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We analyze a composite Higgs model based on the confining SUð3Þ gauge theory with Nf ¼ 8 Dirac
fermions in the fundamental representation. This gauge theory has been studied on the lattice and shown to
be well described by a dilaton effective field theory (EFT). Here we modify the EFT by assigning standard-
model quantum numbers such that four of the composite pseudo-Nambu-Goldstone boson (pNGB) fields
form the standard-model Higgs doublet, by coupling it to the top quark and by adding to the potential a term
that triggers electroweak symmetry breaking. The model contains a pNGB Higgs boson, a set of heavier
pNGBs, and an approximate dilaton in the same mass range. We study the phenomenology of the model
and discuss the amount of tuning required to ensure consistency with current direct and indirect bounds on
new physics, highlighting the role of the dilaton field.
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Introduction.—Lattice studies of the SUð3Þ gauge theory
with Nf ¼ 8 Dirac fermions in the fundamental represen-
tation show evidence of a light scalar singlet [1–5]. (Similar
results hold with Nf ¼ 2 fermions in the symmetric
representation [6–11].) The suggestion that this state might
be a dilaton has fueled a revival of interest in the dilaton
effective field theory (EFT). Its history dates back to
dynamical symmetry breaking [12–14], well before this
recent lattice-driven activity [15–26]. Existing lattice data,
analyzed via the dilaton EFT [20,21], yielded the first
measurement of a key, large anomalous dimension related
to the fermion bilinear condensate [27]. The results are
consistent with earlier expectations [28] and with recent
high-loop perturbative studies [29,30].
This theory, with a global SUð8Þ × SUð8Þ symmetry,

broken to the diagonal SUð8Þ, is a natural candidate to
build a composite Higgs model (CHM) [31–33] (see also
[34–40] and references therein). Lattice studies of SUð2Þ
[41–47], SUð4Þ [48–52], and Spð4Þ [53–55] gauge theories
have explored the possible origin of CHMs. The SUð3Þ
gauge theory has distinctive features: the presence of a light
scalar singlet that modifies the EFT description of the CHM
(see also Ref. [56]) and the presence of large anomalous
dimensions. Furthermore, ordinary baryons can give rise to
top compositeness [34].

In this Letter, we show that the presence of the dilaton
field in the EFT allows us to construct an appealing CHM
based on the SUð8Þ × SUð8Þ=SUð8Þ coset. We demon-
strate that observables such as the ratio of the mass of the
Higgs boson, mh ≃ 126 GeV, to the electroweak vacuum
expectation value (VEV), v ≃ 246 GeV, and to the mass of
the additional heavy scalars, are substantially altered with
respect to generic CHM expectations. We highlight how
current lattice studies might already be exploring phenom-
enologically relevant regions of parameter space. These
statements depend on the value of a (currently) unknown
scaling dimension w, which in principle can be measured
on the lattice.
The model.—We assign to the eight Dirac fermions

the quantum numbers indicated in Table I. The global
SUð8Þ × SUð8Þ symmetry group is broken both explicitly
(by a diagonal mass term) and spontaneously (by the strong
dynamics) to its diagonal SUð8Þ subgroup. The gauge

TABLE I. Quantum number assignments of the Dirac fermions.
SUð3Þc × SUð2ÞL ×Uð1ÞY is the standard model (SM) gauge
group, while SUð3Þ is the strongly coupled gauge symmetry. We
denote with α ¼ 1, 2 the SUð2ÞL index. The fermions denoted by
R1;2 form a fundamental representation of the global SUð2ÞR
custodial symmetry. A model with similar assignments has been
considered in Ref. [34].

Fermion SUð2ÞL Uð1ÞY SUð3Þc SUð3Þ
Lα 2 0 1 3
R1;2 1 ð 1=2

−1=2Þ 1 3

T 1 2=3 3 3
S 1 0 1 3
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group of the standard model (SM) is a subgroup of the
unbroken SUð8Þ. The EFT description contains 63 pseudo-
Nambu-Goldstone bosons (pNGBs), denoted as πa, and
one additional SUð8Þ singlet, the dilaton, which we denote
as χ. We ignore theUð1ÞA meson, which is a singlet and has
a large mass, due to the anomaly.
The CHM construction starts from the observation that

eight of the pNGBs have the correct quantum numbers to
form two copies of the Higgs doublet of the standard
model. We further modify the dilaton EFT of Refs. [20–22]
by adding two terms: a coupling of one of these two
doublets to the top quark and a related potential term for the
pNGBs. In this Letter, we ignore all SM fermions other
than the top; the generalization to include other SM
fermions within the EFT framework is straightforward.
The EFT Lagrangian density that results from this

construction is the following:

L ¼ 1

2
ð∂μχÞ2 þ Lπ þ LM − VðχÞ

þ LY − Vt þ L1; ð1Þ

where the dilaton field χ acts as a conformal compensator,
coupling to EFT operators in such a way as to restore scale
invariance in Eq. (1). It acquires a VEV hχi≡ Fd, breaking
scale invariance spontaneously.
The kinetic term for the pNGBs is

Lπ ¼
F2
π

4

!
χ
Fd

"
2

Tr½DμΣðDμΣÞ†&; ð2Þ

where Fπ enters the EFT as the scale of spontaneous
breaking of SUð8Þ × SUð8Þ. The matrix-valued field
Σ represents the 63 pNGBs spanning the SUð8Þ ×
SUð8Þ=SUð8Þ coset. The covariant derivatives describe
couplings to the SM gauge bosons, following the embed-
ding identified in Table I. Their kinetic terms and self-
interactions are the standard ones, which we include in L1.
Σ satisfies the nonlinear constraint ΣΣ† ¼ 18.
The Dirac mass given to the fermions of the new strong

sector leads directly to the following term in the EFT:

LM ¼ M2
πF2

π

4

!
χ
Fd

"
y
Tr½Σþ Σ†& ð3Þ

and breaks the global symmetry. The quantity M2
π sets the

scale for the masses of the 59 pNGBs besides those that
become the Higgs doublet. The parameter y has been
interpreted as the scaling dimension of the fermion bilinear
condensate in Ref. [27]. Its value is y ¼ 2.06' 0.05 [22].
The scalar potential VðχÞ describes the self-interactions

of the dilaton field. It encodes both the spontaneous and
explicit breaking of scale symmetry originating from the
underlying gauge theory. We provided a general form for
this potential in Ref. [22], where it played a key role.

Here we will not find it necessary to further invoke the
explicit form of VðχÞ.
At the level of the EFT, we describe the mass of the top

quark using the Yukawa interaction

LY ¼ ytFπ

!
χ
Fd

"
z
ðQ̄α

LtRÞTr½PαΣ& þ H:c:: ð4Þ

The underlying gauge theory determines the scaling dimen-
sion z.Hα ≡ Tr½PαΣ& transforms as the Higgs doublet, with
quantum numbers ð2;−1=2Þ under SUð2ÞL × Uð1ÞY. Here
α is the index of SUð2ÞL. We take the projectors Pα to be
the following 8 × 8 matrices:

Pα ¼
!
P̃α 04
04 04

"
; ð5Þ

with

P̃1 ¼
1

2

0

BBBB@

0 0 1 0

0 0 0 0

0 0 0 0

0 −1 0 0

1

CCCCA
; P̃2 ¼

1

2

0

BBBB@

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

1

CCCCA
:

ð6Þ

This choice, motivated by simplicity, will ensure that one
Higgs doublet is responsible for electroweak symmetry
breaking.
The operator in Eq. (4) breaks the SUð8Þ × SUð8Þ global

symmetry. In the underlying theory, interactions respon-
sible for generating Eq. (4) also generate a SUð8Þ × SUð8Þ
breaking contribution to the potential of the form

Vt ¼ −Ct

!
χ
Fd

"
wX2

α¼1

jTr½PαΣ&j2: ð7Þ

The (unknown) scaling dimension w derives from the
underlying gauge theory. This potential has non-Abelian
global symmetry SUð2ÞL × SUð2ÞR × SUð4Þ, the SUð4Þ
remaining due to the vanishing entries in Pα. The custodial
SUð2ÞR symmetry, suppressing the effect of new physics on
precision electroweak observables, is preserved here for our
choice of Pα, despite the fact that the Yukawa interaction in
Eq. (4) breaks this symmetry explicitly. There are sublead-
ing contributions to this potential that break SUð2ÞR, but
they are smaller than Vt and we will not consider them.
Similarly, the gauging of the SM subgroup breaks the
global symmetries and leads to additional contributions to
the potential, but they are smaller and we neglect them in
this analysis.
A loop of top quarks can also generate the interaction

in Eq. (7), naturally making the constant Ct positive.
In addition, partial top compositeness can generate
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Eq. (4)—and hence Eq. (7)—in which case the field Qα
L

couples linearly to the baryon operator Bα
L ¼ LαðTR2Þ† þ

R2ðTLÞ†α and tR to BR ¼ 2R1ðTR2Þ þ LðTLÞ in the
underlying theory. (Parentheses indicate contraction of
spinor indices.) Alternatively, Eq. (4) can be generated
by coupling the elementary fermion bilinear ðQ̄α

LtRÞ to the
mesonic operator Oα

M ¼ ðLαR̄1Þ − ϵαβðR2L̄βÞ.
The vacuum.—We first analyze the vacuum of the EFT.

Both the pNGB that we identify with the Higgs field and
the dilaton have nontrivial vacuum values, which must be
calculated simultaneously. Then we determine the mass of
the composite Higgs boson in this vacuum, emphasizing
the significant role played by the dilaton field.
The three terms without derivatives or the top quark field

in the Lagrangian of Eq. (1) define a potential for both the
pNGBs and the dilaton. It is helpful to parametrize the Σ
field as

Σ ¼ exp

2

64iθ

0

B@
02×2 −i12 02×4
i12 02×2 02×4
04×2 04×2 04×4

1

CA

3

75; ð8Þ

where only the degree of freedom corresponding to the
pNGB component of the Higgs boson (represented by θ) is
shown, for simplicity. The potential then reads

Wðχ; θÞ ¼ VðχÞ − Ct

!
χ
Fd

"
w
sin2θ

− 2M2
πF2

π

!
χ
Fd

"
y
ð1þ cos θÞ; ð9Þ

Minimizing this potential determines the vacuum value Fd
of χ, and the vacuum value of θ (the misalignment angle).
We henceforth use θ to denote this vacuum value
rather than the dynamical pNGB field. The electroweak
scale v ≃ 246 GeV is related to the misalignment angle
through v ¼

ffiffiffi
2

p
Fπ sin θ. The top acquires the mass

mt ¼ ytv=
ffiffiffi
2

p
.

At the minimum of the potential, we have hχi≡ Fd,
while

cos θ ¼ M2
πF2

π

Ct
; ð10Þ

provided that M2
πF2

π < Ct; otherwise at the minimum we
get θ ¼ 0, preserving electroweak symmetry. Furthermore,
the minimum must satisfy

0 ¼ ∂V
∂χ

$$$$
Fd

−
4yM2

πF2
π

Fd

−
M2

πF2
π

Fd

!
w
sin2θ
cos θ

− 2yð1 − cos θÞ
"
: ð11Þ

These equations determine θ in terms of Ct and provide a
relation between Fd and other EFT parameters with the
dilaton potential V.
To comport with the SM at currently accessible energies,

we must find a small misalignment angle θ ≪ 1, that is, a
large separation between v and Fπ . This is achieved by
tuning Ct in Eq. (10).
For θ ≪ 1, Eq. (11) determining Fd simplifies in an

essential way. The second line is suppressed and may be
neglected in first approximation. The resulting equation is
precisely the one used in Refs. [20,21] to relate Fd to the
other parameters in the EFT employed there. That EFT,
with no potential term proportional to Ct, was used to fit
lattice data for the SUð3Þ gauge theory with Nf ¼ 8. The
functional form of the scalar potential VðχÞ was con-
strained in that fit.
The mass matrix for the χ and θ degrees of freedom is

approximately given (for small misalignment angle) by

M2 ¼

0

@
M2

d θ
ffiffi
2

p
M2

πFπðy−wÞ
Fd

θ
ffiffi
2

p
M2

πFπðy−wÞ
Fd

θ2M2
π

1

A; ð12Þ

The (1, 1) entry is the second derivative of Wðχ; θÞ with
respect to χ at χ ¼ Fd in the limit θ → 0. It is expressible
in terms of the scalar potential VðχÞ and other EFT
parameters by

M2
d ¼

∂2V
∂χ2

$$$$
Fd

− 4yðy − 1ÞF
2
π

F2
d
M2

π; ð13Þ

which was employed in Refs. [20,21] to fit lattice data. In
the present context, Md is the approximate mass of the
heavy scalar eigenstate, composed principally of χ.
By diagonalizing the mass matrix in Eq. (12), we find

that the massmh of the lightest eigenstate (corresponding to
the Higgs boson) is given by

m2
h

v2
¼ M2

π

2F2
π

!
1 −

2M2
πF2

πðy − wÞ2

M2
dF

2
d

"
; ð14Þ

up to OðθÞ corrections. The second term in the large
parentheses, arising from the presence of the dilaton field,
is a distinctive feature of this model. Its presence allows us
to accommodate the measured ratiom2

h=v
2 ≈ 0.26, drawing

directly on lattice data for which M2
π=2F2

π is typically an
order of magnitude larger.
Phenomenology.—In this section we examine the spec-

trum of particles of our CHM and the conditions under
which constraints from collider experiments are satisfied.
We also discuss the amount of fine-tuning needed for the
model to satisfy the experimental constraints.
The spin 0 part of the spectrum of our EFT consists of 63

NGBs and pNGBs associated with the spontaneous break-
ing of the SUð8Þ × SUð8Þ symmetry of the underlying
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gauge theory, along with a scalar state of approximate mass
Md. The 3 massless NGBs are eaten by theW' and Z. One
state is the relatively light pNGB Higgs boson of mass mh
[Eq. (14)], while 59 are heavier pNGB states with their
mass scale set byMπ. One additional heavier state has mass
Md. The quantities Fπ and Fd are decay constants asso-
ciated with these states. To set the relative size of Mπ , Md,
Fπ , we draw directly from the LSD lattice measure-
ments [5].
Neglecting the SM gauge interactions, the EFT has

approximate SUð2ÞL × SUð2ÞR × SUð4Þ global symmetry.
The pNGB multiplet decomposes into representations of
this symmetry as follows:

63 ¼ ð3; 1; 1Þ þ ð1; 3; 1Þ þ ð1; 1; 1Þ þ ð2; 2; 1Þ
þ ð1; 1; 15Þ þ ð2; 1; 4Þ þ ð1; 2; 4Þ þ ð1; 1; 1Þ: ð15Þ

The misaligned vacuum breaks SUð2ÞL × SUð2ÞR sponta-
neously to its diagonal subgroup SUð2ÞD. As a result, the
composite spectrum is organized in a set of (approximate)
multiplets of SUð2ÞD × SUð4Þ.
To determine the spectrum, we first specify the quantities

fM2
π;M2

d; F
2
π; F2

d; y; mh; vg. We use data from lattice stud-
ies of the Nf ¼ 8 gauge theory. We extract the ratios
M2

π=F2
π and M2

d=F
2
π from Tables III and IV of Ref. [5] for

five different constituent fermion masses mfi. We then
take y ¼ 2.06' 0.05 and F2

π=F2
d ¼ 0.086' 0.015 from

Ref. [22] and set mh and v to their experimentally
determined values. Finally, we must set the overall scale
for the new composite sector. As a benchmark, we take
Mπ ¼ 4 TeV, to ensure that the 59 heavier pNGBs lie
outside the reach of direct searches. The strongest bounds
coming from searches for color octet scalars indicate that

Mπ ≳ 3.7 TeV [57], although the precise bound depends
on an additional coupling [58,59]. The calculated spectrum
is then shown in Table II. It is nearly independent of which
lattice point (mfi value) we use in the analysis. The small
variation in the mass of the heaviest singlet state (the
dilaton) is mostly due to fluctuations in the lattice meas-
urement of M2

d=M
2
π .

In Table II we show only the central values for the
masses of the spin 0 states, for the representative choices of
parameters discussed previously, to illustrate the high
degree of degeneracy among the heavier states, all of
which have masses sitting within 15% of one another.
The overall determination of the mass scale is affected by
the large (and correlated) uncertainties originating in the
lattice measurements of Md and Fπ , and the indirect
determination of Fd.
In calculating the spectrum, the quantities w (for which

there is no existing determination from lattice data) and Ct
are chosen to reproduce the aforementioned constraints. We
find that Ct ≈ ð2 TeVÞ4, with the precise determination
depending on the lattice point considered. Similarly,
Fπ ≈ 1 TeV.
In Fig. 1, we show the impact of uncertainties in the

lattice data on the allowed range for the scaling dimension
w. For illustration purposes, we take lattice data forM2

π=M2
d

at the second fermion mass point mf2 from Ref. [5] (along
with values for y and F2

π=F2
d from Ref. [22]) accounting for

their uncertainties and shade in yellow the allowed ranges
for m2

h=v
2 and w. We see that if we require m2

h=v
2 ≃ 0.26

for consistency with experiment, w could lie anywhere
in the range 4.5 < w < 5.2. Similar results hold for the
other Table II values of the fermion mass mf. If lattice
simulations are able to measure w with some precision

TABLE II. Estimated composite spectrum determined using the procedure described in the text. The states are labeled using their
SUð2ÞD × SUð4Þ quantum numbers, shown in the left-hand column. Themfi refer to the five different values for the constituent fermion
mass appearing in the lattice study of Ref. [5] (arranged in ascending order) that is used as an input into these estimates. We show only
the central values of the masses, to highlight the high level of degeneracy among the heavier states, which is independent of uncertainties
coming from the lattice determinations of M2

d and F2
π=F2

d.

SUð2ÞD SUð4Þ

Mass (TeV)

mf1 mf2 mf3 mf4 mf5

1 1 4.31 4.73 4.29 4.96 4.87
3 1 4.35 4.37 4.39 4.40 4.40
2 4 4.18 4.19 4.20 4.20 4.20
3 1 4.03 4.03 4.04 4.04 4.04
1 1 4.03 4.03 4.04 4.04 4.04
1 1 4.03 4.03 4.04 4.04 4.04
1 15 4.00 4.00 4.00 4.00 4.00
1 1 3.99 3.98 3.98 3.98 3.98
2 4 3.84 3.83 3.83 3.82 3.82
3 1 3.67 3.66 3.64 3.64 3.64
1 1 0.126 0.126 0.126 0.126 0.126
3 1 0 0 0 0 0
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(and measure M2
πF2

π=M2
dF

2
d with a similar precision), then

meeting the requirement that m2
h=v

2 ≃ 0.26 could require
an mf value outside the range of Table II.
Obtaining a spectrum with a realistic hierarchy mh ≪

Mπ does require tuning Ct. For the parameter choices
required to produce the spectrum in Table II, the misalign-
ment angle satisfies θ ≃ 0.19, implying a tuning for Ct of
order 2% through Eq. (10). The dilaton indirectly reduces
the requisite tuning through Eq. (14): the effect of the term
in parentheses (which depends on the dilaton) is to further
suppress m2

h=M
2
π , helping the colored pNGBs evade direct

detection bounds.
Couplings between the Higgs and pairs ofW or Z gauge

bosons, as well as couplings between the Higgs and pairs of
top quarks, deviate from their SM predictions in this CHM.
These couplings include contributions from both the pNGB
and dilaton components of the Higgs particle, and the
expressions for them take the same form as those derived in
the literature (see, e.g., Ref. [38] and references therein). In
the limit θ → 0, the Higgs would couple to the gauge
bosons and top with the same strength as the SM Higgs.
Using the benchmark Mπ ¼ 4 TeV and the values for

parameters selected by the lattice data of Ref. [5], we find
that the ratio between the Higgs couplings to W and Z
bosons and their SM values is approximately 0.98. The
coupling to top pairs has additional weak dependence on
the unknown scaling dimension z, which arises because the
dilaton component of the Higgs boson has a coupling to the
top that is z dependent from Eq. (4). For the value z ≃ 2–3,
the coupling strength to the top becomes the same as in the

SM. Over a plausible range of values for z, the top coupling
deviates from its SM value only by a few percent.
The amplitudes h → gg and h → γγ also deviate slightly

from their SM values. New electrically charged and colored
pNGBs contribute to these amplitudes at the loop level, but
are sufficiently heavy for our choice of benchmark that
their contributions are negligible.
Considering all of these deviations, the signal sig-

nificance for Higgs boson production in all observable
channels would deviate from the SM prediction by no more
than a few percent. Given the current accuracy of the Higgs
measurements, which is no better than 8% [60], these
effects will lie within experimental bounds, and a more
precise analysis can be deferred.
The masses of composite states that are not included in

the EFT have also been calculated in the Nf ¼ 8 gauge
theory on the lattice in Ref. [5]. In particular, these data
allow us to estimate the masses of the vector (ρ) and axial
(a1) mesons. Using lattice measurements for ratiosMρ=Mπ

and Ma1=Mπ , we estimate that the ρ would have a mass in
the 6–8 TeV range and the a1 a mass in the 9–11 TeV range,
for our choice of benchmarkMπ ¼ 4 TeV. We therefore do
not expect them to be detectable at the LHC. Given the
small deviations in Higgs couplings, as well as the large ρ
and a1 masses, precision electroweak observables such
as the S parameter will lie within current experimental
bounds.
Summary.—We have argued that the SUð3Þ gauge theory

with Nf ¼ 8 fundamental fermions provides an attractive
ultraviolet completion for a realistic composite Higgs
model. This model has the distinctive feature that the
near–conformal behavior of its underlying dynamics has
been revealed by lattice studies.
We have drawn on such lattice results to compute several

observable quantities within the model. These include the
misalignment angle in the vacuum of the theory, the mass of
the Higgs boson, and the spectrum of heavy scalars. We
have also examined the Higgs boson couplings and its
production rates at the LHC. The model passes all the direct
and indirect tests currently available, at the price of a
moderate amount of fine-tuning for one of the coefficients
in the EFT potential.
We have described the model in terms of the dilaton EFT

from Refs. [20–22], requiring only a simple addition to
realize the Higgs doublet as composite pseudo-Nambu-
Goldstone bosons. Because of the approximate scale
invariance of the dilaton EFT, it is possible to accommodate
a realistic value of the mass of the composite Higgs boson
even for the values of the ratio Mπ=Fπ currently available
from lattice studies. As a consequence, the mass of the
Higgs boson is suppressed by an order of magnitude with
respect to that of the other pNGBs and dilaton in the EFT.
We look to future lattice studies for a determination of

the scaling dimensions z and w, which play important
phenomenological roles. It will also be interesting to

3 4 5 6

2

4

6

8

FIG. 1. The ratio m2
h=v

2, as a function of w, for y ¼ 2.06'
0.05 and F2

π=F2
d ¼ 0.086' 0.015 [22], for the LSD measure-

ments taken at the second fermion mass (mf2) in the range [5].
The horizontal black dashed line represents the experimental
value m2

h=v
2 ≃ 0.26. The yellow shaded region is the uncertainty,

which is dominated by the substantial uncertainty in the meas-
urement of the mass Md of the scalar, and in the quantity F2

π=F2
d.

For the best case scenario of w ¼ 4.7, the resulting uncertainty in
m2

h=v
2 is approximately an order of magnitude larger than the

central value. Still, as the error in the measurement of Md is
reduced, the range of acceptable w values required to maintain
m2

h=v
2 ≈ 0.26 will diminish and potentially shift slightly.
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perform a more detailed study of the precision electroweak
observables and explore the rest of the parameter space of
this theory.
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