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Abstract: This paper describes a novel autonomous ground vehicle that is designed for exploring
unknown environments which contain sources of ionising radiation, such as might be found in a
nuclear disaster site or a legacy nuclear facility. While exploring the environment, it is important that
the robot avoids radiation hot spots to minimise breakdowns. Broken down robots present a real
problem: they not only cause the mission to fail but they can block access routes for future missions.
Until now, such robots have had no autonomous gamma radiation avoidance capabilities. New
software algorithms are presented that allow radiation measurements to be converted into a format in
which they can be integrated into the robot’s navigation system so that it can actively avoid receiving
a high radiation dose during a mission. An unmanned ground vehicle was fitted with a gamma
radiation detector and an autonomous navigation package that included the new radiation avoidance
software. The full system was evaluated experimentally in a complex semi-structured environment
that contained two radiation sources. In the experiment, the robot successfully identified both sources
and avoided areas that were found to have high levels of radiation while navigating between user
defined waypoints. This advancement in the state-of-the-art has the potential to deliver real benefit
to the nuclear industry, in terms of both increased chance of mission success and reduction of the
reliance on human operatives to perform tasks in dangerous radiation environments.

Keywords: nuclear; autonomous; costmap; 3D navigation; radiation detector; field robotics; experimental

1. Introduction

In nuclear facilities, there is often a need to explore and characterise an environment
that has constrained access due to the risk posed by extreme levels of radiation exposure.
Characterisation often involves, but is not limited to: camera surveys, LIDAR scans, mea-
suring radiation levels and identifying locations of radiation hot spots. The unknown
environment could be an aging legacy facility that must be characterised prior to decom-
missioning, such as at Sellafield in the UK, or an active facility following a nuclear incident,
such as Fukushima Daiichi in 2011 or Chernobyl in 1986. Robotic systems offer an ideal
solution for exploring these environments as they remove the need for humans to access
dangerous areas. However, it is essential that these robots do not fail during a mission.
Broken down robots can block access routes and make cleanup tasks even more difficult [1].
Exposure to gamma radiation has a damaging effect on electronic systems and the severity
of this damage is related to the total ionising dose (TID) that the electronic system re-
ceives [2]. The precise impact of gamma radiation on the electronic devices is stochastic to
a certain extent and hence robot breakdowns due to exposure will be unpredictable. Robots
can be built using radiation hardened components; however the range of components
is very limited and their cost is often several orders of magnitude higher than standard
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components [3]. Radiation hardening also causes drawbacks in terms of the robot’s perfor-
mance and battery life, due to the limited selection of components and the extra mass [4].
Moreover, irrespective of the level of radiation hardening, avoiding radiation hot-spots
will always decrease the chance of robot breakdowns. In any decommissioning or clean-up
environment there will be areas with high and low radioactivity levels; therefore paths
can be taken that minimise the radiation dose received by the robot, helping to extend its
life. The motivation of this work is to reduce robot breakdowns by planning and following
paths that minimise the radiation dose received by the robot.

Time spent navigating close to gamma sources is a key factor in minimising the dose
received by the robot. For an operator driving a robot, careful consideration of live radiation
measurements and planning routes appropriately is generally not a practical method of
minimising the dose received by the robot, due to the decision time. The robot will most
likely be receiving some level of radiation dose throughout the whole mission so any time
spent making decisions will increase the total dose received. Therefore, using autonomous
path planning that makes fast, evidence-based decisions to help the robot avoid radiation
can increase the lifespan of the robot and the chance of mission success. The radiation
detector used on the robot is a standard ThermoFisher RadEye unit that is widely available
and commonly used. The detector is not collimated so has no directional sensitivity; this
means that the robot can only report radiation intensity at its current location. The effect of
this is that the robot does not avoid radiation the first time it encounters it. Rather, the robot
detects regions of high radiation as it passes through them and then avoids these regions
for the rest of the mission, reducing the overall dose that the robot receives. The reason that
this was selected as the most appropriate solution is because there is an inherent latency
in gamma radiation detectors due to the stochastic nature of radioactive decay and the
subsequent requirement for there to be an integration time for a dose rate to be calculated.
The latency means that directional radiation detection and prediction of the radiation field
in regions ahead of the robot is not practical because with a latency of 8 s and typical speed
of 1m/s the robot could travel 8 m towards a source before a high reading is measured
and can be accounted for by the navigation. Therefore, if the robot was to predict radiation
ahead of its arrival so that it could be avoided on the first pass, the robot velocity would
need to be decreased to an impractical level that would increase the overall dose due to the
extended mission time and background dose. The setup demonstrated in this paper is a
practical method that can reduce the overall dose a robot receives using readily available
commercial sensors.

The navigation software that was used as the basis for the work was CSIRO’s exper-
imental navigation stack, which is currently under development as part of the DARPA
Subterranean Challenge [5]. Although the navigation stack is being developed prioritising
autonomous behaviours in communications constrained unknown environments, the work
performed in this paper highlights its versatility and modularity with respect to existing
out-of-the-box solutions such as the ROS navigation stack [6].

Additional software packages were written to give the robot real-time radiation avoid-
ance functionality. The first package written builds a 2D costmap using the position
stamped radiation measurements from the onboard Gamma detector and the second pack-
age integrates the new 2D costmap into the robot’s existing costmap. The new algorithms
were experimentally validated on a real robot using safe (non-ionising) radiation sources.
The robot operated in a complex 3D environment and a 3D voxel map of the geographic
area was produced alongside a 2.5D radiation map. The robot was guided at a high level
by a user placing waypoints; navigation between waypoints and radiation avoidance was
handled by the robot’s autonomy package.

More specifically, novel contributions of the work presented in this paper are as follows:

e Anonline method of generating a variable value radiation costmap from non-uniform
point measurements of radiation and integration of this costmap into an existing
costmap based navigation stack.
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®  Experimental verification that our unmanned ground vehicle (UGV) can autonomously
avoid gamma radiation in real-time, while exploring unknown environments.

*  Experimental verification that CSIRO’s Navigation Pack and accompanying experi-
mental navigation stack can navigate obstacles and topography in varied and com-
plex environments.

In the literature, both ground and aerial robots have been used to produce location
tagged nuclear radiation data, with varying levels of sophistication in terms of autonomy
and radiation mapping ability. Many of the robots and systems used to date were developed
in response to the Fukushima Daiichi incident in 2011.

Nagatani [7] discusses the ground vehicles that were sent onto the Fukushima Daiichi
site following the incident in 2011. They were remotely operated and the radiation detectors
were not integrated into the software; the dosimeter measurement was observed using a
camera pointed at the readout.

Multirotor unmanned aerial vehicles (UAVs) were developed to improve the resolution
of contamination monitoring on the Fukushima site. In [8], MacFarlane et al. presented a
system comprising a LIDAR, GPS module and a gamma spectrometer, which is capable of
transmitting georeferenced radiation measurements in real-time. In [8,9], radiation was
presented on a 2D map and in a later publication [10], Martin et al. collected and rendered
a 3D radiation map of stepped farmland in the Kawamata region of Fukushima.

In a series of recent works including [11-13], Vetter et al. furthered the state-of-the-art
in real-time mapping of nuclear radiation by developing a multi-sensor instrument that
can map a local area and fuse scene data with nuclear radiation data.

Although the research area is well developed in terms of mapping of gamma radiation
sources, the use of robot autonomy in the data collection is uncommon. None of the
work cited thus far includes autonomous navigation that is influenced by the radiation
measurement. The more advanced schemes have automated coverage [14], or human-in
-the-loop waypoint navigation [15]. Work in the area of radiation-influenced autonomous
navigation is limited. In [16], Li et al. present a UAV that can autonomously search for
a radiation source. Three different search algorithms are suggested, but field tests did
not incorporate automated searching as their UAV had no means of localisation. In [17],
Cortez et al. use a Bayesian-based strategy to alter the amount of time that the robot
spends in each cell of a square gridded search area and control measurement uncertainty.
In [18], Bird et al. describe the design and development of an autonomous, ground-based,
alpha radiation monitoring robot named CARMA. The CARMA robot was unique in its
ability to autonomously monitor for alpha radiation and because its navigation algorithms
took account of the radiation measurements. Alpha radiation can be stopped by a few cm
of air, therefore CARMA needed to be in close physical proximity to the radiation source
to detect it. When contamination was detected, CARMA reversed and added a synthetic
obstacle to its map. This method worked well for ground level alpha contamination that can
be classed as present or not present, but is not suited to highly penetrative gamma radiation
with varying intensity.

Outside of the radiation monitoring field, the use of additional information to improve
the navigation scheme of an autonomous robot is common. For example, Sebastian and
Pinhas [19] developed a path planning method for a tracked vehicle that takes into account
information such as slip, slope of terrain and actuator limitations. In [20], an energy
requirement costmap was generated for a UAV and used to increase flight times.

2. Hardware Architecture

The UGV used for all experimental work presented in this paper was a modified
Clearpath Husky [21], shown in Figure 1. The equipment added to the off-the-shelf
platform was: a CSIRO Navigation Pack, a Thermo Fischer RadEye G-10 personal gamma
dosimeter with a laptop for communicating with the dosimeter, and a Rajant BreadCrumb
ES1 communication node to increase the wireless range with the operator base station.
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Figure 1. The modified Clearpath Husky robot equipped with CSIRO’s Navigation Pack and a
RadEye G-10 personal dosimeter.

The CSIRO Navigation Pack (also known as “CatPack” [22]) is a self-contained
2.5D localisation and navigation solution for ground vehicles. Its sensor suite comprises
a Velodyne Puck (VLP-16) LiDAR, a LORD Microstrain CV5-25 Attitude and Heading
Reference System (AHRS), four RGB cameras with wide angle lenses to visually cover the
full 360° of the robot’s plane as well as LED lights to operate in underground environments.
The Pack contains an NVIDIA Jetson AGX Xavier and an Intel NUC as the main sources
of computational power to perform all the perception and navigation tasks. The Pack
commands the Husky by sending velocity commands to the internal robot computer and
is powered using the Husky internal batteries.

The G-10 dosimeter streams single value gamma radiation measurements to a laptop
at 1 Hz. The laptop records the live measurements, geographically tags them in 3D space
and makes the information available for the radiation avoidance software. Although the
dosimeter provides radiation readings at a rate of 1 Hz, the measurement has a latency of
approximately 8 s between a spike in radiation hitting the device and a spike in the value
output by the device. This is due to the dosimeter averaging readings over a time history,
with the aim of smoothing the noisy nature of radiation readings caused by the stochastic
nature of radioactive decay.

3. The CSIRO Navigation Stack

CSIRO'’s existing navigation stack was used as the basis for robot localisation and navi-
gation. The navigation stack has been specifically developed for ground vehicle multi-agent
navigation in unknown environments as part of the DARPA Subterranean Challenge [5].
It is still in active development and in this paper we present a high-level description of
the version that was current in early 2020 when the experiments were conducted. When
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used on a single agent, the Navigation Stack consists of: a simultaneous localisation and
mapping (SLAM) pipeline to self-localise the UGV in a GPS-denied environment; a local
navigation layer that maps the robot’s surroundings, plans and executes feasible trajectories
within the space perceived by the on-board sensors; and a global navigation layer that
keeps a global map and sends high level commands.

3.1. SLAM Pipeline

The localisation of the vehicle was entirely based a custom SLAM software developed
at CSIRO [23,24] specifically designed to work with accurate and dense range data provided
by LiDAR sensors and an industrial grade IMU/ARHS. In normal operating conditions,
trajectories computed by the SLAM pipeline drift by 0.1% of the total distance traversed.
Point clouds from the LiDAR are corrected using the state estimation output and a relative
accuracy of 2.5 cm is achieved with the Velodyne VLP-16.

The SLAM pipeline publishes odometry and a raw LiDAR pointcloud via ROS and
localises the pointcloud to account for the encoder rotation and LiDAR orientation. As a
consequence, these points are published in the vehicle frame up to 300k points/s while
the local odometry pose is updated at 100 Hz with higher accuracy poses generated in the
data stream at approximately 4 Hz.

3.2. Local Navigation

The local navigation layer is specifically designed to perform all navigation tasks in the
robot’s local area. The high-frequency SLAM localisation output and the corrected LiDAR
scans are used on a 3D probabilistic GPU-based occupancy grid map [25] to generate a
high-resolution voxelised 3D snapshot of the robot’s surroundings. Then, a height map
is extracted for 2.5D navigation purposes and turned into a 2D costmap on which an
implementation of hybrid A* [26] was used to plan robot trajectories to move towards
goals while avoiding obstacles detected by the LiDAR [27]. The generated trajectories
are then turned into velocity commands, while taking into account the UGV velocity and
acceleration constraints.

3.3. Global Navigation

The global layer’s main tasks are to keep a global map for the UGV as well as serialise
the execution of high-level tasks for navigation and exploration [28] of unknown environ-
ments. The global map is a topological map with metric information. The map is internally
constructed as an undirected graph. The nodes represent specific locations the robot has
been to and the edges that connect them are set based on local visibility information. The
encoding of the global map allows a sparse representation of the environment during the
mission, thus minimising memory usage. This map interfaces with the SLAM to benefit
from its periodic global corrections and loop closures.

To provide a deterministic behaviour in nuclear environments, in this work high-level
tasks were limited to Goto command sequences sent by the operator from the base station
to describe a global waypoint-based trajectory. A waypoint manager module takes the
input trajectory and generates a global path based on the current instance of the topological
map using A*. When a path is found, it is decomposed into locally reachable waypoints
that are sent to the local navigation layer. The waypoint manager contains all the required
logic to interface with the local navigation layer and ensure the global trajectory is executed
correctly, providing an alternative path if necessary.

4. Adding Radiation Avoidance Functionality to the Navigation Stack

Similar to the way in which obstacles or challenging terrain are often expressed by
increased cost in a costmap, the level of risk to a robot from radiation can also be expressed
in a costmap. To fuse the new radiation costs with existing terrain costs, a layered costmap
approach is used [29]. Radiation information is held in a separate costmap which shares
the same size, resolution and origin as the existing costmap produced by the navigation
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stack (Section 3). These costmaps will herein be referred to as the terrain costmap and
the radiation costmap. The two costmaps are combined into a single costmap, which is
monitored by the navigation stack for path planning and execution.

4.1. Constructing the Radiation Costmap

The dosimeter publishes a new radiation observation at a rate of 1 Hz and these
data are saved in a standard format as a ROS message. The radiation measurement ROS
messages contain a value for dose rate with associated metadata. This metadata contains a
standard ROS header, which can be used to infer the time and pose of the observation via
global pose estimates provided by the Wildcat SLAM implementation used in this work
and the standard ROS TF package. The radiation costmap is updated each time a new
observation is acquired from the dosimeter. However, the dosimeter only provides a point
measurement, whereas for path planning, features in the costmap need to have equivalent
dimensions to the configuration space of the robot. Therefore, the cost due to radiation
from a single observation is inflated to cover a reasonable area surrounding the robot. For
a given dosimeter observation, a region of inflation is defined by a circular footprint of
user-defined radius r, chosen to be similar to a major dimension of the robot. All cells of
the costmap which are bounded by this inflated region of influence are updated with the
observation value from the dosimeter.

An issue arises when inflated observations overlap, resulting in cells in the costmap
being updated by multiple observations. To resolve this, a weighted average radiation
intensity value is computed based on all observations. Radiation intensity from a point
source is typically expressed by an inverse square distance relationship [30]. Even though
the location of each point source is not known in the current work, using an inverse square
function to estimate the spread of radiation with distance is still an appropriate approach
because it gives the correct attenuation shape. However, the robot cannot give a full map
of the radiation environment from a single reading; the robot must build the radiation
costmap as it navigates.

In the close vicinity of a dosimeter observation, it can be assumed the gamma radiation
intensity is similar to the observed value. At further distances from an observation, this
assumption begins to breakdown, therefore observations made closer to a costmap cell are
more useful than observations from further away. To mathematically represent this trust in
nearby measurements, a weighting factor is used as part of the averaging method.

Equation (1), describes the weighting function in terms of the Euclidean distance
between a cell centre and an observation, 4, and a scaling factor, s. This factor is the
variance of the Gaussian expression, therefore larger values of s result in a broader region

of smoothing.
2
Wyy =e€exp | — Ty (1)
Y P 2.52

For a given cell (of index x, y) in the radiation costmap, the average value, v, based on
n inflated observations, o, is given by Equation (2).

Z? wx,y,i Y
Z:l wx,y,i

@

’Ux’y =

Equation (2) is fast to compute and interpolates otherwise irregularly spaced data.
This approach not only provides interpolation, but also averages in local regions where
many readings are present and smooths the inherent random fluctuations of radioactive
decay. Using the methods presented in Equations (1) and (2) the robot can make path
planning decisions based on less noisy information.

To aid in smoother path planning through unknown regions, i.e., those that have
no radiation data, an optional secondary function is applied. Equation (2) is therefore
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modified to include an additional reduction term based on a cosine function as shown in
Equation (3).
o Y. w;-0;-cos(7mdy,,i/D)
Xy —
Y Y w;

®)

The cosine easing factor, D, is typically give a similar value to the inflation radius. This
empirically tuned function can remove steep gradients present in the radiation costmap
between observed and non-observed regions, particularly if the data is noisy or radiation
intensity is high.

The costmap can accept integer values from 0, representing no additional cost, so-called
free space, up to 100. vy, needs to be converted to this integer scale before it can be com-
bined with other costmaps, such as the terrain costmap in this work. For a given costmap
cell, Equation (4) linearly scales additional cost between the lower and upper threshold in
units utilised by the radiation detector (commonly counts per second (cps) or uSv/hr) to
an integer cost value between 0 and 100.

Oxy — tr
v = 10T @

where t1 and t{; are the lower and upper thresholds, respectively.

4.2. Combining Terrain and Radiation Costmaps

There are many possible policies for combining the terrain and radiation costmaps,
such as the terrain costmap always taking priority over the radiation map. However,
this work uses a maximum value preservation policy because the two sources of cost are
independent and neither cost has a diminishing effect over the other.

The simplified example in Figure 2 demonstrates the shared resolution between the
terrain costmap, the equivalent radiation costmap, and the final combined costmap that is
passed to the navigation stack.

The distinct processes for generating the radiation costmap, and amalgamation with
other costmap layers are shown in Figure 3. Radiation observations are performed at 1 Hz,
however, other processes such as path planning happen more regularly. Therefore, the
combined costmap can be updated at a faster rate relevant for topological avoidance whilst
the radiation map is updated only with new observations.

122018

12 20 20 12 20 20
121212 1010 10 101012 12 12

202010 202010
30 2010 3020110

Terrain Radiation Combined

Figure 2. Combination of terrain and radiation risk into a single combined costmap using a maximum

value preservation policy.
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Figure 3. Flowchart representing the steps for generating the radiation costmap and its combination with other costmap

layers to provide a monolithic costmap for path planning.

4.3. Recovery Behaviour

Alongside the local navigation capabilities discussed in Section 3.2, the robot also has
recovery behaviour that is initiated when the robot finds itself in an area of unacceptably
high cost. This functionality is normally used to move a robot away from a dynamic
obstacle that is moving towards the robot. However, it is particularly useful in the present
context to move the robot away from radiation if it travels into an unknown area of high
radiation and slows down. In this case the detector latency can cause the radiation cost
area to catch up with and engulf the robot.

5. Experimental Validation
5.1. Experiment Setup

The CSIRO Navigation Pack and the real-time radiation avoidance functionality
that was added to the CSIRO navigation stack was evaluated in two experiments. In
both experiments the robot started at the same location inside a warehouse. In the first
experiment the robot left the building and explored outside the warehouse and in the
second experiment the robot was exclusively navigating inside. Figures 4 and 5 show
the environments that were used for the first and second experiments relatively. The first
environment was semi-structured and comprised a paved loading area, an area of small
bushes and an area of sloped grass. It included significant topography, many structured
and unstructured obstacles and loose terrain. This varied and complex environment was
selected to fully test the capabilities of the robot, in terms of both its radiation avoidance
functionality and the ability of the CSIRO navigation stack to operate in a challenging
environment. The second environment was the inside of a warehouse that is used for
robot testing and contained a variety of obstacles such as other robots, a camera rig, a
trike, office furniture and storage racks. The environment was used as it was found at the
time of the testing. Neither of the environments were sanitised for the experiments and no
modifications were made to the robot between the experiments. GPS is not required by the
Navigation Pack for localisation and was not used in either experiment.
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Radiation
Locations

Figure 4. Photograph of outdoor test environment 1, highlighting radiation source locations.

Radiation
Loc tions

Figure 5. Photograph of indoor test environment 2, highlighting radiation source locations.

The robot’s missions were controlled by an operator placing waypoints in the online
generated 3D voxel map through Goto commands. Although higher levels of autonomy



Robotics 2021, 10, 78

10 of 15

such as frontiers exploration were available, Goto waypoint navigation was considered to
be the most suited to the task, because in a real-world situation, a human operator would
almost certainly be kept in the loop when exploring unknown radiation environments.
Using waypoint navigation, the operator has top level control of the mission, while the
robot’s autonomous capabilities take care of lower level navigation challenges. This allows
the operator mental capacity for higher level decision making such as choosing areas to
explore and deciding when to return to base.

To simulate a gamma radiation source, two STS Safe-MiniSources [31] were placed
in each environment, in the locations shown in Figures 4 and 5. The Safe-MiniSources
emit radio-frequency radiation and the RadEye G-10 on the robot was a modified unit [32]
that had been converted to detect radio-frequency radiation rather than gamma radiation.
A software package (ROS node) was produced to allow communication between the
RadEye G-10 and a computer (the RadEye ROS node is on GitHub and available for use;
please contact the corresponding author for access). To change the setup so that it would
work in a real gamma radiation environment, the modified RadEye G-10 would simply
need to be swapped for a standard RadEye G-10, commonly used in the nuclear industry.

To account for the fact that the RadEye G-10 has a latency of approximately 8 s, as
radiation measurements arrive, they are shifted backwards so that they are associated with
the location the robot was in, 8 s previously. This causes the radiation costmap update to
tail the robot’s location.

For the experimental work, the following constants (defined in Section 4) were
used: ¥ =1.5m,s =2m, D = 1.1m, t; = 0, f;; = 200. No radiation scale is attached to any
of the results because radiation levels in the environment were set by the Safe-MiniSources
which are uncalibrated and do not emit gamma radiation.

It is important to note that from the robot’s perspective the environments were both
completely unknown: the robot had no prior information about the environments, such as
a geographic or radiation map, these were built during the mission.

5.2. Results of Experiment 1

Figure 6 shows the robot navigating from the start point to each of the first four waypoints.
The four images, (a) to (d), represent successive instances in time during the experiment. In
each image, the global voxel map is shown, with the radiation costmap and robot’s path
overlaid. With reference to Figure 6, the robot navigated from its start position inside the
warehouse through the open roller door to waypoint A outside. In Figure 6a the robot is
travelling between waypoints A and B and the radiation costmap laid out behind the robot
is apparent. While moving from A to B, the robot passed one of the Safe-MiniSources that
was placed outside against the warehouse wall. In Figure 6b the costmap shows the area of
high radiation (and therefore cost) that was caused by passing close to the radiation source. In
Figure 6c the path that was taken from B to C is shown and it is evident that the robot did not
take the direct path (the yellow line) from B to C, rather the robot’s path planner navigated
around the area of high radiation that it measured. Finally, in Figure 6d the path taken from
waypoint C to D is shown; here the robot takes a curved trajectory (instead of the straight
yellow line) that avoids the higher radiation levels that it measured on its path from B to C.

In Figure 7, the full mission path and radiation costmap is plotted over the final global
voxel map. During the mission, the robot successfully identified and then subsequently
avoided the two areas surrounding the radiation sources. The robot also successfully
navigated in both an indoor and an outdoor environment and in challenging, varied terrain
that contained multiple obstacles including walls, doorways and bushes. Twice during
the mission, high levels of radiation caused a region of high cost (red) to engulf the robot
and recovery behaviours were automatically triggered to move the robot out of the area of
high cost.



Robotics 2021, 10, 78 11 of 15

Badiation Start Point

Location

Radiation
Planned — Costmap
Waypoints ¥~

Path Taken

Figure 6. Images showing the global voxel maps and the radiation costmap layer at four time
instances during the first experiment where the robot was navigating outside. In the radiation
costmap, increasing radiation is represented by green for low cost fading to red for high cost.
(a) Navigating from waypoint A to B. (b) Navigating from waypoint B to C. (¢) Navigating from
waypoint B to C via an indirect path. (d) Navigating from waypoint C to D.

Location’

2m i Radiat'io‘n" '
]m Costmap ]

Figure 7. Image showing data captured during the first experiment where the robot was navigating in a complex outdoor
environment. During the mission, the robot successfully identifies and then avoids two radiation sources.

In Figure 7, there are some areas showing high levels of radiation that were not near
the two sources placed in the environment. It is important to note that the Safe-MiniSources
operate in the RF band and will therefore not behave exactly as gamma radiation. Higher
than expected sensor readings in some locations may have been caused by multipath
propagation or the sensor receiving spurious readings from other equipment.
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The full experiment run is best observed in the accompanying video that shows time-synced
views of the global map, the local costmap and a video stream of the environment.

5.3. Results of Experiment 2

Figure 8 shows the robot’s indoor navigation for the first four placed waypoints in
experiment 2. In Figure 8a the robot navigates successfully to the first waypoint but does
detect some higher levels of radiation at an unexpected location. This was assumed to
be due to multipath effects as described above. In Figure 8b the robot is at waypoint A
and was asked by the operator to move to waypoint C which is near a radiation source
and had been identified by the robot as being in a high dose rate area. In Figure 8c the
robot attempts to navigate around the high radiation region to get to waypoint C and in
Figure 8d the robot rejected waypoint C due to the high dose rate in its vicinity and moves
on to the next waypoint.

Figure 9 is analogous to Figure 7 and shows the full indoor mission path and radiation
map plotted over the final voxel map. The robot navigated the indoor environment
successfully and identified both radiation sources. It appeared that the effects of multipath
from the radiation sources is stronger inside than outside as several regions away from the
sources were identified as having a high dose rate. However, this does not detract from the
efficacy of the radiation informed navigation system and is most likely to be a feature of
the simulated radiation sources as opposed to an effect that might be expected with real
gamma sources.

Start Point

ﬂ'— Radiation

Location

é Path Taken

’ ~ Radiation

Radiation Costmap Robot Location

Figure 8. Images showing the global voxel maps and the radiation costmap layer at four time
instances during the second indoor experiment. The sequence shows a waypoint being rejected
due the fact that it is in a high dose rate region. In the radiation costmap, increasing radiation is
represented by green for low cost fading to red for high cost. (a) Navigating to waypoint A prior to
radiation detection. (b) Request to navigate from waypoint B to C. (c) Attempt to navigate around
radiation to waypoint C. (d) Waypoint C rejected as inaccessible.
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Radiation

E/ Locatlon

Radiation
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Area of Hig
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Figure 9. Image showing data captured during the second experiment where the robot was navigating indoors. The robot
successfully navigated around the confined environment and identified then avoided both radiation sources.

6. Conclusions

The research presented has made an important step forward in mobile robot autonomy
for the nuclear sector. A method for generating a radiation costmap and combining this
with an existing costmap was developed and presented. Using the new combined costmap,
the robot was given the added functionality of being able to navigate around and actively
remove itself from areas of high radiation that were detected during the mission.

The full system was validated in two unknown environments on a real robot using safe
radiation sources. The experiment results demonstrated that the new radiation avoidance soft-
ware functions properly: the robot clearly detects and then subsequently avoids areas with high
radiation levels when they are available in the costmap. The costmaps produced are appropriate
for the navigation stack and facilitate smooth and well-reasoned navigation. The results not
only show the successful addition of real-time radiation avoidance, but also demonstrate the
efficacy of the CSIRO Navigation stack in complex indoor and outdoor environments that
contain significant topography and a variety of obstacles and ground conditions.

This increased level of robot autonomy has the potential to provide real benefit for the
nuclear sector. Fast, evidence-based decisions can be made by the robot that reduce the
radiation dose it receives during a mission in an unknown nuclear environment.
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