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Chapter 4: Geographic Information Systems in Spatial Epidemiology and Public 

Health  

R.Haining and R.Maheswaran. 

 

1. Introduction: what is a Geographical Information System? 

Definitions of Geographical Information Systems (GISs) usually fall into one of three 

categories: toolbox-, database- and organization-based definitions (Burrough and McDonnell, 

2000).  Geographical or spatial data are data about entities in the real world (physically 

represented as point, line or area objects) that define their location and the attributes recorded 

at each location.  Knowing where entities are located allows spatial relationships between 

them to be defined such as distances between points, adjacency or otherwise of areas, the 

proximity of one object to another.  A GIS database is distinguished from most other 

databases by knowing where in geographical space objects (points, lines and polygons) are 

located in relation to one another since most other kinds of databases capture only entities 

and their attributes.  Database definitions of GISs emphasize this difference: “any… 

computer based set of procedures used to store and manipulate geographically referenced 

data” (quoted in Burrough and McDonnell, 2000, p.11, italics added).   Geography is stored 

in the form of a series of discrete layers in the database (a layer for the roads, a layer for the 

waste sites, a layer for the forested areas, a layer for the deprivation scores by census area for 

example) enabling different features to be switched on or off when visualizing or mapping an 

area.    

Toolbox-based definitions, on the other hand, emphasize system functionality and the place 

of GISs within information technology: “a powerful set of tools for collecting, storing, 

retrieving at will, transforming and displaying spatial data from the real world for a particular 

set of purposes” (quoted in Burrough and McDonnell, 2000, p.11, italics added).  Burrough 

and Mc Donnell (2000, p.15) list some of the basic operational requirements for a GIS.  

These include being able to: show the locations of entities individually and in relation to 

others (“identify all the areas within a 15 minute travel distance of location x”); compute the 

physical size of areas; show the result of intersecting or overlaying different layers of spatial 

data (for example air pollution data, socio-economic data, facilities data); count up the 

number of cases of an entity within a given distance; determine paths of least cost or least 

resistance over a surface or network.   The different layers in the database can be overlaid 

and/or buffered in order to respond to such queries which may be thought of as cartographic 

modelling.  Certain forms of statistical modelling may also be available inside a GIS.  For 

example, the ArcGIS software includes Geostatistical Analyst which enables various forms of 

spatial statistical analysis to be executed within the GIS.    

GIS capabilities, in terms of database management and toolbox functionality, have been 

exploited in many application fields (see for example Burrough and McDonnell, 2000, p.9).  

In spatial epidemiology GIS capabilities have been used to capture the geographical 



2 
 

distribution of disease (and how that distribution changes over discrete periods of time) and 

the relationship between the occurrence of a disease and various environmental as well as 

social and economic factors.  In public health research however, interest often focuses on the 

ways GIS can also contribute to: planning public health services and interventions; improving 

access to health care services; assessing the locational impacts of health policy; facilitating 

community participation (by groups or by individuals) in addressing local health concerns.  

When applied to these sorts of questions then a GIS meets the organization-based definition 

of a GIS: “a decision support system involving the integration of spatially referenced data in 

a problem solving environment” (quoted in Burrough and McDonnell, 2000, p.11, italics 

added).  Cromley and McLafferty (2012, p.14) remark: “GIS, as a means of exploring health 

problems and finding ways to address them, has taken its place in the conceptual and 

methodological foundations of public health.”  GIS literacy and GIS capability has become 

important for spatial epidemiology and public health research and practice. 

In the context of this handbook however there is another definition of a GIS: as an important 

enabling technology in the implementation of Geographic Information Science (GISc).  Here 

we take GISc to refer to all those areas of scientific enquiry in which where events occur 

matters, perhaps for the purposes of description, explanation or prediction of those events.  It 

follows that the acquisition and processing of spatially referenced data are of fundamental 

importance to the progress of those areas of science and a GIS facilitates key aspects of the 

handling and processing of that data.  Both spatial epidemiology and public health research 

draw on three key aspects of GISc: spatial database management, spatial data visualization 

and mapping and finally spatial analysis.  The latter includes cartographic and topological 

analysis (e.g. measuring distances and areas; spatial relationships amongst observations 

including overlay and buffering operations), mathematical modelling (e.g. network and 

surface analysis) and spatial statistics.   Particular GIS products, of which there are a large 

number, are differentiated by how they manage spatial data and the functionality they 

possess.   

A GIS is more than a computerized or automated mapping system and moreover, as 

emphasized by Cromley and McLafferty (2012, p.16), should be seen as part of a “larger 

constellation of computer technologies for capturing and processing geographic data” which 

includes the global positioning system (GPS), satellite data collection systems and digital 

scanners.  This constellation of computer technologies used to process geographical data is 

therefore wider than proprietary GIS software packages (e.g. ArcGIS, MapInfo) and includes 

databases and statistical packages (e.g. Microsoft Access, SAS, R, Stata, WinBUGS). 

Database functions within such packages may be used to link health datasets with datasets 

that already contain geographically located information (e.g. grid coordinates, census output 

areas, environmental exposure values). Statistical modelling of data may be undertaken 

within statistical packages and while this functionality may be considered to be part of what 

is involved when working in a GIS or GISc environment, standard GIS packages at best have 

only limited spatial statistical modelling capability. In several of the examples quoted in 

Sections 4 and 5, various computer software packages are used to process and analyse data 

and these could all be regarded as “using GIS within the field of GISc”.  
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 Physically a GIS comprises: computer hardware (e.g. networked computers; large format 

scanners and printers), software (e.g. that enables data input and output, storage and database 

management) and an organizational structure that includes skilled people who are able to 

operate the system.   But growth of the internet means users of GIS do not need to have their 

own in-house, physical, GIS in order to access geographical data or the results of spatial data 

processing or even to undertake data analysis.  Distributed GIS services have made it possible 

for many more users to take advantage of GIS capability.  Peng and Tsou (2003) identified 

applications supported by distributed GIS: data sharing (both the original data and “data 

about data” - metadata); information sharing (online publishing of the results of data analyses 

and online accessing of servers running a GIS application that can process a client’s request 

for information and return the results); data processing (providing online access to GIS 

analysis tools that can be applied to a client’s data); location-based services (providing 

information on a client’s local environment or where they can best access particular health 

services mirroring developments in, for example, retailing).  More recently it has become 

possible for users to post their own map data and to annotate them online.  Mashups allow 

data from multiple sources to be integrated and mapping mashups using Google Maps is an 

example of this development (Cho, 2007). Cromley and McLafferty (2012, p38-41) provide a 

brief overview of this evolving area of GIS. These developments have the potential to 

contribute to the development of public participation GIS (PPGIS) – systems that promote the 

participation of communities and individuals in raising and tackling issues of local concern 

(see for example Sheppard et al. 1999, and for an example of PPGIS in health research and 

planning see Beyer and Rushton, 2009).  Chapter 1 of this volume contains detailed 

discussion of the important integrating contribution geospatial methods and GIS in particular 

can make to population level studies of disease risk and public health. 

2. The world as captured in a Geographical Information System database: 

abstracting reality 

The database sits at the heart of a GIS and for this reason much attention has been given in 

the scientific literature on GIS to the relationship between geographical reality and what is 

stored in the spatial database.  An understanding of the processes that take us from the 

limitless complexity of the real world to a database with a finite number of spatially 

referenced bits of information about that world enables the user to exploit GIS and implement 

GISc in a critical and hence rigorous way.  In this section we describe the two processes of 

conceptualisation and representation which take us from geographical reality to a model of 

that reality that becomes an essential part of the model for the GIS database.  The other two 

ingredients of that model are the attributes that are stored and the topological relationships. 

Subsequently measurements are taken so that the database can be populated with data.   

Figure 1 shows a two-step process in which at the first step observed phenomena in the world 

are conceptualised in terms of either a field (or continuous surface) view or an object (or 

discrete space) view.  Environmental phenomena (air quality, soil type, temperature) are 

usually conceptualised as fields.  For example ground level air quality is conceptualised as a 

field because it is possible to go to any location on the earth’s surface and measure air 

quality.  On the other hand a house or a hospital, a river or a road, a reservoir or a waste site,   
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Figure 1 here 

are all conceptualised as objects.  Depending on the map scale they would be conceptualised 

as point, line or polygon (area) objects.  For such phenomena the real world is conceptualised 

as an empty space populated by these discrete, identifiable objects to which attributes are 

attached.  These two models are how the geographical world is conceptualised and with few 

exceptions all geographical phenomena are modelled in terms of one or other of these two 

views.  One important exception is population data which are sometimes conceptualised as 

fields (e.g. when constructing a population density map) or as objects (e.g. when producing a 

dot map).  The next question is how these two conceptual models are represented for the 

purpose of constructing a model for the spatial dimension of the database which of necessity 

must comprise a finite number of bits of spatial data.  

In the case of the object view, each object (whether point, line or polygon) is located on the 

earth’s surface and attribute values attached to them and topological relationships defined for 

them.   The objects, of which there are a finite number, underpin the model for the spatial 

database.  But other issues can affect the representational choice.  For example, although 

household data refer to point objects, for confidentiality reasons much of this data is available 

only at the aggregated level – that is for (irregular) census areas.   

Field data present a different challenge.  In order to capture field data in a (finite) spatial 

database the surface needs to be sampled.  This sampling may take the form of a regular or 

irregular sample of points (point data), a series of contour lines linking locations with the 

same value of the attribute (line data) or a set of polygons that partition the space.  These 

polygons may be regular or irregular in shape.  Regular polygons are constructed 

independently of the attribute as in the case of a matrix of regular pixels (“picture elements”) 

of given size from a remotely sensed image.     Associated with each pixel value is a single 

value which provides a measure of the attribute at that location.  Landsat Thematic Mapper 

data for example, which provide reflectance values for each pixel which are then classified in 

terms of, say, land cover features, cover a ground dimension of 30 metres by 30 metres.  This 

defines the data’s spatial resolution and any landscape or environmental feature smaller than 

that will not be detected.  The larger the pixel size the larger the spatial filter and the 

smoother any landscape will appear.   The location of each pixel is given by its position in the 

row and column of the matrix from which topological relations can be defined (Haining, 

2003, p.78-79).  Irregular polygons that partition an area arise when following attribute 

boundaries such as the edge of a forested area or the edge of a built-up area.  The TIN 

(triangulated irregular network) is also an example of irregular polygons that partition a study 

area.  TINs are constructed from a set of sample points on a surface.  The TIN is used to 

capture surface variation and is often used to describe topography capturing both surface 

slope and aspect.   Because field data are often captured by sampling this raises the question 

as to what sort of sample plan to adopt (including what type of sampling design and sample 

point density).  It also introduces sampling error into any analysis based on such data as well 

as the scale and partition effects noted above in relation to aggregated object data (Haining, 

2003, p.100-113).  
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Inside any GIS, map data are stored and processed in one of two main ways – the tessellation 

data model and the vector data model.  The interested reader is referred to any standard text 

on GIS for a description of these two data models.  At this point we merely note that both the 

field and object views of geographical reality can be captured by either of these two GIS data 

models.   That said, much but not all environmental data are captured using the tessellation 

data model and most commonly within that set of data models the raster model structured as a 

regular array of square pixels.  This is because much environmental data are obtained via 

remote sensing methods (aerial photographs and satellite imagery).  Point and area based 

population data and network data (e.g. lines of transportation) are usually captured using the 

vector data model. In the case of population data this is because reporting takes place through 

irregular census areas.   

We now give a few examples to illustrate datasets that could be stored in a GIS database each 

geographically referenced attribute forming a layer within the GIS database. 

 We have data on the set of GP clinics for a region, represented as points with 

fixed locations from which can be derived topological relations.  Attached to each 

clinic there are a series of attributes (patient lists with addresses and who have 

recently had tests for high blood pressure or been screened for a form of cancer).   

 We have data on the size of the susceptible population in a region represented as 

counts by census areas.  Attached to each census area is also the count of the 

number of cases of the disease during a given interval of time.  There are also data 

recording social, economic and demographic data for the resident population of 

each census area. Finally there are data obtained from remotely sensed imagery 

that measure environmental (e.g. land cover) conditions across the area.  

Topological relationships across the set of census areas might be defined in terms 

of which census areas share a common boundary. 

 As part of an emergency response analysis and establishing a regions vulnerability 

to a disaster, we have data on the location and capacity of hospitals, the regional 

road network (with travel times) and a map of environmental risk (arising from 

say the risk of flooding or fire) which partitions the map into areas classified by 

whether they have high to low levels of vulnerability.  So the map objects in this 

case are points, lines and areas and topological relations between the hospitals and 

between the hospitals and the areas with defined levels of environmental risk are 

specified through the road network.    

Assigning locations to objects is central to the creation of a geographical database.  This 

creates challenges for the researcher.  Whilst the location of a hospital or a road may be fixed 

for the period of a study, in studies of environmental exposure even the daily movement 

patterns of populations can affect exposure levels (e.g. to air pollutants) and in studies of the 

distribution of cases of a chronic disease the resident histories of populations becomes 

important (see chapter 34 for an extended discussion).  In both cases the analyst is forced to 

consider the validity of assigning populations to locations based on, for example, their current 

residential address.   Measuring location may be problematic in other ways.  Map projection 

issues do not need to be considered when undertaking large scale studies (analysing small 
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areas in high detail) but will be an issue when undertaking small scale studies (analysing 

large areas, say at the scale of Europe or the continental USA, in limited detail) particularly 

where different data sets need to be integrated or overlaid.  

In this section we have focused on how the geographical world is conceptualised and 

represented for purposes of storage in a GIS database.  But the database also comprises the 

attributes that are attached to each location.  These attributes go through their own processes 

of conceptualisation and representation.  Many studies in epidemiology need to control for 

deprivation since deprivation often acts as a confounder in environmental exposure-response 

studies.  There are many forms of deprivation such as material (economic) deprivation and 

social deprivation.  Before such terms can be used in any study it is necessary to consider 

how deprivation is to be conceptualised and then how that conceptualisation is best 

represented – that is, how it will be measured.  Deprivation may be a confounder at the level 

of the individual but it may also be a confounder at the area level.  Some area level attributes 

represent aggregates of the resident population (proportion of the population unemployed or 

living below the poverty line) whilst some attributes are only defined at the area level – for 

example social cohesion or social capital both of which need to be conceptualised but when 

measured are attributes of groups of people and communities, not of individuals.    

The model for the GIS database is defined by how geography is captured, how spatial 

relationships are defined between the finite elements representing that geography, what 

attributes are included in the database and how they are to be measured.  Although a GIS 

database cannot be used to model attributes over time, attributes will refer to points in time or 

intervals of time and so time needs to be made explicit.  Subsequent use of the database may 

produce maps comparing disease rates in a population between one time period and another.  

All models are simplifications of the reality they describe and involve a trade-off between 

descriptive power and model complexity with diminishing returns (see figure 2).  We can 

speak of the quality of the model for the GIS database but this cannot be assessed 

independently of the planned use of the database.  The model is chosen on the basis of 

whether it is fit for purpose recognizing that the quality of the model may not be uniform 

across all parts of the study area (for example, across both urban and rural areas of a study 

region).  Model quality is assessed by such criteria as: resolution (is the spatial detail 

adequate?); completeness (what are all the attributes necessary for undertaking a robust study 

into, for example, cancer incidence by small area and are these data available? (Swerdlow, 

1992, Wakefield and Elliott, 1999)); as well as clarity, precision and consistency.  For 

extensive discussion of these terms the reader is referred to Guptill and Morrison (1995). 

Figure 2 here 

We now turn from considering the model for the spatial database to issues surrounding the 

quality of the data that populates the spatial database. 

3. The Geographical Information System database and data quality.  
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 Figure 3 describes the set of relationships in the construction of the GIS database and the 

terms often used to describe those relationships.  In the case of data quality there is a different 

type of trade-off to that in the case of model quality.  Now the trade–off is between data 

quality and cost.  Whilst the costs of data acquisition may be falling on a per unit basis as 

more methods are routinely employed to capture data, it is still the case that if data quality 

demands for a project grow the cost of acquiring that data, particularly if it has to be primary 

data, grows. 

Fig. 3 

A single item of geographical data comprises the triple: “what, where and when” – the 

attribute, the location to which the measurement refers and the time period to which it refers.  

It is sometimes referred to as the geographical space-time data cube.  Veregin and Hargitai 

(1995) identify four primary dimensions of data quality: accuracy, resolution, consistency 

and completeness thus giving rise to a 4-by-3 data quality matrix.  Rather than try to address 

the full matrix, discussion will focus on the four primary dimensions choosing examples to 

illustrate the point.  It should be noted that, as with model quality, data quality may not be 

uniform across the study area particularly if the study area is large.  There can be many 

reasons for this.  In the case of mortality data it can be due to diagnostic ‘fads’ and other 

biases in specifying the cause of death (Lopez, 1992).  We briefly discuss each of the four 

dimensions. 

All measurements contain error due to the inevitable imprecision associated with the process 

of taking a measurement.  Other types of error (inaccuracy) associated with spatial data 

include: sampling error; operator error and even deliberate error (as in the case of 

Barnardisation of UK census data).  A particular concern with GIS databases is locational 

error when, for example, a patient is assigned to the wrong postal code or zip code.  

Underlying the idea of “data error” is the assumption that there is a true value.  When 

drawing on socio-economic data it is not always clear that this is so – what is the “true” level 

of social capital or deprivation in an area?  In large databases it is often necessary to resort to 

automated methods to try to flush out possible data errors including screening for both 

distributional and spatial outliers – values that are very different from their neighbours.  

Errors not only infect data values but can also propagate as a result of such GIS operations as 

map overlaying and buffering (Haining, 2003, p.124-7; Burrough and McDonnell, 2000, 

p.237-9). 

Resolution refers to the amount of spatial and/or temporal detail provided.  Spatial aggregates 

act as filters on the real underlying variability.  Large spatial units suppress variation but can 

make it easier to detect patterns; small spatial units retain more variation but the resulting 

statistics are more affected by small errors.   An important consequence of working with 

aggregated data is that results arising from analysing such data are conditional on the size of 

the census tracts (the scale effect) and their specific boundaries (the partition effect).  

Geographers and GI scientists refer to this as the modifiable areal unit problem (MAUP). 

There are other challenges arising from resolution issues.  Regression modelling in spatial 

epidemiology requires that all data are reported on the same spatial framework but whilst 
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much population data are reported by irregular census areas, environmental data are usually 

reported by grid squares.  The challenge is to find a common spatial framework or undertake 

statistical modelling that recognizes the uncertainty arising when data are transferred from 

one reporting framework to another.  Geographical data today are being collected at finer and 

finer spatial scales but whilst improved spatial precision is to be welcomed, this raises issues 

of statistical precision when calculating statistics for small areas.  The small number problem 

arises when working with small census units comparing and analysing rates of a rare disease. 

Elsewhere in this book, small area estimation is discussed in chapters 6 and 28, whilst chapter 

5 considers aggregation effects.  

Consistency refers to the absence of contradictions in a database.  For example cases of a 

disease may be reported in a postcode where no one lives  This may be due to a geocoding 

error or perhaps due to the use of two databases (one health one demographic) which do not 

correspond in time.  Lack of completeness refers to the situation where there are missing data 

or there has been undercounting.  The use of internet methods that seek to engage the public 

in addressing public health issues may suffer from a lack of completeness.  These and other 

issues associated with addressing GIS data quality are reviewed in amongst other sources 

Haining, 2003, p.61-74, and in greater detail with reference to health data by Cromley and 

McLafferty, 2012, p43-74 who also discuss spatial databases with particular reference to US 

data sources in their chapter 3. Many of the issues raised in these early sections are also 

discussed in Maheswaran and Craglia (2004). 

4. Geographical Information Systems in the study of disease 

In this section, we illustrate the use of GIS and GISc in the study of disease. We have 

grouped the studies into five subsections – Environmental epidemiology; Communicable 

diseases; Geographical epidemiology; Exposure assessment; and Disease clusters and 

environmental sources – but recognise that there is overlap between the subsections. We use 

a small number of examples but describe them in some detail in order to provide 

understanding of the epidemiological and public health contexts in which the scientific 

investigations were carried out. We have mainly used examples of work we have been 

involved in, supplemented by examples drawn from the work of others.  

4.1.Environmental epidemiology  

Air pollution and cardiovascular diseases in Sheffield - Existing and routinely collected 

data held by local and health authorities were used to investigate associations between 

outdoor air pollution and cardiovascular disease at the small area level. (For further 

discussion of pollution fields see chapters 15 and 16 in this volume.) The project 

demonstrates the advantages and limitations of working with routinely available data. The 

project used air pollution estimates for three outdoor air pollutants – particulate matter, 

nitrogen oxides, and carbon monoxide – which had been generated by the city council using 

an air pollution model (Indic AirViro).  The modelling process took into account a range of 

emission sources (represented by points, lines and polygons) and meteorological conditions 

and generated a pollution surface for each pollutant at a 200 metre grid square resolution.  
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These data were imported into a GIS (ArcGIS) in order to validate model outputs and link 

with health outcome data.  Abnormal patterns in the particulate matter pollution surface were 

apparent in a few quite localised areas of the city.  Further investigation revealed that these 

were due to errors in the emissions database where old coal fired burners which had been 

replaced years ago had not been updated in the city council’s emissions database (Brindley et 

al., 2004).  These areas were excluded from the analysis. We also found that pollution 

concentrations for nitrogen oxides were overestimated by the model when compared with 

measured values from monitoring stations. However, the concentrations were all 

overestimated at a broadly comparable level, suggesting that relative measures of pollution 

were probably valid (Brindley et al., 2004). Analyses therefore used relative categories by 

quintile and not absolute values. 

The outcome data comprised deaths and hospital admissions for coronary heart disease and 

stroke (1994-1998), which were provided at the enumeration district level by the health 

authority.  Enumeration district level population estimates were based on the 1991 UK census 

and scaled using health authority mid-year estimates for 1994-1998. 

As the outcome and exposure data were available at different spatial frameworks with 1030 

enumeration districts and 10,847 pollution concentration grids, GIS was used to integrate 

both sets of data.  We calculated the average pollution level within each enumeration district 

using a procedure based on postcode centroids.  We first assigned to each domestic postcode 

centroid the value of the 200 metre pollution grid in which it lay. We then took the average of 

the values for all postcode centroids which lay within the enumeration district polygon. There 

are varying numbers of households within postcodes. We used the number of domestic 

delivery points at each postcode to weight the average value calculated for each enumeration 

district (Brindley et al., 2005). In order to take some account of daily local population 

movements, we also assigned to each postcode centroid the pollution value of the average of 

grid squares which fell within a 1km buffer of each postcode centroid based on surveys 

indicating that 1km was the average walking journey length to see if this improved 

associations with health outcomes. 

We undertook analyses using methods with increasing levels of complexity.  Standard 

Poisson regression carried out using SAS showed some associations between air pollutants 

and coronary heart disease and stroke mortality and to a lesser extent hospital admissions 

(Maheswaran et al., 2005a and 2005b).  We found that using the 1 km buffer made little 

difference to the results. Bayesian analyses carried out using WinBUGS and, taking into 

account errors in variables and within area variation were subsequently used and these 

continued to show associations between air pollutants and mortality from coronary heart 

disease and stroke (Maheswaran et al. 2006a, Haining et al. 2007 and Haining et al. 2010).  

Air pollution and stroke in South London – This example describes a subsequent project 

carried out to further investigate the association between outdoor air pollution and stroke.  

Point location case data and grid point resolution pollution data were used in this work. The 

work was carried out in an area in South London which was covered by the South London 

Stroke Register, a population based stroke register set up in 1995 to capture all cases of first 
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ever stroke occurring amongst the resident population living within a defined geographical 

area. 

The air pollution modelling for this study had been carried out at a very fine spatial resolution 

(20 metre grid point resolution) using bespoke air pollution modelling and was available for 

particulate matter and nitrogen dioxide.  The modelling process took into account a wide 

range of pollution sources and emissions including major and minor road networks modelled 

with detailed information on vehicle stock, traffic flows and speed for each road segment, 

pollution sources in the London Atmospheric Emissions Inventory including large and small 

regulated industrial processes, boiler plants, domestic and commercial combustion sources, 

agriculture, rail, ships and airports, and pollution carried into the area by prevailing winds. 

Model validation was carried out by comparing modelled values with measured pollution 

values from background monitoring stations and by visually inspecting maps showing 

pollution values overlaid on road networks and other pollution sources within ArcGIS. The 

model validated well in terms of absolute values when compared with monitored pollution 

values (Maheswaran et al., 2010). 

We investigated two outcomes, the incidence of stroke and survival after stroke. Stroke 

incidence was examined using a small area level ecological study design and survival after 

stroke investigated using a cohort study design. 

To examine incidence, a denominator population (population at risk) was needed and we used 

population counts in census output areas from the UK 2001 census for this purpose. This was 

the smallest geographical unit at which census population counts by five-year age band and 

sex were available with approximately 300 people per output area. Stroke cases were 

assigned to output areas using the point in polygon method within ArcGIS, with a case 

assigned to the output area in which the postcode centroid of residence of the case was 

located. Observed and expected counts were calculated for each output area. 

Linkage of grid point resolution pollution data to residential postcodes was also carried out 

within the GIS.  All residential postcodes in the study area were assigned the pollution value 

of the grid point closest to the residential postcode centroid.  Where there were equidistant 

points, the average value was taken. For the ecological study, an average value was then 

calculated for each output area, taking the average of values assigned to all postcode 

centroids which fell within the output area polygon, using point in polygon to link postcodes 

to output areas. A total population count by postcode was available from the 2001 census and 

this was used to weight the average pollution value calculated for each output area. 

The survival analysis was carried out at the individual level, using Cox regression modelling.  

Follow-up was for up to 11 years.  Patients were assigned the pollution value attached to their 

residential postcode centroid.  For patients who moved, we took the average of the values at 

the start and end of their contribution to the study.  The start value was from their postcode of 

residence when they had the stroke.  The end value was either the value from their postcode 

of residence at the time of death or the value from their postcode of residence at the end of 

the study. 
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We found that living in a more polluted area was associated with decreased survival after 

stroke (Maheswaran et al., 2010). In the ecological analysis, we found that there was no 

spatial structure to the output area level incidence rates when assessed using WinBUGS, 

Moran’s I and visual inspection of maps and we therefore used standard Poisson regression 

methods in SAS. There was no clear evidence of association between outdoor air pollutants 

and the incidence of stroke, although there was a suggestion of association in the 65-79 year 

age group in relation to ischemic stroke (Maheswaran et al., 2012).  There was also a 

suggestion that the association was stronger for mild ischemic stroke (Maheswaran et al., 

2014a). 

4.2 Communicable diseases 

Communicable or contagious diseases are infectious diseases involving some causative 

disease agent such as a virus, bacterium or parasite that is transmitted either from person to 

person or via some vector and/or intermediate host such as an animal.  In the case of person 

to person transmission the disease is spread by contact and the geography of that spread will 

depend on the geography of human interactions and may take any of several forms including 

local clustering, spread following the urban hierarchy and mixtures of the two (Cliff and 

Haggett 2004).  Some non-vector communicable diseases are spread through socially induced 

exposure to risk as in the case of HIV/AIDS (Rhodes et al., 2005) others are spread through 

environmental exposure so that the geography of cases will be a function of the geography of 

the environmental risk – for example the river network or water distribution system in the 

case of a water borne disease (Lake et al., 2007).  Modelling such communicable diseases 

involves the use of epidemic models that partition the population into those who are 

susceptible (S), those who are infected (I) and those who have recovered or been removed (R) 

– known as SIR models.    Models may be aggregated in terms of population groups defined 

by their locations which may be small areas, regions or urban places such as the STEM 

model (The Eclipse Foundation, 2011) or based on interactions amongst individuals as in the 

case of agent based models (Lee et al., 2008, Perez and Dragicevic, 2009).  GISs are used to 

map such disease spread in space and time, to help identify disease clusters or concentrations, 

to map risk, to try to predict disease spread (see for example Oppong et al. 2012).  Typically 

GIS provides, integrates and updates the data inputs and data layers that are used by epidemic 

and interaction models which then return outputs for mapping or animation by the GIS.  The 

GIS is loosely coupled with these models.  Databases may be at many different scales but 

there is growing interest in global scale databases for communicable diseases reflecting the 

global nature of threats to human health arising from population mobility and other aspects of 

globalisation. Studies that cover a large portion of the earth’s surface drawing data from 

different countries (who may have different mapping conventions) raise map projection and 

other issues and here the ability of GISs to integrate spatial data is particularly valuable.  

In the case of vector borne diseases, GISs are used in the ecological study of agent-vector-

host relationships and their links to human populations (for an overview see Cromley and 

McLafferty 2012 p263-302).  Habitat modelling can be used to assess exposure risk whilst 

land cover changes brought about by urban development or climate change can be used to 

assess whether the exposure risk is increasing or decreasing.  GISs have also been used to 
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assess the environmental characteristics of Lyme disease (Glass et al. 1992) and West Nile 

virus (Ruiz et al. 2007) case locations. The GIS operation of point-in-polygon can be used to 

look for case clusters in relation to different ecological characteristics. 

The study of communicable diseases spans many disciplines involving researchers in 

virology, molecular biology, geography, epidemiology and public health so it is important to 

make connections.  Formally integrating knowledge from different disciplines is challenging 

but as Ge et al. (2012) demonstrate, GIS can help mitigate the disciplinary gaps by providing 

a platform for updating data inputs and layers from different disciplines, facilitating analysis 

and integrating outputs for mapping (see also chapter 26).  Their study into the spatial-

temporal dynamics of avian influenza H5N1 in East and South-East Asia used GIS-based 

knowledge fusion.  Genetic sequences were used to create phylogenetic trees to estimate and 

map the H5N1 virus’ ability to survive and spread.  Adding information about virus location 

together with spatial interpolation techniques produce maps of H5N1 risk. Maps of risk can 

also be produced by modelling social, economic, environmental and other data (Gilbert et al. 

2008) and can also be obtained by analysing large concentrations of outbreaks using spatial 

statistics.  Ge et al. (2012) used the Dempster-Shafer Inference Theory of Evidence to 

integrate the three raster layer probability maps, mapping the resulting output in a GIS.   

4.3 Geographical Epidemiology 

Migration and health inequalities in Sheffield - Socioeconomic gradients in mortality at the 

geographical level exist across many cities and regions worldwide.  These patterns may 

endure despite efforts by health and local government authorities to reduce inequalities by 

targeting appropriate interventions at deprived areas.  One potential explanation for enduring 

inequalities at the geographical level is selective migration.  This is the situation where 

people in poor health, or those with the socioeconomic determinants of poor health e.g. 

unemployment, move from affluent to deprived areas while those in good health or with the 

socioeconomic determinants of good health e.g. high income, move from deprived to affluent 

areas.  Thus, although interventions may benefit individuals in deprived areas, this selective 

migration may perpetuate inequalities when examined at the geographical level. In this 

example, we describe the use of GISc in epidemiological investigation of migration and area 

level mortality patterns.   

We examined for evidence of selective migration and investigated the impact of selective 

migration on geographical inequalities in health in Sheffield, a city where there is a striking 

East-West gradient in area level deprivation which is closely mirrored by gradients in life 

expectancy (Maheswaran et al. 2014b). The project was carried out because the local 

authority wanted to know if selective migration contributed to the enduring gradient in health 

inequalities across the city. 

We used a total population cohort dataset which was provided by the local health authority in 

anonymised format.  The dataset was created from the general practice database the health 

authority held.  This was a continually updated register of people resident in Sheffield who 

were registered with a general practice.  The health authority kept regular “snapshots” taken 
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from this register, including the residential location of people at the snapshot time point.  For 

this project, the health authority provided a dataset with a record for each individual who was 

resident in Sheffield at any point within the cohort time frame. If an individual was present in 

a snapshot, their census area (lower super-output area from the UK 2001 census) and 

electoral ward of residence were provided for that snapshot time point.  These census areas 

typically contain approximately 1500 people.  Death records were also linked into this 

dataset, and if an individual had died the census area and ward of residence at death were 

provided. 

Analysis of migration can be a very complex undertaking, depending on the number of time 

points analysed, the number of geographical units used and the length of time people resided 

in each geographical unit (see also chapter 34 in this Handbook).  We started out with a 

simplified analysis where we used two time points (residential location at the start of the 

study and at death or the end of the study) and divided census areas into two categories (high 

and low deprivation).  We found clear evidence of selective migration.  People moving from 

low to high deprivation areas had higher mortality than those remaining in low deprivation 

areas.  Conversely, people moving from high to low deprivation areas had lower mortality 

than those remaining in high deprivation areas.  The magnitude of these differentials in 

mortality risk diminished with increasing age.  We were also provided with data on health 

status and socioeconomic circumstances for a sample of the population.  These data had been 

obtained in a survey carried out before the start point of the migration analysis. Analysis of 

these data showed that people tended to carry their pre-existing risks with them (Maheswaran 

et al., 2014b). 

We examined the impact of migration on geographical gradients in mortality by putting 

people back to where they were at the start of the cohort time frame and comparing the 

mortality gradient across the city based on this location with the gradient based on residence 

at time of death.  We found that selective migration made little contribution to existing 

socioeconomic gradients in mortality across the city (Maheswaran et al., 2014b). 

The mapping, database manipulation and analysis for this project was carried out in R and 

included use of the GIS functionalities in R. 

Alcohol-related mortality in England - Lifestyle related factors which include smoking, 

alcohol consumption, diet and physical activity are key determinants of health.  These 

lifestyle related determinants of health are potentially modifiable and are therefore of 

significant public health concern. In this example, we illustrate examining the geographical 

epidemiology of alcohol related mortality in relation to socioeconomic deprivation at the 

small area level.  

Alcohol consumption data from UK surveys suggest that alcohol consumption is marginally 

higher in more affluent socioeconomic groups.  However, this does not appear consistent 

with alcohol related mortality, which appears to be higher in lower socioeconomic groups.  

We investigated the association with mortality at a national scale using a small area level 

ecological correlation study (Erskine et al., 2010).  We used electoral wards as the units of 
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analysis, of which there were 8797, using an existing dataset on alcohol related mortality 

which had been compiled by the Office for National Statistics for surveillance of alcohol 

related mortality. The deaths had been assigned to wards using a postcode to ward look-up 

table. The deaths included in the dataset were those considered to be most likely to be 

directly attributable to alcohol.  The predominant condition in this group was liver cirrhosis.   

In addition to examining associations between alcohol-related mortality and socioeconomic 

deprivation at the small area level, we also examined associations in relation to gender, age 

and urban-rural location. The dataset supplied included the Carstairs Index as the indicator of 

socioeconomic deprivation at the ward level. This is a standardised combination of four 

variables from the 2001 census – male unemployment, overcrowding, low social class and 

lack of car ownership. 

The analysis was based on 18,716 male and 10,123 female deaths over a five year period 

(1999-2003). We found a strong association between socioeconomic deprivation at the 

electoral ward level and alcohol related mortality. The differential in relative risk was most 

pronounced in the 25-44 year age band.  Mortality rates were higher in men than women and 

also higher in urban areas (Erskine et al., 2010).   

The main analysis was carried out using standard Poisson regression methods in SAS due to 

the number of wards in the dataset and substantive analytical detail required. We also carried 

out Bayesian analysis on a small subset of the data to explore gender variation in the spatial 

pattern of alcohol-related deaths using WinBUGS (Strong et al., 2012). The adjacency matrix 

for this analysis was generated in ArcGIS. We initially fitted separate models for men and 

women and subsequently modelled male and female deaths jointly using a shared component 

for random effects. We investigated a range of different unstructured and spatially structured 

specifications for the gender specific and shared random effects. We found significant spatial 

variation in ward-level alcohol-related mortality for men but this was much less marked for 

women. After accounting for deprivation, there was significant unexplained elevated risk in a 

very small number of wards. 

4.4 Exposure assessment 

Improving estimates of air pollution exposure - Most studies examining the association 

between air pollution and health outcomes have used either monitored or modelled air 

pollution values to estimate exposure (see also chapter 15 in this Handbook).  Monitored 

values are from fixed site air quality monitoring stations.  These epidemiological studies have 

generally not taken daily population movements and time spent in different locations into 

account.  Most have generally used outdoor monitored or modelled estimates and the indoor 

vs outdoor concentrations have generally not been taken into account.  An important element 

determining the dose of pollution taken in by people is the activity being undertaken, as 

higher energy expenditure is associated with an increased respiratory rate and depth of 

breathing, resulting in higher doses of pollution.  These aspects are all challenging to 

incorporate in large scale epidemiological studies which are needed to examine associations 

with health outcomes. 
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The example described here is a detailed study undertaken by de Nazelle and co-workers on a 

small number of subjects, 36 healthy young volunteers, undertaken to accurately assess 

exposure (de Nazelle, 2013).  The methodology used global positioning systems (GPS) and 

accelerometer functions in smart phones for exposure assessment.  A computer programme 

was developed which used accelerometer readings to estimate energy expenditure. 

Estimation of air pollution exposure used modelled annual mean pollution estimates at a fine 

spatial scale as the start point.  The estimation subsequently took into account temporal 

variation, both within day and by day of the week, and the microenvironment, by sampling 

indoor and outdoor concentrations, and measuring exposure whilst using different modes of 

transport. 

A GIS platform was used to integrate the air pollution, GPS location and activity data.  

Various comparisons were carried out.  There was substantial variation when pollution 

estimates incorporating all the refinements including energy expenditure were compared with 

estimates based on home location address only, with little correlation between the two. 

This example illustrates the potential for substantial exposure misclassification and also bias, 

with a tendency to underestimate exposure, in standard epidemiological studies.  The 

methods described in this work are very involved and the challenge will be to use such 

methods in large scale epidemiological studies. 

Assessing environmental influences on diet and exercise - Public Health is concerned with 

the influence of environmental factors such as parks and green spaces and fast food outlets on 

health.  Parks and green spaces provide places for physical activity while fast food outlets 

may promote the consumption of foods high in saturated fat and low in fibre.  Several studies 

have been carried out to examine the potential influence of these environmental factors on 

diet and physical activity and most studies have examined exposure around the residential 

location.  However, exposures around activity spaces away from these residential locations 

have been much less well studied. 

The example described here is work carried out by Zenk and co-workers in which exposure 

in activity spaces was examined using a combination of GPS and accelerometers (Zenk et al., 

2011).  GPS were programmed to record participants’ position every 30 seconds over a 7-day 

period and data were obtained on 120 participants.  Two measures of activity space were 

created using the GPS information downloaded into a GIS. 

The first measure was referred to as a one standard deviation ellipse.  The central location of 

all GPS points for a participant was calculated.  An ellipse was then created around this 

central point and the one standard deviation limit meant that approximately 68% of all GPS 

points were included within the ellipse.  The long axis of the ellipse was in the direction of 

maximum dispersion, while the short axis was in the direction of minimum dispersion. This 

measure was calculated using the spatial statistics toolbox in ArcGIS. 

The second measure was referred to as the daily path area.  This was created by first 

buffering around every GPS point for the participant using a 0.5 mile radius and then 
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dissolving the boundaries between these buffers to create the daily path area. This measure 

was also created using ArcGIS. 

For comparison with the standard residential location methods, a 0.5 mile street network 

buffer was created around the census block centroid of each participant’s residential location. 

The density of fast food outlets and the percentage of land that was designated as municipal 

park land were calculated for each of the three exposure areas.  The study found very low 

correlations between exposures based on neighbourhood location and exposures based on 

activity space, especially with activity space defined as the daily path area. 

The study found no association between residential neighbourhood fast food outlet density 

and diet.  However, a positive association between fast food outlet density and an unhealthy 

diet was found when the daily path area was used to calculate exposure.  No associations 

were found between physical activity and park land use in analyses using each of the three 

exposure space definitions. 

Although the study found that fast food density in the daily path area was associated with an 

unhealthy diet at the individual level, there is a potential problem with interpreting this 

association as causal, i.e. that increased exposure to fast food outlets is the cause of people 

eating unhealthily.  This is because the daily path area is defined by the participant choosing 

to go along particular routes and they may have gone along those particular routes in order to 

access fast food outlets.  

4.5 Disease clusters and environmental sources 

Rapid initial assessment of apparent disease clusters – Concerns about apparent clusters of 

disease and potentially elevated risks of disease around environmental sources of pollution 

such as factories frequently arise.  These clusters, real or apparent, have the potential to cause 

substantial public anxiety and media interest and can result in substantial public health 

resources being spent in addressing these concerns if they are not handled in a timely and 

effective manner (Maheswaran and Staines, 1997). 

Identifying disease clusters is somewhat different from examining if diseases have the 

general propensity for clustering.  Clusters may occur in areas where there is no obvious 

cause, or may occur around environmental sources, typically around point sources but also, to 

a lesser extent, around line and area sources.  The statistical issues around clusters and 

clustering are covered in other chapters in this book (see chapters 8, 9, 14 and 28).  Here we 

describe an example, in which we were involved, of a facility set up to investigate apparent 

clusters of disease to support public health investigation (Aylinet al., 1999). 

The Rapid Inquiry Facility was set up within the Small Area Health Statistics Unit in the UK 

to carry out a rapid initial assessment of apparent disease clusters.  The facility is a system 

which combines three technical elements – a database, a GIS and automated statistical 

analytical methodology. 
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The database integrates datasets on health outcomes including deaths, hospital admissions, 

congenital malformations and cancer registrations.  The geographical identifier for these 

outcome data is the postcode centroid.  The database includes population denominator counts 

by age and sex at the small area level.  These are counts from population censuses, with 

population estimates for inter-censal years.  The database also includes information on socio-

economic deprivation at the small area level.  These are basic minimum requirements for 

adjusting for potential confounding variables as disease incidence and mortality can vary 

substantially by age, gender and socioeconomic status. 

A GIS platform is fundamental to this system and allows integration of data from different 

spatial frameworks.  The system offers flexibility regarding the spatial resolution at which 

diseases can be investigated, with the smallest unit being electoral wards and census output 

areas.  Point source locations of environmental pollutants can be specified and different 

buffers created around these sources. The GIS also allows an adjacency matrix to be 

generated for use in smoothing risk maps. 

The statistical analysis allows for automated calculation of absolute and relative risks for 

different buffer zones around point sources.  The calculation includes confidence intervals 

and significance testing.  The statistical methodology also includes the production of 

smoothed maps displaying a risk surface using Bayesian methodology utilising the adjacency 

matrix created within the GIS.  Areas with significantly higher or lower risks are also 

identified on these risk maps. 

The system allows the rapid initial assessment of apparent disease clusters which have caused 

concern to members of the general public, media, politicians or public health staff.  It does 

not provide definitive answers but can rule out clusters which do not exist statistically.  If 

clusters or high rates in some areas are found, further investigation is needed.  A key first step 

is to examine for artefacts and errors in the data.  Incomplete data capture in some areas, 

inaccuracies in the data recorded and relevance of the conditions being examined, e.g. cancer 

“clusters” which comprise conditions which are aetiologically unrelated, all need to be 

considered. 

The Rapid Inquiry Facility has been acquired for use elsewhere e.g. in Utah (Ball et al., 

2008), and has undergone further enhancements (Beale et al. 2010).  Chapter 2 in this 

Handbook describes environmental exposure research in detail whilst cluster detection and 

modelling are discussed in chapters 3, 8, 9, 14 and 28.  
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5. Examples of Geographical Information Systems in the provision of public health 

services 

In this section we give examples where GIS and GISc have been used to examine and inform 

the provision of public health services.  We have grouped the studies into four subsections – 

access to services; needs assessment and health equity; variation in utilisation; and planning 

the location of services – recognising the overlap between sections.  Health services are also 

discussed in chapter 29 of this Handbook. 

5.1 Access to services 

Uptake of breast cancer screening in North Derbyshire - In this example work was 

undertaken to inform local planning decisions (Maheswaran et al., 2006b).  An increase in 

capacity in the provision of screening for breast cancer was needed in North Derbyshire.  

This was because a change in national policy meant that the age range of women invited for 

screening was to be increased from 50-64 years to 50-70 years.  In addition, two view 

mammography, which was then being undertaken only at the initial screen, was to be 

instituted at all screening rounds.  The health authority was interested to know if there was 

still an issue with distance from screening site, i.e. if uptake was lower amongst women 

living further away, and if uptake was lower amongst women living in more socio-

economically deprived areas, in order to take these factors into consideration when 

reorganising services. 

Data were provided at the individual level for women invited for screening.  This dataset 

contained the postcode of women invited for screening, whether or not they attended, and the 

screening location to which they were invited. A postcode to census enumeration district 

look-up table was used, which also contained eastings and northings for postcode centroids. 

Road travel distance to a screening location was calculated from the postcode centroid to the 

grid location of the screening centre using 1:10,000 resolution road network data within a 

GIS (MapInfo).  Screening was provided at a fixed site (the main district general hospital in 

the area) and at 12 locations throughout the health district using a mobile screening unit. 

Socio-economic deprivation was assessed using the Townsend score of the census 

enumeration district in which the postcode was situated. This area level derivation indicator 

was a standardised combination of four 1991 census variables (unemployment, no car 

ownership, non-home ownership, overcrowding). Data were analysed on 34,868 women. 

Overall uptake of screening was 78%. 

As this was an individual level dataset, the analysis was carried out at the individual level 

using logistic regression in SAS, modelling the binary outcome of attendance or non-

attendance.  We found a small decrease in uptake with increasing distance from the screening 

location. The effect of distance on uptake, although still detectable, was likely to have been 

largely ameliorated through the use of the mobile unit. Deprivation however, did have a clear 

effect, with lower uptake amongst women living in more deprived areas (Maheswaran et al., 

2006b).  
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Walk-in centres and primary care access - This next example relates to work carried out to 

inform government policy on providing access to primary health care.  General practice 

surgeries were under increasing pressure due to increasing demands for their services and 

walk-in centres were seen as one option for relieving pressure on these surgeries.  A wave of 

walk-in centres had been set up in England and the purpose of this work was to evaluate if 

these walk-in centres had reduced waiting times at general practices (Maheswaran et al., 

2007). 

Waiting times for a general practice appointment were monitored by the primary care access 

survey, a regular monthly survey carried out nationally to assess the waiting time measured in 

days to the next available surgery appointment with a general practitioner.  The survey was 

carried out on all NHS general practices in England and there was a 48-hour target set by 

government.  We obtained these monthly survey data from the Department of Health in 

England. 

We used two approaches to calculate exposure of general practices to walk-in centres. The 

first was the straight line distance from each general practice postcode centroid to the 

postcode centroid of the nearest walk-in centre which was already in operation that month. 

This approach took into account the phased opening of walk-in centres. 

The second approach used a function based on walk-in centre attendance rates by distance. 

For this second approach we used attendance data, which were available for four walk-in 

centres, to create the function. Attendance data and population denominator counts were 

available by census output area. These output areas were assigned to 1 km concentric rings 

around the walk-in centres and attendance rates calculated for these distance bands. An 

exponential distance decay function was fitted to these rates. We used this function to 

calculate distance decay values for each general practice by month on the basis of its distance 

to each walk-in centre. We then summed the values for each general practice by month which 

in effect took into account the effect of multiple walk-in centres in the vicinity of a general 

practice. 

We analysed data on 2509 general practices in 56 health authority areas in England and 

included 32 walk-in centres in the analysis. We found no evidence to suggest that walk-in 

centres shortened waiting times for access to primary care. As part of the project, we also 

examined the effect of area level deprivation on waiting times and found clear evidence that 

the waiting time target was less likely to be achieved in more deprived areas. 

ArcGIS was used to visualise locations of walk-in centres, general practices and health 

authority boundaries. Straight line distances were calculated using Pythagoras’ theorem in a 

Microsoft Access database. Statistical analyses were carried out in SAS. 

Renal replacement therapy in the Trent Region - The purpose of this example is to illustrate 

the use of GISc in relation to access to health services and health outcomes (Maheswaran 

2003).  End stage renal failure typically results from chronic renal disease caused by a variety 

of medical conditions.  When patients are in end stage renal failure, they require some form 
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of renal replacement therapy in order to survive.  The three options are haemodialysis, 

peritoneal dialysis and renal transplantation. 

This example describes work we carried out in collaboration with the Trent Public Health 

Observatory in order to inform planning decisions in the Trent Region.  The need for more 

renal services was being reviewed.  One of the considerations was the provision of more renal 

units which would improve access.  Renal units are typically classified into main units and 

satellite units, with the latter providing mainly haemodialysis.   

The Observatory assembled the data and carried out descriptive analyses.  Renal units within 

and surrounding Trent Region were identified and their locations geo-referenced.  Prevalence 

data on all patients residing in the Region who were receiving any of the three forms of renal 

replacement therapy were obtained.  Patients were assigned to census enumeration districts. 

Denominator populations for enumeration districts were obtained from the 1991 census and 

scaled to subsequent mid-year estimates for health authorities within the region. The 

Townsend score was used as an indicator of socioeconomic deprivation at the enumeration 

district level. The percentage of the population of African and Asian origin at the 

enumeration district level was also obtained from the census. These factors were taken into 

account because renal disease is commoner in more deprived communities and also has a 

higher prevalence amongst people of African and Asian origin. Access to renal units was 

assessed by calculating road travel distances from census enumeration district population 

centroids to the nearest renal unit. 

We used Poisson regression to assess associations between travel distance, deprivation and 

renal replacement therapy rates in the region.  Renal replacement therapy rates were higher in 

more deprived areas.  However, when the individual modalities of renal replacement therapy 

were examined, rates were higher for haemodialysis but not for transplantation in more 

deprived areas.  This raises the issue of inequalities in health care, as transplantation is the 

preferred option for end-stage renal disease and it would be expected that transplantation 

rates would also be higher in more deprived areas. 

With regard to geographical access, haemodialysis rates were lower in places further from 

renal units.  This might be expected to some extent because distance from a renal unit might 

be taken into consideration when decisions are taken regarding whether to use haemodialysis 

or peritoneal dialysis. There may also be the issue of “reverse causality” for the association.  

The need for haemodialysis might cause people to move to live closer to renal units. 

MapInfo was used to calculate road travel distances and to map and visualise locations of 

renal units in relation to regional geography. Assembly of the dataset was carried out using 

Microsoft Access and statistical analysis was carried out in SAS. 

5.2 Needs assessment and health equity 

Health equity profiles - This example describes the use of GIS and GISc in health needs 

assessment and assessment of health equity.  Health needs assessment may be carried out to 

assess the health needs of a population, people with a particular condition or the need for a 
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specific intervention.  There is overlap with the process of health equity auditing, the first 

step of which is a health equity profile.  The health equity profile may be assessed from 

spatial and social perspectives, with the latter sub-classified by age, gender, class and 

ethnicity. 

This example is of a health equity profile that was undertaken to support planning and 

reconfiguration of services in a health authority in North West England.  The work used 

existing and routinely collected information to assess equity.  The range of indicators used 

included mortality data, hospital admissions data and general practice level data including 

data from the Quality and Outcomes Framework.  The conditions for which the equity work 

was to be undertaken were predetermined by the health authority and included cardiovascular 

disease, diabetes, chronic obstructive pulmonary disease and alcohol related conditions. 

The spatial frameworks at which the data were assembled and analysed were electoral ward 

level, census based lower super output area level and general practice population level.  The 

latter is not clearly defined geographically and patients registered with a particular general 

practice could come from a wide area.  Nevertheless, the majority of patients registered with 

a practice live in the local area close to the practice.  From the planning perspective, primary 

health care services are organised around practices and this is therefore a useful level at 

which to investigate health needs and equity. 

Data were assigned to wards and output areas by the health authority using postcode to area 

geography look-up tables.  General Practice level data were generated at this level.  The data 

were used to produce a range of choropleth maps using ArcGIS.  Scatterplots and other 

graphs were used to carry out exploratory spatial data analysis.  For GP practice level 

information, we produced a graphic which was able to show a range of practice level indices 

in the same figure (Figure 4).  This form of visualisation was useful for identifying outliers 

and considering a range of related indicators together. This bespoke graphic was created in R 

and brings together a range of geographical information. 

Figure 4 here 

The synthesis of data from different sources allowed variations in need and equity to be 

identified.  Outlying practices were investigated further by the health authority but it should 

be noted that there may be good reasons for variations in practice. Being an outlier does not 

automatically indicate unusual or substandard practice. 

Physical activity in socioeconomically deprived areas - This example relates to a physical 

activity intervention that was offered as part of a multistage intervention leading up to a trial 

of an intervention to maintain increased physical activity (Ying et al., 2014).  Preventative 

services are being increasingly recognised as an important element of public health offered to 

communities.  The prevalence of cardiovascular diseases is higher in more socio-

economically deprived communities and attempts to reduce inequalities in health have led to 

services being targeted at more deprived communities. 
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In the initial phase of the intervention, middle aged people living in deprived neighbourhoods 

in Sheffield were offered a physical activity intervention to increase their physical activity 

levels.  The intervention comprised a motivational DVD to be sent by post along with 

additional information. The DVD was sent to those who responded to an initial invitation 

letter asking them if they would like to receive the intervention.  The health authority for 

Sheffield had previously characterised neighbourhoods, and people aged 40-64 in these 

selected most deprived neighbourhoods were to receive the intervention.  This first phase was 

offered to all people invited, unlike the subsequent phase in which a further intervention was 

given on a randomised basis to some participants. 

The overall uptake was extremely low, with an overall mean of 7%.  Investigation into 

factors associated with this low uptake included examining small area level factors which 

might be associated with low uptake. These factors were investigated using postcode areas as 

the units of analysis.  Deprivation was assessed using the proportion of households in a 

postcode receiving housing benefit.  This variable was not available for all postcodes as the 

data were not provided for postcodes with small numbers of households or for postcodes 

where most or all of the households were receiving benefits.  An alternative indicator, the 

Index of Multiple Deprivation available at lower super-output area level, was also used and 

assigned to all postcodes within the super-output area. Other factors investigated included 

walking distance to the nearest gym, walking distance to the nearest swimming pool and 

walking distance to the nearest municipal green space.  The network distance analysis was 

undertaken by linking and using datasets with a fine spatial resolution within ArcGIS. A 

detailed description of the datasets and methodology used is provided in Goyder et al. 2014. 

The spatial analysis was complicated by a number of factors.  There were 2455 postcode 

areas analysed in the study.  The postcode areas were not contiguous due to the way areas 

were selected.  Only postcodes in selected deprived areas with one or more residents aged 40-

64 years were included in the study.  There were very low counts for most postcode areas. In 

66 postcode areas, only one postal invitation was sent out, with no responses in sixty of the 

postcodes. In addition, in postcodes where more than one invitation was sent, there was a 

zero response from 996 postcodes. 

We developed and used Bayesian hierarchical Bernoulli-binomial spatial mixture zero-

inflated Binomial models to model over-dispersion and to separate the systematic and random 

variations in the noisy and mostly low response rates (Ying et al., 2014). The models allowed 

for investigation of variations in patterns of mail outs, zero responses and response rates. We 

found that response rates were lower in postcodes in which a higher proportion of households 

received housing benefit. There was little evidence of association with the other variables 

examined. The postcode polygon adjacency matrix was created using ArcGIS. Spatial 

analysis was carried out in WinBUGS and the statistical outputs were visualised using R.  

5.3Variation in utilisation 

Geographical variation in potentially avoidable admissions - Hospital services are coming 

under increasing pressure from the increasing demand for emergency hospital admissions.  
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Not all hospital admissions are essential.  Whilst some emergency hospital admissions, e.g. 

for a heart attack or meningococcal meningitis, are clearly urgent and essential, at the other 

end of the spectrum there are admissions which could have been avoided  for a number of 

reasons, including better social and preventative community care.  In this example, we 

describe a project examining geographical variation in potentially avoidable admissions 

(O’Cathain et al., 2014). 

A group of hospital admissions were used which were considered to be likely to contain a 

substantial number of avoidable admissions.  This group of admissions included non-specific 

chest pain, non-specific abdominal pain and chronic obstructive pulmonary disease, and were 

selected through a consensus process with specialists in the field. It is important to note 

though that not all admissions with these conditions would have been avoidable. 

Using this list of defined conditions, a standardised avoidable admissions rate was calculated 

for health authority areas using direct standardisation.  The population for the whole study 

area (England) was used as the standard population. 

The spatial framework used for the geographical areas was primary care trust boundaries.  

These trusts were health authorities responsible for the health of the population resident 

within their defined geographical boundaries.  They received money from central government 

and are part of the NHS structure within England.  The rationale for using these primary care 

trust boundaries was that these trusts commissioned emergency and urgent medical care 

(along with primary and other levels of care) for their residents and therefore the care within 

a primary care trust area could be considered to comprise an emergency and urgent care 

system. 

We analysed 152 primary care trusts in this project. There were 3.3 million admissions over a 

three year period which came under the category of defined conditions for this project, 

accounting for 22% of all emergency admissions. There was a 3.4 fold variation in potentially 

avoidable admission rates across the primary care trust areas examined. 

Geographical variation was investigated by thematically mapping standardised avoidable 

admission rates and there was clustering of primary care trusts with high and low rates, with 

noticeable clusters of high rates in NW and NE England. We investigated associations 

between a range of primary care trust level factors and avoidable admission rates using 

general linear modelling with primary care trusts as the units of analysis.  The list of factors 

examined were those which had been previously associated with geographical variation in 

admission rates.  The large area ecological level regression was considered appropriate 

because the level of interest was systems operating at primary care trust level. Primary care 

trust level deprivation explained 72% of the observed variation across trusts. Factors related 

to emergency departments, ambulance services and general practice also explained some of 

the variation (O’Cathain et al., 2014). 

A subsequent phase of the project identified trusts that were outliers, that is with variation not 

explained by the factors used in the regression, and carried out in-depth case studies of a 
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selection of these trusts using qualitative methods. Data manipulation and analysis were 

carried out using R and SPSS and mapping was carried out in R. 

 Geographical variation in use of computed tomography (CT) scanning services – Nixon 

and co-workers (Nixon et al., 2014) carried out a study to examine geographical variation in 

the use of CT scanning in a region in New Zealand.  CT scanning can be carried out on an 

emergency or a routine basis.  Emergency scans may be carried out for inpatients or for 

patients in emergency departments before a decision to admit has been taken.  Routine scans 

may be carried out for inpatients or for outpatients.  CT scanning may be used purely for 

diagnostic purposes or for carrying out procedures under CT guidance. 

The study region comprised a mix of urban and rural areas, including remote rural areas. The 

study area contained two large urban areas, each of which had a CT scanner at the main 

hospital in the area.  Most of the rural areas had a rural hospital which served the local 

population. The spatial framework used for the analysis was the catchment area.  Catchment 

areas were geographically defined using census based units.  The catchment areas were 

defined as areas from which most of the patients using the local hospital came from.  

The study found that there was large variation in age adjusted CT utilisation rates.  Urban 

areas had 63% higher CT utilisation rates compared with remote rural areas. 

There are a number of possible explanations for the variation in use.  These include 

availability of services, variation in clinical practice, differences in population morbidity and 

demography.  Availability of services is most likely to be the key factor driving utilisation 

rates.  Overall utilisation rates will be the result of a mix of appropriate use (although 

appropriate use can be difficult to accurately define for a range of clinical situations) and 

potentially borderline or inappropriate use including supply-induced demand. 

Variation in clinical practice is another potentially important factor responsible for 

geographic variations in utilisation rates.  Experienced doctors may be more likely to have a 

higher threshold for using CT scanning, and be more likely to be able to identify patients for 

whom the scanning is appropriate.  However, in one rural area where CT was subsequently 

introduced, a clear increase in utilisation rates was observed, suggesting that availability of 

CT is the overriding factor driving utilisation rates. 

Referral rates were also lower for outpatient specialist CT diagnostic and procedure purposes 

in rural areas, even though these areas were served by specialists running clinics in the rural 

hospitals.  A possible explanation is variation in clinical practice, with the specialists for 

example taking travel distances and inconvenience for rural patients into account if they 

arranged CT scanning for these patients. 

This study highlights the importance of geography when investigating variations in 

utilisation. Mapping was used to visually display hospital catchment areas by type and the 

objectives of the study in relation to geography were achieved without the need to resort to 

more complex GIS functionality. The study was designed to be descriptive and further 

investigation is needed to identify potential explanations.  In addition, it was not designed to 
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examine outcomes, and variation in utilisation needs to be accompanied by subsequent study 

of outcomes, as lower utilisation does not automatically mean poorer outcomes. 

5.4 Planning the location of services 

Optimising access to stroke care 

Ischemic stroke is a condition caused by blockage of an artery supplying blood to the brain. 

This acute event is most commonly caused by a blood clot. Treatment in the acute phase 

includes administration of a treatment (recombinant tissue-type plasminogen activator), 

which breaks down the clot to re-establish the blood supply. This treatment needs to be given 

as soon as possible after the onset of ischemic stroke but the diagnosis needs to be confirmed 

first using imaging techniques. 

In the USA, a hospital which has the facilities for emergency investigation and treatment of 

stroke patients may be certified as a primary stroke centre. The process of achieving 

certification is relatively onerous and is initiated by hospitals, typically larger hospitals in 

urban areas. This voluntary self-initiation process has led to an uneven distribution of these 

primary stroke centres and substantial proportions of the population are not covered by these 

centres. 

Leira et al. (2012) set out to quantify the percentage of the population not covered by primary 

stroke centres in the state of Iowa. The state comprises a mix of urban and rural areas and had 

12 certified primary stroke centres. The authors used a location-allocation model to examine 

the percentage of the population that would have been covered in a hypothetical situation 

where the 12 centres were allocated de novo. They also examined how many additional 

centres would be needed to achieve 75% population coverage using the location-allocation 

model compared with a weighted random selection of additional centres. The weighted 

random selection was set up to mimic the current situation where larger hospitals were more 

likely to self-initiate the certification process. The additional sites were selected from 108 

hospitals in the state which had the requirements to be designated as primary stroke centres.  

There is a range of location-allocation models (see Cromley and McLafferty (2012) for a 

description of models) that can be used in different situations and Leira e al (2012) used the 

maximal coverage model for their investigation. They constructed a time-distance matrix 

from ZIP code tabulation area postcode centroids to potential locations, used population 

counts in ZIP code tabulation areas, and used pre-specified maximum time distance 

thresholds (15, 30 and 45 min) in their calculations. GIS tools used in their work included 

mapping software for visualisation purposes, Microsoft’s Bing Maps API for calculating 

travel times and a web-based maximal coverage model calculator implemented using Java 

and PHP. 

The authors found that the 12 existing centres only covered 37% of the Iowa population when 

a 30 minute maximum threshold was used for defining access. The hypothetical assignment 

of the 12 centres starting de novo would have covered 47.5% of the population using the 

maximal coverage model. A further 54 primary stroke centres would be needed to reach 75% 
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population coverage if selected using the weighted random selection process but only a 

further 31 would be needed if selected using the maximal coverage location-allocation model. 

Whilst the authors acknowledge a number of limitations to the theoretical optimisation 

modelling approach, it nevertheless is useful in informing the debate about extending 

population coverage for rapid access to thrombolysis following ischemic stroke. 

6. Concluding remarks 

Many of the applications discussed in this chapter have used regression together with other 

statistical modelling tools.  More can be found on these methods in chapters 5, 6, 7 and 13. In 

this overview we have adopted a broad conceptualisation of GIS, embedding it within GISc 

thereby stressing the wider contribution it makes to how we work with geographically 

referenced data. The definition of what constitutes a GIS and its functionality has evolved 

and will continue to do so.  As the domain of spatial analysis has expanded (particularly the 

field of spatial statistics) it is no longer reasonable (if it ever was) to expect that any single 

GIS product will include within it all the tools a spatial epidemiologist or public health 

analyst working in the field of GISc might wish to call on.  Interaction between a GIS and 

other software systems has become increasingly important as has the interaction between GIS 

and the internet. 

GIS and GISc make important contributions to all those areas of scientific investigation and 

policy making where elements of geography are integral – where place (from the global to 

the neighbourhood and community scales) and spatial relationships matter (see chapter 33 for 

other examples).  As will be evident from this overview and other chapters in this volume, 

whilst advanced spatial statistical methodology has an important role to play in research, even 

basic GIS functionality such as data integration, mapping and the implementation of simple 

spatial queries often provide important insights, placing the study of population disease and 

the delivery of health services in their broader social and environmental contexts. 
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Appendix 1 

At the time of writing (March 2015) there is an entry in Wikipedia: “List of geographic 

information system software” giving both open source and commercial GIS products.  

Notable in the former category are GRASS GIS and QGIS.  Notable in the latter category are 

ERDAS IMAGINE, ESRI (which includes ArcMap, ArcGIS, ArcIMS), Intergraph and 

Mapinfo.  However there are many more.  See: 

http://en.wikipedia.org/wiki/List_of_geographic_information_systems_software#cite_note-

sstfoss4g-4 

 

GIS functionality falls into the following broad categories (Cromley and McLafferty, 2012, p. 

30): 

(i) Measurement (e.g. distance, length, perimeter, area, centroid, buffering, volume, 

shape); 

(ii) Topology (e.g. adjacency, polygon overlay, point and line in polygon, dissolve, 

merge); 

(iii) Network and location analysis (e.g. connectivity, shortest path, routing, service 

areas, location-allocation modelling, accessibility modelling); 

(iv) Surface analysis (e.g. slope, aspect, filtering, line of sight, viewsheds, contours, 

watersheds) 

(v) Statistical analysis (e.g. spatial sampling, spatial weights, exploratory data 

analysis, nearest neighbour analysis, spatial autocorrelation, spatial interpolation, 

geostatistics, trend surface analysis). 

 

GeoDa is free software for undertaking some forms of (frequentist) spatial statistical analysis 

including exploratory spatial data analysis.  It is user friendly and employs a drop down menu 

style.  It also has some normal spatial regression modelling capability (the so-called spatial 

error and spatial lag regression models with likelihood-based diagnostics to help the user 

select).  The software has some nice features including a linked windows capability that 

allows the user to link database spreadsheet rows with the corresponding locations on a map 

and on graphs.  It contains both “global” and “local” statistics such as local and global 

measures of spatial autocorrelation.  The software is available from: 

https://geodacenter.asu.edu/ where tutorials can also be found.  It is particularly useful for 

teaching (especially at the undergraduate level) and could be used in laboratory classes for a 

course in spatial epidemiology. The software was developed by Luc Anselin.  For more 

advanced spatial modelling the researcher needs to investigate amongst others the following: 

WinBUGS and GeoBUGS (Bayesian modelling), STATA, S-PLUS and the R library.  See 

other chapters in this Handbook.  In this era of “big data” potential users need to be aware 

that many of these softwares encounter difficulties when used to fit models to large data sets. 

 

  

http://en.wikipedia.org/wiki/List_of_geographic_information_systems_software#cite_note-sstfoss4g-4
http://en.wikipedia.org/wiki/List_of_geographic_information_systems_software#cite_note-sstfoss4g-4
https://geodacenter.asu.edu/
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