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Abstract: The effect of temperature on structural response is a concern in engineering applications.
The literature has highlighted that applied temperature loads change the system vibration behaviour.
However, there is limited information available about temperature impacting the dynamic response.
This paper investigated the heating rates effects on modal parameters for both with crack and
without crack conditions in a cantilever beam. A beam subjected to three heating rates was consid-
ered: 2, 5, and 8 ◦C/min. The first one was assumed as a slow heating rate while the others were
assumed as moderate and high, respectively. This controlled rate of heating was achieved by using a
proportional-integral-derivative (PID) temperature controller. The results showed that heating at dif-
ferent rates has little impact on modal parameters. While this effect is minimal at lower temperatures
and more evident at higher temperatures. The results of temperature ramped at 2, 5, and 8 ◦C/min
were compared with the numerical and analytical results only for all the isothermal conditions. It
was observed that the beam natural frequency and its modal amplitude decrease with the increase in
temperatures and crack depths. Therefore, it is concluded that the rate of heating can make a slight
impact on the dynamics response of any mechanical system.

Keywords: thermal distribution; vibration analysis; vibration testing; modal response; fracture mechanics

1. Introduction

Vibration-based inspection of mechanical structures for structural health monitoring
is widely studied [1–3]. However, many engineering practical applications such as auto-
motive, aircraft, power plants, etc. operate in the thermal environment along with the
mechanical loads. Especially, during the heating and cooling process of the thermal systems,
the vibration response may vary significantly. Published research methods are infeasible to
capture the addition of thermal disturbances. The rate of heating and temperature exposure
duration may vastly affect the system response, especially during crack growth. Under
coupled loads, the dynamic response of the structure is subjective by the mechanical and
thermal loads [4]. The change in temperature in the structure fluctuated the vibration
centre and eigenfrequencies. The vibration response in such conditions is the combined
effects of thermal, loading mode, material properties, and boundary conditions [5,6]. The
temperature change alters the fundamental frequency of the system [7,8].

The mechanical structures which operate in cyclic loads for a long duration generate
heat on the system apart from the applied thermal loads. This change in global temperature
affects the intensity of stress concentration which consequently modifies the structural dy-
namic response [9]. Therefore, the thermal effect and its distribution on vibrating structures
are the focus area of research [5,6,10–19]. The thermal vibration and thermal expansion
behaviours are apparent due to the increase in interatomic bond length at elevated tem-
peratures [10]. Zhang et al. [16] studied the thermal effect on the beam using the energy
flow method. Their investigation underlined that the thermal vibration increases with an
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increase in temperature mainly derived from thermal loads and changes in material proper-
ties. In the same way, the thermal effect on the vibration behaviour of functionally graded
material influenced the natural frequencies at high temperatures [14,15]. Cui and Hu [17]
observed that temperature-dependent material properties have little influence on the
natural frequency at low temperature. However, there was a large influence when the tem-
perature increased. Fazzolari [20] studied the temperature-dependent material properties
under thermal loads on functionally graded material. They noticed that there was an atten-
uation rate of dimensionless frequency at high temperatures. Silva et al. [18] investigated
modal analysis in a non-uniform temperature distribution heated rectangular plate with
the help of digital image correlation. They found that resonant frequencies of the plate were
higher for transverse heating than longitudinal heating. Kawamura et al. [21] observed that
a decrease in Young’s modulus at varying temperatures decreases the vibrating amplitude.

In the literature, the vibration or dynamic response of cracked structures has been
investigated by different approaches [2,22–35]. However, the existing research on crack
growth did not consider the effect of the rate of heating with different temperature exposure
times. When the mechanical structure is exposed to high temperatures for a long duration,
it may modify the mechanical properties of the material and hence influence the structural
dynamic response. Furthermore, the dynamic behaviour of the structure depends on many
factors associated with the applications and design. In this paper, the modal response of the
structure is evaluated in the presence of thermal and mechanical loads. It investigated the
heating rate’s effect on modal parameters for both with crack and without crack conditions
in a cantilever beam. A beam subjected to three heating rates was considered: 2, 5, and
8 ◦C/min. The first one was assumed as a slow heating rate while the others were assumed
as moderate and high, respectively. This controlled rate of heating was achieved by using
a proportional-integral-derivative (PID) temperature controller. The results showed that
heating at different rates has little impact on modal parameters. While this effect is minimal
at lower temperatures and more evident at higher temperatures. The results of temperature
ramped at 2, 5, and 8 ◦C/min were compared with the numerical and analytical results
only for all the isothermal conditions. It was observed that the beam natural frequency
and its modal amplitude decrease with the increase in temperatures and crack depths.
Therefore, it is concluded that the rate of heating can make a slight impact on the dynamics
response of any mechanical system.

The paper is organized as follows. In Section 2, the analytical modelling to eval-
uate the modal response of a cantilever beam considering the accelerometer mass and
effective length of the beam is defined. Section 3 describes the details of the experimental
set-up and procedure for modal analysis of the cantilever beam. Section 4 presents the
numerical simulation. Section 5 provides the results and discussion. Section 6 contains
the conclusions.

2. Analytical Modelling
2.1. Modal Response for a Cantilever Beam

We considered a Bernoulli-Euler beam theory for structure in fixed free-boundary
conditions with a uniform cross-section, as shown in Figure 1. The transverse vibration
force F(x, t) was applied at the fixed end with an accelerometer mass at the other end. Let
L be the length, ∆L is the axial expansion of the length due to thermal expansion. Therefore,
Le is the effective length, B is the width, and h is the thickness of the beam. The beam is
considered in one-dimensional longitudinal expansion only because the dimensions B and
h are relatively small compared to the beam’s length. The inertia force in the beam element
can be expressed using the free-body diagram as:

P = (ρAdx + m)
∂2u
∂t2 (x, t) (1)

where u represents the transverse displacement, ρ is the mass density of the beam, A is the
cross-sectional area, and m is accelerometer mass.
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Figure 1. (a) Cantilever beam; (b) free body diagram for beam element.

The shear force equation for the beam element can be written as:

(S(x, t) + dS(x, t))− S(x, t) + F(x, t)dx = (ρAdx + m)
∂2u
∂t2 (x, t) (2)

where dS = ∂S
∂x dx, Similarly, the moment equation for beam can be written as:

(M(x, t) + dM(x, t))−M(x, t) + (S(x, t) + dS(x, t))dx + F(x, t)dx
dx
2

= 0 (3)

where dM = ∂M
∂x dx. The shear force and moment equations reduce to Equations (4) and (5),

respectively:
∂S
∂x

(x, t) + F(x, t) = (ρA + m)
∂2u
∂t2 (x, t) (4)

− ∂M
∂x

(x, t) = S(x, t) (5)

The force equation can be written in term of displacement and transverse force as:

− ∂2M
∂x2 (x, t) + F(x, t) = (ρA + m)

∂2u
∂t2 (x, t) (6)

The relation between the bending moment and transverse displacement is expressed
using the Euler-Bernoulli beam theory as:

M(x, t) = EI(x)
∂2u
∂x2 (x, t) (7)

where E is the elastic modulus and I is the moment of inertia of the beam. When the beam
has a uniform cross-section, the equation of the vibrational beam can be transformed as:
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F(x, t) = EI
∂4u
∂x4 (x, t) + (ρA + m)

∂2u
∂t2 (x, t) (8)

For free bending vibration, the applied force is zero, therefore, the equation is reduced
to Equation (9):

EI
(ρA + m)

(
∂4u(x, t)

∂x4

)
+

∂2u(x, t)
∂t2 = 0 (9)

The solution of Equation (9) can be obtained through a separation of dependent
variable method expressed as:

u(x, t) = U(x)V(t) (10)

Thus, the free vibration equation of the beam can be deduced in the form of a separable
variable method as Equations (11)–(13):

EI
(ρA + m)

(
∂4U(x)V(t)

∂x4

)
+

∂2U(x)V(t)
∂t2 = 0 (11)

EI
(ρA + m)

V(t)
(

d4U(x)
dx4

)
+ U(x)

d2V(t)
dt2 = 0 (12)

− EI
(ρA + m)

(
d4U(x)

dx4

)
U(x)

=

d2V(t)
dt2

V(t)
(13)

Let ω2 be constant:

− EI
(ρA + m)

(
d4U(x)

dx4

)
U(x)

=

d2V(t)
dt2

V(t)
= −ω2 (14)

Separating the time and spatial variables respectively, we have:

d2V(t)
dt2 + ω2V(t) = 0 (15)

(
d4U(x)

dx4

)
−ω2 (ρA + m)U(x)

EI
= 0 (16)(

d4U(x)
dx4

)
− β4U(x) = 0 (17)

The solution of Equation (15) can be written as:

V(t) = B1sinωt + B2 cos ωt (18)

The solution of Equation (17) is satisfied if:

β4 =
(ρA + m)

EI
ω2 (19)

The solution for vibration mode, Equation (17) is assumed as:
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U(x) = A0sin(βx) + A1cos(βx) + A2sinh(βx) + A3cosh(βx) (20)

where A0, A1, A2, and A3 are constants that can be obtained by applying the boundary
conditions. The boundary conditions of the fixed-free beam are:

U(x) = 0 (zero displacement)
dU(x)

dx = 0 (zero slope)

∣∣∣∣∣ at x = 0

And
d2U(x,)

dx2 = 0 (zero bending moment)
d3U
dx3 (x) = 0 (zero shear f orce)

∣∣∣∣∣ at x = Le

Applying the first boundary conditions, we get:

A1 = −A3 (21)

A0 = −A2 (22)

Therefore, the harmonic solution can be rewritten using Equations (21) and (22) as:

U(x) = A0{sin(βx)− sinh(βx)}+ A1{cos(βx)− cosh(βx)} (23)

d2U(x)
dx2 = −β2[A0{sin(βx) + sinh(βx)}+ A1{cos(βx) + cosh(βx)}] (24)

d3U(x)
dx3 = −β3[A0{cos(βx) + cosh(βx)} − A1{sin(βx)− sinh(βx)}] (25)

Since the bending moment and shear force is zero at x = Le, we have from the second
boundary condition:

d2U(Le)

dx2 = −β2[A0{sin(βLe) + sinh(βLe)}+ A1{cos(βLe) + cosh(βLe)}] = 0 (26)

A1 = −A0

[
sin(βLe) + sinh(βLe)

cos(βLe) + cosh(βLe)

]
(27)

[A0{sin(βLe) + sinh(βLe)}+ A1{cos(βLe) + cosh(βLe)}] = 0 (28)

d3U(x)
dx3 = −β3[A0{cos(βx) + cosh(βx)} − A1{sin(βx)− sinh(βx)}] = 0 (29)

[A0{cos(βLe) + cosh(βLe)} − A1{sin(βLe)− sinh(βLe)}] = 0 (30)

Forming Equations (28) and (30) into matrix format, we have:[
sin(βLe) + sinh(βLe) cos(βLe) + cosh(βLe)
cos(βLe) + cosh(βLe) −sin(βLe) + sinh(βLe)

][
A0
A1

]
=

[
0
0

]
(31)

Solving Equation (31), we obtained the characteristic Equation (32). The subscript is
added because multiple roots satisfy the equation.

cos(βnLe)cosh(βnLe) = −1 (32)

The roots of the Equation (32) are:
βnLe = 1.87510 for n = 1
βnLe = 4.69409 for n = 2
Therefore, the circular frequency of the beam can be expressed by rearranging

Equation (19) as:
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ω2 = β4 EI
(ρA + m)

(33)

ω = (βnLe)
2

√
EI

(ρA + m)Le4 (34)

f =
ω

2π
=

(βnLe)
2

2π

√
EI

(ρA + m)Le4 (35)

The modulus E is a temperature-dependent property that varies with respect to
temperature. The modulus decreases with increasing thermal energy along the beam. This
decrease is assumed as being linear with temperature. The approximate relationship [36] is
given in Equation (36):

E(T) = Eo

(
1− ϕ

T
To

)
(36)

where ϕ = 0.3 is the proportional constant, To is the melting temperature, and T is the
temperature at the measured value of E, and Eo is the modulus at 20 ◦C. Hence, Equation
(35) can be written as:

f =
ω

2π
=

(βnLe)
2

2π

√
E(T)I

(ρA + m)Le4 (37)

The bending moment equation of the beam considering the temperature dependent
elastic modulus can be written as:

M = E(T)I
d2u
dx2 (38)

M = −E(T)Iβ2 A0[{sin(βLe) + sinh(βLe)}
−
{

sin(βLe)+sinh(βLe)
cos(βLe)+cos h(βLe)

}
{cos(βLe) + cos h(βLe)}

] (39)

where A0 is the load amplitude at time t. The total deformation energy (Q) due to the beam
deformation is derived from the direct bending moment equation.

Q =
∫ Le

0

(M)2

2E(T)I
dx (40)

Q =
E(T)I

2
A0

2(β)4
(

Q1
2 − C2Q2

2
)

(41)

where C =
{

sin(βLe)+sinh(βLe)
cos(βLe)+cos h(βLe)

}
Q1 =

∫ Le
0 {sin(βx) + sinh(βx)}2dx

=
(

Le
2 −

sin2(βLe)
4β

)
+
(

Le
2 −

sinh2(βLe)
4β

)
− cos(βLe)sin h(βLe)

β + sin(βLe)cos h(βLe)
β

(42)

Q2 =
∫ Le

0 {cos(βx) + cosh(βx)}2dx
=
(

Le
2 + sin2(βLe)

4β

)
+
(

Le
2 + sinh2(βLe)

4β

)
+
(

sin(βLe)cos h(βLe)
β + cos(βLe)sin h(βLe)

β

) (43)

The strain of the beam is dependent on applied stress and temperature. Therefore, we
can express strain as a function of stress and temperature as Equation (44):

εx = f (σ, T) (44)

dεx =

(
∂εx

∂σ

)
T

dσ +

(
∂εx

∂T

)
σ

dT (45)

where E =
(

∂σ
∂εx

)
T

and α = 1
L

dL
dT =

(
∂x
∂T

)
σ
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While
(

∂εx
∂σ

)
T

and
(

∂εx
∂T

)
σ

are variation in strain due to stresses and temperature
respectively. The direct strain of the beam can be found by integrating Equation (46) for
uniform temperature with linear thermal expansion.

dεx =
dσ

E
+ αdT (46)

2.2. Heat Conduction Equation

The heat conduction equation for a one-dimensional system is estimated based on
Fourier’s law expressed as Equation (47):

qx = −kA
∂T
∂x

(47)

And the heat flux along the beam can be calculated as:

q′′ = −k
(

T2 − T1

Le

)
(48)

where k is the thermal conductivity, q′′ = Ph
A. , P is the power (in watts) which is supplied

to heat the beam, h is the thickness of the beam, A is the cross-section area of the beam,
and Le is the effective length of the beam.

2.3. Equation of Dynamic Response of the Beam under the Crack Condition

Changes in the deformation energy and natural frequencies due to crack can be
computed from the bending moment and flexural rigidity [37]:

∆Q =
M2

2χt
(49)

where χt is the stiffness of the crack beam represented by Equation (50):

χt =
Bh2E(T)

72πF
(

tc
H

) (50)

where F
(

tc
H

)
= 0.638

(
tc
H

)2
− 1.035

(
tc
H

)3
+ 3.720

(
tc
H

)4
− 5.177

(
tc
H

)5
+ 7.553

(
tc
H

)6
− 7.332

(
tc
H

)7
+

2.491
(

tc
H

)8
is the crack function and tc is the crack depth. Change in the natural frequency

due to the crack on the beam can be found as:

∆ωnc =
∆Q
2Q

ωn (51)

Therefore, the new natural frequency of crack beam can be computed from Equation (53):

ωnc = ωn − ∆ωnc (52)

ωnc =

(
1− ∆Q

2Q

)
ωn (53)

The modal amplitude of the cantilever beam was analysed using Equation (10). The
amplitude is dependent on the respective fundamental frequency of the without crack and
with crack beam. Therefore, the fundamental frequency of the without crack specimen was
obtained from Equations (37) and (53) for a with crack beam.
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3. Experimentation
3.1. Specimen Properties and Preparation

Experimental specimens were prepared from aluminium 2024-T3. The thermal and
chemical properties of the material are given in Tables 1 and 2, respectively. The elastic
modulus was measured with a dynamic mechanical analyser and thermal expansion was
measured using a thermal-mechanical analyser. The thermal conductivity was calculated
from the relation of thermal diffusivity as given in Equation (54). The thermal diffusivity
was extracted from [38].

K =
k
ρc

(54)

where K is the thermal diffusivity, ρ is the density, and c is the specific heat.
Figure 2 shows the geometry of the specimen. In this analysis, four types of specimen:

no crack, and 0.25, 0.5, and 1 mm crack depth of rectangular size were selected. The
predefined crack depth was selected on the criteria that the initial crack dept was 0.25 mm
and propagated to 1 mm. The location of the crack is the same for all crack depths which is
4.5 mm away from the fixed end. This location was selected, based on the specimen design,
to have a maximum stress concentration at the fillet area. The specimen had four holes
of 6 mm diameter for mounting on the mechanical shaker and another hole of 2.5 mm
diameter was provided for the accelerometer at the other end. The specimens were made
by a computer numerical control (CNC) machine to produce accurate dimensions.

Table 1. Thermal properties of Al 2024-T3 at different temperatures.

Temperature
(◦C)

Elastic Modulus
(E) GPa

Thermal Expansion (α)
µm/◦C

Thermal Conductivity (k)
W/mm-◦C

25 73.4 0.1066 0.1136

50 72.7 0.1078 0.1180

100 69.3 0.1091 0.1260

150 68.5 0.1266 0.1287

200 65.2 0.1359 0.1309

Table 2. Chemical composition of Al 2024-T3.

Chemical Si Fe Mn Mg Cr Zn Ti V Other

Actual (wt %) 0.07 0.18 4.4 0.58 1.3 0.01 0.13 0.02 0.02

The experiment was designed to analyse the modal characteristic of the predefined
crack and without crack beam under uniform temperatures in the range of 25 to 200 ◦C.
A beam subjected to three heating rates, i.e., 2, 5, and 8 ◦C/min were applied to analyse
the modal behaviour. In the first case, the beam was heated slowly at a rate of 2 ◦C/min
to reach the desired temperature. In the second case, the temperature was increased at
the moderate rate of 5 ◦C/min to reach the required temperature for the experiments. In
the third case, it was allowed to increase rapidly at the rate of 8 ◦C/min for the same
isothermal temperature conditions. Then, the structural response was monitored with
the help of an accelerometer mounted on the specimen. The details of the experiment are
presented in Figure 3.
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3.2. Experimental Setup

The experimental setup was divided into three units, the layout is shown in Figure 4.
The first unit was the vibrating mechanism which consists of a signal generator, power
amplifier, and mechanical shaker. The signal generator generated the input sine wave
functions to provide vibration load.The function of the power amplifier was to amplify
this input sine wave and then input it to the shaker. The shaker provided the vibration to
the specimen at its natural frequency with the fixed amplitude of 2 mm against amplified
voltage 3.2 V. The second unit was the thermal unit comprising a thermal couple, PID
temperature controller, and thermal mat. The K-type thermal couple is used to measure
the specimen surface temperature. The function of the PID temperature controller is to
control the heat supply to the specimen through the heating device thermal mat. A uniform
temperature along the beam was achieved by placing the thermal mat at both ends as shown
Figure 5. The third unit is the data acquisition which consists of strain gage, accelerometer,
data acquisition card, and National Instruments SignalExpress. The strain gage is attached
near the fixed end, while the accelerometer is mounted at the free end of the specimen to
measure the modal amplitude. National Instrument DAQ card (i.e., NI 9234 and NI 9235)
and SignalExpress are used to analyse the dynamic response of the system. The details of
the experimental setup are shown in Figure 5.
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4. Numerical Simulation

The modal parameters of the cantilever beam under the thermo-mechanical loads were
analysed with the help of numerical simulation. The geometry of the specimen was drawn
from the ANSYS Workbench built-in DesignModeler. The fixed-free boundary conditions
were applied. The mesh density was selected as 3 mm with 8833 nodes and 1728 elements.
Finite element analysis was executed for all the isothermal conditions using ANSYS©2019
R2 version Workbench as shown in Figure 6. The specimens with a crack and without a
crack were separately evaluated. The cracked specimen was of three types as discussed
above. The input parameters to the simulations were the material properties, temperature
profiles, and loading conditions. The modal and harmonic modules were used to evaluate
the results. The results of the amplitude were shown in mm units.
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5. Result and Discussion
5.1. Heat Rate and Exposure Time

In this research, three cases of heating rate were considered to analyse the effect of
temperature exposure time on modal parameters. In the first case, the beam temperature
was allowed to increase in a slow and steady rate of 2 ◦C/min. This enabled the beam
to be exposed to the temperature for a longer duration in order to reach the test temper-
atures. In the second case, the temperature was increased at the rate of 5 ◦C/min. This
heating rate was considered as a moderate rate to reach the required temperature for the
experiments. In the third case, the beam temperature was allowed to increase rapidly at
the rate of 8 ◦C/min. This controlled rate of heating the beam was achieved by using a PID
temperature controller. Therefore, the temperature along the beam was controlled to meet
the experimental requirements. Figure 7a–d presents the time required for all the three
cases for the temperature of 50, 100, 150, and 200 ◦C, respectively. The graphs show that the
same temperature was achieved at different times. This means the increase in temperature
at the rate of 2 ◦C/min takes more time to heat the beam for all isothermal conditions.
The heating at the rate of 2 ◦C/min (i.e., slow heat rate) may adversely affect the material
properties. It takes more time to reach the required temperature compared to medium and
fast heating rates. Therefore, during a slow heating rate, the heat accumulates on the beam
for a longer duration and hence has a tendency to influence the material properties more
such as reducing the stiffness.
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5.2. Impact of Temperature on Modal Parameters without Seeded Crack

Figure 8 presents the result of the impact test to find the fundamental frequency at
200 ◦C. While Figure 9 represents the modal amplitude of the specimen running at its fun-
damental frequency at 200 ◦C. In order to remove the possibility of error in measurements,
a total of three experiments were performed and averaged to get the natural frequency and
modal amplitude at a given temperature. All the measurements of the modal response
of the specimens were taken while the temperature was maintained at the required level.
The temperature along the beam was heated at different temperature rates to investigate
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the dynamics response accordingly. The comparisons of experimental results of ramped
temperature at 2, 5, and 8 ◦C/min with the numerical and analytical results are presented.

Figure 10 presents the comparison of natural frequency for different heating rates for
the specific temperature. The graph suggests that the beam natural frequency decreased
with an increase in temperature. This implies that the temperature on the beam surface
deteriorated the beam stiffness to a certain level. Moreover, ramping of temperature at
different rates had some effect on the beam natural frequency. Ramping of temperature at
the rate of 2 ◦C/min had more impact on natural frequency by diminishing its frequency.
However, ramping at 5 and 8 ◦C/min had little influence compared to ramping at 2 ◦C/min.
This effect of ramping temperature was more significant for higher temperatures as shown
in Figure 10. This means that heating at 2 ◦C/min took more time to reach the desired
temperature as shown in Figure 7, thereby accumulating the heat on the beam for a longer
duration which might have softened the material properties. This could be explained as
changes in interatomic bond length especially at higher temperatures as suggested in [10].
Nevertheless, experimental results of 2 ◦C/min cases are very close to the numerical and
analytical results for all the temperature values.
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The modal amplitude for different temperatures is shown in Figure 11. The graph
illustrates that the amplitude decayed as the temperature increased. The drop in am-
plitude was associated with the beam’s fundamental frequency. Therefore, the modal
amplitude displayed a heating effect similar to the fundamental frequency. The heating
rate at 2 ◦C/min showed lower vibration amplitude compared to the others. This indicates
structures went through a more elastic behaviour at higher heating rates. This influence of
heating rate was quite visible at high temperature values as shown in Figure 11.
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5.3. Impact of Temperature on Modal Parameters in Seeded Crack Specimens

The impact of temperature for three crack depths 0.25, 0.50, and 1 mm were chosen
for this assessment. The experimental procedures are the same for all the crack specimens
as those without cracks. The natural frequency for 0.25, 0.5, and 1 mm crack depths are
shown in Figures 12–14, respectively. All the graphs show a similar trend of decreasing
frequency with the increase in temperature. Moreover, the trend of decaying is lesser
at lower temperatures while deeper trends were observed at higher temperatures. This
suggested that the material properties deteriorated at higher temperatures, meaning less
elastic. These changes in the material properties were associated with the stiffness of the
material at different temperatures.

The rate of heating the specimens had little impact on the fundamental frequency.
This research aims to verify this by ramping at 2, 5, and 8 ◦C/min for all three crack
depths. Thus, the effect of the heating rates was compared for all the specimens as shown
in respective figures. It is seen that the analytical and numerical results were comparable
to the ramping at 2 ◦C/min. Although, this effect is minimal at lower temperatures and
more noticeable at higher temperatures. Therefore, this signifies that the rate of heating
can have a slight effect on the dynamic response of any mechanical system.
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The effect of temperature on modal amplitude is plotted for all the crack depths. The
modal behaviour of 0.25, 0.5, and 1 mm crack depths are shown in Figures 15–17, respec-
tively. It was noticed that modal amplitude decreased with the increase in crack depth. The
decrease in amplitude was also associated with a rise in temperature. Comparatively, the
declining trend of amplitude behaviour for a 1 mm crack depth was more linear than 0.25
and 0.5 mm crack depths. This signified that the increase in crack depth reduced the beam
stiffness. Thus, this evidence can be utilized for determining crack depth in structuring
health monitoring. It was observed that vibration amplitude was different on all heating
rates. The effect of heating rate on amplitude is obvious for higher temperatures. The
vibration behaviour of a 0.25 mm crack depth was observed linear till 100 ◦C. A nonlinear
response for all higher temperature ranges was also observed. Similarly, a 0.5 mm crack
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depth showed a small drop in vibrating amplitude from 25 to 100 ◦C, and then it dropped
abruptly. This implied that the specimen loses its stiffness greatly when the temperature
goes above 100 ◦C. Moreover, a 1 mm crack depth showed a linear response at all values
of temperatures. Thus, a 1 mm crack depth was a special case where its stiffness played a
bigger role in the vibrating behaviour than the temperature as shown in Figure 17. Heating
at 2, 5, and 8 ◦C/min appeared to have a similar response but heating at 5 and 8 ◦C/min
are small in amplitude drop compared to heating at 2 ◦C/min. This indicated ramping
at 2 ◦C/min had accumulated more heat on the beam as it takes a longer duration to
heat to the required temperature and through this process softens the material properties.
Nevertheless, ramping at 2 ◦C/min is in good agreement with the analytical and numerical
results. This signified that heating at a lower rate is more accurate for theoretical and
experimental vibration testing.
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6. Conclusions

This research studied the modal characteristic of a cantilever beam at three heating
rates for isothermal temperature conditions. It was performed as slow heating at 2 ◦C/min,
moderate heating at 5 ◦C/min, and fast heating at 8 ◦C/min to analyse the modal re-
sponse for both with crack and without crack specimens. It was observed that different
heating rates have little influence on modal parameters. This impact of heating rates on
dynamic response is negligible at lower temperatures and appeared significant at elevated
temperatures. The results of different heating rates were compared to the analytical and
numerical results. It was found that the results of heating at 2 ◦C/min appeared close to
the analytical and numerical results. This signifies heating at a lower rate is more accurate
for any experimental analysis. This also suggested that heating at different rates can have a
slight effect while measuring the dynamic response of any mechanical system. The modal
frequency and amplitude of the cantilever beam decrease with an increase in temperature
in both with crack and without crack specimens. The results showed that modal parameters
of the cantilever beam are associated with the change in temperatures and heating rate.
Heating at a slower rate takes more time to reach the required temperatures and possibly
makes the beam less stiff, especially at elevated temperatures.
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