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Abstract 1 

Whilst benefits of an external focus are shown to govern several characteristics of skill execution, 2 

specificity theory indicates that sources of afferent information most useful to performance 3 

execution are typically prioritised during processing.  4 

Objectives: We investigated whether an internal focus facilitates performance when pertinent 5 

afferent information is proprioceptive in nature and congruent with attentional focus. We also 6 

considered whether the mechanisms behind attentional focus differences are attributable to planning 7 

processes or online motor control.  8 

Design: Experiments 1 and 2 adopted a randomised design, whilst experiment 3 used a repeated 9 

measures approach.  10 

Method: In Experiment 1 we investigated movement variability as a measure of planning and error 11 

correction under external and internal focus conditions in an aiming task. Experiment 2 removed 12 

visual information to increase pertinence of proprioceptive feedback for movement execution and 13 

Experiment 3 adopted a leg-extension task, where proprioceptive salience was enhanced using an 14 

ankle weight. We hypothesized that this would increase congruency between internal focus 15 

instructions and movement production.   16 

Results: Experiments 1 and 2 revealed reduced amplitude errors under an internal focus whilst 17 

Experiment 3 showed similar findings with the addition of lower EMG activity when adopting an 18 

internal focus. Movement variability findings were indicative of enhanced planning.  19 

Conclusions: When pertinence of proprioceptive information was amplified, benefits of an internal 20 

focus were more pronounced and performance was higher. Participants were better able to focus on 21 

movement characteristics to process proprioceptive feedback: something not afforded under an 22 

external focus. This raises doubts regarding the rigidity of the constrained action hypothesis. 23 

 24 

 25 
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Provision of effective instructions can play a significant role in shaping the quality of 1 

deliberate practice and subsequently help maximise skill acquisition (Ericsson, Krampe & Tesche-2 

Römer, 1993). Equally, recent literature has begun to identify contexts where certain instructions 3 

can impede performance. There is now a compelling body of evidence that demonstrates the 4 

advantages of adopting an external (i.e., centered toward movement effects) over internal (i.e., 5 

centred toward body movements) focus of attention, in governing several characteristics of skill 6 

execution such as accuracy, consistency, and economy (for a review see Wulf, 2013). One 7 

mechanism thought critical in accounting for these advantages is movement planning (e.g. Prinz, 8 

1997; Lohse, Sherwood & Healy, 2010). Whilst we are typically aware of the intended goal of 9 

particular movements, it is the responsibility of the executive motor system for the selection, 10 

programming, and initiation of the action: often a complex pattern of specific muscle activities. In 11 

sporting actions, we will plan where a particular limb will finish up at the end of a movement 12 

(Woodworth, 1899; Schmidt, Zelaznik, Hawkins, Frank, & Quinn Jr, 1979). It is this planning 13 

process specifically, that is often suggested to account for attentional focus differences.  14 

Focus differences were first recognised during early experimental research requiring 15 

participants to focus on movement effects as opposed to body movements themselves (Wulf, Höb, 16 

& Prinz, 1998). When this happened, performance was superior. As well as performance accuracy, 17 

advantages in attentional capacity have contributed to the development of the constrained action 18 

hypothesis (Wulf, McNevin & Shea, 2001). This suggests that focusing on the effects of one’s 19 

movements promotes automaticity in movement execution and prevents any undesirable 20 

interference in response programming and control (likely to occur as a result of focusing internally). 21 

Findings have also been accounted for with Prinz’s (1997) action effect principle, which 22 

emphasizes a compatible relationship between movement planning and outcome. Thus, if actions 23 

are planned and controlled in relation to their effects, then focusing externally should facilitate 24 

performance by enhancing congruence between movement planning and the desired response. 25 
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Similarly, Wulf and Lewthwaite’s (2016) OPTIMAL (optimising performance through intrinsic 1 

motivation and attention for learning) theory of motor learning proposes enhanced goal-action 2 

coupling when using an external focus of attention. Offering further support for this notion, Wulf 3 

(2015) states that “adopting an external focus is related to the planning of movement, but has 4 

nothing to do with the processing of intrinsic feedback or bodily awareness, or lack thereof” 5 

(p.337). However, regardless of theoretical hypotheses, pertinent variables are yet to be rigorously 6 

tested, including the effect of focus of attention on movement planning and control mechanisms, 7 

especially in non-continuous tasks. A minority of researchers have begun to explore planning 8 

processes as a function of focus of attention, but as a secondary aim and often with methodological 9 

limitations in the approach adopted (e.g. Lohse et al., 2010; Lohse, 2012).  10 

Work by Lohse et al. (2010) hypothesised higher levels of explicit processing when 11 

employing an internal focus of attention in a dart-throwing task. Dependent variables included a 12 

proxy measure of planning (preparation time between throws) with explicit processing expected to 13 

be reflected via increases in inter-trial intervals when adopting an internal focus. Findings were 14 

consistent with this notion and viewed as a manifestation of enhanced planning when using an 15 

external focus of attention. However, Lohse (2012) concedes the rudimentary nature of this 16 

approach to investigate planning. This measure was refined accordingly to calculate pre-movement 17 

times, this time in an isometric force production task. Pre-movement times were measured as the 18 

time from the ‘go’ signal to a change in recorded force of +/-1 lb. Findings revealed lower pre-19 

movement times for those adopting an external focus of attention early on in the learning process. 20 

 However, attentional focus researchers have negated to consider important modifications 21 

that may be made during an action to achieve an intended goal i.e., motor control. Seminal 22 

attentional focus studies investigating balance board performance (e.g. Wulf et al., 1998; Wulf et 23 

al., 2001) imply that benefits of an external focus of attention may be due to corrections made 24 

during the movement. One could consider this to be online control and therefore less related to 25 
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planning. In an aiming movement, these control mechanisms involve any movement adjustments 1 

necessary to correct discrepancies between the end of a limb’s initial impulse and its target 2 

(Woodworth, 1899; Elliott, Helsen & Chua, 2001). With both planning and control mechanisms 3 

heavily integrated, it would be remiss not to consider them in the context of one another, especially 4 

being that aiming movements incorporate both pre-planned offline (feedforward) and online 5 

(somatosensory) adjustments (Elliott, Chua, Pollock, & Lyons, 1995; 20 & Kawato, 1998; Khan, 6 

Elliott, Coull, Chua, & Lyons, 2002; Elliott et al., 2014).  7 

Whilst the aforementioned findings (Lohse et al., 2010; Lohse, 2012)  are in line with 8 

attentional focus hypotheses surrounding movement planning, we would argue that in the absence 9 

of motor control measures, it is difficult to fully understand information processing or ‘trade-offs’ 10 

between planning and control in the context of focus of attention. Ironically, findings are accounted 11 

for using Willingham’s (1998) control-based learning theory (COBALT), which only reinforces the 12 

importance of investigating differences in output control as well as planning. COBALT is a 13 

neuropsychological theory of skill learning. Its framework provides support for a series of 14 

perceptual-motor processes, which occur largely outside of conscious control (i.e., goal selection), 15 

motor sequencing (i.e., planning), and muscle activation. However, target selection and planning 16 

processes can also occur as a more conscious process whereby they are coded in egocentric as 17 

opposed to allocentric space. Lohse (2012) suggests that adopting an internal focus of attention is 18 

more likely to induce this egocentric coding and thus, conscious control over actions. This is 19 

arguably more attention demanding and accounts for increased planning demands, which then 20 

manifest through longer inter-trial intervals and pre-movement times. However, Willingham (1998) 21 

proposes that both conscious and unconscious modes of skill execution can be helpful to 22 

performance. 23 

In the absence of any investigations into movement ‘control’ in conjunction with planning 24 

processes, the current set of studies are the first to include rigorous measures of these mechanisms. 25 
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In turn, this also provides a novel application of Khan et al.’s (2006) variability methodology, 1 

which has been shown to provide a robust measure of both planning (i.e., offline cognitive 2 

processing of feedback between trials for movement planning) and control (i.e., online adjustments 3 

made during a movement) processes. This approach has been most often adopted in rapid aiming 4 

tasks, which afford a rigorous analysis of kinematic profiles of movements. The methodological 5 

technique initially stems from Woodworth’s (1899) aforementioned two-component model of goal-6 

directed aiming (for a more recent review see Elliott et al., 2001). This provides a detailed analysis 7 

of two proposed phases of target-aiming movements: an initial impulse phase, which consists of 8 

central planning to move the limb into the vicinity of the target followed by an adjustment phase, 9 

which controls the movement using sensory feedback in order to reach the target. Measures of 10 

variability provide useful indications of these components’ relative contributions to movement 11 

execution. Whilst errors early on in an action tend to be indicative of poor motor planning, control 12 

processes typically occur online and can be reflected in error corrections made later in a movement 13 

trajectory (see Khan et al., 2006 for a review).   14 

Furthermore, literature has also observed instances where attentional shifts towards and not 15 

away from movements have been advocated, such as process goals (Zimmerman & Kitsantas, 1997) 16 

or external/kinaesthetic motor imagery (Hardy & Callow, 1999). Similarly, the philosophical 17 

concept of a functional ‘somaesthetic awareness’ (Shusterman, 2011) has been proposed by Toner 18 

and Moran (2015) for use in making movement adjustments for error correction or when re-learning 19 

movements. This is in line with arguments made by Collins, Carson and Toner (2015) highlighting 20 

reported benefits from athletes sometimes adopting a focus towards particular aspects of a 21 

movement. They suggest that optimal focus is dependent on factors such as familiarisation with 22 

instructions, focus relevance and availability of physical implements during execution (see also 23 

Lawrence, Gottwald, Hardy, & Khan, 2011). These movement related techniques are clearly 24 

contradictory to Wulf’s persuasive recommendations cautioning against a ‘movement centred’ 25 
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focus (see Wulf, 2013 for a review). We hypothesize that these discrepancies are likely a result of 1 

task nuances and that adopting a movement centred focus may actually add value in particular 2 

contexts yet to be explored. When performing an aiming movement, available sensory information 3 

in the form of either visual or proprioceptive and kinaesthetic information is utilised in guiding the 4 

limb to the target via offline and online motor control (Crossman & Goodeve, 1983). According to 5 

specificity of practice hypothesis (Proteau, 1992; Coull, Tremblay, & Elliott, 2001), the source of 6 

afferent information most useful to performance execution is typically prioritised for processing. In 7 

an aiming task where proprioception is an arguably important source of information, we might 8 

expect this to manifest via enhanced processing (e.g. planning or control) when using an internal 9 

and not external focus of attention. This is in line with the aforementioned phenomenon of a 10 

facilitative somaesthetic awareness (Shusterman, 2011). Interestingly, Porter, Wu, and Partridge 11 

(2010) reveal that 84.6% of athletes surveyed report that instructions provided in their training still 12 

induce an internal focus of attention, regardless of Wulf and colleagues’ recommendations. Whilst 13 

this may be a function of undesirable coaching methods, it may also be an indication of potential 14 

benefits of an internal focus in some contexts e.g. when importance of proprioceptive information is 15 

high for task success. The current series of experiments are aimed at better understanding this 16 

research lacuna in the context of offline motor planning and online motor control mechanisms. We 17 

conducted three experiments that differed systematically in the need for proprioceptive processes to 18 

meet task goals, whilst incorporating rigorous measures of planning and control. 19 

Experiment 1 20 

In Experiment 1 we compared the utilisation of afferent information for offline planning and 21 

online motor control processes under different attentional focus conditions. Participants completed a 22 

computer-based rapid-aiming task, under either internal or external attentional foci. We 23 

hypothesized benefits in offline planning when adopting an internal focus of attention, in line with 24 
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specificity theory. In a task of this nature, we expected greater congruence between internal 1 

compared with external focus instructions and the required movement production. 2 

Method 3 

Participants.  4 

Forty participants, who reported right-hand-dominance and normal / corrected-to-normal 5 

vision, were randomised into two groups: internal focus of attention (n = 20) and external focus of 6 

attention (n = 20). G*Power (G*Power 3; Faul, Erdfelder, Lang, & Buchner, 2007) sample size 7 

estimation deemed 14 participants per group necessary to provide power = .8 for the interaction 8 

between focus of attention and within movement trajectory variability when alpha = .05 and ηp
2 = 9 

.05. Thus, final sample size exceeded minimum power requirements. The experiment was 10 

conducted in accordance with institutional ethical guidelines. 11 

Apparatus and task.  12 

The experimental task comprised a target-directed computer-based aiming movement, 13 

performed using a handheld stylus on a Calcomp III digitising tablet (122cm x 91.5cm & sample 14 

rate 200Hz) placed horizontally in front of participants (see figure 1). An opaque shield obscured 15 

participants’ vision of their hand/stylus. Stylus position was denoted via a white circular cursor 16 

(1cm diameter) on a black background using a 37” Mitsubishi Diamond Pro monitor (refresh rate = 17 

85hz) located 33cm in front of the participant and 20cm above the digitizing tablet. The X/Y 18 

movement of the stylus on the tablet plane corresponded 1-to-1 to the X/Y movement of the cursor 19 

on the monitor plane. A green circular ‘start’ marker (1cm diameter) was located at the bottom of 20 

the monitor. Three circular ‘target’ markers (red, 1cm diameter) were each displayed 20cm centre-21 

to-centre from the start position marker; one target was directly above the start marker and the other 22 

two targets were at 10° to either side (angle subtended from the home position). The rationale for 23 

including multiple targets was purely to increase task complexity and thus for analysis purposes, 24 

data was later collapsed across targets.  To begin each trial, participants steadied their cursor over 25 
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the start marker, after which one of the targets turned green. Following a random 500-1500ms 1 

delay, a GO-tone signalled participants to initiate movement towards the target. Participants were 2 

instructed to: (1) make their movements as smoothly as possible; (2) stay within a criterion 3 

movement time (MT) of 400-500ms to allow sufficient time for processing of visual information 4 

(Carlton, 1992; Khan et al., 2003)1; and (3) be as accurate as possible in stopping their cursor over 5 

the target - therefore giving the task a directional and amplitude component. Once participants had 6 

come to a complete stop, the target became red again and participants had to return to the start 7 

position, ready for the next trial; concurrently, knowledge of results in the form of MT and a point 8 

score (see Allsop, Lawrence, Gray & Khan, 2017) was presented on the monitor2. It was explained 9 

to participants at the beginning of testing that they were not required to make movements as fast as 10 

possible and that as long as they moved within 400-500ms, their performance would be determined 11 

by aiming accuracy and not reaction time nor MT. If trials had a MT <400ms or >500ms, they were 12 

repeated until correct. 13 

--------------------------------------------------------------------------------------------------------------- 14 
Insert Figure 1 here 15 

--------------------------------------------------------------------------------------------------------------- 16 

Procedure.  17 

The experimenter demonstrated the task up to five times to participants. Before starting their 18 

first trial, participants in the internal group were instructed to focus on the fluid motion of their 19 

hand, and participants in the external group were instructed to focus on the fluid motion of the pen. 20 

Participants were given attentional focus reminders every 10 trials. Participants completed three 21 

                                                           
1 Based on the rationale for including a MT criterion, we have not included any MT analysis within dependent measures 

and results sections. 
2 The point score was a direct measure of performance and calculated using a combination of how close the participant 

was to meeting the criterion MT (in terms of absolute error) and how close their movement finished in relation to the 

target (end-point error). A maximum of five points were possible for each of the two components, meaning a maximum 

of 10 points were possible on any one trial. The maximum score of 10 was achieved if MT fell within ±10 ms of the 

criterion MT and cursor error fell within ±5 mm of the criterion target distance. These points reduced by one whole 

integer for every additional ±10 ms and every additional ±5 mm that the cursor fell outside of the criterion MT and the 

criterion target distance, respectively.  
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experimental phases: acquisition (90 trials), retention (30 trials), and transfer (30 trials). Retention 1 

trials required participants to perform the same task with no focus reminders. The transfer task was 2 

the same as retention, but targets were located 25cm as opposed to 20cm from the start position. 3 

Target order was randomised within each block of trials, under the condition that the same target 4 

could not appear twice in a row.  5 

Data reduction and dependent measures.  6 

Displacement data was filtered using a second-order dual-pass Butterworth filter with a 7 

10Hz low-pass cut-off frequency. A two-point central finite difference algorithm was used to 8 

calculate instantaneous velocity data from displacement data. This process was repeated to calculate 9 

acceleration data from velocity data. Movement initiation was defined as the point at which the 10 

cursor moved 2mm from the start position. Movement end was defined as the point where absolute 11 

velocity of the stylus fell below 1mm/s: thus prohibiting reversal movements. The 100% start-to-12 

target distance was defined as the point at which the cursor crossed the invisible arc subtended by 13 

the three targets. Amplitude error comprised the stylus’ orthogonal deviation (mm) from the same 14 

invisible arc. Overshoots were numerically positive whilst undershoots were numerically negative. 15 

Directional error comprised the stylus’ orthogonal deviation (mm) from the longitudinal axis 16 

connecting the home and target marker. Deviation to the left of this axis was numerically negative 17 

whilst deviation to the right of this axis was numerically positive. Trials whose amplitude or 18 

directional error deviated by >2SD from the given participant’s trial block mean for >25% of the 19 

movement distance were removed prior to analysis (4.40% of all trials were removed). 20 

Outcome performance was inferred from constant error (CE), absolute error (AE), and 21 

variable error (VE): each calculated once from amplitude error (at movement end) and once from 22 

directional error (at 100% start-to-target distance). CE and VE respectively comprised the within-23 

participant mean and standard deviation of error. AE comprised the within-participant mean of 24 

absolute error. Planning and online motor control’s role in the production of outcome performance 25 



10 
 

was inferred from variability (i.e., within-participant standard deviation) throughout amplitude and 1 

directional components of movement. Amplitude variability was calculated at peak acceleration 2 

(pka), peak velocity (pkv), peak negative acceleration (pkna), and movement end (end) from the 3 

cursor’s numerical orthogonal deviation in amplitude (mm) from the start position. Directional 4 

variability was calculated from directional error, at 25, 50, 75, and 100% of the start-to-target 5 

distance. Offline planning efficacy was inferred from variability at pka to pkv in the amplitude 6 

component, and from variability at 25% of the start-to-target distance in the directional component. 7 

Corrective feedback loops should have had insufficient time to initiate before these points and 8 

therefore improved planning efficacy can be inferred from reduced variability (Khan et al., 2006). 9 

Online motor control efficacy was inferred from changes in variability between pkv, pkna, and end 10 

for the amplitude component and changes in variability between 75% and 100% of movement 11 

distance for the directional component. In line with variability methodology, this ‘deceleration’ 12 

typically reflects corrective processes via the ‘braking of the limb in order to accurately home in on 13 

the target’. Improved online motor control efficacy can be inferred from reductions in variability 14 

between these points (Khan et al., 2006). Finally, to rule out speed-accuracy trade-offs, MT (ms) 15 

(time interval between movement start and movement end) was calculated and compared between 16 

focus conditions. 17 

Analysis.  18 

Since the rationale for including multiple targets within the task was for task complexity 19 

purposes only (as opposed to any theoretical hypotheses), data were collapsed across targets. 20 

Outcome performance was inferred from separate 2 Focus of Attention (external and internal) x 3 21 

Trial Block (acquisition, retention, and transfer) ANOVAs on endpoint amplitude and directional 22 

CE, AE, and VE (i.e., 6 omnibus ANOVAs). Offline planning’s contribution to outcome 23 

performance in the amplitude component of movement was inferred from a 2 Focus of Attention 24 

(external and internal) x 3 Trial Block (acquisition, retention, and transfer) x 2 Marker (pka and 25 
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pkv) ANOVA on amplitude component VE. Offline planning’s contribution to outcome 1 

performance in the directional component of movement was inferred from a 2 Focus of Attention 2 

(external and internal) x 3 Trial Block (acquisition, retention, and transfer) ANOVA on directional 3 

component VE at 25% movement distance. Online control’s contribution to outcome performance 4 

in the amplitude component of movement was inferred from a 2 Focus of Attention (external and 5 

internal) x 3 Trial Block (acquisition, retention, and transfer) x 3 Marker (pkv, pkna, and end) 6 

ANOVA on amplitude component VE. Online control’s contribution to outcome performance in the 7 

directional component of movement was inferred from a 2 Focus of Attention (external and 8 

internal) x 3 Trial Block (acquisition, retention, and transfer) x 2 Distance (75 and 100%) ANOVA 9 

on directional component VE. Greenhouse-Geisser corrected tests are reported when the sphericity 10 

assumption was violated in omnibus analyses. Significant omnibus interactions were broken down 11 

using planned repeated contrasts. 12 

Results 13 

Outcome performance 14 

Amplitude component. The results of the 3 Trial Block x 2 Focus of Attention ANOVAs on 15 

endpoint amplitude CE, AE, and VE are shown in Table 1B. Analysis of CE revealed a significant 16 

main effect for focus of attention and a significant Trial Block x Focus of Attention interaction. The 17 

significant focus of attention main effect revealed that the internal group generally had less endpoint 18 

amplitude CE than the external group. Breakdown of the Trial Block x Focus of Attention 19 

interaction revealed the internal group significantly decreased whilst the external group 20 

significantly increased their CE from acquisition to immediate retention (F1, 38 = 4.34, p = .044, ηp² 21 

= .10) but not significantly from immediate retention to transfer (F1, 38 = 2.20, p = .146, ηp² = .06) 22 

(see Figure 2).  Analysis of AE revealed a significant main effect for focus of attention and a 23 

significant Trial Block x Focus of Attention interaction. The focus of attention main effect revealed 24 

that the internal group generally had less endpoint amplitude AE than the external group. 25 
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Breakdown of the Trial Block x Focus of Attention interaction revealed a significant interaction 1 

from acquisition to immediate retention and a non-significant interaction from immediate retention 2 

to transfer (F1, 38 = 4.10, p = .050, ηp² = .10; F1, 38 = 2.05, p = .161, ηp² = .05, respectively). Analysis 3 

of VE revealed only the main effect for group as significant: wherein the internal group generally 4 

had less endpoint amplitude VE than the external group. 5 

Directional component. The results of the 3 Trial Block x 2 Focus of Attention ANOVAs 6 

on 100% start-to-target distance CE, AE, and VE are shown in Table 1B. Analysis of CE revealed 7 

no significant main effects nor interaction. Analysis of AE revealed only the main effect for trial 8 

block as significant. Breakdown of this main effect revealed no significant change from acquisition 9 

to immediate retention but a significant increase from immediate retention to transfer (F1, 38 = .15, p 10 

= .699, ηp² < .01; F1, 38 = 18.46, p < .001, ηp² = .33, respectively). Analysis of VE also revealed only 11 

the main effect for trial block as significant. Breakdown of this main effect revealed no significant 12 

change from acquisition to immediate retention but a significant increase from immediate retention 13 

to transfer (F1, 38 = .79, p = .379, ηp² = .02; F1, 38 = 13.85, p = .001, ηp² = .27, respectively). 14 

--------------------------------------------------------------------------------------------------------------- 15 

Insert Figure 2 here 16 

--------------------------------------------------------------------------------------------------------------- 17 

Offline planning / online control contributions to outcome performance.  18 

Amplitude component. The results of the 2 Focus of Attention x 3 Trial Block x 2 Marker 19 

ANOVA on amplitude variability to infer offline planning efficacy are shown in Table 1d. This 20 

analysis revealed a significant main effect for focus of attention and no significant interaction 21 

involving focus of attention. The results of the 2 Focus of Attention x 3 Trial Block x 3 Marker 22 

ANOVA on amplitude variability to infer online motor control efficacy are also shown in Table 1D. 23 

This analysis revealed a significant main effect for focus of attention and no significant interaction 24 

involving focus of attention. Overall, the presence of a significant main effect for focus of attention 25 

in both analyses (wherein an internal focus produced less variability than an external focus) and 26 
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absence of significant interactions involving focus of attention, suggest that changes in offline 1 

planning and not online control were the primary contributor to the internal focus group’s superior 2 

endpoint amplitude performance. 3 

Directional component. The results of the 2 Focus of Attention x 3 Trial Block ANOVA on 4 

directional variability to infer offline planning efficacy are shown in Table 1d. This analysis 5 

revealed no significant focus of attention main effect and no significant interaction involving focus 6 

of attention. The results of the 2 Focus of Attention x 3 Trial Block x 2 Distance ANOVA on 7 

directional variability to infer online control efficacy are shown in Table 1D. This analysis also 8 

revealed no significant focus of attention main effect and no significant interaction involving focus 9 

of attention. In sum, no significant offline planning and online control differences emerged between 10 

focus of attention groups in the directional component of movement. 11 

--------------------------------------------------------------------------------------------------------------- 12 

Insert Table 1 here 13 
--------------------------------------------------------------------------------------------------------------- 14 

Discussion 15 

 Experiment 1 employed a novel use of variability methodology to investigate planning and 16 

control mechanisms under an internal and external focus of attention. This was carried out in a task 17 

where proprioceptive salience was hypothesized to be high. Participants performed a target-aiming 18 

task, during which key kinematic variables indicative of motor planning and control processes could 19 

be measured (see Khan et al., 2006). We hypothesized that the proprioceptive nature of the task 20 

may contribute to atypical findings based on the philosophical concept of a functional ‘somaesthetic 21 

awareness’ (Shusterman, 2011): wherein the increased congruence between task-relevant 22 

information and an internal focus of attention would yield performance and processing benefits 23 

compared to an external focus.   24 

Findings confirmed that participants adopting an internal focus were more accurate in their 25 

movements comparative to those adopting an external focus. This was manifested via reduced 26 
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errors throughout all experimental phases as well as decreasing levels of error between acquisition 1 

and retention. Participants adopting an external focus displayed the opposite pattern of results. 2 

Furthermore, variability findings were reflective of more consistent (i.e., less variable) movements 3 

under an internal focus of attention. It is likely that in a rapid-aiming target-directed movement, 4 

higher levels of variability may be detrimental to movement accuracy. This is inconsistent with 5 

Lohse et al. (2010) where enhanced performance was manifested by increased variability. However, 6 

Bernstein (1967) suggests that movements are constrained to the point that they are most functional. 7 

The presence of a focus of attention main effect for amplitude variability, but absence of significant 8 

interactions involving focus of attention (which would be indicative of movement adjustments made 9 

during the movement), suggests that the primary contributor to improved endpoint amplitude 10 

performance of the internal group was offline planning.  11 

Thus, an internal focus of attention may possess some facilitative attributes when 12 

performing a task of this nature, where fine motor adjustments are required (whether made during a 13 

movement or prior to). The results of Experiment 1 are likely a reflection of unequal levels of 14 

proprioceptive information available under different focus conditions in a task of this manner. 15 

Participants adopting an internal focus of attention may have been better afforded proprioceptive 16 

information (i.e., somaesthetic awareness) due to the nature of their instructions. This important role 17 

of attentional focus in skill refinement has been deliberated previously in a series of commentaries 18 

(see Toner & Moran, 2015, Wulf, 2015; Toner & Moran, 2016), which propose that focusing on the 19 

body can be of benefit for refining skills and making movement adjustments. It is therefore 20 

plausible that an internal focus may possess the required characteristics for these error-correction 21 

mechanisms to occur most effectively. This benefit may be further enhanced within tasks that are 22 

more ‘proprioceptive’ in nature.  23 

However, it might be argued that a rapid aiming task with both visual and proprioceptive 24 

information available was not truly proprioceptive in nature and makes it difficult to determine the 25 
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extent to which discrete modes of information (i.e., visual versus proprioceptive awareness), were 1 

most useful to participants’ motor execution when adopting different attentional foci. Thus, the 2 

rationale behind Experiment 2 was to remove this confound by applying task constraints which 3 

accentuated the significance of proprioceptive information for successful performance. This was to 4 

confirm whether tasks where proprioception is integral to performance, benefit from adopting an 5 

internal compared to external focus of attention.  6 

Experiment 2 7 

In aiming tasks, available sensory information through vision or proprioception is 8 

fundamental for successful movement execution (Crossman & Goodeve, 1983). As previously 9 

mentioned, specificity of practice hypothesis (Proteau, 1992; Coull et al., 2001) proposes that the 10 

source of afferent information deemed most useful to successful performance is usually prioritised 11 

for processing. Identifying the source of this information is helpful in informing both theoretical 12 

advancement as well as the development of practical performance and learning interventions 13 

(Toussaint, Meugnot, Badets, Chesnet, & Proteau, 2016). Experiment 2 aimed to remove the 14 

confound of visual information from Experiment 1 and provide robust evidence for the benefits of 15 

an internal focus when congruent with sources of task relevant afferent information available. 16 

Otherwise, the task remained unchanged.    17 

We hypothesised that if those adopting an internal focus are indeed able to process 18 

proprioceptive information more readily and in line with specificity theory (Proteau, 1992), then we 19 

would expect to see a further benefit of an internal focus under no vision conditions. Khan et al. 20 

(2006) suggest that variability profiles differ depending on afferent information available. It is thus 21 

plausible that the availability of visual feedback will modulate focus of attention effects on 22 

movement variability.  23 

Methods 24 
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The only difference between Experiment 2 and Experiment 1’s methodological approach 1 

was that vision of the cursor on the screen was removed at the beginning of each trial until 2 

movement end (e.g. consistent with Chua & Elliott, 1993; Khan et al., 2003). Targets remained 3 

visible throughout. Participants were again randomised into two groups; internal (n=20) and 4 

external (n=20) and provided with the same instructions as per Experiment 1. Sample size was 5 

based on the estimation detailed in Experiment 1. Of all trials, 3.03% were identified as outliers and 6 

removed prior to analysis. Again, target data was collapsed based on experimental hypotheses. 7 

Results 8 

Outcome performance. 9 

Amplitude component. The results of the 3 Trial Block x 2 Focus of Attention ANOVAs on 10 

endpoint amplitude CE, AE, and VE are shown in Table 2B. Analysis of CE revealed a significant 11 

main effect for trial block and focus of attention. Breakdown of the main effect for trial block 12 

revealed CE generally increased (i.e., greater overshoot) from acquisition to immediate retention 13 

(F1, 38 = 4.94, p = .032, ηp² = .12) and decreased from immediate retention to transfer (F1, 38 = 42.54, 14 

p < .001, ηp² = .53).  To break down the main effect for focus of attention, one sample t-tests 15 

comparing each group’s mean CE across trial blocks to 0 were performed. This analysis revealed 16 

the external group generally undershot the target (t(19) = -1.87, p = .078, 95% CI [-32.20, 1.85]) 17 

and the internal group generally overshot the target (t(19) = 4.11, p = .001, 95% CI 10.44, 32.13]). 18 

Analysis of AE revealed only the Trial Block x Focus of Attention interaction as significant. 19 

Breakdown of this interaction revealed that there was no interaction between acquisition and 20 

immediate retention (F1, 38 = 2.08, p = .157, ηp² = .05), but between immediate retention and 21 

transfer, the external group significantly increased whilst the internal group decreased their AE (F1, 22 

38 = 11.61, p = .002, ηp² = .23). Analysis of VE revealed only the main effect for trial block as 23 

significant. Breakdown of this trial block revealed that generally VE increased significantly from 24 
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acquisition to immediate retention (F1, 38 = 17.64, p < .001, ηp² = .32) and from immediate retention 1 

to transfer (F1, 38 = 9.38, p = .004, ηp² = .20). 2 

Directional component.  The results of the 3 Trial Block x 2 Focus of Attention ANOVAs 3 

on 100% start-to-target distance CE, AE, and VE are shown in Table 2B. Analysis of CE revealed 4 

no significant main effects nor interaction. Analysis of AE revealed a significant main effect for 5 

trial block and focus of attention. The focus of attention main effect revealed that generally, the 6 

internal group had less AE than the external group (see Figure 3). Breakdown of the main effect for 7 

trial block revealed that generally AE significantly increased from acquisition to immediate 8 

retention (F1, 38 = 8.32, p = .006, ηp² = .18) and from immediate retention to transfer (F1, 38 = 7.54, p 9 

= .009, ηp² = .17). Analysis of VE revealed a significant main effect for trial block and a near-10 

significant main effect for focus of attention. The main effect for focus of attention trended towards 11 

the internal group exhibiting less VE than the external group. Breakdown of the main effect for trial 12 

block revealed that generally AE significantly increased from acquisition to immediate retention 13 

(F1, 38 = 17.64, p < .001, ηp² = .32) and from immediate retention to transfer (F1, 38 = 9.38, p = .004, 14 

ηp² = .20). 15 

--------------------------------------------------------------------------------------------------------------- 16 
Insert Figure 3 here 17 
--------------------------------------------------------------------------------------------------------------- 18 

Offline planning / online control contributions to outcome performance.  19 

Amplitude component. The results of the 2 Focus of Attention x 3 Trial Block x 2 Marker 20 

ANOVA on amplitude variability to infer offline planning efficacy are shown in Table 2D. This 21 

analysis revealed no significant main effects nor interactions involving focus of attention. The 22 

results of the 2 Focus of Attention x 3 Trial Block x 3 Marker ANOVA on amplitude variability to 23 

infer online motor control efficacy are also shown in Table 2. This analysis also revealed no 24 

significant main effects nor interactions involving focus of attention. In sum, within the amplitude 25 
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component we observed no differences in offline planning / online control based on focus of 1 

attention. 2 

Directional component. The results of the 2 Focus of Attention x 3 Trial Block ANOVA on 3 

directional variability to infer offline planning efficacy are shown in Table 2D. This analysis 4 

revealed a significant focus of attention main effect and no significant interaction involving focus of 5 

attention. The results of the 2 Focus of Attention x 3 Trial Block x 2 Distance ANOVA on 6 

directional variability to infer online control efficacy are shown in Table 2. This analysis revealed a 7 

significant focus of attention main effect and a significant Focus of Attention x Trial Block x 8 

Distance interaction. The focus of attention main effect revealed that the internal focus group 9 

generally had less VE than the external focus group. Breakdown of the Focus of Attention x Trial 10 

Block x Distance interaction revealed that from immediate retention to transfer only, the external 11 

group increased their VE less between 75 and 100% movement distance than the internal group (F1, 12 

38 = 4.69, p = .037, ηp² = .11): at first glance suggesting increased online correction in the external 13 

group at transfer. However, given (1) this effect being exclusive to transfer, (2) transfer likely 14 

increasing task difficulty compared to immediate retention, and (3) the internal group exhibiting 15 

superior planning and outcome performance compared to the external group, the external focus 16 

group likely exhibits increased online control at transfer because worse planning provides greater 17 

scope for correction: rather than greater corrections being a specific benefit of an external focus of 18 

attention. In sum, the consistent focus of attention main effects and absence of Focus of attention x 19 

Distance interaction across trial blocks, suggest that offline planning likely accounts for focus of 20 

attention differences in outcome performance. 21 

--------------------------------------------------------------------------------------------------------------- 22 
Insert Table 2 here 23 
--------------------------------------------------------------------------------------------------------------- 24 

Discussion 25 
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The rationale behind Experiment 2 was to investigate motor programming strategies under 1 

conditions of enhanced afferent information in the mode of proprioception. This was the first 2 

experiment to consider both planning and control mechanisms as a function of focus of attention in 3 

a truly proprioceptive task. In line with Experiment 1 findings, we hypothesised enhanced accuracy 4 

for those adopting an internal as opposed to external focus. This was as a consequence of enhanced 5 

congruence between an internal focus of attention and afferent information available in the form of 6 

proprioception. Additionally, it was expected that increased movement accuracy would be coupled 7 

with evidence of enhanced planning strategies under an internal focus. To test this, Experiment 2 8 

applied task constraints through the removal of visual information to accentuate the significance of 9 

proprioceptive information for successful performance. 10 

Error data provided further support for Experiment 1 findings, with some nuances. 11 

Amplitude CE data suggests that participants tended to make greater errors and overshoot the target 12 

when using an internal focus, whilst those adopting an external focus tended to undershoot with 13 

smaller errors. However, amplitude AE data provides a clearer picture during later experimental 14 

phases, with the external group increasing error between retention and transfer and the internal 15 

group showing the converse pattern of results. Amplitude VE findings reinforce this pattern of 16 

results, showing a marginally significant main effect (p = .05) for focus of attention, with those 17 

adopting an internal focus displaying more consistent movements. Furthermore, directional 18 

variability findings suggest that the primary contributor to the improved directional outcome 19 

performance of the internal group was increased efficacy of offline planning. This was reflected in 20 

decreased directional variability early on in movement trajectories and supports the notion of a 21 

facilitative somaesthetic awareness. It should however be noted that benefits of end-point amplitude 22 

accuracy were accounted for only in directional and not amplitude variability findings. It might be 23 

that an absence of amplitude variability findings were a consequence of differences in the 24 

‘functionality’ of variability between an internal and external focus. This may account for no 25 
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differences here in line with Berstein (1967) and Lohse et al. (2010) degrees of freedom. 1 

Experiments 1 and 2 differed in the extent to which the task emphasised the importance of 2 

proprioceptive information for performance success. This was achieved through the availability of 3 

vision. However, experiment 3 allowed us to manipulate the strength or ‘potency’ of proprioceptive 4 

feedback. We felt that this would provide more robust evidence for an argument recommending that 5 

focus of attention should be congruent with afferent information pertinent for task success. 6 

Experiment 3 7 

Experiment 2 lends support to the notion that an internal attentional focus may be effective 8 

for both movement planning and accuracy when performance-relevant afferent information 9 

primarily stems from proprioception. Experiment 3 sought to provide further evidence for this by 10 

manipulating proprioceptive salience. Participants had to encode body (i.e., leg) positions and 11 

reproduce them as accurately as possible. 12 

This task was adopted from Toussaint et al.’s (2016) methodology, which investigated leg-13 

positioning recall, where the availability of proprioceptive information was modified in an effort to 14 

prevent neglect of proprioceptive feedback. In this case, proprioceptive information was 15 

manipulated by attaching small weights to the ankle of participants. Findings revealed that when 16 

both vision and proprioception were available, proprioceptive information was neglected and vision 17 

was the dominant force in producing accurate movements. However, the addition of ankle weight 18 

increased ‘proprioceptive strength’ during the task, thus reducing proprioceptive neglect. The 19 

current experiment aimed to investigate whether different attentional foci facilitate the utilisation of 20 

proprioceptive information to reproduce accurate movements and whether modifying the strength of 21 

proprioceptive information would encourage greater congruence between participants’ internal 22 

focus of attention and the goal of the task.  23 

Electromyography (EMG) of the quadriceps was also measured to provide a rigorous 24 

measure of movement efficiency. Afferent information was manipulated in different ways. Firstly 25 
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vision was removed. Toussaint et al.’s (2016) work emphasizes the dominant role of visual 1 

feedback in goal directed movements when available and thus, removal of this allowed researchers 2 

to isolate proprioceptive information. Secondly, it was felt that the nature of this task better allowed 3 

for participants to code the target location proprioceptively compared to Experiments 1 and 2: 4 

further increasing proprioception’s relevance to movement accuracy. Thirdly, based on the findings 5 

of Toussaint and colleagues, weight was added to the ankle of one group in an effort to increase the 6 

strength of proprioceptive information available during the task. 7 

Thus, the rationale for the final experiment was to investigate whether manipulating the 8 

congruence between an internal focus of attention and the afferent information available, enhances 9 

the extent to which movements are executed successfully. It was hypothesised that, in line with 10 

Experiments 1 and 2, an internal focus would facilitate performance by directing participants’ 11 

attention to task-relevant proprioceptive information. Furthermore, it was expected that attentional 12 

focus differences would be more pronounced in the group performing with an ankle weight due to 13 

increased potency of proprioceptive information.  14 

Methods 15 

Participants. 16 

The makeup of participants in Experiment 3 (n=40) replicated that of Experiments 1 and 2, 17 

other than an additional participation criterion being no history of nervous or muscular disorders. 18 

Participants were randomised into weight (n=20) and no-weight groups (n=20). Sample size was 19 

again based on the estimation detailed in Experiment 1. 20 

Apparatus. 21 

Participants were seated in the middle of a 12-camera volume (Vicon Nexus, sampling at 22 

240hz) on a chair modified to minimise camera obstruction and allow participants’ non-dominant 23 

leg to move freely and comfortably around the knee joint. As in Toussaint et al. (2016) and 24 

Toussaint and Blandin (2010), participants’ non-dominant leg was used to perform the task: to 25 
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reduce the chance of a ceiling effect and increase task novelty (Beilock, Carr, MacMahon, & 1 

Stalkes, 2002). The weight group had a 0.5kg sand-bag wrapped tightly around the base of their 2 

non-dominant leg’s ankle, whilst the no-weight group did not. Leg movement in 3D space was 3 

captured via the coordinates of four reflective markers: one placed on the lateral condyle, medial 4 

condyle, lateral malleolus, and medial malleolus. A custom Microsoft Visual Basic script computed 5 

a live mid-point between the condyle markers, and between the malleolus markers, respectively. 6 

From these midpoints, a digital plane was computed to represent the lower leg position. At the 7 

beginning of testing, participants were asked to let their leg hang freely and relaxed. This position 8 

denoted their start position in every trial and a wooden box was placed so their heel gently touched 9 

the front face of the box when in this position (to aid start-position consistency). Before every trial, 10 

the experimenter ensured participants’ leg was within +/-1 degree of the starting position. Leg angle 11 

was calculated live (at 240hz) as the difference in position between the start position and the plain 12 

representing their lower leg. Single-differential electromyography (EMG) surface electrodes (DE 13 

2.1, Delsys, Boston, MA) were placed on the vastus medialis and vastus lateralis of participants’ 14 

non-dominant leg to provide an electromyographical measure of leg extension efficiency (Alkner, 15 

Tesch, & Berg, 2000). Electrode placement and site preparation was in line with SENIAM 16 

recommendations (Hermens et al., 1999). Each EMG electrode’s signal was 10k amplified 17 

(Bagnoli-2, Delsys) and digitized at 2500Hz using a computer running Spike2 software (Cambridge 18 

Electronic Design). 19 

Experimental procedure and design. 20 

Every trial comprised an encoding and recall phase respectively. For the encoding phase, 21 

participants were instructed to slowly extend their leg from the start position until a tone sounded – 22 

indicating participants were within +/-1° of the target position. Participants then had to hold and 23 

mentally encode this angle for 2 seconds. Once the tone had sounded for 2 seconds: the precise leg 24 

position was recorded as the ‘encoded position’; the tone changed to a higher pitch; and participants 25 
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had to return to the start position. Upon participants’ return to the start position, following a random 1 

foreperiod between 1.5 and 2.5 seconds, the recall phase was initiated via a GO-tone for movement 2 

initiation. For the recall phase, participants were instructed to: reproduce the target angle as 3 

accurately as possible (basing task exclusively on the amplitude); produce one smooth and straight 4 

movement within a MT between 500 and 1000ms; not concern themselves with their reaction time; 5 

and hold their recalled position for 1 second at the end, before returning to the start position (ready 6 

for the next trial) (see figure 4). Following each trial, participants were provided with knowledge of 7 

results on a monitor in front of them; this consisted of recall phase error (i.e., by how many degrees 8 

they had undershot or overshot the target position) and MT (i.e. the ms time interval between 9 

movement initiation and end). If trials had a MT <500ms or >1000ms, they were repeated until 10 

correct. As in Toussaint et al. (2016), participants were not permitted to open their eyes from the 11 

beginning of the encoding phase, to the end of the recall phase: thus creating a proprioception-only 12 

task. 13 

--------------------------------------------------------------------------------------------------------------- 14 
Insert Figure 4 here 15 

--------------------------------------------------------------------------------------------------------------- 16 

Experimental trial blocks constituted familiarisation (15 trials), acquisition 1 (30 trials), 17 

transfer 1 (30 trials), acquisition 2 (30 trials) and transfer 2 (30 trials). Familiarisation and 18 

acquisition targets were 122, 132 and 142°. In transfer, participants were given new targets, which 19 

were 117, 127 and 147°. Participants were informed of this. Target order was randomised between 20 

participants and trial blocks: with the stipulation that targets were never repeated immediately. At 21 

familiarisation, participants were given no focus of attention instructions. At acquisition 1, half of 22 

participants were given external focus of attention instructions (“focus on the markers, and how you 23 

move them to their correct position”) and the other half internal focus of attention instructions 24 

(“focus on your leg, and move it to its correct position”). At acquisition 2, participants were given 25 

the focus of attention instructions they did not receive in acquisition 1. It was highlighted to 26 
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participants that it was very important for them to stick to their prescribed focus of attention. At 1 

acquisition, focus reminders were provided at every trial for the first five trials, after which they 2 

were given every 10 trials. At transfer, participants were given no reminders. As a manipulation 3 

check, after every block of trials, participants were given a piece of paper to write down what they 4 

focused on in their block of trials; participants were asked to provide sufficient detail for someone 5 

else to replicate their focus. In summary the present study design entailed a within-group trial block 6 

factor and counterbalanced within-group focus of attention factor for weight and no-weight groups. 7 

Data reduction and dependent measures. 8 

During testing, a custom Microsoft Visual Basic two-point central finite difference 9 

algorithm was used to calculate instantaneous velocity data from displacement data. This process 10 

was repeated to calculate acceleration data from velocity data. Movement initiation was defined as 11 

the data point where velocity dropped to <1 degree per second. Movement end was defined as one 12 

data point before leg velocity reached ≤0: meaning movements could not have a reversal in 13 

movement direction. MT for participants’ post-trial feedback was defined as the time (ms) between 14 

movement initiation and movement end. Recall phase error for participants’ feedback was defined 15 

as the angular deviation between leg angle at movement end and the target position; overshoots 16 

were labelled numerically positive and undershoots numerically negative.  For post-testing analysis, 17 

using a custom LabView script, leg displacement data was filtered using a second-order dual-pass 18 

Butterworth filter with a 10Hz low-pass cut-off frequency. Movement start, end and time were re-19 

calculated using this filtered data. Additionally, four kinematic markers were calculated using 20 

custom LabView scripts. Namely, peak acceleration (pka), peak velocity (pkv), peak negative 21 

acceleration (pkna) and movement end (end). Encoding error for analysis was calculated as the 22 

angular deviation between movement end and the encoded position. Overshoots were labelled 23 

numerically positive and undershoots numerically negative. 24 
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Trials whose angular movement distance deviated by >2SD from the given participant’s trial 1 

block mean for >25% of the movement distance were removed prior to analysis (2.07% of all 2 

trials). Data of participants who did not change their focus (n=5) between acquisition 1 and 2, based 3 

on two researchers’ impression of the manipulation check responses, were also removed from 4 

analysis (see below examples and resulting group sizes3). Dependent measures were based on 5 

LabView-filtered data and included: MT; encoding CE (mean within-participant encoding error); 6 

and encoding VE (standard deviation of within-participant encoding error). Spatial variability 7 

throughout the amplitude of movement was assessed via variability in movement degrees at each 8 

kinematic marker (i.e., pka, pkv, pkna, and end). There was no directional component to the task. 9 

Vastus medialis and vastus lateralis EMG activity (in V) for each trial was analysed offline 10 

from 20ms before movement start until movement end: using custom MATLAB scripts 11 

(MathWorks Inc., Natick, MA). EMG activity was filtered using a bidirectional fourth order 12 

bandpass (20-450hz) Butterworth filter, rectified, and integrated to attain a measure of muscular 13 

activation within the context of time (i.e., iEMG).  14 

Analysis. 15 

For brevity and clarity, the analysis on endpoint CE, endpoint AE, endpoint VE, and VE at 16 

each kinematic marker, used data collapsed across targets; separate 3 Target (low, medium, and 17 

high) x 2 Trial Block (acquisition and transfer) x 2 Focus of Attention (internal and external) 18 

ANOVAs for each weight group were performed on endpoint CE, AE, and VE to ensure collapsing 19 

targets was appropriate and revealed no significant interactions involving targets. To ensure the 20 

counterbalanced subsets of participants did not differ at the beginning of testing, familiarisation 21 

iEMG and familiarisation endpoint MT, CE, AE, and VE were submitted to independent samples t-22 

                                                           
3 Examples statements that suggested participants did not adhere to the appropriate focus: an external focus that was 

reported as focusing on “using muscle memory based on how tense the leg muscle is”, “leg speed and trying to keep my 

leg still” or comments which suggested the participant was using neither an internal nor external focus e.g. “my mind 

was more neutral”, “I wasn’t really focused on a specific thing”. Post data-reduction n=35 (No-weight external 1st then 

internal = 10; No-weight internal 1st then external = 8; Weight external 1st then internal = 7; Weight internal 1st then 

external = 10). 
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tests which compared external-to-internal and internal-to-external focus of attention subgroups, 1 

within each weight condition (i.e. two comparisons per-dependent variable). To investigate focus of 2 

attention’s effect on muscular efficiency and outcome performance, iEMG of the vastus lateralis 3 

and iEMG of the vastus medialis were then analysed using separate 2 Weight (weighted and no-4 

weight) x 2 Trial Block (acquisition and transfer) x 2 Order (external-to-internal and internal-to-5 

external) x 2 Focus of Attention (internal & external) ANOVAs. The effect of focus of attention on 6 

offline planning was investigated via separate 2 Trial Block (acquisition and transfer) x 2 Focus of 7 

Attention (internal and external) 2 Order (external-to-internal and internal-to-external) x 2 Marker 8 

(pka and pkv) ANOVAs for each weight group (weighted and no-weight). The effect of focus of 9 

attention on online control was investigated via separate 2 Trial Block (acquisition and transfer) x 2 10 

Focus of Attention (internal and external) x 2 Order (external-to-internal and internal-to-external) x 11 

3 Marker (pkv, pkna, and end) ANOVA for each weight group (weighted and no-weight).  The 12 

purpose of the order factor was to determine whether switching from an internal to an external focus 13 

of attention, or vice versa, impacted performance. The assumption for sphericity held in all analyses 14 

since no more than two levels of within-subject factors were compared.  15 

Results 16 

Test of equivalence for counterbalanced subsets 17 

T-tests comparing familiarisation CE of external-to-internal and internal-to-external focus of 18 

attention subgroups within weight and no-weight groups revealed no significant difference in the 19 

no-weight group (t(16) = -.45, p = .659, 95% CI [-4.83, 3.14] nor the weight group (t(15) = 1.06, p 20 

= .306, 95% CE [-1.52, 4.52]). T-tests comparing familiarisation AE of external-to-internal and 21 

internal-to-external subgroups within weight and no-weight groups revealed no significant 22 

difference in the no-weight group (t(16) = -.79,  p = .444, 95% CI [-4.37, 2.01] nor the weight group 23 

(t(15) = 1.07, p = .302, 95% CE [-1.12, 3.38]). T-tests comparing familiarisation VE of external-to-24 

internal and internal-to-external focus of attention subgroups within weight and no-weight groups 25 
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revealed no significant difference in the no-weight group (t(16) =-1.53, p = .144, 95% CI [-1.39, 1 

.22]) nor the weight group (t(15) = 1.29, p = .216, 95% CE [-.31, 1.25]). The T-tests comparing 2 

familiarisation iEMG of external-to-internal and internal-to-external focus of attention subgroups 3 

within weight (t(16) = -.17, p = .869, 95% CE [-.04, .03]; t(16) = .64, p = .533, 95% CE [-.01, .03], 4 

respectively for vastus medialis and vastus lateralis) and no-weight (t(15) = 1.41, p = .178, 95% CE 5 

[-.01, .06]; t(16) = -.10, p = .924, 95% CE [-.03, .03], respectively for vastus medialis and vastus 6 

lateralis) groups revealed no significant difference and therefore subgroups should be comparable.  7 

Outcome performance. 8 

Results of the 2 Focus of Attention x 2 Trial Block x 2 Order ANOVAs on weight and no-9 

weight groups’ CE, AE, and VE are shown in table 3B. Analysis of the no-weight group CE 10 

revealed a near-significant Trial Block x Focus of Attention x Order interaction (see figure 5, panels 11 

A, C, and E) and a significant main effect for trial block: with no other significant main effects nor 12 

interactions. The main effect for trial block revealed acquisition generally featured significantly less 13 

CE than transfer. Analysis of the weighted group CE revealed a near-significant focus of attention 14 

main effect and significant Focus of Attention x Order interaction (see figure 5, panels B, D and F): 15 

with no other significant main effects nor interactions. Specifically, when weighted participants 16 

adopted an internal focus towards the end of testing, their CE was significantly reduced. Analysis of 17 

the no-weight group AE revealed only a significant main effect for trial block: wherein acquisition 18 

generally featured significantly less AE than transfer. Analysis of the weighted group AE revealed 19 

no significant main effects nor interactions. Analysis of the no-weight group VE revealed only a 20 

significant trial block main effect: wherein acquisition generally featured significantly less VE than 21 

transfer. Analysis of the weighted group VE revealed no significant main effects nor interactions. 22 

Offline planning / online control contributions to outcome performance. 23 

Results of the 2 Trial Block x 2 Focus of Attention x 2 Marker ANOVAs performed on the 24 

weight and no-weight groups to infer offline planning efficacy are shown in Table 3D. Analysis of 25 
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the no-weight group revealed only significant main effects for trial block and marker and a 1 

significant Focus of Attention x Trial Block interaction. Breakdown of the Focus of Attention x 2 

Trial Block x Order interaction revealed that when an internal focus of attention came second, 3 

variability was reduced. Analysis of the weighted group revealed significant main effects for trial 4 

block and marker and a significant Focus of Attention x Trial Block x Marker x Order interaction. 5 

Breakdown of this interaction also revealed that when an internal focus of attention came second, 6 

variability was reduced but only in acquisition and at peak velocity (by which point differences in 7 

planning should be at their most prominent). Results of the 2 Trial Block x 2 Focus of Attention x 2 8 

Marker ANOVAs performed on the weight and no-weight groups to infer online control efficacy 9 

are shown in Table 3D. Analysis of neither the no-weight group nor the weighted group revealed 10 

any significant interactions involving markers. In sum, these results suggest that differences in 11 

outcome performance based on focus of attention are primarily facilitated via changes in planning. 12 

--------------------------------------------------------------------------------------------------------------- 13 
Insert Table 3 here 14 

--------------------------------------------------------------------------------------------------------------- 15 

Muscle activity. 16 

The 2 Focus of Attention x 2 Trial Block x 2 Weight x Order ANOVA on the vastus 17 

lateralis iEMG revealed a significant main effect for focus of attention (F1,31 = 4.86, p = .035, ηp² = 18 

.14) and Focus of Attention x Weight x Order interaction (F1,31 = 8.06, p = .008, ηp² = .21). 19 

Specifically, an internal (M = .058, SD = .029) generally yielded lower iEMG compared to an 20 

external focus (M = .060, SD = .024) and the Focus of Attention x Weight x Order interaction 21 

followed the same pattern of results as CE. The 2 Focus of Attention x 2 Trial Block x 2 Weight x 22 

Order ANOVA on the vastus medialis iEMG revealed a main effect for focus of attention and Focus 23 

of Attention x Weight x Order interaction which trended in the same direction (as the vastus 24 

laterialis data) but were not significant (F1,31 = 2.92, p = .097, ηp² = .09; F1,31 = 3.35, p = .077, ηp² = 25 

.10, respectively). 26 
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--------------------------------------------------------------------------------------------------------------- 1 

Insert Figure 5 here 2 
--------------------------------------------------------------------------------------------------------------- 3 

Discussion 4 

Experiment 3 utilised an amplitude-only leg extension task based on that of Toussaint et al. 5 

(2016). Participants were tasked with encoding target leg positions and accurately reproducing them 6 

in one fast target-directed movement, under counterbalanced external and internal focus of attention 7 

instructions. We aimed to ascertain whether, contrary to the assertions of the constrained action 8 

hypothesis (Wulf et al., 2001), an internal focus of attention can facilitate superior performance: 9 

specifically, when proprioceptive feedback strength was increased via an ankle weight. It was 10 

hypothesised that, compared to an external focus of attention, an internal focus would facilitate 11 

superior performance, because it guides participants’ attention to task-relevant proprioceptive 12 

information. These external / internal focus of attention differences were hypothesised to be stronger 13 

in the group performing with an ankle weight.  14 

Outcome performance was inferred from overall endpoint CE, AE, and VE. Results revealed 15 

that for the weighted group, participants who adopted an internal focus later in testing, reduced their 16 

CE during acquisition trials. Furthermore, the weighted group’s CE exhibited a near-significant focus 17 

of attention main effect (p = .052) and a significant focus of attention by marker interaction: wherein 18 

adopting an internal focus reduced CE compared to an external focus. Specifically, an internal focus 19 

significantly reduced CE when it was the second focus participants were given (i.e., later in testing, 20 

after an external focus). These effects were not significant for the weighted group’s AE, but followed 21 

the same trends as per their CE. Concerning the weighted group’s endpoint VE, there was no 22 

difference between external and internal groups. Past studies may help us understand the mechanisms 23 

behind our observed focus of attention order effects (McNevin, Shea, & Wulf, 2003; Wulf et al., 24 

1998). Focus of attention effects in novices seemingly manifest during later testing phases. Therefore, 25 

in Experiment 3, an internal focus may have been more beneficial when provided following an 26 
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external focus because by that point, it could be argued that participants were more accustomed to 1 

utilising the proprioceptive feedback of the task. There is a body of literature suggesting enhanced 2 

proprioceptive neural mechanisms over time through neuroplasticity as a function of practice / 3 

dependency (Schwenkreis, Pleger, Höffken, Malin & Tegenthoff. 2001; Goble, 2010; Xerri, 2012).  4 

In sum, the endpoint results of Experiment 3 demonstrate that an external focus does not 5 

always facilitate ‘best’ performance. Instead the improved CE and (although non-significantly) 6 

improved AE, combined with decreases in VE at pkv, suggest that an internal focus overall facilitated 7 

superior outcome performance over an external focus when the task was reliant on proprioception 8 

and proprioceptive strength was high (i.e. within the weight group). The internal focus’ performance 9 

superiority seemingly originated within offline movement planning based on decreased variability at 10 

key kinematic markers attributable to planning mechanisms (i.e., pkv) for those adopting an internal 11 

focus. Concurrently, an internal focus yielded less EMG compared to an external focus, suggesting 12 

that adopting an internal focus facilitates more efficient / appropriate planning of muscle activation 13 

when tasks are proprioception-based. Overall, Experiment 3 lends further credence to the notion that, 14 

contrary to the constrained action hypothesis of Wulf et al. (2001), an internal focus can be superior 15 

to an external focus: provided proprioceptive strength and pertinence is high. 16 

 Analyses were conducted to ensure the aforementioned performance differences were due to 17 

focus of attention instructions and not confounds. Focus of attention effects were investigated using 18 

a repeated measures design and data analysis considered whether focus of attention order (i.e., 19 

external focus 1st and internal focus 2nd, or vice versa) influenced findings. To ensure the external-20 

to-internal and internal-to-external subsets of participants within each weight group were comparable, 21 

independent samples t-tests compared these subsets’ endpoint MT, CE, AE, and VE at familiarisation 22 

(i.e., the beginning of testing where participants were not yet prescribed a focus of attention). This 23 

analysis revealed no significant differences. 24 

General Discussion 25 
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The last decade has seen considerable advances in our understanding of the more pertinent 1 

characteristics in formulating effective instruction. Endorsement of externally focused and implicit 2 

information in promoting automaticity of movements seems well grounded in the literature, with 3 

mechanisms such as Prinz's (1997) 'action-effect principle' and Wulf et al.'s (2001) 'constrained action 4 

hypothesis’ conveying similar messages. Nevertheless, this theoretical understanding has failed to 5 

align with mechanisms accounting for the benefits of process goals and external/kinaesthetic motor 6 

imagery, both of which encourage attentional shifts towards and not away from movements. The 7 

current investigation has attempted to begin to address this research lacuna, over three experiments 8 

designed to identify nuances where an internal focus may be useful. This is in line with a proposed 9 

facilitative ‘somaesthetic awareness’ (Shusterman, 2011; Toner & Moran, 2015) when making error 10 

corrections or re-learning movements.   11 

In essence, it has not yet been specifically tested whether it is changes in offline planning, 12 

online movement adjustments, or both forms of motor control that facilitate improved outcome 13 

performance with an external focus of attention, nor whether an internal focus of attention also has 14 

the capability to enhance components of motor control / outcome performance when pertinent task 15 

information is of proprioceptive (i.e. internal) nature. A noteworthy effort to partially address the 16 

former research lacuna was by Lohse and colleagues (2010; 2012). Two studies respectively utilised 17 

time between trials and pre-movement time to infer offline movement planning efficiency. In line 18 

with the conjecturing of the constrained action hypothesis (Wulf et al., 2001), both studies 19 

demonstrated that an external focus of attention facilitated improved force-production accuracy, 20 

whilst concurrently reducing the time used for offline planning: indicating reduced conscious 21 

processing and increased automaticity compared to an internal focus of attention. However, two 22 

limitations of these studies are that, firstly, time used for offline planning was a measure of efficiency 23 

(i.e., how many cognitive resources were utilised) rather than efficacy (i.e., how good the movement 24 

plan was) and secondly, online motor control’s role within performance was not explicitly measured. 25 
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Therefore, offline planning and/or online motor control’s precise contribution to the creation of 1 

outcome performance under different foci of attention is unknown. Our first experiment aimed to 2 

address this question via a fast target-directed visual aiming task, wherein the variability methodology 3 

of Khan et al. (2006) was used to simultaneously infer offline planning and online motor control’s 4 

contribution to outcome performance. 5 

The results of Experiment 1 revealed no differences between foci in the directional component 6 

of movement, but within the amplitude component, the internal group displayed reduced (i.e. 7 

superior) movement endpoint CE, AE, and VE compared to the external group. In sum, participants 8 

exhibited superior outcome performance when an internal focus was adopted. Variability findings 9 

confirmed that focus of attention-based differences manifest within offline movement planning. The 10 

internal group demonstrated overall reduced variability throughout movement compared to the 11 

external group, but the shape of these variability profiles did not differ. The underlying processes 12 

yielding Experiment 1’s results are likely several fold. Firstly, the fine motor skill nature of our visual-13 

aiming task likely raised the pertinence of proprioceptive information. The internal group may have 14 

been able to exploit the congruent (i.e., internal in nature) feedback of the task and achieve better 15 

performance than the external group via improved movement planning. Secondly, differences may 16 

have manifested within the amplitude component of movement because the impulse and resultant 17 

proprioceptive feedback generated to move the hand an amplitude of 20cm, to the target, should be 18 

exponentially greater than any impulse / feedback generated within the directional component.  19 

Experiment 2 and 3 aimed to further Experiment 1 by increasing the congruence between 20 

pertinent task characteristics and participants’ internal focus of attention. Experiment 2 removed 21 

vision during the aiming task to increase proprioceptive task demands (i.e., participants had to identify 22 

target locations through proprioception only). In line with our hypotheses, results revealed that an 23 

internal focus overall yielded superior outcome performance within the amplitude and direction 24 

components of movement. Analysis of variability throughout movement lent further credence to the 25 
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notion that focus of attention effects originate within offline movement planning for non-continuous 1 

tasks. As in Experiment 1, movement variability was reduced with an internal compared to an external 2 

focus, but the shape of variability profiles did not differ. Finally, Experiment 3 aimed to build on 3 

Experiment 2 via the utilisation of a leg-extension task and the modulation of proprioceptive feedback 4 

strength: via a weight attached to a single group of participants’ ankles. The provision of an ankle 5 

weight should increase proprioceptive feedback strength by increasing musculotendinous 6 

mechanoreceptor sensitivity (Bullock-Saxton, Wong, & Hogan, 2001; Suprak, Ostering, Donkelaar, 7 

& Karduna, 2007). Results within the no-weight group demonstrated significantly lower (p = 0.05) 8 

CE values when adopting an internal focus of attention second. Additionally, the weight group 9 

demonstrated less endpoint CE when adopting an internal compared to an external focus. 10 

Concurrently, across both weight-groups, an internal focus yielded more efficient muscle activation 11 

compared to an external focus, and the shape of internal and external variability profiles were again 12 

indicative of enhanced planning mechanisms under an internal focus.  13 

In sum, our findings provide strong support to the notion that focus of attention-based 14 

performance differences originate within offline movement planning for non-continuous tasks. 15 

Additionally, our results support the notion of facilitative somaesthetic awareness and that an internal 16 

focus congruent with task demands can benefit performance and efficiency. This finding makes 17 

logical sense when one considers an external focus also has to be congruent with the intended external 18 

movement outcome to facilitate optimal performance (e.g. focusing on the dart-board when the task 19 

requires the dart-board to be hit) (Land, Tenenbaum, Ward, & Marquardt, 2013; Russell, Porter, & 20 

Campbell, 2014). Similarly, Pelleck and Passmore (2017) show that when novice golfers adopted an 21 

internal focus more closely related to a putting task, where there was a clear external outcome demand 22 

and proprioceptive salience was arguably low, a number of performance variables suffered including 23 

accuracy, EMG and movement kinematics. It is possible that had the external focus direction within 24 

experiment 1 and 2 been directed towards the target as opposed to the cursor itself, task demands may 25 
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have been more congruent with an external focus and thus, it could be argued that we would have 1 

seen a benefit of an external focus in this instance. However, the authors wanted to maintain 2 

comparability between internal and external instructions to avoid a confound as per recommendations 3 

from Wulf (2013).  4 

However, it should be noted that the current study is not the first to investigate focus of 5 

attention effects within tasks featuring high proprioceptive demands, but is the first with the explicit 6 

aim of investigating internal focus of attention and task congruence. Limitations of prior studies 7 

which prohibit the generalisation of their results to this research question include: task instructions 8 

muddling an internal and external focus (Lohse et al., 2011; Lohse, 2012); internal focus instructions 9 

that may not have been congruent with the external task demands / may only have directed attention 10 

to a small subset of task-relevant proprioception (Land et al., 2013; Makaruk, Porter, & Makaruk, 11 

2013; Sherwood, Lohse, & Healy, 2014); and tasks which were primarily dependent on online motor 12 

corrections (Schlesinger, Porter, & Russell, 2013). It is important to highlight that despite 13 

proprioception’s arguably heightened pertinence in force production tasks, prior studies adopting this 14 

approach have shown some converse results to that of the current research in target-directed aiming 15 

tasks (e.g. Freedman, Caligiuri, Wulf, & Robin, 2007). We argue that the simplistic nature of these 16 

tasks is a likely contributor to this. In these instances, task simplicity would have meant reduced 17 

availability of proprioceptive information to enhance planning and thus, no benefits from an internal 18 

focus. 19 

Conclusion. 20 

Theoretical implications derived from attentional focus literature advocate a perpetual 21 

external focus for optimal movement execution, but this is incompatible with promotion of widely 22 

used process goals and external/kinaesthetic imagery for practitioners. The current findings refute 23 

the rigidity of the constrained action hypothesis and provide evidence that an internal focus can 24 

facilitate superior performance and efficiency over an external focus when congruent with task 25 
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demands. This has strong implications for sports or tasks where proprioceptive salience is high, 1 

such as diving, artistic gymnastics or weightlifting. Where traditional attentional focus literature 2 

would advocate external instructions and feedback within these tasks (see Wulf, 2013 for a review) 3 

e.g. a focus towards the surface of the water, support surface or bar respectively, the current 4 

findings would suggest a focus on the body movements themselves. In line with the principles 5 

underlying specificity theory (Proteau, 1992), sources of afferent information most useful to 6 

performance execution are typically prioritised during processing. Thus, adopting an internal focus 7 

within these sports should enhance congruence between the ‘instructions and feedback provided’ 8 

and the ‘availability of pertinent afferent information for task execution’, which is largely 9 

proprioceptive in nature within these sports (see Figure 6 for sporting examples with varying 10 

degrees of pertinence of proprioceptive and visual information for task execution). We suggest 11 

internal instructions and feedback for tasks high in pertinence of proprioceptive information but low 12 

in pertinence of visual information and external instructions and feedback for tasks low in 13 

pertinence of proprioceptive information but high in pertinence of visual information. With this in 14 

mind, it is therefore not a surprise that there seems more robust evidence for benefits of an external 15 

compared to internal focus when most sports / tasks rely heavily on visual information for task 16 

success (e.g. towards a ball or target). Clearly not all tasks can be classified as exclusively high or 17 

low in pertinence of proprioceptive and visual information for task execution. Thus, we would 18 

suggest that this works on a continuum basis with some sports likely benefitting from both forms of 19 

instructions and feedback in different situations. This is in line with aforementioned arguments 20 

made by Collins et al. (2015) and Lawrence et al. (2011) discussing nuances of attentional focus 21 

instructions dependent on instructional familiarisation, task relevance and salience of movement 22 

effects for task execution.  23 

The present experiments also provide compelling evidence that attentional focus effects 24 

manifest within offline movement planning for non-continuous tasks. This may have practical 25 
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implications for performance under pressure where athletes are more likely to adopt strategies (such 1 

as an internal focus in proprioceptive tasks) to improve movement planning as a reaction to pressure 2 

inhibiting the effectiveness of error corrections made during a movement (see Allsop, Lawrence, 3 

Gray & Khan, 2017). By focusing on the body, findings suggest a shift in importance to offline 4 

planning processes, which subsequently should also inhibit any decrements in response 5 

programming under pressure. 6 

--------------------------------------------------------------------------------------------------------------- 7 
Insert Figure 6 here 8 
--------------------------------------------------------------------------------------------------------------- 9 

    10 
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 1 
 2 
Figure 1. Experiment 1. The task was a target-directed aiming movement, performed using a 3 

handheld stylus on a digitising tablet whereby the X/Y movement of the stylus on the tablet plane 4 
corresponded to the X/Y movement of the cursor on the monitor plane. Participants were required 5 
to move the cursor from the start position to one of three targets as quickly and accurately as 6 
possible. 7 
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 1 

Figure 2. Experiment 1. External and internal group means (+/-1 SEm) endpoint amplitude CE at 2 
acquisition, immediate retention, and transfer. 3 
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1 
Figure 3. Experiment 2. External and internal group means (+/-1 SEm) endpoint amplitude AE at 2 

acquisition, immediate retention, and transfer.  3 
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  1 

Figure 4. Experiment 3. This was a leg-extension task whereby participants had to extend their leg 2 
from a start position to a target position. Participants were required to reproduce a pre-encoded 3 
target position as accurately as possible.  4 
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 1 

Figure 5.  Experiment 3. Panel A and B show CE for the internal and external focus conditions at 2 

acquisition and transfer for the no-weight and weight groups, respectively. Panels C, D, E and F 3 
show CE for each focus of attention when they appear as the first (i.e., initial) focus of attention in 4 
the counterbalanced order, and when they occur second. Panels C and E display the no-weight 5 
group’s acquisition and transfer, respectively. Panels D and F display the weight group’s acquisition 6 
and transfer, respectively. Error bars equal +/- 1 standard error. 7 
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 1 

 2 

 3 
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 6 
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 11 

Figure 6. The above image categorises example sports based on the pertinence of proprioceptive 12 

and visual afferent information for successful task execution. Based on the findings, the authors 13 

would advocate internal instructions and feedback for tasks high in pertinence of proprioceptive 14 

information but low in pertinence of visual information (highlighted in lighter background). For 15 

tasks low in pertinence of proprioceptive information but high in pertinence of visual information 16 

(highlighted in darker background) we would advocate external instructions and feedback. 17 
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Table 1 1 

Descriptives and statistical results of experiment 1 omnibus analysis. 2 

Table 1 (A): Descriptives of outcome performance 

Component Focus of attention Trial Block CE AE VE 

Amplitude External Acquisition  24.04 (18.29) 26.08 (16.79) 16.67 (6.52) 
  

Retention  30.13 (25.76) 31.78 (25.75) 14.76 (12.27) 
  

Transfer 33.83 (33.99) 36.09 (32.62) 16.19 (8.85) 
 

Internal Acquisition 11.77 (12.03) 14.17 (10.94) 11.24 (4.10) 
  

Retention 10.02 (11.84) 12.16 (11.05) 9.04 (2.38) 
  

Transfer 7.75 (9.62) 10.66 (8.20) 9.89 (3.99) 

Directional  External Acquisition .512 (1.32) 6.78 (1.58) 8.41 (2.04) 
  

Retention -0.96 (3.44) 6.76 (3.10) 8.04 (3.73) 
  

Transfer -1.14 (5.09) 8.56 (3.75) 10.17 (3.73) 
 

Internal Acquisition .42 (3.44) 6.34 (3.03) 7.98 (3.39) 
  

 Retention -.23 (2.94) 6.06 (2.46) 7.76 (3.09) 

    Transfer -.33 (3.94) 6.69 (2.73) 8.76 (3.00) 

 3 

Table 1 (B): Statistics of outcome performance 

Component Effect CE AE VE 

Amplitude 2 FOA x 3 Trial Block Interaction F1.27, 48.27 = 3.93,  p = .044, ηp² = .09** F1.40, 53.23 = 3.89, p = .040, ηp² = .09** F1.70, 64.68 = .076,  p = .900, ηp² = .002 
 

FOA Main Effect F1, 38 = 11.15,  p = .002, ηp² = .23** F1, 38 = 11.72, p = .001, ηp² = .24** F1, 38 = 10.04, p = .003, ηp² = .21** 
 

Trial Block Main Effect F1.27, 48.27 = .74, p = .481, ηp² = .02 F1.40, 53.23 = .902, p = .379, ηp² = .02 F1.70, 64.68 = 1.58, p = .217, ηp² = .04 

Directional 2 FOA x 3 Trial Block Interaction F1.56, 59.40 = .39, p = .631, ηp² = .01 F1.45, 55.14 = 1.78, p = .185, ηp² = .05 F2, 76 = .54, p = .586, ηp² = .01 
 

FOA Main Effect F1, 38 = .45, p = .504, ηp² = .01 F1, 38 = .1.69, p = .202, ηp² = .04 F1, 38 = 1.04, p = .314, ηp² = .03 

  Trial Block Main Effect F1.56, 59.40 = 2.63, p = .093, ηp² = .07 F1.45, 55.14 = 5.38, p = .014, ηp² = .12** F2, 76 = 5.95, p = .004, ηp² = .14** 

 4 

Table 1 (C): Descriptives of variability for  planning and control contributions  

Component Focus of attention Trial Block VE at PkA VE at PkV VE at PkNA VE at Endpoint 

Amplitude External Acquisition  12.23 (4.62) 20.39 (4.75) 23.03 (4.83) 16.67 (6.52) 
  

 Retention 12.95 (4.47) 19.09 (6.37) 21.25 (10.72) 14.76 (12.27) 
  

Transfer 15.45 (4.92) 22.28 (5.74) 22.01 (6.03) 16.19 (8.85) 
 

Internal Acquisition 8.91 (3.32) 14.85 (2.76) 19.77 (4.14) 11.24 (4.10) 
  

Retention 8.03 (2.63) 13.98 (2.91) 16.53 (2.61) 9.04 (2.38) 

    Transfer 11.83 (6.53) 16.14 (3.77) 18.20 (5.26) 9.89 (3.99) 

Component Focus of attention Trial Block VE at 25% VE at 50% VE at 75% VE at 100% 

Directional External Acquisition  3.73 (.78) 5.42 (1.26) 6.93 (1.60) 8.41 (2.04) 
  

Retention  3.53 (1.23) 5.15 (1.87) 6.51 (2.66) 8.04 (3.73) 
  

Transfer 3.98 (1.05) 6.11 (1.74) 8.27 (2.73) 10.17 (3.73) 
 

Internal Acquisition  3.56 (1.02) 5.24 (1.66) 6.86 (2.33) 7.98 (3.39) 
  

Retention 3.17 (1.14) 4.71 (1.57) 6.07 (1.84) 7.47 (2.35) 

    Transfer 3.76 (1.09) 5.84 (1.61) 7.47 (2.27) 8.76 (3.00) 

 5 

Table 1 (D): Statistics of variability for planning and control contributions 

Offline Planning 

Component Effect VE at PkA and PkV  Component Effect VE at 25% Movement Dist. 

Amplitude  2 FOA x 3 Trial Block x 2 Marker  F1, 76 =  .84, p = .438, ηp² = .02  Directional 2 FOA x 3 Trial Block  F2, 76 = .20, p = .816, ηp² = .05 
 

2 FOA x 3 Trial Block  F2, 76 =  1.93, p = .879, ηp² < .01  
 

FOA Main Effect F2, 76 = .79, p = .380, ηp² = .02 
 

2 FOA x 2 Marker F1, 38 =  1.27, p = .267, ηp² = .03    Trial Block Main Effect F2, 76 = 5.30, p = .007, ηp² = .12** 
 

3 Trial Block x 2 Marker F1, 76 =  1.18, p = .313, ηp² = .03  
   

 
FOA Main Effect F1, 38 =  30.62, p < .001, ηp² = .45**  

   

 
 Trial Block Main Effect F2, 76 =  12.66, p < .001, ηp² = .25**  

   

  Marker Main Effect  F1, 38 =  72.35, p < .001, ηp² = .66**  
   

Online Control 

Component Effect VE at PkV, PkNA, and endpoint  Component Effect VE at 75 and 100% Movment Dist. 

Amplitude 2 FOA x 3 Trial Block x 3 Markers  F3.24, 123.05 =  .22, p = .895, ηp² = .01  Directional 2 FOA x 3 Trial Block x 2 Distance  F2, 76 = .56, p = .58, ηp² = .01 
 

2 FOA x 3 Trial Block  F2, 76 =  .14, p = .870, ηp² < .01  
 

2 FOA x 3 Trial Block  F2, 76 = .507, p = .604, ηp² = .01 
 

2 FOA x 2 Marker F2, 76 =  .80, p = .455, ηp² = .02  
 

2 FOA x 2 Distance F1, 38 = 1.33, p = .256, ηp² = .03 
 

3 Trial Block x 2 Marker F3.24, 123.05 =  1.67, p = .173, ηp² = .04  
 

3 Trial Block x 2 Distance F2, 76 = .84, p = .437, ηp² = .02 
 

FOA Main Effect F138 =  16.80, p < .001, ηp² = .31**  
 

FOA Main Effect F1, 38 = .86, p = .359, ηp² = .02 
 

Trial Block Main Effect F2, 76 =  5.02, p = .001, ηp² = .12**  
 

Trial Block Main Effect F2, 76 = 7.36, p = .001, ηp² = .16** 

  Marker Main Effect  F2, 76 =  39.93, p < .001, ηp² = .51**    Distance Main Effect F1, 38 = 86.66, p < .001, ηp² = .70** 

 6 

 7 

* p < .052. ** p < .05. 8 

 9 

 10 

 11 
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Table 2 1 

Descriptives and statistical results of experiment 2 omnibus analysis. 2 

Table 2 (A): Descriptives of outcome performance 

Component Focus of attention Trial Block CE AE VE 

Amplitude External Acquisition  -7.30 (40.71) 35.49 (25.24) 23.49 (7.44) 

  Retention  24.03 (29.36) 31.41 (26.42) 17.76 (8.48) 

  Transfer -35.17 (38.68) 44.86 (29.33) 26.90 (25.77) 

 Internal Acquisition -3.07 (40.11) 34.59 (21.45) 24.12 (7.52) 

  Retention 30.71 (29.77) 36.53 (25.38) 18.36 (9.70) 

  Transfer 9.12 (18.50) 21.02 (11.83) 9.78 (5.43) 

Directional  External Acquisition .92 (10.91) 36.35 (22.28) 42.81 (28.09) 

  Retention -3.31 (12.79) 31.47 (24.02) 35.15 (30.20) 

  Transfer 2.91 (14.63) 34.66 (23.96) 39.37 (30.21) 

 Internal Acquisition -3.03 (5.94) 22.32 (10.13) 27.13 (12.26) 

   Retention -5.42 (10.96) 19.33 (12.03) 22.04 (13.63) 

    Transfer -2.45 (12.55) 22..06 (15.71) 25.21 (17.37) 

 3 

Table 2 (B): Statistics of outcome performance 

Component Effect CE AE VE 

Amplitude 2 FOA x 3 Trial Block Interaction F1.36, 51.82 = 1.489, p = .232, ηp² = .04 F1.37, 51.90 = 8.54, p = .002, ηp² = .18** F1.49, 56.51 = 2.54, p = .103, ηp² = .06 

 FOA Main Effect F1, 38 = 14.29, p = .001, ηp² = .27** F1, 38 = 1.09, p = .302, ηp² = .03 F1, 38 = .29, p = .592, ηp² = .008 

 Trial Block Main Effect F1.36, 51.82 = 25.301, p < .001, ηp² = .40** F1.37, 51.90 = .16, p = .767, ηp² = .004 F1.49, 56.51 = 5.08, p = .016, ηp² = .12** 

Directional  2 FOA x 3 Trial Block Interaction F1.59, 60.282 = .16, p = .851, ηp² = .004 F1.63, 61.90
 = .25, p = .732, ηp² = .007 F1.61, 61.20 = .346, p = .708, ηp² = .009 

 FOA Main Effect F1, 38 = 2.07, p = .159, ηp² = . 05 F1, 38 = 5.04, p = .031, ηp² = .12** F1, 38 = 4.02, p = .052, ηp² = .10* 

  Trial Block Main Effect F1.59, 60.28 = 2.77, p = .082, ηp² = .07 F1.63, 61.90 = 4.37, p = .023, ηp² = .10** F1.61, 61.20 = 8.46, p = .001, ηp² = .18** 

 4 

Table 2 (C): Descriptives of variability for  planning and control contributions  

Component Focus of attention Trial Block VE at PkA VE at PkV VE at PkNA VE at Endpoint 

Amplitude External Acquisition  12.50 (8.08) 17.11 (3.36) 25.09 (4.23) 23.49 (7.44) 

   Retention 11.08 (6.44) 15.27 (5.28) 21.00 (9.31) 17.76 (8.48) 

  Transfer 15.00 (14.03) 18.07 (11.08) 28.23 (23.22) 26.90 (25.80) 

 Internal Acquisition 14.25 (5.76) 20.21 (4.28) 27.56 (8.27) 24.76 (7.52) 

  Retention 11.77 (4.29) 17.12 (4.80) 22.93 (9.25) 18.36 (9.70) 

    Transfer 13.06 (4.88) 18.73 (4.88) 23.29 (6.50) 19.78 (5.43) 

Component Focus of attention Trial Block VE at 25% VE at 50% VE at 75% VE at 100% 

Directional External Acquisition  11.67 (6.74) 22.84 (14.59) 34.36 (23.02) 42.81 (28.09) 

  Retention  10.02 (8.00) 19.20 (17.23) 28.94 (26.83) 35.15(30.20) 

  Transfer 12.09 (9.40) 23.89 (21.07) 34.58 (29.13) 39.37 (30.21) 

 Internal Acquisition  7.06 (2.99) 12.89 (5.97) 19.87 (9.53) 27.13 (12.26) 

  Retention 5.61 (2.84) 10.50 (6.21) 16.06 (10.20) 22.04 (13.63) 

    Transfer 6.37 (3.50) 11.66 (7.43) 17.989 (12.71) 25.21 (17.37) 

 5 

Table 2 (D): Statistics of variability for planning and control contributions 

Offline Planning 

Component Effect VE at PkA and PkV  Component Effect VE at 25% Movement Dist. 

Amplitude  2 FOA x 3 Trial Block x 2 Marker  F2, 76 = .22, p = .802, ηp² = .01 
 

Directional 2 FOA x 3 Trial Block  F1.49, 56.55 = 1.18, p = .303, ηp² = .03 

 2 FOA x 3 Trial Block  F1.44, 33.32 = 2.00, p = .157, ηp² = .05 
 

 FOA Main Effect F1, 38 = 6.91,  p = .012, ηp² = .15** 

 2 FOA x 2 Marker F1, 38 = .79, p = .380, ηp² = .02 
 

   Trial Block Main Effect F1.49, 56.55 = 6.94, p = .005, ηp² = .15** 

 3 Trial Block x 2 Marker F2, 76 = .30, p = .740, ηp² = .01 
 

   

 FOA Main Effect F1, 38 = .36, p = .552, ηp² = .01 
 

   

  Trial Block Main Effect F1.44, 33.32 = 5.95, p = .010, ηp² = .14** 
 

   

  Marker Main Effect  F1, 38 = 25.18, p < .001, ηp² = .40** 
 

   

Online Control 

Component Effect VE at PkV, PkNA, and endpoint  Component Effect VE at 75 and 100% Movment Dist. 

Amplitude 2 FOA x 3 Trial Block x 3 Markers  F2.31,  87.81 = 1.82, p = .162, ηp² = .05 
 

Directional 2 FOA x 3 Trial Block x 2 Distance  F1.31, 52.12 = 4.35, p = .032, ηp² = .10 

 2 FOA x 3 Trial Block  F1.32, 50.15 = 2.22, p = .136, ηp² = .06 
 

 2 FOA x 3 Trial Block  F1.59, 60.21 = .39, p = .630, ηp² = .01 

 2 FOA x 2 Marker F1.46,  50.54 = 1.71, p = .196, ηp² = .04 
 

 2 FOA x 2 Distance F1, 38 = .06, p = .810, ηp² < .01 

 3 Trial Block x 2 Marker F2.31,  87.81 = 1.80, p = .165, ηp² = .05 
 

 3 Trial Block x 2 Distance F1.31, 49.71 = 5.34, p = .017, ηp² = .12** 

 FOA Main Effect F1,  38 < .01, p = .993, ηp² < .01 
 

 FOA Main Effect F11, 38 = 4.77, p = .035, ηp² = .11** 

 Trial Block Main Effect F1.32, 50.15 = 4.47, p = .030, ηp² = .11** 
 

 Trial Block Main Effect F1.59, 60.21 = 7.28, p = .003, ηp² = .16** 

  Marker Main Effect  F1.46, 50.54 = 25.23, p < .001, ηp² = .40** 
 

  Distance Main Effect F1. 38 = 92.82, p < .001, ηp² = .71** 

 6 

* p < .052. ** p < .05. 7 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 3 1 

Descriptives and statistical results of experiment 3 omnibus analysis. 2 

Table 3 (A): Descriptives of outcome performance 

Ankle Focus of attention Order Trial Block CE AE VE 

Weighted External before an internal FOA Acquisition  4.58 (2.47) 5.13 (2.28) 3.75 (1.29) 

   Transfer 5.01 (2.19) 5.26 (2.02) 3.57  (.67) 

  after an internal FOA Acquisition  4.44 (3.42) 5.30 (2.64) 3.53 (.70) 

   Transfer 5.12 (2.19) 5.79 (3.01) 3.81 (1.19) 

 Internal before an external  FOA Acquisition 4.50 (3.39) 5.34 (2.58) 3.39 (1.09) 

   Transfer 5.12 (3.52) 5.86 (2.81) 4.05 (1.01) 

  after an external FOA Acquisition  3.02 (2.04) 4.19 (1.18) 3.76 (.71) 

   Transfer 2.80 (2.31) 3.80 (1.58) 3.49 (.95) 

No-Weight External before an internal FOA Acquisition 4.79 (2.41) 5.19 (1.99) 3.45 (.82) 

   Transfer 6.49 (3.14) 6.82 (2.86) 4.17 (1.11) 

  after an internal FOA Acquisition  6.23 (4.60) 6.74 (4.02) 3.81 (.94) 

   Transfer 6.11 (4.97) 6.58 (4.57) 3.93 (1.30) 

 3 

Table 3 (B): Statistics of outcome performance 

Ankle Effect CE AE VE 

Weighted 2 FOA x 2 Block x 2 Order Interaction F1, 15 = .34, p = .567, ηp² = .02 F1, 15 = .33, p = .575, ηp² = .02 F1, 15 = .59, p = .456, ηp² = .04 

 2 FOA x 2 Trial Block Interaction F1, 15 = .48, p = .501, ηp² = .03 F1, 15 = .26, p = .616, ηp² = .02 F1, 15 = .24, p = .631, ηp² = .02 

 2 FOA x 2 Order Interaction F1, 15 = 4.74, p = .046, ηp² = .24** F1, 15 = 3.17, p = .095, ηp² = .18 F1, 15 = .05, p = .821, ηp² < .01 

 2 Block x 2 Order Interaction F1, 15 = .44, p = .517, ηp² = .029 F1, 15 = .81, p = .382, ηp² = .05 F1, 15 = 2.86, p = .112, ηp² = .16 

 FOA Main Effect F1, 15 = 4.45, p = .052, ηp² = .23* F1, 15 = 2.64, p = .125, ηp² = .15 F1, 15 < .01, p = .968, ηp² < .01 

 Trial Block Main Effect F1, 15 = .83, p = .376, ηp² = .05 F1, 15 = .29, p = .598, ηp² = .02 F1, 15 = .38, p = .550, ηp² = .02 

 Order Main Effect F1, 15 = .48, p = .498, ηp² = .03 F1, 15 = .84, p = .374, ηp² = .05 F1, 15 = .02, p = .891, ηp² < .01 

No-Weight 2 FOA x 2 Block x 2 Order Interaction F1, 16 = 4.47, p = .051, ηp² = .22* F1, 16 = 3.66, p = .074, ηp² = .17 F1, 16 = .01, p = .912, ηp² < .01 

 2 FOA x 2 Trial Block Interaction F1, 16 = .19, p = .671, ηp² = .01 F1, 16 = .13, p = .723, ηp² = .01 F1, 16 = .06, p = .808, ηp² < .01 

 2 FOA x 2 Order Interaction F1, 16 = .20, p = .660, ηp² = .01 F1, 16 = .07, p = .793, ηp² < .01 F1, 16 = .18, p = .675, ηp² = .01 

 2 Block x 2 Order Interaction F1, 16 = .01, p = .943, ηp² < .01 F1, 16 = .49, p = .494, ηp² = .03 F1, 16 = 4.02, p = .062, ηp² = .21 

 FOA Main Effect F1, 16 = .15, p = .708, ηp² = .01 F1, 16 = .06, p = .815, ηp² < .01 F1, 16 < .01, p = .991, ηp² < .01 

 Trial Block Main Effect F1, 16 = 5.73, p = .029, ηp² = .26** F1, 16 = 5.81, p = .028, ηp² = .27** F1, 16 = 8.36, p = .011, ηp² = .34** 

  Order Main Effect F1, 16 = .03, p = .864, ηp² < .01 F1, 16 = .137, p = .716, ηp² = .01 F1, 16 < .01, p = .971, ηp² < .01 

 4 

Table 3 (C): Descriptives of variability for  planning and control contributions 

Ankle Focus of attention Order Trial Block VE at PkA VE at PkV VE at PkNA VE at Endpoint 

Weighted External before an internal FOA Acquisition  1.62 (.50) 4.37 (.91) 7.26 (1.15) 7.49 (1.01) 

   Transfer 1.76 (.67) 5.56 (.69) 9.99 (1.05) 11.28 (1.10) 

  after an internal FOA Acquisition  1.98 (.88) 4.16 (.68) 7.09 (.91) 7.64 (1.06) 

   Transfer 2.12 (.73) 6.03 (.83) 10.41 (1.39) 11.51 (1.62) 

 Internal before an external  FOA Acquisition 2.19 (1.09) 4.63 (.65) 7.54 (1.01) 8.19 (.84) 

   Transfer 2.50 (.80) 5.84 (.93) 10.03 (.98) 11.12 (1.28) 

  after an external FOA Acquisition  1.57 (.52) 4.26 (.80) 7.21 (1.36) 7.74 (1.15) 

   Transfer 1.45 (.51) 5.71 (.63) 9.98 (.97) 11.20 (1.22) 

No-Weight External before an internal FOA Acquisition 2.04 (.71) 4.57 (.71) 7.45 (.97) 7.52 (1.06) 

   Transfer 2.28 (.57) 5.28 (.76) 9.21 (.63) 10.64 (1.23) 

  after an internal FOA Acquisition  1.72 (.90) 4.50 (.96) 7.40 (1.00) 8.15 (1.41) 

   Transfer 1.88 (.63) 6.03 (.97) 10.78 (1.25) 12.05 (2.26) 

 Internal before an external FOA Acquisition 2.48 (1.81) 5.25 (1.34) 8.37 (1.45) 8.84 (1.51) 

   Transfer 2.36 (.79) 5.97 (1.14) 10.32 (1.30) 11.49 (1.73) 

  after an external FOA Acquisition  1.78 (.72) 3.88 (.91) 6.90 (.68) 7.41 (1.17) 

      Transfer 1.71 (.79) 5.39 (.70) 9.41 (.91) 10.63 (1.38) 

 5 

Table 3 (D): Descriptives of variability for  planning and control contributions 

Offline Planning Online Control 

Ankle Effect VE at PkA and PkV Ankle Effect VE at PkV, PkNA, and endpoint 

Weighted  2 FOA x 2 Trial Block x 2 Marker x 2 Order  F2, 15 = 16.22, p =.001, ηp² = .52** Weighted  2 FOA x 2 Trial Block x 3 Marker x 2 Order  F2, 30 = .16, p = .851, ηp² = .01 

  2 FOA x 2 Trial Block x 2 Marker F2, 15 = .78, p =.391, ηp² = .05   2 FOA x 2 Trial Block x 3 Marker F2, 30 = 1.18, p = .322, ηp² = .07 

  2 FOA x 2 Marker x 2 Order  F2, 15 = 1.06, p =.319, ηp² = .07   2 FOA x 3 Marker x 2 Order  F2, 30 = .06, p = .941, ηp² < .01 

  2 FOA x 2 Marker  F2, 15 = .02, p =.896, ηp² < .01   2 FOA x 3 Marker  F2, 30 = .11, p = .895, ηp² = .01 

  2 FOA x 2 Trial Block x 2 Order  F2, 15 = .39, p =.542, ηp² = .03   2 FOA x 2 Trial Block x 2 Order  F1, 15 = 2.12, p = .166, ηp² = .12 

  2 FOA x 2 Trial Block  F2, 15 = .37, p =.552, ηp² = .02   2 FOA x 2 Trial Block  F1, 15 = 2.22, p = .157, ηp² = .13 

  2 FOA x 2 Order  F2, 15 = 2.17, p =.162, ηp² = .13   2 FOA x 2 Order  F1, 15 = .02, p = .887, ηp² < .01 

 FOA Main Effect F2, 15 = .44, p =.517, ηp² = .03  FOA Main Effect F1, 15 = .07, p = .795, ηp² = .01 



54 
 

  Trial Block Main Effect F2, 15 = 66.17, p < .001, ηp² = .82**   Trial Block Main Effect F1, 15 = 331.93, p < .001, ηp² = .95** 

 Marker Main Effect  F2, 15 = 248.90, p <.001, ηp² = .94**  Marker Main Effect  F1.36, 20.33 = 432.73, p < .001, ηp² = .97** 

 Order Main Effect F2, 15 = 2.70, p =.121, ηp² = .15  Order Main Effect F2, 30 = .28, p = .607, ηp² = .02 

No-Weight  2 FOA x 2 Trial Block x 2 Marker x 2 Order  F2, 16 = 2.15, p = .162, ηp² = .12 No-Weight  2 FOA x 2 Trial Block x 3 Marker x 2 Order  F2, 32 = .80, p = .457, ηp² = .05 

  2 FOA x 2 Trial Block x 2 Marker F2, 16 = .26, p = .618, ηp² = .02   2 FOA x 2 Trial Block x 3 Marker F2, 32 = 1.46, p = .248, ηp² = .08 

  2 FOA x 2 Marker x 2 Order  F2, 16 = 1.08, p = .315, ηp² = .06   2 FOA x 3 Marker x 2 Order  F2, 32 = 1.02, p = .374, ηp² = .06 

  2 FOA x 2 Marker  F2, 16 = .16, p = .691, ηp² = .01   2 FOA x 3 Marker  F2, 32 = .02, p = .984, ηp² < .01 

  2 FOA x 2 Trial Block x 2 Order  F2, 16 = 4.99, p = .040, ηp² = .24**   2 FOA x 2 Trial Block x 2 Order  F1, 16 = 10.62, p = .005, ηp² = .40** 

  2 FOA x 2 Trial Block  F2, 16 = .70, p = .415, ηp² = .04   2 FOA x 2 Trial Block  F1, 16 = 1.37, p = .258, ηp² = .08 

  2 FOA x 2 Order  F2, 16 = 7.40, p = .015, ηp² = .32**   2 FOA x 2 Order  F1, 16 = 2.58, p = .128, ηp² = .14 

 FOA Main Effect F2, 16 = .17, p = .682, ηp² = .01  FOA Main Effect F1, 16 = .04, p = .853, ηp² < .01 

  Trial Block Main Effect F2, 16 = 14.87, p = .001, ηp² = .48**   Trial Block Main Effect F1, 16 = 117.18, p < .001, ηp² = .92** 

 Marker Main Effect  F2, 16 = 508.04, p < .001, ηp² = .97**  Marker Main Effect  F1.25, 20.02 = 180.47, p < .001, ηp² = .92** 

 Order Main Effect F2, 16 = 2.13, p = .164, ηp² = .12  Order Main Effect F2, 32 = 6.27, p = .023, ηp² = .28** 

 1 

* p < .052. ** p < .05. 2 

 3 

 4 

 5 

 6 

 7 


