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Abstract

Non-autoregressive generation (NAG) has re-
cently attracted great attention due to its fast
inference speed. However, the generation qual-
ity of existing NAG models still lags behind
their autoregressive counterparts. In this work,
we show that BERT can be employed as the
backbone of a NAG model to greatly improve
performance. Additionally, we devise mech-
anisms to alleviate the two common prob-
lems of vanilla NAG models: the inflexibil-
ity of prefixed output length and the condi-
tional independence of individual token predic-
tions. Lastly, to further increase the speed ad-
vantage of the proposed model, we propose a
new decoding strategy, ratio-first, for applica-
tions where the output lengths can be approx-
imately estimated beforehand. For a compre-
hensive evaluation, we test the proposed model
on three text generation tasks, including text
summarization, sentence compression and ma-
chine translation. Experimental results show
that our model significantly outperforms exist-
ing non-autoregressive baselines and achieves
competitive performance with many strong au-
toregressive models. In addition, we also con-
duct extensive analysis experiments to reveal
the effect of each proposed component.1

1 Introduction

Autoregressive generation (AG) models achieve
state-of-the-art performance on a wide range of
text generation tasks, such as machine transla-
tion (Vaswani et al., 2017) and text summarization
(Rush et al., 2015). Such models generate a token
sequence in a left-to-right, token-by-token fashion.
The prediction for the next token is conditioned on
all previously generated tokens. This characteris-
tic makes it impossible to parallelize the computa-
tional overhead for token predictions in different
1All related code, data, and models can be found in
https://github.com/yxuansu/NAG-BERT.

positions, which leads to a relatively high latency
in inference. On the other hand, non-autoregressive
generation (NAG) models (Gu et al., 2018) have
emerged as a promising alternative due to their fast
inference speed. NAG models omit the sequential
dependencies within the output-side sequence and
predict tokens in all positions simultaneously once
the output length has been determined beforehand.
While NAG models enjoy full parallelism and faster
inference, the generation quality of NAG models
often lags behind their autoregressive counterparts.

In this work, we explore the potential of large-
scale pre-trained language models for improving
the performance of non-autoregressive generation.
Specifically, we utilize BERT (Devlin et al., 2019)
as the backbone for NAG modelling and extend
the architecture of BERT with a CRF output layer
(Lafferty et al., 2001; Sun et al., 2019) for better
capturing the output-side dependencies.

In addition, we analyze two significant limita-
tions that NAG models currently suffer from: (1)
the inflexibility of prefixed output length, and (2)
the conditional independence of individual token
predictions. Accordingly, we devise two solutions
to these two problems.

First, prior NAG models require the output
length to be determined before token generation,
thus an extra module for output length prediction
is always required. Nevertheless, the most likely
length from the prediction module is not neces-
sarily the best-suited one for the token generation
model. To this end, previous works (Gu et al., 2018;
Ma et al., 2019) usually rely on length-parallel de-
coding (LPD) (Wei et al., 2019) for performance
enhancement; that is, generating and re-ranking the
results from different output length candidates. In
this work, we propose a simple and elegant decod-
ing mechanism that lets the model determine the
output length on-the-fly. Specifically, our model
dynamically adjusts the output sequence length via

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/428439768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


235

emitting an [eos] token at any output position
to indicate the ending of the generated sequence.
Therefore, we can avoid the additional efforts of
output length prediction and results re-ranking.

Second, most existing NAG models assume the
token predictions in different positions are condi-
tionally independent. As a consequence, they often
tend to generate results that are ungrammatical with
repetitions (Wang et al., 2019b). To alleviate this
problem, we propose a context-aware learning ob-
jective which impels the model to output different
tokens at adjacent positions, thereby reducing the
possibility of repetitive generation.

Furthermore, for tasks like text summarization,
the output sequence (summary) is known to be
shorter than the source sequence (article). In such
cases, to further improve the model’s inference ef-
ficiency, we introduce a new ratio-first decoding
strategy. Specifically, instead of performing infer-
ence on all source-side hidden states, ratio-first gen-
erates the result only based on a subset of source
hidden states. The subset size is jointly determined
by the source length T and a predefined ratio α
that is set based on our prior knowledge from the
data statistics. In the experiments, we show that
ratio-first can significantly improve the inference
speed while maintaining the generation quality.

We evaluate the proposed model on three typical
text generation tasks, including text summarization,
sentence compression and machine translation. Ex-
perimental results show that our model significantly
outperforms many strong non-autoregressive base-
lines, and even performs competitively with several
strong autoregressive models. In addition, we con-
duct extensive analysis experiments to study the
effect of individual proposed components.

In summary, our contributions are: (1) We pro-
pose a novel framework that utilizes BERT for text
generation under the non-autoregressive generation
paradigm; (2) We propose a decoding mechanism
that allows the model to dynamically determine the
output length, and a new context-aware learning
objective that reduces errors stemming from the
output-side conditional independence assumption;
(3) We introduce a ratio-first decoding strategy that
further improve the model’s inference efficiency.

2 Background

Autoregressive generation (AG) models generate
sequences based on a left-to-right factorization. As
shown in Figure 1, given the source sequence X,

Figure 1: (a) Autoregressive; (b) Non-Autoregressive

the target sequence Y with length T ′ is generated
via a chain of conditional probabilities based on
the left-to-right sequential dependencies as:

p(Y|X) =
T ′∏
i=1

p(yi|y<i,X), (1)

where y<i denotes the tokens before the i-th step.
This property of autoregressive factorization makes
the generation process hard to be parallelized as
the result is generated token by token.

Unlike AG models, non-autoregressive (NAG)
models generate sequences without modelling the
output-side dependencies. As shown in Figure 1,
given the prespecified output length T ′, the proba-
bility of the target sequence Y is then modelled as:

p(Y|X) =

T ′∏
i=1

p(yi|X, i, T ′). (2)

With this conditional independence assumption,
NAG models can fully parallelize their generation
process, which significantly improves the inference
speed. However, it has been shown that, the choice
of the prespecified output length has a notable im-
pact on the model’s generation quality (Gu et al.,
2018). In addition, the removal of output-side se-
quential dependency also causes the generation
quality of NAG models to be inferior to their au-
toregressive counterparts (Wang et al., 2019b).

3 Proposed Model

In this section, we give a detailed explanation of the
proposed model. First, we describe how to utilize
BERT as a non-autoregressive generation model.
Then we discuss the decoding mechanism which
allows the model to determine the output length
dynamically. Finally, we introduce the new ratio-
first decoding strategy which further improves the
model’s decoding efficiency.
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Figure 2: The overall illustration of the proposed model: During training, the model parameters are only updated
on the positions of the target sequence. During inference, once the decoded trajectory (colored in red) gets into the
[eos] state, it will only transit to the [eos] state in the remaining steps. The final result is obtained by removing
the generated [eos] tokens from the entire decoded trajectory.

3.1 Model Architecture
The architecture of the proposed model is presented
in Figure 2, in which the embedding layer and
the stack of transformer layers are initialized with
BERT (Devlin et al., 2019).

Input Representation Following the setup of
BERT, we first append a [cls] and a [sep]
token on both sides of the source sequence. Then
we attach a number of [pad] tokens at the end
of source sequence to make its length equal to the
predefined maximum size (e.g., 256). Thus we can
make sure the source length is longer than or equal
to the output length. As a special case, for tasks
like text summarization where the source is known
to be longer than the target, we do not attach the
[pad] tokens when constructing the input.

Transformer Layers Given the source sequence
X, it is processed by a stack of N transformer
(Vaswani et al., 2017) layers. Formally, the Multi-
Head Attention is defined as MultiHead(Q,K,V),
where Q, K, V denotes the query, key and value re-
spectively. The computation of the first transformer
layer is then defined as:

V(1) = MultiHead(E(X), E(X), E(X)), (3)

O(1) = FFN(V(1)), (4)

FFN(x) = max(0, xW1 + b1)W2 + b2, (5)

whereE(X) = TE(X)+PE(X) in which TE(·)
denotes the token embedding and PE(·) denotes
the position embedding. For other layers:

V(n) = MultiHead(O(n−1),O(n−1),O(n−1)),
(6)

O(n) = FFN(V(n)), (7)

where n = 2, ..., N and N is the total number of
transformer layers. The final sequence representa-
tion H ∈ RT×dmodel is the output states of BERT
from the last layer, where T is the source sequence
length and dmodel is the model size.

CRF Layer Then, H is passed through a linear-
chain CRF (Lafferty et al., 2001). Under the CRF
framework, the likelihood of the target sequence Y
with length T ′ is then modelled as:

PCRF(Y|X) =
eS(X,Y)∑
Y′ e

S(X,Y′)

=
1

Z(X)
exp(

T ′∑
i=1

Φyi(hi) +
T ′∑
i=2

t(yi−1, yi)),

(8)

where Z(X) is the normalizing factor and Φyi(hi)
denotes the label score of yi at position i. In prac-
tice, Φ is parameterized by a neural network that
maps the BERT output state hi into the label (vo-
cabulary) space. The t(yi−1, yi) = Tyi−1,yi de-
notes the transition score from label yi−1 to yi
where T ∈ R|V |×|V | is the transition matrix.

Approximation In the context of text genera-
tion, the size of the label space (vocabulary size)
|V | is typically large, e.g., 32k. Therefore, it is in-
tractable to directly model the transition matrix T
and the normalizing factor Z(X). To this end, we
adopt the techniques proposed by Sun et al. (2019)
to approximate these two terms. Specifically, the
full transition matrix is approximated by the prod-
uct of two low-rank matrices T = E1E

T
2 , where

E1,E2 ∈ R|V |×d and d is much smaller than |V |.
To compute the normalizing factor Z(X), at each
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time step, instead of searching through all possi-
ble paths, the number of candidates is heuristically
truncated to a predefined beam size k. We refer
readers to the original paper for further details.

3.2 Output Length Determination
In this section, we describe how to let the model
determine the output sequence length by itself.
Our basic idea is that we want the model to dy-
namically stop generation via emitting a special
[eos] token. To achieve this, during training,
we manually append two consecutive [eos] to-
kens to the end of the target sequence, as shown
in the top left part of Figure 2. In this way,
the model can learn a deterministic transition be-
haviour between two [eos] states, meaning that
t([eos],[eos]) = maxv∈V t([eos], v). This
is because, during training, the model never sees a
transition ([eos], v), where v 6= [eos].

During inference, the result Ỹ is acquired as
Ỹ = arg maxY′ S(X,Y′), where the CRF scor-
ing function S(X,Y′) in Equation (8) can be de-
composed as:

S(X,Y′) =
T∑
i=1

Φy′i
(hi) +

T∑
i=2

t(y′i−1, y
′
i)

= Φy′1
(h1)︸ ︷︷ ︸

initial state

+
T∑
i=2

{
label score︷ ︸︸ ︷
Φy′i

(hi) +

transition score︷ ︸︸ ︷
t(y′i−1, y

′
i)︸ ︷︷ ︸

state transition

}.
(9)

Once the decoded trajectory enters the [eos]
state, the state transition term in S(X,Y′)
will be dominated by the transition score term
t([eos],[eos]). As a result, the model will
keep transitioning to [eos] in the remaining steps.
An example is provided in the right part of Figure 2,
from which we can see that, at step 5, the decoded
trajectory enters the [eos] state and remains at it
in the rest of the generation process. In this way, our
model can dynamically control the length of output
sequence by entering the [eos] state during the
generation process. After the entire generation pro-
cess is completed, the final output sequence can be
obtained by removing all generated [eos] tokens.

3.3 Ratio-First Decoding
We note that the outputs of BERT can be divided
into two subsets. The first subset ranges from the
beginning to the position where the first [eos]
is emitted, and the second subset is the rest. For
example, in Figure 2, the first subset are those cor-
responding to the output sequence “y(1) y(2) y(3)

y(4) [eos]”. As for the second part, we can see
that it has little effect on the final output and remov-
ing it should not change the result. This indicates
that it suffices to only consider the beginning part
of BERT outputs for improving the inference speed.
Especially, for tasks like summarization where the
target is known to be shorter than the source se-
quence, we are safe to only use the first [α · T ]
outputs of BERT to perform inference. Here T de-
notes the source length, α ∈ (0.0, 1.0) is set based
on the data statistics and [·] is the integer rounding
operation. Formally, given the source sequence X,
the ratio-first decoding is defined as

Ỹ = arg max
Y′

F(X,Y′, α),

= arg max
Y′

{
[α·T ]∑
i=1

Φy′i
(hi) +

[α·T ]∑
i=2

t(y′i−1, y
′
i)}.

(10)

When α = 1.0, ratio-first degenerates to the stan-
dard decoding strategy in CRF-based models.

It should be noted that, [α · T ] only constrains
the maximum length of the generated result, and
the actual output length (after removing the gener-
ated [eos] tokens) is still decided by the model
itself. In the experiment section, we demonstrate
that ratio-first can notably improve the inference
speed whilst maintaining the generation quality.

4 Learning

Due to the conditional independence approxima-
tion on output tokens, NAG models often tend to
generate repeated tokens (Wang et al., 2019b). One
way to alleviate this problem is to introduce im-
plicit dependencies on the output side. In this work,
we propose to use the unlikelihood formulation
of Welleck et al. (2020) in the context of NAG,
where we define the set of negative candidate as
the surrounding tokens within a predefined context
window c. Formally, given the source sequence
X and the target sequence Y with length T ′, the
proposed context-aware objective is defined as:

LCA(Y|X) = −
T ′∑
i=1

{log pθ(yi|hi;X) + lCA(i)},

lCA(i) =

j=i+c∑
j=i−c,yj 6=yi

log(1.0− pθ(yj |hi;X)),

(11)
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where hi is the model output state at position i.
At position i, the proposed objective maximizes
the probability of token yi while minimizing the
probabilities of the surrounding tokens. In this way,
it discourages the model from generating repetitive
tokens at different time steps.

The overall learning objective is then defined as

LCRF = − logPCRF(Y|X),

L = LCRF + λ · LCA,
(12)

where λ controls the importance of different loss
terms and PCRF(Y|X) is described in Equation (8).

5 Related Work

Non-Autoregressive generation was first intro-
duced by Gu et al. (2018) to reduce the inference
latency in machine translation. Recent works in this
area have investigated ways to mitigate the trade-
off between the decoding speed and generation
quality. Gu et al. (2018) utilized fertility as latent
variables for better translation performance. Wang
et al. (2019b) proposed two auxiliary objectives
for better modelling the output states and solving
the under-translation problem. To better model the
intermediate alignments between source and target
sides, Ma et al. (2019) proposed a model based
on the generative flow framework. Ghazvininejad
et al. (2019) proposed to use a masked language
objective to train the NAG model. During infer-
ence, starting from a fully masked sequence, the
output is generated in an iterative refinement man-
ner. Recently, Sun et al. (2019) proposed to incor-
porate a conditional random field into the decoder
of a NAG model for better modelling the output-
side dependencies. Our work is different from prior
works in two aspects: (1) we directly utilize a pre-
trained language model (BERT) to perform non-
autoregressive generation; (2) our model can dy-
namically generate the output sequence without the
need of prespecified output length.

6 Experiments

We evaluate the proposed model on three typical
text generation tasks: (1) text summarization; (2)
sentence compression and (3) machine translation.

6.1 Experimental Setup
We implement the proposed model with PyTorch
(Paszke et al., 2017). The BERT model we use is
the Huggingface implementation (Wolf et al., 2019)
(bert-base-uncased). To approximate the transition

matrix in the CRF layer, we set the dimension d
of matrices E1 and E2 as 32. For the normalizing
factor Z(X), we set the predefined beam size k as
256. As for the overall learning objective, we set
the window size c as 3 and λ as 1.0. In training, we
use Adam optimizer (Kingma and Ba, 2015). To
measure the relative speedup, we follow the stan-
dard setup which runs inference for each individual
example separately. The model’s inference speed
is computed by averaging the results of test cases.
For a fair comparison, we measure the inference
speed of all models on the same platform.

6.2 Text Summarization

Text summarization aims to automatically generate
a compact summary that retains the most important
content of the original text document (Nenkova and
McKeown, 2012). In this experiment, we use the
Gigawords dataset (Rush et al., 2015) as our bench-
mark. For evaluation, standard metrics including
ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-L
(R-L) (Lin, 2004) are reported.

We compare our model with several representa-
tive and the latest NAG models, including NAG-
NMT (Gu et al., 2018), NAR-REG (Wang et al.,
2019b) and NAG-CRF (Sun et al., 2019). Follow-
ing previous works, during training, we train a
length predictor to predict the output length. Dur-
ing inference, for each NAG baseline, we adopt
the length-parallel decoding strategy (LPD-k) (Wei
et al., 2019), that is, generating k results using
the top-k possible output length predictions from
the length predictor. The results are then re-ranked
by a transformer model to get the final ouput. In
the experiment, we report the results of different
NAG baselines using LPD-9 decoding. In addi-
tion, to better examine the effect of using BERT
in NAG models, we add a BNAG-CRF baseline
which adopts the same structure of the NAG-CRF
model but using BERT as the encoder. We also
compare our model with several strong autoregres-
sive models, which are Luong-NMT (Luong et al.,
2015), Pointer-Generator (See et al., 2017), DRGD
(Li et al., 2017) and Concept Pointer (Wang et al.,
2019a). To measure the relative inference speedup,
we include transformer as a baseline model.

The results are shown in Table 1, from which
we can see that, by using length-parallel decod-
ing, the performance of all NAG baselines can be
notably improved. However, such procedure signif-
icantly increases the inference latency. In contrast,
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Models R-1 R-2 R-L Speedup
Autoregressive

Luong-NMT 33.10 14.45 30.71 -
Pointer-Generator 35.98 15.99 33.33 -

DRGD 36.25 17.61 33.55 -
Concept Pointer 36.62 16.40 33.98 -

Transformer (b = 4) 35.74 16.97 33.43 1.00×
Non-Autoregressive

NAG-NMT 27.20 8.96 25.58 9.31×
+LPD-9 29.76 10.03 28.04 5.28×

NAR-REG 28.56 9.79 26.83 8.64×
+LPD-9 31.23 11.14 29.55 4.74×

NAG-CRF 30.29 12.61 28.71 8.07×
+LPD-9 32.91 14.31 31.03 4.32×

BNAG-CRF 32.63 14.32 30.82 6.13×
+LPD-9 34.56 16.10 32.76 3.21×

Ours (α = 0.3) 34.67 16.13 32.81 9.31×
Ours (α = 1.0) 35.05 16.48 33.28 6.72×

Table 1: Results on Gigawords dataset, where b in the
transformer baseline stands for beam search size.

our model can self-determine the output length
without any re-ranking process. As shown in the
results, our model outperforms the best NAG base-
line (with LPD) and achieves performances that are
comparable with several strong AG models.

Comparing the results of BNAG-CRF and NAG-
CRF, we can see that incorporating BERT as en-
coder helps to improve the model performance.
Nonetheless, our model still outperforms BNAG-
CRF with LPD-9 decoding. This is because the
dynamic length decoding mechanism allows our
model to generate results with optimal length, lead-
ing to stronger model performances.

Finally, we analyze the proposed ratio-first de-
coding. From the results, we observe a moderate
performance drop when using ratio-first (α = 0.3).
It comes from the fact that, for some input doc-
uments with length T , the reference summary is
longer than [α · T ]. In such cases, ratio-first fails
to generate the complete reference summary, lead-
ing to the drop of performance. On the other hand,
we can see that, ratio-first can notably improve
the inference speedup. With α = 0.3, our model
achieves the highest inference speedup while still
outperforms all compared NAG models.

6.3 Sentence Compression

Sentence compression aims at compressing a long
sentence into a short one by deleting redundant
words. In this experiment, we use the Google sen-
tence compression dataset (Filippova and Altun,
2013) as our benchmark. For evaluation, we use

Models F1 R-1 R-2 R-L Speedup
Autoregressive

Bi-LSTM-Dep 82.3 81.5 74.1 81.3 -
Tagger 82.8 81.1 72.4 80.9 -

Tagger+ILP 79.0 76.1 64.6 75.8 -
HiSAN-Dep 82.7 82.1 74.9 81.9 -

HiSAN 83.2 82.9 75.8 82.7 -
Transformer (b = 4) 82.4 82.0 74.6 81.8 1.00×

Non-Autoregressive
NAG-NMT 72.5 72.1 59.9 71.8 10.71×

+LPD-9 73.8 73.6 61.0 73.1 6.09×
NAG-REG 73.7 73.1 61.5 73.0 10.00×

+LPD-9 75.6 75.1 63.4 74.9 5.49×
NAG-CRF 75.1 74.4 66.8 74.2 9.41×

+LPD-9 77.3 76.5 69.0 76.3 5.04×
BNAG-CRF 77.1 76.2 68.9 76.0 7.21×

+LPD-9 79.3 78.5 71.7 78.2 3.91×
Ours (α = 0.7) 79.5 79.0 72.1 78.7 10.00×
Ours (α = 1.0) 80.7 80.3 73.6 80.1 8.42×

Table 2: Results on sentence compression task

the standard token-kept-F1 (F1) score. In addition,
We also report the results of other standard metrics
including ROUGE-1, ROUGE-2 and ROUGE-L.

We compare the proposed model with the same
NAG baselines as in the previous experiment. We
also compare our model with several strong autore-
gressive models, including Bi-LSTM-Dep (Filip-
pova et al., 2015), Tagger and Tagger+ILP (Wang
et al., 2017), HiSAN-Dep and HiSAN (Kamigaito
et al., 2018). To measure the inference speedup, we
include transformer as a baseline model.

The results are presented in Table 2, from which
we see that our model outperforms the best reported
NAG baseline (with LPD) in terms of both the gen-
eration quality and inference speed. Comparing
with the strong autoregressive models, our model
can achieve competitive performance with a over
8.42× inference speed up. We also report the re-
sults of our model using the ratio-first decoding
strategy. By setting α as 0.7, it achieves a 10.00×
inference speedup while still outperforming other
compared NAG baselines.

6.4 Machine Translation

Machine translation aims at translating text from
the source language to the target language. In this
task, we use the IWSLT14 German-to-English (DE-
EN) dataset as our benchmark. Following previous
works, we use the sequence-level knowledge distil-
lation (Gu et al., 2018) during training. For evalu-
ation, we report results in BLEU scores (Papineni
et al., 2002). In this experiment, we use the BERT
model in German language.

We compare our model with a range of strong
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Models BLEU Speedup(×)
Autoregressive

LSTM-based 28.53 -
CNN-based 32.84 -

Transformer (b = 4) 33.31 1.00
Non-Autoregressive

ENAG-E 24.13 (27.30) 15.08 (7.39)
ENAG-P 25.09 (28.60) 14.48 (7.24)

NAG-REG 23.89 (28.04) 16.45 (9.05)
NAG-NMT 23.04 (26.79) 13.92 (7.24)
NAG-CRF 26.39 (29.21) 11.74 (6.03)

BNAG-CRF 26.73 (29.67) 9.42 (5.01)
Ours (α = 0.8) 29.71 13.92
Ours (α = 1.0) 30.45 11.31

Table 3: Results on IWSLT14 De-En dataset. The num-
bers in () are results using length-parallel decoding.

BERT CRF R-1 R-2 R-L
X X 35.05 16.48 33.28
× X 32.41 14.19 30.53
X × 32.16 11.33 30.34
× × 27.02 8.81 25.25

Table 4: Ablation study on Gigawords dataset.

NAG models, including NAG-NMT (Gu et al.,
2018), ENAG-E and ENAG-P (Guo et al., 2019),
NAG-REG (Wang et al., 2019b), NAG-CRF (Sun
et al., 2019) and BNAG-CRF. For each NAG
baseline, we also report the results using LPD-
9 decoding. In addition, we compare our model
with several strong autoregressive models, includ-
ing LSTM-based (Wu et al., 2016), CNN-based
(Gehring et al., 2017) and transformer model.

The results are shown in Table 3, from which
we see that our model outperforms the best NAG
baseline (with LPD) in terms of both the generation
quality and inference speedup. Additionally, we
also report the results using the ratio-first decoding.
By setting α as 0.8, the inference speedup can be
further boosted to 13.92× while the generation
quality is still higher than the best NAG baseline.

6.5 Further Analysis

In this section, we present further discussions and
empirical analysis of the proposed model.

BERT & CRF To quantify the importance of
each component (BERT & CRF) of our model, we
evaluate the performance on Gigawords dataset by
removing each component iteratively.

The results are shown in Table 4, from which
we can see that by removing any of these compo-

Models rep-1 rep-2 rep-3 rep-4 R-L
w/o CA 6.897 2.640 0.741 0.295 32.89

Ours 5.786 1.978 0.427 0.106 33.28
Transformer 4.329 1.348 0.267 0.089 33.43

Table 5: Evaluation results on n-gram repetitions.

nents, the overall performance decreases. By re-
moving BERT from the model, we observe notable
drop across all metrics. This shows that the knowl-
edge of BERT is an important factor of the model’s
strong performance. Comparing with results in Ta-
ble 1, it still outperforms vanilla NAG-CRF and
performs comparably with NAG-CRF using LPD
decoding, which demonstrates the merit of the pro-
posed dynamic length decoding mechanism. An-
other interesting finding is that, by only removing
the CRF layer, the most notable drop is observed on
the bigram-level metric (ROUGE-2). This shows
that the bigram-level dependencies on the output
side are mainly captured by the CRF module. In
addition, by removing both BERT and CRF, all
metrics further decrease. This confirms that each
of these two components positively contributes to
the model’s overall performance.

Context-Aware Objective In this part, we study
the effect of the context-aware objective. As de-
scribed in Equation (11), it aims at alleviating the
problem of repetitive generation. To give a quantita-
tive analysis, we use the measurement of sentence-
level repetition (Welleck et al., 2020) to compute
the ratio of duplicate n-grams (rep-n) in the gener-
ated result. This metric is defined as

rep-n(Y) = 100× (1.0− |unique n-grams(Y)|
|n-grams(Y)|

).

(13)
For each generated result, rep-n is 0.0 when it has
no repeating n-grams. The final result is computed
by averaging over the entire evaluation set.

We conduct experiments on Gigawords dataset
to evaluate the n-gram repetitions ranging from
uni-gram to 4-gram. The results are shown in Table
5, where w/o CA means the model is trained with-
out using context-aware objective and R-L denotes
the model’s ROUGE-L score. Additionally, we also
show the results from transformer model for a di-
rect comparison. Comparing the two variants of our
model, we see that training with context-aware ob-
jective leads to a 42% drop on rep-3 metric (0.427
vs 0.741) and a 64% drop on rep-4 metric (0.106
vs 0.295). The ROUGE-L results also indicate that



241

Models
Ours Length-Parallel Decoding

(α = 1.0) LPD-1 LPD-5 LPD-10
BLEU 30.45 27.15 29.62 30.37

Speedup(×) 11.31 11.84 8.92 6.01

Table 6: Results comparison on IWSLT14 dataset

the reduction in token repetition can effectively
improve the model generation quality.

Dynamic Length Determination Next, we ex-
amine the importance of the model’s ability to dy-
namically determine the length of the generated
output. To this end, we train another model vari-
ant by removing the two [eos] tokens from the
target sequence. In this way, the model is not able
to self-determine the output length throughout the
generation process. To perform inference, we use
length-parallel decoding (LPD) with different num-
ber of length candidates. Formally, for each length
candidate l, the model generates the result Ỹ as

Ỹ = arg max
Y′

{
l∑

i=1

Φy′i
(hi) +

l∑
i=2

t(y′i−1, y
′
i)}.

(14)
The final result is acquired by re-ranking the gener-
ated results with a transformer model.

We conduct experiments on the IWSLT14 DE-
EN dataset in which we try a different number of
length candidates, including top-1, top-5 and top-
10. The results are shown in Table 6, from which
we can see, as the number of length candidates in-
creases, the model performance increases as well.
The reason is that a larger candidates set is more
likely to contain the best-suited length for the gen-
eration model, leading to better performance. How-
ever, such decoding procedure inevitably increases
the required computation overhead. We can see
that, when setting k as 10, the inference speedup
decreases from 11.84× to 6.01×. In contrast, our
proposed model is able to determine the optimal
output length by itself. Without any re-ranking pro-
cess, it outperforms the model with LPD-10 de-
coding and achieves the inference speedup that is
comparable with the model using LPD-1 decoding.

Ratio-First Decoding We are also interested in
the effect of the ratio-first decoding strategy. To
provide a quantitative analysis, we perform infer-
ence on the Gigawords dataset using ratio-first with
different α. The experimental results with differ-
ent α are presented in Figure 3. It can be observed
that, when α reaches 0.3, the model approximately

Figure 3: Experiment results on Gigawords dataset us-
ing ratio-first decoding with different α.

Figure 4: The distribution of target/source length ratio
of the training and test set in Gigawords dataset.

achieves its optimal performance. At the same time,
a notable improvement can be observed in terms of
the inference speedup (6.72× → 9.31×).

Now we illustrate why the near optimal perfor-
mance can be achieved when α reaches 0.3. In
Figure 4, we present the distribution of the tar-
get/source length ratio of every data instance in the
Gigawords dataset. We can see that, for most cases,
the ratio between the target length T ′ and source
length T is less than 0.3. Recall the definition of
ratio-first decoding in Equation (10), the [α · T ]
constrains the maximum length of the generated
result. Therefore, once we have a prior knowledge
on the data statistic, we can easily choose a proper
α that both improves the inference speed whilst
maintaining the generation quality. In this case, a
proper α could be 0.3 which is demonstrated by
the results in Figure 3 and 4. By setting different
α, ratio-first provides us an explicit way to control
the balance between the inference speed and the
generation quality. This property of ratio-first is
especially favorable in real-life scenarios where the
inference speed is the highest concern.
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7 Conclusion

In this work, we explored the potential of BERT
in various text generation tasks under the NAG
framework. To address problems from NAG mod-
els previously having a prefixed output length, we
devised a decoding mechanism which enables the
model to determine the output length dynamically.
To reduce errors stemming from the assumption
of conditional independence of output tokens, we
proposed a context-aware objective as well as us-
ing a CRF decoding. Furthermore, to maximize the
inference speed advantage of our model, we intro-
duced a ratio-first decoding strategy. We evaluated
our model on three benchmark datasets and the
results show that our model significantly outper-
forms many strong NAG baselines and performs
comparably to many strong AG models.
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