param-

eters chosen. Thus unlike other models where non-informative priors can be chosen, the

prior dynamics for SSM significantly a↵ect both prediction and posterior tracking per-

112

formance. Therefore, the proposed integration of the continuous-time SSM, the HsMM

and the DPM can help add data-oriented multi-modal switching dynamics to the original

SSM.

Semi-Markovian switching

To model the switching between discrete regimes in continuous time, let us first define a

regime assignment random variable sssn for each timestamp tn indexed by n. The regime

assignment sssn is a one-hot-encoded vector of a finite dimension K, which specifies the

exact dynamic regime that the state vector xn should follow at time tn. With the assump-

tion that regimes are of the same stochastic form (e.g. SDE) with di↵erent dynamics-

controlling parameters, sssn essentially determines which pair of parameters (✓, �) should be

used in the transition density of Eq. (5.15). Given K pairs of parameters {✓k, �k}Kk=1, the

state vector transition density can thus be re-written conditional on regime assignment

using the 1-of-K representation as:

p(xn |xn�1, sssn, {✓k, �k}
K
k=1) =

KY

k=1

N

n
xn |µµµ(✓k,�tn,xn�1),⌃(✓k, �k,�tn)

ossskn
(5.21)

The next step is to allow the evolution of sssn through time to be governed by the continuous-

time semi-Markov transition dynamics so that the duration of each regime can be modelled

explicitly.

Although it is possible to simply adopt the same probabilistic framework as defined

earlier in the review of the HsMM, the inherent Markovian structure of the SSM can

no longer be preserved, which will cause challenges to inference. Instead, the model

introduces another random variable rn as the runtime of the current regime at time tn.

The runtime states the amount of (continuous) time that the object has spent so far in the

current regime and gets reset to zero once a switch occurs. Hence given a set of regime-

specific duration parameters {µk, vk}
K
k=1 (e.g. for the truncated normal), rn propagates

as:

r0 = 0 (5.22)

p(rn | rn�1, {µk, vk}
K
k=1, sssn�1)

=

8
>>><

>>>:

Hk(rn�1,�tn) if rn = 0

1�Hk(rn�1,�tn) if rn = rn�1 +�tn

0 otherwise

(5.23)

The function H(·) is often referred to as the hazard function in discrete-time switching

models [120]. Whilst in this model, it gives the probability of a switch occurring between

tn�1 and tn given that there has been no switch since rn�1 ago (i.e. the previous switch).

If I define ⌧ as the exact runtime which di↵ers from the definition of rn in that it is not

113

associated with an observation timestamp tn and can be evaluated at any arbitrary time

point, it is easy to prove that the maximum ⌧ in a specific regime is just the regime dura-

tion modelled in Eq. (5.3). Thus the continuous-time hazard function can be calculated

as:
Hk(rn�1,�tn) = P

⇣
rn�1 < ⌧ (rn�1 +�tn) | ⌧ > rn�1

⌘

=
Sk(rn�1)� Sk(rn�1 +�tn)

Sk(rn�1)

(5.24)

where Sk(·) is the survival function of (5.3) with parameters (µk, vk) of the specific regime k

encoded in sssn�1. This formulation of the semi-Markov process is attractive also because: (i)

it restores the Markvoian property; (ii) it automatically handles the positivity constraint

of the duration distribution; and (iii) it fits naturally into the sequential framework of the

SSM as well as the PF that will be used for inference.

It can be noted that rn is a discrete approximation of ⌧ with an error less than the

update interval �tn. Hence the proposed switching model is also an approximation of

the real-world reigme-switching systems as it ignores the change of dynamical behaviours

within the update interval (i.e. in-between observations) and constrains the switches to

take place at the timestamps of the observations. In the modelling of high-frequency LOB

markets, this approximation is very accurate due to the fine temporal resolution of the

price updates. Additionally, the approximated runtime alleviates the burden on the PF

inference by reducing the continuous sample space of all possible switching times to a

discrete set of intervals.

Conditioned on the runtime rn, the transition probability for regime assignment sssn is:

p(sssn |sssn�1, rn 6= 0) =

8
<

:
1.0 sssn = sssn�1

0 otherwise
(5.25)

p(sssn |sssn�1, rn = 0) = Categorical
�
Āsssn�1

�
(5.26)

where Ā is the re-normalised Markovian transition matrix which prohibits self-transition.

Infinite regimes via the DPM

The model introduced so far in this section operates with a finite and pre-assigned K

regimes. The incorporation of DPM helps relax this fundamental assumption and allows

the model to work with a potentially infinite number of dynamical regimes.

Start by simplifying the notation of regime-specific parameters as �k = {✓k, �k} and

duration parameters as k = {µk, vk}. The stick-breaking DP(↵,P0) is assigned as the

114

prior for both parameters � and :

P(�,) =
1X

k=1

⇡k ��k, k
(�,)

⇡k = Vk

Y

l<k

(1� Vl)

Vk ⇠ Beta(1,↵), (�k, k)
i.i.d.
⇠ P0

(5.27)

However instead of having a simple observation kernel as introduced in Section 5.2, the

DPM employed in the proposed model is much more complex as it determines the tran-

sitions of all rn, sssn and xn. Imagine a transition from time tn�1 to tn:

p(xn, rn, sssn |xn�1, rn�1, sssn�1, {�k}
1
k=1, { k}

1
k=1)

=p(rn | rn�1, { k}
1
k=1, sssn�1)⇥ p(sssn |sssn�1, rn)⇥ p(xn |xn�1, sssn, {�k}

1
k=1)

(5.28)

This gives the DPM in the context of the proposed model as an infinite mixture of dynamic

transition kernels. And the Markovian transition of regime assignment in (5.26) will be

changed into the re-normalised stick-breaking proportion (length):

p(sssn |sssn�1, rn = 0) = ⇡̄sn�1 (5.29)

where ⇡̄sn�1 is re-normalised after eliminating the self-transition probability of the regime

specified in sssn�1. The definition of the DPM component of the proposed model is com-

pleted by specifying the prior base distribution P0 for � and :

P0 =N (✓|µ✓, �✓)⇥Gamma(�|↵�, ��)⇥NIG(|m , ⌫ ,↵ , �) (5.30)

where NIG(·) is a normal inverse-Gamma distribution which is also the conjugate prior

for (truncated) normal distribution with unknown mean and variance.

Figure 5.3.1 shows the Bayesian graphical model for the proposed model where the

hidden semi-Markov transition is re-parameterised by runtime rn. Thereby, given a set

of N data points/observations Y = {yn}
N
n=1, the corresponding timestamps {tn}

N
n=1 and

denoting X={xn}
N
n=1, S={sssn}

N
n=1, the joint probability of all variables is:

p(Y,X, S, r, {�}
1
k=1, { }

1
k=1)

= p(x0) p(r0) p(sss0) p({�}
1
k=1, { }

1
k=1)⇥

NY

n=1

n
p(yn |xn) p(xn |xn�1, sssn, {�}

1
k=1)

⇥ p(sssn |sssn�1, rn) p(rn | rn�1, sssn�1, { }
1
k=1)

o
(5.31)

In this chapter, the model is constructed, inferred and tested under the assumption that

115

. . . rn�1 rn rn+1 . . .

. . . sssn�1 sssn sssn+1 . . .

. . . xn�1 xn xn+1 . . .

yn�1 yn yn+1

 k

1

⇡k

1

�k

1

�
2
obs

m , ⌫
↵ , �

↵

µ✓, �✓
↵�, ��

Figure 5.3.1: Graphical model for the proposed regime-switching model. The transition of
regime allocation sssn is governed by a HsMM. Given the dynamical regime at each timestamp, the
state vector xn follows the di↵usion of a pre-defined SSM with a set of regime-specific di↵usion
parameters. DPM prior provides non-parameteric modelling to both duration and di↵usion
parameters.

the di↵usion follows a fixed functional form of SSM i.e. infinite mixture dynamics are

achieved by di↵erent combinations of parameters under the same Langevin framework.

However, in Section 5.6, I will demonstrate how this assumption can be relaxed so that

di↵usion models of di↵erent forms can also be included in the DPM via a hierarchical

linkage.

5.4 Inference

Inference for the proposed model is non-trivial especially when it requires the learning

of potentially infinite-dimensional regime parameters {�k, k}
1
k=1 in conjunction with the

state vectors {xn}
N
n=0 and regime assignment {sssn}Nn=0. The continuous-time SSM further

prevents the closed-form inference of the dynamics-controlling parameters.

Inspired by the divide-and-conquer principle, the joint posterior derived from Eq.

(5.31) is temporarily factorised into two parts using mean-field approximation: (i) the

sequential part concerning state vectors, runtime and regime assignments; and (ii) the

116

static regime parameters in the DPM:

p({�k}
1
k=1, { k}

1
k=1, S,X, r |Y)

M-F
⇡ p(X,S, r | {�k}

1
k=1, { k}

1
k=1, Y)| {z }

(i)

⇥ p({�k}
1
k=1, { k}

1
k=1 |X,S, r, Y)| {z }

(ii)

(5.32)

The above factorisation provides a useful starting point for a Gibbs-fashion alternating

sampler for iterative inference of the two conditional posteriors. Two separately inference

algorithms are hence employed, each targeting one conditional posterior of the factorisa-

tion. The outputs are joined together using the particle Gibbs (PG) algorithm under the

PMCMC framework [64].

5.4.1 RBPF: time-series state inference

The state inference has always been a major task for time-series model including the SSM.

In the application of LOB price modelling, the state vector contains the hidden market

fair price and its trends while both runtime and regime assignments provide significant in-

dications to investment decisions. Therefore in this part, a sequential inference algorithm

is proposed, which targets the conditional posterior (i) in Eq. 5.32.

In this part of the inference, let us assume that the static regime parameters are known

and write the conditional posterior in terms of its recursion as:

p(x0:n, sss0:n, r0:n | y1:n, {�k}
1
k=1, { k}

1
k=1)

/ p(x0:n�1, sss0:n�1, r0:n�1 | y1:n�1, {�k}
1
k=1, { k}

1
k=1) p(yn |xn)⇥

p(xn |xn�1, sssn, {�k}
1
k=1) p(sssn |sssn�1, rn) p(rn | rn�1, sssn�1, { k}

1
k=1)

(5.33)

This recursion is again very similar to that used for the price models introduced in Chap-

ter 3, except that now it has the conditional transition densities for both runtime rn and

regime assignment sssn. However, this still allows us to use a particle filter or even a

Rao-Blackwellised particle filter (RBPF) for inference.

Kalman filtering for state vectors

As can be seen from (5.15) and (5.21), the state vectors xn are linear-Gaussian conditioned

on the regime assignments sssn and a Gaussian initialisation for x0. Therefore given a

linear Gaussian observation model (5.20), this model feature can be fully capitalised by

marginalising out the state vectors and make conditionally closed-form inference with a

classic Kalman filter.

Given a known sequence of runtime and regime assignments {r(p)0:n, sss
(p)
0:n} up till time tn,

117

the marginal predictive distribution of the state vector xn is:

p(xn | y1:n�1, sss
(p)
0:n, r

(p)
0:n, {�k}

1
k=1)

=

Z
p
�
xn�1 | y1:n�1, sss

(p)
0:n�1, r

(p)
0:n�1, {�k}

1
k=1

�
p
�
xn|xn�1, sss

(p)
n , {�k}

1
k=1

�
dxn�1

(5.34)

Suppose that the filtering posterior of xn�1 at time tn�1 can also be expressed as a Gaussian

distribution i.e.:

p
�
xn�1 | y1:n�1, sss

(p)
0:n�1, r

(p)
0:n�1, {�k}

1
k=1

�
= N

�
xn�1 |µµµ

(p)
n�1|0:n�1,⌃

(p)
n�1|0:n�1

�
(5.35)

Then the marginal predictive distribution of (5.34) can be readily obtained as Gaussian

from the Kalman predictive step:

p(xn | y1:n�1, sss
(p)
0:n, r

(p)
0:n, {�k}

1
k=1) = N

�
xn |µµµ

(p)
n|0:n�1,⌃

(p)
n|0:n�1

�
(5.36)

with predictive parameters:

µµµ
(p)
n|0:n�1 = FFF n

�
�
sss
(p)
n

�
µµµ
(p)
n�1|0:n�1 (5.37)

⌃(p)
n|0:n�1 = FFF n

�
�
sss
(p)
n

�⇥
⌃(p)

n�1|0:n�1 +Kn

�
�
sss
(p)
n

�⇤
FFF n

�
�
sss
(p)
n

�T
(5.38)

where FFF n(·) and Kn(·) are calculated with formulae (5.18) and (5.19) respectively using

the parameters of the regime indicated in assignment sss
(p)
n . In order to complete the

recursive algorithm, Kalman filter updates the new filtering posterior at time tn with the

correction from observation yn:

Qn = ⌃(p)
n|0:n�1G

T
⇣
G⌃(p)

n|0:n�1G
T + �

2
obs

⌘�1

(5.39)

µµµ
(p)
n|0:n = µµµ

(p)
n|0:n�1 +Qn

⇣
yn �Gµµµ

(p)
n|0:n�1

⌘
(5.40)

⌃(p)
n|0:n =

⇣
I�QnG

⌘
⌃(p)

n|0:n�1 (5.41)

Particle filter for non-linear runtime and state assignments

With the state vectors marginalised and inferred (conditionally) in closed form, a particle

filter is employed to target the new posterior recursion featuring only r0:n and sss0:n:

p(sss0:n, r0:n | y1:n, {�k}
1
k=1, { k}

1
k=1)

/ p
�
sss0:n�1, r0:n�1 | y1:n�1, {�k}

1
k=1, { k}

1
k=1

�
p(sssn|sssn�1, rn)⇥

p
�
rn|rn�1, sssn�1, { k}

1
k=1

�
p
�
yn|y1:n�1, sss0:n, {�k}

1
k=1

�
(5.42)

This posterior density targets the entire trajectory/sequence of both runtime and regime

assignments, and is commonly referred to as the posterior (online) smoothing density [60]

118

as opposed to the posterior filtering density e.g. (5.35). To begin the particle filter routine,

suppose that the posterior smoothing density at time tn�1 can be accurately approximated

by a large collection of Np weighted particles:

p(sss0:n�1, r0:n�1 | y1:n�1, {�}, { })

⇡

NpX

p=1

w
(p)
n�1 �sss(p)0:n�1,r

(p)
0:n�1

�
s, r

� (5.43)

with the weights satisfying w
(p)
n�1 � 0, 8 p and

P
p w

(p)
n�1 = 1. Substituting this empirical

approximation into the posterior recursion of (5.42]), a mixed discrete-continuous distri-

bution can be expressed as:

p(sss0:n, r0:n | y1:n, {�k}
1
k=1, { k}

1
k=1)

/

NpX

p=1

n
w

(p)
n�1 �sss(p)0:n�1,r

(p)
0:n�1

�
s, r

�
p
�
rn|r

(p)
n�1, sss

(p)
n�1, { k}

1
k=1

�
⇥

p(sssn|sss
(p)
n�1, rn) p

�
yn|y1:n�1, sss

(p)
0:n�1, sssn, {�k}

1
k=1

�o
(5.44)

The distribution above contains the point masses of ‘ancestor’ trajectories {sss(p)0:n�1, r
(p)
0:n�1}

Np

p=1

up to time tn�1, the conditional transition probabilities for new variables sssn, rn, and the

‘likelihood’ in the form of Kalman prediction error decomposition (PED). The following

bootstrap propagation can therefore be used as a single step of the PF to obtain the

empirically approximated posterior at time tn:

1. For a particular particle in the collection with index say p = p̃, sample the new

runtime variable r(p̃)n randomly from Eq. (5.23) conditioned on the ‘ancestor’ runtime

r
(p̃)
n�1 and regime assignment sss(p̃)n�1 of the previous timestamp.

2. Conditioned on newly sampled runtime r
(p̃)
n and the previous regime sss

(p̃)
n�1, sample

the new regime assignment vector sss(p̃)n from Eq. (5.25) or (5.26).

3. Append new variables to the ancestor trajectory giving {r
(p̃)
0:n, sss

(p̃)
0:n}. And re-weight

the new trajectory with observation yn:

w̃
(p̃)
n = w

(p̃)
n�1 ⇥ p

�
yn|y1:n�1, s

(p̃)
0:n, {�k}

1
k=1

�
(5.45)

The unnormalised weights w̃(p)
n are re-normalised after all particles have been propagated:

w
(p)
n = w̃

(p)
n /

P
j w̃

(j)
n . And the weight-correcting PED can be readily computed from the

119

conditional Kalman filter as:

p
�
yn|y1:n�1, s

(p)
0:n, {�k}

1
k=1

�

=

ZZ
p
�
xn�1 | y1:n�1, sss

(p)
0:n�1, r

(p)
0:n�1, {�k}

1
k=1

�
⇥

p
�
xn|xn�1, s

(p)
n , {�k}

1
k=1

�
p(yn|xn) dxn dxn�1

=N
�
yn |µ

(p)
yn , ⌃

(p)
yn

�

(5.46)

with

µ
(p)
yn = Gµµµ

(p)
n|0:n�1 (5.47)

⌃(p)
yn = G⌃(p)

n|0:n�1 G
T + �

2
obs (5.48)

As the last component to complete the RBPF algorithm, the content of a particle with

index p at time tn is defined to contain the following: a sequence of regime assignments

sss
(p)
0:n; a sequence of runtime r(p)0:n; a set of posterior parameters (µ(p)

n|0:n,⌃
(p)
n|0:n) for state vector

xn; and a normalised weight w(p)
n 2 [0, 1]. Denote the above content as:

P
(p)
n =

n
sss
(p)
0:n, r

(p)
0:n,µµµ

(p)
n|0:n,⌃

(p)
n|0:n, w

(p)
n

o
(5.49)

Assuming a finite number of K regimes, Algorithm 9 summarises the bootstrap RBPF

algorithm derived so far.

Unfortunately, the RBPF algorithm cannot yet be used for the state inference task

for the proposed model as the issue of the infinite-dimensional regime parameters and

assignment vectors has not been addressed yet. Naive application of the Poly urn repre-

sentation described in Section 5.2 would require an additional step of considering whether

a new regime needs to be added to the existing mixture to accommodate the di↵usion be-

haviour seen at each timestamp tn. This would impose a varying dimension of the regime

parameters and assignments over the course of the RBPF, which can be troublesome for

algorithm implementation. Moreover, the posterior probability of creating a new regime

given observation requires a generally intractable integration over the base distribution P0

especially in the case of a continuous-time SSM where no conjugate priors can be found.

Section 5.4.2 will focus on the solutions to these problems.

5.4.2 Blocked Metropolis-within-Gibbs: DPM inference

Having briefly mentioned the representation, let us now extend the Poly urn predictive

rule to an exchangeable set of subjects i.e. with index h = 1, . . . , N . Continuing with

the notation, the conditional prior distribution can be written in a non-sequential manner

120

Algorithm 9 (Bootstrap) Rao-Blackwellised particle filter

Input: Time-stamps {tn}
N
n=1; observation {yn}

N
n=1; DPM parameters {�k, k}

1
k=1 and “stick-

breaking” length {⇡k}
1
k=1.

Output: A collection of weighted particles {P (p)
N }

Np

p=1

1: Initialisation: Create initial particle collection P
(p)
0 =

�
;, 0, µ0µ0µ0, ⌃0,

1
Np

for p = 1, . . . , Np

2: for n = 1, . . . , N do
3: if n = 1 then
4: for p = 1, . . . , Np do

5: r
(p)
1 = r

(p)
0 + (t1 � t0)

6: Sample sss(p)1 ⇠ Categorical
�
{⇡k}

K
k=1

�

7: Compute
�
µµµ
(p)
1|0:0,⌃

(p)
1|0:0 | �

s(p)1

from Eq. (5.37) and (5.38)

8: Update weight w̃(p)
1 = w

(p)
0 ⇥ PED(y1|...) with Kalman PED (5.46)

9: Update posterior parameters
�
µµµ
(p)
1|0:1,⌃

(p)
1|0:1

�� y1, �s(p)1

from Eq. (5.40) and (5.41)

10: end for
11: else
12: for p = 1, . . . , Np do

13: Compute hazard function H(r(p)n�1,�tn) | s(p)n�1
with (5.24)

14: if Uniform(0, 1) < H(r(p)n�1,�tn) then . Regime switch occurred

15: r
(p)
n = 0

16: sss
(p)
n ⇠ Categorical

�
⇡̄
s(p)n�1

�
as of (5.29) . Transition excluding self-transition

17: else . No regime switch

18: r
(p)
n = r

(p)
n�1 + (tn � tn�1)

19: sss
(p)
n = sss

(p)
n�1

20: end if
21: Compute

�
µµµ
(p)
n|0:n�1,⌃

(p)
n|0:n�1

�� �
s(p)n

22: Update weight w̃(p)
n = w

(p)
n�1 ⇥ PED(yn|...)

23: Update posterior parameters
�
µµµ
(p)
n|0:n,⌃

(p)
n|0:n | yn,�s(p)n

24: end for
25: end if
26: Re-normalise weights w(p)

n = w̃
(p)
n /(

P
j w̃

(j)
n)

27: Resample if necessary
28: end for
29: Return: {P

(p)
N }

Np

p=1

for ✓h given ✓�h = {✓j : 8 j 6= h}:

✓h|✓�h ⇠
⇣

↵

↵ +N � 1

⌘
P0(✓h) +

K(�h)X

k=1

⇣
n
(�h)
k

↵ +N � 1

⌘
�
✓
⇤(�h)
k

(5.50)

where ✓⇤k for k = 1, . . . , K(�h), are the unique values of ✓�h i.e. unique clusters/regimes;

and n
(�h)
k =

P
i 6=h 1✓i=✓⇤k i.e. the number of other subjects that are assigned to this existing

cluster k. Updating the full conditional prior described above with data, it is thus possible

to perform a conditional posterior update of the cluster parameters one at a time given

the data cluster allocation. The main intuition from the above extension is that posterior

inference for the DPM need not follow the sequential order of the data as long as the

exchangeability assumption can be satisfied.

121

However, this is apparently not the case for the SSM as the state vectors are temporally

correlated. Furthermore, based on the definition of the DPM, the regime assignment sssn

at time tn in the running of the RBPF should be sampled from a multinomial conditional

posterior:
Pr(ssskn=1 |�)

/

8
<

:
n
(�n)
k p(yn |xn, rn, �k, k, . . .) k = 1, . . . , K(�n)

↵
R
p(yn |xn, rn, �, , . . .) dP0 k = K

(�n) + 1

(5.51)

where K
(�n) is the number of unique regimes that have been created. While the proba-

bilities for k 2 {1, . . . , K(�n)
} can be e�ciently computed in the RBPF, the probability

of creating a new regime requires an intractable integration over P0. For the same reason,

the posterior inference about the regime parameters cannot be performed in closed-form

either in the case of a non-conjugate P0.

In order to mitigate the di�culties addressed above, I propose a novel approach of

the blocked Metropolis-within-Gibbs (BMwG) algorithm which targets the conditional

posterior (ii) of Eq. (5.32) and use it iteratively with the RBPF algorithm.

By marginalising out the base measure P0, the DPM encourages exploration over the

prior sample space of the parameters for the possibility of creating a new regime/cluster

to accommodate unseen data or di↵usion behaviours in the proposed model’s case. It is

therefore possible to approximate this exploration process with a finite number of i.i.d.

samples from P0 when the required marginalisation cannot be obtained analytically. Re-

call the “stick-breaking” construction that has been used throughout this chapter. As the

prior weight (i.e. length) associated with each regime decreases stochastically with the

increasing index k, it is reasonable to assume that for a su�ciently large K (depending

on the value of ↵), the sum of weights
P1

k=K+1 ⇡k, i.e. the length of the remaining stick,

is negligible. Hence by choosing a relatively large K, the breaking process can be blocked

at the Kth piece by letting VK = 1 (i.e. the Kth piece takes the entire remaining stick)

and obtain an accurate approximation of the DPM with a finite number of potential

regimes. As a result, the inference algorithm can tractably perform exploration over the

prior sample space and introduce new occupied regimes while fixing the dimension of sssn

(and consequently computation).

In order to learn the regime parameters in the DPM, the inference algorithm needs to

target the following conditional posterior density:

p({�k}
K
k=1, { k}

K
k=1 |X,S, r, Y) (5.52)

Although the closed-form posterior cannot be obtained in general, given a sequence of

regime assignments Ŝ = ŝss0:N and runtime r̂ = r̂0:N sampled from the RBPF output, the

122

conditional evidence/likelihood can be readily computed with an e�cient Kalman filter:

p(Y | Ŝ, r̂, {�k}
K
k=1) (5.53)

and so does the runtime probability:

p(r̂ | Ŝ, { k}
K
k=1) (5.54)

A standard Metropolis-Hastings (MH) algorithm can thus be adopted to acquire an em-

pirically represented posterior of the DPM.

While it is possible to perform joint sampling of parameters of all regimes at once, the

dimension of the posterior sample space can be extremely high given a large K, which

consequently compromises the sampler’s performance. I therefore propose to separately

sample parameters for each regime i.e. (�k, k) conditioned upon all other regimes’ pa-

rameters {�h, h}h 6=k so that the samplers operate in a “Gibbs” manner (i.e. MwG). For

a particular regime k, the MH acceptance probability for the jth MH iteration is:

⇢k = min

(
1 ,

q(�j�1
k ,

j�1
k)P0

�
�
⇤
k ,

⇤
k

�

q(�⇤
k ,

⇤
k)P0

�
�
j�1
k ,

j�1
k

� ⇥
p
�
Y, r̂ | Ŝ, {�h, h}h 6=k, �

⇤
k ,

⇤
k

�

p
�
Y, r̂ | Ŝ, {�h, h}h 6=k, �

j�1
k ,

j�1
k

�

)
(5.55)

where q(.) is the proposal density and is set to the model prior in this work. It is worth

noting that with the specific choice of truncated normal and NIG as duration distribu-

tion and parameters’ prior respectively, the posterior of can in fact be obtained as a

closed-form NIG distribution. In such a case, it is not necessary to include in the

MwG framework. However for generalisation purpose, the MCMC-style inference for is

still illustrated here so that the proposed algorithm also works for non-conjugate pairs of

emission and prior.

The last step of the DPM update is the sampling of the stick-breaking weight Vk based

on the number of transitions assigned to each regime. Vk is independent of other regime

parameters and can be sampled analytically as:

Vk ⇠ Beta
⇣
1 + nk, ↵ +

KX

k0=k+1

nk0

⌘
for k = 1, . . . , K � 1 (5.56)

where nk is the number of transitions assigned to regime k i.e. nk =
PN

n=1 1ŝkn=1; and

VK = 1. Line 11 to 30 of Algorithm 10 provide pseudo-code for the above BMwG

algorithm.

For certain applications, it may be preferable to monitor the number of occupied

clusters i.e. K̃ =
PK

k=1 �[nk>0] and increase the value of K once K̃ is close to the blocked

limit. This extra step can ensure the accuracy of the approximation. However, such a

123

step was not implemented in the experiments in this chapter and the empirical results

also suggest that it is not necessary for the considered applications.

5.4.3 Particle-MCMC: an iterative framework

Although it seems that an iterative algorithm for both sequential state inference and

posterior parameter learning is available, the two steps of the alternating algorithm each

targets a mean-field factorised conditional posterior as described in Eq. (5.32) instead

of the original joint posterior. However, simply replacing one step of the Gibbs sampler

with the sampling from an PF approximation does not admit the correct joint posterior

(5.32) as the invariant density [64].

In order to mitigate this potential drawback, I adopt the general framework of particle

Gibbs (PG) algorithm first proposed in [64] as a type of PMCMC algorithm. Applica-

tions of PMCMC have arisen in various areas such as finance [121], biology [122] and

epidemiology [123].

The PG algorithm targets an extended distribution of all random variables involved

in the model which is the same as the joint posterior distribution in (5.32) prior to the

factorisation. It allows iterative Gibbs-like updates while admitting an invariant target

density by running the sequential inference step with a conditional PF. The conditional PF

is similar to the standard PF but is di↵erent in that it additionally admits a pre-specified

reference trajectory i.e. {Ŝ, r̂} and guarantees its survival throughout all resampling steps,

whereas the remaining Np � 1 particles are generated and resampled as usual. With the

assumption that the reference trajectory of the PG sampler does not dominate other

particles during resampling, it has been proven in [124] that for a Np large enough, the

Markov kernel of PG is uniformly ergodic with the target density invariant.

Hence in the proposed model, one can simply replace the RBPF algorithm with a con-

ditional RBPF which takes the sampled trajectory {Ŝ(i�1), r̂(i�1)} from previous PG

iteration as the reference trajectory and ensures the iterative algorithm converges towards

the desired posterior distribution. Algorithm 10 shows the complete iterative algorithm

for the inference of the proposed state-space regime-switching model with infinite mixture

dynamics.

One may notice that the algorithm contains a burn-in period for the MwG sampler in

the regime update. The original PG algorithm of [64] assumes that the parameters can

be sampled directly from the conditional posteriors (as would be the case for in the

proposed model). When using MH samplers, I suggest to include the burn-in period to

ensure that the updated parameters are representative/converged samples of the target

conditional posterior. It can certainly be argued that burn-in is not strictly necessary as

long as enough iterations are allowed for the PG algorithm (e.g. a large enough NPG).

However with the conditional RBPF being the computational bottleneck, experimental

124

Algorithm 10 BMwG and RBPF in PG framework

Input Time-stamps {tn}Nn=1; and the corresponding scalar observation {yn}
N
n=1

1: Initialisation: Initialise regimes and parameters (�k, k)
i.i.d.
⇠ P0, Vk

i.i.d.
⇠ Beta(1,↵), for

k = 1, . . . ,K; VK = 1.

2: for i = 1, . . . , NPG do
3: Compute regime probability ⇡k = Vk

Q
l<k(1� Vl), for k = 1, . . . ,K

4: if i = 1 then
5: Run RBPF with parameters {�k, k}

K
k=1

6: else
7: Run conditional RBPF with parameters {�k, k}

K
k=1 conditioned on {Ŝ(i�1), r̂(i�1)}

8: end if
9: Sample {Ŝ(i), r̂(i)} ⇠ Categorical

⇣
{w

(p)
N }

Np

p=1

⌘

10: Calculate nk =
PN

n=1 1ŝkn=1, for k = 1, . . . ,K
11: for k = 1, . . . ,K do
12: Draw Vk ⇠ Beta(1 + nk, ↵+

PK
k0=k+1 nk0)

13: if nk = 0 then . An “unoccupied” regime
14: Draw (�⇤

k ,
⇤
k) ⇠ P0

15: Update the kth regime parameters: (�k, k) = (�⇤
k ,

⇤
k)

16: else . For an “occupied” regime
17: for j = 1, . . . , Nburn do
18: Propose a sample (�⇤

k ,
⇤
k) ⇠ q(�,)

19: Run KF conditioned on
n
Ŝ(i), r̂(i), {�h, h}h 6=k, �

⇤
k ,

⇤
k

o

20: Compute MH acceptance ratio ⇢k from (5.55)
21: if Uniform(0, 1) < ⇢k then
22: (�j

k,
j
k) = (�⇤

k ,
⇤
k)

23: else
24: (�j

k,
j
k) = (�j�1

k ,
j�1
k)

25: end if
26: end for
27: Update the kth regime parameters: (�k, k) = (�Nburn

k ,
Nburn
k)

28: end if
29: end for
30: Set VK = 1
31: end for

results in Section 5.5 demonstrate that the PG convergence can be achieved with much

fewer iterations (and thus fewer runs of the conditional RBPF) by allowing this local

convergence of the DPM. This can be an interesting and important theoretical line of

research, but detailed proof is not studied in this work.

5.4.4 Deterministic filtering and optimal resampling

Performance of the sequential inference algorithm (i.e. the RBPF) is usually critical to

the overall performance of PMCMC. Di↵erent resampling schemes have been proposed

in literature [124, 125] to tackle the inherent path degeneracy issue that is commonly re-

garded as a limitation of the PG algorithm. The (conditional) RBPF algorithm employed

e�ciently reduces the dimension of the sample space by marginalising the state vectors

xn. However with DPM as the prior for regime parameters and assignments, it is still

possible to have a high-dimensional sssn when a large value of K is chosen to block the

125

“stick-breaking” process. Moreover, unlike some other switching models where drastic

changes are directly observable from the data, regime switches in di↵usion dynamics are

usually subtle based on a single observation and may only become distinguishable after

a few more observations of di↵usion. Hence to further improve the RBPF accuracy, the

deterministic filtering scheme with an optimal resampling step originally proposed in [21]

is adopted here.

However before going into details, I want to point out that the sequence of runtime r0:n

can be deterministically calculated from a given sequence of regime allocations sss0:n (and

timestamps {tn}Nn=1) as the proposed semi-Markov switching feature only tries to identify

the intervals where regime changes occur. Thus, it is possible to take full advantage of

the discrete nature of the regime assignments sssn and perform deterministic filtering to

achieve a thorough exploration of the discrete sample space at each propagation. Suppose

there is a set of Np particles {P (p)
n�1}

Np

p=1 from time tn�1, the deterministic filtering scheme

propagates the particles at time tn as follows:

(1) For each particle P
(p)
n�1 from tn�1, generate a set of K new particles (descendants)

{P
⇤(pk)
n }

K
k=1, one for each possible regime of di↵usion where:

sss
(pk)
n = [0...1k...0]

T

r
(pk)
n =

8
<

:
r
(p)
n�1 + (tn � tn�1) if sss(pk)n = sss

(p)
n�1

0 otherwise

(2) Compute the predictive parameters
�
µ
(pk)
n|0:n�1, ⌃

(pk)
n|0:n�1

�
of state vector xn conditioned

on sss
(pk)
n from (5.37) and (5.38).

(3) Compute the unnormalised weights of all KNp particles. The weight of particle

P
⇤(pk)
n , which is the descendant of P (p)

n�1, is:

q̃
(pk)
n =w

(p)
n�1 ⇥ p(r(pk)n | r

(p)
n�1, { k}

K
k=1, sss

(p)
n�1)⇥

p(sss(pk)n |sss
(p)
n�1, r

(pk)
n)⇥ p

�
yn | y1:n�1, s

(p)
0:n�1, sss

(pk)
n , {�k}

K
k=1

� (5.57)

where all probabilities can be numerically evaluated using Eq. (5.23), (5.25), (5.29)

and (5.46).

(4) Perform Kalman update for posterior filtering parameters (µµµ(pk)
n|0:n, ⌃

(pk)
n|0:n), and nor-

malise weights wn

126

(5) Normalised the weights of all KNp particles:

q
(pk)
n =

q̃
(pk)
n

PNp

p0=1

PK
k0=1 q̃

(p0k0)
n

(5.58)

By the end of stage (5), the algorithm would end up with a total of KNp weighted

particles. Resampling is thus necessary at each propagation to avoid an exponentially

growing particle number and computational cost. In order to maintain a constant Np

particles at the start of each propagation, a resampling scheme is needed to approximate

a discrete probability mass function with KNp support by a stochastic probability mass

function with a support no more than Np points. An unbiased optimal scheme is outlined

and proved in [21], which minimises the expected squared error between the discrete

probability mass function and the stochastic approximation. Algorithm 11 shows the

pseudo-code for this optimal resampler.

The stratified sampler (used in line 13 with details provided in Appendix 5.A) en-

sures that either none or one copy of each particle is resampled. As a result, this optimal

resampling algorithm has the interesting feature of having only distinct particles (i.e. no

multiple copies of the same particle) in the returned Np collection if distinct particles

were obtained at the previous timestamp i.e. tn�1. This feature is particularly attractive

under the settings where discrete proposals take place determinstically, as each particle

will probe the future exhaustively and the same information can be obtained from a single

particle with a higher weight compared to multiple identical particles with split weights.

However in practice, this proposed inference algorithm still attempts to preserve some

copies of particles in the resampled collection by using a relatively large Np so that more

diverse (low-weight) trajectories may be retained in the stratified sampling stage.

As proved in [124], the resampling schemes for the PG algorithm need to be marginally

unbiased while ensuring the survival of the reference trajectory Ŝ(i� 1). A simple adap-

tation of the optimal resampling scheme is hence made to keep at least one copy of the

reference trajectory in the resampled collection. Since deterministic filtering explores all

current switching possibility, as long as ŝ0:n�1(i�1) exists in the resampled collection �n�1

at time tn�1, ŝ0:n(i � 1) is guaranteed to exist in the KNp samples before resampling at

time tn. The adaptation of the original resampling scheme to the PG algorithm is thus

as follows: run a check on whether ŝ0:n(i � 1) 2 �n at the end of Algorithm 11, if not

then set the last particle P (Np)
n = {sss

(pk)
0:n , r

(pk)
0:n ,µµµ

(pk)
n|0:n,⌃

(pk)
n|0:n, 1/c |sss

(pk)
0:n = ŝss0:n(i�1)}. As the

particle with index Np will always be sampled from the stratified sampling scheme and

the scheme samples either none or one copy of each input particle, marginal unbiasedness

of the optimal resampler remains intact.

127

Algorithm 11 Optimal Resampling

Input: A set of M (= KNp) particles before resampling at time tn with normalised

weights
PM

j=1 q
(j)
n = 1.

Output: A collection of resampled Np particles �n with weights {w(p)
n }

Np

p=1.

1: ⌦ ;
2: Calculate c, the unique solution to Np =

PM
j=1 min

�
cw

(j)
n , 1

�

3: Set p = 1
4: for j = 1, . . . ,M do

5: if q
(j)
n � 1/c then

6: Admit particle j into the set �n

7: w
(p)
n = q

(j)
n

8: p = p+ 1
9: else
10: Admit particle j into the set ⌦
11: end if
12: end for
13: Perform stratified sampling algorithm [126] on ⌦ to sample (Np � |�n|) particles.

14: Admit the sampled (Np � |�n|) particles to �n with identical weights w(p0)
n = 1/c for p0 = p, . . . , Np

15: Return: �n, {w
(p)
n }

Np

p=1

5.5 Results and discussions

In this section, I present three sets of results obtained by applying the proposed model on

three di↵erent datasets. The first dataset is synthesised with a matching dynamic model

but with parameters unknown to the inference. The second dataset consists of GPS

position recordings of movements of a wild animal (baboon), while the last set of data

is the market mid-price of a high-frequency FOREX market where the actual physical

dynamics of the system can not be clearly identified or defined.

All experiments are run with the same Langevin construction of the SSM as defined

in (5.13) with unknown but static parameters. However, I stress again that the general

framework of the proposed model is capable of adopting various forms of di↵usion models

that are best suited for the applications of interest. I show later in the next section that

this generalisation may even be extended to combinations of di↵usion models.

5.5.1 Synthetic data

In order to confirm whether the proposed model and the corresponding inference algorithm

can perform as expected, the model is first tested on a set of 1-D synthetic data. The

dataset is simulated using a matching Langevin SSM governed by three distinct di↵usion

regimes:

1. A long-lasting (average duration of 30s) dynamic for relatively stationary di↵usion

with ✓1=�0.5 and �1=0.5;

2. A short-lived (average duration of 15s) dynamic that is likely to have trend with

128

Figure 5.5.1: Regime allocation results obtained with both the deterministic RBPF (proposed)
and the generic RBPF. The top plot shows the simulated di↵usion data with true regime alloca-
tions that are indicated in red lines in the second plot. The bottom two plots shows the inferred
regime allocations after 20 PG iterations. Each allocation trajectory is plotted with the same
transparency and thus the blurriness indicates the uncertainty of regime estimations.

✓2=�0.2 and �2=2.0;

3. And a medium-duration (average duration of 20s) fluctuating dynamics with ✓3 =

�1.0 and �3=5.0

Switching between regimes, 832 observation points with �obs=0.1 spread across 20 di↵u-

sion intervals are synthesised on an irregular time grid. The top panel of Figure 5.5.1

shows the synthesised observations and the corresponding true regime assignments are

shown in the middle panel.

Fairly di↵use priors are used for the DPM base distribution P0 with hyperparameters:

• µ✓ = �0.6, �2
✓ = 1.0

• ↵� = 1.5, �� = 0.5

• m = 20, ⌫ = 0.1, ↵ = 3.0, � = 20

• stick-breaking ↵ = 0.5 and the maximum number of regimes K = 10

129

Figure 5.5.2: The figure shows the posterior samples of the dynamics-controlling regime pa-
rameters in each cluster of DPM. The sizes of the dots are proportional to the number of data
points assigned to each regime with colour codes consistent with the regime plot. The unoccupied
clusters are plotted in grey. Contour shows the prior.

Figure 5.5.3: The figure shows the posterior (predictive) marginal duration distributions for
represented regimes. The error bars indicate the mean and ±2 std. of the true duration distri-
bution.

The PG algorithm was run for 100 iterations (NPG=100) and with 100 particles (Np=100)

and 100 MH burn-in (Nburn=100). Figure 5.5.1 shows the inferred regime assignments

sss0:N obtained after 20 PG iterations from both the deterministic RBPF algorithm (with

stratified resampling) and the generic RBPF (with IRS). Despite the exchange of regime

orders, it is clear that the posterior switching patterns matches accurately with the true

130

allocations (in red in the second panel), except for a short period around 280s, where

the di↵usion exhibits a trend that is more likely to occur in regime 2 in spite of being

in the fluctuating regime 3. In this case, the deterministic RBPF has shown uncertainty

and recognised the possibility of both. Comparing between the two variants of the RBPF

in the bottom two panels, the generic RBPF generally shows more uncertainties on the

switching times as can be seen from the blurry vertical lines. On the other hand, the de-

terministic RBPF explores more thoroughly the discrete regime space and hence provides

more accurate switching time estimations.

Figure 5.5.2 shows the posterior sample clusters of regime parameters {✓k, �k}
K
k=1

for the final 80 iterations using the same colour-code as the allocation plot. The sizes

of the scatter points are proportional to the number of di↵usion transitions assigned to

each regime. Apparently, the three “occupied” regimes have all their posterior samples

concentrating around the true values, whilst the unoccupied regimes have their samples

(shown in grey) thoroughly exploring the prior parameter space of P0 (shown as the

contour). An interesting observation is that as � increases, the posterior cluster tends to

become more di↵use. This may be caused by the growing stochasticity of the dynamic

model with the increasing �, which consequently increases the posterior variance.

As the posteriors of duration parameters { }Kk=1 can be obtained in closed-form condi-

tioned on runtime, the inference results shown in Figure 5.5.3 are the marginal predictive

distributions for regime duration. The figure shows the (predictive) truncated student-t

distributions of the three inferred DPM regimes over the final 80 iterations, the prior

marginal distribution and the 95% confidence intervals of the three true distributions.

Note that for the learning of , each di↵usion interval is treated as one data point. Hence

with a total of only 20 intervals simulated in this dataset, the learning of duration pa-

rameters for each regime is likely to have uncertainties. However, a close fit between each

marginal predictive distribution and true distribution can still be observed.

To provide a clear view of the PG convergence, the weighted log-PED and mean-

squared error (MSE) are monitored across all 100 PG iterations for both algorithms with

and without MH burn-in as discussed in Section 5.4.3. The results are plotted in Figure

5.5.4. Clearly with MH burn-in, the PG algorithm is able to converge quickly within

20 iterations. Whilst without burn-in, the convergence seems to be much slower and is

possibly not reached with 100 iterations as slightly worse values of log-PED and MSE are

achieved.

In summary, this experiment on synthetic data shows that the proposed model and

inference algorithm are able to demonstrate the desirable and anticipated features. The

posterior learning of DPM not only identifies the correct number of regimes based purely

on di↵usion behaviours in data, but also accurately estimates the regime parameters

without overfitting. Furthermore, the proposed PG algorithm with burn-in BMwG has

demonstrated fast convergence in evaluation metrics.

131

(a) Algorithm with MH burn-in (b) Algorithm without MH burn-in

Figure 5.5.4: Figure shows the weighted log-PED and MSE evaluated across all 100 PG
iterations for both algorithms with and without Metropolis-Hastings burn-in.

Figure 5.5.5: The figure shows the 2D GPS trail with two zoomed views of the tracked baboon
for a duration of 4 hours. The trail starts from top left and finishes around bottom right. The
colour of each segment is determined by the regime with highest posterior probability at each
timestamp.

5.5.2 Animal GPS data

The SSM has been a popular choice for modelling real-life movements of physical objects

such as manoeuvring ships [127, 87], animals [128] and humans [129]. Applications of

SSM to these systems usually involves fairly uninformative prior dynamics with tuned

hyperparameters so that various movement patterns of the tracked objects can be accom-

modated in the observational model. However, such prior dynamics can hardly provide

any retrospective insights to the behaviours of the tracked object which can be important

for the studies of these systems. Hence before experimenting on the LOB price data, I

132

(1) Posterior DPM clusters for (✓, �)

(2) Predictive marginal duration distributions

Figure 5.5.6: Plots showing posterior learning results of DPM on baboon GPS data: (1)
shows the posterior samples of (✓,�) for each “represented” regime obtained in the final 100 PG
iterations; (2) shows the predictive marginal distributions for duration computed for the same
100 iterations with the NIG posteriors marginalised.

apply the proposed model to a set of baboon GPS data without changing the original

model setup.

The dataset for this experiment contains the longitude (x) and latitude (y) GPS record-

ings of a single baboon taken with intervals of 15 seconds for 4 hours from 7:00am to

11:00am [130, 131]. However, for simplicity and consistency of the model, the sequential

133

inference and the parameters learning are only performed on the normalised (zero-mean,

unit-variance) 1-D longitude (x) data (i.e. ignoring the latitude data/movements).

Inferred 200 PG iterations, the posterior probability of regime assignments {sssn}
N
n=1

is calculated based on the final 100 converged samples. And Figure 5.5.5 shows the

2D trail (i.e. data/observations) whose segments are marked with the regimes of the

highest posterior probability at each timestamp. Correspondingly, Figure 5.5.6 shows

two plots of the inference results of the parameters for those “occupied/represented”

regimes. Focusing firstly on cluster/regime #9 (purple), the di↵usion parameters have

shown moderate level of velocity innovation � and relatively low intention to stop i.e.

less negative ✓, while the regime duration is able to take a wide range of values. Such a

regime represents baboon activities that involve constant movements at medium speed e.g.

migration, foraging. On the other hand, regime #1 (red) shows extremely low velocity

innovation and high velocity resistance, which indicates that the tracked object was barely

moving i.e. resting. Other notable regimes like #3 (yellow) and #4 (green) have shown

highly “volatile” movements in a short period of time which may represent hunting or

chasing behaviours of the baboon. The posterior samples of these two regimes are fairly

scattered due to the infrequent appearances of similar activities in the 4 hours period.

This experiment on baboon GPS data has shown that the proposed model is able

to provide reasonable identification of baboon behaviours based only on one-dimensional

movements. It is reasonable to conjecture that the performance will be further improved

with 2-D construction of SSM. Moreover, the learning of dynamics performed by the pro-

posed model is data-oriented with minimal prior/human assumptions, which can provide

additional insights to the study of animal behaviours.

5.5.3 FOREX market price

As opposed to di↵usion in physical systems, di↵erent dynamic regimes of price di↵usion

in high-frequency financial markets are even harder to identify while inappropriate prior

assumptions on models can easily lead to bad investment decisions and even more serious

consequences for algorithmic trading.

I therefore apply the proposed model to price data in the EUR-USD FOREX market,

which aims to learn the dynamics-controlling parameters purely based on di↵usion data.

The model is applied on two sets of price data each contains 1-D price di↵usion with

irregular updates collected on the 3rd of September, 2015. I run the complete model and

inference algorithm on the first set of data (05:00AM – 05:10AM ET, 924 observations)

for training and parameter learning. After that, the model with learned parameters is

run in online prediction mode (i.e. non-iterative inference using only the RBPF) on the

second set of data (05:10AM – 05:15AM ET, 427 observations) for validation. The data

in both sets are normalised to have zero mean and unit standard deviation so that general

priors can be used instead of the ones tuned to a specific market or a period of time.

134

Figure 5.5.7: The figure shows the posterior weighted mean of x1,t and posterior regime
allocation inferred by the proposed model on 10 minutes of mid-price (training) data from the
FOREX market. The lengths of the colour bars are proportional to the posterior multinomial
probabilities.

Running the PG algorithm in full, Figure 5.5.7 shows the posterior regime assignment

probabilities for each timestamp empirically estimated from the final 100 iterations of a to-

tal 200 PG iterations. The proportion of the colour bars at each timestamp represents the

posterior multinomial probabilities. Meanwhile, the learned di↵usion parameters (✓, �)

are shown in Figure 5.5.8 with a comparison to the values learned for a single-regime

model (i.e. a standard SSM). It is obvious that the posterior DPM has identified mainly

four salient regimes in the 10-minute interval. Regime #7 (blue) shows the dynamics for

stationary periods where the mid-price remains roughly at a constant level (low �). On

the other hand, regime #2 (orange) allows drastic changes/jumps in the price which are

rare and short-lived. Trading around “orange” period is likely to have higher risk because

of the high �, but the relative small reversion (less negative ✓) indicates that there may be

momentum/trend to exploit. Di↵usion in regime #4 is the most common in this FOREX

dataset and exhibits typical stochastic behaviours showing trends as well as fluctuations.

The yellow regime serves more like a transitional regime or middle ground between #4

and #7. In contrast, the parameters of a standard single-regime model (shown as black

crosses in Figure 5.5.8) over-generalises di↵erent behaviours in the data and results an

almost average of the identified regimes of the DPM.

In order to show that the proposed model is not overfitting the training data by in-

troducing unnecessary regimes, validation is carried out on the 5-minute interval that

immediately follows the training data. A prediction plot is shown in Figure 5.5.9 for

both multi-regime and single-regime models. Additionally, Figure 5.5.10 quantitatively

compares the prediction accuracy of the two models by computing the marginal joint

135

Figure 5.5.8: The figure shows the posterior parameters (✓,�) learned from the 10-minutes
mid-price data. The coloured circles are the posterior parameter samples from the DPM; whilst
the black crosses are the posterior parameter samples learned on a single-regime model (i.e. a
standard SSM).

Figure 5.5.9: The figure shows predictive results of both the proposed multi-regime model and
the single-regime model with one converged set (e.g. the final iteration) of learned parameters
for a duration of 5 minutes that immediately follows the training data. The blue curves and
the cyan region indicate the predictive mean and 95% (±2�) confidence interval of the single-
regime model inferred by the Kalman filter. The red patches indicate the predictive mean and
95% confidence interval for each particle in the multi-regime model inferred by the deterministic
RBPF; the opacity is proportional to the particle weight.

136

Figure 5.5.10: The figure shows the log of marginal joint PED for the 5-minutes validation
dataset obtained from both single-regime and multi-regime models.

PEDs using posterior parameters obtained each PG iteration during training phase:

p̂(Y) =
NY

n=1

p̂(yn | y0:n�1)

=
NY

n=1

n NpX

p=1

w
(p)
n�1 N

⇣
yn |µ

(p)
yn , ⌃

(p)
yn

⌘o (5.59)

It can be seen from Figure 5.5.9 that the standard single-regime model assigns uniformly

large uncertainties to all periods of the di↵usion; while the proposed model is able to

account stochasticity di↵erently based on the detected regimes i.e. narrow confidence

intervals for stationary periods and wide intervals for fluctuating periods. Moreover,

judging from the “red-strips” (particles’ prediction intervals) with opacity proportion to

particle weights, the proposed model is also capable of making skewed, heavy-tailed or

even multi-modal predictions to the price. Figure 5.5.10 also shows that numerically the

proposed switching model exhibits much better model fit to the mid-price data compared

to the single-regime model. Moreover, throughout all 200 PG iterations, the marginal

joint PEDs only oscillate due to the inherent randomness of the sampling-based methods

and shows no sign of overfitting e.g. decreasing p̂(Y).

In summary, the proposed model has demonstrated plausible posterior learning of

regimes on real-world FOREX data. With very limited prior knowledge, the model rea-

sonably identifies the price di↵usion regime and learns the corresponding di↵usion param-

137

Figure 5.6.1: Histogram of example 1-D data randomly generated from the (weighted) mixture
of 2 Gamma distributions and 4 normal distributions. One normal kernel (yellow) is significantly
suppressed (due to its randomly assigned weight). Dotted line shows the (normalised) density
of the mixture.

eters, which can potentially provide useful insights to retrospective analyses of the market

and generation of investment decisions. Additionally, the proposed model is able to fully

utilise its sequential construction and provide online price inference in the prediction mode

with RBPF. The predictions obtained from the validation dataset show superior model

fit and accountability for uncertainties compared to a standard single-regime SSM. How-

ever, in this experiment it has also been found that the posterior learning of the duration

parameters failed to give meaningful results (not shown here). This is mainly due to the

general short-lived nature of high-frequency market as well as the lack of observations as

intervals.

5.6 Generalisation of di↵usion models

In this section, I propose a hierarchical model that can potentially generalise the Langevin

SSM in the proposed model to a combination of di↵erent continuous-time di↵usion models

such as Wiener process, OU process and Lévy process

However, I do not intend to go into great detail about the construction of these models.

Instead, I illustrate my idea on a simple example of 1-D exchangeable dataset. Figure

5.6.1 shows a histogram of 2000 1-D data generated from a mixture of Gamma distribu-

tions and normal distributions. It is clear that the general shape of the mixture density

cannot be captured by (a mixture of) distributions of a single type (e.g. normal). This

is analogous to the dynamical di↵usion scenario where some di↵usion behaviours simply

cannot be accommodated by having di↵erent parameters with the same SSM setup.

A simple solution is provided to generalise the DPM by allowing an additional step of

138

model choice. Denote M as the model choice random variable, so that the base measure

P0 is re-defined as:

(M, ✓)
i.i.d.
⇠ P0 = p(M) p(✓|M) (5.60)

where the parameters of a specific distribution are sampled conditioned on the chosen

model, for example:

p(M) =

8
>>><

>>>:

0.5 if M = Normal

0.5 if M = Gamma

0 otherwise

(5.61)

p(✓|M) =

8
<

:
NIG(µ, �2) if M = Normal

Gamma(↵)Gamma(�) if M = Gamma
(5.62)

where ✓ can be di↵erent sets of parameters depending on M. This gives the data kernel

for a single observation y as:

p(y) =
1X

k=1

⇡k K(y | ✓k,Mk) (5.63)

where:

K(y | ✓k,Mk) = N (y | ✓k) �Normal(Mk) + Gamma(y | ✓k) �Gamma(Mk) (5.64)

where �M0(M) = 1 if M = M
0 and 0 otherwise. As there is no inherent conjugacy

between Gamma likelihood and its parameter prior, the blocked approximation of the

“stick-breaking” from Section 5.4.2 is adopted again. The inference is performed with a

blocked Gibbs sampler [119].

Figure 5.6.2 shows the inferred posterior clusters and their mixture density in com-

parison to the truth. For clarity of the figure, the mixture density is averaged across 50

converged iterations; whilst densities of individual clusters are shown only for the final

iteration. It can be seen that there is an accurate fit of the posterior mixture density

to both true mixture density and data histogram. It is clear that with model selection,

DPM is now able to assign di↵erent distributions with di↵erent parameters to accommo-

date multi-modal and multi-model data.

In conclusion, this example of the extended DPM with model selection provides both

theoretical support and empirical evidence to the generalisation of di↵usion models. It is

thus possible to achieve “infinity” in both parameters and models. However, it is worth

noting that the dimension of the prior sample space would increase drastically if multiple

parametric models are introduced to P0. This may present challenges to inference.

139

Figure 5.6.2: Inference results obtained from the DPM with model choice. The posterior
mixture density is averaged across the converged 50 iterations; while the individual densities are
shown only for the final iteration.

5.7 Conclusions

To summarise, in this chapter I have proposed a novel model that performs tracking,

prediction, regime identification and parameter learning within a unified framework. In-

spired originally by the di↵usion of price in the LOB markets, the model employs an

infinite-mixture DPM to account for unknown di↵usion dynamics and a duration-explicit

HsMM to account for switching features of the dynamic regimes. Re-parameterising the

semi-Markovian duration with regime runtime, the complete model manages to main-

tain the Markovian property, which allows future predictions to be made online using

o✏ine-learned parameters.

In order to achieve full Bayesian inference of the model, I propose the combination of

the RBPF algorithm and the blocked MwG sampler under the general iterative framework

of the PG algorithm to achieve two-step iterative inference on the sequential states and

the static regimes. The deterministic filtering scheme and the optimal resampling scheme

are adopted to further improve the posterior inference performance.

Results obtained on synthetic data have shown good accuracy compared to the ground

truth and fast convergence of the iterative algorithm. Experimenting on the two real

datasets, the model has demonstrated reasonable identification of dynamic regimes and

interpretable learning of regime parameters in real-world complex systems. Furthermore,

the proposed model also showed better predictive performance compared to the standard

single-regime model.

Lastly, a possible generalisation of the DPM via another hierarchy of model selection

is proposed and briefly studied. Such a generalisation may provide even more flexible

modelling of time-series di↵usion data by accommodating di↵erent forms of di↵usion

models (i.e. SDEs). However, it also creates a higher-dimensional prior sample space (of

140

the base distribution P0) and thus requires a more e�cient inference scheme. This could

be an interesting topic for future work.

141

Appendix

5.A Stratified sampling algorithm

Stratified sampling algorithm, as a sub-routine for the optimal resampling scheme, can

be implemented as follows. Denote the number of particles admitted to �n as L (= |�n|)

and wi , i = 1, . . . ,M � L, as the weights for the M � L particles in set ⌦. A total of

Np � L particles need to be resampled in this stage. The stratified sampling algorithm

[21] proceeds as follows:

Algorithm 12 Stratified resampling

1: Set K =
PM�L

i=1 wi/(Np � L)
2: Draw U ⇠ Uniform(0,K)
3: for i = 1, . . . ,M � L do
4: U = U � wi

5: if U < 0 then
6: Resample the particle with index i

7: U = U + K
8: end if
9: end for

142

Chapter 6

Marginal filters and variational

parameter learning for state-space

models

Previous chapters have covered several sequential model for prediction and inference of

di↵erent aspects of high-frequency LOB markets. Whilst these models have demonstrated

their strengths and unique features, each of them generally requires a good set of hyper-

parameters to achieve promising performance. In fact, the tuning of hyperparameters

has always been the barrier between theoretical models and real-world applications. Due

to the ever-changing nature of the high-frequency markets, the task of hyperparameters

tuning becomes even more important and challenging in the case of financial modelling.

Model parameter learning was first considered in this thesis in Chapter 5, and was

achieved by the novel adaptation of the classic particle Gibbs (PG) algorithm. In this

chapter, I utilise the hierarchical structure of Bayesian modelling and focus on developing

e�cient inference algorithms that can be applied generally to di↵erent state-space models

for parameter learning purpose.

Time-series data modelling often establishes temporal correlations among time-indexed

random variables, such as state vectors, to achieve accurate representations of real-world

dynamics. However, the correlations among these random variables also present certain

challenges to the learning of parameters especially for those that control di↵usion dy-

namics. In the SSM, the dynamics-controlling parameters have correlations with state

vectors at all timestamps. The change of dynamics-controlling parameters during the

course of the sequential propagation will create a rippling e↵ect to the states at all sub-

sequent timestamps as well as inconsistency in di↵usion dynamics to the states preceding

the change. Furthermore, the large number of time-indexed random variables imposes a

higher requirement on both accuracy and e�ciency of the inference algorithm.

143

With the aim to overcome the challenges of parameter learning in sequential models, this

chapter focuses on the development of novel algorithms for e�cient inference of model

parameters under both online and o✏ine settings. The contributions of this chapter are

as follows:

• A marginal Kalman filter is proposed to allow unknown model parameters to prop-

agated symbolically along with the Kalman mean and covariance. By employing

the Rauch–Tung–Striebel (RTS) smoother [132] in the same time, the algorithm

e�ciently obtains both the posteriors of the parameters and the marginal posterior

of the state vector in closed-form.

• Built upon the concept of the marginal Kalman filter, a marginal Rao-Blackwellised

particle filter (RBPF) is developed to further accommodate non-linear and/or non-

Gaussian SSMs. This novel variant of the RBPF enables particle weight compu-

tation based on online learned parameters’ posterior and summarises the marginal

posterior of the parameters with a weighted mixture distribution.

• Finally, the chapter presents a novel integration of the PF and the variational Bayes

(inference) algorithm, termed the particle filter variational inference (PF-VI) algo-

rithm. The algorithm allows iterative Bayesian inference on both state vectors and

model parameters for a wide range of SSMs. In comparison to the famous particle

Markov chain Monte Carlo (PMCMC) algorithm [64], the PF-VI algorithm allows

better utilisation of particle information and hence provides more stable posterior

convergence.

Section 6.1 will introduce the marginal Kalman filter and its application on a synthetic

linear-Gaussian di↵usion example. In Section 6.2, the vision is extended to the develop-

ment of algorithms associated with PFs to accommodate a wider range of SSMs. Both

the marginal RBPF and the PF-VI algorithm are derived and introduced in this section.

Last but not least, the experimental results obtained from the marginal RBPF and the

PF-VI are displayed in Section 6.3 including a comparison with the PMCMC algorithm.

6.1 Marginal Kalman filter

Kalman filter (KF) [8], as the optimal inference algorithm for linear Gaussian SSMs, has

been used extensively in many applications. The algorithm assumes Gaussian transition

and observation models with known noise scales for both. In this section, we assume

unknown but static noise scales and introduce a marginal Kalman filter (MKF) which

allows unknown symbolic noise scales to be propagated with the time-indexed states and

achieves accurate Bayesian parameters learning. The concept employed in the MKF di↵ers

from the Rao-Blackwellisation [81, 82] in the RBPF algorithm [83] the marginalisation

144

does not take place until the sequential propagation finishes and is taken with respective to

the parameters’ posterior. The MKF shares similarities in state posterior with the heavy-

tailed student-t filters [133, 134] where transition and/or observation are formulated as

student-t distributions.

6.1.1 Model setup

In order to setup a model for inference, a general continuous-time linear-Gaussian SSM

is constructed as follows:

dxt = Axt dt+ h dWt (6.1)

where h is further written as h = �v b with b being a vector of zero(s) and one(s); dWt is

a unit-variance Wiener process. Further define the observation model for an observation

yt at time t as:

yt = Gxt + ✏t (6.2)

where ✏t
i.i.d.
⇠ N (0, �2

w). The transition density and the likelihood can be written as:

p(xtn |xtn�1 , �
2
v) = N

�
xtn | e

A�tnxtn�1 , ⌃(�tn, �
2
v)

(6.3)

p(ytn |xtn , �
2
w) = N

�
ytn |Gxtn , �

2
w

�
(6.4)

where �tn := tn� tn�1 and ⌃(�tn, �
2
v) can be readily computed as a function of time

interval and innovation noise. From the above definition, one can see that this general

model has two main parameters: the innovation/process noise variance �2
v ; and the ob-

servation noise variance �2
w. In certain applications, it is also possible to have matrix A

or element(s) of it as dynamics-controlling parameters (e.g. the regime-switching model

proposed in Chapter 5). However, this will not be considered here for now.

Based on the results of previous chapters, the transition covariance matrix ⌃(�tn, �
2
v)

can be expanded and written as:

⌃(�tn, �
2
v) = e

A�tn
h Z �tn

0

e
�A⌧ hhT (e�A⌧)Td⌧

i
(eA�tn)T

= �
2
v e

A�tn
h Z �tn

0

e
�A⌧ bbT (e�A⌧)Td⌧

i
(eA�tn)T

= �
2
v ⌃̂n

(6.5)

The transition covariance can now be factorised into �2
v and a term ⌃̂n that is a function

of �tn. Furthermore, re-define the observation noise as a scaled version of the process

noise:

�
2
w = w ⇥ �

2
v (6.6)

where w is a fixed constant. This proportional relation between the process noise and

145

the observation noise is usually much easier to tune or estimate based on specific applica-

tions. In order to perform Bayesian parameter learning for �2
v , assign an inverse-Gamma

distribution [135] as the prior of �2
v :

p(�2
v) = IG

�
�
2
v |↵, �

�
(6.7)

The joint probability of the above model can thus be written, given a set of N observations

Y = {ytn}
N
n=1 at (irregular) timestamps {tn}Nn=1 and an initial timestmap t0, as:

p(Y,X, �
2
v) =p(xt0)

NY

n=1

�
p(xtn |xtn�1 , �

2
v) p(ytn |xtn , �

2
v)

p(�2

v)

=p(xt0)
NY

n=1

n
N
�
xtn | e

A�tnxtn�1 , �
2
v⌃̂n

�
N
�
ytn |Gxtn ,w �

2
v

�o

⇥ IG
�
�
2
v |↵, �

�

(6.8)

where X = {xtn}
N
n=0.

6.1.2 Marginal filtering

As for a standard KF [88], in order to begin marginal Kalman filtering it is necessary to

define the initial condition of the state vector xt0 . This initialisation usually varies based

on the exact application of the model and some applications simply assume a perfectly

observed initial state. Without loss of generality, let us define a Gaussian initial state as:

p(x0) = N
�
x0 |µµµ0|0, �

2
v LLL0|0

�
(6.9)

where again the covariance is constructed proportional to �2
v . With a slight abuse of nota-

tion, let us allow state vectors and data to be indexed by their corresponding timestamps

index n. Treating �2
v as a static but unknown random variable, it can be kept in symbolic

representation and the state vectors shall propagate as follows:

p(xn | y1:n�1, �
2
v) =

Z
p(xn |xn�1, �

2
v) p(xn�1 | y1:n�1, �

2
v) dxn�1 (6.10)

Assume that the posterior filtering density p(xn�1 | y1:n�1, �
2
v) can be obtained in a Gaus-

sian form i.e.:

p(xn�1 | y1:n�1, �
2
v) = N

�
xn�1 |µµµn�1|0:n�1,⌃n�1|0:n�1

�

= N
�
xn�1 |µµµn�1|0:n�1, �

2
v LLLn�1|0:n�1

� (6.11)

146

The integration of (6.10) is readily computed as:

p(xn | y1:n�1, �
2
v) = N

�
xn |µµµn|0:n�1,⌃n|0:n�1

�
(6.12)

with predictive parameters:

µµµn|0:n�1 = e
A�tn µµµn�1|0:n�1 (6.13)

⌃n|0:n�1 = e
A�tn

h Z �tn

0

e
�A⌧

�
2
v bb

T (e�A⌧)Td⌧ + �
2
v LLLn�1|0:n�1

i
(eA�tn)T

= �
2
v e

A�tn
h Z �tn

0

e
�A⌧ bbT (e�A⌧)Td⌧ +LLLn�1|0:n�1

i
(eA�tn)T

= �
2
v LLLn|0:n�1

(6.14)

The normal Kalman procedure allows us to update the predictive parameters based on

the observation yn, and obtain the posterior filtering density for state vector xn:

p(xn | y1:n, �
2
v) =

p(xn | y1:n�1, �
2
v) p(yn |xn, �

2
v)

p(yn | y1:n�1, �2
v)

= N
�
xn |µµµn|0:n,⌃n|0:n

� (6.15)

with

Qn =⌃n|0:n�1G
T
�
G⌃n|0:n�1G

T + �
2
vw

��1

=�2
vLLLn|0:n�1G

T
n
�
2
v

�
GLLLn|0:n�1G

T + w

�o�1

=LLLt|0:t�1G
T
�
GLLLt|0:t�1G

T + e

��1

(6.16)

µµµn|0:n = µµµn|0:n�1 +Qn

�
yn �Gµµµn|0:n�1

�
(6.17)

⌃n|0:n =
�
I�Qn G

�
⌃n|0:n�1

=�2
v

�
I�Qn G

�
LLLn|0:n�1

=�2
v LLLn|0:n

(6.18)

Note that both Kalman gain Qn and posterior mean µµµn|0:n are not functions of �2
v while

⌃n|0:n can again be factorised with respect to �2
v . This allows a “marginal” Kalman recur-

sion to proceed with �2
v unknown and numerical values of ⌃n|0:n�1, ⌃n|0:n un-computed.

The process of marginal Kalman filtering is essentially propagating the coe�cients of the

symbolic �2
v at both prediction and filtering stages of a standard KF while keeping the

propagation of state mean unchanged.

6.1.3 Posteriors, backward smoothing and marginal state inference

Conditioned on a symbolic �2
v , the filtering distributions of the state vectors are readily

available but unknown. The posterior inference of �2
v should hence be performed by first

147

writing the Kalman prediction error decomposition (PED) at time tn:

p(yn | y1:n�1, �
2
v) =

Z
p(yn |xn, �

2
v) p(xn | y1:n�1, �

2
v) dxn

= N

⇣
yn |Gµµµn|0:n�1 , G⌃n|0:n�1G

T + w�
2
v

⌘

=
1p

2⇡ �2
v (GLLLn|0:n�1GT + w)

exp
n
�

(yn �Gµµµn|0:n�1)2

2�2
v (GLLLn|0:n�1GT + w)

o
(6.19)

And thus, the conditional evidence of the model conditioned on �2
v is:

p(Y | �
2
v) = p(y1|�

2
v)

NY

n=2

p(yn | y1:n�1, �
2
v) (6.20)

Clearly, the closed-form posterior of �2
v can be obtained easily with the above conditional

evidence. For simplicity, this is derived in log-form:

log
�
p(�2

v |Y)

=log
�
p(Y | �

2
v)

+ log

�
p(�2

v)

+ const.

=�
1

2

NX

n=1

(
log(�2

v) +
(yn �Gµµµn|0:n�1)2

�2
v (GLLLn|0:n�1GT + w)

)
+ (�↵� 1) log(�2

v)�
�

�2
v

+ const.

=(�↵�
N

2
� 1) log(�2

v)�
1

�2
v

�
� +

NX

n=1

(yn �Gµµµn|0:n�1)2

2(GLLLn|0:n�1GT + w)

�
+ const.

(6.21)

where the constant terms contain the values that are not functions of �2
v . This gives the

posterior hyperparameters of p(�2
v |Y) = IG(↵̂, �̂) as:

↵̂ = ↵ +
N

2
, �̂ = � +

NX

n=1

(yn �Gµµµn|0:n�1)2

2(GLLLn|0:n�1GT + w)
(6.22)

With the posterior of �2
v obtained, it is now possible to perform posterior inference on the

sequential state vectors. Recall the posterior filtering density for state vector xn during

the marginal Kalman filtering:

p(xn | y1:n, �
2
v) = N

�
xn |µµµn|0:n, �

2
v LLLn|0:n

�
(6.23)

It is clear that the marginal of this filtering posterior cannot be obtained by simply taking

the expectation of �2
v with respect to its posterior as this filtering distribution only has

the information from observations up to time tn. Whilst the posterior of �2
v contains the

information of the entire data sequence {yn}
N
n=1.

In order to mitigate this and obtain the exact posterior of the state vector, the

Rauch–Tung–Striebel (RTS) smoother is adopted as an e�cient backwards smoothing

148

Algorithm 13 RTS smoother

Input: Filtering parameters {µµµn|0:n, ⌃n|0:n}
N
n=0; predictive parameters

{µµµn|0:n�1, ⌃n|0:n�1}
N
n=1; and transition matrices {eA�tn}

N
n=1

Output: Posterior smoothing parameters {µµµn|0:N , ⌃n|0:N}
N
n=0

1: for n = N � 1, N � 2, . . . , 0 do
2: Cn = ⌃n|0:n (eA�tn+1)⌃�1

n+1|0:n
3: µµµn|0:N = µµµn|0:n +Cn

�
µµµn|0:N � µµµn+1|0:n

�

4: ⌃n|0:N = ⌃n|0:n +Cn

�
⌃n+1|0:N �⌃n+1|0:n

�
CT

n

5: end for
6: Return: {µµµn|0:N , ⌃n|0:N}

N
n=0

algorithm in a linear-Gaussian model [132]. The target density of the RTS smoother is

the smoothing posterior i.e.:

p(xn |Y, �
2
v) = N

�
xn |µµµn|0:N , ⌃n|0:N

�
(6.24)

which is readily available for n = N . Hence, the algorithm starts at the last timestamp tN

and propagates the parameters backwards towards t0. Algorithm 13 shows the scheme

of a RTS smoother which takes parameters and values generated in MKF as its input.

Clearly, both Cn and µµµn|0:N are not functions of �2
v , and ⌃n|0:N can be factorised as:

⌃n|0:N = �
2
v LLLn|0:N (6.25)

which allows us to still keep �2
v as unknown throughout the course of the RTS smoother.

Finally, the marginal posterior of the state vector can be computed by integrating the

unknown process noise, which has been kept symbolic throughout the entire inference

process, with respect to its posterior distribution. This yields a multivariate student-t

distribution as the standard result. The full derivation is shown below:

p(xn |Y) =

Z
p(xn |Y, �

2
v) p(�

2
v |Y) d�2

v

=

Z
N
�
xn |µµµn|0:N , ⌃n|0:N

�
IG(�2

v | ↵̂, �̂) d�
2
v

=

Z
1

(2⇡)
D
2 (�2

v)
D
2 |LLLn|0:N |

1
2

⇥
�̂
↵̂

�(↵̂)
(�2

v)
�↵̂�1
⇥

exp
n
�

1

2�2
v

(xn � µµµn|0:N)
T
LLL

�1
n|0:N (xn � µµµn|0:N)�

�̂

�2
v

o
d�

2
v

(6.26)

where �(·) is the Gamma function. For simplicity of the expression, I further denote

149

M = (xn � µµµn|0:N)T LLL
�1
n|0:N (xn � µµµn|0:N) and continue the derivation as:

p(xn |Y) =
�̂
↵̂

(2⇡)
D
2 |LLLn|0:N |

1
2�(↵̂)

⇥
�(↵̂ + D

2)

(�̂ + M
2)

↵̂+D
2

⇥

Z
(�̂ + M

2)
↵̂+D

2

�(↵̂ + D
2)

(�2
v)

�(↵̂+D
2)�1exp

n
�
�̂ + M

2

�2
v

o
d�

2
v

| {z }
integrates to 1

=
�(↵̂ + D

2)

�(↵̂)(2�̂)D/2⇡D/2|LLLn|0:N |1/2
⇥

h
1 +

M

2�̂

i�(↵̂+D
2)

=
�(↵̂ + D

2)

�(↵̂)(2↵̂)D/2⇡D/2|
�̂
↵̂L
LLn|0:N |1/2

⇥

h
1 +

(xn � µµµn|0:N)T (�̂↵̂LLLn|0:N)�1 (xn � µµµn|0:N)

2↵̂

i�(↵̂+D
2)

(6.27)

where the first line of the above equation is obtained by simultaneously multiplying and

dividing a constant. The last line essentially gives a generalised multivariate student-t

distribution with degrees of freedom ⌫ = 2↵̂, location µ = µµµn|0:N and covariance ⌃ =
�̂
↵̂L
LLn|0:N i.e.:

p(xn |Y) = t2↵̂

�
xn |µµµn|0:N ,

�̂

↵̂
LLLn|0:N

�
(6.28)

And naturally, the posterior of the observation noise �2
w can be obtained from its connec-

tion to the process noise:

p(�2
w |Y) = IG(�2

w | ↵̂,w�̂) (6.29)

6.1.4 Simulation results

I apply the MKF algorithm on a set of synthetic data simulated from a linear-Gaussian

Langevin model. More specifically, 100 data points are generated on an irregular time-grid

with:

A =

"
0 1

0 �0.5

#
, b =

"
0

1

#
, �

2
v = 10 , �

2
w = 20 , µ0|0 = x0 , L0|0 = 0 (6.30)

The proposed MKF employs a di↵use inverse-Gamma prior with ↵ = � = 0.01. The

posterior inference results for state vectors are compared to three Kalman filters with

true, underestimated and overestimated �
2
v values. Figure 6.1.1 shows the inference

results obtained using both KFs with fixed parametric values and MKF with a di↵use

prior. In this experiment, the hyperparameter w = 2 is assumed to be known. It is clear

that the MKF is able to achieve an confidence interval that is closest to the KF results

obtained with the true parameter values. On the other hand, both KFs with 50% over

and underestimation of �2
v show worse results in terms of the confidence interval compared

to the MKF. Figure 6.1.2 shows the posterior obtained from the MKF.

150

Figure 6.1.1: Posterior inference results for state vectors for di↵erent algorithms and parameter
settings. The black curves are the observations. The colored lines are the posterior means of
the state vectors while the shaded regions indicate the ±2� confidence intervals.

Figure 6.1.2: Posteriors for �2v and �2w obtained with MKF. Assume w is known and accurate.

151

(a) State vector posteriors with means and ±2� confidence interval.

(b) Posteriors for �2v and �2w.

Figure 6.1.3: Two plots show the posteriors of state vectors and noise parameters respectively.
The MKF was run with incorrect w value of 1.

An additional experiment was carried out on MKF with incorrect values of w, which

evaluates the algorithm under a realistic scenario. Figure 6.1.3 shows the posterior

results obtained with an incorrect w = 1.0. Apparently even with a wrong w, the MKF

algorithm is still able to achieve posterior results that are very close to those obtained

from the KF with true parameters. As can be seen from panel (b), the learned posteriors

has balanced out the e↵ect of an incorrect w by overestimating the process noise �2
v .

Based on the experiments, it is fair to conclude that the proposed MKF algorithm is

able to perform accurate posterior inference on both state vectors and noise parameters

given a well-tuned w. Even in the case where w can not be estimated accurately, MKF

is still able to perform robust posterior inference on state vectors by compensating the

negative e↵ect of an incorrect w with a learned �2
v from the data.

152

6.2 Parameter learning in the particle filter

Despite the good performance achieved by the MKF, its application is severely limited to

only linear-Gaussian dynamical models just like the generic KF. And real-world systems

always involve complex dynamics that cannot be simply described with linear-Gaussian

models. While non-linear dynamics can be accommodated in some variants of the KF such

as the extended Kalman filter [136], their performance relies heavily on the accuracy of

approximated linearisation. Using Monte Carlo approximation, the particle filter (PF) was

developed and has been widely adopted in the inference of highly non-linear and/or non-

Gaussian dynamical models. Hence in this section, I study parameter learning algorithms

for dynamical models that can be readily fitted in the general framework of the PF.

The authors of [137] reviewed a number of parameter estimation methods developed

for SSMs incorporating the PF. This includes an o✏ine non-Bayesian maximum likelihood

(ML) method originally introduced in [138]. One typical di�culty of the ML approach

is the discontinuous evaluation of likelihood function caused by the PF resampling. This

issue was elegantly bypassed in [139] by introducing a “continous” resampling step. Al-

though the online ML learning of parameters has been shown to converge under regularity

conditions for HMMs [140], the convergence for general SSM remains unproven.

Particle Markov chain Monte Carlo (PMCMC) [64], as an o✏ine Bayesian parameter

learning algorithm, has provided good results in Chapter 5 via its particle Gibbs (PG)

variant. Another algorithm that falls into the PMCMC framework is the particle marginal

Metropolis-Hastings (PMMH) algorithm. The algorithm was initially proposed in [141] as

a heuristic to sample from a posterior distribution p(✓ | y1:N) with ✓ being model parame-

ter(s). The authors of [64] later established a remarkable feature of the algorithm which

admits the extended target posterior p(x1:N , ✓ | y1:N) as its invariant distribution. Online

Bayesian methods, on the other hand, target the sequential posterior of p(x1:n, ✓ | y1:n), for

n = 1 . . . N . A naive solution to this problem is by augmenting the state xn to include

parameter(s) ✓ in the particle set so that both are inferred with the PF. However, a static ✓

does not possess any forgetting property and is bound to degenerate as the PF progresses.

Important developments in this direction include two popular algorithms: the Storvik’s

filter [142] where the algorithm assumes the online posterior p(✓|x1:n, y1:n) can be learned

from a set of low-dimensional su�cient statistics of the states x1:n and observations y1:n

that can be recursively updated; and the Liu and West’s filter [143] which utilises the

resample-propagate framework of the auxiliary particle filter (APF) [144] and aims to

solve the degeneracy problem by sampling ✓ at each propagation from the online poste-

rior approximated by a mixture of Gaussians. The authors of [106, 145] proposed a novel

particle learning (PL) which proves to be a competitor to the MCMC algorithms. The

PL combines the resample-propagate framework and the conditional su�cient statistics

representation, and has demonstrated promising results in a recent financial application

153

[146]. An alternative workaround of the degeneracy problem involves introducing dynam-

ics to the parameter ✓ and making it time-varying i.e. {✓n}
N
n=1. This concept has been

applied in the volumetric model in Chapter 3 and also in [147]. However in certain

cases, this means the introduction of an unnecessary artificial dynamical model. The

SMC2 algorithm introduced simultaneously in [148] and [149] can be considered as an

online particle equivalent of the PMCMC algorithm where a di↵erent set of N✓ particles

is used to explore the distribution p(✓ | y1:n) at each timestamp tn. The ✓-particles are

re-weighted at time tn+1 according to the ratio of empirically estimated partial likelihoods

p̂✓i(y1:n+1)/p̂✓i(y1:n) for each of {✓i}N✓
i=1. However, the SMC2 algorithm often demands an

extensive amount of computation and is thus generally impractical to be used under real

online settings.

In the remainder of this section, two novel algorithms for Bayesian parameter learning

in dynamical models are introduced. Furthermore, the proposed algorithms are tested

on synthetic datasets with their relative performance evaluated against some existing

methods.

6.2.1 Marginal Rao-Blackwellised particle filter

With the success achieved with the MKF, it is intuitive to generalise its application to

a Rao-Blackwellised version of the particle filter where state vectors are marginalised

and inferred with a conditional Kalman filter. This leads the marginal RBPF as a direct

extension of MKF. The authors of [150] briefly introduced a type of marginal Monte Carlo

filter which is similar to the proposed marginal RBPF. Meanwhile, the marginal RBPF

also shares certain similarities with the Storvik’s filter [142] and the PL [106] algorithm in

that a set of recursively updated su�cient statistics is maintained for each particle during

the PF propagation. However, instead of sampling parameters from an approximated

online posterior or distribution, the marginal RBPF employs a conjugate prior structure

and allows the unknown parameters to be marginalised mitigating the particle degeneracy

problem.

Model setup

As the original RBPF algorithm can be applied in a range of SSMs where state vectors

are either fully or partially “Rao-Blackwellised”, without loss of generality, the marginal

RBPF algorithm is demonstrated on the jump-di↵usion model proposed in [13] and re-

viewed in Chapter 3. Recall the continuous-time jump-di↵usion SSM which follows the

154

Langevin dynamics:

dxt = Axt dt+ �v b dWt + c dJt

d

"
x1,t

x2,t

#
=

"
0 1

0 ✓

#"
x1,t

x2,t

#
dt+ �v

"
0

1

#
dWt +

"
0

1

#
dJt

(6.31)

where ✓ is assumed as a known hyperparameter; and the process dJt is typically a non-

Gaussian jump process. Here, consider a Gauss-Poisson process with jump times {⌧k}k

(where k is the jump index) following a homogeneous Poisson process and a normally

distributed jump size Jk:

⌧k � ⌧k�1 ⇠ Exponential(�J) (6.32)

Jk ⇠ N
�
µJ , �

2
J

�
(6.33)

In such a case, the state transition density of xn has been derived to be Gaussian condi-

tioned on both xn�1 and the jumps that occur within the time interval (tn�1, tn]:

p(xn |xn�1, {⌧}n�1:n) = N
�
xn | µ̃µµn, ⌃̃n

�
(6.34)

where {⌧}n�1:n denotes the jumps in (tn�1, tn]; and the Gaussian mean and covariance are:

µ̃µµn = e
A�tn xn�1 +

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) cµJ (6.35)

⌃̃n = ⌃(�t, �
2
v) +

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) ccT�2

J

�
e
A(tn�⌧k)

�T

= �
2
v ⌃̂n +

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) ccT�2

J

�
e
A(tn�⌧k)

�T (6.36)

where ⌃̂n is defined in Eq. (6.5) as the factorised coe�cient of the transition covariance.

The same intuition is adopted from the MKF algorithm by simply assuming a proportional

relationship between jump variance and the process variance i.e. �2
J = J �

2
v ; and thus

obtain:
⌃̃n = �

2
v ⌃̂n + �

2
v J

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) ccT

�
e
A(tn�⌧k)

�T

= �
2
v ⌃̂⌧,n

(6.37)

In the case of symmetric jumps (i.e. µJ = 0), such a formulation of the jump variance

allows an easy factorisation of the transition covariance and the likelihood variance. How-

ever, I take a step further and aim to infer the jump mean µJ and the process variance �2
v

simultaneously by having a “seemingly” conjugate normal-inverse-Gamma prior jointly

155

on the two random variables:

p(µJ , �
2
v) = NIG

�
µJ , �

2
v |m, ⌫,↵, �

�

= N
�
µJ |m,

�
2
v

⌫

�
IG

�
�
2
v |↵, �

� (6.38)

The observational model is the same as that in (6.2) with observation matrix G = [1 0]

for the Langevin model.

Conditional MKF

As the regular RBPF algorithm for this jump-di↵usion application has been thoroughly

introduced in Chapter 3, it will not be derived from scratch again here. Instead, let us

focus on how the analogous symbolic representation (of the unknown parameters) used in

the MKF can also be adopted in the marginal RBPF, or more precisely in the conditional

MKF. Suppose that by conditioning on a (sampled) trajectory of jump times {⌧}0:n from t0

to tn, the posterior filtering distribution of the state vector xn�1 is a Gaussian distribution:

p(xn�1 | y1:n�1, {⌧}0:n�1) = N
�
xn�1 |µµµn�1|0:n�1,⌃n�1|0:n�1

�
(6.39)

with posterior (filtering) parameters:

µµµn�1|0:n�1 = µc
n�1|0:n�1 + dn�1|0:n�1 µJ (6.40)

⌃n�1|0:n�1 = �
2
v LLLn�1|0:n�1 (6.41)

where µc
n�1|0:n�1 is a constant term from the linear Gaussian di↵usion; while dn�1|0:n�1 is

the coe�cient for jump-induced drifts. Combined with the state vector transition density

in (6.34), one can obtain the marginal predictive distribution of xn as:

p(xn | y1:n, {⌧}0:n) =

Z
p(xn�1 | y1:n�1, {⌧}0:n�1) p(xn |xn�1, {⌧}n�1:n) dxn�1

= N
�
xn |µµµn|0:n�1,⌃n|0:n�1

� (6.42)

156

with predictive parameters:

µµµn|0:n�1 = e
A�tn µµµn�1|0:n�1 +

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) cµJ

= e
A�tn µc

n�1|0:n�1 +
⇣
e
A�tn dn�1|0:n�1 +

X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) c

⌘
µJ

= µc
n|0:n�1 + dn|0:n�1 µJ

(6.43)

⌃n|0:n�1 = e
A�tn ⌃n�1|0:n�1 (e

A�tn)T + ⌃̃n

=
⇥
e
A�tn LLLn�1|0:n�1 (e

A�tn)T + ⌃̂⌧,n

⇤
�
2
v

= �
2
v LLLn|0:n�1

(6.44)

where both ⌃̃n and ⌃̂⌧,n are defined in (6.37). Again use the Kalman update formulae to

obtain the posterior parameters of xn after being “corrected” by the observation yn:

Qn = LLLn|0:n�1G
T
�
GLLLn|0:n�1G

T + w

��1
(6.45)

µµµn|0:n = µµµn|0:n�1 +Qn

�
yn �Gµµµn|0:n�1

�

= µc
n|0:n�1 + dn|0:n�1 µJ +Qn

⇥
yn �G(µc

n|0:n�1 + dn|0:n�1 µJ)
⇤

=
⇥
Qn yn + (I�QnG)µc

n|0:n�1
⇤
+ (I�QnG)dn|0:n�1 µJ

= µc
n|0:n + dn|0:n µJ

(6.46)

⌃n|0:n = (I�QnG)⌃n|0:n�1

= �
2
v (I�QnG)LLLn|0:n�1

= �
2
v LLLn|0:n

(6.47)

With µJ and �2
v in their symbolic form, the posterior parameters for xn is obtained in the

same format as those assumed for xn�1. Hence, it can be easily proved by induction that

this conditional MKF inside the marginal RBPF algorithm can propagate throughout

timestamps without having to evaluate the unknown parameters. However, algorithmi-

cally in addition to the coe�cients of �2
v , this marginal RBPF also needs to keep separately

track of both the constant term µc and the coe�cient term d of the posterior mean.

Marginal VRPF

With the state vectors dealt with by the conditional MKF, the inference for the non-

Gaussian jump times were handled elegantly by a VRPF in the original paper [13]. Sim-

ilarly, the general framework of the VRPF algorithm can also be used in this case as the

jump proposal only depends on the hyperparameter �J . However, one problem arises

from the use of symbolic µJ and �2
v . As derived in Chapter 3, the sequence of proposed

jump times {⌧}
(i)
0:n of the ith particle should be re-weighted at time tn according to its

157

conditional PED as:

w̃
(i)
n = w

(i)
n�1 ⇥ p(yn | y1:n�1, {⌧}

(i)
0:n, �

2
v , µJ)

= w
(i)
n�1 ⇥N

�
yn |Gµµµ

(i)
n|0:n�1 , G⌃(i)

n|0:n�1G
T + w �

2
v

�

= w
(i)
n�1 ⇥N

�
yn |G(µc(i)

n|0:n�1 + d(i)
n|0:n�1 µJ) , �

2
v(GLLL

(i)
n|0:n�1G

T + w)
�

(6.48)

where w
(i)
n�1 is the normalised weight at tn�1; and both µµµ

(i)
n|0:n�1 and ⌃(i)

n|0:n�1 are predictive

parameters from Eq. (6.43) and (6.44) conditioned on the proposed jump sequence {⌧}(i)0:n.

Apparently for weight evaluation, µJ and �2
v can no longer be kept as unknown symbols

as numerical weights are required by the VRPF to perform resampling and avoid particle

degeneracy. This issue is solved here by integrating out the parameters with respect

to their online joint posterior learned with the data observed so far in the process i.e.

p(µJ , �
2
v | y1:n�1, {⌧}

(i)
0:n�1).

In order to perform the integration, the online posterior of (µJ , �
2
v) needs to be obtained

first. Fortunately this online posterior can be inferred in closed-form with the conjugate

normal-inverse-Gamma prior:

p(µJ , �
2
v | y1:n�1, {⌧}

(i)
0:n�1)

=p(µJ , �
2
v) p(y1|µJ , �

2
v , {⌧}

(i)
0:1)

n�1Y

n0=2

p(yn0 | y1:n0�1, µJ , �
2
v , {⌧}

(i)
0:n0)

=NIG
�
µJ , �

2
v | m̂

(i)
n�1, ⌫̂

(i)
n�1, ↵̂

(i)
n�1, �̂

(i)
n�1
�

(6.49)

with hyperparameters:

↵̂
(i)
n�1 = ↵ +

n� 1

2
(6.50)

⌫̂
(i)
n�1 = ⌫ +

n�1X

n0=1

(Gd(i)
n0|0:n0�1)

2

GLLL
(i)
n0|0:n0�1G

T + w

(6.51)

m̂
(i)
n�1 =

1

⌫̂
(i)
n�1

⇣
⌫m+

n�1X

n0=1

(yn0 �Gµc(i)
n0|0:n0�1)Gd(i)

n0|0:n0�1

G(i)LLLn0|0:n0�1GT + w

⌘
(6.52)

�̂
(i)
n�1 = � +

1

2

⇣
⌫m

2
� ⌫̂

(i)
n�1 (m̂

(i)
n�1)

2 +
n�1X

n0=1

(yn0 �Gµc(i)
n0|0:n0�1)

2

GLLL
(i)
n0|0:n0�1G

T + w

⌘
(6.53)

Alternatively, one can also construct recursive formulae and update the hyperparameters

158

obtained from the previous timestamp with the new observation i.e.:

↵̂
(i)
n = ↵̂

(i)
n�1 +

1

2
(6.54)

⌫̂
(i)
n = ⌫̂

(i)
n�1 +

(Gd(i)
n|0:n�1)

2

GLLL
(i)
n|0:n�1G

T + w

(6.55)

m̂
(i)
n =

1

⌫̂
(i)
n

⇥
⌫̂
(i)
n�1m̂

(i)
n�1 +

(yn �Gµc(i)
n|0:n�1)Gd(i)

n|0:n�1

GLLL
(i)
n|0:n�1G

T + w

⇤
(6.56)

�̂
(i)
n = �̂

(i)
n�1 +

1

2

⇣
⌫̂
(i)
n�1(m̂

(i)
n�1)

2
� ⌫̂

(i)
n (m̂(i)

n)2 +
(yn �Gµµµ

c(i)
n|0:n�1)

2

GLLL
(i)
n|0:n�1G

T + w

⌘
(6.57)

Thus compute the marginal PED as a generalised student-t distribution for weight eval-

uation:

p(yn | y1:n�1, {⌧}
(i)
0:n, m̂

(i)
n�1, ⌫̂

(i)
n�1, ↵̂

(i)
n�1, �̂

(i)
n�1)

=

ZZ
p(yn | y1:n�1, {⌧}

(i)
0:n, �

2
v , µJ) p(µJ , �

2
v | y1:n�1, {⌧}

(i)
0:n�1) d�

2
v dµJ

=t
2↵̂

(i)
n�1

n
yn |G(µc(i)

n|0:n�1 + d(i)
n|0:n�1 m̂

(i)
n�1) ,

�̂
(i)
n�1

↵̂
(i)
n�1

�
GLLL

(i)
n|0:n�1G

T + w +
(Gd(i)

n|0:n�1)
2

⌫̂
(i)
n�1

�o

(6.58)

With such formulation, the VRPF can proceed with the standard routine and obtain an

empirical approximation of the (marginal) posterior of the jump times in (t0, tN] at the

end of this marginal VRPF:

p({⌧}0:N |Y) ⇡

NpX

i=1

w
(i)
N �{⌧}(i)0:N

�
{⌧}0:N

�
(6.59)

One should note that the learning of posterior hyperparamters of (µJ , �
2
v) concerns the

entire continuous trajectory of µc(i)
n|0:n�1, d

(i)
n|0:n�1 and L

(i)
n|0:n�1 from t0. Thus it is crucial to

keep a consistent lineage of these values in addition to the jump times during the resam-

pling stage of the PF. Therefore, the content of a single particle that should be propagated

in this marginal RBPF algorithm (at time tn) is defined as: (1) the full sequence of jump

times up to the current timestamp tn; (2) the full trajectory of relevant terms in both

predictive and posterior parameters; and (3) the particle’s normalised weight. Write this

as:

P
(i)
n =

n
{⌧}

(i)
0:n ,

�
µc(i)

k|0:k�1,µ
c(i)
k|0:k,d

(i)
k|0:k�1,d

(i)
k|0:k,LLL

(i)
k|0:k�1,LLL

(i)
k|0:k

 n

k=1
, w

(i)
n

o
(6.60)

159

Posterior of (µJ , �
2
v)

With the update formulae for online posterior described early on, the full posterior condi-

tioned on a particular jump sequence can be readily obtained at the end of the marginal

RBPF. The marginal posterior for (µJ , �
2
v) can therefore be acquired by incorporating the

empirical posterior in (6.59) and integrating out the jump times:

p(µJ , �
2
v |Y) =

Z
p(µJ , �

2
v |Y, {⌧}0:N) p({⌧}0:N |Y) d{⌧}0:N

⇡

NpX

i=1

w
(i)
N NIG

�
µJ , �

2
v | m̂

(i)
N , ⌫̂

(i)
N , ↵̂

(i)
N , �̂

(i)
N

� (6.61)

which gives a (weighted) mixture of Np normal-inverse-Gamma distributions.

Posterior state inference

The posterior state inference in the marginal RBPF can be performed with various ap-

proaches. One simple solution is presented here. Similar to the MKF, the posterior

filtering parameters µµµn|0:n and ⌃n|0:n normally cannot be used directly to perform the

posterior state inference as it only contains information up till time tn. However, the full

trajectories of these parameters are kept over the course of the marginal RBPF, which is

considered as a type of simple (online) smoothing operation [60] i.e. current and future

observations can impact past distributions/parameters. It is therefore intuitive to simply

take the expectation of these posterior parameters {µµµ
(i)
n|0:n}

N
n=1 and {⌃(i)

n|0:n}
N
n=1 for each

particle with respect to its corresponding conditional posterior p
�
µJ , �

2
v |Y, {⌧}

(i)
0:N

�
:

p(xn |Y, {⌧}
(i)
0:N)

=

ZZ
p(xn |Y, µJ , �

2
v , {⌧}

(i)
0:N) p

�
µJ , �

2
v |Y, {⌧}

(i)
0:N

�
dµJ d�

2
v

=

ZZ
N
�
xn |µ

c(i)
n|0:n + d(i)

n|0:n µJ , �
2
v LLL

(i)
n|0:n

�
NIG

�
µJ , �

2
v | m̂

(i)
N , ⌫̂

(i)
N , ↵̂

(i)
N , �̂

(i)
N

�
dµJ d�

2
v

=t2↵̂

n
xn |µ

c(i)
n|0:n + d(i)

n|0:n m̂
(i)
N ,

�̂
(i)
N

↵̂
(i)
N

�
LLL

(i)
n|0:n +

d(i)
n|0:n(d

(i)
n|0:n)

T

⌫̂
(i)
N

�o

(6.62)

where the filtering parameters (e.g. µc(i)
n|0:n) are taken from the continuous trajectory of the

particle in (6.60). Further taking expectations with respect to empirical jump posterior

(6.59), the marginal posterior distribution of the state vector xn can be expressed as a

weighted mixture of Np multivariate student-t distributions:

p(xn |Y) =

NpX

i=1

w
(i)
N t2↵̂

n
xn |µ

c(i)
n|0:n + d(i)

n|0:n m̂
(i)
N ,

�̂
(i)
N

↵̂
(i)
N

�
LLL

(i)
n|0:n +

d(i)
n|0:n(d

(i)
n|0:n)

T

⌫̂
(i)
N

�o
(6.63)

160

Alternative smoothing algorithms such as fix-lag approximation and forward filtering-

backward smoothing (FFBS) algorithm [89] can also be used in obtaining the smoothing

distribution of the state vectors, which may result in improved performance.

Comparison to heavy-tailed filters

It may come to attention that the marginal RBPF has likelihood (i.e. weight-correcting

PED) and posterior distributions of the state vectors both as student-t distributions. This

provides a close connection to the heavy-tailed filter proposed in [134] where student-t dis-

tributions are used for both model likelihood and prior state transition density. Student-t

distributions compared to Gaussian distributions are able to model more diverse noise

types and thus have better accountability for heavy-tailed outliers. Such a feature is

sometimes desirable in particular fields such as financial modelling where outliers can be

detrimental to model-generated investment decisions.

Recall the integration performed in the marginal RBPF, the expectations are taken

with respect to the online posterior p(µJ , �
2
v | y1:n�1, {⌧}

(i
0:n�1) of the parameters (µJ , �

2
v).

The heavy-tailed filter can thus be regarded as a special form of marginal RBPF where

marginalisation (i.e. expectation with respect to the prior) of the parameters is performed

instead of expectation with respect to the online posterior e.g.:

p(yn | y1:n�1, {⌧}
(i)
0:n) =

ZZ
p(yn | y1:n�1, {⌧}

(i)
0:n, µJ , �

2
v) p(µJ , �

2
v) dµJ d�

2
v (6.64)

where p(µJ , �
2
v) is the parameter prior and note the di↵erence compared to Eq. (6.58).

With an appropriate choice of this prior, the heavy-tailed filter introduced in [134] can

be reconstructed from this alternative formulation of the model. However, it is also clear

that with marginalisation, the heavy-tailed filter gives up the ability of parameter learning

and its performance can potentially be deteriorated with bad choices of hyperparameters

(i.e. a non-informative prior for (µJ , �
2
v)).

6.2.2 Particle filter based variational inference

Unlike the MKF, the marginal RBPF does not preserve the symbolic form of the un-

known parameters all the way throughout the sequential inference. This means that the

propagation of marginal RBPF for the initial few timestamps is very similar to that of a

heavy-tailed filter. Hence, there is still possibility that the marginal RBPF may overall

perform unsatisfactorily because of a few bad proposals and weightings caused by a badly

chosen prior at the early stage of the algorithm.

This lack of prior knowledge may be overcome by iteratively enhancing a “guess”

161

at the parameters. The PG algorithm proposed in [64] uses an iterative scheme where

the “guess” for the parameters is progressively improved by learning from the sequential

inference results obtained with parameter values sampled from the previous iteration

(i.e. previous guess). However at each iteration of the PG algorithm, the learning of

parameters is ine�cient as it only admits information from a single particle trajectory

importance-sampled at the end of PF and ignores all other particles.

The variational Bayes (VB) or variational inference (VI) algorithm [151, 152] refers to

an algorithmic framework for approximating the (joint) posterior of a model. Similar to

the loopy belief propagation [153] and the expectation propagation algorithm [154], the VI

algorithm also falls into the class of optimisation-based approximate Bayesian inference

approaches [155]. The algorithm has been employed extensively in the field of machine

learning as a type of message-passing algorithm [119, 156] due to both its scalability

[157] and promising convergence performance. With increasing popularity, a number of

variants of the generic VI algorithm have been developed in the past decade including

VI with di↵erent approximation methods, VI with alternative objectives and some more

recent applications of the VI algorithm in deep and reinforcement learning, see the review

[158] and references therein. Algorithms that combine the VI and the PF have also been

studied in two recent papers [159] and [160]. However, both papers consider the integra-

tion from an optimisation perspective aiming to improve the inference of sequential states

by optimising a PF-estimated objective function rather than focusing on the Bayesian

parameters learning.

In this subsection, I propose a novel integration of variational inference (VI) and the

particle filters to perform accurate posterior inference on parameters as well as sequential

states with full usage of information from all particles. Furthermore, the proposed PF-

based VI (termed PF-VI) algorithm can also be applied to a wider range of SSMs with

non-linear and/or non-Gaussian dynamics. Some content of this subsection has been put

into a paper that was recently accepted for the conference IEEE ICASSP 2021.

Introduction to VI

In order to achieve approximate posterior inference of all random variables, say ✓ =

{✓j}
J
j=1, given observations Y = {yn}

N
n=1, the VI algorithm often starts by postulating

a family/class of distributions q(✓) to approximate the true joint posterior p(✓ |Y) in a

closed form, i.e.:

p(✓ |Y) ⇡ q(✓)

The algorithm then optimise iteratively the approximated posterior by minimising the

Kullback-Leibler (KL) divergence [161, 162] between the target posterior and the postu-

162

lated family:

KL(q||p) = �Eq

⇣
log

�p(✓|Y)

q(✓)

�⌘
= �

Z
log

⇣
p(✓|Y)

q(✓)

⌘
q(✓) d✓ (6.65)

It is clear that the minimum of this divergence is 0, which is attained only when q(✓) ⌘

p(✓|Y). Hence, the VI algorithm is typically applied in models where the target posterior

can neither be obtained analytically nor be sampled from easily. The algorithm then

approximates the complicated (joint) posterior with distribution(s) q(✓) from a simpler

(and restricted) class that are easier to infer in closed-form.

A standard and popular approach, called the coordinate ascent variational inference

(CAVI) [155], for formulating the approximated posterior q(✓) is by using the mean-field

approximation to independently factorise the joint posterior for each component ✓j, i.e.:

q(✓ |⌦) =
JY

j=1

qj(✓j |⌦j) (6.66)

where ⌦j denotes the hyperparameters of the approximated posteriors. The iterative

algorithm of VI then proceeds as follows: cycling through each approximated posterior of

the component ✓j, the algorithm updates the hyperparameters ⌦j so that:

log qj(✓j |⌦j) =

Z
log p(✓ |Y) q�j(✓�j |⌦�j) d✓�j (6.67)

where the subscript (�j) denotes all other components except j. With certain classes of

distributions for q(✓), it is not necessary to compute the exact integration or expectation

with respect to other approximated posteriors, but it only needs to match the hyperpa-

rameters with the terms that associate with ✓j for a functional form of the approximating

distribution qj(✓j |⌦j).

It is not trivial to see how such operations would minimise the KL-divergence of (6.65).

I will prove it here as it also provides important insight into the later extension with the

PF. Start by re-writing the KL-divergence in an alternative form using the Bayes’ rule:

KL(q||p) = �

Z
log

⇣
p(✓ |Y)

q(✓)

⌘
q(✓) d✓

= �

Z
log

⇣
p(✓, Y)

q(✓)

⌘
q(✓) d✓ +

Z
log p(y) q(✓) d✓

= �Eq

⇣
log

�p(✓, Y)

q(✓)

�⌘
+ log p(y)| {z }

const.

(6.68)

The expectation in the last line is also commonly known as the variational lower bound

or the evidence lower bound (ELBO) [163, 155]. Clearly, this new form of KL-divergence

163

is simply the negative ELBO subject to an additive constant. Suppose the VI algorithm

is updating the approximated posterior for a specific component ✓j, we can factorise the

joint distribution q(✓) = qj(✓j) q�j(✓�j) and decompose the negative ELBO as:

�Eq

⇣
log

�p(✓, Y)

q(✓)

�⌘
=

ZZ
qj(✓j) q�j(✓�j)

h
�log p(✓, Y) + log qj(✓j) + log q�j(✓�j)

i
d✓j d✓�j

=�

Z
qj(✓j)

⇣Z
q�j(✓�j) log p(✓, Y) d✓�j

⌘

| {z }
1�

d✓j+

Z
qj(✓j) log qj(✓j) d✓j +

Z
q�j(✓�j) log q�j(✓�j) d✓�j

(6.69)

As the “current” iteration of the VI algorithm only updates qj(✓j), the last term of the

above expression (i.e. the entropy of q�j(✓�j)) can be considered as a constant as it does

not depend on qj(✓j). Furthermore, notice that 1� has integrated out all other component

✓�j and is a function of solely ✓j and Y . It can thus be re-written into the log of normalised

density of ✓j and a constant term:

1� = log p̃(✓j) + const. (6.70)

and hence the KL-divergence becomes:

KL(q||p) = �

Z
qj(✓j) log

⇣
p̃(✓j)

q(✓j)

⌘
d✓j + const.

= KL
�
qj(✓j) || p̃(✓j)

�
+ const.

(6.71)

which is minimised when qj(✓j) ⌘ p̃(✓j). It is clear now how every iteration of the VI

algorithm is able to reduce the overall KL-divergence by updating the hyperparameters

⌦j to equate:

log qj(✓j) = hlog p(✓|Y)iq�j(✓�j) = hlog p(✓, Y)iq�j(✓�j) + const. (6.72)

where h·i is the expectation operator. Despite that the first equality is the formal definition

of the VI algorithm, in practice it is much more feasible to operate on the second equality

using joint probability.

VI-PF integration

Going back to the jump-di↵usion model discussed, the VI algorithm is employed by first

approximating the joint posterior of jumps, state vectors and parameters with a factori-

sation:

p(x0:N , {⌧}0:N , µJ , �
2
v |Y) ⇡ q(µJ , �

2
v) q(x0:N , {⌧}0:N) (6.73)

164

Clearly, the random variables of the model are separated into a set of static parameters

and a set of time-indexed sequential variables. And the VI algorithm will perform iterative

updates on the approximated posteriors of these two sets of random variables. While it is

intuitive to choose the functional form of q(µJ , �
2
v) as a normal-inverse-Gamma distribu-

tion, it is generally hard to comprehend the exact type of distribution for q(x0:N , {⌧}0:N)

due to the non-linearity and non-Gaussianity of the SSM. Regardless, follow the standard

VI procedure:

log q(x0:N , {⌧}0:N)

⌘hlog p(x0:N , {⌧}0:N , µJ , �
2
v , Y)iq(µJ ,�2

v) + const.

=hlog
n
p(µJ , �

2
v) p(x0 |µJ , �

2
v)

NY

n=1

⇥
p({⌧}n�1:n) p(xn |xn�1, {⌧}n�1:n, µJ , �

2
v)

⇥ p(yn |xn, �
2
v)
⇤o
iq(µJ ,�2

v) + const.

=hlog p(x0 |µJ , �
2
v)iq(µJ ,�2

v) +
NX

n=1

n
log p({⌧}n�1:n)+

hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v) + hlog p(yn |xn, �
2
v)iq(µJ ,�2

v)

o
+ const.

(6.74)

Apparently, this approximated posterior cannot be obtained in a closed form even given

the freedom to choose which functional form it can take. Hence instead, we try to obtain

an empirical representation of this approximated posterior using the particle filter. A

similar recursive construction of the approximated posterior is derived for the particle

filtering to take place. The derivation is as follows:

log q(x0) =hlog p(x0 |µJ , �
2
v)iq(µJ ,�2

v) + hlog p(x1 |x0, {⌧}0:1, µJ , �
2
v)iq(µJ ,�2

v) + const.

log q(x0:1, {⌧}0:1) = log q(x0) + log p({⌧}0:1) + hlog p(y1 |x1, �
2
v)iq(µJ ,�2

v)+

hlog p(x2 |x1, {⌧}1:2, µJ , �
2
v)iq(µJ ,�2

v) + const.

log q(x0:2, {⌧}0:2) = log q(x0:1, {⌧}0:1) + log p({⌧}1:2) + hlog p(y2 |x2, �
2
v)iq(µJ ,�2

v)+

hlog p(x3 |x2, {⌧}2:3, µJ , �
2
v)iq(µJ ,�2

v) + const.

... =
...

165

Denote intermediate distributions q̃(x0:n, {⌧}0:n) for n = 1, . . . , N , such that:

log q̃(x0:n, {⌧}0:n) = log q(x0:n, {⌧}0:n)� hlog p(xn+1 |xn, {⌧}n:n+1, µJ , �
2
v)iq(µJ ,�2

v)

= log q(x0:n�1, {⌧}0:n�1) + log p({⌧}n�1:n)+

hlog p(yn |xn, �
2
v)iq(µJ ,�2

v) + const.

= log q̃(x0:n�1, {⌧}0:n�1) + log p({⌧}n�1:n) + hlog p(yn |xn, �
2
v)iq(µJ ,�2

v)

+ hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v) + const.
(6.75)

From the above, it can be seen that the recursion of the intermediate distributions with an

initial condition log q̃(x0, ;) = hlog p(x0 |µJ , �
2
v)iq(µJ ,�2

v). Furthermore, the end condition

can be obtained by inspection:

log q̃(x0:N , {⌧}0:N) ⌘ log q(x0:N , {⌧}0:N) (6.76)

Hence, it is possible to employ a standard PF to obtain sequentially the particle represen-

tation of the intermediate distributions and consequently obtain the desired distribution

q(x0:N , {⌧}0:N) as long as the PF reaches the end of the recursion.

With the expectation taken over the parameters (µJ , �
2
v), we still need to identify

the proposal(s) and the weight-correction likelihood in the context of the VI algorithm.

Taking an arbitrary propagation at time tn, the sequential target distribution can be

expressed as:

q̃(x0:n, {⌧}0:n) =q̃(x0:n�1) p({⌧}n�1:n) exp{hlog p(yn |xn, �
2
v)iq(µJ ,�2

v)}⇥

exp{hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v)}⇥ const.
(6.77)

First look at the expected transition density term:

exp{hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v)}

=exp
n
�

1

2

⇣
log 2⇡ +D hlog �2

viq(µJ ,�2
v)}+ log |⌃̂⌧,n|+

h(xn � µ̃µµn)
T (�2

v⌃̂⌧,n)
�1(xn � µ̃µµn)iq(µJ ,�2

v)

⌘o

where both µ̃µµn and ⌃̂⌧,n are defined in (6.35) and (6.37) respectively; and D is the di-

mension of state vector. The closed-form solution to the expected transition density is

non-trivial and the complete derivation is shown in Appendix 6.A. Assuming the ap-

proximated posterior q(µJ , �
2
v) = NIG(µJ , �

2
v | m̂, ⌫̂, ↵̂, �̂), the obtained solution is shown

166

directly here:

exp{hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v)}

=N

⇣
xn | e

A�tnxn�1 +
X

⌧k2{⌧}n�1:n

e
A(tn�⌧k) c m̂ ,

�̂

↵̂
⌃̂⌧,n

⌘
⇥ const.

(6.78)

It is clear that a Gaussian transition density can still be maintained with expectations

taken with respect to the parameters. Analogously, the expected likelihood term (with

full derivation in Appendix 6.A) can be expressed as:

exp{hlog p(yn |xn, �
2
v)iq(µJ ,�2

v)} = N
�
yn |Gxn , w

�̂

↵̂

�
⇥ const. (6.79)

Eq. (6.77), (6.78) and (6.79) fully define a SSM after x and ⌧ and hence the target

q(x0:N , {⌧}0:N) may be simulated with a PF having the same transition density and ob-

servation likelihood. As a result, one may obtain the approximated posterior in the form

of a large collection of weighted particles:

q(x0:N , {⌧}0:N) ⇡

NpX

i=1

w
(i)
N �

x
(i)
0:N ,{⌧}(i)0:N

�
x0:N , {⌧}0:N

�
(6.80)

With the inference for the sequential states completed, we proceed to the other phase of

the algorithm and update the approximated posterior of parameters (µJ , �
2
v) by:

log q(µJ , �
2
v)

⌘hlog p
�
x0:N , {⌧}0:N , µJ , �

2
v , Y

�
iq(x0:N ,{⌧}0:N) + const.

= log p(µJ , �
2
v) + hlog p(x0 |µJ , �

2
v) +

NX

n=1

�
log p(xn |xn�1, {⌧}n�1:n, µJ , �

2
v)

+ log p(yn |xn, �
2
v)

iq(x0:N ,{⌧}0:N) + const.

= log p(µJ , �
2
v) +

NpX

i=1

w
(i)
N log p(x(i)

0 |µJ , �
2
v) +

NpX

i=1

w
(i)
N

NX

n=1

n
log p(x(i)

n |x(i)
n�1, {⌧}

(i)
n�1:n, µJ , �

2
v)

+ log p(yn |x
(i)
n , �

2
v)
o
+ const.

(6.81)

where the final line of the above equation is obtained by substituting in the particle

representation of q(x0:N , {⌧}0:N). Recall the transition density of (6.34):

p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v) = N

�
xn | e

A�tn xn�1 +
X

⌧k2{⌧}n�1:n

e
A(tn�⌧k)cµJ , �

2
v⌃̂⌧,n

�

If we further denote a(i)
n = x(i)

n �e
A�tn x(i)

n�1 and u(i)
n =

P
⌧k2{⌧}n�1:n

e
A(tn�⌧k)c for simplicity,

167

the updates of the hyperparameters of q(µJ , �
2
v) = NIG(m̂, ⌫̂, ↵̂, �̂) should be performed

as follows (assuming the same NIG prior as (6.38)):

↵̂ = ↵ +

NpX

i=1

w
(i)
N

N

2
= ↵ +

N

2
(6.82)

⌫̂ = ⌫ +

NpX

i=1

w
(i)
N

n NX

n=1

(u(i)
n)T (⌃̂(i)

⌧,n)
�1 u(i)

n

o
(6.83)

m̂ =
1

⌫̂

⇣
⌫m+

NpX

i=1

w
(i)
N

n NX

n=1

(a(i)
n)T (⌃̂(i)

⌧,n)
�1 u(i)

n

o⌘
(6.84)

�̂ = � +
1

2

⇣
⌫m

2
� ⌫̂ m̂

2 +

NpX

i=1

w
(i)
N

n NX

n=1

(a(i)
n)T (⌃̂(i)

⌧,n)
�1 u(i)

n +
(yn �Gx(i)

n)2

w

o⌘
(6.85)

Note that the e↵ect of the initial state x0 have been omitted as the initialisation may vary

across di↵erent applications and may even be deterministic. Clearly with the help of VI,

the learning of parameters is now taking weighted contribution from all particles obtained

during the sequential inference stage and thus potentially avoids the wasted information

in the PMCMC. The experiment results in later section will show that this full utilisation

of particle information is able to provide faster convergence compared to the PMCMC

algorithm, where only a single particle is used at each iteration.

Furthermore, one may notice that the state vectors in the sequential inference phase

are still maintained as linear-Gaussian conditioned on the jump sequence proposed. This

means that a RBPF can easily be fitted into the general framework of PF-VI to improve

the sequential inference performance. In such a case, the approximated posterior of the

VI algorithm becomes q({⌧}0:N) q(µJ , �
2
v) and the sequential state inference will end up

with a weighted particle collection for jump times only i.e.:

q({⌧}0:N) =

NpX

i=1

w
(i)
N �{⌧}(i)0:N

�
{⌧}0:N

�
(6.86)

This then leads to fairly similar update formulae for the hyperparameters of q(µJ , �
2
v) as

168

those in the marginal RBPF in Subsection 6.2.1. The results are provided directly here:

↵̂ = ↵ +
N

2
(6.87)

⌫̂ = ⌫ +

NpX

i=1

w
(i)
N

n NX

n=1

(Gd(i)
n|0:n�1)

2

GLLL
(i)
n|0:n�1G

T + w

o
(6.88)

m̂ =
1

⌫̂

⇣
⌫m+

NpX

i=1

w
(i)
N

n NX

n=1

(yn �Gµµµ
c(i)
n|0:n�1)Gd(i)

n|0:n�1

GLLL
(i)
n|0:n�1G

T + w

o⌘
(6.89)

�̂ = � +
1

2

⇣
⌫m

2
� ⌫̂ m̂

2 +

NpX

i=1

w
(i)
N

n NX

n=1

(yn �Gµµµ
c(i)
n|0:n�1)

2

GLLL
(i)
n|0:n�1G

T + w

o⌘
(6.90)

However in contrast to the marginal RBPF, the approximated parameter posterior here

is a single NIG distribution taking weighted contribution from all particles instead of a

weighted mixture of Np particle-specific NIG distributions.

A link to marginal filters and heavy-tailed filters

Both the marginal RBPF and the heavy-tailed filter introduced in this chapter involve

integration of Gaussian distributions with respect to parameters that follow conjugate

distributions. Whether the integration is a marginalisation or not, it can always be re-

garded as an expectation operation on the parameters. In this subsection, we establish

a link between the PF-based VI algorithm and the filters that require integration of the

parameters.

In the sequential inference phase of the PF-VI algorithm, the targeted KL-divergence

is minimised by updating the approximated posterior q(x0:N , {⌧}0:N) so that the follow-

ing equality holds:

log q(x0:N , {⌧}0:N) ⌘ hlog p(x0:N , {⌧}0:N , µJ , �
2
v , Y)iq(µJ ,�2

v) + const.

169

Recall that this is derived from the expanded version of the KL-divergence in Eq. (6.68).

Fitting into the jump di↵usion model, this can be re-written as:

KL(q||p) = �

ZZ
q(x0:N , {⌧}0:N)

n
hlog p(x0:N , {⌧}0:N , µJ , �

2
v , Y)iq(µJ ,�2

v)

� log q(x0:N , {⌧}0:N)
o
dx0:N d{⌧}0:N + const.

= �

ZZ
q(x0:N , {⌧}0:N)

n⌦
log p(x0 |µJ , �

2
v) +

NX

n=1

h
log p({⌧}n�1:n)+

log p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v) + log p(yn|xn, µJ , �

2
v)
i↵

q(µJ ,�2
v)

� log q(x0:N , {⌧}0:N)
o
dx0:N d{⌧}0:N + const.

Jensen
 �

ZZ
q(x0:N , {⌧}0:N)

n
loghp(x0 |µJ , �

2
v)iq(µJ ,�2

v) +
NX

n=1

h
log p({⌧}n�1:n)+

loghp(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v) + loghp(yn|xn, µJ , �
2
v)iq(µJ ,�2

v)

i

� log q(x0:N , {⌧}0:N)
o
dx0:N d{⌧}0:N + const.

With Jensen’s inequality, we may push the expectation inside the log as shown in the final

line of the above equation and obtain an upper-bound on the targeted KL-divergence. In

order to minimise this upper bound, an update formula for the alternative approximated

posterior can be obtained following the final line of the equation above:

log q(x0:N , {⌧}0:N) ⌘ loghp(x0 |µJ , �
2
v)iq(µJ ,�2

v) +
NX

n=1

h
log p({⌧}n�1:n)+

loghp(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v)+

loghp(yn|xn, µJ , �
2
v)iq(µJ ,�2

v)

i
+ const.

Exponentiate both sides:

q(x0:N , {⌧}0:N) /hp(x0 |µJ , �
2
v)iq(µJ ,�2

v)

NY

n=1

h
p({⌧}n�1:n)⇥

hp(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v) hp(yn|xn, µJ , �
2
v)iq(µJ ,�2

v)

i

(6.91)

Clearly, this alternative form of the approximated posterior cannot be obtained in closed-

form, but instead can be inferred with a PF. Furthermore, the expectations taken with

respect to the (approximated) parameter posterior resemble a heavy-tailed particle fil-

ter where both transition density of the state vector and observational likelihood follow

student-t distributions. However, in contrast to the generic heavy-tailed filter where ex-

pectations are taken with respect to prior and the marginal RBPF where the expectation

is taken with respect to an online posterior, this heavy-tailed filter of the VI algorithm

170

uses an improving but static (within an iteration) posterior q(µJ , �
2
v) at each iteration.

As a result, this variant of the PF-based VI algorithm iteratively optimises the KL-

divergence during the parameter-learning stage and optimises the upper-bound of KL-

divergence during the PF stage, which can still achieve convergence towards the approxi-

mated posteriors. Compared with the standard PF-VI algorithm introduced earlier, this

variant can be sub-optimal due to its di↵erent objectives at the two stages of optimisa-

tion, but the modified heavy-tailed filter may provide additional accountability for outliers

caused by model mismatch and better risk/uncertainty quantification (in financial mod-

els), although it is not investigated in this thesis.

6.2.3 Hybrid PF-VI

So far in this chapter, we have always assumed that the mean-reverting coe�cient ✓ is

a known hyperparameter. In many cases, the value of ✓ can also significantly influence

the dynamic process and hence should be learnt from data. Due to the continuous-time

construction of the SSM, ✓ is deeply involved in many operations of the transition density

including matrix exponential, which makes it impossible to attain its posterior in closed-

form or to compute its expectation in the VI algorithm. In order to handle this common

issue in SSMs, I propose an algorithm which works as a hybrid of the PF-VI algorithm

and the classic Expectation-Maximisation (EM) [164] algorithm.

To begin with, we reiterate the objective of the generic VI algorithm: to minimise the

KL-divergence between the approximated posterior and the target true posterior. As

shown in the derivation of generic VI algorithm, this objective can be readily translated

into the maximisation of the evidence lower bound (ELBO) O(✓):

O(✓) = Eq

⇣
log(

p(✓, Y)

q(✓)
)
⌘
= �KL(q||p) + const.

Note that ✓ here contains/represents all random variables in the model instead of the

mean-reverting coe�cient in Langevin dynamics. The ELBO, as an important perfor-

mance measure, should be carefully monitored at each iteration of the VI algorithm for

convergence purposes. In the jump-di↵usion model of this section, the ELBO can be

171

computed as follows with the state vectors “Rao-Blackwellised” (i.e. using RBPF):

O(Y, {⌧}0:N , µJ , �
2
v)

=Eq(µJ ,�2
v) q({⌧}0:N)

n
log p(µJ , �

2
v) +

NX

n=1

⇥
log p({⌧}n�1:n)+

log p(yn | y0:n�1, {⌧}n�1:n, µJ , �
2
v)
⇤o
� Eq(µJ ,�2

v)

�
log q(µJ , �

2
v)
�
� Eq({⌧}0:N)

�
q({⌧}0:N)

�

=Eq(µJ ,�2
v) q({⌧}0:N)

n NX

n=1

log p(yn | y0:n�1, {⌧}n�1:n, µJ , �
2
v)
o
�H

�
q(µJ , �

2
v); p(µJ , �

2
v)
�

| {z }
(i)

+H
�
q({⌧}0:N); p({⌧}0:N)

�
| {z }

(ii)

+H
�
q(µJ , �

2
v)
�

| {z }
(iii)

+H
�
q({⌧}0:N)

�
| {z }

(iv)

+ const.

(6.92)

where (i) and (ii) are each the cross entropy between the approximated posterior and

the corresponding prior; and both (ii) and (iii) are the entropies of the approximated

posteriors. Fortunately, all the terms in (6.92) can be evaluated tractably including the

constant term (although it remains the same throughout and is generally not of concern).

The computations of the terms are however non-trivial as they involve the entropy of

a NIG distribution (iii), the entropy of a weighted particle collection (iv), the cross

entropy between two NIG distributions (i) and the cross entropy between an empirical

and a closed-form distribution (ii). The complete formula for the ELBO of the jump-

di↵usion model is derived in Appendix 6.B.

As long as the objective function can be obtained, it is possible to simply introduce

the mean-reverting coe�cient ✓ as an additional variable in this optimisation task and

optimise ✓ in a non-Bayesian manner with gradient ascent (or descent of KL) algorithm

at each iteration, e.g.:

✓l+1 = ✓l � �
@O

@ ✓

���
✓=✓l

where � is the learning rate/step size. This then gives a new sequence of iterative steps

for this hybrid PF-VI algorithm:

1. Obtaining the particle representation of q({⌧}0:N) conditioned on q(µJ , �
2
v) using

RBPF.

2. Closed-form inference of q(µJ , �
2
v) with particles obtained in Step 1.

3. Evaluate the ELBO and perform gradient ascent on parameter ✓ conditioned on

both q({⌧}0:N) and q(µJ , �
2
v), and then go back to Step 1.

It is worth noting that the third step can also be performed with both q(µJ , �
2
v) and

q({⌧}0:N) treated as functions of ✓. However, this would incur even more complex re-

lationship between ✓ and O, which further prevents a tractable derivative from being

172

obtained. Hence, the optimisation of ✓ is performed in a similar manner as the EM

algorithm.

Although the partial derivative of the ELBO may be attained via an analytic formula

in certain models, the stochastic integration in the continuous-time jump-di↵usion model

did not make the evaluation of this partial derivative simple. Hence, this specific problem

is tackled by employing a technique from computer science called automatic di↵erentiation

(AD) [165]. The use of AD has raised drastically in recent years thanks to the bloom of

machine learning and neural networks [166]. AD first constructs a computational graph of

(computer) functions which describes the functions’ dependencies. By applying chain rule

repeatedly to these functions/operations, AD is able to obtain total or partial derivatives

of arbitrary order accurately to working precision. Therefore, it is most useful in systems

where variables and functions are deeply entangled such as neural networks and in our

case SSMs with (marginalised) sequential states.

Since a large proportion of the computational cost of AD is allocated to the construction

of a computational graph, it may be wise to speed up the learning of ✓ by further utilising

the second-order derivative (i.e. Hessian) of the objective function:

✓l+1 = ✓l � �

nh
@
2
O

@ ✓2

i�1@O

@ ✓

o���
✓=✓l

6.3 Results and discussions

In this section, I present experimental results obtained with both the marginal RBPF

algorithm and the PF-VI algorithm on two sets of synthetic data. I demonstrate the

parameter-learning ability of both algorithms on the jump-di↵usion example used in this

chapter. With an analysis on algorithms’ costs and convergence behaviours, a conclusion

is drawn on the relative merits and limitations of each algorithm.

Furthermore, the PF-VI algorithm is tested on a non-linear SSM and its performance

is compared against two variants of the PMCMC algorithm proposed in [64]. The results

demonstrate that the proposed PF-VI algorithm is able to achieve a much faster conver-

gence speed with accurate approximation of the true posterior compared to the PMCMC

algorithms.

6.3.1 Jump-di↵usion example

I first apply both the marginal RBPF and the PF-VI algorithm on a synthesised jump-

di↵usion process. A total of 200 data points are simulated on an irregular time grid using

173

µJ

�
2 v

Figure 6.3.1: Marginal RBPF parameters’ posteriors learned with increasing number of ob-
servations. The contour indicates the posterior distribution and the red dot indicates the true
parametric values used in simulation.

the following parameters:

✓ = �0.5 , �
2
v = 4.0 , �

2
w = 2.0,

µJ = 1.5 , �
2
J = 40.0 , �J = 0.1

Inference-wise, Np = 2000 particles are used for the PFs in both algorithms with a fairly

uninformative NIG prior:

p(µJ , �
2
v) = NIG

�
µJ , �

2
v |m = 0 , ⌫ = 1 , ↵ = 0.1 , � = 0.1

�
(6.93)

Note an assumption is made that the hyperparameters (i.e. ✓,�J ,w,J) can be ob-

tained accurately. Figure 6.3.1 shows the online learning of parameters’ posterior as the

number of sequential observations increases. The top left panel shows the prior (i.e. no

observation) whilst the bottom right panel shows the full posterior obtained at the end

of the marginal RBPF. Note that the posteriors shown in Figure 6.3.1 are the marginal

posteriors computed as Eq. (6.61) with the jump times integrated out. It can be seen that

the learning of parameters generally improves (in mean position and confidence interval)

with more observations included. The final posterior learned with all observations is fairly

accurate with a slight overestimation of �2
v . It is also worth noting that despite the posi-

174

Figure 6.3.2: Marginal RBPF state inference results. The (weighted) posterior mean and 95%
confidence interval are plotted with the ground truth. MSEs are shown in the titles. The bottom
panel shows jump-time probability with the truth indicated as purple dashed lines.

µJ

�
2 v

Figure 6.3.3: Approximated posteriors learned by PF-VI algorithm at di↵erent iterations.

175

Figure 6.3.4: Evidence lower bound (ELBO) computed at each
iteration of the PF-VI algorithm.

Figure 6.3.5: State and jump-time inference results obtained with PF-VI algorithm.

tive mean, the posterior variance of µJ is very large. This is mainly caused by the large

�
2
J used in the simulation. Figure 6.3.2 shows the posterior inference results for both

state vectors and jump times with corresponding mean-squared-errors (MSEs) indicated

in the titles. The sequential inference accuracy, especially for jump times, is very poor for

the initial few timestamps because of the integration with respect to an inaccurate online

posterior in particle re-weightings. This performance gradually improves as the algorithm

proceeds further with more data points being observed.

With the same Np and prior, PF-VI algorithm is also applied to this synthetic jump-

di↵usion dataset with 20 VI iterations. Figure 6.3.3 shows the approximated posteriors

176

µJ

�
2 v

Figure 6.3.6: Conditional posteriors of the particle with the maximum weight w(i)
N in di↵erent

random trials of the marginal RBPF.

Figure 6.3.7: Learning curve of mean-reversion coe�cient ✓ in
the hybrid PF-VI algorithm.

inferred with the PF-VI algorithm at the 1st, 2nd, 3rd and last iterations. From the

figure, the algorithm converges quickly as the 3rd iteration posterior is already almost

identical to the posterior obtained in the final iteration. The fast convergence can also

be observed from the ELBO computed at each iteration in Figure 6.3.4. Comparing to

the posterior obtained via the marginal RBPF, the PF-VI achieves better mean accuracy

and smaller uncertainty (i.e. variances) in the posterior. Figure 6.3.5 shows the state

inference results obtained in the last iteration of the PF-VI algorithm. In addition to the

lower MSEs for both position and velocity comparing to the marginal RBPF, the PF-VI

177

also shows a clear improvement in the jump-time inference accuracy.

Comparing further between the two proposed methods, it can be noted that the marginal

RBPF requires less computational power as it only runs the PF once across the entire

dataset with a complexityO(N⇥Np); whilst the PF-VI algorithm runs the PF for whatever

number of times that ensures the algorithm’s convergence (despite the fast convergence).

This makes the marginal RBPF more favourable for the task of online learning/adaptation

of model parameters. On the other hand, the PF-VI has demonstrated more accurate

posterior inference results by running multiple iterations across the dataset, which serves

better as an o✏ine learning scheme.

The inherent randomness of the PF always raises the concern of convergence. For

marginal RBPF, this can be observed from Figure 6.3.6. The figure shows the condi-

tional (conditioned on jump times) posteriors of the particles with the maximum weight

at each trial of the marginal RBPF using a specific random seed. Clearly, this conditional

posterior can have a fair amount of variability across di↵erent trials. However, empirical

results have suggested that we can always obtain a consistent marginal posterior (i.e. the

NIG mixture) once the jump times are integrated out (not shown here). In generic VI

algorithms, the ELBO at each VI iteration should be monotonically increasing. However,

we see from Figure 6.3.4 that the randomness of PF has removed this monotonicity of

the ELBO in the PF-VI algorithm. Again based on empirical results, the convergence of

the PF-VI algorithm can generally be guaranteed with a moderate amount of particles.

While monotonicity can be achieved asymptotically as Np ! 1, it is also possible to

achieve it by employing a more practical method of backtracking to accept the iterations

that only increase the ELBO.

Figure 6.3.7 shows the learning of mean-reversion coe�cient ✓ in the jump-di↵usion

model using the hybrid PF-VI algorithm. With an initial value ✓init = �0.05 on the same

synthetic dataset, ✓ is learned fairly successfully with a converged value that is close to

the truth. The learning of ✓ may be improved by having smaller observation noise.

To summarise, both the marginal RBPF and the PF-VI algorithms have shown good

performance in the posterior inference of the state vectors and parameters. The online

framework and low computational cost of the marginal RBPF make it favourable for ap-

plications where parameters need to be learned based on a continuous stream of data.

For good online inference accuracy, the marginal RBPF requires either a certain period

of “data burn-in” or an informative prior to ensure appropriate weight evaluations using

the online posterior. The PF-VI algorithm generally requires more computation than the

marginal RBPF. However, it converges quickly and provides better inference accuracy

by iteratively improving the posterior inference. Both algorithms have shown plausible

178

(a) �2v = 10, �2w = 1

(b) �2v = 10, �2w = 10

Figure 6.3.8: Posterior distributions and sample histograms obtained after 100 burn-in iter-
ations. The true parametric values are indicated with red dashed lines. (a) is for the dataset
with small observation noise; and (b) is for the dataset with large observation noise.

empirical convergence.

6.3.2 Gordon-Kitagawa example

In this experiment, a popular non-linear toy SSM [76, 60], which cannot be inferred with

the marginal RBPF, is considered. The authors of [64] also employed this model to evalu-

ate the performance of the PMCMC algorithms proposed in the paper. In this subsection,

I present the results obtained with the PF-VI, the PG and the PMMH algorithms and

179

Figure 6.3.9: l2-distance between posterior samples and the truth. A fair initialisation with
�
2
v(0) = �

2
w(0) = 100 was given to the PMMH and the PG algorithms. Np = 2000 particles are

used in the PF.

Figure 6.3.10: Log l2-distance between posterior samples and the truth. A very poor initiali-
sation from the inverse-Gamma prior is provided to the PG algorithm. The PMMH results are
not shown as the posterior samples did not converge at all.

compare the relative performance of these three iterative parameter-learning algorithms.

Consider the non-linear SSM with a transition function:

xn =
xn�1

2
+ 25

xn�1

1 + x
2
n�1

+ 8 cos(1.2n) + vn (6.94)

and an observation model:

yn =
x
2
n

20
+ wn (6.95)

180

Figure 6.3.11: ACFs of the parameters obtained on the small observation noise dataset with
good initialisation. Np = 2000 particles are used in the PF.

where x1 ⇠ N (0, 5), vn
i.i.d.
⇠ N (0, �2

v) and wn
i.i.d.
⇠ N (0, �2

w). It is obvious that in this

model, there are two “priorly” independent parameters to infer, which denote here as

✓ = {�
2
v , �

2
w}. This formulation of the SSM is often used to test the performance of the

PF methods. Its conditional posterior of the states p(x1:N | y1:N , ✓) is highly multi-modal

as the sign of xn cannot be observed in yn due to its square.

Two sets of data are generated for testing of the inference algorithms: (1) 100 obser-

vations {yn}100n=1 with relatively small observation noise �2
w = 1 and �2

v = 10; and (2) 100

observations with large observation noise �2
w = �

2
v = 10. Two identical di↵use inverse-

Gamma priors IG(↵=0.01, �=0.01) are adopted for both �2
v and �

2
w. The PMMH sampler

uses a 2D Gaussian random-walk proposal with diagonal covariance. A good (i.e. close-to-

truth) initialisation with �2
v(0) = �

2
w(0) = 20 is provided this time for both the PG and the

PMMH algorithms; while the PF-VI algorithm assumes q(�2
v) = q(�2

w) = IG(0.01, 0.01)

(i.e. prior) for the first iteration. Running all three inference algorithms for 500 iterations

with a bootstrap PF and 2000 particles, Figure 6.3.8 shows the posterior results for

inferred parameters on both datasets. For comparison, I have also included the results

obtained with “cheat” inference where the true hidden states {xn}
N
n=0 are given. For the

low �
2
w case, all three algorithms have achieved reasonable posterior results for both �2

w

181

Figure 6.3.12: ACFs of the parameters obtained on the small observation noise with fair
initialisation �2v(0) = �

2
w(0) = 100 and varying particle numbers Np.

and �2
v . We can also observe a general match in the shapes of the PF-VI posterior and

sample histograms of the PMMH and the PG. For the dataset with large observation

noise, �2
v is significantly underestimated by all three methods. The PF-VI algorithm gives

an accurate posterior estimation on �2
w. Again similarities in results can be observed be-

tween the PF-VI and the PG. The PMMH algorithm performs rather poorly in the high

�
2
w case.

Both the PMMH and the PG algorithms require initialisation of the parameters

(�2
v , �

2
w) as a design choice of the inference method. This initialisation can significantly

a↵ect the convergence performance of these algorithms. With a fair (i.e. less informative)

initialisation �2
v(0) = �

2
w(0) = 100 and true parameter values �2

v = 10, �2
w = 1, Figure

6.3.9 shows the l2�distance between the posterior samples and the truth. Note that the

posterior samples of the PF-VI are randomly sampled from the approximated (closed-

form) posteriors at each iteration. Clearly from the figure, the PMMH algorithm fails to

converge within 500 iterations while the PG is slightly a↵ected but still converges quickly

at around the 20th iteration. The convergence of the PG is further delayed with a random

initialisation from the di↵use prior as indicated in Figure 6.3.10. Each iteration of any

of the three algorithms requires the PF to run across the entire dataset and demands the

same amount of computation. Hence, the PG and the PMMH algorithms would need rea-

sonable initialisation and a good design of proposal densities to match the performance of

182

the PF-VI algorithm. Whilst the PF-VI algorithm requires no extra design input except

for the PF that is shared among all three algorithms.

I present another analysis on the convergence of the three algorithms. Figure 6.3.11

shows the (normalised) auto-correlation functions (ACFs) for the parameters samples

(�2
v , �

2
w) in the low observation noise dataset with good initialisation i.e. �2

v(0) = �
2
w(0) =

20. For this case, all three algorithms appear to mix well as the ACFs decrease relatively

quickly to zeros with an increasing lag. The PMMH algorithm performs comparatively

worse than the other two in the convergence speed, which agrees with previous results.

Experiments have also been performed with varying numbers of particles Np in the PF.

I use the same low-noise dataset and adopt again the fair initialisation �2
v(0) = �

2
w(0) =

100 to better illustrate the impact of the PF performance on the overall performance of

the three algorithms. Figure 6.3.12 shows the ACFs obtained with di↵erent values of

Np using all three inference algorithms. Comparing within one algorithm, it is clear that

the increasing particle number improves the inference performance by allowing faster de-

cay and smaller vibrations of the ACF. It has also been found (not shown here) that the

improvement generally saturates for Np greater than 2000 in this example. The PMMH

algorithm fails to converge within 500 iterations regardless of the values of Np. Focus-

ing on the comparison between the PG and the PF-VI algorithm, we see that the ACFs

of the PG algorithm are much more sensitive to the change of particle number; while

the PF-VI algorithm is only slightly a↵ected. Considering the similarities in algorithm

structure between PG and PF-VI, the latter infers the parameters posterior with the full

information of all particles obtained at the end of the PF and is thus less influenced by the

lack of exploration of the sample space of the hidden states {xn}
N
n=1 due to a low particle

number. On the hand, the PG algorithm uses a single importance-sampled particle tra-

jectory for parameter learning and is more prone to unsatisfactory performance of the PF.

In this experiment, I have demonstrated that the proposed PF-VI algorithm can be

widely applied to non-linear SSMs where state vectors cannot be “Rao-Blackwellised”.

The PF-VI algorithm tallies with the well-established PG algorithm in posterior accuracy

and generally outperforms the PMMH algorithm. In addition to the fast convergence,

the PF-VI algorithm provides more robust posterior inference compared to the PG and

the PMMH algorithms as it requires neither initialisation nor designed proposal densities.

The full usage of particle information provides the PF-VI algorithm with extra robustness

to the amount of particles used in the PF, which enables the trade-o↵ between inference

accuracy and computational cost.

183

6.4 Conclusions and future work

In this chapter, I have presented three parameter-learning algorithms that can be applied

in various SSMs proposed in previous chapters. The MKF algorithm performs poste-

rior inference on linear-Gaussian SSMs by preserving the symbolic representation of the

unknown parameters throughout the entire forward Kalman filtering and the backward

RTS smoothing processes. Experimental results have shown that the algorithm provides

accurate closed-form posterior inference on parameters, as well as robust inference on

sequential state vectors.

The marginal RBPF, as a direct extension of the MKF algorithm, is designed for the

inference of non-linear SSMs where state vectors can be “Rao-Blackwellised” such as the

non-linear jump-di↵usion models proposed in Chapter 3. By occasionally integrating

out the unknown parameters during the weight-evaluation stage of the PF, the marginal

RBPF not only allows the posterior to be obtained at the end of the PF but also provides

an e�cient online parameter-learning framework for applications that require inference

based on a continuous stream of data.

Last but not least, I have also proposed a novel PF-VI algorithm which integrates the

particle filter with the VI (VB) framework. In addition to the jump-di↵usion model, this

algorithm can be widely applied to non-linear and/or non-Gaussian models. In contrast to

the PG algorithm introduced in [64] and adopted in the regime-switching model in Chap-

ter 5, the PF-VI algorithm fully utilises the information of all particles obtained in the

PF. Empirical results obtained on synthetic datasets have shown that the PF-VI algorithm

achieves more accurate, more e�cient (faster convergence) and more robust inference of

the parameter posteriors comparing to both the PMMH and the PG algorithms. As an

iterative method, the PF-VI algorithm provides accurate closed-form approximations to

the model posteriors and serves as a powerful o✏ine inference algorithm. Moreover, the

hybrid concept of the PF-VI algorithm has been briefly introduced for the learning of

parameters that cannot be inferred in closed-form. This is achieved by optimising the

parameters to improve the ELBO at each iteration with gradient ascent approaches.

For future work, one possible extension on the marginal RBPF is to refine the online

inference framework. For a continuous stream of time-series data, the (parameter) poste-

rior of the current marginal RBPF algorithm is likely to be “trapped” as the number of

observations increases, which prohibits future adaptation of the parameters and leads to

model overfitting to old data. Therefore, it is preferable for online applications to have

a sliding learning window of the observations or a decaying weighting function on earlier

observations.

One concern of the PF-VI algorithm is that it targets the approximated posterior

instead of the true posterior. Hence, another promising future research topic is to use

184

the PF-VI posteriors as the adaptive proposals for the PMMH sampler. This could

potentially give not only fast convergence of the algorithm but also convergence towards

the true posterior. However, extra care is required to ensure ergodicity of the Markov

chains while using such adaptive proposals [167].

185

Appendix

6.A Expected transition density and likelihood

Denote the term of expectation transition density as an unnormalised density of xn:

g̃(xn) = exp{hlog p(xn |xn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v)}

=exp
n
�

1

2

⇣
log 2⇡ +D hlog �2

viq(µJ ,�2
v)}+ log |⌃̂⌧,n|+

h(xn � µ̃µµn)
T (�2

v⌃̂⌧,n)
�1(xn � µ̃µµn)iq(µJ ,�2

v)

⌘o

We can thus focus solely on the quadratic term as other terms eventually become nor-

malising constant. Denoting un =
P

⌧k2{⌧}n�1:n e
A(tn�⌧k)c, expand the quadratic term as:

h(xn � µ̃µµn)
T (�2

v⌃̂⌧,n)
�1(xn � µ̃µµn)iq(µJ ,�2

v)

=h
n
(xn � e

A�tn xn�1)
T ⌃̂�1

⌧,n(xn � e
A�tn xn�1)

1

�2
v

� 2(xn � e
A�tn xn�1)

T ⌃̂�1
⌧,n un

µJ

�2
v

+ uT
n ⌃̂�1

⌧,n un
µ
2
J

�2
v

o
iq(µJ ,�2

v)

=(xn � e
A�tn xn�1)

T ⌃̂�1
⌧,n(xn � e

A�tn xn�1)h
1

�2
v

iq(µJ ,�2
v) �

2(xn � e
A�tn xn�1)

T ⌃̂�1
⌧,n un h

µJ

�2
v

iq(µJ ,�2
v) + uT

n ⌃̂�1
⌧,n un h

µ
2
J

�2
v

iq(µJ ,�2
v)

where with (approximated) posterior q(µJ , �
2
v) = NIG(µJ , �

2
v | m̂, ⌫̂, ↵̂, �̂), we have:

h
1

�2
v

iq(µJ ,�2
v) =

↵̂

�̂
, h

µJ

�2
v

iq(µJ ,�2
v) =

↵̂

�̂
m̂ , h

µ
2
J

�2
v

iq(µJ ,�2
v) =

↵̂

�̂
m̂

2 +
1

⌫̂
(6.96)

Substituting in the expectations, the unnormalised density g̃(xn) can thus be written as:

g̃(xn) = exp
n
�

1

2

⇣
(xn � e

A�tn xn�1 � un m̂)T (
�̂

↵̂
⌃̂⌧,n)

�1(xne
A�tn xn�1 � un m̂) + const.

⌘o

=N

⇣
xn | e

A�tn xn�1 � un m̂ ,
�̂

↵̂
⌃̂⌧,n

⌘
⇥ const.

186

as required. Samples of xn can be drawn readily from the conditional normal density

specified above.

Concerning the expected likelihood, we have:

exp{hlog p(yn |xn, �
2
v)iq(µJ ,�2

v)}

=exp
n
�

1

2

⌦
log 2⇡w + log �2

v +
(yn �Gxn)2

w�
2
v

↵
q(µJ ,�2

v)

o

=exp
n
�

(yn �Gxn)2

2w
�̂
↵̂

+ const.
o

=N
�
yn |Gxn , w

�̂

↵̂

�
⇥ const.

which allows the proposed particles to be re-weighted according to observations.

6.B ELBO evaluation for jump-di↵usion model

With the expression for ELBO derived in (6.92):

O(Y, {⌧}0:N , µJ , �
2
v)

=Eq(µJ ,�2
v) q({⌧}0:N)

n NX

n=1

log p(yn | y0:n�1, {⌧}n�1:n, µJ , �
2
v)
o
�H

�
q(µJ , �

2
v); p(µJ , �

2
v)
�

| {z }
(i)

+H
�
q({⌧}0:N); p({⌧}0:N)

�
| {z }

(ii)

+H
�
q(µJ , �

2
v)
�

| {z }
(iii)

+H
�
q({⌧}0:N)

�
| {z }

(iv)

+ const.

Expand and compute each term individually. The first term is essentially the expectation

of Kalman PED, which can be expanded as:

NX

n=1

hlog p(yn | yn�1, {⌧}n�1:n, µJ , �
2
v)iq(µJ ,�2

v) q({⌧}0:N)

=

NpX

i=1

w
(i)
N

NX

n=1

n
�
1

2

⇣
log[2⇡(GLLL

(i)
n|0:n�1G

T+w)] + hlog �
2
viq(µJ ,�2

v)

+
(yn �Gµc(i)

n|0:n�1)
2

GLLL
(i)
n|0:n�1G

T + w

h
1

�2
v

iq(µJ ,�2
v) �

2(yn �Gµc(i)
n|0:n�1)Gd(i)

n|0:n�1

GLLL
(i)
n|0:n�1G

T + w

h
µJ

�2
v

iq(µJ ,�2
v)

+
(Gd(i)

n|0:n�1)
2

GLLL
(i)
n|0:n�1G

T + w

h
µ
2
J

�2
v

iq(µJ ,�2
v)

⌘o

(6.97)

187

In addition to the expectations in Eq. (6.96), we also have:

hlog �2
viq(µJ ,�2

v) = log(�̂)� (↵̂) (6.98)

where (·) is the digamma function and log(·) here denotes the natural log by default.

This allows us to compute the first term numerically with all known values.

The entropy of a NIG distribution (iii) and the cross entropy between two NIG distri-

butions (i) can be computed in almost the same way. Assuming the prior is p(µJ , �
2
v) =

NIG(µJ , �
2
v |m, ⌫,↵, �), the cross entropy term (i) is:

H
�
q(µJ , �

2
v); p(µJ , �

2
v)
�

=�
⌦
log p(µJ , �

2
v)
↵
q(µJ ,�2

v)

=�
⌦1
2
log(

⌫

2⇡
)�

1

2
log �2

v + ↵ log � � log[�(↵)]� (↵ + 1) log �2
v �

�

�2
v

�
⌫(µJ �m)2

2�2
v

↵
q(µJ ,�2

v)

=
1

2
log(

2⇡

⌫
) + (↵ +

3

2
)hlog �2

viq(µJ ,�2
v) � ↵ log � + log[�(↵)] + �h

1

�2
v

iq(µJ ,�2
v) +

⌫

2
h
µ
2
J

�2
v

iq(µJ ,�2
v)

� ⌫mh
µJ

�2
v

iq(µJ ,�2
v) +

⌫m
2

2
h
1

�2
v

iq(µJ ,�2
v)

=
1

2
log(

2⇡

⌫
) + (↵ +

3

2
)[log(�̂)� (↵̂)]� ↵ log � + log[�(↵)] +

⌫

2
[
↵̂

�̂
m̂

2 +
1

⌫̂
]

� ⌫m(
↵̂

�̂
m̂) +

⌫m
2 + 2�

2
(
↵̂

�̂
)

(6.99)

which again allows tractable evaluation. Replacing the prior p(µJ , �
2
v) in the cross entropy

expression above with the approximated posterior q(µJ , �
2
v), the entropy can be obtained

as:

H
�
q(µJ , �

2
v)
�
=

1

2
log(

2⇡e

⌫̂
) +

3

2
log(�̂) + log[�(↵̂)]� (↵̂ +

3

2
) (↵̂) + ↵̂ (6.100)

Both terms (ii) and (iv) involves an empirical distribution q({⌧}0:N) as a weighted particle

collection. These can be computed from the generic definitions of entropy and cross

entropy for discrete variables. However in particle filter, it is possible to have duplicates

of the same particle (i.e. information) which need to be merged before any calculation.

After merging, the cross entropy term (ii) can be expressed as:

H
�
q({⌧}0:N); p({⌧}0:N)

�
= E

h
� log p({⌧}0:N)

i���
q({⌧}0:N)

= �
NuX

i

ŵ
(i)
N log p({⌧}(i)0:N)

(6.101)

188

where p({⌧}(i)0:N) is the readily available prior probability under the homogeneous Poisson

process assumption and the entropy term (iv) is:

H(q({⌧}0:N)) = �
NuX

i

ŵ
(i)
N log(ŵ(i)

N) (6.102)

where Nu (Np) is the number of unique particles after merging and ŵ
(i)
N is the merged

particle weight for the unique particle i. The merged weight is calculated as follows:

ŵ
(i)
N =

NpX

j

w
(j)
N �{⌧}(i)0:N

({⌧}(j)0:N) (6.103)

where �i(j) takes value 1 if j = i and 0 otherwise.

189

Chapter 7

Summary

This thesis has presented five research projects, each of which tackles the modelling and

the inference of the LOBs from a di↵erent perspective. The proposed models, inference

algorithms and techniques have demonstrated good performance while being generalisable

to other applications and transferable to other areas and disciplines of research.

In Chapter 2, I introduce a novel approach of modelling the intensity function of

the NHPP. By modelling the NHPP intensity function with a transformed state-space

stochastic di↵usion, the approach not only mitigates the inherent intractability of the

NHPP likelihood but also allows the sequential framework of the SSM to be fully utilised

for possible online Bayesian inference. In addition to the generic SMCMC algorithm used

for sequential inference, the MwG refinement scheme and the sequential batch scheme

are proposed to further to improve the inference accuracy and control the computational

cost. The model provides a plausible approach of transforming the noisy high-frequency

ticks data of order operations into informative intensities that can be used for analysis

and prediction of the LOB markets.

In Chapter 3, I study the LOBs by modelling the market’s fair price process. Inspired

by real-world market intuitions, the baseline jump-di↵usion SSM in [13] is extended with

additional model features. The volumetric model considers the contribution of dynamic

LOB volume imbalance to the innovation of price trend; while the extended trend model

introduces an additional state variable to capture trends at di↵erent time scales. The

trend resetting mechanism provides an alternative insight to the jumps occurring in the

high-frequency LOB market. The proposed features maintain the conditional tractability

which allows the models to be e�ciently inferred with the RBPF algorithm. Empirical

results obtained on real FOREX data demonstrate that the proposed features help improve

mean prediction accuracy and model fit. The retrospective analyses on the full model’s

posteriors also provide insightful interpretations for various market behaviours.

The research on the modelling of LOB price dynamics is continued in Chapter 4. By

considering the jumps of di↵erent types (e.g. induced by di↵erent order operations) as

the main innovation for price trends, I propose a continuous-time SSM which integrates a

190

multi-jump reversion process and a “varying-mean” OU process to account for the char-

acteristic trends and the constant volatility in the price dynamics respectively. In order

to handle the increased dimension of the latent variables, a semi-deterministic particle

filtering algorithm is proposed, which provides more thorough exploration over the latent

sample space. Experimental results obtained on simulated data show that the proposed

semi-deterministic filtering scheme outperforms the standard bootstrap RBPF algorithm.

The posteriors of the model obtained on FOREX price data demonstrate reasonable disag-

gregation of the price trend, which allows trend-following trading strategies to be executed

at di↵erent scales and time horizons. Moreover, I demonstrate the correlation between

the inferred jump times and the large-volume submissions of limit orders. This not only

supports our intuition that impulsive jumps can be one of the main innovations to price

trends, but also establishes a link between the proposed model and the NHPP intensity

model introduced in Chapter 2.

In order to achieve more realistic modelling of the price dynamics in the high-frequency

LOB market, in Chapter 5 I study the multi-regime di↵usion that commonly exists

in complex dynamical systems including financial markets and introduces the state-

space regime-switching model with infinite mixture dynamics. In addition to the semi-

Markovian regime-switching feature, the proposed model takes a step further by allowing

the number of regimes and the regime parameters to be unknown and modelled by the

DPM. Under the general framework of the PMCMC algorithm, I adopt the determinis-

tic particle filtering, the stratified resampling and the blocked-MwG sampling to achieve

Bayesian inference for both sequential states and SSM parameters. Experimenting the

model on di↵erent datasets, I show that the proposed model performs accurate regime

identification as well as posterior learning of the regime parameters.

With various sequential models proposed in the earlier chapters, it is important to

have an e�cient and robust approach of setting the hyperparameters of these models.

Thus in Chapter 6, I focus on the development of parameter learning algorithms that

can be readily applied to the SSMs. Two online parameter-learning algorithms are pro-

posed: the marginal Kalman filter and the marginal RBPF. The marginal Kalman filter

provides e�cient closed-form parameter learning for the linear-Gaussian SSMs; while the

marginal RBPF allows certain non-linearity in the dynamic model and achieves “quasi-

closed-form” inference of the parameter posteriors by marginalising (i.e. summing) the

particles. Moreover, a novel o✏ine inference algorithm is proposed by combining the

particle filter with the variational Bayes (inference) algorithm. By using all particle infor-

mation and an initialisation-free setup, the PF-VI algorithm achieves faster convergence

and more robust inference than the competing PMCMC algorithms. I also introduce a

hybrid PF-VI algorithm which handles the intractability of certain parameters in the SSM

and allows an even broader class of the SSMs to be accommodated.

191

The study of the LOB in high-frequency finance is an area of great research potential

with objectives ranging from deriving profitable trading strategies to market structure

analysis to anomaly detection and prediction of market crises (e.g. flash crash). The top-

ics, models and algorithms covered in this thesis constitute a small part of the grand atlas

of various researches on high-frequency finance. However, the academic research in this

area also faces many practical challenges. Both proponents and opponents of the e�cient

market hypothesis (EMH) agree on the idea that any market participants that deviate

from the passive market portfolio or trade at an “unfair” market price are playing a zero-

sum game. This highly competitive environment leads to the discreetness in the sharing

of research resources and technical advancements especially in the financial industry. For

a similar reason, researches in academia are often short of high-quality data and testbeds

in spite of the enormous amount of trading happening every single day. This separation

of research community between the academia and the industry (and companies in the

industry) may have severely limited the development of novel models and algorithms for

the study of the LOB in high-frequency finance.

This thesis reports the research achievements throughout the course of my PhD study.

I believe the models and algorithms proposed here are able to contribute towards the

advancement of the research on high-frequency LOB markets and I hope that the insights

and directions for future work provided in this thesis can also shed some light onto even

more areas and disciplines of research.

192

Bibliography

[1] A. Bigiotti and A. Navarra. “Optimizing Automated Trading Systems”. In: Pro-

ceedings of the 2018 International Conference on Digital Science. Springer. 2018,

pp. 254–261.

[2] Algorithmic Trading Market Report. https://www.marketsandmarkets.com/

Market-Reports/algorithmic-trading-market-179361860.html.

[3] Arash M. Knight Capital glitch loss hits $461m. url: https://www.ft.com/

content/928a1528-1859-11e2-80e9-00144feabdc0.

[4] Á. Cartea, S. Jaimungal, and J. Penalva. Algorithmic and high-frequency trading.

Cambridge University Press, 2015.

[5] F. Abergel, M. Anane, A. Chakraborti, A. Jedidi, and I. Toke. Limit order books.

Cambridge University Press, 2016.

[6] Investopedia. Guide to Trade Order Types. url: https://www.investopedia.

com/terms/o/order.asp.

[7] D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

[8] R. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:

Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35–45. issn: 0021-9223. doi:

10.1115/1.3662552. url: https://doi.org/10.1115/1.3662552.

[9] B. Friedland. Control system design: an introduction to state-space methods. Courier

Corporation, 2012.

[10] J. Vermaak, S. Godsill, and P. Perez. “Monte Carlo filtering for multi target track-

ing and data association”. In: IEEE Transactions on Aerospace and Electronic

systems 41.1 (2005), pp. 309–332.

[11] R. Roesser. “A discrete state-space model for linear image processing”. In: IEEE

Transactions on Automatic Control 20.1 (1975), pp. 1–10.

[12] J. Stock and M. Watson. “Dynamic factor models, factor-augmented vector autore-

gressions, and structural vector autoregressions in macroeconomics”. In: Handbook

of macroeconomics. Vol. 2. Elsevier, 2016, pp. 415–525.

193

[13] H. Christensen, J. Murphy, and S. Godsill. “Forecasting high-frequency futures

returns using online Langevin dynamics”. In: IEEE Journal of Selected Topics in

Signal Processing 6.4 (2012), pp. 366–380.

[14] L. Paninski, Y. Ahmadian, D. Ferreira, S. Koyama, K. Rad, M. Vidne, J. Vogel-

stein, and W. Wu. “A new look at state-space models for neural data”. In: Journal

of computational neuroscience 29.1-2 (2010), pp. 107–126.

[15] Z. Ghahramani and G. Hinton. “Variational learning for switching state-space

models”. In: Neural computation 12.4 (2000), pp. 831–864.

[16] J. Liu and R. Chen. “Sequential Monte Carlo methods for dynamic systems”. In:

Journal of the American statistical association 93.443 (1998), pp. 1032–1044.

[17] N. Gordon, D. Salmond, and A. Smith. “Novel approach to nonlinear/non-Gaussian

Bayesian state estimation”. In: IEE proceedings F (radar and signal processing).

Vol. 140. 2. IET. 1993, pp. 107–113.

[18] O. Cappé, S. Godsill, and E. Moulines. “An overview of existing methods and

recent advances in sequential Monte Carlo”. In: Proceedings of the IEEE 95.5

(2007), pp. 899–924.

[19] R. Douc and O. Cappé. “Comparison of resampling schemes for particle filtering”.

In: ISPA 2005. Proceedings of the 4th International Symposium on Image and

Signal Processing and Analysis, 2005. IEEE. 2005, pp. 64–69.

[20] S. Godsill. “Particle filtering: the first 25 years and beyond”. In: Proceedings of the

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE. 2019, pp. 7760–7764.

[21] P. Fearnhead and P. Cli↵ord. “On-line inference for hidden Markov models via

particle filters”. In: Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 65.4 (2003), pp. 887–899.

[22] C. Li and S. Godsill. “Sequential inference methods for non-homogeneous Poisson

processes with state-space prior”. In: Proceedings of the 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing. Vol. 2018. 2018, pp. 2856–

2860.

[23] C. Li and S. Godsill. “Sequential inference methods for non-homogeneous Poisson

processes with state-space prior”. In: IEEE Transactions on Signal Processing 69

(2021), pp. 1154–1168.

[24] D. Perkel, G. Gerstein, and G. Moore. “Neuronal spike trains and stochastic

point processes: II. Simultaneous spike trains”. In: Biophysical journal 7.4 (1967),

pp. 419–440.

194

[25] J. Gardner and L. Knopo↵. “Is the sequence of earthquakes in Southern California,

with aftershocks removed, Poissonian?” In: Bulletin of the Seismological Society of

America 64.5 (1974), pp. 1363–1367.

[26] V. Iversen. “Teletra�c engineering handbook”. In: ITU-D SG 2 (2005), p. 16.

[27] S. Godsill and J. Vermaak. “Variable rate particle filters for tracking applications”.

In: IEEE/SP Proceedings of the 13th Workshop on Statistical Signal Processing,

2005. IEEE. 2005, pp. 1280–1285.

[28] R. Mahler. “Multitarget Bayes filtering via first-order multitarget moments”. In:

IEEE Transactions on Aerospace and Electronic systems 39.4 (2003), pp. 1152–

1178.

[29] D. Cox and V. Isham. Point processes. Vol. 12. CRC Press, 1980.

[30] P. Lewis and G. Shedler. “Simulation of nonhomogeneous Poisson processes by

thinning”. In: Naval Research Logistics (NRL) 26.3 (1979), pp. 403–413.

[31] S. Chiu, D. Stoyan, W. Kendall, and J. Mecke. Stochastic geometry and its appli-

cations. John Wiley & Sons, 2013.

[32] P. Diggle. “A kernel method for smoothing point process data”. In: Applied statis-

tics (1985), pp. 138–147.

[33] W. Massey, G. Parker, and W. Whitt. “Estimating the parameters of a nonho-

mogeneous Poisson process with linear rate”. In: Telecommunication Systems 5.2

(1996), pp. 361–388.

[34] D. Nicol and L. Leemis. “A continuous piecewise-linear NHPP intensity function

estimator”. In: Proceedings of the Winter Simulation Conference 2014. IEEE. 2014,

pp. 498–509.

[35] Z. Zheng and P. Glynn. “Fitting continuous piecewise linear poisson intensities

via maximum likelihood and least squares”. In: Proceedings of the 2017 Winter

Simulation Conference (WSC). IEEE. 2017, pp. 1740–1749.

[36] R. Streit and L. Stone. “Bayes derivation of multitarget intensity filters”. In: Pro-

ceedings of the 2008 11th International Conference on Information Fusion. IEEE.

2008, pp. 1–8.

[37] R. Streit. “Multisensor multitarget intensity filter”. In: Proceedings of the 2008

11th International Conference on Information Fusion. IEEE. 2008, pp. 1–8.

[38] R. Streit. “JPDA intensity filter for tracking multiple extended objects in clutter”.

In: Proceedings of the 2016 19th International Conference on Information Fusion.

IEEE. 2016, pp. 1477–1484.

[39] A. Raftery and V. Akman. “Bayesian analysis of a Poisson process with a change-

point”. In: Biometrika (1986), pp. 85–89.

195

[40] T. Herberts and U. Jensen. “Optimal detection of a change point in a Poisson

process for di↵erent observation schemes”. In: Scandinavian Journal of Statistics

31.3 (2004), pp. 347–366.

[41] M. Brown. “Bayesian detection of changes of a Poisson process monitored at dis-

crete time points where the arrival rates are unknown”. In: Sequential Analysis

27.1 (2008), pp. 68–77.

[42] X. Zhao and P. Chu. “Bayesian multiple changepoint analysis of hurricane activity

in the eastern North Pacific: A Markov chain Monte Carlo approach”. In: Journal

of climate 19.4 (2006), pp. 564–578.

[43] S. Gugushvili, F. van der Meulen, M. Schauer, and P. Spreij. “Fast and scalable

non-parametric Bayesian inference for Poisson point processes”. In: arXiv preprint

arXiv:1804.03616 (2018).

[44] C. Rasmussen and C. Williams. Gaussian processes for machine learning. Vol. 1.

MIT press Cambridge, 2006.

[45] S. Rathbun and N. Cressie. “Asymptotic properties of estimators for the param-

eters of spatial inhomogeneous Poisson point processes”. In: Advances in Applied

Probability (1994), pp. 122–154.

[46] J. Møller, A. Syversveen, and R. Waagepetersen. “Log Gaussian Cox processes”.

In: Scandinavian journal of statistics 25.3 (1998), pp. 451–482.

[47] R. Adams, I. Murray, and D. MacKay. “Tractable nonparametric Bayesian infer-

ence in Poisson processes with Gaussian process intensities”. In: Proceedings of the

26th Annual International Conference on Machine Learning. ACM. 2009, pp. 9–16.

[48] T. Gunter, C. Lloyd, M. Osborne, and S. Roberts. “E�cient Bayesian Nonpara-

metric Modelling of Structured Point Processes”. In: Proceedings of the Thirtieth

Conference on Uncertainty in Artificial Intelligence (UAI’14). 2014, pp. 310–319.

[49] C. Lloyd, T. Gunter, M. Osborne, and S. Roberts. “Variational inference for Gaus-

sian process modulated Poisson processes”. In: Proceedings of the International

Conference on Machine Learning. 2015, pp. 1814–1822.

[50] S. Särkkä. Recursive Bayesian inference on stochastic di↵erential equations. Helsinki

University of Technology, 2006.

[51] S. Godsill. “Particle filters for continuous-time jump models in tracking applica-

tions”. In: ESAIM: Proceedings. Vol. 19. EDP Sciences. 2007, pp. 39–52.

[52] C. Berzuini and W. Gilks. “RESAMPLE-MOVE filtering with cross-model jumps”.

In: Sequential Monte Carlo Methods in Practice. Springer, 2001, pp. 117–138.

[53] A. Golightly and D. Wilkinson. “Bayesian sequential inference for nonlinear mul-

tivariate di↵usions”. In: Statistics and Computing 16.4 (2006), pp. 323–338.

196

[54] S. K. Pang, S. Godsill, J. Li, F. Septier, and S. Hill. “Sequential inference for

dynamically evolving groups of objects”. English. In: Bayesian Time Series Models.

2011. Chap. 12, pp. 245–276. url: www.scopus.com.

[55] F. Septier and G. Peters. “Langevin and Hamiltonian based sequential MCMC

for e�cient Bayesian filtering in high-dimensional spaces”. In: IEEE Journal of

Selected Topics in Signal Processing 10.2 (2016), pp. 312–327.

[56] A. Finke, A. Doucet, and A. Johansen. “Limit theorems for sequential MCMC

methods”. In: Advances in Applied Probability 52.2 (2020), pp. 377–403.

[57] P. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian

model determination”. In: Biometrika 82.4 (1995), pp. 711–732.

[58] M. Girolami and B. Calderhead. “Riemann manifold Langevin and Hamiltonian

Monte Carlo methods”. In: Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology) 73.2 (2011), pp. 123–214.

[59] D. Scott. Multivariate density estimation: theory, practice, and visualization. John

Wiley & Sons, 2015.

[60] G. Kitagawa. “Monte Carlo filter and smoother for non-Gaussian nonlinear state

space models”. In: Journal of computational and graphical statistics 5.1 (1996),

pp. 1–25.

[61] M. Gould, M. Porter, S. Williams, M. McDonald, D. Fenn, and S. Howison. “Limit

order books”. In: Quantitative Finance 13.11 (2013), pp. 1709–1742.

[62] L. Menkho↵, L. Sarno, M. Schmeling, and A. Schrimpf. “Currency momentum

strategies”. In: Journal of Financial Economics 106.3 (2012), pp. 660–684.

[63] A. Sokal. “Monte Carlo methods in statistical mechanics: foundations and new

algorithms”. In: Functional integration. Springer, 1997, pp. 131–192.

[64] C. Andrieu, A. Doucet, and R. Holenstein. “Particle Markov chain Monte Carlo

methods”. In: Journal of the Royal Statistical Society: Series B (Statistical Method-

ology) 72.3 (2010), pp. 269–342.

[65] W. Gilks and P. Wild. “Adaptive rejection sampling for Gibbs sampling”. In:

Journal of the Royal Statistical Society: Series C (Applied Statistics) 41.2 (1992),

pp. 337–348.

[66] D. Görür and Y. W. Teh. “Concave-convex adaptive rejection sampling”. In: Jour-

nal of Computational and Graphical Statistics 20.3 (2011), pp. 670–691.

[67] S. K. Pang, J. Li, and S. Godsill. “Detection and tracking of coordinated groups”.

In: IEEE Transactions on Aerospace and Electronic Systems 47.1 (2011), pp. 472–

502.

197

[68] H. Luckock. “A steady-state model of the continuous double auction”. In: Quan-

titative Finance 3.5 (2003), pp. 385–404.

[69] P. Wang, L. Li, and S. Godsill. “Particle filtering and inference for limit order

books in high frequency finance”. In: Proceedings of the 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018,

pp. 4264–4268.

[70] R. Cont, S. Stoikov, and R. Talreja. “A stochastic model for order book dynamics”.

In: Operations research 58.3 (2010), pp. 549–563.

[71] E. Panayi and G. Peters. “Stochastic simulation framework for the limit order

book using liquidity-motivated agents”. In: International Journal of Financial En-

gineering 2.02 (2015), p. 1550013.

[72] H. Christensen, R. Turner, S. Hill, and S. Godsill. “Rebuilding the limit order

book: sequential Bayesian inference on hidden states”. In: Quantitative Finance

13.11 (2013), pp. 1779–1799.

[73] M. Avellaneda and S. Stoikov. “High-frequency trading in a limit order book”. In:

Quantitative Finance 8.3 (2008), pp. 217–224.

[74] R. Cont. “Statistical modeling of high-frequency financial data”. In: IEEE Signal

Processing Magazine 28.5 (2011), pp. 16–25.

[75] W. Bao, J. Yue, and Y. Rao. “A deep learning framework for financial time series

using stacked autoencoders and long-short term memory”. In: PLoS ONE 12.7

(2017). issn: 19326203. doi: 10.1371/journal.pone.0180944.

[76] N. Gordon, D. Salmond, and A. Smith. “Novel approach to nonlinear/non-Gaussian

Bayesian state estimation”. In: IEE Proceedings F Radar and Signal Processing

140.2 (1993), pp. 107–113. issn: 0956375X. doi: 10.1049/ip-f-2.1993.0015.

arXiv: 9241F(E5).

[77] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. “A tutorial on particle fil-

ters for online nonlinear/non-Gaussian Bayesian tracking”. In: IEEE Transactions

on signal processing 50.2 (2002), pp. 174–188.

[78] J. Murphy. “Bayesian methods for high frequency financial time series analysis”. In:

PhD First Year Report, Cambridge University Department of Engineering (2010).

[79] H. Lopes and R. Tsay. “Particle filters and Bayesian inference in financial econo-

metrics”. In: Journal of Forecasting 30.1 (2011), pp. 168–209.

[80] R. Carmona, P. Del Moral, P. Hu, and N. Oudjane. “An introduction to particle

methods with financial applications”. In: Numerical Methods in Finance. Springer,

2012, pp. 3–49.

198

[81] C.R. Rao. “Information and accuracy attainable in the estimation of statistical

parameters”. In: Bulletin of the Calcutta Mathematical Society 37 (1945), pp. 81–

91.

[82] D. Blackwell. “Conditional Expectation and Unbiased Sequential Estimation”. In:

The Annals of Mathematical Statistics 18.1 (Mar. 1947), pp. 105–110. issn: 0003-

4851. doi: 10.1214/aoms/1177730497.

[83] A. Doucet, S. Godsill, and C. Andrieu. “On sequential Monte Carlo sampling

methods for Bayesian filtering”. In: Statistics and computing 10.3 (2000), pp. 197–

208.

[84] R. Cont and A. De Larrard. “Price dynamics in a Markovian limit order market”.

In: SIAM Journal on Financial Mathematics 4.1 (2013), pp. 1–25.

[85] R. Schöbel and J. Zhu. “Stochastic volatility with an Ornstein–Uhlenbeck process:

an extension”. In: Review of Finance 3.1 (1999), pp. 23–46.

[86] F. Daum and J. Huang. “Curse of dimensionality and particle filters”. In: Proceed-

ings of the 2003 IEEE Aerospace Conference (Cat. No. 03TH8652). Vol. 4. IEEE.

2003, 4 1979–4 1993.

[87] S. Godsill, J. Vermaak, W. Ng, and J. Li. “Models and algorithms for tracking

of maneuvering objects using variable rate particle filters”. In: Proceedings of the

IEEE 95.5 (2007), pp. 925–952.

[88] A. Harvey. Forecasting, structural time series models and the Kalman filter. Cam-

bridge university press, 1990.

[89] A. Doucet and A. Johansen. “A tutorial on particle filtering and smoothing: Fifteen

years later”. In: Handbook of nonlinear filtering 12.656-704 (2009), p. 3.

[90] R. Merton. “Option pricing when underlying stock returns are discontinuous”. In:

Journal of financial economics 3.1-2 (1976), pp. 125–144.

[91] T. Andersen, L. Benzoni, and J. Lund. “Estimating jump-di↵usions for equity

returns”. In: Journal of Finance 57.3 (2002), pp. 1239–1284.

[92] S. Kou. “A jump-di↵usion model for option pricing”. In: Management science 48.8

(2002), pp. 1086–1101.

[93] Z. Huang and S. Kou. “First passage times and analytical solutions for options on

two assets with jump risk”. In: Preprint, Columbia University (2006).

[94] D. Du�e, J. Pan, and K. Singleton. “Transform analysis and asset pricing for a�ne

jump-di↵usions”. In: Econometrica 68.6 (2000), pp. 1343–1376.

[95] S. Kou. “Jump-di↵usion models for asset pricing in financial engineering”. In:

Handbooks in operations research and management science 15 (2007), pp. 73–116.

199

[96] A. Golightly. “Bayesian filtering for jump-di↵usions with application to stochas-

tic volatility”. In: Journal of Computational and Graphical Statistics 18.2 (2009),

pp. 384–400.

[97] J. Hol, T. Schon, and F. Gustafsson. “On resampling algorithms for particle filters”.

In: Proceedings of the 2006 IEEE nonlinear statistical signal processing workshop.

IEEE. 2006, pp. 79–82.

[98] H. Blom and Y. Bar-Shalom. “The interacting multiple model algorithm for sys-

tems with Markovian switching coe�cients”. In: IEEE transactions on Automatic

Control 33.8 (1988), pp. 780–783.

[99] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. “Interacting multiple model

methods in target tracking: a survey”. In: IEEE Transactions on aerospace and

electronic systems 34.1 (1998), pp. 103–123.

[100] Y. Boers and J. Driessen. “Interacting multiple model particle filter”. In: IEE

Proceedings-Radar, Sonar and Navigation 150.5 (2003), pp. 344–349.

[101] C. Nemeth, P. Fearnhead, and L. Mihaylova. “Sequential Monte Carlo methods

for state and parameter estimation in abruptly changing environments”. In: IEEE

Transactions on Signal Processing 62.5 (2013), pp. 1245–1255.

[102] C. Nemeth, P. Fearnhead, L. Mihaylova, and D. Vorley. “Bearings-only tracking

with particle filtering for joint parameter learning and state estimation”. In: Pro-

ceedings of the 2012 15th International Conference on Information Fusion. IEEE.

2012, pp. 824–831.

[103] Christopher Nemeth, Paul Fearnhead, Lyudmila Mihaylova, and Dave Vorley.

“Particle learning methods for state and parameter estimation”. In: Proceedings of

the 9th IET Data Fusion Target Tracking Conference (DF TT 2012): Algorithms

Applications. 2012, pp. 1–6. doi: 10.1049/cp.2012.0412.

[104] P. Fearnhead and Z. Liu. “On-line inference for multiple changepoint problems”.

In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69.4

(2007), pp. 589–605.

[105] S. Yildirim, S. Singh, and A. Doucet. “An online Expectation–Maximization al-

gorithm for changepoint models”. In: Journal of Computational and Graphical

Statistics 22.4 (2013), pp. 906–926.

[106] C. Carvalho, M. Johannes, H. Lopes, and N. Polson. “Particle learning and smooth-

ing”. In: Statistical Science 25.1 (2010), pp. 88–106.

200

[107] D. Bailey, J. Borwein, M. Lopez de Prado, and Q. Zhu. “Pseudo-mathematics and

financial charlatanism: The e↵ects of backtest overfitting on out-of-sample perfor-

mance”. In: Notices of the American Mathematical Society 61.5 (2014), pp. 458–

471.

[108] M. Beal, Z. Ghahramani, and C. Rasmussen. “The infinite hidden Markov model”.

In: Proceedings of the Advances in Neural Information Processing Systems. 2002,

pp. 577–584.

[109] Y. Teh, M. Jordan, M. Beal, and D. Blei. “Hierarchical Dirichlet processes”. In:

Journal of the American Statistical Association 101.476 (2006), pp. 1566–1581.

[110] J. Kivinen, E. Sudderth, and M. Jordan. “Learning multiscale representations of

natural scenes using Dirichlet processes”. In: Proceedings of the 2007 IEEE 11th

International Conference on Computer Vision. IEEE. 2007, pp. 1–8.

[111] M. Ho↵man, P. Cook, and D. Blei. “Data-driven recomposition using the hierar-

chical Dirichlet process hidden Markov model”. In: Proceedings of ICMC. Citeseer.

2008.

[112] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. “A sticky HDP-HMM with

application to speaker diarization”. In: The Annals of Applied Statistics (2011),

pp. 1020–1056.

[113] M. Johnson and A. Willsky. “Bayesian nonparametric hidden semi-Markov mod-

els”. In: Journal of Machine Learning Research 14.Feb (2013), pp. 673–701.

[114] F. Caron, M. Davy, A. Doucet, E. Duflos, and P. Vanheeghe. “Bayesian inference

for linear dynamic models with Dirichlet process mixtures”. In: IEEE Transactions

on Signal Processing 56.1 (2007), pp. 71–84.

[115] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. “Bayesian nonparametric methods

for learning Markov switching processes”. In: IEEE Signal Processing Magazine

27.6 (2010), pp. 43–54.

[116] E. Fox, E. Sudderth, and A. Willsky. “Hierarchical Dirichlet processes for tracking

maneuvering targets”. In: Proceedings of the 2007 10th international conference on

information fusion. IEEE. 2007, pp. 1–8.

[117] K. Murphy. “Hidden semi-Markov models (HSMMs)”. In: unpublished notes (2002).

[118] D. Aldous. “Exchangeability and related topics”. In: École d’Été de Probabilités

de Saint-Flour XIII—1983. Springer, 1985, pp. 1–198.

[119] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian

data analysis. Chapman and Hall/CRC, 2013.

[120] R. Adams and D. MacKay. “Bayesian online changepoint detection”. In: arXiv

preprint arXiv:0710.3742 (2007).

201

[121] M. Pitt, R. dos Santos Silva, P. Giordani, and R. Kohn. “On some properties of

Markov chain Monte Carlo simulation methods based on the particle filter”. In:

Journal of Econometrics 171.2 (2012), pp. 134–151.

[122] A. Golightly and D. Wilkinson. “Bayesian parameter inference for stochastic bio-

chemical network models using particle Markov chain Monte Carlo”. In: Interface

focus 1.6 (2011), pp. 807–820.

[123] D. Rasmussen, O. Ratmann, and K. Koelle. “Inference for nonlinear epidemiolog-

ical models using genealogies and time series”. In: PLoS computational biology 7.8

(2011).

[124] N. Chopin and S. Singh. “On particle Gibbs sampling”. In: Bernoulli 21.3 (2015),

pp. 1855–1883.

[125] F. Lindsten, M. Jordan, and T. Schön. “Particle Gibbs with ancestor sampling”.

In: The Journal of Machine Learning Research 15.1 (2014), pp. 2145–2184.

[126] J. Carpenter, P. Cli↵ord, and P. Fearnhead. “Improved particle filter for nonlinear

problems”. In: IEE Proceedings-Radar, Sonar and Navigation 146.1 (1999), pp. 2–

7.

[127] T. Fossen. “A nonlinear unified state-space model for ship maneuvering and control

in a seaway”. In: International Journal of Bifurcation and Chaos 15.09 (2005),

pp. 2717–2746.

[128] T. Patterson, L. Thomas, C. Wilcox, O. Ovaskainen, and J. Matthiopoulos. “State–

space models of individual animal movement”. In: Trends in ecology & evolution

23.2 (2008), pp. 87–94.

[129] A. Paul and E. Wan. “RSSI-based indoor localization and tracking using sigma-

point Kalman smoothers”. In: IEEE Journal of selected topics in signal processing

3.5 (2009), pp. 860–873.

[130] A. Strandburg-Peshkin, D. Farine, I. Couzin, and M. Crofoot. “Shared decision-

making drives collective movement in wild baboons”. In: Science 348.6241 (2015),

pp. 1358–1361.

[131] M. Crofoot, R. Kays, and M. Wikelski. Data from: Shared decision-making drives

collective movement in wild baboons. 2015. doi: doi:10.5441/001/1.kn0816jn.

url: http://dx.doi.org/10.5441/001/1.kn0816jn.

[132] H. Rauch, F. Tung, and C. Striebel. “Maximum likelihood estimates of linear

dynamic systems”. In: AIAA journal 3.8 (1965), pp. 1445–1450.

[133] C. Masreliez and R. Martin. “Robust Bayesian estimation for the linear model and

robustifying the Kalman filter”. In: IEEE transactions on Automatic Control 22.3

(1977), pp. 361–371.

202

[134] M. Roth, E. Özkan, and F. Gustafsson. “A Student’s t filter for heavy tailed

process and measurement noise”. In: Proceedings of the 2013 IEEE International

Conference on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 5770–

5774.

[135] K. Murphy. “Conjugate Bayesian analysis of the Gaussian distribution”. In: Tech-

nical Report (2007).

[136] G. Einicke and L. White. “Robust extended Kalman filtering”. In: IEEE Transac-

tions on Signal Processing 47.9 (1999), pp. 2596–2599.

[137] N. Kantas, A. Doucet, S. Singh, J. Maciejowski, N. Chopin, et al. “On particle

methods for parameter estimation in state-space models”. In: Statistical science

30.3 (2015), pp. 328–351.

[138] M. Hürzeler and H. Künsch. “Approximating and maximising the likelihood for

a general state-space model”. In: Sequential Monte Carlo methods in practice.

Springer, 2001, pp. 159–175.

[139] S. Malik and M. Pitt. “Particle filters for continuous likelihood evaluation and

maximisation”. In: Journal of Econometrics 165.2 (2011), pp. 190–209.

[140] F. LeGland and L. Mevel. “Recursive estimation in hidden Markov models”. In:

Proceedings of the 36th IEEE Conference on Decision and Control. Vol. 4. IEEE.

1997, pp. 3468–3473.

[141] P. Fearnhead, D. Wyncoll, and J. Tawn. “A sequential smoothing algorithm with

linear computational cost”. In: Biometrika 97.2 (2010), pp. 447–464.

[142] G. Storvik. “Particle filters for state-space models with the presence of unknown

static parameters”. In: IEEE Transactions on signal Processing 50.2 (2002), pp. 281–

289.

[143] J. Liu and M. West. “Combined parameter and state estimation in simulation-

based filtering”. In: Sequential Monte Carlo methods in practice. Springer, 2001,

pp. 197–223.

[144] M. Pitt and N. Shephard. “Filtering via simulation: Auxiliary particle filters”. In:

Journal of the American statistical association 94.446 (1999), pp. 590–599.

[145] J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, and M.

West. “Particle learning for sequential Bayesian computation”. In: Bayesian Statis-

tics 9 9 (2011), p. 317.

[146] A. Virbickaitė, H. Lopes, C. Ausın, and P. Galeano. “Particle learning for Bayesian

semi-parametric stochastic volatility model”. In: Econometric Reviews (2019).

[147] G. Kitagawa. “A self-organizing state-space model”. In: Journal of the American

Statistical Association (1998), pp. 1203–1215.

203

[148] N. Chopin, P. Jacob, and O. Papaspiliopoulos. “SMC2: an e�cient algorithm for

sequential analysis of state space models”. In: Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 75.3 (2013), pp. 397–426.

[149] A. Fulop and J. Li. “E�cient learning via simulation: A marginalized resample-

move approach”. In: Journal of Econometrics 176.2 (2013), pp. 146–161.

[150] S. Godsill, M. Riabiz, and I. Kontoyiannis. “The Lévy State Space Model”. In:

Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Com-

puters. IEEE. 2019, pp. 487–494.

[151] H. Attias. “A variational baysian framework for graphical models”. In: Proceedings

of the Advances in Neural Information Processing Systems. 2000, pp. 209–215.

[152] J. Winn and C. Bishop. “Variational message passing”. In: Journal of Machine

Learning Research 6.Apr (2005), pp. 661–694.

[153] K. Murphy, Y. Weiss, and M. Jordan. “Loopy belief propagation for approximate

inference: An empirical study”. In: Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence (UAI1999). 1999.

[154] Tom M. “Expectation Propagation for approximate Bayesian inference”. In: Pro-

ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence

(UAI2001). 2001.

[155] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[156] D. Blei, A. Kucukelbir, and J. McAuli↵e. “Variational inference: A review for

statisticians”. In: Journal of the American statistical Association 112.518 (2017),

pp. 859–877.

[157] M. Ho↵man, D. Blei, C. Wang, and J. Paisley. “Stochastic variational inference.”

In: Journal of Machine Learning Research 14.5 (2013).

[158] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt. “Advances in variational

inference”. In: IEEE transactions on pattern analysis and machine intelligence

41.8 (2018), pp. 2008–2026.

[159] C. Maddison, D. Lawson, G. Tucker, N. Heess, M. Norouzi, A. Mnih, A. Doucet,

and Y. Teh. “Filtering variational objectives”. In: Proceedings of the 31st Inter-

national Conference on Neural Information Processing Systems. 2017, pp. 6576–

6586.

[160] C. Naesseth, S. Linderman, R. Ranganath, and D. Blei. “Variational sequential

Monte Carlo”. In: Proceedings of the International Conference on Artificial Intel-

ligence and Statistics. PMLR. 2018, pp. 968–977.

[161] S. Kullback and R. Leibler. “On information and su�ciency”. In: The annals of

mathematical statistics 22.1 (1951), pp. 79–86.

204

[162] S. Kullback. Information theory and statistics. Courier Corporation, 1997.

[163] T. Minka et al. Divergence measures and message passing. Tech. rep. Technical

report, Microsoft Research, 2005.

[164] A. Dempster, N. Laird, and D. Rubin. “Maximum likelihood from incomplete

data via the EM algorithm”. In: Journal of the Royal Statistical Society: Series

B (Methodological) 39.1 (1977), pp. 1–22.

[165] Abraham L. ad: a Python package for first- and second-order automatic di↵erenta-

tion. url: http://pythonhosted.org/ad/.

[166] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind. “Automatic di↵erentiation in

machine learning: a survey”. In: The Journal of Machine Learning Research 18.1

(2017), pp. 5595–5637.

[167] J. Rosenthal and G. Roberts. “Coupling and ergodicity of adaptive MCMC”. In:

Journal of Applied Probablity 44 (2007), pp. 458–475.

205

